
 RESEARCH REPORT VTT-R-04516-13

ProMoNet Conceptual Solution
Design for Dynamic
Configuration Management of
Networked Industrial Systems
Authors: Pekka Isto, Tommi Parkkila

Confidentiality: Public

RESEARCH REPORT VTT-R-04516-13

1 (22)

Report’s title

ProMoNet Conceptual Solution Design for Dynamic Configuration Management of Networked
Industrial Systems
Customer, contact person, address Order reference

Project name Project number/Short name

Product Life-Time Configuration Management of Networked
Industrial Systems
Verkotettujen teollisten järjestelmien elinkaarenaikainen
konfiguraatiohallinta

73147 / ProMoNet

Author(s) Pages

Pekka Isto, Tommi Parkkila 23/75
Keywords Report identification code

Configuration management, dynamic, industrial systems VTT-R-04516-13
Summary
State-of-the-art high technology products are modular and multi-technical systems. Modular,
model and component-based design methods boost system development, and give
opportunity for more fine grained system management and maintenance than before. Data
communications networks become more and more pervasive allowing products to have
sophisticated networking capabilities and communication functions to send the required
configuration management data to a server through Internet. These enablers make possible
run-time and fine grained system management, e.g. remote system upgrade, extending
product life-time by enabling system adaptation to face new set of requirements and
standards in field.
ProMoNet project defines and develops a conceptual solution for dynamic configuration
management of networked industrial embedded systems and experimentally verifies the
founded conceptual solution in a specific use case. The conceptual solution is aimed at
providing configuration management functionality during the middle-of-life (MOL) phase, but
also describes processes needed to transition a product data instance for the product from
generic beginning-of-life product model to a configured and to be manufactured middle-of-life
product model.
The requirement elicitation process used is iterative. First, a literature survey and semi-
structured industry interviews were done to construct the system context and preliminary
requirements definition for dynamic configuration management. Second, the preliminary
requirements were further refined with the knowledge gained from technology evaluations. At
the third stage the requirements were presented to invited industry representatives for
evaluating the value and ease of implementation for each individual requirement with an
online survey. Based on the analysis of survey responses, 21 requirements were selected to
key requirements set.
The dynamic configuration management system was designed and modelled in OMG
Systems Modelling Language using the SYSMOD methodology. SysML reuses a subset of
UML 2 and provides extensions for modelling aspects other than software such as hardware,
information, (continuous) processes, personnel, and facilities. SYSMOD is a methodology for
systems engineering that produces SysML diagrams in a defined sequence using an
iteratively incremental process. SysML and SYSMOD proved to be good choices for
modelling language and methodology for the project. They are fairly easy and fast to pick up
at least for someone familiar with model based design principles and UML in particular. The
main shortcoming was the flatness of the domain knowledge diagram which does not capture
the object oriented design principles that software engineers are used to rely on.
The most critical part of the conceptual solution design was verified by implementing the
functionality related to the scenario of local service reconfiguration. Parts of the demonstrator
were implemented from the subset of the conceptual design pertinent to the scenario by
different persons located at geographically different sites. There was very little need for

RESEARCH REPORT VTT-R-04516-13

3 (22)

Preface

This research report presents the main results from research project Product Life-time
Configuration Management of Networked Industrial Systems (Verkotettujen teollisten
järjestelmien elinkaarenaikainen konfiguraatiohallinta). The jointly funded project started at
the beginning of February, 2011, and ended at the end of April, 2013. The participating
companies were SEC of America, Sandvik Mining and Construction Oy, Wapice Oy,
Microteam Oy, and Miradore Oy. The steering group consisted of Tim Seaton, Severi Eerola,
Pasi Tuominen, Pertti Arjanne, Mika Liukko and Mikko Sallinen (VTT). Tekes was
represented by Martti Huolila. The authors want to thank the steering group members for
their contributions and guidance during the project. The authors also want to thank the
industry experts who were interviewed during the field study phase of the project for their
time and valuable expertise as well as those who responded to the online survey. The
financial support of Tekes, the companies, and VTT is also highly appreciated.

Oulu 20.6.2013

Authors

RESEARCH REPORT VTT-R-04516-13

4 (22)

Contents

Preface ... 3

Contents ... 4

1. Introduction ... 5

2. Requirements Elicitation Process .. 7

3. ProMoNet Conceptual Solution Design Overview ... 8

3.1 SysML and SYSMOD ... 8
3.2 System context and system process diagrams ... 9
3.3 Some key elements of the solution ... 13
3.4 A roadmap to the full Conceptual Solution Design .. 14

4. Verification and Limitations of the Model ... 14

5. Conclusions .. 15

6. Summary .. 16

References ... 17

RESEARCH REPORT VTT-R-04516-13

5 (22)

1. Introduction

State-of-the-art high technology products are modular and multi-technical systems. There are
several different parties involved in design, development, supply, and maintenance during
the life-time of a product. These parties could include design houses, integrators, component
suppliers, end users, and so on. End users have demanding requirements for product
maintenance after the final installation. Product configurations depend on end users
particular requirements, their financial potential, and available product components on the
market. The particular combination of hardware and software components and features of
the product evolve over its life-time as components become obsolete or better technology
emerges for product upgrades. In industrial systems, after-sales markets are the fastest
growing portions of products life-time chains. However, configuration management is most
often processed offline, and products are often treated as single integrated systems. There is
very little if any configuration management of products in active use in the field, and there are
no mature methods or tools for such configuration management especially ones that support
reconfigurable hardware such as Field-Programmable Gate Arrays.

Modular, model and component-based design methods boost system development, and give
opportunity for more fine grained system management and maintenance than before. Data
communications networks become more and more pervasive allowing products to have
sophisticated networking capabilities and communication functions to send the required
configuration management data to a server through Internet. These enablers make possible
run-time and fine grained system management, e.g. remote system upgrade, extending
product life-time by enabling system adaptation to face new set of requirements and
standards in field. New technological solutions can be taken into use parallel to existing
solutions by upgrading only required configuration modules. Fine grained remote
configuration management sets new challenges for product configuration and product data
management. These challenges have to be taken into account from the early design phase
of a product already. Integrated and systematic management of product configuration over
product’s life-time is largely an unsolved issue with potential benefits for all stakeholders.

ProMoNet project provides solutions for life-time management and maintenance of
networked modular, multi-technical products. Project target group consists of companies,
which have a stake in the product during its life-time: product developers and manufacturers,
design houses, component suppliers, and end users. ProMoNet defines and develops a
conceptual solution for dynamic configuration management of networked industrial
embedded systems and experimentally verifies the founded conceptual solution in a specific
use case. The project is based on a three phase product life-cycle model, including
beginning-of-life, middle-of-life, and end-of-life phases (Figure 1). The conceptual solution is
aimed at providing configuration management functionality during the middle-of-life (MOL)
phase, but also describes the requirements, functionality and processes needed to transition
a product data instance for the product from generic beginning-of-life product model to a
configured and to be manufactured middle-of-life product model.

The next chapter describes the requirements elicitation process used to capture the
requirements for the conceptual solution using literature surveys, industry interviews and
Wieger’s requirement prioritization method. The stakeholder descriptions and requirements
are given in an appendix A. The following chapter describes the modelling language SysML
and methodology SYSMOD used to construct ProMoNet Conceptual Solution Design for
dynamic configuration management of networked industrial systems. The chapter presents
the System Context and System Process diagrams for a high-level presentation of the

RESEARCH REPORT VTT-R-04516-13

6 (22)

solution. It also discusses the key elements of the solution and gives guidance in studying
the full model which is given as SysML diagrams in an appendix B. Chapter 4 describes the
verification of the critical part of the conceptual solution design model with a demonstration
implementation and discusses the limitations of the model and its verification. The final
chapter states the conclusions.

Figure 1. Product life-cycle model used in ProMoNet project.

Table 1. The Industry Interviewees.

Company
name

of Persons
Interviewed

Category of
Products

Role of
Company

Applied
Computing
Technologies

System
Architecture

Remote
Connectivity

C1 8 Mechatronic
Machines

OEM Embedded PC ,
Microprocessor,
PLC, CHW

Distributed Yes

C2 2 Mechatronic
Machines

OEM Embedded PC ,
Microprocessor,
PLC

Distributed Yes

C3 1 Mechatronic
Machines

OEM MCU Single No

C4 1 Machine
Condition
Monitoring
Systems

OEM Embedded PC ,
Microprocessor

Single Yes

C5 2 Machine
Condition
Monitoring
Systems

OEM Embedded PC ,
Microprocessor,
CHW

Single Yes

C6 1 Control
Electronics

SUB Embedded PC ,
Microprocessor

Both Yes

C7 2 Control
Electronics

SUB Embedded PC ,
Microprocessor,
PLC, CHW

Both Yes

RESEARCH REPORT VTT-R-04516-13

7 (22)

2. Requirements Elicitation Process

The requirement elicitation process used in ProMoNet is iterative and has three stages. First
a literature survey and semi-structured industry interviews were done to construct the system
context and preliminary requirements definition for three subareas of dynamic configuration
management, namely middle-of-life Product Data Management systems, machine-to-
machine (M2M) communication systems, and control electronics of the products. The
interviews included 17 experts from seven organisations from the machine industry from
Finland and USA (Table 1). The experts were interviewed about their organization in general,
their product structures and features, configuration management processes applied on
products, remote connectivity of products, and aftermarket services the products have during
their middle-of-life phase.

The preliminary requirements were further refined with the knowledge gained from
technology evaluations that focused on middle-of-life configuration management functionality
provided by commercial Product Data Management systems, available short and long range
wireless communication technologies, and available M2M communication platforms. The
middle-of-life PDM system evaluation started with literature survey to find existing middle-of-
life PDM system categories. A representative system from each category recognized was
selected for deeper study and a semi-structured interview of a company representative of the
system’s provider was conducted. Three interviews were conducted and analysed, and the
findings were documented and published elsewhere [Parkkila et al. 2012].

For the wireless communication technology evaluation a literature survey was performed to
find a wide range of wireless communication technologies, their categories and
classifications. Pre-screened short and long range wireless communication technologies
were evaluated against the preliminary requirements which were then further developed to
explicate implicit requirements that eliminated some of the technologies from the list of
suitable ones.

The preliminary requirements were the least developed in the M2M communication system
area and not really rigorous enough to make an informed decision about the M2M technology
platform needed for an implemented system. However, a decision was made to not further
elaborate the preliminary requirements in this area since they can be augmented with the
requirements from the ETSI TS 102 689 M2M Service Requirements technical standard
[ETSI TS 102 689, 2010].

After the refinement of the preliminary requirements through technology evaluations and
merging overlapping requirements, the set of requirements included total of 40 requirements
(Appendix A). The requirements were presented to invited industry representatives for
evaluating the value and ease of implementation for each individual requirement with an
online survey. The online survey was based on Wieger’s requirement prioritization method
[Wiegers, 2003]. Total of 20 respondents were invited and eleven completed surveys were
received, three from product managers, six from R&D personnel, one from production
personnel, and one from aftermarket personnel. The ranking results from the survey were
analysed with and without aftermarket bias to find requirements with most stakeholder value.
Based on the analysis, 21 requirements were selected to key requirements set.

The conceptual solution design is based on the key requirements and the requirements
rephrased for brevity and referenced to the original requirements are included in the model
(Appendix B).

RESEARCH REPORT VTT-R-04516-13

8 (22)

3. ProMoNet Conceptual Solution Design Overview

3.1 SysML and SYSMOD

In order to capture the system engineering aspects of the dynamic configuration
management system, it was decided to be modelled in OMG Systems Modelling Language
[OMG 2012] using the SYSMOD methodology [Weilkiens 2008]. OMG Systems Modelling
Language (SysML) originates in the International Council on Systems Engineering’s
(INCOSE) decision to adapt UML to systems engineering applications. SysML reuses a
subset of UML 2 and provides extensions for modelling aspects other than software such as
hardware, information, (continuous) processes, personnel, and facilities. Noteworthy, SysML
includes requirements and parametric relationships as a distinct diagram types and lessens
the object orientation of UML to a point where the concepts of object oriented design can be
completely absent in a SysML model. SysML retains the structural and behavioural diagram
types of UML 2 but some are extended to better suite the needs of systems engineering and
renamed.

SYSMOD is a methodology for systems engineering that produces SysML diagrams in a
defined sequence. The SYSMOD approach starts with describing the project context that is
the goals for the system, its environment and situation and preliminary ideas for realizing the
system. This step does not produce any SysML diagrams but rather a text document along
the lines of the introduction to this report. The first diagrams emerge from the second step of
identifying the system stakeholders, collecting the requirements, and representing them as
requirements diagram. System context diagram describes the system with in its environment
including actors and external systems interacting with it by information flows to some
interaction points. The services that the system provides are modelled with use case
diagrams and essential step descriptions. Use case modelling is a step when modelling of
the system’s information elements in a domain knowledge diagram should be started. The
logical flow dependencies between the use cases are described in a system process
diagram. Paths through the system process diagram describe scenarios of system usage.
Use case diagrams are refined to use case flow diagrams which describe the activities of the
use case and the flows between them and further to use case object flow diagrams that
model also the objects that flow between activities. SYSMOD continues with steps to
describe how the use cases are realized. These steps produce diagrams that describe
system’s interaction with actors, interfaces, system’s internal structures and their state
models.

Although the SYSMOD approach is described as a linear process above, it is actually an
iteratively incremental process where the model is constructed in slices and the existing parts
of the model are modified as deeper understanding of the system as a whole emerges during
the modelling. The approach can also be tailored to the needs of the specific project. In this
particular project the model omits interfaces, and interaction and state diagrams as those
were deemed non-essential.

RESEARCH REPORT VTT-R-04516-13

9 (22)

«system»
Dynamic

Configuration
Management

System
(DCM)

Local
Service

Employee

«actor»
Product Control

Electronics

Aftermarket
Service Employee

Production
Employee

Employee of
third party

organization

«external system»
BOL Data

Management
System

«external system»
MOL Data

Management
System

«external system»
Product

Configurator

Figure 2. System Context diagram.

3.2 System context and system process diagrams

Figure 2 presents the system context of the Dynamic Configuration Management System
(DCM) that is the system to be modelled here. The DCM connects to three external systems.
BOL Data Management System is the product data management software and platform for
storing beginning-of-life (as-designed) product data. Product Configurator is data
management software and platform for specifying and generating product configuration data
structures according to customer requirements. MOL Data Management System is data
management software and platform for storing evolving product unit specific middle-of-life
(as-built and as-maintained) data structures. The external systems work together such that
Product Configurator is used to instantiate the product unit specific data structure from the
generic product design data in the BOL Data Management System and this data structure is
stored and maintained in MOL Data Management System.

The actors in Figure 2 have different roles in the product’s life-cycle. Production Employee
produces customized instances for product’s end users, i.e. creates individual product unit
data structures in MOL Data Management System. Production Employee needs always the
most recent versions of configuration items and their descriptions for new products to be
produced. Production Employee also wants to know when new features are available.

Aftermarket Service Employee is the primary stakeholder of the DCM system and interested
in offering as flexible and effective after sales maintenance service for deployed products as
possible. Aftermarket Service Employee is also interested in remote online configuration
management of networked products or tasking Local Service Employees in the field to
perform reconfiguration locally if the product is not connected to the network. Aftermarket
Service Employee wants to get information about the usage of the product, maintenance
history, faults, status of the product, and diagnostics to find aftersales opportunities related to
the deployed products.

Local Service Employee gets reconfiguration tasks for deployed products from the DCM
system and performs the reconfigurations locally through local wireless or wired
communication interface to the product. Local Service Employee also retrieves information
about the usage of the product, maintenance history, faults, status of the product, and
diagnostics, and uploads the data to MOL Data Management System once again within
network coverage.

RESEARCH REPORT VTT-R-04516-13

10 (22)

Employee of third party organization is granted restricted access to DCM system to perform
specific tasks such as obtaining limited configuration and diagnostic data from the MOL Data
Management System for a specific product unit to investigate fault in a subsystem of the
product that is subcontracted to the third party organization.

Figure 3 gives the top level system process diagram for the DCM system. Figure 4 expands
the Change Product configuration system process of Figure 3. Together these diagrams
describe the service scenarios of the system. For a specific product instance to be managed
by the DCM system it needs to have its product data brought from BOL Data Management
System to MOL Data Management System in use case Create Product Specific Data
Structure and have its original factory configuration data from Product Configurator stored to
MOL Data Management System. The current configuration of the product stored to MOL
Data Management System can be accessed by the Aftermarket Service Employee (Read
Current Configuration from PLM) and Local Service Employee (Retrieve Current
Configuration from PLM). The active configuration of a product in the field can be accessed
over the network by the Aftermarket Service Employee (Pull Current Configuration from
Product) and over the local communication interface by Local Service Employee (Get
Current Configuration from Product). Retrieve Service Code is a use case that grants access
to a particular product in the field to a particular Local Service Employee. The use case is
elaborated in the next subchapter.

RESEARCH REPORT VTT-R-04516-13

11 (22)

<<systemProcess>>
Change Product

Configuration

Read Current
Configuration
From PLM

Pull Current
Configuration
From Product

Create Product
Specific Data
Structure

Retrieve Current
Configuration
From PLM

Retrieve
Service Code

Get Current
Configuration
From Product

[Remote operations][Local operations]

Create Product
Specific
Configuration

Figure 3. Top-Level System Process diagram.

RESEARCH REPORT VTT-R-04516-13

12 (22)

Figure 4. System Process diagram for Change Product Configuration.

For a product in the field to be reconfigured Aftermarket Service Employee must first create a
reconfiguration task in use case Make New Configuration Change Task (Figure 4). If the
reconfiguration can be safely performed remotely over the network, Aftermarket Service
Employee checks the availability of a configuration update for a particular product (Check
Update Status), makes the reconfiguration available to the product to perform (Push Product
Configuration Update), and, after the product reconfigures itself, stores the updated
configuration from the product to MOL Data Management System (Write Configuration Data
to PLM). Often the product to be reconfigured is not within network coverage or the final
configuration requires tuning in the field. In such cases the reconfiguration is performed
locally by the Local Service Employee who downloads the configuration update from MOL
Data Management to a Service Terminal when under network coverage (Retrieve
Configuration Update Package). Local Service Employee connects to the product using the
local communication interface and transfers the configuration update from the Service
Terminal to the product (Update Product Configuration), possibly modifies the configuration
(Modify Product Configuration), and retrieves the final configuration from the product to the
Service Terminal (Get Configuration Update Receipt). Once again within network coverage,
Local Service Employee transfers the final product configuration to MOL Data Management
System (Store Configuration Update Receipt).

RESEARCH REPORT VTT-R-04516-13

13 (22)

In the case of system malfunctions or reconfiguration errors the product on the field must be
recovered to a safe configuration. Each product stores three configurations: The original
factory configuration, last operational configuration and the current configuration. Once the
access to the product is obtained (Retrieve Service Code), Local Service Employee can
reboot the product to any of those three configurations (Reboot to Configuration Level) and
store the final configuration to MOL Data Management System as in the reconfiguration
scenario.

3.3 Some key elements of the solution

There are a few noteworthy features in the conceptual solution design. It’s a key requirement
that the access to the products in the field is controlled with identification, authentication and
authorization mechanisms. However, due to possible sporadic network access to the
products, long service life of the products considered in this project, and limited amount of
storage in the product control electronics is it infeasible to store a user database in the
products that the actors in the system could be authorized against. The solution is to have
each product guard access to itself with an one-time use secret key (secure code) which is
transferred between the product and MOL Data Management System in encrypted form. The
actors of the system are identified, authenticated and authorized against a user database in
the MOL Data Management System and if access is granted the actor is given the secret key
to the product. At the end of each operation the product generates new secret key and
provides it to the actor in encrypted form to be uploaded to the MOL Data Management
System for future operations.

While dynamic configuration management was partially inspired by the availability of
inexpensive wireless communication devices and networks, the solution also provides
functionality for off-line configuration management such that the product can remain outside
of network coverage for longer times or even permanently. The required communication is
performed by Local Service Employee with a portable computer or memory element used to
transfer data to and from the product.

The configuration model described in the domain knowledge diagram fulfils the requirements
coming from the field study. However, the configuration update data is opaque to the DCM
system and the conceptual solution would also be workable with different configuration
models. The configuration model actually becomes significant only in the internal functionality
of the Product Configurator, MOL Data Management System, and product control
electronics.

The design makes minimal commitments to any actual ICT architecture that would be used
to realize the conceptual solution. The internal structure of the DCM system (see Appendix
B) is such that the internal blocks of the system can be deployed in a multitude of ways to
different devices and product control electronics elements. At the minimum there has to be
some mobile storage element such as a USB memory stick that is used to transfer the
required configuration related data from the MOL Data Management System to the product
control electronics with all the other functionality except Product Services deployed to a
central server with the MOL Data Management System. At the other extreme, should the
product have reliable network connection and considerable computational resources, most of
the internal blocks of the system could be deployed on the product control electronics with
the exception of the Product Configurator and BOL Data Management System which
obviously would be owned by sales and engineering functions of the manufacturer. The most
plausible deployment architecture would have Product Life-cycle Data Management System,
DCM Mobile Communications and Data Security and Access control Service deployed on
server(s), Terminal deployed on office PC(s), mobile Terminal deployed on mobile devices
such as laptops or tablet computers, and Product configuration Managements System
deployed on the product control electronics.

RESEARCH REPORT VTT-R-04516-13

14 (22)

The use case flow diagrams have a recurring SysML design pattern which has the arrival of
a signal to generate an object of the same name. This is a modelling decision that originates
from the property of SysML that top-level activity diagrams do not have parameters. An
actual software implementation of the activity would likely have it the other way around. The
arrival of software message or event object would signal the pending activity to start.

3.4 A roadmap to the full Conceptual Solution Design

The further study of the conceptual solution design is best continued by reading the use case
diagrams and the narratives coming with them. The use case diagrams alone describe the
structure of the use case and how information flows between the parts of the decomposed
use case, and the actors and external systems related to the use case. The essence
description gives the order in which the parts of the use case execute. The domain
knowledge diagram describes the information elements – blocks in SysML and objects in
UML – that flow in the use case. The details of the activities and the object flows between
activities and the environment can be found in use case flow diagrams.

Once the behavioural aspects of the DCM system are familiar, the structural aspects can be
studied starting with the external interaction ports of the system. Internal structure and the
communication ports of the internal blocks are modelled explicitly but the object flows
between internal blocks are only available indirectly by mapping the relevant activities in the
use case flow diagrams to internal blocks and observing which objects flow between
activities mapping to different internal blocks.

Figure 5. The demonstration device and Service Terminal User Interface on a laptop.

4. Verification and Limitations of the Model

The most critical part of the conceptual solution design was verified by implementing the
functionality related to the scenario of local service reconfiguration performed by Local
Service Employee (see Figure 4).

RESEARCH REPORT VTT-R-04516-13

15 (22)

The demonstration product is an advanced fan (Figure 5) for which the user has originally
purchased the most basic configuration but has later ordered an oscillating fan upgrade from
the aftersales. Aftermarket Service Employee has enabled the feature in the product unit
specific data structure in MOL Data Management System. In the concrete scenario Local
Service Employee connects to the fan with Bluetooth connection, downloads the new
configuration from MOL Data Management System to a laptop, updates product
configuration, fine-tunes the oscillation amplitude to suit the user, and gets the final
configuration from the fan to the laptop to be uploaded to the MOL Data Management
System at later time.

The demonstration product has been implemented with VTT Node wireless sensor node, and
the limited MOL Data Management System emulator with MySQL, Python, and various web
technologies. Both parts of the demonstrator were implemented from the subset of the
conceptual design pertinent to the scenario by different persons located at geographically
different sites. There was very little need for design refinement and integration effort other
than at the implementation level. The successful demonstration shows that the critical part of
the design is correct and at sufficient level of detail for implementation.

There are some substantial limitations in the conceptual solution design presented here.
None of the security protocols other than the secure code were implemented in the
demonstrator and none of them have been reviewed by information security experts. The
conceptual solution design has not been validated with any particular business model that
would describe how added value is generated by the DCM system and how the value is
distributed in the value chain related to it. Further, the design is high-level conceptual and
does not capture many important system level technological issues such as robustness,
reliability and scalability. The demonstrator clearly solves only a “toy problem” and while it
verifies procedural and modelling aspects of the conceptual solution design, it leaves
information technology system level aspects open.

5. Conclusions

The conceptual solution design for dynamic configuration management of networked
industrial embedded systems was completed successfully and the critical part of it
experimentally verified to be correct and at sufficient level of detail for implementation. The
requirement analysis produced the key requirements with good coverage of middle-of-life
Product Data Management and product control electronics aspects, but communication
aspects are less developed. There are few system level requirements and this is reflected in
the conceptual solution design.

SysML and SYSMOD proved to be good choices for modelling language and methodology
for the project. They are fairly easy and fast to pick up at least for someone familiar with
model based design principles and UML in particular. The main shortcoming was the flatness
of the domain knowledge diagram which does not capture the object oriented design
principles that software engineers are used to rely on. SysML language does not require the
use of those principles and SYSMOD methodology does not encourage it. However, they do
not preclude or discourage it either, and it’s possible to combine SysML and UML. The
diagrams were drawn with Visio using a stencil for SysML. Given the amount of modelling
involved in the project, the use of a SysML modeller rather than generic drawing software
would have made the work more efficient.

RESEARCH REPORT VTT-R-04516-13

16 (22)

6. Summary

State-of-the-art high technology products are modular and multi-technical systems. There are
several different parties involved in design, development, supply, and maintenance during
the life-time of a product. These parties could include design houses, integrators, component
suppliers, end users, and so on. Modular, model and component-based design methods
boost system development, and give opportunity for more fine grained system management
and maintenance than before. Data communications networks become more and more
pervasive allowing products to have sophisticated networking capabilities and
communication functions to send the required configuration management data to a server
through Internet. These enablers make possible run-time and fine grained system
management, e.g. remote system upgrade, extending product life-time by enabling system
adaptation to face new set of requirements and standards in field.

ProMoNet project defines and develops a conceptual solution for dynamic configuration
management of networked industrial embedded systems and experimentally verifies the
founded conceptual solution in a specific use case. The conceptual solution is aimed at
providing configuration management functionality during the middle-of-life (MOL) phase, but
also describes processes needed to transition a product data instance for the product from
generic beginning-of-life product model to a configured and to be manufactured middle-of-life
product model.

The requirement elicitation process used is iterative and has three stages. First, a literature
survey and semi-structured industry interviews were done to construct the system context
and preliminary requirements definition for dynamic configuration management. Second, the
preliminary requirements were further refined with the knowledge gained from technology
evaluations. At the third stage the requirements were presented to invited industry
representatives for evaluating the value and ease of implementation for each individual
requirement with an online survey. Based on the analysis of survey responses, 21
requirements were selected to key requirements set.

The dynamic configuration management system was designed and modelled in OMG
Systems Modelling Language using the SYSMOD methodology. SysML reuses a subset of
UML 2 and provides extensions for modelling aspects other than software such as hardware,
information, (continuous) processes, personnel, and facilities. SYSMOD is a methodology for
systems engineering that produces SysML diagrams in a defined sequence using an
iteratively incremental process. SysML and SYSMOD proved to be good choices for
modelling language and methodology for the project. They are fairly easy and fast to pick up
at least for someone familiar with model based design principles and UML in particular. The
main shortcoming was the flatness of the domain knowledge diagram which does not capture
the object oriented design principles that software engineers are used to rely on.

The most critical part of the conceptual solution design was verified by implementing the
functionality related to the scenario of local service reconfiguration. Parts of the demonstrator
were implemented from the subset of the conceptual design pertinent to the scenario by
different persons located at geographically different sites. There was very little need for
design refinement and integration effort other than at the implementation level. The
successful demonstration shows that the critical part of the design is correct and at sufficient
level of detail for implementation.

There are some substantial limitations in the conceptual solution design presented here.
None of the security protocols other than the secure code were implemented in the
demonstrator and none of them have been reviewed by information security experts. The
conceptual solution design has not been validated with any particular business model.
Further, the design is high-level conceptual and does not capture many important system
level technological issues such as robustness, reliability and scalability.

RESEARCH REPORT VTT-R-04516-13

17 (22)

References

ETSI TS 102 689: 2010. Machine-to-Machine communications (M2M); M2M Service
Requirements, European Telecommunications Standards Institute.
http://www.etsi.org/deliver/etsi_ts/102600_102699/102689/01.01.01_60/ts_102689v0
10101p.pdf (accessed 30 April, 2013)

OMG: 2012. OMG Systems Modeling Language (OMG SysML™), Object Management
Group, Inc. http://www.omg.org/spec/SysML/1.3/PDF/ (accessed 30 April, 2013)

Parkkila, T., Kääriäinen, J., Tanner, H., & Riekki, J., 2012. Middle-of-life PLM Solutions for
Reconfigurable Networked Mechatronic Products. ARPN Journal of Systems and
Software 2(5), pp. 177-186. http://scientific-
journals.org/journalofsystemsandsoftware/archive/vol2no5/vol2no5_3.pdf (accessed
30 April, 2013)

Weilkiens, T. 2008. Systems Engineering with SysML/UML: Modelling, Analysis, Design.
Burlington, MA, USA: Morgan Kaufmann OMG Press. 307 p.

Wiegers, K.E. 2003. Software Requirements. Redmont, WA, USA: Microsoft Press. 544 p.

RESEARCH REPORT VTT-R-04516-13

18 (22)

Appendix A: Stakeholders and Requirements

Table 2. Stakeholders for dynamic configuration management system.

Stakeholder Priority
(1-4)

Comments/Interests

Product OEM,
R&D

2 Develops products and new features following the set product data
structure. Wants a view of product usage info, failures, executed
maintenance, service events. Interested in integrating third party products
R&D results and product descriptions into product data structure as well.

Product OEM,
Production

2 Produces customized instances for end users, i.e. creates individual
product data structures. Gets always the most recent versions of
configuration items and their descriptions for new products to be produced.
Wants to know when new features are available.

Product OEM,
After Market

1 Interested in offering as flexible and effective after sales maintenance
service for deployed products as possible. Interested in remote
configuration management for networked products, interested in having a
possibility to order a development task for some existing feature or a new
feature from a third party after sales through the system. Eager for safe
and secure methods for product configuration updates through online or
offline channels. Wants to get information of usage of the system,
maintenance history, faults, status of the product, diagnostics.

Subcontractor,
R&D

2 Interested in seamless integration into system for uploading ordered,
developed and tested sub-products to product data structure.

Subcontractor,
After Market

1 Interested in seamless integration into system for monitoring usage of the
provided sub-products and related faults and required bug fixes. Ability to
upload updated sub-product data to deployed product data structure.

Third Party,
Service

2 Interested in interfacing to deployed products' configuration data
seamlessly through products' local communication interfaces and to have
access to execute required configuration data modifications for deployed
product on field. Wants to get information of usage of the system,
maintenance history, faults, status of the product, diagnostics. Eagers for
safe and secure methods for product configuration data download and
upload to external information system.

End User 2 Interested in easy product maintenance. Need to have rights and easy way
to choose and set reasoning which kind of configuration updates are
possible to execute for the product remotely or locally. Updating can't
threat safety against product or product's environment.

Tele Operators 4 Advices and specifies how the communication medias can be used to
transmit data from information systems to machine and vice versa. Offers
media for remote configuration management in cellular mobile phone
network or through satellite network.

Data Service
Provider

3 Interested in managing product data and deployed product data instances.
Specifies interfaces how OEM parties and third party contractors can
interface to data structures.

M2M Service
Provider

3 Utilizes cellular and satellite networks for transmitting messages between
peers of the system. Specifies also interfaces how deployed product can
be interconnected to the system, and how information systems can be
interconnected.

RESEARCH REPORT VTT-R-04516-13

19 (22)

Table 3. Requirements for dynamic configuration management system.

Id Requirement

Req.1. Product Data Management
1 Req.1.1. Every deployed smart product on field has own updateable product unit specific

(as-built) data structure at their middle of life (MOL) cycle phase for product service
and maintenance support.

2 Req.1.2. The product unit specific data structure of a smart product is generated (semi-)
automatically from the product's beginning of life (BOL) phase data management
systems (e.g. ERP, PDM, PLM) using customer order specifications.

3 Req.1.3. The product unit specific data structure of a smart product in the MOL phase data
management system consists of all product HW and SW design data (or links to
actual baseline documents), BOM, configuration items, configuration parameters,
spare-parts, service manuals, service log files and reports, diagnostic data files,
information of the application and operating environment of the product.

4 Req.1.4. The product unit specific data structure of a smart product is stored into a central
repository (MOL Data Management System) managed by OEM.

5 Req.1.5. However, a part of the product unit specific data structure (e.g. a configuration data
of a sub-part or sub-module) of a smart product can be physically stored into a
separated data repository managed by OEM or a third party subcontractor, but the
information is accessible through the main data structure.

6 Req.1.6. Deployed smart product stores locally a copy of the product unit specific data
structure with the configuration data of the product.

7 Req.1.7. The product unit specific data structure of a smart product in the MOL phase data
management system can be updated with a new data from the BOL phase data
management systems. E.g. data of a new subsystem can be added into the unit
specific data structure or existing parameter values can be replaced with new
values.

8 Req.1.8. The product unit specific data structure of a smart product in the MOL phase data
management system can be updated by OEM aftermarket. E.g. OEM aftermarket
can add new technical service bulletin, or change configuration parameter values.

9 Req.1.9. The product unit specific data structure of a smart product described in the MOL
phase data management system can be updated by the networked smart product
itself.

10 Req.1.10
.

Every change or data update done to the product unit specific data structure of a
smart product is stored in a service log file and signed with a meta information of
the date of change, change location (local or information system), a party who
executed the change.

11 Req.1.11
.

The product unit specific data structure stores at least three levels of configuration
data history of configuration items as back-up data: factory configuration, previous
configuration and the current configuration.

Req.2. Multi-Organizational Access
12 Req.2.1. Multiple organizations (e.g. OEM parties, subcontractors, third party service

providers) can access the product unit specific data structure of a smart product in
a collaborative environment.

13 Req.2.2. Product OEM can give restricted access to other parties and organizations for the
product unit specific data structure. As an example, there is a possibility to limit the
visibility of product structure and related data to a specific sub-system only via user
rights management (e.g. access rights to sub-system).

14 Req.2.3. In addition to OEM parties, sub-contractors and third party service providers are
able to execute updates to the product unit specific data structure of a smart
product securely and remotely in a collaborative environment.

Req.3. Machine-to-Machine offline communication
15 Req.3.1. Product local service can download product configuration data of the product unit

RESEARCH REPORT VTT-R-04516-13

20 (22)

specific data structure of a smart product remotely from the MOL phase data
management system to a mobile terminal (e.g. smart phone, tablet computer,
laptop, proprietary mobile terminal, mass memory device) through mobile
communication network (e.g. 3G, WiFi, Satellite), and update the configuration data
on the smart product through short range wireless communication (e.g. Bluetooth,
WiFi, Zigbee) or through stationary communication bus technology and protocol
(e.g. USB, CAN, CANOpen, Profibus, Ethernet) applied in the product.

16 Req.3.2. Product local service can download product configuration data and product
diagnostic data of a smart product to a mobile terminal (e.g. smart phone, tablet
computer, laptop, proprietary mobile terminal, mass memory device) through short
range wireless communication (e.g. Bluetooth, WiFi, Zigbee) or through stationary
communication bus technology and protocol (e.g. USB, CAN, CANOpen, Profibus,
Ethernet) applied in the product, and update the data to the product unit specific
data structure of the smart product in the MOL phase data management system
remotely through mobile communication (e.g. 3G, WiFi, Satellite).

17 Req.3.3. Product configuration data, diagnostic data, and management function calls can be
exchanged between the products through short range wireless communication (e.g.
bluetooth, WiFi, Zigbee). As an example, product configuration data upload from a
mobile terminal can be delivered to the desired smart product through other smart
products on field (Machine-to-Machine communication).

18 Req.3.4. Every service or maintenance event executed for a smart product through any
terminal is confirmed to the product unit specific data structure of the smart product
in the MOL phase data management system. As an example, products confirm
executed service events to terminal with a unique token (product specific and time
and service related), which is transmitted to MOL phase data management system
in order to get the service checked.

Req.4. Machine-to-Machine online communication
19 Req.4.1. Smart product can download up-to-date product configuration data from MOL

phase data management system through mobile communication network (3G,
Satellite).

20 Req.4.2. Smart product can upload its configuration data and diagnostic data to MOL phase
data management system through mobile communication network (3G, Satellite)
and execute update for the product unit specific data structure of the smart product.

Req.5. Smart Product
21 Req.5.1. Smart product sends its manufacturing info (product id, manufacturer name, device

model, OEM name, etc.) of all units of the system when requested by aftermarket
service utilizing remote online connection or local connection via mobile terminal, or
a stationary user interface unit of the product.

22 Req.5.2. Smart product sends detailed information and status of its configuration (e.g. list of
connected devices, version information of configuration items, status of all
manageable options and functions, values of manageable parameters, service log
files, special characteristic of memory size, CPU, CPU freq., etc.) when requested
by aftermarket service utilizing remote online connection or local connection via
mobile terminal, or a stationary user interface unit of the product.

23 Req.5.3. Local aftermarket service can activate or de-activate specific configuration items
(e.g. options) of smart products (4th level of CM hierarchy) utilizing local data
connection via mobile terminal, or stationary user interface unit of the products.

24 Req.5.4. Remote aftermarket service can activate or de-activate specific configuration items
(e.g. options) of smart products (4th level of CM hierarchy) utilizing remote online
connection.

25 Req.5.5. Local aftermarket service can change values of run-time and boot-time application
parameters of smart products (4th level of CM hierarchy) utilizing local data
connection via mobile terminal, or stationary user interface unit of the products

26 Req.5.6. Remote aftermarket service can change values of run-time and boot-time
application parameters of smart products (4th level of CM hierarchy) utilizing
remote online connection

RESEARCH REPORT VTT-R-04516-13

21 (22)

27 Req.5.7. Local aftermarket service can execute software updates for smart products (3rd
level of CM hierarchy) utilizing local data connection via mobile terminal, or
stationary user interface unit of the products.

28 Req.5.8. Remote aftermarket service can execute software updates for smart products (3rd
level of CM hierarchy) utilizing remote online connection.

29 Req.5.9. Local aftermarket service can execute firmware image updates for smart products
and hardware design image updates for configurable hardware (e.g. Field
Programmable Gate Arrays - FPGAs) on smart products utilizing local data
connection via mobile terminal, or stationary user interface unit of the products.
(2nd level of CM hierarchy).

30 Req.5.10
.

Remote aftermarket service can execute firmware image updates for smart
products and hardware design image updates for configurable hardware (e.g. Field
Programmable Gate Arrays - FPGAs) on smart products utilizing remote online
connection. (2nd level of CM hierarchy)

31 Req.5.11
.

Local aftermarket service can reboot smart products to specific configuration history
level: factory reset configuration, previous configuration, the newest configuration,
utilizing local data connection via mobile terminal, or stationary user interface unit of
the products.

32 Req.5.12
.

Remote aftermarket service can reboot smart products to specific configuration
history level: factory reset configuration, previous configuration, the newest
configuration, utilizing remote online connection.

33 Req.5.13
.

End user can restrict which management functions are allowed for the smart
product through online (remote) or offline (local) connection.

34 Req.5.14
.

Smart product unit can execute auto configuration if new configuration data is
available locally on a master unit or remotely in the MOL phase data management
system.

35 Req.5.15
.

Smart product controls which local or remote management functions are allowed at
different application run-times.

36 Req.5.16
.

Smart product does self-diagnosis and self-tests for its computing units and
software; as an example it monitors general run-time parameters, memory status,
CPU loads, communication channels' metrics, and the set diagnostic trap events,
and collects log files of historical and/or statistical data of system performance,
faults, application usage, and other diagnostic data.

37 Req.5.17
.

In a case of a serious system fault captured by the self-test function, smart product
does automatic system reconfiguration to the previous working configuration.

38 Req.5.18
.

Smart product collects log files of all executed configuration management and
service actions, with metadata of who has executed the action and when.

Req.6. Mobile Communication
39 Req.6.1. Communication between systems is safe and secure
40 Req.6.2. Communication systems utilize standard technologies, which are commercially

available

RESEARCH REPORT VTT-R-04516-13

22 (22)

Appendix B: ProMoNet Conceptual Solution Design Model

REV. DESCRIPTION DATE BY

DRAWN BY

PARKKILA TOMMI

DESCRIPTION

Requirement diagrams of ProMoNet Dynamic Configuration
Management system for reconfigurable networked industrial products

FILENAME

PROMONET_DCM_SYSTEM_REQUIREMENTS_12.VSD
DATE

4/12/2012

TITLE

ProMoNet DCM Requirements

1.0

1.1

1.2

First version of the requirements created

Added references to key requirements

4/25/2012

4/8/2013

TOP

TOP

PEI

REVISED

4/16/2013

REVISIONS

PAGE

1 OF 6

uc Stakeholders

OEM
Production

OEM R&D OEM
Aftermarket

OEM Product
Manager

End User Subcontractor,
R&D

Subcontractor,
Aftermarket

Third Party
Service

Tele
operator

Data Service
Provider

M2M Service
Provider

DRAWN BY

PARKKILA TOMMI
FILENAME

PROMONET_DCM_SYSTEM_REQUIREMENTS_12.VSD
DATE

4/12/2012
REVISED

4/16/2013
PAGE

2 OF 6

Text= Local aftermarket service can
activate or de-activate specific
configuration items (e.g. options) of
products.

Id= Req.5.3, Req.3.1.2.

«functionalRequirement»
Local Option Parameter Update

Text= Remote aftermarket service can
download product configuration and
diagnostic data through remote M2M
communication.

Id=

«functionalRequirement»
Remote Configuration Data Request

Text= Local aftermarket service can
download product configuration and
diagnostic data through local M2M
communication.

Id= Req.3.2.1.

«functionalRequirement»
Local Configuration Data Request

Text= Product configuration data can be read and updated remotely and
locally.

Id=

«usabilityRequirement»
Product Configuration on Field

Text= Remote aftermarket service can
activate or de-activate specific
configuration items (e.g. options) of
products.

Id= Req.5.4.

«functionalRequirement»
Remote Option Parameter Update

Text= Local aftermarket service can
execute software updates for
products.

Id= Req.5.7.

«functionalRequirement»
Local Software Update

Text= Remote aftermarket service can
execute software updates for
products.

Id= Req.5.8.

«functionalRequirement»
Remote Software Update

Text= Local aftermarket service can
execute firmware image updates for
products and hardware design image
updates for configurable hardware
(e.g. Field Programmable Gate Arrays -
FPGAs) on products.

Id= Req.5.9

«functionalRequirement»
Local Firmware Update

Text= Local aftermarket service can
reboot smart products to specific
configuration history level: factory
reset configuration, previous
configuration, the newest
configuration

Id= Req.5.11.

«functionalRequirement»
Local reboot

Text= Every service or maintain event
executed for a product through any
terminal shall be confirmed to the
product unit specific data structure of the
smart product in the MOL phase data
management system. As for example,
products confirm executed service events
to service terminal with an unique token
(product specific and time and service
related), which is transmitted to MOL
phase data management system in order
to get the service checked.

Id= Req.3.4.

«functionalRequirement»
Service Event Confirmation

Text= Product controls which local or
remote management functions are
allowed at different application run-
times.

Id= Req.5.15.

«functionalRequirement»
Configuration Change Control

Text= Product collects log files of all
executed configuration management
and service actions, with metadata of
who has executed the action and when.

Id= Req.5.18.

«functionalRequirement»
Recording Service Events

req Product Configuration on Field

DRAWN BY

PARKKILA TOMMI
FILENAME

PROMONET_DCM_SYSTEM_REQUIREMENTS_12.VSD
DATE

4/12/2012
REVISED

4/16/2013
PAGE

3 OF 6

Text= Mobile communication between
terminals and MOL PLM system is secure and
safe.

Id= Req.6.1.1.

«securityRequirement»
Securing Remote M2M Communication

Text= Sender and
receiver shall be
identified and trusted.

Id=

«securityRequirement»
Reliable connection

Text= Data shall be
transmitted in a defined
sequence of messages,
e.g. by utlilizing nonce
words.

Id=

«securityRequirement»
Data integrity

Text= Transmitted
messages and data
shall be ensured to
maintain
confidentiality.

Id=

«securityRequirement»
Data confidentiality

req Remote M2M Communication

Text= Communication discontinuations
due error prone networks do not cause
any safety or security risks.

Id=

«securityRequirement»
Faulty connection

Text= Communication
technology shall be
mature and commercially
available.

Id= Req.6.2.1.2

«constraintRequirement»
Technology Availability

Text= Communication
shall be based on
standards.

Id= Req.6.2.1.1

«constraintRequirement»
Standard Communication

Text= Remote M2M communication should be able to
established through satellite, cellular mobile networks, or long
range radio technologies (e.g. Wimax, Flash-OFDM).

Id=

«usabilityRequirement»
Remote M2M Communication Media

DRAWN BY

PARKKILA TOMMI
FILENAME

PROMONET_DCM_SYSTEM_REQUIREMENTS_12.VSD
DATE

4/12/2012
REVISED

4/16/2013
PAGE

4 OF 6

Text= Local M2M communication between
terminals and products is secure and safe.

Id= Req.6.1.2.

«securityRequirement»
Securing Local M2M Communication

Text= Sender and
receiver shall be
identified and trusted.

Id=

«securityRequirement»
Reliable connection

Text= Data shall be
transmitted in a defined
sequence of messages,
e.g. by utlilizing nonce
words.

Id=

«securityRequirement»
Data integrity

Text= Transmitted
messages and data
shall be ensured to
maintain
confidentiality.

Id=

«securityRequirement»
Data confidentiality

req Local M2M Communication

Text= Communication discontinuations
due error prone networks do not cause
any safety or security risks.

Id=

«securityRequirement»
Faulty connection

Text= Communication
technology shall be
mature and commercially
available.

Id= Req.6.2.2.2.

«constraintRequirement»
Technology Availability

Text= Communication
shall be based on
standards.

Id= Req.6.2.2.1.

«constraintRequirement»
Standard Communication

Text= Local M2M communication should be able to established through short range
wireless (e.g. Bluetooth, Wifi, Zigbee) or stationary bus technologies (e.g. USB, CAN,
CANOpen, Profibus, Ethernet).

Id=

«usabilityRequirement»
Local M2M Communication Media

DRAWN BY

PARKKILA TOMMI
FILENAME

PROMONET_DCM_SYSTEM_REQUIREMENTS_12.VSD
DATE

4/12/2012
REVISED

4/16/2013
PAGE

5 OF 6

Text= Products have evolving as-maintained product unit specific data structures in MOL PLM
system.

Id= Req.1.1.

«usabilityRequirement»
Evolving Product Unit Specific Data Structure

Text= OEM Production can generate
the product unit specific data
structure from the product's
beginning of life (BOL) phase data
management systems using
customer order specifications.

Id= Req.1.2.

«functionalRequirement»
Data generation

Text= Product unit specific data
stucture is replicated among the
product and enterprise information
system used (e.g. PLM, PDM, ERP)

Id= Req.1.6.

«usabilityRequirement»
Data structure replication

Text= Third party organizations can
have restricted access to review the
product unit specific data structure.

Id= Req.2.2.

«usablityRequirement»
Muiti-organizational access

Text= Product data structure stores
at least three levels of configuration
data history of configuration items
as back-up-data.

Id= Req.1.11.

«functionalRequirement»
Maintaining configuration history

Text= Local aftermarket service can
download product unit specific
configuration data to a mobile
service terminal through remote
M2M communication.

Id= Req.3.1.1.

«functionalRequirement»
Data Download

Text= Product specific data
structure in MOL phase data
management system can be
updated.

Id=

«functionalRequirement»
Update Product Data Structure

Text= Remote aftermarket service
can update product specific data
structure.

Id= Req.1.8.

«functionalRequirement»
Aftermarket update

Text= Remote aftermarket service
can bring and add new data from
BOL phase data manegement
system.

Id= Req.1.7.

«functionalRequirement»
BOL update

Text= Remote aftermarket service
can update data values or add new
data to product unit specific data
structure.

Id=

«functionalRequirement»
Data update

Text= Local aftermarket service can
upload and update product
diagnostic data and configuration
data to product unit specific data
structure through remote M2M
communication.

Id= Req.3.2.2.

«functionalRequirement»
Local service update

Text= MOL PLM System keeps a
service log file of every
configuration change event, with a
meta information of the date and
location of the change, and
information of the party who
executed the change.

Id= Req.1.10.

«functionalRequirement»
Log Configuration Change Events

req Configuration Data Management in MOL PLM Systems

Text= Product configuration data
shall be described in details, which
includes five levels of configuration
items; 1.physical hardware, 2.
hardware designs, 3. firmware
software, 4. application software,
and 5. parameters.

Id=

«usablityRequirement»
Configuration Data Granulatity

DRAWN BY

PARKKILA TOMMI
FILENAME

PROMONET_DCM_SYSTEM_REQUIREMENTS_12.VSD
DATE

4/12/2012
REVISED

4/16/2013
PAGE

6 OF 6

REV. DESCRIPTION DATE BY

DRAWN BY

PARKKILA TOMMI, ISTO PEKKA

DESCRIPTION

Use case diagrams of ProMoNet dynamic configuration management
(DCM) system for reconfigurable networked industrial products

FILENAME

PROMONET_DCM_USECASES_12.VSD
DATE

5/8/2012

TITLE

ProMoNet DCM System Use Cases

0.1

0.2

0.3

0.4

0.5

First draft created

Steps -- > Essence, production use cases mergerd, identify employee cases added

Primary Use Cases, systemProcess act-diagrams, added, some name changes

Local Service Use Cases Edited

Aftermarket Service Use cases edited

05/15/2012

05/16/2012

05/17/2012

08/23/2012

09/10/2012

TOP

TOP

TOP

TOP

TOP

REVISED

3/12/2013

REVISIONS

PAGE

1 OF 26

0.6

0.7

0.8

0.9

10

Local Service Use Cases Syncronized with Flows (rev 0.4)

Renamed use case and information flows. Minor modifications to use cases.

Aligned to domain knowledge rev. 0.6.

Added LSE Retrieve/Store Service Code. Aligned to flows 0.8. Improved ASE cases.

Added DCM Usage, improved LSE cases, redesigned and renamed ASE cases.

09/26/2012

11/22/2012

11/23/2012

02/06/2013

02/24/2013

TOP

PEI

PEI

PEI

PEI

Improved all cases.

Corrected for review findings: Local reboot, versioning and Product Configurator.

11

12

02/28/2013

03/12/2013

PEI

PEI

uc Actors

DRAWN BY

PARKKILA TOMMI, ISTO PEKKA
FILENAME

PROMONET_DCM_USECASES_12.VSD
DATE

5/8/2012
REVISED

3/12/2013
PAGE

2 OF 26

Local
Service

Employee

«actor»
Product Control

Electronics

Aftermarket
Service Employee

Production
Employee

Aftermarket service
representant in the
field with physical
access products

Data management
software and platform for
storing evolving product
unit specific as-built and
as-maintained data
structures

Employee of
third party

organization

As for example,
aftermarket service
representant of a
third party
subcontractor

Representant of
product
production

Representant of
product
aftermarket with
remote access to
products

Product computers,
controllers and
communications

«external system»
BOL Data

Management
System

Data management
software and platform for
storing as-designed
product data

«external system»
MOL Data

Management
System

Data management
software and platform for
specifying and generating
product configuration data
structures according to
customer requirements

«external system»
Product

Configurator

uc Primary Use Cases [DCM System]

DRAWN BY

PARKKILA TOMMI, ISTO PEKKA
FILENAME

PROMONET_DCM_USECASES_12.VSD
DATE

5/8/2012
REVISED

3/12/2013
PAGE

3 OF 26

Local
Service

Employee

Aftermarket
Service Employee

Production
Employee

Aftermarket service
representant in the
field next to
products.
Configures non-
networked products.

Employee of
third party

organization

As for example,
aftermarket service
representant of a
third party
subcontractor

Representant of
product
production

Representant of
product
aftermarket.
Remotely
configures
networked
products.

Create Product
Specific Data

Structure

Make New
Configuration
Change Task

Read Current
Configuration

From PLM

Pull Current
Configuration
From Product

Check Update
Status

Push Product
Configuration

Update

Write
Configuration Data

To PLM

Retrieve Current
Configuration

From PLM

Retrieve
Configuration

Update Package

Retrieve Current
Configuration Data

From PLM

Update Product
Configuration

Get Current
Configuration Data

From Product

Modify Product
Configuration Store

Configuration
Update Receipt

Get Configuration
Update Receipt

Store
Service Code

Retrieve
Service Code

Create Product
Specific

Configuration

Reboot to
Configuration

Level

uc [package] Dynamic Configuration Management usage [system process]

DRAWN BY

PARKKILA TOMMI, ISTO PEKKA
FILENAME

PROMONET_DCM_USECASES_12.VSD
DATE

5/8/2012
REVISED

3/12/2013
PAGE

4 OF 26

Make New
Configuration
Change Task

Retrieve Current
Configuration

From PLM

Get Current
Configuration
From Product

Check Update
Status

Update Product
Configuration

Write
Configuration Data

To PLM

<<systemProcess>>
Change Product

Configuration

«include»

«include»

«include»

<<systemProcess>>
Manage Product

Configuration

«include»

«include»

«include»

Retrieve
Service Code

Store
Service Code

«include»

«include»

Retrieve
Configuration

Update Package

«include»

Update Product
Configuration

Modify Product
Configuration

Store
Configuration

Update Receipt

«include»

«include»

«include»

Get Configuration
Update Receipt

«include»

Pull Current
Configuration
From Product

Read Current
Configuration

From PLM

Push Product
Configuration

Update

«include»

«include»

«include»

«include»

Create Product
Specific Data

Structure

Create Product
Specific

Configuration

«include»«include»

Reboot to
Configuration

Level
«include»

uc [package] Dynamic Configuration Management usage [system process]

DRAWN BY

PARKKILA TOMMI, ISTO PEKKA
FILENAME

PROMONET_DCM_USECASES_12.VSD
DATE

5/8/2012
REVISED

3/12/2013
PAGE

5 OF 26

<<systemProcess>>
act Change Product Configuration

Make New
Configuration
Change Task

<<systemProcess>>
act Manage Product Configuration

<<systemProcess>>
Change Product

Configuration

Read Current
Configuration
From PLM

Pull Current
Configuration
From Product

Modify
Product

Configuration

Update
Product

Configuration

Store
Configuration

Update Receipt

Retrieve
Configuration

Update Package

Get Configuration
Update Receipt

[Local service]

Check Update
Status

[Remote service]Create Product
Specific Data
Structure

Push Product
Configuration

Update

Write
Configuration
Data to PLM

Retrieve Current
Configuration
From PLM

Retrieve
Service Code

Get Current
Configuration
From Product

[Remote operations][Local operations]

Create Product
Specific
Configuration

Retrieve
Service Code

Reboot to
Configuration

Level

[Reboot] [Reconfiguration]

uc Production Use Cases [Create Product Specific Data Structure]

DRAWN BY

PARKKILA TOMMI, ISTO PEKKA
FILENAME

PROMONET_DCM_USECASES_12.VSD
DATE

5/8/2012
REVISED

3/12/2013
PAGE

6 OF 26

Production
Employee

Open New
Product Data

Structure

New Product
Instance Data

Create Product Specific Data Structure
Narrative Description:
Production employee wants to create a new product specific data
structure. Production employee sends ”New Product Instance Data”
request to DCM system. DCM system identifies and authenticates the
employee (by e.g. user name and password) and verifices that the
employee has authorization to execute the request and if so opens new
product data structure, and fills it with default configuration values. DCM
system then shows product data structure for production employee to
modify and stores the created product specific data structure to MOL
Data Management System. DCM system indicates the completion of the
request with ”New Product Instance Data Confirmation” message.
Description:
Production employee creates new product specific data structure.
Actors:
Production Employee
BOL Data Management System
MOL Data Management System
Preconditions/Assymptions:
DCM system has an access control for production service employee from
the internal network.
Essence
1. Send New Product Instance Data
2. Identify and Authenticate Employee
3. Verify Authorization for the Request
4. Open New Product Data Structure
5. Show Data Structure
6. Modify Data Structure
7. Store Data Structure
8. Return New Product Instance Data Confirmation

Product Data Structure

Create Product
Specific Data

Structure

Modify Data
Structure

Store Data
Structure

«include»

«include»
«include»

Show Data
Structure

«include»

Product Data Structure

New Product
Instance Data
Confirmation

Identify and
Authenticate

Employee
«include»

Verify
Authorization

«include»

«external system»
MOL Data

Management
System

«external system»
BOL Data

Management
System

uc Production Use Cases [Create Product Specific Configuration]

DRAWN BY

PARKKILA TOMMI, ISTO PEKKA
FILENAME

PROMONET_DCM_USECASES_12.VSD
DATE

5/8/2012
REVISED

3/12/2013
PAGE

7 OF 26

Production
Employee

New Product
Configuration Data

Create Product Specific Configuration
Narrative Description:
Production employee wants to create a new product specific
configuration data to PLM. Production employee sends ”New Product
Configuration Data” request to DCM system. DCM system identifies and
authenticates the employee (by e.g. user name and password) and
verifices that the employee has authorization to execute the request and
if so opens new product data structure and fills it with default
configuration values. DCM system then shows product data structure
and available configuration options for it to the production employee for
modification and stores the created product specific configuration data
to MOL Data Management System. DCM system indicates completion
with ”New Product Configuration Data Confirmation” message.
Description:
Production employee creates new product specific configuration.
Actors:
Production Employee
MOL Data Management System
Product Configurator
Preconditions/Assymptions:
DCM system has an access control for production service employee from
the internal network.
Essence
1. Send New Product Configuration Data
2. Identify and Authenticate Employee
3. Verify Authorization for the Request
4. Read Product Data Structure
5. Read Configuration Options
6. Show Product Data Structure with Configuration Options
7. Modify product configuration
8. Store product configuration to MOL as PLM Configuration
9. Return New Product Configuration Data Confirmation

Available Configuration
Selections

Create Product
Specific

Configuration

Store Product
Configuration

«include»

Show
Configuration

Options

«include»

PLM Configuration

New Product
Configuration Data

Confirmation

Identify and
Authenticate

Employee

Verify
Authorization

«include»

Product Data Structure

Read New
Product Data

Structure

«include»

Modify Product
Configuration

«include»

«external system»
MOL Data

Management
System

«external system»
Product

Configurator

Configuration Options

«include»

Product Data Structure

Read
Configuration

Options

«include»

Product Data Structure
Configuration Options

uc Aftermarket Service Employee [Primary Use Cases]

DRAWN BY

PARKKILA TOMMI, ISTO PEKKA
FILENAME

PROMONET_DCM_USECASES_12.VSD
DATE

5/8/2012
REVISED

3/12/2013
PAGE

8 OF 26

Aftermarket
Service Employee

Make New
Configuration
Change Task

Read Current
Configuration

From PLM

Pull Current
Configuration
From Product

Check Update
Status

Push Product
Configuration

Update

Write
Configuration Data

To PLM

<<systemProcess>>
Change Product

Configuration

«include»
«include» «include»

«include»

<<systemProcess>>
Manage Product

Configuration

«include»

«include»

«include»Read
Service Code

Write
Service Code

«include»

«include»

uc Aftermarket Use Cases [Make New Configuration Change Task]

DRAWN BY

PARKKILA TOMMI, ISTO PEKKA
FILENAME

PROMONET_DCM_USECASES_12.VSD
DATE

5/8/2012
REVISED

3/12/2013
PAGE

9 OF 26Aftermarket
Service Employee

Make New
Configuration
Change Task

New Configuration
Change Task

Make New Configuration Change Task
Narrative Description:
Aftermarket service employee wants to propose new configuration
change task for a specific product. Aftermarket service employee sends
”New Configuration Change Task” request to DCM system. DCM system
identifies (e.g. by user name) and authenticates the employee (e.g. by
password) and verifies that the employee has authorization to submit
new configuration update task. If authorized, DCM system allows
aftermarked service employee to create Configuration Update Task
including the changed artifacts, and new parameter values, and
identification information of the employee. DCM system inserts the new
task to Configuration Update Task List of the corresponding product in
MOL Data Management System. DCM system returns ”New
Configuration Change Task Confirmation” after successful task list
update.
Description:
Aftermarket employee adds a new configuration update task to product
specific configuration update task list.
Actors:
Aftermarket employee
MOL Data Management System
Product Configurator
Preconditions/Assymptions:
DCM system has an access control for aftermarket service employee
from the internal network.
Essence:
1. Send New Configuration Change Task
2. Identify and authenticate employee
3. Verify Authorization for creating a task
4. Read product data structure and configuration from MOL DMS
5. Read Configuration Options from Product Configurator
6. Create Configuration Update Data
7. Create new Configuration Update Task
8. Insert the new update task to Configuration Update Task List
9. Send New Configuration Change Task Confirmation

Update
Configuration

Update
Task List

«include»

Configuration Update Task

New Configuration
Change Task
Confirmation New configuration task can be:

- parameter change,
- application software image or module change
- firmware software image change
- configurable hardware design change

Every new task is saved with
identification information of the
aftermarket service employee.

Identify and
Authenticate

Employee

«include»

Verify
Authorization

«include»

[Constraint]: Update can consist
following configuration changes:
- options activation/deactivation
- application software change

Create
Configuration

Update
Task

«include»

Create
Configuration

Update
Data

«include»

Configuration Update Data

«external system»
MOL Data

Management
System

Product Data Structure
PLM Configuration

Read
Product Data

«include»

«external system»
Product

Configurator

Configuration Options

Product Data Structure
Product Configuration

Read
Configuration

Options

«include»

Configuration Options

uc Aftermarket Use Cases [Check Update Status]

DRAWN BY

PARKKILA TOMMI, ISTO PEKKA
FILENAME

PROMONET_DCM_USECASES_12.VSD
DATE

5/8/2012
REVISED

3/12/2013
PAGE

10 OF 26

Aftermarket
Service Employee

Check Update
Status

Check
Update

Configuration Update Task List

Read Update
Task List

Lock Service
Code

«include»

«include»

Check Update
Confirmation

Check Update Status
Narrative Description:
Aftermarket service employee wants to check if any configuration
updates are pending for a product in Configuration Update Task List and
if so prepare for executing an update. Aftermarket service sends "Check
Update" request to the DCM system. DCM System identifies and
authenticates the employee, and if the employee is authorized for the
Check Update request and an update is pending, retreives the current
Service Code, locks it and returns one of the Configuration Update Tasks
in the Configuration Update Task List. DCM System stores Configuration
Update Task including the service code to Configuration Storage and
returns ”Check Update Confirmation”.
Description:
Aftermarket service requests a configuration update task from the list of
pending tasks and stores it in Configuration Storage.
Actors:
Aftermarket Service Employee
MOL Data Management System
Preconditions/Assymptions:
DCM system has an access control for aftermarket service employee
from the internal network. Aftermarket service employee has a device or
service that provides Configuration Storage for the configuration related
data. Service Code pair consist of unique product ID number and random
service code (PIN), which is updated by the product after every
successful configuration update.
Essence:
1. Send Check Update
2. Identify and authenticate employee
3. Verify authorization for Check Update request
4. Lock service code
5. Read Configuraton Update Task List from MOL DMS
6. Read update task from configuration update list
7. Write update task to configuration storage
8. Return Check Update Confirmation

Identify and
Authenticate

Employee
«include»

Verify
Authorization

«include»

Read Update
Task

«include»

Configuration Update Task

Configuration Update Task

Write Update
Task

«include»

«external system»
MOL Data

Management
System

uc Aftermarket Use Cases [Write Configuration Data to PLM]

DRAWN BY

PARKKILA TOMMI, ISTO PEKKA
FILENAME

PROMONET_DCM_USECASES_12.VSD
DATE

5/8/2012
REVISED

3/12/2013
PAGE

12 OF 26

Aftermarket
Service Employee

Write
Configuration
Data to PLM

Store Configuration

Write Configuration Data to PLM
Narrative Description:
Aftermarket service employee wants to upload and update current
configuration data read from a product to MOL Data Management
System. The aftermarket service employee sends "Store Configuration"
message to the DCM system. DCM system Identifies and authenticates
the employee and if the employee has authorization for the request,
DCM system reads the current configuration of the product including
new service code stored in Configuration Storage and stores them to
MOL Data Management System, unlocks the service code, and returns
”Store Configuration Confirmation” message to the aftermarket service
employee.
Description:
Aftermarket service updates product configuration data in Configuration
Storage into MOL Data Management System.
Actors:
Aftermarket Service Employee
MOL Data Management System
Preconditions/Assymptions:
DCM system has an access control for aftermarket service employee
from the internal network. Aftermarket service employee has a device or
service that provides Configuration Storage for the configuration related
data. Service code pair consist of unique product ID number and random
service code (PIN), which is updated by the product after every
successful configuration update.
Essence:
1. Send Store Configuration
2. Identify and authenticate employee
3. Verify authorization for the request
4. Read Product Configuration from Configuration Storage
5. Write Product Configuration including Service Code to MOL DMS
6. Unlock service code
7. Send Store Configuration Confirmation

PLM Configuration

Write
Configuration

Data

«include»

Store Configuration
Confirmation

«include»

Identify and
Authenticate

Employee

Verify
Authorization

«include» Read Product
Configuration

Product Configuration

«include»

Product Configuration

Unlock Service
Code

«include»

«external system»
MOL Data

Management
System

uc Aftermarket Use Cases [Read Current Configuration From PLM]

DRAWN BY

PARKKILA TOMMI, ISTO PEKKA
FILENAME

PROMONET_DCM_USECASES_12.VSD
DATE

5/8/2012
REVISED

3/12/2013
PAGE

13 OF 26

Aftermarket
Service Employee

Read Current
Configuration

From PLM

Configuration
Data Request

PLM Configuration

Read
Configuration

Data

«include»

Configuration Data
Request Confirmation

Identify and
Authenticate

Employee
«include»

Verify
Authorization

«include»

Configuration Update Task List

Read
Configuration
Update Task

List

«include»

Read Current Configuration From PLM
Narrative Description:
Aftermarket service employee wants to download current configuration
data of a product from MOL Data Management System. Aftermarket
service employee sends "Configuration Data Request" message to the
DCM system. DCM system identifies and authenticates the employee,
and if the employee has authorization for the request, reads
corresponding product configuration and configuration update task list
from MOL Data Management System and writes them to configuration
storage. DCM system indicates completion with a ”Configuration Data
Request Confirmation” message.
Description:
Aftermarket service employee reads current configuration and update
tasks list from PLM to Configuration Storage.
Actors:
Aftermarket service employee
MOL Data Management System
Preconditions/Assymptions:
DCM system has an access control for aftermarket service employee
from the internal network. Aftermarket service employee has a device or
service that provides Configuration Storage for the configuration related
data.
Essence:
1. Send Configuration Data Request
2. Identify and authenticate the employee
3. Verify authorization for the request
4. Read configuration data from MOL Data Management System
5. Read Configuration Update Task List
6. Write configuration data and task list to Configuration Storage
7. Send Configuration Data Request Confirmation

Write to
Configuration

Storage

«include»

«external system»
MOL Data

Management
System

uc Aftermarket Use Cases [Pull Current Configuration From Product]

DRAWN BY

PARKKILA TOMMI, ISTO PEKKA
FILENAME

PROMONET_DCM_USECASES_12.VSD
DATE

5/8/2012
REVISED

3/12/2013
PAGE

14 OF 26

Aftermarket
Service Employee

Pull Current Configuration From Product
Narrative Description:
Aftermarket service employee wants to get current configuration data
from a product on field and store it in Configuration Storage.
Aftermarket service sends ”Get Configuration Data” request to the DCM
system. DCM system identifies and authenticates the employee, and if
the employee has authorization for the request, updates callback table
of the corresponding product with the data request information. Product
polls its callback table periodically, when it detects the new data
requests, product reads its current configuration data from its memory
and sends the data to DCM system which writes it to Configuration
Storage. DCM system clears the task from callback table and indicates
completion with ”Get Configuration Data Confirmation”.
Description:
Aftermarket service employee requests current configuration data of a
specific product from field through remote communication connection
and writes it to Configuration Storage.
Actors:
Aftermarket service employee
Product Control Electronics
Preconditions/Assymptions:
DCM system has an access control for aftermarket service from the
internal network. DCM system manages secure mobile connections (e.g.
SSL) to products. Products have mobile remote connections available.
Aftermarket service employee has a device or service that provides
Configuration Storage for the configuration related data.
Essence:
1. Send Get Configuration Data
2. Identify and authenticate employee
3. Verify authorization for the request
4. Write Get Configuration Data request to Callback Table
5. Read Get Configuration Data request from Callback Table
6. Read product configuration
7. Write product configuration to Callback Table
8. Read product configuration from Callback Table
9. Write product configuration to configuration storage
10. Send Get Configuration Data Confirmation

Write request to
Callback Table

Pull Current
Configuration
From Product

Get Configuration
Data

«include»

<<continuous use case>>
Manage Remote
Communication

Write
Configuration Data«include»

Manages products periodical
calls, where they inform their
status and polls callback
tables for set configuration
updates and data requests

Pull Current
Configuration
From Product

«actor»
Product Control

Electronics

Read Product
Configuration

Product Configuration

«include»
Product Configuration

«include»

Identify and
Authenticate

Employee

Verify
Authorization

«include»

Product
ConfigurationGet Configuration

Data Confirmation

Read request
from Callback

Table

«include»

Write
configuraton to
Callback Table

«include»

Product Configuration

Read configuraton
from Callback

Table

«include»

uc Local Service Employee [Primary Use Cases]

FILENAME

PROMONET_DCM_USECASES_12.VSD
REVISED

3/12/2013
PAGE

15 OF 26

Local
Service

Employee

Retrieve
Configuration

Update Package
Update Product
Configuration

Modify Product
Configuration

Store
Configuration

Update Receipt

Retrieve Current
Configuration Data

From PLM

Get Current
Configuration Data

From Product

<<systemProcess>>
Change Product

Configuration

«include»
«include» «include»

«include»

DRAWN BY

PARKKILA TOMMI, ISTO PEKKA
DATE

5/8/2012

<<systemProcess>>
Manage Product

Configuration

«include»

«include»

«include»

Get Configuration
Update Receipt

«include»

Retrieve
Service Code

«include»

Store
Service Code

«include»

Reboot to
Configuration

Level

«include»

uc Local Service Use Cases [Retrieve Service Code]

DRAWN BY

PARKKILA TOMMI, ISTO PEKKA
FILENAME

PROMONET_DCM_USECASES_12.VSD
DATE

5/8/2012
REVISED

3/12/2013
PAGE

16 OF 26

Local
Service

Employee

Retrieve
Service Code

Retrieve
Service Code

Establish
Secure Mobile

Connection

«include»

Retrieve Service Code
Narrative Description:
Local service employee wants to download service codes for a product to
be serviced. Product is in the field beyond straight mobile
communication network coverage. Using service terminal the local
service establish a secure mobile communication connection to the DCM
system. Then the employee sends to the DCM system "Retrieve Service
Code" message including the specific service request to be performed.
DCM system authenticates the employee, checks which product and
request the employee is authorized for. If the employee is authorized for
the given product and request and the service code has not being locked
earlier by any other actor, DCM system writes service code and the
request data to mobile storage using the service terminal, indicates
completion to the employee with ”Retrieve Service Code Confirmation”
and closes the connection.
Description:
Local service retrieves service code for a service request to be executed
for a product on field.
Actors:
Local Service Employee
MOL Data Management System
Preconditions/Assymptions:
Local service has a service terminal, which is equipped with a mobile
communication interface (e.g. cellular radio, satellite, or LTE), and which
has memory and other resources enough to run a communication
application. Service terminal also has memory to store service code
package containing the service code and the request. That storage may
be integrated to the service terminal if terminal is mobile, otherwise the
storage is detachable and mobile such as USB memory stick. Service code
data is encrypted.
Essence:
1. Establish secure mobile connection
2. Send Retrieve Service Code
3. Identify and authenticate emplyee
4. Verify authorization
5. Lock service code
6. Create Service Code Package
7. Write Service Code Package to mobile storage
8. Send Retrieve Service Code Confirmation
9. Disconnect Connection

Service Code

Create Service
Code Package

Lock Service
Code

«include»
«include»

Service
Code Package

Write Service
Code Package

«include»

«include»

Identify and
Authenticate

Employee

Verify
Authorization

«include»

Retrieve
Service Code
Confirmation

Disconnect
Connection

«include»

«external system»
MOL Data

Management
System

uc Local Service Use Cases [Store Service Code]

DRAWN BY

PARKKILA TOMMI, ISTO PEKKA
FILENAME

PROMONET_DCM_USECASES_12.VSD
DATE

5/8/2012
REVISED

3/12/2013
PAGE

17 OF 26

Local
Service

Employee

Store Service
Code

Store
Service Code

Establish
Secure Mobile

Connection

«include»

Store Service Code
Narrative Description:
Local service employee wants to upload and update service code of a
product to MOL Data Management System. The employee establishes a
secure mobile communication connection to the DCM system. Then the
employee sends "Store Service Code" message Including employee
identification to DCM system. The service terminal reads Service Code
Package from the mobile storage and sends it to DCM system. DCM
system receives and decrypts it and checks that the old service code
stored in the Service Code Package and service code stored in the MOL
Data Management system match. DCM system stores new service code
to MOL Data Management system, unlocks the service code, and returns
”Service Code Confirmation” message to local service and closes the
connection.
Description:
Local service updates product service code stored into MOL Data
Management System.
Actors:
Local Service Employee
MOL Data Management System
Preconditions/Assymptions:
Local service has a service terminal, which is equipped with a mobile
communication interface (e.g. cellular radio, satellite, or LTE), and which
has memory and other resources enough to run a communication
application. Service terminal also has memory to store service code
package. That storage may be integrated to the service terminal if
terminal is mobile, otherwise the storage is detachable and mobile such
as USB memory stick.
Essence:
1. Establish secure mobile connection
2. Send Store Service Code
3. Read Service Code Package from mobile storage
4. Decrypt service Code Package
5. Check service code
6. Store updated service code
7. Unlock service code
8. Send Store Service Code Confirmation
9. Disconnect Connection

Service Code

Store Service
Code

Unlock
Service
Code «include»

«include»

Store Service
Code Confirmation

Decrypt Service
Code Package

«include»

Read Service
Code Package

«include»

Service Code
Package

No authentication needed
since the Service Code
Package is encrypted

Check Service
Code

«include»
Service Code Package

Service Code

Service Code

Disconnect
Connection

«include»

«external system»
MOL Data

Management
System

uc Local Service Use Cases [Retrieve Configuration Update Package]

DRAWN BY

PARKKILA TOMMI, ISTO PEKKA
FILENAME

PROMONET_DCM_USECASES_12.VSD
DATE

5/8/2012
REVISED

3/12/2013
PAGE

18 OF 26

Local
Service

Employee

Retrieve
Configuration

Update Package

Check
Update

Establish
Secure Mobile

Connection

«include»

Retrieve Configuration Update Package
Narrative Description:
Local service employee wants to check if there is any configuration
update pending in update task list. Product is in the field beyond straight
mobile communication network coverage. Using service terminal the
employee establishes a secure mobile communication connection to the
DCM system. Then the employee sends "Check Update" message to the
DCM system. DCM System identifies and authenticates the employee,
and if the employee is authorized for the Check Update request and an
update is pending, retreives the current Service Code, locks it and writes
one of the Configuration Update Tasks in the Configuration Update Task
List to mobile storage in a Configuration Update Package using the
service terminal. DCM system sends ”Check Update Confirmation” and
closes the connection.
Description:
Local service requests a configuration update and task service code for
the next service to be executed for a product on field.
Actors:
Local Service Employee
MOL Data Management System
Preconditions/Assymptions:
Local service has a service terminal, which is equipped with a mobile
communication interface (e.g. cellular radio, satellite, or LTE), and which
has memory and other resources enough to run a communication
application. Service terminal also has memory to store service codes and
configuration update task. That storage may be integrated to the service
terminal if terminal is mobile, otherwise the storage is detachable and
mobile such as USB memory stick. Configuration update data with
service code is encrypted.
Essence:
1. Establish secure mobile connection
2. Send Check Update
3. Identify and authenticate employee
4. Verify authorization
5. Lock service code
6. Create Configuration Update Package
7. Write Configuration Update Package to mobile storage
8. Send Check Update Confirmation
9. Disconnect Connection

Configuration
Update Data

Create
Configuration

Update Package

Lock Service
Code

«include»
«include»

Configuration
Update Package

Write
Configuration

Update Package

«include»

«include»

Identify and
Authenticate

Employee

Verify
Authorization

«include»

Check Update
Confirmation

Configuration
Update Package

Service Code

Disconnect
Connection

«include»

«external system»
MOL Data

Management
System

uc Local Service Use Cases [Update Product Configuration]

DRAWN BY

PARKKILA TOMMI, ISTO PEKKA
FILENAME

PROMONET_DCM_USECASES_12.VSD
DATE

5/8/2012
REVISED

3/12/2013
PAGE

19 OF 26

Local
Service

Employee

Update Product
Configuration

Update
Configuration

Update Product Configuration
Narrative Description:
Local service employee wants to update product configuration. The
employee establishes a secure local communication connection to the
product. Then the employee uses service terminal to send "Update
Configuration" message to the product for reading service code and
configuration update package from mobile storage. Product checks that
the service code matches with the current service code stored into local
memory of the product. If the service code is valid, product check its
status for executing the configuration update, and updates configuration
with new configuration settings from Configuration Update Package
when possible. After succesful configuration update and storing, product
generates new service code, writes Configuration Confirmation including
new service code to mobile storage. DCM system indicates completion
with ”Update Configuration Confirmation” and closes the connection.
Description:
Local service updates product configuration.
Actors:
Local Service Employee
Product Control Electronics
Preconditions/Assymptions:
Local service has a service terminal, which is equipped with a local
communication interface (e.g. Short range radio, or USB), and which has
memory and other resources enough to run a communication
application and storage for product configuration data. The storage may
be detachable and mobile. Product has a local communication interface
as well or the service terminal is integrated to the product and mobile
storage is connected to it at the time of update. Service code pair consist
of unique product ID number and random service code (PIN), which is
updated by the product after every successful configuration update.
Essence:
1. Establish secure local connection
2. Send Update Configuration
3. Read Configuration Update Package from mobile storage
4. Decrypt Configuration Update Package
5. Check service codes
6. Check product status
7. Configurate product
8. Generate new service codes
9. Create Configuration Confirmation
10. Write Update Configuration Confirmation to Mobile Storage
11. Send Update Configuration Confirmation
12. Disconnect Connection

«actor»
Product Control

Electronics

Configuration
Update Data

Establish
Secure Local
Connection

«include»

Check Service
Codes

«include»

Check Product
Status

«include»

Diagnostics,

Configurate
Product

«include»

Generate New
Service Codes

«include»

Service Code

Configuration
Confirmation

[Constraint]: Update can consist
following configuration changes:
- options activation/deactivation
- application software change
- firmware change
- hardware design image change
- configuration history level change

Write
Configuration
Confirmation

«include»

Write Service
Log File

«include»

Continuous use
case

Decrypt
Configuration
Update Data

«include»

Update Configuration
Confirmation

Service Code

Read
Configuration

Update Package

«include»
Disconnect
Connection

«include»

Create
Configuration
Confirmation

«include»

uc Local Service Use Cases [Modify Product Configuration]

DRAWN BY

PARKKILA TOMMI, ISTO PEKKA
FILENAME

PROMONET_DCM_USECASES_12.VSD
DATE

5/8/2012
REVISED

3/12/2013
PAGE

20 OF 26

Local
Service

Employee

Modify Product
Configuration

Modify
Configuration

Modify Product Configuration
Narrative Description:
Local service employee wants to modify product configuration data with
an user interface of a terminal device. Employee establish a secure local
connection to product, which after employee sends ”Modify
Configuration” request. The terminal reads encrypted Configuration
Confirmation from mobile storage and transfers it to the product.
Product checks the match of the service code in the Configuration
Confirmation and when safe shows parameter values of the current
configuration to the employee for editing. The employee changes
parameter values of the current configuration and when done, product
updates Configuration Update Data, creates new encrypted
Configuration Confirmation packet with the new Service Code and
transfers it to the terminal which writes it to the mobile storage. DCM
system indicates completion with ”Modify Configuration Confirmation”
and closes the connection.
Description:
Local service modifies configuration data in product on field.
Actors:
Local Service Employee
Product Control Electronics
Preconditions/Assymptions:
See use case Update Product Configuration.
Essence:
1. Establish secure local connection
2. Send Modify Configuraton
3. Read Configuration Confirmation from mobile storage
4. Decrypt Configuration Confirmation
5. Check service codes
6. Check product status
7. Modify Product Configuration and update Configuration Update Data
8. Generate new service codes
9. Update service code in Configuration Update Data
10. Update service code in Configuration Confirmation
11. Create Configuration Confirmation
12. Write Configuration Confirmation
13. Send Modify Configuraton Confirmation
14. Disconnect Connection

Write Service
Log File

Continuous use
case

«include»

Create
Configuration
Confirmation

«include»
Check Service

Codes

Check Product
Status

Generate New
Service Codes

«include»

«include»

«include» «include»

Modify
Configuration

Establish
Secure Local
Connection

«include»

Modify Configuration
Confirmation

Write
Configuration
Confirmation

Configuration
Confirmation

«actor»
Product Control

Electronics

Diagnostics,

Service Code

Parameters

«include»

Parameters

Service Code

Disconnect
Connection

«include»

Read
Configuration
Confirmation Configuration

Confirmation

«include»

Decrypt
Configuration
Confirmation

«include»

uc Local Service Use Cases [Get Configuration Update Receipt]

DRAWN BY

PARKKILA TOMMI, ISTO PEKKA
FILENAME

PROMONET_DCM_USECASES_12.VSD
DATE

5/8/2012
REVISED

3/12/2013
PAGE

21 OF 26

Local
Service

Employee

Get
Configuration

Update Receipt

Get Update
Receipt

Establish
Secure Local
Connection

«include»

Get Configuration Update Receipt
Narrative Description:
Local service employee wants to get a receipt of executed configuration
service done for the product. Employee sends ”Get Update Receipt”
request to product. The terminal reads encrypted Configuration
Confirmation from mobile storage and transfers it to the product, which
after, product checks the validity of the request and forms secured
configuration update receipt including current service code, all
configuration modifications done in the service and updated service log
file and writes it to mobile storage. DCM system indicates completion
with ”Get Update Receipt Confirmation” and closes the connection.
Description:
Local service gets the Configuration Update Receipt from the product.
Actors:
Local Service Employee
Product Control Electronics
Preconditions/Assymptions:
Local service has a service terminal, which is equipped with a local
communication interface (e.g. Short range radio, or USB), and which has
memory and other resources enough to run a communication
application and storage for product configuration data. The storage may
be detachable and mobile. Product has a local communication interface
as well or the service terminal is integrated to the product and mobile
storage is connected to it at the time of update.
Essence:
1. Establish secure local connection
2. Send Get Update Receipt
3. Read Configuration Confirmation from mobile storage
4. Decrypt Configuration Confirmation
5. Check service code in Configuration Confirmation
6. Generate new service code
7. Create Configuration Update Receipt
8. Write receipt to mobile storage
9. Send Get Update Receipt Confirmation
10. Disconnect Connection

«include»

Decrypt
Configuration
Confirmation

Check Service
Code

«actor»
Product Control

Electronics

productId &
securityKey

Generate New
Service Codes

Write
Configuration

Update Receipt

Configuration
Update
Receipt

«include»

«include»

Create
Configuration

Update Receipt

«include»

Configuration
Update Data &

securityKey

«include»

Get Update
Receipt Confirmaton

Service Code

«include»

Read
Configuration
Confirmation Configuration

Confirmation

Disconnect
Connection

«include»

uc Local Service Use Cases [Store Configuration Update Receipt]

DRAWN BY

PARKKILA TOMMI, ISTO PEKKA
FILENAME

PROMONET_DCM_USECASES_12.VSD
DATE

5/8/2012
REVISED

3/12/2013
PAGE

22 OF 26

Local
Service

Employee

Store
Configuration

Update Receipt

Store
Update Receipt

Establish
Secure Mobile

Connection

«include»

Store Configuration Update Receipt
Narrative Description:
Local service employee wants to upload and update current
configuration data of a product to MOL Data Management System. Local
service establish a secure mobile communication connection to the DCM
system with service terminal. Then The employee sends "Store Update
Receipt" message to DCM system. The service terminal reads
Configuration update Receipt from the mobile storage and sends it to
DCM system. DCM system receives and decrypts it and checks that the
old service code stored in the Configuration Update Data and MOL Data
Management System match. DCM system stores configuration data to
MOL Data Management system, clears the task from update task list,
unlocks the service code, and returns ”Store Update Receipt
Confirmation” message to local service and service terminal closes the
connection.
Description:
Local service updates product configuration data stored into MOL Data
Management System with current configuration from product on field.
Actors:
Local Service Employee
MOL Data Management System
Preconditions/Assymptions:
Local service has a service terminal, which is equipped with a mobile
communication interface (e.g. cellular radio, satellite, or LTE), and which
has memory and other resources enough to run a communication
application. Service terminal also has memory to store service codes and
configuration update receipt. That storage may be integrated to the
service terminal if terminal is mobile, otherwise the storage is
detachable and mobile such as USB memory stick.
Essence:
1. Establish secure mobile connection
2. Send Store Update Receipt
3. Read Configuration Update Receipt from mobile storage
4. Decrypt Configuration Update Receipt
5. Check service codes
6. Store Updated Configuration Data to MOL Data Management System
7. Clear task from Configuration Update Task List
8. Unlock service code
9. Send Store Update Receipt Confirmation
10. Disconnect Connection

Configuration
Update Data &
serviceLogFile

Store Updated
Configuration

DataUnlock
Service
Code

«include»
«include»

Store Update
Receipt Confirmation

Decrypt
Configuration

Update Receipt

«include»

Clear
Configuration
Update Task

List
«include»

Configuration
Update Receipt

Read
Configuration

Update Receipt

«include»

Check Service
Code

«include»

Service Code

Disconnect
Connection

«include»

«external system»
MOL Data

Management
System

uc Local Service Use Cases [Reboot to Configuration Level]

DRAWN BY

PARKKILA TOMMI, ISTO PEKKA
FILENAME

PROMONET_DCM_USECASES_12.VSD
DATE

5/8/2012
REVISED

3/12/2013
PAGE

23 OF 26

Local
Service

Employee

Reboot to
Configuration

Level

Reboot to
Configuration

Reboot to Configuration Level
Narrative Description:
Local service employee wants to revert to one of configurations stored in
the product: Factory reset configuration, previous configuration or
newest configuration. The employee establishes a secure local
communication connection to the product and uses service terminal to
send "Reboot to Configuration" message to the product for reading
service code from mobile storage. Product checks that the service code
matches with the product’s current service code. If the service code is
valid, product check its status for executing the configuration revert and
performs it when possible. After succesful revert, product generates new
service code, writes Configuration Confirmation including new service
code to mobile storage. DCM system indicates completion with ”Revert
to Configuration Confirmation” and closes the connection.
Description:
Local service reverts product configuration.
Actors:
Local Service Employee
Product Control Electronics
Preconditions/Assymptions:
Local service has a service terminal, which is equipped with a local
communication interface (e.g. Short range radio, or USB), and which has
memory and other resources enough to run a communication
application and storage for product configuration data. The storage may
be detachable and mobile. Product has a local communication interface
as well or the service terminal is integrated to the product and mobile
storage is connected to it at the time of update. Service code pair consist
of unique product ID number and random service code (PIN), which is
updated by the product after every successful configuration update.
Essence:
1. Establish secure local connection
2. Send Reboot to Configuration
3. Read Service Code Package from mobile storage
4. Decrypt Service Code Package
5. Check service codes
6. Check product status
7. Configurate product
8. Generate new service codes
9. Create Configuration Confirmation
10. Write Update Configuration Confirmation to Mobile Storage
11. Send Update Configuration Confirmation
12. Disconnect Connection

«actor»
Product Control

Electronics

Configuration
Update Data

Establish
Secure Local
Connection

«include»

Check Service
Codes

«include»

Check Product
Status

«include»

Diagnostics,

Configurate
Product

«include»

Generate New
Service Codes

«include»

Service Code

Configuration
Confirmation

Write
Configuration
Confirmation

«include»

Write Service
Log File

«include»

Continuous use
case

Decrypt Service
Code Package

«include»

Reboot to Configuration
Confirmation

Service Code

Read Service
Code Package

«include»

Disconnect
Connection

«include»

Create
Configuration
Confirmation

«include»

uc Local Service Use Cases [Retrieve Current Configuration Data From PLM]

DRAWN BY

PARKKILA TOMMI, ISTO PEKKA
FILENAME

PROMONET_DCM_USECASES_12.VSD
DATE

5/8/2012
REVISED

3/12/2013
PAGE

24 OF 26

Local
Service

Employee

Retrieve Current
Configuration Data

From PLM

Retrieve
Configuration Data

«include»

«include»

Establish
Secure Mobile

Connection

«include»

PLM Configuration

Read
Configuration

Data
«include» PLM Configuration

Identify and
Authenticate

Employee

Verify
Authorization

Retrieve Current Configuration Data From PLM
Narrative Description:
Local service employee wants to download current configuration data of
a product from MOL Data Management System using the service
terminal. The employee establishes a secure mobile communication
connection to the DCM system. Then the employee sends "Retrieve
Configuration Data" request to the DCM system. DCM system
authenticates the local service, checks which product data the employee
is authorized to get access rights and if authorized reads corresponding
product specific configuration data from MOL Data Management System
and returns the configuration data. Service terminal writes the
configuration data to the mobile storage, DCM system indicates
completion with ”Retrieve Configuration Data Confirmation”. Service
terminal closes the connection.
Description:
Local service requests current configuration data of a specific product
from PLM.
Actors:
Local Service Employee
MOL Data Management System
Preconditions/Assymptions:
Local service has a service terminal, which is equipped with a mobile
communication interface (e.g. cellular radio, satellite, or LTE), and which
has memory and other resources enough to run a communication
application. Service terminal also has memory to store service codes and
configuration update task list. That storage may be integrated to the
service terminal if terminal is mobile, otherwise the storage is
detachable and mobile such as USB memory stick.
Essence:
1. Establish secure mobile connection
2. Send Retrieve Configuration Data
3. Identify and authenticate employee
4. Verify authorization
5. Read configuration data from MOL Data Management System
6. Write configuration data to mobile storage
7. Send Retrieve Configuration Data Confirmation
8. Disconnect Connection

Retrieve
Configuration Data

Confirmaton

Disconnect
Connection

«include»

Write
Configuration

Data

«include»

PLM Configuration

«external system»
MOL Data

Management
System

uc Local Service Use Cases [Get Current Configuration Data From Product]

DRAWN BY

PARKKILA TOMMI, ISTO PEKKA
FILENAME

PROMONET_DCM_USECASES_12.VSD
DATE

5/8/2012
REVISED

3/12/2013
PAGE

25 OF 26

Local
Service

Employee

Get Current
Configuration
From Product

Get Configuration Data

Get Current Configuration Data From Product
Narrative Description:
Local service employee wants to get product configuration data. The
employee establishes a secure local communication connection to the
product. Then The employee sends "Get Configuration Data" request to
the Product using service terminal. The product reads Service Code
Package from the mobile storage, decrypts it and compares the service
code to current one in the product. If the codes match the product
writes current product configuration to mobile storage and indicates
completion with ”Get Configuration Data Confirmation”. Local service
closes the connection.
Description:
Local service requests configuration data from product
Actors:
Local Service Employee
Product Control Electronics
Preconditions/Assymptions:
Local service has a service terminal, which is equipped with a local
communication interface (e.g. Short range radio, or USB), and which has
memory and other resources enough to run a communication
application and storage for product configuration data. The storage may
be detachable and mobile. Product has a local communication interface
as well or the service terminal is integrated to the product and mobile
storage is connected to it at the time of update. The local service
employee has retreived current service code for the product in Service
Code Package on the mobile storage.
Essence:
1. Establish secure local connection
2. Send Get Configuration Data
3. Read Service code Package from mobile storage
4. Decrypt Service code Package
5. Check service codes
6. Read product configuration data
7. Write configuration data to mobile storage
8. Send Get Configuration Data Confirmation
9. Disconnect Connection

«actor»
Product Control

Electronics

Establish
Secure Local
Connection «include»

Read Product
Configuration Data

Product Configuration

«include»

Product Configuration

Decrypt Service
Code Package

Check Service
Codes

Read Service
Code Package

Service Code
Package

«include»

«include»

«include»

Write Product
Configuration

«include»

Get Configuration
Data Confirmation

Service Code
Package

Service Code

Disconnect
Connection

«include»

uc Third Party Use Cases [Retrieve Current Configuration From PLM]

DRAWN BY

PARKKILA TOMMI, ISTO PEKKA
FILENAME

PROMONET_DCM_USECASES_12.VSD
DATE

5/8/2012
REVISED

3/12/2013
PAGE

26 OF 26

Retrieve Current Configuration From PLM
Narrative Description:
Third party employee wants to download current configuration data of
their sub-device of a product from MOL Data Management System. Local
service employee wants to download current configuration data of a
product from MOL Data Management System. The third party employee
establishes a secure mobile communication connection to the DCM
system. Then the third party employee sends "Retrieve Configuration
Data" request to the DCM system. DCM system authenticates the third
party employee, checks which device data on the product the third party
employee is authorized to get access rights and if authorized reads
corresponding product specific configuration data for the device from
MOL Data Management System and returns it. Service terminal writes
the configuration data to the mobile storage, DCM system indicates
completion with ”Retrieve Configuration Data Confirmation”. Service
terminal closes the connection.
Description:
Third party employee requests current configuration data of a specific
sub-device of a product.
Actors:
Employee of third party organization
MOL Data Management System
Preconditions/Assymptions:
Third party employee has a service terminal, which has memory and
other resources enough to run a communication application and store
product configuration data. Service terminal also has memory to store
service codes and configuration data. That storage may be integrated to
the service terminal if terminal is mobile, otherwise the storage is
detachable and mobile such as USB memory stick.
Essence:
1. Establish secure mobile connection
2. Send Retrieve Configuration Data
3. Identify and authenticate employee
4. Verify authorization
5. Read device configuration data from MOL Data Management System
6. Write configuration data to mobile storage
7. Send Retrieve Configuration Data Confirmation
8. Disconnect Connection

Employee of third
party organization

Retrieve Current
Configuration Data

From PLM

Retrieve
Configuration Data

«include»

«include»

Establish
Secure Mobile

Connection

«include»

PLM Configuration

Read
Configuration

Data
«include»

PLM Configuration

Identify and
Authenticate

Employee

Verify
Authorization

Retrieve
Configuration Data

Confirmaton

Disconnect
Connection

«include»

Write
Configuration

Data

«include»

PLM Configuration

«external system»
MOL Data

Management
System

REV. DESCRIPTION DATE BY

DRAWN BY

PARKKILA TOMMI, ISTO PEKKA

DESCRIPTION

Domain knowledge diagrams of ProMoNet dynamic configuration
management (DCM) system for reconfigurable networked industrial

products
FILENAME

PROMONET_DCM_DOMAIN KNOWLEDGE_09.VSD
DATE

9/11/2012

TITLE

ProMoNet DCM Domain Knowledge

0.1

0.2

0.3

0.4

0.5

First draft created

Enumerations added, requests added

Added Configuration Update Package, reorganizations and minor updates

Added Secured Update Data and Secured Receipt.

Conflicting revisions from TOP and PEI – Revision deleted.

05/15/2012

09/25/2012

11/12/2012

11/13/2012

--

TOP

TOP

PEI

PEI

--

REVISED

4/21/2013

REVISIONS

PAGE

1 OF 6

0.6

0.7

0.8

0.9

Merged changes of 0.5 by TOP (review) and 0.5 by PEI (use cases 0.7).

Separated configuration model. Updated to flows 0.9.

Corrected for review findings: Local reboot and versioning.

Added comments.

11/23/2012

02/28/2013

03/12/2013

04/21/2013

PEI

PEI

PEI

PEI

bdd [package] Domain knowledge [Aux]

DRAWN BY

PARKKILA TOMMI, ISTO PEKKA
FILENAME

PROMONET_DCM_DOMAIN KNOWLEDGE_09.VSD
DATE

9/11/2012
REVISED

4/21/2013
PAGE

4 OF 6

«domain»
Update

Confirmation

isSucceed
confirmationCode

isWorking
runStatus: statusTypes
data

«domain»
Diagnostics

«domain»
Secured

Confirmation

serviceCode

macCodeNumber

1

1

11

«domain»
Configuration
Update Data

serviceCode
oldServiceCode

«domain»
serviceLogFile

1

1

1
1

1

1

employeeID
productID
errorType:errorTypes
errorMsgBody

«domain»
Error Message

«domain»
Secured Receipt

11

«domain»
Store Confirmation

«domain»
Configuration Status

serviceCode
oldServiceCode
productID
employeeID
requestType

«domain»
Configuration

Update Receipt

«domain»
Configuration
Confirmation

«domain»
Service Code

Package

«block»
macCode

Configuration Update
Receipt is used to
transport final
configuration from
product to DCM
system after local
reconfiguration.

Configuration
Confirmation is used
to keep a copy of
updated serviceCode
in the mobile (service)
terminal over product
configuration
modifications in local
reconfiguration.

bdd [package] Domain knowledge enumerations

DRAWN BY

PARKKILA TOMMI, ISTO PEKKA
FILENAME

PROMONET_DCM_DOMAIN KNOWLEDGE_09.VSD
DATE

9/11/2012
REVISED

4/21/2013
PAGE

5 OF 6

«enumeration»
ConfLevels

preview
update:ConfTypes

«enumeration»
userTypes

Local Service Employee
Aftermarket Service Employee
Employee of third party organization

«enumeration»
objectTypes

applicationSW
firmwareSW
hardwareLogic

«enumeration»
statusTypes

configurationAllowed
infoPollAllowed
allDenied

«enumeration»
errorTypes

authenticationError
authorizationError
requestInvalid
servicecodeInvalid
confUpdateDenied
configurationFailed
codeGenerationFailed
dataReadError
dataWriteError
servicecodeReChecked
configurationDataInvalid

The value of update is used to generate a
default list of object updates defined for
each ConfType.

«enumeration»
requestTypes

New Product Instance Data
New Product configuration Data
….

Requests to the
DCM system, see
page [Requests]

bdd [package] Domain knowledge [requests]

DRAWN BY

PARKKILA TOMMI, ISTO PEKKA
FILENAME

PROMONET_DCM_DOMAIN KNOWLEDGE_09.VSD
DATE

9/11/2012
REVISED

4/21/2013
PAGE

6 OF 6

«request»
Check Update

employeeID
productId
requestType:requestTypes

«request»
Modify Configuration

employeeID

«domain»
Configuration
Confirmation

11

«request»
Update Configuration

employeeID

«domain»
Configuration

Update Package

11

«request»
Get Update Receipt

employeeID

1

1

«request»
Store Update Receipt

employeeID
1 1

«domain»
Configuration

Update Receipt

«request»
Modify Done

employeeID
productId

«request»
New Product Instance

Data

employeeID
productId
requestType:requestTypes

«request»
New Product

Configuration Data

employeeID
productId
requestType:requestTypes

«request»
New Configuration

Change Task

employeeID
productId
requestType:requestTypes

«request»
New Configuration

Update

employeeID
productId
requestType:requestTypes

«request»
Configuration Data

Request

employeeID
productId
requestType:requestTypes

«request»
Store Service

Code

employeeID
productId
requestType:requestTypes

«request»
Store Configuration

employeeID
productId
requestType:requestTypes

«request»
Retrieve Configuration

Data

employeeID
productId
requestType:requestTypes

«request»
Get Configuration Data

employeeID
productId
requestType:requestTypes

«request»
Retrieve Service

Code

employeeID
productId
requestType:requestTypes

1

1

«request»
Reboot to

Configuration

employeeID

1

1

REV. DESCRIPTION DATE BY

DRAWN BY

PARKKILA TOMMI, ISTO PEKKA

DESCRIPTION

Use case activity diagrams of ProMoNet dynamic configuration
management (DCM) system for reconfigurable networked industrial

products
FILENAME

PROMONET_DCM_USECASEFLOWS_11.VSD
DATE

5/17/2012

TITLE

ProMoNet DCM System Use Case Flows

0.1

0.2

0.3

0.4

0.5

First draft created

Local Service flows done

Aftermarket flows added.

Major modifications for local service flows

Updated according to review findings

05/17/2012

09/10/2012

09/26/2012

09/26/2012

11/13/2012

TOP

TOP

TOP

TOP

PEI

REVISED

5/14/2013

REVISIONS

PAGE

1 OF 27

0.6

0.7

0.8

0.9

10

Aligned to use cases rev. 0.7.

Aligned to domain knowledge rev. 0.6.

Added service code activities. Signal and object flows redesigned for Mobile Storage.

Added Production flows. Redesigned ASE flows.

Aligned to use cases rev. 12 and corrected architecturally flawed object flows.

11/22/2012

11/21/2012

02/24/2013

02/28/2013

03/12/2013

PEI

PEI

PEI

PEI

PEI

11 Redesigned state conditions. Added Third Party Employee flow. 05/14/2013 PEI

DRAWN BY

PARKKILA TOMMI, ISTO PEKKA
FILENAME

PROMONET_DCM_USECASEFLOWS_11.VSD
DATE

5/17/2012
REVISED

5/14/2013
PAGE

6 OF 27

act Push Product Configuration Update [Aftermarket Service Employee]

<<precondition>>
Product Configuration Update Available

Verify
Authorization

[Employee not identified or authenticated]

[Employee not authorized for request]

Identify and Authenticate
Employee

New Configuration Update New Configuration Update

requestType [New Configuration Update]

productID
employeeID

This is a signal of
user action

This is an object
communicating
data from user

Read Configuration Update Task
from Configuration Storage Configuration Update Task

Write Configuration Update
Task to Callback Table

Callback Table

Configuration Update Task

Configuration Update Task

Read Configuration Update
Task from Callback Table

Configuration Update Task

Check Service
CodesProduct Configuration:serviceCode

Configuration Update Task

Diagnostic Data

Configurate
ProductParameter Data

Parameter Data

Store Configuration Update
Task to Local Buffer

Local Buffer

Configuration Update Task

Check Product
Status

Timeout

Configuration Update Task

<<discrete>>
{waitTime undefined}

Configuration Update Task

Generate New
Service Codes

[Configuration Failed]

[Configuration Succeeded]

[Service Code Generation Failed]

serviceCode

Restore
Service Codes

Restore Previous
or Default
Configuration

Write Product Configuration
to Configuration Storage Product Configuration

Send Update New configuration
Update Confirmation

New configuration
Update Confirmation

Product Configuration

Product Configuration UpdatedProduct Configuration Not Updated

Send Error Msg

Error
Message

[Service Codes Not Valid]

[Service Codes Valid]

Configuration Update Task

Update Service Code

Write Product Configuration
To Callback Table

Callback Table

Product Configuration

Read Product Configuration
from Callback Table

Product Configuration

Product Configuration

Product Configuration

Product Configuration:serviceCode

Print to A3 size for readability

This is an indicator
signal to user.

DRAWN BY

PARKKILA TOMMI, ISTO PEKKA
FILENAME

PROMONET_DCM_USECASEFLOWS_11.VSD
DATE

5/17/2012
REVISED

5/14/2013
PAGE

15 OF 27

<<precondition>>
Product Configuration
Update Status Checked

Establish Secure
Local Connection

act Update Product Configuration [Local Service Employee]

[secure connection established]

[secure connection not established]

Wait for Request

[Request Not Valid]

[Request Valid]

Update
Configuration

Update Configuration

Timeout

<<discrete>>
{waitTime = 1 minute}

Check Service
Codes

Check Product
Status

Configurate
Product

Generate New
Service Codes

Product Configuration:serviceCode

[Service Codes Not Valid]

[Service Codes Valid]
Diagnostics

[Configuration Update Not Allowed]

employeeId

[Configuration Failed]

[Configuration Succeeded]

Configuration Update Data

Write Configration
Confirmation to
Mobile Storage

[Service Code Generation Failed]

Restore Previous
or Default
Configuration

Send Error Msg Error
Message

Product Configuration
Not Updated

Product Configuration
Updated

Generates new random service
code number to be used in the
next configuration update or
modification.

Disconect Local
Connection

Disconect Local
Connection

Restore
Service Codes

Decrypt Configuration
Update Data

Product Configuration:securityKey
Configuration Update Data

[Authentication Failed]

Product:productId

Create Configuration
Confirmation

serviceCode

Configuration Confirmation
Product Configuraton:securityKey

Product:productId

Configuration Update Data: serviceCode
serviceCode

Configuration Update Data

Read Configuration Update
Package from Mobile Storage Configuration Update Package

Configuration
Confirmation

No authentication needed here
since the Configuration Update
Package is encrypted

Service Codes in Configuration
Update Data and Product must
match for update to proceed.

Send Update
Configuration Confirmation

Update Configuration
Confirmation

Parameter Data

Parameter Data

Print to A3 size for readability

Configuration Update Data:
serviceCode

employeeId

Send Configuration
Update Package

Receive Configuration
Update Package

Configuration Update Package

Configuration Update Package

Configuration Update Package

Send Configuration
Confirmation

Receive Configuration
Confirmation

Configuration Confirmation

Configuration Confirmation

DRAWN BY

PARKKILA TOMMI, ISTO PEKKA
FILENAME

PROMONET_DCM_USECASEFLOWS_11.VSD
DATE

5/17/2012
REVISED

5/14/2013
PAGE

16 OF 27

<<precondition>>
Service Code Package Retrieved

Establish Secure
Local Connection

act Reboot to Configuration Level [Local Service Employee]

[secure connection established]

[secure connection not established]

Wait for Request

[Request Not Valid]

[Request Valid]

Reboot to
Configuration

Reboot to Configuration

Timeout

<<discrete>>
{waitTime = 1 minute}

Check Service
Codes

Check Product
Status

Revert Product
Configuration

Generate New
Service Codes

Product Configuration:serviceCode

[Service Codes Not Valid]

[Service Codes Valid]
Diagnostics

[Configuration Update Not Allowed]

employeeId

[Configuration Failed]

[Configuration Succeeded]

Configuration Update Data

Write Configration
Confirmation to
Mobile Storage

[Service Code Generation Failed]

Restore Previous
or Default
Configuration

Send Error Msg Error
Message

Product Configuration
Not Updated

Product Configuration
Updated

Generates new random service
code number to be used in the
next configuration update or
modification.

Disconect Local
Connection

Disconect Local
Connection

Restore
Service Codes

Decrypt Service
Code

Product Configuration:securityKey
Service Code

[Authentication Failed]

Product:productId

Create Configuration
Confirmation

serviceCode

Configuration Confirmation
Product Configuraton:securityKey

Product:productId

Configuration Update Data: serviceCode
serviceCode

Read Service Code Package
from Mobile Storage Service Code Package

Configuration
Confirmation

Service Codes in Configuration
Update Data and Product must
match for update to proceed.

Send Reboot to
Configuration Confirmation

Reboot to Configuration
Confirmation

Parameter Data

Parameter Data

Print to A3 size for readability

Configuration Update Data:
serviceCode

employeeId

Send Service Code Package

Receive Service Code Package

Service Code Package

Service Code Package

Service Code Package

Send Configuration
Confirmation

Receive Configuration
Confirmation

Configuration Confirmation

Configuration Confirmation

Configuration Selection

Configuration selection
can be one of factory
reset configuration,
previous configuration or
newest configuration

DRAWN BY

PARKKILA TOMMI, ISTO PEKKA
FILENAME

PROMONET_DCM_USECASEFLOWS_11.VSD
DATE

5/17/2012
REVISED

5/14/2013
PAGE

18 OF 27

<<precondition>>
Product Configuration Updated or
Product Configuration Modified or
Product Configuration Not Modified

act Modify Product Configuration [Local Service Employee]

Establish Secure
Local Connection

[secure connection established]

[secure connection not established]

Wait for Request

[Request Not Valid]

[Request Valid]

Modify Configuration

Modify Configuration

Timeout

<<discrete>>
{waitTime = 1 minute}

Check Service
Codes

Check Product
Status

[Service Codes Not Valid]

[Service Codes Valid]

Diagnostic
Data

[Configuration Modification not Allowed]

[Configuration Modification Allowed

Modify
Configuration

Generate New
Service Codes

[Configuration Failed]

[Configuration Succeeded]

[Service Code Generation Failed]

[Service Code generation Succeeded]

Restore
Configuration

Restore
Service Code

Send Error Msg Error
Message

Product
Configuration
Not Modified

Parameter
Data

Configuration Update Data:serviceCode

Disconect Local
Connection

Decrypt Configuration
Confirmation

Product Configuration:securityKey

Product:productId

[Authentication Failed]

Product Configuration
Modified

Disconect Local
Connection

Create Configuration
Confirmation

Product Configuration:securityKey

Product:productId

Configuration Update Data:
serviceCodeserviceCode

Configuration Update DataObject Update

Write Configration
Confirmation to
Mobile Storage

Configuration Confirmation

Configuration
Confirmation

Read Configration
Confirmation from
Mobile Storage

Configuration Confirmation

serviceCode

No authentication needed
here since the
Configuration Confirmation
is encrypted and
serviceCode sequence ties
it to the Product.

For updating the
service code in
PLMconfiguration.

Send Modify
Configuration Confirmation Modify Configuration Confirmation

employeeID

Print to A3 size for readability

employeeId

Send Configuration
Confirmation

Receive Configuration
Confirmation

Configuration Confirmation

Send Configuration
Confirmation

Receive Configuration
Confirmation

Configuration Confirmation

Configuration Confirmation

Configuration Confirmation

Configuration Confirmation

Send Configuration
Confirmation from Mobile
Terminal to Product over
local connection.

DRAWN BY

PARKKILA TOMMI, ISTO PEKKA
FILENAME

PROMONET_DCM_USECASEFLOWS_11.VSD
DATE

5/17/2012
REVISED

5/14/2013
PAGE

20 OF 27

<<precondition>>
Product Configuration Updated or
Product Configuration Modified or
Product Configuration Not Modified

act Get Configuration Update Receipt [Local Service Employee]

Establish Secure
Local Connection

[secure connection established]

[secure connection not established]

Wait for Request

[Request Not Valid]

[Request Valid]

Get Update Receipt

Get Update Receipt

Timeout

<<discrete>>
{waitTime = 1 minute}

Check Service
Codes

[Service Codes Not Valid]

[Service Codes Valid]

Configuration Update
Data:serviceCode

Decrypt Configuration
Confirmation

ProductConfiguration:
securityKey

Product:productId

[Authentication Failed]

Service Code

Create Configuration
Update Receipt

Product Configuration
Data Retrieved

Product Configuration
Data Retrieval Failed

Send Error Msg

Write Configuration Update
Receipt to Mobile Storage

Error
Message

Disconect Mobile
Connection

Disconect Mobile
Connection

Configuration
Update Data

Product Configuration:
securityKey

productIDGenerate New
Service Codes

ProductConfiguration:
serviceCode

Configuration Update
Data:serviceCode

serviceLogFile

Read Configration
Confirmation from
Mobile Storage

Configuration Confirmation

employeeId

employeeID

Configuration Update Receipt

Configuration Confirmation

Configuration Update Receipt

No authentication needed
here since the
Configuration Confirmation
is encrypted and
serviceCode sequence ties
it to the Product.

Service Codes in
Configuration Confirmation
and Product must match for
receipt to be generated.

For updating the
service code in
PLMconfiguration.

Send Get Update
Receipt Confirmation Get Update Receipt Confirmation

Print to A3 size for readability

Send Configuration
Confirmation

Receive Configuration
Confirmation

Configuration Confirmation

Configuration Confirmation

Send Configuration
Update Receipt

Receive Configuration
Update Receipt

Configuration Update Receipt

Configuration Update Receipt

act Store Configuration Update Receipt [Local Service Employee]

DRAWN BY

PARKKILA TOMMI, ISTO PEKKA
FILENAME

PROMONET_DCM_USECASEFLOWS_11.VSD
DATE

5/17/2012
REVISED

5/14/2013
PAGE

22 OF 27

<<precondition>>
Product Configuration Retrieved

Establish Secure
Mobile Connection

[secure connection established]

[secure connection not established]

Wait for Request

Store Update Receipt

Store Update Receipt

Timeout

[Request Not Valid]

[Request Valid]

<<discrete>>

{waitTime = 1 minute}

[serviceCode not valid]

Store Product Configuration PLM Configuration

[Write failed]

[Write done]

Unlock
Service Code

[Unlock failed]

Send Store Update
Receipt Confirmation Store Update Receipt Confirmation

Product
Configuration

Data Storing Failed

Send Error Msg Error
Message

Product
Configuration

Data Consistent

Disconect Mobile
Connection

Disconect Mobile
Connection

Decrypt Configuration
Update ReceiptPLM Configuration:securityKey

[Authentication Failed]

Check Service
Codes

Configuration Update
Data:oldServiceCode

PLM Configuration:
serviceCode

PLM Configuration:
isServiceLocked=False

Product configurations
are stored to PLM
Configuration in MOL
PLM system

Product is available for
new configuration
updates or services.

Read Configration
Update Receipt from
Mobile Storage

Configuration Update Receipt

Indicator to Local
Service
Employee

Configuration Update Receipt

No authentication needed
here since the Configuration
Update Receipt is encrypted

Send Configuration Update Receipt

Receive Configuration Update Receipt

Configuration Update Receipt

Configuration Update Receipt

Configuration Update Data

serviceLogFile

Clear Configuration Update Task List

employeeId

Print to A3 size for readability

productId

REV. DESCRIPTION DATE BY

DRAWN BY

PARKKILA TOMMI, ISTO PEKKA

DESCRIPTION

System context diagram of ProMoNet Dynamic Configuration
Management (DCM) system for reconfigurable networked industrial

products
FILENAME

PROMONET_DCM_SYSTEM_CONTEXT_05.VSD
DATE

4/25/2012

TITLE

ProMoNet DCM System Context

0.1

0.2

0.4

0.5

First draft created

Information flows edited, actor names changed, etc.

Local Service part synchronized with, use cases (rev. 0.6), and flows (rev 0.4)

Added Product Configurator and internal system structure.

05/08/2012

05/15/2012

09/26/2012

03/13/2012

TOP

TOP

TOP

PEI

REVISED

3/13/2013

REVISIONS

PAGE

1 OF 8

DRAWN BY

PARKKILA TOMMI, ISTO PEKKA
FILENAME

PROMONET_DCM_SYSTEM_CONTEXT_05.VSD
DATE

4/25/2012
REVISED

3/13/2013
PAGE

2 OF 8

bdd System Actors

Local
Service

Employee

«actor»
Product Control

Electronics

Aftermarket
Service Employee

Production
Employee

Aftermarket service
representant in the
field with physical
access products

Employee of
third party

organization

As for example,
aftermarket service
representant of a
third party
subcontractor

Representant of
product
production

Representant of
product
aftermarket with
remote access to
products

Product computers,
controllers and
communications

Data management
software and platform for
storing evolving product
unit specific as-built and
as-maintained data
structures

«external system»
BOL Data

Management
System

Data management
software and platform for
storing as-designed
product data

«external system»
MOL Data

Management
System

Data management
software and platform for
specifying and generating
product configuration data
structures according to
customer requirements

«external system»
Product

Configurator

DRAWN BY

PARKKILA TOMMI, ISTO PEKKA
FILENAME

PROMONET_DCM_SYSTEM_CONTEXT_05.VSD
DATE

4/25/2012
REVISED

3/13/2013
PAGE

3 OF 8

bdd [package] System Context

«system»
Dynamic

Configuration
Management

System
(DCM)

Local
Service

Employee

«actor»
Product Control

Electronics

Aftermarket
Service Employee

Production
Employee

Aftermarket service
representant in the
field with physical
access products

Employee of
third party

organization

As for example,
aftermarket service
representant of a
third party
subcontractor

Representant of
product
production

Representant of
product
aftermarket with
remote access to
products

Product computers,
controllers and
communications

Data management
software and platform for
storing evolving product
unit specific as-built and
as-maintained data
structures

«external system»
BOL Data

Management
System

Data management
software and platform for
storing as-designed
product data

«external system»
MOL Data

Management
System

Data management
software and platform for
specifying and generating
product configuration data
structures according to
customer requirements

«external system»
Product

Configurator

DRAWN BY

PARKKILA TOMMI, ISTO PEKKA
FILENAME

PROMONET_DCM_SYSTEM_CONTEXT_05.VSD
DATE

4/25/2012
REVISED

3/13/2013
PAGE

4 OF 8

ibd [block] Dynamic Configuration Management System Context [with information flows]

«system»
:Dynamic

Configuration
Management

System

:Local
Service

Employee

«actor»
:Product Control

Electronics

:Configuration Data

:Product Data Structure
:Configuration Data
:Service Log File

:Configuration Update
:Configuration Data
:Update Confirmation
:Configuration Confirmation
:Configuration Update Receipt
:Parameters

:Aftermarket
Service Employee

:Configuration Data Request,
:Configuration Update Request
:Configuration Update
:New Configuration Task

:Production
Employee

:New Product Data Request
:Product Data Structure Update
:Create Product Data Structure Request

:Employee of
third party

organization

:Configuration Data

:Product Data :Configuration Data

:Get Configuration Data

:Check Updates
:Store Update
:Get Configuration Data
:Get Update Receipt
:Modify Configuration
:Update Configuration

:Configuration Data,
:Request Confirmation,
:Update Confirmation

:Diagnostics,
:Configuration Data

:Available Configuration Selections
:Configuration Confirmation

«external system»
:MOL Data

Management
System

«external system»
:BOL Data

Management
System

«external system»
:Product

Configurator

:Product Data Structure

:Product Configuration

DRAWN BY

PARKKILA TOMMI, ISTO PEKKA
FILENAME

PROMONET_DCM_SYSTEM_CONTEXT_05.VSD
DATE

4/25/2012
REVISED

3/13/2013
PAGE

5 OF 8

ibd [block] Dynamic Configuration Management System Context [interaction points]

«system»
:Dynamic

Configuration
Management System

:DevConfPort

:MobileConfPort:ConfGenerationPort

:ProductDataPort

:InDeviceControlPort

:ConfPort

:ConfDataPort :ProductDataPort
Bidirectional port
for defining and
querying product
data structures
and product
configurations

Bidirectional port
for querying
product
configurations
and product
configuration
updates, and
uploading the
results of product
reconfigurations

Input port for
product data
structures

Output port for
product data
structures

Input port for
product
configurations

Bidirectional port
for product
configuration
parameters and
product
diagnostic data

Bidirectional port
for querying
product
configurations
and product
configuration
updates, and
uploading the
results of product
reconfigurations
done in the field

Bidirectional port
for querying and
modifying actual
configuration of a
particular product
and downloading
the results of
product
reconfiguration
done in the field

ibd [block] Dynamic Configuration Management System Context [actors with system ports]

DRAWN BY

PARKKILA TOMMI, ISTO PEKKA
FILENAME

PROMONET_DCM_SYSTEM_CONTEXT_05.VSD
DATE

4/25/2012
REVISED

3/13/2013
PAGE

6 OF 8

«system»
:Dynamic

Configuration
Management System

:DevConfPort

:MobileConfPort:ConfGenerationPort

:ProductDataPort

:InDeviceControlPort

:ConfPort

:ConfDataPort :ProductDataPort

:Local
Service

Employee

:Check Updates
:Store Update
:Get Configuration Data

:Get Configuration Data
:Get Update Receipt
:Modify Configuration
:Update Configuration

:Configuration Data
:Configuration Confirmation
:Configuration Update Receipt
:Parameters

:Configuration Update
:Configuration Data
:Update Confirmation

:Employee of
third party

organization

:Configuration Data

:Get Configuration Data

:Configuration Data

:Product Data Structure
:Configuration Data
:Service Log File

:Product Data

:Production
Employee

:New Product Data Request
:Product Data Structure Update
:Create Product Data Structure Request

:Available Configuration Selections
:Configuration Confirmation

:Aftermarket
Service Employee

:Configuration Data Request,
:Configuration Update Request
:Configuration Update
:New Configuration Task

:Configuration Data,
:Request Confirmation,
:Update Confirmation

«actor»
:Product Control

Electronics

:Configuration Data

:Diagnostics,
:Configuration Data

Can only preview
configuration data of
their device

«external system»
:BOL Data

Management
System

«external system»
:MOL Data

Management
System

«external system»
:Product

Configurator

:Product Configuration

:Product Data Structure

DRAWN BY

PARKKILA TOMMI, ISTO PEKKA
FILENAME

PROMONET_DCM_SYSTEM_CONTEXT_05.VSD
DATE

4/25/2012
REVISED

3/13/2013
PAGE

8 OF 8

ibd [block] Internal Structure of DCM System

«block»
Data Security and
Access Control

Service

«block»
BOL Data

Management System
Services

«block»
MOL Data

Management System
Services

«block»
Mobile Terminal User

Interface

«block»
Product Mobile

Communications

«block»
Product Local

Communications

«block»
Mobile Terminal

Local
Communicatons

«block»
BOL Data

Management System
Interface

«block»
MOL Data

Management System
Interface

«block»
Mobile Terminal
Communications

«block»
Product

Configuration
Generator

«block»
DCM Mobile

Communications

«block»
Mobile Terminal

Services
«block»

Product Services

«block»
Mobile Terminal

Storage

«block»
BOL DMS User

Interface

«block»
Terminal Services

«block»
Terminal Storage

«block»
Product Configurator

Interface

«block»
Terminal Services

User Interface

«block»
Product Configurator

User Interface

«block»
MOL DMS User

Interface

