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1 Introduction 

Computational product development, including methods such as computer-aided 

design (CAD), computer-aided manufacturing (CAM), and computer-aided engi-

neering (CAE), has become the mainstream methodology in modern product de-

velopment. The same trend has been visible also in research, where computational 

methods have gained popularity beside the traditional approach relying on theory 

and experimentations [1]. The reason for this is in many cases the cost savings 

that can be achieved with computational methods. Utilisation of computational 

methods enables decreasing the use of physical prototypes in the development 

process. This can reduce costs in two main sectors: first, the direct savings in de-

creasing the number of built prototypes due to savings in material and work, and 

second, indirect savings due to shortened design time. Another reason to use com-

putational methods is often forgotten to mention. Modelling and simulation are 

good means for the designers and experts in the product process to gain under-

standing about the product under development. The modelling phase helps de-

signers to understand and structure the product and realise the interactions be-

tween subsystems and components. Simulating the overall virtual product or its 

subsystems helps the designers to understand the dynamics and behaviour of the 

system. All this can be achieved without physical prototypes already in an early 

phase of the design process. The use of computational methods in product devel-

opment process helps the designers and experts to design the products according 

to the technical and project schedule requirements. 

 

This work does not promote any particular software application or an approach to 

compose a virtual testing system. The selection of the approach as well as the 

software applications depends on many things, e.g., the requirements for the de-

sign system in use and the use of the selected software applications for other pur-

poses. In addition, there can be corporate level policies for using some specific 

software packages that dictate the selection of tools. Due to this, there is no one 

optimal solution, but the selection has to be done based on the constraints of the 

engineering environment. 

1.1 Objectives 

The objective of this project task was to study and demonstrate a realistic ap-

proach for an industrial case to reuse existing mechanical design CAD model as 

the starting point and the template for mechanical system simulation using multi-

body system (MBS) simulation, and to use this MBS model as a virtual test plant 

for automation and control system testing. In the case of the demonstrator, the fo-

cus was in modelling, data exchange, and simulation process, and the details and 

realism of the subsystems, such as the control system, were not emphasised. The 

emphasis was on modelling and data exchange process so that it would be two-

directional when possible. In addition, the openness and standard compliance of 

the used computational tools and methods were considered as a desirable feature. 

 

The original plan for this project task was to utilise modelling and simulation 

tools for Modelica modelling language. While executing the research work, this 

plan had to be updated and a substituting approach had to be selected. This update 

of the plan explains the structure and contents of this report. In Section 2, the role 

of modelling and simulation in product process is discussed in general level. This 

discussion includes also modelling data exchange and data management. In addi-
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tion, the Modelica modelling language is introduced and Modelica-related tech-

nology, Functional Mock-up Interface (FMI), is discussed. In Section 3, the appli-

cation of simulation models for machine system control and automation system 

development and testing is discussed. Some of possible practical modelling and 

simulation approaches are introduced and their suitability for the case study in this 

task is discussed in brief. In Section 5, the selected approach and its implementa-

tion are described in detail. In Sections 5 and 6, the conclusions and summary of 

the overall project task are discussed respectively. 

2 About modelling and simulation in product process 

Complex mechanical products and systems, such as diesel engines and paper ma-

chines, involve subsystems from several engineering domains. These subsystems 

are often designed using domain-specific design methods and established engi-

neering tools. In addition, the design data presentation for different engineering 

domains differs from each other and it is important for an efficient design process 

to follow the domain-specific practices also in data presentation. The detailed de-

sign of the subsystems is often done by following the given interfaces and re-

quirements, and separate from other engineering domains. On one hand, this ap-

proach modularises the design and simplifies the parallel design process of the 

product. But on the other hand, this approach may lead to ignoring the possible in-

terference effects of the interconnected subsystems. This is especially a risk in 

systems that are dynamic in nature and which subsystems are strongly coupled. 

Examples of such systems are e.g. systems that have large accelerations of or 

large forces acting on their parts, systems in which structural flexibility has re-

markable influence on the system behaviour, or systems that have complex con-

trol systems that are controlling the dynamics of the system. 

 

System simulation is an efficient mean to master the interaction of subsystems and 

the overall dynamics and behaviour of the product. The modelling phase of the 

design process helps the designers and system engineers to structure the product, 

its subsystems, and components, and to understand the relations between different 

parts of the system. Simulation of the subsystems and the overall system provides 

valuable understanding about the interaction of the subsystems and about the 

overall dynamics of the product. Modelling and simulation also helps the design-

ers and system engineers to communicate with each other and to design the inter-

faces between the subsystems (Figure 1). All this can be done before any subsys-

tem has been built, either as a prototype or an end product. 

 

While in real products and systems the interfaces of subsystems are fixed and 

cannot be easily changed, in simulation models this is not the case. In simulation, 

especially if the modelling and simulation is done using one simulation tool, the 

subsystem boundaries are often flexible and depends on the preferences of the 

person who is doing the modelling. From the product design point of view it is 

important to try to implement the subsystem interfaces according to the real ones, 

even though it may increase the effort for creating the simulation model. Imple-

menting the same interfaces in the simulation model as in the real system with the 

same signals and connections not only simplifies the modularisation of the model-

ling and simulation work but also simulates the interfacing of the real subsystems. 
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Figure 1: Illustration of the dependencies of the different engineering domain in 

the design of a product. 

2.1 General and application-specific approach 

At the same time when the application of simulation in product process is increas-

ing, the concern on data preservability and usability in product life-cycle should 

be emphasised. More and more product information is stored into different kind of 

simulation and analysis models, usually in software application specific formats, 

but very little has been discussed about the usability of this data in later phases of 

the product life-cycle. The data preservability is briefly discussed in [2], in which 

a semantic data management approach for one narrow simulation domain is pre-

sented. One of the concepts to increase the preservability of the design and simu-

lation data is to separate the valuable data from the tools that are used for e.g. 

modelling and simulation (Figure 2). Practically this means that the product de-

sign data is stored in such a way that the semantics of the data (i.e. the meaning of 

the data and the used concepts) is known and thus the information the data con-

tains is explicit. This, on the other hand, means that the format for the data is ex-

plicitly defined and available. Using standardised data presentation, e.g. applying 

ISO 10303 (STEP) AP203 and AP214 standards [3, 4] file formats for geometry 

data, is an example of this. It is always beneficial for data preservability, if the da-

ta format is designed and maintained by a party that does not have commercial in-

terests involved. 

 

The present trend of the general data management approach seems to be that the 

individual software applications for modelling, simulation and post-processing are 

evolving faster than the development of common data models and standardisation 

of the data presentation. On the other hand, integration solutions for design and 

simulation data already exist which fluently integrate design tools (i.e. CAD 

tools), modelling tools (e.g. FEM pre-processing), simulation tools (numerical 

solvers), and post-processing tools (data analysis and data visualisation). The 

common feature of these systems is that they store the data in software system 

specific format and linking third party software applications with these systems 

has to be done by following this data format. The data format is specified and 

maintained by the integration system vendor who has the power to do changes to 

the format and the data interfaces. 
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Figure 2: Illustration of the concept of separating valuable product data from the 

tools to produce or modify it. 

The interest in data management and data modelling, and especially increased ac-

tivity in both research and industrial applications of the Semantic Web technolo-

gies, such as Resource Description Framework [5] (RDF) and Web Ontology 

Language [6] (OWL), have given more focus on the concept of product modelling 

[7]. The idea of product modelling is to collect all the relevant data into one prod-

uct model so that the data is linked (from necessary parts) and one piece of infor-

mation is managed only in one location. The concept of product modelling can be 

extended to simulation-based product process and simulation data, which eventu-

ally can enable the vision of separating the valuable product and design data from 

the software applications that are used for creating and modifying it. This vision 

requires still determined research and development work for the concepts and 

methods, and standardisation for the data models and formats. 

2.1.1 Product life-cycle data management 

The present trend and fast development of the integration of design tools into 

large design systems and the retardation of the standardisation of data presentation 

have already jeopardised the preservability of the data for the whole product life-

cycles. It is quite common that the life-cycle of a product in mechanical engineer-

ing is 20 years. If the product is in production for five years and the development 

phase before the production has taken three years, the overall life-cycle of the 

product is then 28 years. At the same time, the typical life-cycle for a design sys-

tem in mechanical engineering is about 5 years. Even the computer hardware and 

computer operating systems have shorter life-cycle than 28 years. The previous 

commonly used operating system in personal computers, Microsoft Windows 

XP
1
, was released on October 2001 and the expected end of support is on August 

2014 [8]. That gives less than 13 years for the life-cycle of this particular operat-

ing system. If the product design data is partially stored in a closed, binary format 

of some simulation tool or a design system, there are no guarantees that the data is 

usable during the last years of the products life-cycle. On the other hand, if the da-

ta was stored in an openly defined format, it is always possible to retrieve the in-

                                                 
1
 Microsoft XP: http://windows.microsoft.com/en-US/windows/products/windows-xp 
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formation out of the stored data, even though it may require considerable software 

implementation effort. 

 

In the area of system simulation, one approach to guarantee the preservability of 

the information stored in simulation and analysis models is to use an open simula-

tion language to describe the simulation models. There are several simulation lan-

guages for system simulation, such as Simscape
2
 and Modelica

3
. The Simscape 

language is designed by Mathworks and is a proprietary product. Modelica is the 

trademark of the Modelica Association, a non-profit organisation that develops 

and maintains the specification of the Modelica language. Both of these languages 

are modern object-oriented languages specifically design for the simulation of 

complex physical systems. The language specification is available for both of 

these languages, which means that the information can be retrieved out of the data 

even though there were no software applications for them available. In the case of 

Simscape, there are no other software tools at the moment that uses the language. 

For Modelica, there are several tools available and the use of the language seems 

to be increasing. 

2.2 Modelica simulation language 

Modelica is object-oriented language for modelling of physical systems. The lan-

guage supports all the common object-oriented language features, such as imple-

mentation encapsulation, inheritance and subtyping, and is thus well-suited for li-

brary development and model data exchange. The language specification is freely 

available and it is developed and maintained by the Modelica Association [9]. For 

the use of the Modelica language, a Modelica simulation environment is needed. 

The environment is used for numerically solving the equations that are defined for 

the system model in Modelica language. This is an important conceptual feature 

in Modelica; the language specification is maintained and developed by an organ-

isation that has no direct link to any commercial product that is using the specifi-

cation. In other words, the Modelica Association is a non-profit organisation and 

does not have any conflict of interests between the specification and commercial 

products. It should be noticed that many individual member organisations of the 

Modelica Association do have direct commercial dependency to the Modelica 

specification. The commercial independency of the language specification and the 

tool offering provides better conditions for steady long-term development and 

maintenance of the language. The investment on the software tools utilising Mod-

elica and the knowhow in the organisation using modelling and simulation e.g. in 

product development is safe. This is due to open and transparent development of 

the language and the availability of optional tools for the same simulation lan-

guage. 

 

The Modelica models are represented in textual, Modelica language form. The 

models and especially the component connections and dependencies are often vis-

ualised as a model graph. The graphical representation of the language is defined 

in the language specification, which unifies the look and feel of the modelling 

tools and environments. An example of the graphical representation of a simula-

tion model is shown in Figure 3. The same model in textual form is partially 

shown in Figure 4. 

                                                 
2
 Matworks Simscape: http://www.mathworks.se/products/simscape/index.html 

3
 Modelica Association: https://modelica.org/ 

http://www.mathworks.se/products/simscape/index.html
https://modelica.org/
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Figure 3: A screenshot of an example model opened (Modelica Standard Library, 

version) into OMEdit, the graphical modelling editor of the OpenModelica Envi-

ronment. 

 

Figure 4: An alternative view in the OMEdit to the same model is in Figure 3. 

There are several modelling and simulation tools and environments that utilise the 

Modelica language, such as [10]: 

­ Dymola, by Dassault Systèmes 

­ Vertex, by deltatheta UK Ltd. 

­ MOSILAB, by Fraunhofer FIRST 

­ SimulationX, by ITI GmbH 

­ LMS Imagine.Lab AMESim, by LMS 

­ MapleSim, by Maplesoft 

­ MathModelica, by Mathcore 
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­ OPTIMICA Studio for Physical Modeling, by Modelon Ab 

­ JModelica
4
, an open source Modelica environment 

­ OpenModelica
5
, an open source Modelica environment 

There are several Modelica environment implementations that work like a com-

piler for the Modelica language. The Modelica compiler in such an environment 

gets the model in Modelica language as the input and generates an executable as 

the output. The executable is a stand-alone software application that includes the 

description for the specific model together with the numerical solver needed for 

running the simulation. 

 

The Modelica Association provides a standard library, the Modelica Standard Li-

brary (MSL), associated with each specification version. The standard library in-

cludes modelling component libraries for many simulation domains, such as me-

chanical, control, and thermo-fluid systems. The top level sub-libraries of the 

Modelica Standard Library, version 3.2, are listed in Table 1. For the modelling of 

especially automation and control systems, the following sub-libraries are availa-

ble: 

­ Modelica Standard Library, package Modelica.Blocks, including Continu-

ous, Discrete, Logical, and Nonlinear; 

­ Modelica Standard Library, package Modelica.StateGraph; 

­ There is a new version of the StateGraph library, StateGraph2, which is 

available as a free library for Modelica; and 

­ ModelicaDEVS, a free library for discrete-event modelling using the DEVS 

formalism. 

In addition to the standard library, several free and commercial libraries are avail-

able for many areas of system simulation. 

Table 1: The top level sub-libraries of the Modelica Standard Library (MSL) ver-

sion 3.2. [10] 

Blocks Continuous, discrete and logical input/output blocks (Continuous, 

Discrete, Logical, Math, Nonlinear, Routing, Sources, Tables) 

Constants Mathematical and physical constants (such as pi, eps, h) 

Electrical Electric and electronic components (Analog, Digital, Machines, Mul-

tiPhase) 

Fluid Components to model 1-dimensional thermo-fluid flow in networks of 

vessels, pipes, fluid machines, valves, and fittings. 

Icons Icon definitions 

Magnetic.FluxTubes Components to model magnetic devices based on the magnetic flux 

tubes concepts. 

Math Mathematical functions for scalars and matrices (such as sin, cos, 

solve, eigenValues, singular values) 

Mechanics Mechanical components (Rotational, Translational, MultiBody) 

Media Media models for liquids and gases (about 1250 media, including high 

precision water model) 

SIunits SI-unit type definitions (such as Voltage and Torque) 

StateGraph Hierarchical state machines (similiar power as Statecharts) 

Thermal Thermal components (FluidHeatFlow, HeatTransfer) 

Utilities Utility functions especially for scripting (Files, Streams, Strings, 

System) 

                                                 
4
 JModelica project: http://www.jmodelica.org/ 

5
 OpenModelica project: https://www.openmodelica.org/ 

http://www.jmodelica.org/
https://www.openmodelica.org/
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ModelicaServices New top level package that shall contain functions and models to be 

used in the Modelica Standard Library that requires a tool specific 

implementation. 

2.2.1 Requirements-driven development and design, SysML and ModelicaML 

The development of the Modelica modelling language and the availability of 

modelling and simulation tools that are supporting Modelica have provided a 

fruitful ground for extending the application area of the language. ModelicaML
6
 is 

a UML/SysML extension to combine the benefits of having a graphical system 

modelling language and simulating the behaviour of the system. The language and 

the implemented tool support requirements management and simulation-based 

evaluation of the requirements using Modelica language and tools. Both the Mod-

elicaML language and the related tools are still under research and active devel-

opment. 

2.3 Functional Mock-up Interface version 1.0 

Using multiple tools in the modelling and simulation process introduces challeng-

es in reusing the simulation models or model components and co-using numerical 

solvers, i.e. connecting two or more simulation in runtime. These challenges are 

common for many simulation domains and have similar features. The Functional 

Mock-up Interface (FMI)
7
 defines a unified, software application independent in-

terface for the exchange of dynamic models and for co-simulation [16]. The FMI 

specification defines three use concepts: 

1) FMI for model exchange [12], 

2) FMI for co-simulation [13], and 

3) FMI for PLM [14]. 

In the first concept, FMI is used to exchange model components and/or submodels 

between software applications, and only one software application is used for run-

ning the simulation. In the second concept, FMI is used to define communication 

between two or more simulation applications (or stand-alone simulation compo-

nents) and two or more separate solver processes are run in parallel when model 

components are utilised. In the third concept, mechanisms and interfaces are de-

fined for managing FMI data and related data in product life-cycle management 

(PLM) systems. The first two of these three concepts are described in more detail 

in the following sections; the third concept is described only briefly. The devel-

opment of the FMI concept was started in the European Union funded MODEL-

ISAR project that was part of ITEA2 programme
8
. Several research institutes, 

software providers, and end user companies participated the effort that resulted in 

defining the FMI specification version 1.0 and providing the necessary supple-

mental components for the specification. The further development of FMI is or-

ganised through Modelica Association Projects (MAP)
9
, managed by the Modeli-

ca Association. At the time of writing this report, the current stable version of the 

FMI specification was 1.0. 

 

                                                 
6
 ModelicaML: https://openmodelica.org/index.php/home/tools/134 

7
 Functional Mockup Interface project: https://www.fmi-standard.org/ 

8
 ITEA2: http://www.itea2.org/ 

9
 Modelica Association Project: https://www.modelica.org/projects 

https://openmodelica.org/index.php/home/tools/134
https://www.fmi-standard.org/
http://www.itea2.org/
https://www.modelica.org/projects


 

RESEARCH REPORT VTT-R-08126-13 

11 (46) 

 

 

 

The FMI concept is based on the interface and behaviour definition between the 

modelling and simulation software applications and the model components, called 

Functional Mock-up Units (FMUs). An FMU is a ZIP-compressed file which con-

tains the component and its interface definitions in XML format, necessary func-

tional model data as C source code and/or in binary form as a dynamically 

loadable library files, and optional auxiliary files for e.g. documentation and 

providing a component model icon. The internal structure of an FMU ZIP-file is 

illustrated in Figure 5. The component model data in an FMU is accessed only 

through C function calls. Because the component model data can be given as a bi-

nary form library file, the FMUs can be used for sharing model components with-

out giving the model topology or details in easy-to-read form. This may be the 

case e.g. when subcontracting is used in product development. The data flow of an 

FMU is illustrated in Figure 6. 

 
// Structure of zip-file of an FMU 

modelDescription.xml // Description of model (required file) 

model.png   // Optional image file of model icon 

documentation  // Optional directory containing the model documentation 

 _main.html  // Entry point of the documentation 

 <other documentation files> 

sources   // Optional directory containing all C-sources 

 // all needed C-sources and C-header files to compile and link the model 

 // with exception of: fmiModelTypes.h and fmiModelFunctions.h 

binaries   // Optional directory containing the binaries 

 win32  // Optional binaries for 32-bit Windows 

  <modelIdentifier>.dll // DLL of the model interface implementation 

 

  // Optional object Libraries for a partictular compiler 

  VisualStudio8 // Binaries for 32-bit Windows generated with 

    // Microsoft Visual Studio 8 (2005) 

   <modelIdentifier>.lib // Binary libraries 

  gcc3.1 // Binaries for gcc 3.1. 

   ... 

 win64  // Optional binaries for 64-bit Windows 

 ... 

 linux32 // Optional binaries for 32-bit Linux 

 ... 

 linux64 // Optional binaries for 64-bit Linux 

 ... 

resources  // Optional resources needed by the model 

 < data in model specific files which will be read during initialization > 

Figure 5: The structure of an FMU ZIP-compressed file. [12] 

The FMI concept and specification are software vendor and application independ-

ent. This is beneficial for the end users, because it encourages the software ven-

dors to support the specification which increases the number of supporting soft-

ware applications. A list of software applications that support the FMI specifica-

tion is kept updated at the FMI website
10

. The current list of FMI capable software 

applications is given in Appendix A. 

2.3.1 FMI for model exchange 

The specification for FMI for model exchange [12] defines the concrete means to 

pack a model or a modelling component data into an interchangeable package so 

that the models and/or model components can be used as model components in 

other simulation models. The concept of how to use FMI for model exchange is il-

lustrated in Figure 7. FMI enables models, such as control system and controller 

models, to be exported from one modelling and simulation tool and to be imported 

                                                 
10

 Tools supporting FMI: https://www.fmi-standard.org/tools 

https://www.fmi-standard.org/tools
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into another and used as a submodel component. Any tool that fulfils the FMI 

specification can be used to produce FMU components or to utilise the FMUs in 

simulation. 

 

In a FMU component, the model equations are presented either as C source code 

(which have to be compiled before running the final simulation) or dynamically 

linkable library component, or a combination of these two. In the target simulation 

environment, presented in red colour in Figure 7, the submodels are seen as 

“black box” components and the implementation, structure and hierarchy of the 

original model are hidden. The FMU component does not include any algorithms 

needed for solving the component’s set of equations, but the numerical solving is 

done using the target system’s numerical solvers. It is possible to generate the C 

source code for the overall system model containing FMU components, if the C 

source code is used in the FMU for defining the simulation submodel. Thus, mod-

els including FMU components can be used for producing executable code for 

controllers and embedded systems. Different use scenarios for FMI for model ex-

change are discussed in more detail in the FMI for model exchange specification 

document [12]. 

 

Figure 6: Illustration of FMU data flow. [12] 
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Figure 7: The concept of using FMI components for model or sub-model ex-

change between different computational software applications. 

2.3.2 FMI for co-simulation 

The specification for FMI for co-simulation [13] defines the means and interfaces 

for connecting two or more separate simulation tools with their own models to 

form one simulation. The specification defines two operating modes for FMUs, 

stand-alone and tool co-simulation: 

­ FMI for co-simulation stand-alone (this is called code generation in [13]); in 

this mode, the FMI slave dll-component includes a solver for the slave mod-

el, thus the FMU is a stand-alone and does not require the original software 

application to be present for execution (see Figure 8). 

­ FMI co-simulation tool coupling (this is called tool coupling in [13]); in this 

mode, the slave model is solved with the original software application solver 

and a specific FMI wrapper is used in between the simulation master and 

slave processes (see Figure 9). 

In the FMI co-simulation, one simulation tool is the master of the simulation and 

the rest of the simulation system follows it. The specification allows the FMUs to 

be nested, i.e. a slave of the upper simulation layer can be the master for the lower 

layer. This concept of using FMI enables connected simulation of different do-

mains in convenient manner, in which e.g. multibody system simulation is con-

nected with hydraulic and control system simulation, and the different engineering 

domain are modelled separately. This kind of a case is described later in this re-

port in section 4.2 Complementary approach with MSC Adams and Simulink, but 

in that case FMI has not been used for the communication of the simulation tools. 

This was because the tools that were available and were selected for the demon-

stration case were not capable for FMI-based simulation. 
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Figure 8: Illustration of the stand-alone mode of FMI co-simulation. In this mode, 

the FMU contains both the model and the necessary solver routines to simulate 

the model. 

 

Figure 9: Illustration of the tool mode of FMI co-simulation. In this mode, the 

FMU contains necessary definitions for the communication between the master 

process (on the left) and the slave process (on the right). On the slave side, the 

original simulation tool is needed for running the simulation. 

2.3.3 FMI for PLM 

The specification for FMI for PLM [14] defines the communication and data ex-

change practices and details needed for managing FMUs in PLM systems, such as 

Dassault Systèmes ENOVIA, and to exchange the FMUs between the PLM sys-

tem and the modelling and simulation applications. The concept is illustrated in 

Figure 10. 
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Figure 10: Illustration of the use of FMI together with a PLM system. 

2.4 New features in FMI 2.0 

The following description of the FMI 2.0 specification is based on the current re-

lease of the official FMI documentation [15]. The intention is to point out the 

most significant changes and improvements to FMI version 1.0 and describe what 

these changes enable in practice. FMI 1.0 was released 2010, followed by number 

of beta versions of FMI 2.0. The current version, Release Candidate 1, was pub-

lished in October 2013 and it will be upgraded into FMI 2.0 after prototype im-

plementations for testing are available. One major conceptual difference in FMI 

version 2.0 compared to version 1.0 is the merged Model Exchange and Co-

Simulation standards. This is also emphasised in the description of FMU by dis-

tinguishing Model Exchange and Co-Simulation only by stating the latter to in-

clude its own solver in the FMU. 

 

The released specification is mainly intended for software developers using it for 

implementing FMI functionality for their software. For example communication 

and function descriptions are given in detail. However, upper level descriptions 

for end-users can be found in many cases. Performance issues have been consid-

ered when designing the new specification, to serve the intention that FMI will al-

so be used in microcontrollers. With large simulation models, performance issues 

can also arise, although the simulations are run on efficient computers. 

 

Several changes have been made from FMI version 1.0 to version 2.0. Many of 

them are ticketed as improvements that have been wished by users. In addition, 

there are some new concepts introduced. The drawback is loss of backwards com-

patibility to FMI 1.0. Most of the new features are optional, meaning they are not 

mandatory to be implemented into a tool. This is handled by using capability flags 

in XML file that tell if the exported FMU is using such an optional feature. The 

most essential changes are analysed in the following chapters. Compact descrip-

tion of FMI version 2.0 changes is also available as a conference paper from 9th 

International Modelica Conference held in September 2012 [16]. 
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2.4.1 Merging the documents, schema and header files of Model Exchange and 
Co-Simulation 

In FMI 1.0, there were individual documents for both Model Exchange and Co-

Simulation. Now with merged documentation, FMI concept is easier to under-

stand than before. The driving factor for merging the documentation, however, 

has been combining the overlapping parts of the documents. The working mecha-

nisms in Model Exchange and Co-Simulation have remained untouched in prac-

tice, making the descriptions of these two in the previous FMI 1.0 section of this 

document still valid for FMI version 2.0. In general, the documentation has im-

proved mostly because of better diagrams. 

 

The structure and content of a text file (XML file) that includes all the static in-

formation of an FMU is described in the schema files (Figure 11). The XML file 

contains a model description that consists of different variables and attributes that 

have a certain value. In the schema files, required data types, default values and 

value restrictions of these variables are defined. The actual meaning of these vari-

ables and attributes are defined in the FMI specification documentation. In FMI 

version 2.0, there are Common Schema files for Model Exchange and Co-

Simulation, but individual fields still exist for both. For example, Co-Simulation 

has an attribute canHandleVariableCommunicationStepSize to describe if the 

slave is capable of handling variable communication step size. 

 

Figure 11: The complete XML schema definition of the FMI version 2.0 [15]. 

 

An application programming interface (API) defines the interface to execute func-

tions of an FMU from a program using the FMU. In FMI version 2.0, there is a 

Common API for Model Exchange and Co-Simulation, but user defined functions 
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still exist for both. In practice, the API is implemented using C programming lan-

guage conventions. Common header files include for example all type definitions 

and common function prototypes but also the specific functions for Model Ex-

change and Co-Simulation. These header files form the core of the whole FMI 

concept. A great part of the specification documentation discusses about the con-

tent of these files. 

2.4.2 New functionalities and flexibility of use 

Discrete-time states in the FMU can be optionally defined. This allows for exam-

ple to linearize discrete-time systems and use the linearized model in linear analy-

sis and synthesis methods. Furthermore, such an FMU may be linearized in every 

event instant and then the linear model can be used in a model-based controller, or 

e.g. an extended Kalman filter for nonlinear state estimation. According to 

Blochwitz et al. [16], the nonlinear model-based control can be implemented by 

getting the FMU state just before the initialisation and in every sample period, set-

ting new continuous states from an observer, and initialising and getting the FMU 

state after initialisation. From this state, it is required to perform many simulations 

that are restarted after the initialisation with new input signals proposed by the op-

timiser. The nonlinear Kalman filter is achieved by getting the FMU state just be-

fore initialisation and in every sample period, setting new continuous states from 

the Kalman filter algorithm based on measured values, integrating to the next 

sample instant, and inquiring the predicted continuous states that are used in the 

Kalman filter algorithm as the basis to set new continuous states [16]. 

 

The absolute path to the FMU resource directory is present now also in Model 

Exchange, in order that the FMU can read all of its resources independently of the 

“current directory” of the simulation environment where the FMU is imported. 

For an FMU, it is optional to have any extra resources, but if it does have, they 

need to be accessible. The resources needed by the FMU, such as maps and tables, 

are data in the FMU specific files which will be read during initialisation. In addi-

tion, more folders can be added under resources (tool or model specific). In order 

for the FMU to access these resource files, the resource directory must be availa-

ble in unzipped form and the absolute path to this directory must be reported via 

argument fmuResourceLocation via fmiInstantiate. Now that the simulation envi-

ronment can access the resources outside its “current directory”, it can operate as 

a working hierarchy master which picks up the FMUs generated by the working 

hierarchy slave which may not have access to master’s “current directory”. For 

example in scenario where simulation environment is a tester that tests FMUs 

produced by the slave, it is possible for the slave to generate test items and pre-

pare them for testing independently of the master. 

 

In FMI version 2.0 compared to version 1.0, variables exposed by the FMU are 

categorised in different way by attributes “causality” and “variability”. Attribute 

“causality” is an enumeration that defines the causality of the variable. Allowed 

values are parameter, input, output, and local. For value “parameter” it applies: an 

independent variable that must be constant during simulation. When “input”, the 

variable value can be provided from another model. When “output”, the variable 

value can be used by another model. For value “local”, it applies that the variable 

is calculated from other variables and it is not allowed to use the variable value in 

another model. Attribute “variability” is an enumeration that defines the time de-

pendency of the variable, in other words it defines the time instants when a varia-
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ble can change its value. Allowed values are constant, fixed, tunable, discrete and 

continuous. When “constant”, the value of the variable does not change. When 

“fixed”, the value of the variable is fixed after initialization. For value “tunable” it 

applies that the value of the variable is constant between externally triggered 

events due to changing variables. In this case, the attribute “causality” needs to be 

“parameter” or “input”. For value “discrete” it applies that the value of the varia-

ble is constant between internal time-, state-, and step-events defined implicitly in 

the FMU. For value “continuous”, no restrictions exist on value changes. 

 

The new value, “tunable”, for variability introduced in FMI version 2.0 allows a 

modelling environment to expose independent parameters that can be manually 

“tuned” during simulation. “Tuning a parameter” during a simulation does not 

mean to “change the parameter online” during simulation. Instead, this means: 1) 

Stop the simulation at an event instant; 2) Change the values of the tunable pa-

rameters; 3) Compute all parameters that depend on the tunable parameters; and 

4) Resume the simulation using as initial values the current values of all variables 

and the new values of the parameters. Changing the parameter values of an FMU 

during simulation is possible using specific Set-functions. These parameters 

should be defined beforehand as “tunable” variables. Therefore, the software do-

ing the exporting of an FMU should have an option for the user to enable tunabil-

ity for desired parameters. For inputs, changing parameter values is possible with-

out tunability attribute. Using the tunability, parameter values of an FMU can be 

changed outside the FMU. For example in the Model Exchange mode, the simula-

tion environment can change the values of an imported FMU model obviating the 

change of these parameters (in the software application that was used for creating 

the model) and exporting and importing it again. With hierarchical FMUs, all var-

iables in an external FMU that shall be visible and/or accessible from the envi-

ronment need to be “exposed”, in other words in the root-level FMU a corre-

sponding variable needs to be defined and in the generated code this variable must 

be assigned to the corresponding variable of the external FMU. As a result, only 

variables from the top most FMU are visible or accessible from the environment 

where the FMU is called. 

2.4.3 Performance and reliability upgrades 

Connected signals can be checked to have match in units. In addition, the variable 

values can be changed to match by performing unit conversion for same physical 

quantity. This is enabled with the improved unit definitions. In FMI version 2.0, 

the unit names are expressed by using the seven SI base units together with SI de-

rived unit “rad”, instead of using standardized unit names which has been prob-

lematic in FMI version 1.0. 

 

An FMU has an internal state consisting of all values that are needed to continue a 

simulation. This internal state consists of the values of the continuous states, dis-

crete states, iteration variables, parameter values, input values, file identifiers, and 

FMU internal status information. The complete FMU state can be saved, restored, 

and serialised to a byte vector that can also be stored into a file. As a result, a sim-

ulation can be restarted from a saved FMU state. This applies for both Model Ex-

change and for Co-Simulation. Rejecting steps  in variable step-size Co-

Simulation master algorithms, is now performed by saving and restoring the state 

instead of the less powerful method of the FMI version 1.0. 
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Support for more sophisticated Co-Simulation master algorithms (e.g. variable 

step sizes, higher order signal extrapolation etc.) that control the data exchange 

between the subsystems and the synchronisation of the simulation solvers of the 

slaves is added. The master algorithm itself is not part of the FMI standard. 

 

In FMI version 2.0, the dependency information of the outputs is stored in the 

XML description. This can be used for the detection of algebraic loops when 

FMUs are connected with other parts of the model. Artificial or “real” algebraic 

loops over connected FMUs can be handled in an efficient way also in Initializa-

tion and Event Mode (discrete time). In FMI version 1.0, algebraic loops in Ini-

tialization and Event Mode could not be handled. 

 

Directional derivatives can be computed for derivatives of continuous-time states, 

for discrete-time states, and for outputs. This is useful when connecting FMUs 

and the partial derivatives of the connected FMU shall be computed. If the export-

ed FMU performs this computation analytically, then all numerical algorithms 

based on these partial derivatives (for example the numerical integration method 

or nonlinear algebraic solvers) are more efficient and more reliable. 

2.4.4 Future of FMI usage and progress of the simulation tools 

In addition to the mentioned upgrades, a number of minor improvements have 

been done to increase the efficiency of the FMI standard. In spite of being rela-

tively young, the FMI standard has enjoined attention of many simulation soft-

ware designers and users. This has helped to gather extensive amount of user ex-

perience for the basis of the development. 

 

FMI is used in many companies with good results, which drives the simulation 

software vendors to include FMI in their products. If they do not, their software 

will be lagging behind from the general progress of simulation tools. The support 

for FMI version 1.0 is already available for many simulation software applications 

although the standard has been out from year 2010. This is the result of the de-

mand from the big companies to exploit FMI in their product design and produc-

tion. 

3 Virtual automation test environment 

An ideal work process and data flow for the mechanical system simulation model 

generation for automation testing is illustrated in Figure 12. In this description, a 

Modelica tool (such as Dymola) is assumed for modelling and simulation for the 

mechanical system and Simulink for the automation and control system. The envi-

ronment for the automation virtual testing is composed of two main modules: the 

mechanical system (plant) and the automation system (control). The process for 

creating the mechanical system simulation model begins from the design model of 

the mechanical system (CAD model, the upper left corner rectangle in the figure). 

This model contains the necessary information about the individual parts of the 

system (geometry, mass, centre of mass and mass inertia) and the assembly in-

formation (location and orientation of the parts, and location, orientation, and the 

type of the joints connecting the parts). The design model of the mechanical sys-

tem is obtained from the design system, such as CATIA. In the next phase, the as-

sembly model is complemented with the actuators, sensors, and elastic compo-
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nents (springs and dampers) to form the multibody system model of the mechani-

cal system (the green rectangle in the centre of the figure). In addition, the inter-

face for the automation system interaction is designed and implemented. The in-

terface contains the plant outputs for sensor signals (measurement signals of the 

mechanical system) and the plant inputs for controlling the actuators. Existing li-

brary components are used in this phase, when possible (the dash-lined rectangle 

on the left side of the figure). Newly defined components (e.g. new actuators) are 

added to the component library for later use. In the final phase, the mechanical 

system simulation model is connected with the automation system simulation 

model (on the lower left corner of the figure), and the overall system is ready to 

be used for automation system testing (on the lower right corner of the figure). 

 

Figure 12: An ideal work process and data flow for the demonstration. 

The creation of the environment for the automation system virtual testing is 

straight forward, when the overall design of the system is followed and the simu-

lation models for both the mechanical system and the automation system are cre-

ated following good system modelling principles. This means that the physics and 

logics of the systems are modelled correctly and the implementation of compo-

nents, such as measurements in the mechanical system, are realistic. The difficulty 

of managing the quality of a simulation model is typically strongly related to the 

complexity of the model. Finding modelling and logical errors from a large and 

complex model is demanding due to the large number of model components, but 

also because the symptoms of a faulty model may not be obvious. It is always a 

good practice to test each modelled subsystem separately to minimise the risk of 
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modelling or logical errors, before combining the overall simulation model. The 

importance of good documentation cannot be over emphasised. Following strictly 

the system design in the model implementation minimises the need for parallel 

model documentation. 

 

Application of the virtual environment for the automation system testing in real 

industrial product process is challenging. In this work, the actual application of 

the virtual testing environment is not demonstrated. The selected scenario for the 

use of the environment is for testing the designed automation system. In principle, 

using simulation in product development process for testing and validating the de-

sign is not the optimal approach. In the design process, the investment on the vir-

tual prototype for validating the design does not feed any added information back 

to the design process during the early design phase but after most of the design 

work has already been done. This means, the valuable information about the plant 

and the automation system interaction cannot be exploited in the design process. 

If a design flaw is discovered in virtual testing, the design work has to take steps 

backwards to correct the issue. If the simulation was used already during the de-

sign process, this step could have probably been omitted. The information feed-

back in different design loops, either in form of useable knowledge or more con-

crete in form of reusable design or modelling components, is illustrated with grey 

arrows in Figure 12. 

3.1 Target system and its subsystems 

A relatively simple mechanism was selected for the target system of the automa-

tion and control system virtual test environment. The target system is a partial 

pick-up mechanism in the Metso Paper OptiPress system (Figure 13). The mod-

elled mechanism does not follow exactly the real system but some details of the 

mechanism have been modified and some parts have been left out. The objective 

of this study was to demonstrate the process of using an existing CAD model as 

the starting point for building a virtual test environment for system automation 

and control. A CAD model image of the modelled and simulated target system is 

presented in Figure 14. 

 

Figure 13: The Metso OptiPress system [17]. 
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In the target system, the pick-up function gets the paper web from the forming 

section of the paper machine and feeds it through the press section and later 

through the drying section. In a real system, the control and automation of the 

mechanism has many functions and critical timings, but they are not included into 

this demonstration. In the demonstration case, only a simple lowering and lifting 

operation of the pick-up blade was modelled and simulated. 

 

The modelled and simulated mechanism consists of frame structures (the grey 

parts in both ends of the system in Figure 14), levers (the green parts in Figure 

14), hydraulic cylinders (the red and orange parts in Figure 14), and a pick-up 

blade (the grey part in the middle of the system). The hydraulic cylinders operate 

the levers that turn around their pivot joint (in the right lower corner of the lever 

in Figure 14) and make the pick-up blade to move down and up. The hydraulic 

cylinders are driven by the hydraulic subsystem, which is controlled by the con-

trol subsystem. The dependencies of the target system’s subsystems are illustrated 

in Figure 15. 

 

Figure 14: A CAD image of the target system, a pick-up mechanism of the Metso 

OptiPress system. In the picture, the side plate of the frame structure has been 

removed. 
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Figure 15: Target system’s subsystems and their dependencies. 

3.2 Approaches for the implementation 

The necessary tool chain and the process described in a principle level in the pre-

vious section can be implemented with several different kinds of strategies and 

software applications. A fully integrated design and simulation environment can 

be applied, in which the data flow between different modelling and simulation 

tools is often seamless. The drawback in this approach can be the availability of 

the integration of some special software application components and the number 

of options for each modelling and simulation purpose. Another strategy is to com-

pose the overall system using separate tools for each phase in the process. This 

approach offers the flexibility of selecting the most appropriate tools for each 

phase, but often requires additional work for connecting the tools in the process to 

enable seamless data flow between different software applications. The following 

optional solutions for the implementation were considered: 

­ CATIA V6 environment with mechanical design and the systems engineer-

ing modules; this approach provides in principle good software component 

integration and data flow in the modelling and simulation process, but the 

development of the required software features are still in progress at the time 

of writing this report, 

­ CATIA V5 together with LMS Virtual.Lab Motion software package; this 

approach is based on the previous version of the CATIA software applica-

tion and a third-party simulation tool, LMS Virtual.Lab Motion, which is 

implemented on top of CATIA V5 software platform, 

­ A general CAD software application with a general MBS software applica-

tion and a general hydraulic and control system simulation software applica-

tion; this approach provides flexibility in individual domain software appli-

cation selection, but may introduce challenges in data exchange, 

­ A CAD software application with Mathworks Simscape/SimMechanics, 

Simscape/SimHydraulics and Simulink; this approach limits the number of 

different software application into two and would provide good software in-

tegration between different simulation domains. 

These options are discussed in more detail below. 

3.2.1 CATIA V6 environment 

There are numerous commercial tools that can be used for creating a virtual auto-

mation testing environment. The Dassault Systèmes V6 (version 6) architecture, 

3DEXPERIENCE, consists of the CATIA V6 design environment, ENOVIA data 

Mechanical subsystem

Control subsystemHydraulic subsystem

Measurements

Control signal

Mechanism actuation
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management system, DELMIA manufacturing modelling and simulation envi-

ronment, SIMULIA detailed physics simulation environment, and a set of other 

software components. ENOVIA provides the PLM functionality for the architec-

ture and can be seen as the backbone of the architecture together with the V6 plat-

form. The SIMULIA environment is built around the Abaqus finite element meth-

od software package. Abaqus can be used for structural analysis, computational 

fluid dynamics, and other multi-physics applications. 

 

CATIA
11

 V6 design environment offers a solution for fully integrated data flow 

and unified user interface for all the modelling and simulation modules. The envi-

ronment has tools for e.g. part design (design of mechanical components), assem-

bly management, and system simulation. The system simulation module, based on 

the Dymola
12

 system modelling and simulation package, has an interface to some 

external simulation tools, such as Matlab/Simulink
13

, and it can be used together 

with hardware-in-the-loop tools, such as xPC Target
14

 and dSPACE
15

. 

 

International Organization for Standardization standard ISO/IEC 15288 [22] de-

fines concepts and general processes for systems engineering (SE) and system 

life-cycle process. A more verbose and detailed description of the SE process is 

given by International Council on Systems Engineering (INCOSE) in its Systems 

Engineering Handbook [23]. The CATIA V6 design environment follows the 

concept of the SE process. The platform has tools for definition and linking of re-

quirements (requirement engineering), design and definition of system functional 

architecture, design and definition of system logical architecture, and design of 

the physical properties of the product (CAD). 

 

From the above described options, the CATIA V6 environment was originally se-

lected for this demonstration. This was due to the long-term design objectives of 

the CATIA V6 environment, which are planned to support simulation-based 

product development and also the simulation-based product life-cycle process. At 

the time of implementing the demonstration system, the available version of the 

CATIA V6 software was 2011x. 

3.2.2 CATIA V5 and LMS Virtual.Lab Motion 

The previous version of the Dassault Systèmes design environment, CATIA V5 

(version 5), offers another approach for an integrated design and simulation envi-

ronment. A third party simulation software package, LMS Virtual.Lab
16

, is built 

on the CATIA V5 software platform. The Virtual.Lab modelling applications uti-

lise the part and assembly modelling capabilities of the CATIA environment, and 

thus fully integrate with the CATIA V5 environment and its data flow. LMS Vir-

tual.Lab Motion, the module for simulating the dynamics of mechanical systems, 

can be used for co-simulation with external simulation packages, such as LMS 

Imagine.Lab AMESim
17

 and Matlab/Simulink. LMS Virtual.Lab has software in-

terfaces to some other CAD packages, such as Pro/Engineer, CATIA V4, and Au-

                                                 
11

 Dassault Systèmes, CATIA: http://www.3ds.com/products/catia 
12

 Dassault Systèmes, Dymola: http://www.3ds.com/products/catia/portfolio/dymola 
13

 Matworks, Simulink: http://www.mathworks.se/products/simulink/index.html 
14

 Matworks, xPC Target: http://www.mathworks.se/products/xpctarget/index.html 
15

 dSPACE software: http://www.dspaceinc.com/en/inc/home/products/systems.cfm 
16

 LMS Virtual.Lab software: http://www.lmsintl.com/simulation/virtuallab 
17

 LMS Imagine.Lab software: http://www.lmsintl.com/imagine-amesim-1-d-multi-domain-system-simulation 

http://www.3ds.com/products/catia
http://www.3ds.com/products/catia/portfolio/dymola
http://www.mathworks.se/products/simulink/index.html
http://www.mathworks.se/products/xpctarget/index.html
http://www.dspaceinc.com/en/inc/home/products/systems.cfm
http://www.lmsintl.com/simulation/virtuallab
http://www.lmsintl.com/imagine-amesim-1-d-multi-domain-system-simulation
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todesk Inventor, and CAD models in formats, such as STEP, IGES, and ParaSol-

id, can be read into the system. 

 

The simulation environment approach of LMS Virtual.Lab is tightly integrated 

with the CATIA V5 platform. The geometry modelling features rely on CATIA 

3D modelling features and the system has excellent and seamless data flow from 

CATIA V5 CAD modules. On the other hand, the openness of the solution, ability 

to connect third party and in-house software applications to the process, and ex-

tensibility of the modelling and simulation capabilities are an open question. 

3.2.3 General CAD and general MBS 

Many multibody system simulation software packages can read CAD models in 

either standard formats, such as STEP (ISO-10303, AP203 and AP214) and IGES, 

or in some proprietary geometry formats, such as ParaSolid and ACIS. This ap-

proach enables flexible selection of the software applications in the process. The 

challenge in this approach is the implementation of the geometry import of a CAD 

model into the MBS software application. If the MBS software application does 

not support full solid geometry import, but converts the geometry into a faceted 

surface representation, the geometrical features, such as centre points of spheres 

and centre lines of cylinders, are not available for the modelling in the MBS soft-

ware application. This may become a problem, if the mechanism is complex. In 

addition, if the solid geometry import is not successful due to inaccuracies in the 

geometry surface representation, the imported part does not form a solid (i.e. the 

volume defined by the surface facets is not closed) and the mass properties for the 

part cannot be defined based on the geometry and given density. 

 

There are available several commercial, general-purpose multibody system simu-

lation packages. Often mentioned software applications are: 

­ LMS Virtual.Lab Motion, 

­ MSC Adams, 

­ Recurdyn, and 

­ Simpack. 

The approach described above was selected for the implementation of the demon-

strator. 

3.2.4 A CAD software and MatWorks Simscape/SimMechanics 

MathWorks SimMechanics is a modelling library in the Simscape modelling envi-

ronment that is designed for three-dimensional mechanical system simulation. The 

Simscape
18

 language itself is similar to Modelica simulation language. The lan-

guage is based on the MATLAB language and extends the Simulink environment 

with modelling libraries especially for physical systems. The Simscape language 

is designed and maintained by MathWorks Inc. The Simscape basic library con-

tains components for one-dimensional translational and rotational mechanics, 

electrical systems, hydraulic components and systems, and thermal systems. There 

are extended libraries for simulation of  

­ multibody system (SimMechanics) 

­ drivelines (SimDrivelines) 

                                                 
18

 MathWorks Simscape: http://www.mathworks.se/products/simscape/ 

http://www.mathworks.se/products/simscape/
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­ electronic and electromechanical systems (SimElectronics) 

­ hydraulic systems (SimHydraulics) 

­ electrical power systems (SimPowerSystems) 

The Simscape models and components can be mixed with components and mod-

els in Simulink and MATLAB. 

 

The most relevant package of Simscape for this work is the SimMechanics that 

provides functionality for multibody system simulation. There is an additional 

product, SimMechanics Link, that enables data exchange between Pro/Engineer, 

SolidWorks, and Autodesk Invertor CAD systems and Simscape. 

4  Implementation 

4.1 Original approach with CATIA V6 and Modelica 

The CATIA V6 platform is a large and complex software package and e.g. the in-

stallation, including the software documentation, on the Windows 7 64-bit plat-

form requires about 4.7 GB of disk space. In addition, the tested version of the 

software was relatively early in the latest CATIA V6 series and many features of 

the system were clearly still under development and some important features were 

missing. Also, the stability and performance of the system needed some im-

provement. Due to all these, learning to use the system in intended way was a big 

challenge and it is obvious that some of the negative user experiences are because 

of the familiarising process was still in progress. 

 

In the tested version of CATIA V6, the integration of the Modelica-based system 

simulation module, Dynamic Behavior Modeling (DBM, Figure 16), was still par-

tial. This system module was one of the most important ones for this project task, 

because it was meant to be used for modelling both the dynamics of the mechani-

cal system and the connected control system. One of the most limiting features 

was that the model data that existed in the CAD modelling modules of the CATIA 

system, Mechanical Design (MDE, Figure 17), was not available for system mod-

elling. In the case of mechanical system modelling, this was especially problemat-

ic, because for MBS simulation the fundamental information for the system is the 

mass, centre of mass location and mass inertia tensor for the system parts (i.e. me-

chanical system bodies). In most of the commercial MBS software applications 

this information is provided automatically based on the geometry and density in-

formation of the parts. Another feature for which the system geometry is used is 

to define the location and orientations of system parts, joints and forces. In the 

CATIA V6 DBM module, all these definitions had to be done manually copying 

the information from the MDE module. 
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Figure 16: An example of an attempt to create the MBS model of the cutter system 

in the CATIA V6 Dynamic Behavior Modeling module. 

As the MBS modelling is highly related to the geometry of the mechanical sys-

tem, 3D modelling of the mechanism is the convenient approach. 2D graph-based 

modelling view gives explicit and clear information about the topology of the sys-

tem and the connectivity of its components, but does not give any feedback about 

the location and orientation of the components. 2D and 3D views complete each 

other and increase productivity in modelling and simulation process, but typically 

most of the modelling work is done in 3D. In the CATIA V6 DBM module, the 

modelling of a 3D mechanism is done using 2D graph-based user interface. 

 

Figure 17: The CAD model of the cutter system in the CATIA V6 Mechanical De-

sign module. 

4.2 Complementary approach with MSC Adams and Simulink 

Due to limited resources in this project for the modelling and simulation, the vir-

tual test environment of the mechanical system for control and automation testing 
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was decided to be implemented using the combination of MSC Adams and 

Matlab/Simulink software applications. The main reason for this selection of the 

software was that the author had previous experience on these software applica-

tions and their application on similar simulation tasks. It is important to notice that 

the implemented modelling and simulation process does not demonstrate the bidi-

rectional data flow and iterative nature of the process as illustrated in Figure 12. 

The MSC Adams software, used for the mechanical system simulation, can utilise 

the 3D solid geometry that was available from the CAD system, but there is no di-

rect link from the MBS simulation back to the CAD design system. This means, if 

there is need for modifications in the mechanical system design, the model has to 

be updated manually and the change requests from the mechanical system simula-

tion have to be exchanged by other means. 

4.2.1 Mechanical system of the test case 

The work for implementing the virtual test environment started with writing out 

the existing CAD model from the CATIA V6 environment in STEP format 

(ISO 10303-21, AP203). The STEP model was then converted into commercial 

Parasolid format (format version 19.0). The MSC Adams View pre-processing 

software application uses natively Parasolid as its geometry format. With this 

format, it was possible to import the whole system assembly at once and the parts 

of the assembly retain their original mass properties. The model did not save its 

assembly hierarchy in the conversion process, but the whole assembly was flat-

tened when imported into MSC Adams View pre-processor. The imported CAD 

model assembly in MSC Adams View processor is shown in Figure 18 with par-

tial model part list visible on the left side and mass properties for one part shown 

in the Information window. 

 

Figure 18: The assembly of the test case imported into MSC Adams using Para-

solid format; the mass properties of one part in the assembly are shown. 

The next phase in the modelling process was to rebuild the assembly and join in-

dividual parts to form rigid MBS bodies suitable for the simulation of the mecha-

nism (Figure 19). The motivation for doing this is computational. In the multibody 

system formulation used in the MSC Adams software application, each multibody 

system free part (body) introduces 18 equations into the set of equations to be 
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solved. On the other hand, each multibody system part may contain several geom-

etries (e.g. assembly components) that are treated as one rigid body in the simula-

tion. In the selected modelling approach for the demonstration case there are 11 

individual rigid moving parts in the system and the system ground part. 

 

Figure 19: The parts of the CAD model have been joined to form MBS model bod-

ies (the opened list on the left side of the screen view). 

After the suitable bodies for the MBS model were formed, the model was ready 

for defining the joints, actuators (forces representing hydraulic cylinders and 

dampers), and other modelling components. Due to the use of Parasolid solid ge-

ometry, the locating of the model components was straightforward. The locations 

and orientations of the model components could be defined using geometry fea-

tures, such as centre points and corners. In Figure 20 is shown the location of the 

joint for the piston end of one hydraulic cylinder (highlighted both in the geome-

try view and in the component browse list on the left). In this case, a hooked joint 

(cardan joint) was used to prevent the cylinder piston to unnecessarily rotate 

around its own axis. 
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Figure 20: Location and orientation of the piston end of one of the hydraulic cyl-

inders in the MBS model. 

The force components, representing e.g. the hydraulic actuators and cylinder end 

contact forces, were defined with a similar manner as the joints (Figure 21 and 

Figure 22). The use of geometric features, such as centre points, simplified the 

modelling process and made it fast. 

 

Figure 21: Modelling of a hydraulic cylinder actuator force component. A single 

component force (force acting between two points in space) was used for the hy-

draulic cylinder force. 
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Figure 22: Modelling of a hydraulic cylinder end stopper contact force. Standard 

force functions were used for modelling the force components in the case. 

The mechanical model of the test system can be considered to be a relatively sim-

ple multibody system model and it contained the following 11 bodies: 

­ Hydraulic cylinders (cylinder_left and cylinder_right) 

­ Damping cylinder (cylinder_small) 

­ Cutting edge (edge) 

­ Cutter frames (frame_left and frame_right) 

­ Cutter levers (lever_left and lever_right) 

­ Hydraulic cylinder pistons (piston_left and piston_right) 

­ Damping cylinder piston (piston_small) 

In total, the model included the following 13 joints: 

­ Cylindrical joints between hydraulic cylinder and piston 

(CYL_piston_left_cylinder_left, 

CYL_piston_right_cylinder_right, and 

CYL_piston_small_cylinder_small) 

­ Fixed joint between cutter frames and modelling ground 

(FIX_frame_left_ground and FIX_frame_right_ground) 

­ Cardan joints connecting hydraulic cylinders 

(HOO_cylinder_left_frame_left, HOO_cylinder_right_frame_right, 

HOO_cylinder_small_frame_right, HOO_piston_left_leverl_left, 

HOO_piston_right_lever_right, and HOO_piston_small_lever_right) 

­ Revolute joints connecting the levers to the frames 

(REV_lever_left_frame_left and REV_lever_right_frame_right) 

The model had the following nine force components: 

­ Gravity (gravity) 

­ Bushings connecting the edge and the levers (BUS_edge_lever_left and 

BUS_edge_lever_right) 

­ Forces representing damping in the hydraulic cylinders 

(SFO_cylinder_damping_left and SFO_cylinder_damping_right) 
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­ Forces representing the end stoppers of the hydraulic cylinders 

(SFO_cylinder_endstop_left and SFO_cylinder_endstop_right) 

­ Forces representing the hydraulic force of the hydraulic cylinders 

(SFO_cylinder_left and SFO_cylinder_right) 

 

After the joint and force components were defined, the model was ready for sim-

ple test simulation, such as computing static equilibrium analysis and simple dy-

namic simulations. Even though the model does not represent the real system at 

this phase, it is important to run these test simulations regularly and check that the 

model behaves reasonably. E.g. this model, if properly modelled, should find suc-

cessfully static equilibrium so that the hydraulic cylinders are compressed to min-

imum length and the pistons hit the end stops (the hydraulic pressure forces were 

not yet modelled at this modelling phase). 

 

The hydraulic system was modelled and simulated in Simulink using Simscape 

hydraulics library. For the runtime communication of the MSC Adams solver and 

Simulink, additional model components were created in the mechanical system 

model to 

1) measure hydraulic cylinder lengths and compression speeds, and 

2) supply the hydraulic force value to the force components in the mechani-

cal system model. 

 

State variable components were used in MSC Adams for defining the communica-

tion interface between the software applications: 

­ Input signals from Simulink for hydraulic forces 

(VAR_cylinder_force_left and VAR_cylinder_force_right) 

­ Output signals to Simulink as measurements (VAR_cylinder_length_left, 

VAR_cylinder_length_right, VAR_cylinder_velocity_left, and 

VAR_cylinder_velocity_right) 

In Figure 23 is shown a screen image of the definition of the communication inter-

face between MSC Adams and Simulink. 

 

Figure 23: Definitions of the communication interface between MSC Adams solv-

er and Simulink. 
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It is possible to define the co-simulation mechanism to be FMI instead of the Ad-

ams-specific one shown in Figure 23. In that case, the selection for the target 

software in the Adams/Controls Plant Export dialog would have been FMU. For 

that selection there would have been an additional option to define the process 

communication to use TCP/IP instead of PIPE communication. At the time of 

writing this report, Simulink did not natively support FMI communication mecha-

nism. There are two third party toolboxes available for Matlab/Simulink to add 

support for FMI: 

­ FMI Toolbox for Matlab (FMI for model exchange and for co-simulation), 

by Modelon Ab
19

 

­ FMI Blockset for Simulink (FMI for co-simulation), by Claytex
20

 

The FMI interface was not used in this case, because it was not available in the 

author’s modelling and simulation test environment. 

4.2.2 Hydraulic and control system of the test case 

The hydraulic, control, and automation systems were modelled and simulated in 

the Simulink/Simscape environment. The model hierarchy and visual implementa-

tion followed the architecture of the systems. In Figure 24 is shown the top level 

of the overall case system. In this figure, the orange block represents the mechani-

cal subsystem, the magenta block represents the automation and control subsys-

tem, and the green block represents the hydraulic subsystem. The arrows between 

the blocks represent the output-input signals of the system; most of the signals in 

this level have physical meaning, such as position, velocity, and force. The control 

signal between control and hydraulic subsystems is normalised to be between [−1, 

+1]. 

 

The organisation of the subsystems in the Simulink emphasises the modular struc-

ture of the virtual prototype of the target system and simplifies the division of the 

simulation model development for several engineers. In addition, the meaningful 

interfaces of the subsystems minimise the risk for misunderstandings and errors in 

the modelling phase and when connecting the sub-models for creating the whole 

system model. 

                                                 
19

 Modelon FMI Toolbox for Matlab: http://www.modelon.com/products/fmi-toolbox-for-matlab/ 
20

 Claytex FMI Blockset for Simulink: http://www.claytex.com/products/fmi-blockset-for-simulink/ 

http://www.modelon.com/products/fmi-toolbox-for-matlab/
http://www.claytex.com/products/fmi-blockset-for-simulink/
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Figure 24: The top level view to the overall test system model. The orange block 

represents the mechanical subsystem, the pink block represents the automation 

and control subsystem, and the green block represents the hydraulic subsystem. 

The contents of the mechanical subsystem are depicted in Figure 25. The Sim-

ulink reference to the mechanical subsystem, i.e. the necessary Simulink model 

components that connect the external simulation of the mechanical subsystem to 

the other subsystems modelled in Simulink, is exported from the MSC Adams 

View pre-processor and does not need to be edited in Simulink. Exporting the 

Controls Plan model from MSC Adams produces the following files into the mod-

elling directory: 

­ <file name>.adm, a MSC Adams/Solver input file; 

­ <file name>.cmd, a MSC Adams/View command input file (optional); 

­ <file name>.m, a Matlab command input file; 

­ <file name>.xmt_txt, a Parasolid geometry input file (optional); 

The optional files are needed if the mechanical model is visualised during the 

simulation in MSC Adams View pre-processor. The procedure to import the me-

chanical system model into Simulink is described in detail in the MSC Adams 

documentation [24]. When the mechanical system model has been imported into 

Simulink, only the numerical solving and software application communication pa-

rameters have to be set. Otherwise, the subsystem model does not need to be 

changed. 
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a)   b)  

Figure 25: a) The mechanical subsystem model, written from the MSC Adams 

View pre-processor. b) The numerical solving and software application communi-

cation parameters in Simulink. 

The automation and control subsystem in the demonstration case is simplified and 

it is practically a template for a realistic control system model (Figure 26). Despite 

of the simplicity, the control system model demonstrates the modularity of the vir-

tual prototype architecture and shows how the input and output signals are treated 

in the model interfaces. In Figure 26, the white icons are the components of the 

control subsystem, the orange icons represent the input signals to the model of the 

control subsystem, and the light blue icon represents the control subsystem output 

signal. The modelled control system does not use the input signals, and only pro-

duces time dependent signal for the hydraulic subsystem; the output signal form is 

presented in Figure 27. 

 

Figure 26: The model of the control subsystem in Simulink. The model is simple 

but shows the modularity of the overall model and how the signals are treated at 

the subsystem model interfaces. 



 

RESEARCH REPORT VTT-R-08126-13 

36 (46) 

 

 

 

 

Figure 27: The form of the control subsystem output signal as a function of time. 

The hydraulic subsystem that is driving the mechanism in the overall model is 

modelled and simulated using Matlab/Simscape physical system simulation librar-

ies in Simulink, depicted in Figure 28. In the figure: 

­ the white icons represent hydraulic components, such as a pump, a valve, 

cylinders, and pipes; 

­ the dark yellow icons represent monitor components, used for plotting simu-

lation results during and after a simulation; 

­ the orange icons represent input signals to the hydraulic subsystem; 

­ the light blue icons represent the output signals from the hydraulic subsys-

tem; and 

­ the light grey icons represent lumped model structures that do not have clear 

physical meaning but are necessary to connect non-physical Simulink sig-

nals to physical signals in Simscape in the simulation model (see Figure 29 

as an example of lumped model “Cylinder connect left”; see [25] for more 

information). 

The hydraulic subsystem contains the following physical components: 

­ a hydraulic fluid source (tank); 

­ an idealised pump; 

­ a 4/3 directional valve; 

­ two double-acting hydraulic cylinders; 

­ a hydraulic fluid tank; and 

­ hydraulic piping. 

The hydraulic pipe walls can be treated either as rigid or flexible. 
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Figure 28: The model of the hydraulic subsystem in Simulink. 

 

Figure 29: The contents of the “Cylinder connect left” lumped model component. 

The lumped components in the model of the hydraulic subsystem do not have clear 

physical counterpart in the real system, but are necessary from the modelling 

point of view. 

4.2.3 Running the overall simulation model 

The overall simulation model, including mechanical, automation and control, and 

hydraulic subsystems, is run using so-called co-simulation approach. In the co-

simulation approach, the numerical simulation of the overall system is done using 

two or more separate numerical solver processes that communicate with each oth-

er either after each iteration step of a computational time-step or after a successful 

computational time-step. If the communication between the solving processes 

happens after each successful computational time-step, in each solver process, the 

solutions of the other processes are assumed to be constant during the iterative 

solving of a time-step. In a case of simulating a continuous coupled system, this 

approach is an approximation and may lead to qualitatively and quantitatively in-

accurate results. The approach is acceptable in many cases due to the advantages 
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of the approach, such as the simplicity of the modelling process and good enough 

accuracy for engineering purposes. 

 

The communication between the solving process of the mechanical subsystem, 

implemented in MSC Adams Solver, and the solving process of the control and 

hydraulic subsystems, done in Simulink, happens after each successful computa-

tional time-step. In other words, during the iterative solving of a time-step of the 

control and hydraulic subsystems in Simulink, the system states of the mechanical 

subsystem are assumed to be constant in MSC Adams Solver. To prevent any sig-

nificant errors in the solution, one millisecond time-stepping was used for the in-

ter-process communication (see Figure 25 b). In the co-simulation with MSC Ad-

ams and Simulink, the Simulink process is the master process and the MSC Ad-

ams process is the slave process. This means, the Simulink process dictates the 

time-stepping and calls the MSC Adams process to compute a new one millisec-

ond step and to send the time-step results to Simulink. Both of the numerical solv-

ers are using variable time-steps, which mean that the numerical solver can adjust 

the size of the time-step according to the transients in the system. The time-

stepping is still adjusted to match the communication time-stepping, i.e. the max-

imum size of a time-step is limited to the size of the communication time-step (i.e. 

one millisecond in the demonstration case). 

4.2.4 Simulation results 

Computational simulation of systems, such as the mechanical, hydraulic, and au-

tomation and control system presented in the above example, can produce large 

amount of numerical data. Depending on the user’s selections, the data may in-

clude the states and their derivatives of the simulated system and any auxiliary da-

ta the user has defined. In practice, the data can be e.g. locations, velocities and 

accelerations of mechanical parts in the system, measured either in the global co-

ordinate system or relative to some other part of the system. In addition, user can 

define arbitrary functions to be recorded during the simulation, such as damper 

absorbed power. From the hydraulic and control system models, many measures 

can be defined, such as pressures or flow rates in different locations of the hydrau-

lic system, or control signal values as a function of time. 

 

Figures 28–31 present output measures plotted from the mechanical system model 

(simulated with MSC Adams). The measures are from the lifting edge centre point 

measured relative to the global coordinate system. The location of the measure-

ment point is presented in Figure 30. Figure 31 presents the displacement of the 

lifting edge relative to the global coordinate system, Figure 32 velocity and Figure 

33 acceleration respectively. Figure 34 present a user defined measure, the power 

absorbed by the motion damper of the mechanical system (the motion damper is 

shown in Figure 30, the lower cylinder in the left frame). Examples of the simula-

tion results plotted from the hydraulic system (simulated with Simulink) are 

shown in Figures 32 and 33. In Figure 35 is presented pressures on the cylinder 

side of the directional valve. Pressures in the right side hydraulic cylinder are pre-

sented in Figure 36. The hydraulic system diagram is presented in Figure 28. 
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Figure 30: Location of the measurement point for displacement, velocity and ac-

celeration of the lifting edge. 

 

Figure 31: An example of an output measure, the lateral (x coordinate direction 

in modelling coordinate system) and vertical displacement of the lifting edge. 

 

Figure 32: An example of an output measure, the lateral (x coordinate direction 

in modelling coordinate system) and vertical velocity of the lifting edge. 
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Figure 33: An example of an output measure, the lateral (x coordinate direction 

in modelling coordinate system) and vertical acceleration of the lifting edge. 

 

Figure 34: An example of a user defined function expression as an output meas-

ure, in this case the power absorbed by the side damper of the system. 

 

Figure 35: Pressures measured on the hydraulic cylinders’ side of the directional 

valve. “Work” is pressure in the A channel of the valve and “Return” is pressure 

in the B channel of the valve. 
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Figure 36: Hydraulic pressures in the right side cylinder. Cylinder side A is the 

cylinder’s extension side and B is the compression side. 

5 Conclusions 

Simulation of the overall system can be used for machine automation design and 

research, and the present software tools already support the process, which was 

demonstrated in the case study described in this report. There are still challenges 

in data exchange between different software applications, but in most cases these 

obstacles can be solved. In Section 2.1 of this report, the concept of separating 

product data from the modelling and simulation tools that are using it was intro-

duced. The vision for the future for this concept is to have an overall product 

model that combines and links all the relevant product data, including the design 

data, into one model. With the present software tools this vision is still relatively 

far, even though there are available integrated design environments that provide 

tools and data management for design and simulation of many different engineer-

ing domains. There is still need for further research and development in this area 

and the importance of standardisation cannot be overemphasised. 

 

Virtual prototypes that include all the major subsystems of the product or the sys-

tem can speed up the design process and enable improving the quality of the de-

sign. To achieve this, both the software tools and the process of doing the design 

have to be fitted to operate together. With the present software applications, this 

requires either designing the process and, based on it, selecting the tools from the 

offering of many software vendors or selecting one software vendor for providing 

the overall integration system and then sticking to this choice. The first approach 

gives more flexibility in selecting the best suited tools for each part of the process 

but requires understanding of the process and knowledge of the available software 

tools. The second option is usually more straightforward but it ties the user to one 

software vendor and may decreasethe room for other options in the selection of 

software applications in the process. The additional option, i.e. selecting software 

applications for different parts of the process so that all the software applications 

integrate fluently together and utilise a common database does not yet exist. 

6 Summary 

In this report, the use of virtual prototyping and computational product develop-

ment of multi-technical systems were discussed. The focus was on using multi-

technical simulation for automation and control system development and testing. 
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In the first half of the report, the simulation-based product process and the role of 

simulation in it was discussed. In addition, the vision of separating the valuable 

product data (including design and simulation data) was proposed and briefly dis-

cussed. The second half of the report focused on the study case of a process to uti-

lise existing CAD model for creating a virtual, simulation-based test environment 

for automation and control system development and testing. In the beginning of 

this part, four different approaches for selecting the software applications were 

discussed. Then, the implementation of the process in the demonstration case, i.e. 

the modelling of the overall system, running the simulations and using the results, 

were described and discussed. 

 

The demonstration showed that, at least for the selected case, modelling, simula-

tion and post-processing of a multi-technical simulation system is relatively 

straightforward and fast with the selected tools. The usefulness and added value of 

using simulation in product process were discussed already in the introduction of 

this report. The demonstration gives some understanding of the process for im-

plementing one relatively small multi-technical system but does not give realistic 

feedback about the challenges in industrial-scale process for large and complex 

systems’ virtual prototyping and related data exchange and data management. 
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APPENDIX A: List of software applications supporting FMI 1.0 

Below is a list of software applications that support FMI version 1.0. The data is 

copied from the FMI website
21

 on July 30, 2013. The meaning of the feature sup-

port in the table is as follows: 

­ Planned: not yet available  

­ Available: no cross check results submitted 

­ Verified: passed the cross check 

Table 2: FMI support in tools, compatibility table. 

Tool supporting FMI Model exchange Co-simulation Notes 

 Export Import Slave Master  

Adams  Planned Available Available High end multibody dynamics simulation software 
from MSC Software 

AMESim Available Available Available Planned Modelica environment from LMS-Imagine 

ANSYS Simplorer  Planned Planned  ANSYS Simplorer is a multi-domain, multi-
technology simulation program from ANSYS. 

ASim - AUTOSAR 

Simulation 

Available  Available  AUTOSAR product from Dassault Systèmes 

Atego Ace  Available  Available Co-simulation environment with AUTOSAR and HIL 

support 

@Source Available    Simulink via @Source 

Building Controls 

Virtual Test Bed 

   Available BCVTB is a Software environment, based on Ptolemy 

II, for co-simulation of, and data exchange with, 

building energy and control systems. 

CATIA Available Available Available Available Environment for Product Design and Innovation, 
including systems engineering tools based on Modeli-

ca, by Dassault Systèmes 

ControlBuild Available Available Available Available Environment for IEC 61131-3 control applications 

from Dassault Systèmes 

CosiMate  Available  Available Co-simulation Environment from ChiasTek 

Cybernetica CENIT  Available  Planned Industrial product for nonlinear Model Predictive 

Control (NMPC) from Cybernetica. 

Cybernetica ModelFit  Available  Available Software for model verification, state and parameter 

estimation, using logged process data. By Cyberneti-
ca. 

DSHplus Planned  Planned  Fluid power simulation software from FLUIDON 

Dymola Verified Available Verified Available Modelica environment from Dassault Systèmes. 
ModelExchange also available for Simulink using 

Simulink Coder. 

EnergyPlus   Planned Available Whole building energy simulation program 

FMI Add-in for Excel    Verified FMI Add-in for Microsoft Excel by Modelon. Offers 

support for batch simulation of FMUs. 

FMI add-on for NI 

VeriStand 

 Available   NI VeriStand supports FMI through the use of the 

FMI add-on for NI VeriStand from Dofware 

FMI Blockset for 

Simulink 

   Available Import of FMI Co-Simulation models into Simulink - 

provided by Claytex. 

FMI Library  Verified  Verified Open source (BSD) C library for integration of FMI 
technology in custom applications by Modelon. 

FMI Target for Sim-

ulink Coder 

  Available  Export of stand-alone FMUs for Co-Simulation from 
Simulink using Simulink Coder - provided by ITI 

FMI Toolbox for Car-

Maker 

 Available  Available For IPG CarMaker via FMI Toolbox for CARMAK-

ER from Modelon. 

FMI Toolbox for 

MATLAB 

Verified Verified Planned Verified FMI Toolbox for MATLAB from Modelon can be 

used for MATLAB and Simulink. 

FMU SDK Available Available Available Available FMU Software Development Kit from QTronic. 
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ICOS "Independent 

Co-Simulation" 

 Available Available Available ICOS is a co-simulation tool developed by Virtual 

Vehicle 

JFMI   Available Available A Java Wrapper for the Functional Mock-up Interface, 

based on FMU SDK 

JModelica.org Verified Verified Verified Verified Open source Modelica environment from Modelon 

LMS Virtual.Lab 

Motion 

Planned Available Available Available Virtual.Lab Motion is a high end multi body software 

from LMS International 

MapleSim Verified Planned Planned Planned Modelica-based modeling and simulation tool from 

Maplesoft 

MWorks Available Planned Planned Planned Modelica environment from Suzhou Tongyuan 

NI LabVIEW  Planned   Graphical programming environment for measure-
ment, test, and control systems from National Instru-

ments 

OpenModelica Available Available Planned Available Open source Modelica environment from OSMC 

OPTIMICA Studio Verified Planned Planned Planned Modelica environment from Modelon 

Ptolemy II    Planned Software environment for design and analysis of 
heterogeneous systems. 

PyFMI  Verified  Verified For Python via the open source package PyFMI from 

Modelon. Also available as part of the JModelica.org 

platform. 

RecurDyn Planned Planned Planned Planned High End Multi Flexible Body Dynamcis Software 

from FunctionBay 

Reference FMUs Planned  Planned  Reference FMUs supplied by enthusiasts and volun-
teers to show case specific FMU features 

SCADE Display Planned  Planned  SCADE Display facilitates embedded graphics, 
display and HMI development and certified code 

generation for safety-critical displays from ANSYS. 

SCADE Suite Available  Available  SCADE Suite is a model-based development envi-

ronment with certified code generation for safety 
critical embedded applications from ANSYS. 

Silver Verified Verified Verified Verified Virtual integration platform for Software in the Loop 
from QTronic 

SIMPACK Planned Available Planned Available High end multi-body simulation software from SIM-

PACK AG 

SimulationX Verified Verified Verified Verified Multi-domain simulation tool for design, analysis and 

virtual prototyping of complex systems by ITI. 

SystemModeler Planned Planned Planned Planned Modelica environment from Wolfram Research. 

TLK FMI Suite  Available  Available TLK FMI Suite provides LabVIEW and Simulink 

blocks for FMU simulation 

TLK TISC Suite  Available  Available Co-simulation environment from TLK-Thermo 

TWT Co-Simulation 

Framework 

  Available Available Communication layer tool to flexibly plug together 

models for performing a co-simulation; front-end for 
set-up, monitoring and post-processing included 

TWT FMU Trust 

Centre 

  Available  Cryptographic protection and signature of models 
including their safe PLM storage; secure authentica-

tion and authorization for protected (co-)simulation 

xMOD  Available  Available Heterogeneous model integration environment & 

virtual instrumentation and experimentation laborato-
ry from IFPEN distributed by D2T. 
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