
 RESEARCH REPORT VTT-R-08126-13

ReUse-R

Virtual plants in machine automation
research and development

Authors: Juha Kortelainen and Teemu Halmeaho

Confidentiality: Public

RESEARCH REPORT VTT-R-08126-13

1 (46)

Report’s title

Virtual plants in machine automation research and development
Customer, contact person, address Order reference

ReUse-R research project
Tekes, Pekka Yrjölä
Kyllikinportti 2, P.O. Box 69, FI-00101 Helsinki, Finland

40234/11

Project name Project number/Short name

Prosessinhallinnan suunnitteluratkaisujen uudelleenkäyttö 75303/ReUse-R
Author(s) Pages

Juha Kortelainen and Teemu Halmeaho 47/–
Keywords Report identification code

Automation, CAD, control system, hydraulic system, model-
ling, multibody system, simulation

VTT-R-08126-13

Summary

Computational product development has become the mainstream methodology in modern

product development. The same trend has been visible also in research, where computational

methods have gained popularity beside the traditional approach relying on theory and experi-

mentations. The objective of this project task was to study and demonstrate a realistic ap-

proach for an industrial case to reuse existing mechanical design CAD model as the starting

point and the template for mechanical system simulation using multibody system simulation,

and to use this MBS model as a virtual test plant for automation and control system testing.

In the report, the role of system modelling and simulation in the product process is first dis-

cussed and some selected technologies, such as Modelica simulation language and Functional

Mock-up Interface specification, are introduced. Then different possible implementations ap-

proaches for a test environment of the control and automation system of a multi-technical sys-

tem are discussed. The latter part of report focuses on describing the selected approach for a

demonstration system and its implementation.

The demonstration showed that, at least for the selected case, modelling, simulation and post-

processing of a multi-technical simulation system is relatively straightforward and fast with

the selected tools. The demonstration gives some understanding of the process for implement-

ing one relatively small multi-technical system but does not give realistic feedback about the

challenges in industrial-scale process for virtual prototyping of large and complex systems and

related data exchange and data management.

Confidentiality Public

Espoo 12.2.2014
Written by

Juha Kortelainen,
Principal Scientist

Reviewed by

Pekka Rahkola,
Senior Scientist

Accepted by

Johannes Hyrynen,
Technology Manager

VTT’s contact address

VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Finland

Distribution (customer and VTT)
Pekka Yrjölä, Tekes, 1 copy
VTT, 2 copies

The use of the name of the VTT Technical Research Centre of Finland (VTT) in advertising or publication in part of
this report is only permissible with written authorisation from the VTT Technical Research Centre of Finland.

RESEARCH REPORT VTT-R-08126-13

2 (46)

Contents

1 Introduction ... 3

1.1 Objectives ... 3

2 About modelling and simulation in product process.. 4

2.1 General and application-specific approach ... 5

2.1.1 Product life-cycle data management .. 6
2.2 Modelica simulation language ... 7

2.2.1 Requirements-driven development and design, SysML and
ModelicaML .. 10

2.3 Functional Mock-up Interface version 1.0 ... 10

2.3.1 FMI for model exchange .. 11

2.3.2 FMI for co-simulation ... 13

2.3.3 FMI for PLM ... 14
2.4 New features in FMI 2.0 .. 15

2.4.1 Merging the documents, schema and header files of Model Exchange
and Co-Simulation ... 16

2.4.2 New functionalities and flexibility of use ... 17

2.4.3 Performance and reliability upgrades ... 18

2.4.4 Future of FMI usage and progress of the simulation tools 19

3 Virtual automation test environment ... 19

3.1 Target system and its subsystems .. 21
3.2 Approaches for the implementation .. 23

3.2.1 CATIA V6 environment .. 23

3.2.2 CATIA V5 and LMS Virtual.Lab Motion .. 24

3.2.3 General CAD and general MBS ... 25

3.2.4 A CAD software and MatWorks Simscape/SimMechanics................. 25

4 Implementation ... 26

4.1 Original approach with CATIA V6 and Modelica ... 26
4.2 Complementary approach with MSC Adams and Simulink 27

4.2.1 Mechanical system of the test case ... 28

4.2.2 Hydraulic and control system of the test case 33

4.2.3 Running the overall simulation model .. 37

4.2.4 Simulation results ... 38

5 Conclusions .. 41

6 Summary .. 41

References .. 43

APPENDIX A: List of software applications supporting FMI 1.0 45

RESEARCH REPORT VTT-R-08126-13

3 (46)

1 Introduction

Computational product development, including methods such as computer-aided

design (CAD), computer-aided manufacturing (CAM), and computer-aided engi-

neering (CAE), has become the mainstream methodology in modern product de-

velopment. The same trend has been visible also in research, where computational

methods have gained popularity beside the traditional approach relying on theory

and experimentations [1]. The reason for this is in many cases the cost savings

that can be achieved with computational methods. Utilisation of computational

methods enables decreasing the use of physical prototypes in the development

process. This can reduce costs in two main sectors: first, the direct savings in de-

creasing the number of built prototypes due to savings in material and work, and

second, indirect savings due to shortened design time. Another reason to use com-

putational methods is often forgotten to mention. Modelling and simulation are

good means for the designers and experts in the product process to gain under-

standing about the product under development. The modelling phase helps de-

signers to understand and structure the product and realise the interactions be-

tween subsystems and components. Simulating the overall virtual product or its

subsystems helps the designers to understand the dynamics and behaviour of the

system. All this can be achieved without physical prototypes already in an early

phase of the design process. The use of computational methods in product devel-

opment process helps the designers and experts to design the products according

to the technical and project schedule requirements.

This work does not promote any particular software application or an approach to

compose a virtual testing system. The selection of the approach as well as the

software applications depends on many things, e.g., the requirements for the de-

sign system in use and the use of the selected software applications for other pur-

poses. In addition, there can be corporate level policies for using some specific

software packages that dictate the selection of tools. Due to this, there is no one

optimal solution, but the selection has to be done based on the constraints of the

engineering environment.

1.1 Objectives

The objective of this project task was to study and demonstrate a realistic ap-

proach for an industrial case to reuse existing mechanical design CAD model as

the starting point and the template for mechanical system simulation using multi-

body system (MBS) simulation, and to use this MBS model as a virtual test plant

for automation and control system testing. In the case of the demonstrator, the fo-

cus was in modelling, data exchange, and simulation process, and the details and

realism of the subsystems, such as the control system, were not emphasised. The

emphasis was on modelling and data exchange process so that it would be two-

directional when possible. In addition, the openness and standard compliance of

the used computational tools and methods were considered as a desirable feature.

The original plan for this project task was to utilise modelling and simulation

tools for Modelica modelling language. While executing the research work, this

plan had to be updated and a substituting approach had to be selected. This update

of the plan explains the structure and contents of this report. In Section 2, the role

of modelling and simulation in product process is discussed in general level. This

discussion includes also modelling data exchange and data management. In addi-

RESEARCH REPORT VTT-R-08126-13

4 (46)

tion, the Modelica modelling language is introduced and Modelica-related tech-

nology, Functional Mock-up Interface (FMI), is discussed. In Section 3, the appli-

cation of simulation models for machine system control and automation system

development and testing is discussed. Some of possible practical modelling and

simulation approaches are introduced and their suitability for the case study in this

task is discussed in brief. In Section 5, the selected approach and its implementa-

tion are described in detail. In Sections 5 and 6, the conclusions and summary of

the overall project task are discussed respectively.

2 About modelling and simulation in product process

Complex mechanical products and systems, such as diesel engines and paper ma-

chines, involve subsystems from several engineering domains. These subsystems

are often designed using domain-specific design methods and established engi-

neering tools. In addition, the design data presentation for different engineering

domains differs from each other and it is important for an efficient design process

to follow the domain-specific practices also in data presentation. The detailed de-

sign of the subsystems is often done by following the given interfaces and re-

quirements, and separate from other engineering domains. On one hand, this ap-

proach modularises the design and simplifies the parallel design process of the

product. But on the other hand, this approach may lead to ignoring the possible in-

terference effects of the interconnected subsystems. This is especially a risk in

systems that are dynamic in nature and which subsystems are strongly coupled.

Examples of such systems are e.g. systems that have large accelerations of or

large forces acting on their parts, systems in which structural flexibility has re-

markable influence on the system behaviour, or systems that have complex con-

trol systems that are controlling the dynamics of the system.

System simulation is an efficient mean to master the interaction of subsystems and

the overall dynamics and behaviour of the product. The modelling phase of the

design process helps the designers and system engineers to structure the product,

its subsystems, and components, and to understand the relations between different

parts of the system. Simulation of the subsystems and the overall system provides

valuable understanding about the interaction of the subsystems and about the

overall dynamics of the product. Modelling and simulation also helps the design-

ers and system engineers to communicate with each other and to design the inter-

faces between the subsystems (Figure 1). All this can be done before any subsys-

tem has been built, either as a prototype or an end product.

While in real products and systems the interfaces of subsystems are fixed and

cannot be easily changed, in simulation models this is not the case. In simulation,

especially if the modelling and simulation is done using one simulation tool, the

subsystem boundaries are often flexible and depends on the preferences of the

person who is doing the modelling. From the product design point of view it is

important to try to implement the subsystem interfaces according to the real ones,

even though it may increase the effort for creating the simulation model. Imple-

menting the same interfaces in the simulation model as in the real system with the

same signals and connections not only simplifies the modularisation of the model-

ling and simulation work but also simulates the interfacing of the real subsystems.

RESEARCH REPORT VTT-R-08126-13

5 (46)

Figure 1: Illustration of the dependencies of the different engineering domain in

the design of a product.

2.1 General and application-specific approach

At the same time when the application of simulation in product process is increas-

ing, the concern on data preservability and usability in product life-cycle should

be emphasised. More and more product information is stored into different kind of

simulation and analysis models, usually in software application specific formats,

but very little has been discussed about the usability of this data in later phases of

the product life-cycle. The data preservability is briefly discussed in [2], in which

a semantic data management approach for one narrow simulation domain is pre-

sented. One of the concepts to increase the preservability of the design and simu-

lation data is to separate the valuable data from the tools that are used for e.g.

modelling and simulation (Figure 2). Practically this means that the product de-

sign data is stored in such a way that the semantics of the data (i.e. the meaning of

the data and the used concepts) is known and thus the information the data con-

tains is explicit. This, on the other hand, means that the format for the data is ex-

plicitly defined and available. Using standardised data presentation, e.g. applying

ISO 10303 (STEP) AP203 and AP214 standards [3, 4] file formats for geometry

data, is an example of this. It is always beneficial for data preservability, if the da-

ta format is designed and maintained by a party that does not have commercial in-

terests involved.

The present trend of the general data management approach seems to be that the

individual software applications for modelling, simulation and post-processing are

evolving faster than the development of common data models and standardisation

of the data presentation. On the other hand, integration solutions for design and

simulation data already exist which fluently integrate design tools (i.e. CAD

tools), modelling tools (e.g. FEM pre-processing), simulation tools (numerical

solvers), and post-processing tools (data analysis and data visualisation). The

common feature of these systems is that they store the data in software system

specific format and linking third party software applications with these systems

has to be done by following this data format. The data format is specified and

maintained by the integration system vendor who has the power to do changes to

the format and the data interfaces.

RESEARCH REPORT VTT-R-08126-13

6 (46)

Figure 2: Illustration of the concept of separating valuable product data from the

tools to produce or modify it.

The interest in data management and data modelling, and especially increased ac-

tivity in both research and industrial applications of the Semantic Web technolo-

gies, such as Resource Description Framework [5] (RDF) and Web Ontology

Language [6] (OWL), have given more focus on the concept of product modelling

[7]. The idea of product modelling is to collect all the relevant data into one prod-

uct model so that the data is linked (from necessary parts) and one piece of infor-

mation is managed only in one location. The concept of product modelling can be

extended to simulation-based product process and simulation data, which eventu-

ally can enable the vision of separating the valuable product and design data from

the software applications that are used for creating and modifying it. This vision

requires still determined research and development work for the concepts and

methods, and standardisation for the data models and formats.

2.1.1 Product life-cycle data management

The present trend and fast development of the integration of design tools into

large design systems and the retardation of the standardisation of data presentation

have already jeopardised the preservability of the data for the whole product life-

cycles. It is quite common that the life-cycle of a product in mechanical engineer-

ing is 20 years. If the product is in production for five years and the development

phase before the production has taken three years, the overall life-cycle of the

product is then 28 years. At the same time, the typical life-cycle for a design sys-

tem in mechanical engineering is about 5 years. Even the computer hardware and

computer operating systems have shorter life-cycle than 28 years. The previous

commonly used operating system in personal computers, Microsoft Windows

XP
1
, was released on October 2001 and the expected end of support is on August

2014 [8]. That gives less than 13 years for the life-cycle of this particular operat-

ing system. If the product design data is partially stored in a closed, binary format

of some simulation tool or a design system, there are no guarantees that the data is

usable during the last years of the products life-cycle. On the other hand, if the da-

ta was stored in an openly defined format, it is always possible to retrieve the in-

1
 Microsoft XP: http://windows.microsoft.com/en-US/windows/products/windows-xp

Data

Design data

Knowledge

Model data

Function

Dynamics

Usability

Legislation

Design patterns

Processibility

(Other information)

Accessibility

and preservability

of the data

Computational tools

Software application

specific data models

and file formats

http://windows.microsoft.com/en-US/windows/products/windows-xp

RESEARCH REPORT VTT-R-08126-13

7 (46)

formation out of the stored data, even though it may require considerable software

implementation effort.

In the area of system simulation, one approach to guarantee the preservability of

the information stored in simulation and analysis models is to use an open simula-

tion language to describe the simulation models. There are several simulation lan-

guages for system simulation, such as Simscape
2
 and Modelica

3
. The Simscape

language is designed by Mathworks and is a proprietary product. Modelica is the

trademark of the Modelica Association, a non-profit organisation that develops

and maintains the specification of the Modelica language. Both of these languages

are modern object-oriented languages specifically design for the simulation of

complex physical systems. The language specification is available for both of

these languages, which means that the information can be retrieved out of the data

even though there were no software applications for them available. In the case of

Simscape, there are no other software tools at the moment that uses the language.

For Modelica, there are several tools available and the use of the language seems

to be increasing.

2.2 Modelica simulation language

Modelica is object-oriented language for modelling of physical systems. The lan-

guage supports all the common object-oriented language features, such as imple-

mentation encapsulation, inheritance and subtyping, and is thus well-suited for li-

brary development and model data exchange. The language specification is freely

available and it is developed and maintained by the Modelica Association [9]. For

the use of the Modelica language, a Modelica simulation environment is needed.

The environment is used for numerically solving the equations that are defined for

the system model in Modelica language. This is an important conceptual feature

in Modelica; the language specification is maintained and developed by an organ-

isation that has no direct link to any commercial product that is using the specifi-

cation. In other words, the Modelica Association is a non-profit organisation and

does not have any conflict of interests between the specification and commercial

products. It should be noticed that many individual member organisations of the

Modelica Association do have direct commercial dependency to the Modelica

specification. The commercial independency of the language specification and the

tool offering provides better conditions for steady long-term development and

maintenance of the language. The investment on the software tools utilising Mod-

elica and the knowhow in the organisation using modelling and simulation e.g. in

product development is safe. This is due to open and transparent development of

the language and the availability of optional tools for the same simulation lan-

guage.

The Modelica models are represented in textual, Modelica language form. The

models and especially the component connections and dependencies are often vis-

ualised as a model graph. The graphical representation of the language is defined

in the language specification, which unifies the look and feel of the modelling

tools and environments. An example of the graphical representation of a simula-

tion model is shown in Figure 3. The same model in textual form is partially

shown in Figure 4.

2
 Matworks Simscape: http://www.mathworks.se/products/simscape/index.html

3
 Modelica Association: https://modelica.org/

http://www.mathworks.se/products/simscape/index.html
https://modelica.org/

RESEARCH REPORT VTT-R-08126-13

8 (46)

Figure 3: A screenshot of an example model opened (Modelica Standard Library,

version) into OMEdit, the graphical modelling editor of the OpenModelica Envi-

ronment.

Figure 4: An alternative view in the OMEdit to the same model is in Figure 3.

There are several modelling and simulation tools and environments that utilise the

Modelica language, such as [10]:

­ Dymola, by Dassault Systèmes

­ Vertex, by deltatheta UK Ltd.

­ MOSILAB, by Fraunhofer FIRST

­ SimulationX, by ITI GmbH

­ LMS Imagine.Lab AMESim, by LMS

­ MapleSim, by Maplesoft

­ MathModelica, by Mathcore

RESEARCH REPORT VTT-R-08126-13

9 (46)

­ OPTIMICA Studio for Physical Modeling, by Modelon Ab

­ JModelica
4
, an open source Modelica environment

­ OpenModelica
5
, an open source Modelica environment

There are several Modelica environment implementations that work like a com-

piler for the Modelica language. The Modelica compiler in such an environment

gets the model in Modelica language as the input and generates an executable as

the output. The executable is a stand-alone software application that includes the

description for the specific model together with the numerical solver needed for

running the simulation.

The Modelica Association provides a standard library, the Modelica Standard Li-

brary (MSL), associated with each specification version. The standard library in-

cludes modelling component libraries for many simulation domains, such as me-

chanical, control, and thermo-fluid systems. The top level sub-libraries of the

Modelica Standard Library, version 3.2, are listed in Table 1. For the modelling of

especially automation and control systems, the following sub-libraries are availa-

ble:

­ Modelica Standard Library, package Modelica.Blocks, including Continu-

ous, Discrete, Logical, and Nonlinear;

­ Modelica Standard Library, package Modelica.StateGraph;

­ There is a new version of the StateGraph library, StateGraph2, which is

available as a free library for Modelica; and

­ ModelicaDEVS, a free library for discrete-event modelling using the DEVS

formalism.

In addition to the standard library, several free and commercial libraries are avail-

able for many areas of system simulation.

Table 1: The top level sub-libraries of the Modelica Standard Library (MSL) ver-

sion 3.2. [10]

Blocks Continuous, discrete and logical input/output blocks (Continuous,

Discrete, Logical, Math, Nonlinear, Routing, Sources, Tables)

Constants Mathematical and physical constants (such as pi, eps, h)

Electrical Electric and electronic components (Analog, Digital, Machines, Mul-

tiPhase)

Fluid Components to model 1-dimensional thermo-fluid flow in networks of

vessels, pipes, fluid machines, valves, and fittings.

Icons Icon definitions

Magnetic.FluxTubes Components to model magnetic devices based on the magnetic flux

tubes concepts.

Math Mathematical functions for scalars and matrices (such as sin, cos,

solve, eigenValues, singular values)

Mechanics Mechanical components (Rotational, Translational, MultiBody)

Media Media models for liquids and gases (about 1250 media, including high

precision water model)

SIunits SI-unit type definitions (such as Voltage and Torque)

StateGraph Hierarchical state machines (similiar power as Statecharts)

Thermal Thermal components (FluidHeatFlow, HeatTransfer)

Utilities Utility functions especially for scripting (Files, Streams, Strings,

System)

4
 JModelica project: http://www.jmodelica.org/

5
 OpenModelica project: https://www.openmodelica.org/

http://www.jmodelica.org/
https://www.openmodelica.org/

RESEARCH REPORT VTT-R-08126-13

10 (46)

ModelicaServices New top level package that shall contain functions and models to be

used in the Modelica Standard Library that requires a tool specific

implementation.

2.2.1 Requirements-driven development and design, SysML and ModelicaML

The development of the Modelica modelling language and the availability of

modelling and simulation tools that are supporting Modelica have provided a

fruitful ground for extending the application area of the language. ModelicaML
6
 is

a UML/SysML extension to combine the benefits of having a graphical system

modelling language and simulating the behaviour of the system. The language and

the implemented tool support requirements management and simulation-based

evaluation of the requirements using Modelica language and tools. Both the Mod-

elicaML language and the related tools are still under research and active devel-

opment.

2.3 Functional Mock-up Interface version 1.0

Using multiple tools in the modelling and simulation process introduces challeng-

es in reusing the simulation models or model components and co-using numerical

solvers, i.e. connecting two or more simulation in runtime. These challenges are

common for many simulation domains and have similar features. The Functional

Mock-up Interface (FMI)
7
 defines a unified, software application independent in-

terface for the exchange of dynamic models and for co-simulation [16]. The FMI

specification defines three use concepts:

1) FMI for model exchange [12],

2) FMI for co-simulation [13], and

3) FMI for PLM [14].

In the first concept, FMI is used to exchange model components and/or submodels

between software applications, and only one software application is used for run-

ning the simulation. In the second concept, FMI is used to define communication

between two or more simulation applications (or stand-alone simulation compo-

nents) and two or more separate solver processes are run in parallel when model

components are utilised. In the third concept, mechanisms and interfaces are de-

fined for managing FMI data and related data in product life-cycle management

(PLM) systems. The first two of these three concepts are described in more detail

in the following sections; the third concept is described only briefly. The devel-

opment of the FMI concept was started in the European Union funded MODEL-

ISAR project that was part of ITEA2 programme
8
. Several research institutes,

software providers, and end user companies participated the effort that resulted in

defining the FMI specification version 1.0 and providing the necessary supple-

mental components for the specification. The further development of FMI is or-

ganised through Modelica Association Projects (MAP)
9
, managed by the Modeli-

ca Association. At the time of writing this report, the current stable version of the

FMI specification was 1.0.

6
 ModelicaML: https://openmodelica.org/index.php/home/tools/134

7
 Functional Mockup Interface project: https://www.fmi-standard.org/

8
 ITEA2: http://www.itea2.org/

9
 Modelica Association Project: https://www.modelica.org/projects

https://openmodelica.org/index.php/home/tools/134
https://www.fmi-standard.org/
http://www.itea2.org/
https://www.modelica.org/projects

RESEARCH REPORT VTT-R-08126-13

11 (46)

The FMI concept is based on the interface and behaviour definition between the

modelling and simulation software applications and the model components, called

Functional Mock-up Units (FMUs). An FMU is a ZIP-compressed file which con-

tains the component and its interface definitions in XML format, necessary func-

tional model data as C source code and/or in binary form as a dynamically

loadable library files, and optional auxiliary files for e.g. documentation and

providing a component model icon. The internal structure of an FMU ZIP-file is

illustrated in Figure 5. The component model data in an FMU is accessed only

through C function calls. Because the component model data can be given as a bi-

nary form library file, the FMUs can be used for sharing model components with-

out giving the model topology or details in easy-to-read form. This may be the

case e.g. when subcontracting is used in product development. The data flow of an

FMU is illustrated in Figure 6.

// Structure of zip-file of an FMU

modelDescription.xml // Description of model (required file)

model.png // Optional image file of model icon

documentation // Optional directory containing the model documentation

 _main.html // Entry point of the documentation

 <other documentation files>

sources // Optional directory containing all C-sources

 // all needed C-sources and C-header files to compile and link the model

 // with exception of: fmiModelTypes.h and fmiModelFunctions.h

binaries // Optional directory containing the binaries

 win32 // Optional binaries for 32-bit Windows

 <modelIdentifier>.dll // DLL of the model interface implementation

 // Optional object Libraries for a partictular compiler

 VisualStudio8 // Binaries for 32-bit Windows generated with

 // Microsoft Visual Studio 8 (2005)

 <modelIdentifier>.lib // Binary libraries

 gcc3.1 // Binaries for gcc 3.1.

 ...

 win64 // Optional binaries for 64-bit Windows

 ...

 linux32 // Optional binaries for 32-bit Linux

 ...

 linux64 // Optional binaries for 64-bit Linux

 ...

resources // Optional resources needed by the model

 < data in model specific files which will be read during initialization >

Figure 5: The structure of an FMU ZIP-compressed file. [12]

The FMI concept and specification are software vendor and application independ-

ent. This is beneficial for the end users, because it encourages the software ven-

dors to support the specification which increases the number of supporting soft-

ware applications. A list of software applications that support the FMI specifica-

tion is kept updated at the FMI website
10

. The current list of FMI capable software

applications is given in Appendix A.

2.3.1 FMI for model exchange

The specification for FMI for model exchange [12] defines the concrete means to

pack a model or a modelling component data into an interchangeable package so

that the models and/or model components can be used as model components in

other simulation models. The concept of how to use FMI for model exchange is il-

lustrated in Figure 7. FMI enables models, such as control system and controller

models, to be exported from one modelling and simulation tool and to be imported

10

 Tools supporting FMI: https://www.fmi-standard.org/tools

https://www.fmi-standard.org/tools

RESEARCH REPORT VTT-R-08126-13

12 (46)

into another and used as a submodel component. Any tool that fulfils the FMI

specification can be used to produce FMU components or to utilise the FMUs in

simulation.

In a FMU component, the model equations are presented either as C source code

(which have to be compiled before running the final simulation) or dynamically

linkable library component, or a combination of these two. In the target simulation

environment, presented in red colour in Figure 7, the submodels are seen as

“black box” components and the implementation, structure and hierarchy of the

original model are hidden. The FMU component does not include any algorithms

needed for solving the component’s set of equations, but the numerical solving is

done using the target system’s numerical solvers. It is possible to generate the C

source code for the overall system model containing FMU components, if the C

source code is used in the FMU for defining the simulation submodel. Thus, mod-

els including FMU components can be used for producing executable code for

controllers and embedded systems. Different use scenarios for FMI for model ex-

change are discussed in more detail in the FMI for model exchange specification

document [12].

Figure 6: Illustration of FMU data flow. [12]

RESEARCH REPORT VTT-R-08126-13

13 (46)

Figure 7: The concept of using FMI components for model or sub-model ex-

change between different computational software applications.

2.3.2 FMI for co-simulation

The specification for FMI for co-simulation [13] defines the means and interfaces

for connecting two or more separate simulation tools with their own models to

form one simulation. The specification defines two operating modes for FMUs,

stand-alone and tool co-simulation:

­ FMI for co-simulation stand-alone (this is called code generation in [13]); in

this mode, the FMI slave dll-component includes a solver for the slave mod-

el, thus the FMU is a stand-alone and does not require the original software

application to be present for execution (see Figure 8).

­ FMI co-simulation tool coupling (this is called tool coupling in [13]); in this

mode, the slave model is solved with the original software application solver

and a specific FMI wrapper is used in between the simulation master and

slave processes (see Figure 9).

In the FMI co-simulation, one simulation tool is the master of the simulation and

the rest of the simulation system follows it. The specification allows the FMUs to

be nested, i.e. a slave of the upper simulation layer can be the master for the lower

layer. This concept of using FMI enables connected simulation of different do-

mains in convenient manner, in which e.g. multibody system simulation is con-

nected with hydraulic and control system simulation, and the different engineering

domain are modelled separately. This kind of a case is described later in this re-

port in section 4.2 Complementary approach with MSC Adams and Simulink, but

in that case FMI has not been used for the communication of the simulation tools.

This was because the tools that were available and were selected for the demon-

stration case were not capable for FMI-based simulation.

RESEARCH REPORT VTT-R-08126-13

14 (46)

Figure 8: Illustration of the stand-alone mode of FMI co-simulation. In this mode,

the FMU contains both the model and the necessary solver routines to simulate

the model.

Figure 9: Illustration of the tool mode of FMI co-simulation. In this mode, the

FMU contains necessary definitions for the communication between the master

process (on the left) and the slave process (on the right). On the slave side, the

original simulation tool is needed for running the simulation.

2.3.3 FMI for PLM

The specification for FMI for PLM [14] defines the communication and data ex-

change practices and details needed for managing FMUs in PLM systems, such as

Dassault Systèmes ENOVIA, and to exchange the FMUs between the PLM sys-

tem and the modelling and simulation applications. The concept is illustrated in

Figure 10.

RESEARCH REPORT VTT-R-08126-13

15 (46)

Figure 10: Illustration of the use of FMI together with a PLM system.

2.4 New features in FMI 2.0

The following description of the FMI 2.0 specification is based on the current re-

lease of the official FMI documentation [15]. The intention is to point out the

most significant changes and improvements to FMI version 1.0 and describe what

these changes enable in practice. FMI 1.0 was released 2010, followed by number

of beta versions of FMI 2.0. The current version, Release Candidate 1, was pub-

lished in October 2013 and it will be upgraded into FMI 2.0 after prototype im-

plementations for testing are available. One major conceptual difference in FMI

version 2.0 compared to version 1.0 is the merged Model Exchange and Co-

Simulation standards. This is also emphasised in the description of FMU by dis-

tinguishing Model Exchange and Co-Simulation only by stating the latter to in-

clude its own solver in the FMU.

The released specification is mainly intended for software developers using it for

implementing FMI functionality for their software. For example communication

and function descriptions are given in detail. However, upper level descriptions

for end-users can be found in many cases. Performance issues have been consid-

ered when designing the new specification, to serve the intention that FMI will al-

so be used in microcontrollers. With large simulation models, performance issues

can also arise, although the simulations are run on efficient computers.

Several changes have been made from FMI version 1.0 to version 2.0. Many of

them are ticketed as improvements that have been wished by users. In addition,

there are some new concepts introduced. The drawback is loss of backwards com-

patibility to FMI 1.0. Most of the new features are optional, meaning they are not

mandatory to be implemented into a tool. This is handled by using capability flags

in XML file that tell if the exported FMU is using such an optional feature. The

most essential changes are analysed in the following chapters. Compact descrip-

tion of FMI version 2.0 changes is also available as a conference paper from 9th

International Modelica Conference held in September 2012 [16].

RESEARCH REPORT VTT-R-08126-13

16 (46)

2.4.1 Merging the documents, schema and header files of Model Exchange and
Co-Simulation

In FMI 1.0, there were individual documents for both Model Exchange and Co-

Simulation. Now with merged documentation, FMI concept is easier to under-

stand than before. The driving factor for merging the documentation, however,

has been combining the overlapping parts of the documents. The working mecha-

nisms in Model Exchange and Co-Simulation have remained untouched in prac-

tice, making the descriptions of these two in the previous FMI 1.0 section of this

document still valid for FMI version 2.0. In general, the documentation has im-

proved mostly because of better diagrams.

The structure and content of a text file (XML file) that includes all the static in-

formation of an FMU is described in the schema files (Figure 11). The XML file

contains a model description that consists of different variables and attributes that

have a certain value. In the schema files, required data types, default values and

value restrictions of these variables are defined. The actual meaning of these vari-

ables and attributes are defined in the FMI specification documentation. In FMI

version 2.0, there are Common Schema files for Model Exchange and Co-

Simulation, but individual fields still exist for both. For example, Co-Simulation

has an attribute canHandleVariableCommunicationStepSize to describe if the

slave is capable of handling variable communication step size.

Figure 11: The complete XML schema definition of the FMI version 2.0 [15].

An application programming interface (API) defines the interface to execute func-

tions of an FMU from a program using the FMU. In FMI version 2.0, there is a

Common API for Model Exchange and Co-Simulation, but user defined functions

RESEARCH REPORT VTT-R-08126-13

17 (46)

still exist for both. In practice, the API is implemented using C programming lan-

guage conventions. Common header files include for example all type definitions

and common function prototypes but also the specific functions for Model Ex-

change and Co-Simulation. These header files form the core of the whole FMI

concept. A great part of the specification documentation discusses about the con-

tent of these files.

2.4.2 New functionalities and flexibility of use

Discrete-time states in the FMU can be optionally defined. This allows for exam-

ple to linearize discrete-time systems and use the linearized model in linear analy-

sis and synthesis methods. Furthermore, such an FMU may be linearized in every

event instant and then the linear model can be used in a model-based controller, or

e.g. an extended Kalman filter for nonlinear state estimation. According to

Blochwitz et al. [16], the nonlinear model-based control can be implemented by

getting the FMU state just before the initialisation and in every sample period, set-

ting new continuous states from an observer, and initialising and getting the FMU

state after initialisation. From this state, it is required to perform many simulations

that are restarted after the initialisation with new input signals proposed by the op-

timiser. The nonlinear Kalman filter is achieved by getting the FMU state just be-

fore initialisation and in every sample period, setting new continuous states from

the Kalman filter algorithm based on measured values, integrating to the next

sample instant, and inquiring the predicted continuous states that are used in the

Kalman filter algorithm as the basis to set new continuous states [16].

The absolute path to the FMU resource directory is present now also in Model

Exchange, in order that the FMU can read all of its resources independently of the

“current directory” of the simulation environment where the FMU is imported.

For an FMU, it is optional to have any extra resources, but if it does have, they

need to be accessible. The resources needed by the FMU, such as maps and tables,

are data in the FMU specific files which will be read during initialisation. In addi-

tion, more folders can be added under resources (tool or model specific). In order

for the FMU to access these resource files, the resource directory must be availa-

ble in unzipped form and the absolute path to this directory must be reported via

argument fmuResourceLocation via fmiInstantiate. Now that the simulation envi-

ronment can access the resources outside its “current directory”, it can operate as

a working hierarchy master which picks up the FMUs generated by the working

hierarchy slave which may not have access to master’s “current directory”. For

example in scenario where simulation environment is a tester that tests FMUs

produced by the slave, it is possible for the slave to generate test items and pre-

pare them for testing independently of the master.

In FMI version 2.0 compared to version 1.0, variables exposed by the FMU are

categorised in different way by attributes “causality” and “variability”. Attribute

“causality” is an enumeration that defines the causality of the variable. Allowed

values are parameter, input, output, and local. For value “parameter” it applies: an

independent variable that must be constant during simulation. When “input”, the

variable value can be provided from another model. When “output”, the variable

value can be used by another model. For value “local”, it applies that the variable

is calculated from other variables and it is not allowed to use the variable value in

another model. Attribute “variability” is an enumeration that defines the time de-

pendency of the variable, in other words it defines the time instants when a varia-

RESEARCH REPORT VTT-R-08126-13

18 (46)

ble can change its value. Allowed values are constant, fixed, tunable, discrete and

continuous. When “constant”, the value of the variable does not change. When

“fixed”, the value of the variable is fixed after initialization. For value “tunable” it

applies that the value of the variable is constant between externally triggered

events due to changing variables. In this case, the attribute “causality” needs to be

“parameter” or “input”. For value “discrete” it applies that the value of the varia-

ble is constant between internal time-, state-, and step-events defined implicitly in

the FMU. For value “continuous”, no restrictions exist on value changes.

The new value, “tunable”, for variability introduced in FMI version 2.0 allows a

modelling environment to expose independent parameters that can be manually

“tuned” during simulation. “Tuning a parameter” during a simulation does not

mean to “change the parameter online” during simulation. Instead, this means: 1)

Stop the simulation at an event instant; 2) Change the values of the tunable pa-

rameters; 3) Compute all parameters that depend on the tunable parameters; and

4) Resume the simulation using as initial values the current values of all variables

and the new values of the parameters. Changing the parameter values of an FMU

during simulation is possible using specific Set-functions. These parameters

should be defined beforehand as “tunable” variables. Therefore, the software do-

ing the exporting of an FMU should have an option for the user to enable tunabil-

ity for desired parameters. For inputs, changing parameter values is possible with-

out tunability attribute. Using the tunability, parameter values of an FMU can be

changed outside the FMU. For example in the Model Exchange mode, the simula-

tion environment can change the values of an imported FMU model obviating the

change of these parameters (in the software application that was used for creating

the model) and exporting and importing it again. With hierarchical FMUs, all var-

iables in an external FMU that shall be visible and/or accessible from the envi-

ronment need to be “exposed”, in other words in the root-level FMU a corre-

sponding variable needs to be defined and in the generated code this variable must

be assigned to the corresponding variable of the external FMU. As a result, only

variables from the top most FMU are visible or accessible from the environment

where the FMU is called.

2.4.3 Performance and reliability upgrades

Connected signals can be checked to have match in units. In addition, the variable

values can be changed to match by performing unit conversion for same physical

quantity. This is enabled with the improved unit definitions. In FMI version 2.0,

the unit names are expressed by using the seven SI base units together with SI de-

rived unit “rad”, instead of using standardized unit names which has been prob-

lematic in FMI version 1.0.

An FMU has an internal state consisting of all values that are needed to continue a

simulation. This internal state consists of the values of the continuous states, dis-

crete states, iteration variables, parameter values, input values, file identifiers, and

FMU internal status information. The complete FMU state can be saved, restored,

and serialised to a byte vector that can also be stored into a file. As a result, a sim-

ulation can be restarted from a saved FMU state. This applies for both Model Ex-

change and for Co-Simulation. Rejecting steps in variable step-size Co-

Simulation master algorithms, is now performed by saving and restoring the state

instead of the less powerful method of the FMI version 1.0.

RESEARCH REPORT VTT-R-08126-13

19 (46)

Support for more sophisticated Co-Simulation master algorithms (e.g. variable

step sizes, higher order signal extrapolation etc.) that control the data exchange

between the subsystems and the synchronisation of the simulation solvers of the

slaves is added. The master algorithm itself is not part of the FMI standard.

In FMI version 2.0, the dependency information of the outputs is stored in the

XML description. This can be used for the detection of algebraic loops when

FMUs are connected with other parts of the model. Artificial or “real” algebraic

loops over connected FMUs can be handled in an efficient way also in Initializa-

tion and Event Mode (discrete time). In FMI version 1.0, algebraic loops in Ini-

tialization and Event Mode could not be handled.

Directional derivatives can be computed for derivatives of continuous-time states,

for discrete-time states, and for outputs. This is useful when connecting FMUs

and the partial derivatives of the connected FMU shall be computed. If the export-

ed FMU performs this computation analytically, then all numerical algorithms

based on these partial derivatives (for example the numerical integration method

or nonlinear algebraic solvers) are more efficient and more reliable.

2.4.4 Future of FMI usage and progress of the simulation tools

In addition to the mentioned upgrades, a number of minor improvements have

been done to increase the efficiency of the FMI standard. In spite of being rela-

tively young, the FMI standard has enjoined attention of many simulation soft-

ware designers and users. This has helped to gather extensive amount of user ex-

perience for the basis of the development.

FMI is used in many companies with good results, which drives the simulation

software vendors to include FMI in their products. If they do not, their software

will be lagging behind from the general progress of simulation tools. The support

for FMI version 1.0 is already available for many simulation software applications

although the standard has been out from year 2010. This is the result of the de-

mand from the big companies to exploit FMI in their product design and produc-

tion.

3 Virtual automation test environment

An ideal work process and data flow for the mechanical system simulation model

generation for automation testing is illustrated in Figure 12. In this description, a

Modelica tool (such as Dymola) is assumed for modelling and simulation for the

mechanical system and Simulink for the automation and control system. The envi-

ronment for the automation virtual testing is composed of two main modules: the

mechanical system (plant) and the automation system (control). The process for

creating the mechanical system simulation model begins from the design model of

the mechanical system (CAD model, the upper left corner rectangle in the figure).

This model contains the necessary information about the individual parts of the

system (geometry, mass, centre of mass and mass inertia) and the assembly in-

formation (location and orientation of the parts, and location, orientation, and the

type of the joints connecting the parts). The design model of the mechanical sys-

tem is obtained from the design system, such as CATIA. In the next phase, the as-

sembly model is complemented with the actuators, sensors, and elastic compo-

RESEARCH REPORT VTT-R-08126-13

20 (46)

nents (springs and dampers) to form the multibody system model of the mechani-

cal system (the green rectangle in the centre of the figure). In addition, the inter-

face for the automation system interaction is designed and implemented. The in-

terface contains the plant outputs for sensor signals (measurement signals of the

mechanical system) and the plant inputs for controlling the actuators. Existing li-

brary components are used in this phase, when possible (the dash-lined rectangle

on the left side of the figure). Newly defined components (e.g. new actuators) are

added to the component library for later use. In the final phase, the mechanical

system simulation model is connected with the automation system simulation

model (on the lower left corner of the figure), and the overall system is ready to

be used for automation system testing (on the lower right corner of the figure).

Figure 12: An ideal work process and data flow for the demonstration.

The creation of the environment for the automation system virtual testing is

straight forward, when the overall design of the system is followed and the simu-

lation models for both the mechanical system and the automation system are cre-

ated following good system modelling principles. This means that the physics and

logics of the systems are modelled correctly and the implementation of compo-

nents, such as measurements in the mechanical system, are realistic. The difficulty

of managing the quality of a simulation model is typically strongly related to the

complexity of the model. Finding modelling and logical errors from a large and

complex model is demanding due to the large number of model components, but

also because the symptoms of a faulty model may not be obvious. It is always a

good practice to test each modelled subsystem separately to minimise the risk of

RESEARCH REPORT VTT-R-08126-13

21 (46)

modelling or logical errors, before combining the overall simulation model. The

importance of good documentation cannot be over emphasised. Following strictly

the system design in the model implementation minimises the need for parallel

model documentation.

Application of the virtual environment for the automation system testing in real

industrial product process is challenging. In this work, the actual application of

the virtual testing environment is not demonstrated. The selected scenario for the

use of the environment is for testing the designed automation system. In principle,

using simulation in product development process for testing and validating the de-

sign is not the optimal approach. In the design process, the investment on the vir-

tual prototype for validating the design does not feed any added information back

to the design process during the early design phase but after most of the design

work has already been done. This means, the valuable information about the plant

and the automation system interaction cannot be exploited in the design process.

If a design flaw is discovered in virtual testing, the design work has to take steps

backwards to correct the issue. If the simulation was used already during the de-

sign process, this step could have probably been omitted. The information feed-

back in different design loops, either in form of useable knowledge or more con-

crete in form of reusable design or modelling components, is illustrated with grey

arrows in Figure 12.

3.1 Target system and its subsystems

A relatively simple mechanism was selected for the target system of the automa-

tion and control system virtual test environment. The target system is a partial

pick-up mechanism in the Metso Paper OptiPress system (Figure 13). The mod-

elled mechanism does not follow exactly the real system but some details of the

mechanism have been modified and some parts have been left out. The objective

of this study was to demonstrate the process of using an existing CAD model as

the starting point for building a virtual test environment for system automation

and control. A CAD model image of the modelled and simulated target system is

presented in Figure 14.

Figure 13: The Metso OptiPress system [17].

RESEARCH REPORT VTT-R-08126-13

22 (46)

In the target system, the pick-up function gets the paper web from the forming

section of the paper machine and feeds it through the press section and later

through the drying section. In a real system, the control and automation of the

mechanism has many functions and critical timings, but they are not included into

this demonstration. In the demonstration case, only a simple lowering and lifting

operation of the pick-up blade was modelled and simulated.

The modelled and simulated mechanism consists of frame structures (the grey

parts in both ends of the system in Figure 14), levers (the green parts in Figure

14), hydraulic cylinders (the red and orange parts in Figure 14), and a pick-up

blade (the grey part in the middle of the system). The hydraulic cylinders operate

the levers that turn around their pivot joint (in the right lower corner of the lever

in Figure 14) and make the pick-up blade to move down and up. The hydraulic

cylinders are driven by the hydraulic subsystem, which is controlled by the con-

trol subsystem. The dependencies of the target system’s subsystems are illustrated

in Figure 15.

Figure 14: A CAD image of the target system, a pick-up mechanism of the Metso

OptiPress system. In the picture, the side plate of the frame structure has been

removed.

RESEARCH REPORT VTT-R-08126-13

23 (46)

Figure 15: Target system’s subsystems and their dependencies.

3.2 Approaches for the implementation

The necessary tool chain and the process described in a principle level in the pre-

vious section can be implemented with several different kinds of strategies and

software applications. A fully integrated design and simulation environment can

be applied, in which the data flow between different modelling and simulation

tools is often seamless. The drawback in this approach can be the availability of

the integration of some special software application components and the number

of options for each modelling and simulation purpose. Another strategy is to com-

pose the overall system using separate tools for each phase in the process. This

approach offers the flexibility of selecting the most appropriate tools for each

phase, but often requires additional work for connecting the tools in the process to

enable seamless data flow between different software applications. The following

optional solutions for the implementation were considered:

­ CATIA V6 environment with mechanical design and the systems engineer-

ing modules; this approach provides in principle good software component

integration and data flow in the modelling and simulation process, but the

development of the required software features are still in progress at the time

of writing this report,

­ CATIA V5 together with LMS Virtual.Lab Motion software package; this

approach is based on the previous version of the CATIA software applica-

tion and a third-party simulation tool, LMS Virtual.Lab Motion, which is

implemented on top of CATIA V5 software platform,

­ A general CAD software application with a general MBS software applica-

tion and a general hydraulic and control system simulation software applica-

tion; this approach provides flexibility in individual domain software appli-

cation selection, but may introduce challenges in data exchange,

­ A CAD software application with Mathworks Simscape/SimMechanics,

Simscape/SimHydraulics and Simulink; this approach limits the number of

different software application into two and would provide good software in-

tegration between different simulation domains.

These options are discussed in more detail below.

3.2.1 CATIA V6 environment

There are numerous commercial tools that can be used for creating a virtual auto-

mation testing environment. The Dassault Systèmes V6 (version 6) architecture,

3DEXPERIENCE, consists of the CATIA V6 design environment, ENOVIA data

Mechanical subsystem

Control subsystemHydraulic subsystem

Measurements

Control signal

Mechanism actuation

RESEARCH REPORT VTT-R-08126-13

24 (46)

management system, DELMIA manufacturing modelling and simulation envi-

ronment, SIMULIA detailed physics simulation environment, and a set of other

software components. ENOVIA provides the PLM functionality for the architec-

ture and can be seen as the backbone of the architecture together with the V6 plat-

form. The SIMULIA environment is built around the Abaqus finite element meth-

od software package. Abaqus can be used for structural analysis, computational

fluid dynamics, and other multi-physics applications.

CATIA
11

 V6 design environment offers a solution for fully integrated data flow

and unified user interface for all the modelling and simulation modules. The envi-

ronment has tools for e.g. part design (design of mechanical components), assem-

bly management, and system simulation. The system simulation module, based on

the Dymola
12

 system modelling and simulation package, has an interface to some

external simulation tools, such as Matlab/Simulink
13

, and it can be used together

with hardware-in-the-loop tools, such as xPC Target
14

 and dSPACE
15

.

International Organization for Standardization standard ISO/IEC 15288 [22] de-

fines concepts and general processes for systems engineering (SE) and system

life-cycle process. A more verbose and detailed description of the SE process is

given by International Council on Systems Engineering (INCOSE) in its Systems

Engineering Handbook [23]. The CATIA V6 design environment follows the

concept of the SE process. The platform has tools for definition and linking of re-

quirements (requirement engineering), design and definition of system functional

architecture, design and definition of system logical architecture, and design of

the physical properties of the product (CAD).

From the above described options, the CATIA V6 environment was originally se-

lected for this demonstration. This was due to the long-term design objectives of

the CATIA V6 environment, which are planned to support simulation-based

product development and also the simulation-based product life-cycle process. At

the time of implementing the demonstration system, the available version of the

CATIA V6 software was 2011x.

3.2.2 CATIA V5 and LMS Virtual.Lab Motion

The previous version of the Dassault Systèmes design environment, CATIA V5

(version 5), offers another approach for an integrated design and simulation envi-

ronment. A third party simulation software package, LMS Virtual.Lab
16

, is built

on the CATIA V5 software platform. The Virtual.Lab modelling applications uti-

lise the part and assembly modelling capabilities of the CATIA environment, and

thus fully integrate with the CATIA V5 environment and its data flow. LMS Vir-

tual.Lab Motion, the module for simulating the dynamics of mechanical systems,

can be used for co-simulation with external simulation packages, such as LMS

Imagine.Lab AMESim
17

 and Matlab/Simulink. LMS Virtual.Lab has software in-

terfaces to some other CAD packages, such as Pro/Engineer, CATIA V4, and Au-

11

 Dassault Systèmes, CATIA: http://www.3ds.com/products/catia
12

 Dassault Systèmes, Dymola: http://www.3ds.com/products/catia/portfolio/dymola
13

 Matworks, Simulink: http://www.mathworks.se/products/simulink/index.html
14

 Matworks, xPC Target: http://www.mathworks.se/products/xpctarget/index.html
15

 dSPACE software: http://www.dspaceinc.com/en/inc/home/products/systems.cfm
16

 LMS Virtual.Lab software: http://www.lmsintl.com/simulation/virtuallab
17

 LMS Imagine.Lab software: http://www.lmsintl.com/imagine-amesim-1-d-multi-domain-system-simulation

http://www.3ds.com/products/catia
http://www.3ds.com/products/catia/portfolio/dymola
http://www.mathworks.se/products/simulink/index.html
http://www.mathworks.se/products/xpctarget/index.html
http://www.dspaceinc.com/en/inc/home/products/systems.cfm
http://www.lmsintl.com/simulation/virtuallab
http://www.lmsintl.com/imagine-amesim-1-d-multi-domain-system-simulation

RESEARCH REPORT VTT-R-08126-13

25 (46)

todesk Inventor, and CAD models in formats, such as STEP, IGES, and ParaSol-

id, can be read into the system.

The simulation environment approach of LMS Virtual.Lab is tightly integrated

with the CATIA V5 platform. The geometry modelling features rely on CATIA

3D modelling features and the system has excellent and seamless data flow from

CATIA V5 CAD modules. On the other hand, the openness of the solution, ability

to connect third party and in-house software applications to the process, and ex-

tensibility of the modelling and simulation capabilities are an open question.

3.2.3 General CAD and general MBS

Many multibody system simulation software packages can read CAD models in

either standard formats, such as STEP (ISO-10303, AP203 and AP214) and IGES,

or in some proprietary geometry formats, such as ParaSolid and ACIS. This ap-

proach enables flexible selection of the software applications in the process. The

challenge in this approach is the implementation of the geometry import of a CAD

model into the MBS software application. If the MBS software application does

not support full solid geometry import, but converts the geometry into a faceted

surface representation, the geometrical features, such as centre points of spheres

and centre lines of cylinders, are not available for the modelling in the MBS soft-

ware application. This may become a problem, if the mechanism is complex. In

addition, if the solid geometry import is not successful due to inaccuracies in the

geometry surface representation, the imported part does not form a solid (i.e. the

volume defined by the surface facets is not closed) and the mass properties for the

part cannot be defined based on the geometry and given density.

There are available several commercial, general-purpose multibody system simu-

lation packages. Often mentioned software applications are:

­ LMS Virtual.Lab Motion,

­ MSC Adams,

­ Recurdyn, and

­ Simpack.

The approach described above was selected for the implementation of the demon-

strator.

3.2.4 A CAD software and MatWorks Simscape/SimMechanics

MathWorks SimMechanics is a modelling library in the Simscape modelling envi-

ronment that is designed for three-dimensional mechanical system simulation. The

Simscape
18

 language itself is similar to Modelica simulation language. The lan-

guage is based on the MATLAB language and extends the Simulink environment

with modelling libraries especially for physical systems. The Simscape language

is designed and maintained by MathWorks Inc. The Simscape basic library con-

tains components for one-dimensional translational and rotational mechanics,

electrical systems, hydraulic components and systems, and thermal systems. There

are extended libraries for simulation of

­ multibody system (SimMechanics)

­ drivelines (SimDrivelines)

18

 MathWorks Simscape: http://www.mathworks.se/products/simscape/

http://www.mathworks.se/products/simscape/

RESEARCH REPORT VTT-R-08126-13

26 (46)

­ electronic and electromechanical systems (SimElectronics)

­ hydraulic systems (SimHydraulics)

­ electrical power systems (SimPowerSystems)

The Simscape models and components can be mixed with components and mod-

els in Simulink and MATLAB.

The most relevant package of Simscape for this work is the SimMechanics that

provides functionality for multibody system simulation. There is an additional

product, SimMechanics Link, that enables data exchange between Pro/Engineer,

SolidWorks, and Autodesk Invertor CAD systems and Simscape.

4 Implementation

4.1 Original approach with CATIA V6 and Modelica

The CATIA V6 platform is a large and complex software package and e.g. the in-

stallation, including the software documentation, on the Windows 7 64-bit plat-

form requires about 4.7 GB of disk space. In addition, the tested version of the

software was relatively early in the latest CATIA V6 series and many features of

the system were clearly still under development and some important features were

missing. Also, the stability and performance of the system needed some im-

provement. Due to all these, learning to use the system in intended way was a big

challenge and it is obvious that some of the negative user experiences are because

of the familiarising process was still in progress.

In the tested version of CATIA V6, the integration of the Modelica-based system

simulation module, Dynamic Behavior Modeling (DBM, Figure 16), was still par-

tial. This system module was one of the most important ones for this project task,

because it was meant to be used for modelling both the dynamics of the mechani-

cal system and the connected control system. One of the most limiting features

was that the model data that existed in the CAD modelling modules of the CATIA

system, Mechanical Design (MDE, Figure 17), was not available for system mod-

elling. In the case of mechanical system modelling, this was especially problemat-

ic, because for MBS simulation the fundamental information for the system is the

mass, centre of mass location and mass inertia tensor for the system parts (i.e. me-

chanical system bodies). In most of the commercial MBS software applications

this information is provided automatically based on the geometry and density in-

formation of the parts. Another feature for which the system geometry is used is

to define the location and orientations of system parts, joints and forces. In the

CATIA V6 DBM module, all these definitions had to be done manually copying

the information from the MDE module.

RESEARCH REPORT VTT-R-08126-13

27 (46)

Figure 16: An example of an attempt to create the MBS model of the cutter system

in the CATIA V6 Dynamic Behavior Modeling module.

As the MBS modelling is highly related to the geometry of the mechanical sys-

tem, 3D modelling of the mechanism is the convenient approach. 2D graph-based

modelling view gives explicit and clear information about the topology of the sys-

tem and the connectivity of its components, but does not give any feedback about

the location and orientation of the components. 2D and 3D views complete each

other and increase productivity in modelling and simulation process, but typically

most of the modelling work is done in 3D. In the CATIA V6 DBM module, the

modelling of a 3D mechanism is done using 2D graph-based user interface.

Figure 17: The CAD model of the cutter system in the CATIA V6 Mechanical De-

sign module.

4.2 Complementary approach with MSC Adams and Simulink

Due to limited resources in this project for the modelling and simulation, the vir-

tual test environment of the mechanical system for control and automation testing

RESEARCH REPORT VTT-R-08126-13

28 (46)

was decided to be implemented using the combination of MSC Adams and

Matlab/Simulink software applications. The main reason for this selection of the

software was that the author had previous experience on these software applica-

tions and their application on similar simulation tasks. It is important to notice that

the implemented modelling and simulation process does not demonstrate the bidi-

rectional data flow and iterative nature of the process as illustrated in Figure 12.

The MSC Adams software, used for the mechanical system simulation, can utilise

the 3D solid geometry that was available from the CAD system, but there is no di-

rect link from the MBS simulation back to the CAD design system. This means, if

there is need for modifications in the mechanical system design, the model has to

be updated manually and the change requests from the mechanical system simula-

tion have to be exchanged by other means.

4.2.1 Mechanical system of the test case

The work for implementing the virtual test environment started with writing out

the existing CAD model from the CATIA V6 environment in STEP format

(ISO 10303-21, AP203). The STEP model was then converted into commercial

Parasolid format (format version 19.0). The MSC Adams View pre-processing

software application uses natively Parasolid as its geometry format. With this

format, it was possible to import the whole system assembly at once and the parts

of the assembly retain their original mass properties. The model did not save its

assembly hierarchy in the conversion process, but the whole assembly was flat-

tened when imported into MSC Adams View pre-processor. The imported CAD

model assembly in MSC Adams View processor is shown in Figure 18 with par-

tial model part list visible on the left side and mass properties for one part shown

in the Information window.

Figure 18: The assembly of the test case imported into MSC Adams using Para-

solid format; the mass properties of one part in the assembly are shown.

The next phase in the modelling process was to rebuild the assembly and join in-

dividual parts to form rigid MBS bodies suitable for the simulation of the mecha-

nism (Figure 19). The motivation for doing this is computational. In the multibody

system formulation used in the MSC Adams software application, each multibody

system free part (body) introduces 18 equations into the set of equations to be

RESEARCH REPORT VTT-R-08126-13

29 (46)

solved. On the other hand, each multibody system part may contain several geom-

etries (e.g. assembly components) that are treated as one rigid body in the simula-

tion. In the selected modelling approach for the demonstration case there are 11

individual rigid moving parts in the system and the system ground part.

Figure 19: The parts of the CAD model have been joined to form MBS model bod-

ies (the opened list on the left side of the screen view).

After the suitable bodies for the MBS model were formed, the model was ready

for defining the joints, actuators (forces representing hydraulic cylinders and

dampers), and other modelling components. Due to the use of Parasolid solid ge-

ometry, the locating of the model components was straightforward. The locations

and orientations of the model components could be defined using geometry fea-

tures, such as centre points and corners. In Figure 20 is shown the location of the

joint for the piston end of one hydraulic cylinder (highlighted both in the geome-

try view and in the component browse list on the left). In this case, a hooked joint

(cardan joint) was used to prevent the cylinder piston to unnecessarily rotate

around its own axis.

RESEARCH REPORT VTT-R-08126-13

30 (46)

Figure 20: Location and orientation of the piston end of one of the hydraulic cyl-

inders in the MBS model.

The force components, representing e.g. the hydraulic actuators and cylinder end

contact forces, were defined with a similar manner as the joints (Figure 21 and

Figure 22). The use of geometric features, such as centre points, simplified the

modelling process and made it fast.

Figure 21: Modelling of a hydraulic cylinder actuator force component. A single

component force (force acting between two points in space) was used for the hy-

draulic cylinder force.

RESEARCH REPORT VTT-R-08126-13

31 (46)

Figure 22: Modelling of a hydraulic cylinder end stopper contact force. Standard

force functions were used for modelling the force components in the case.

The mechanical model of the test system can be considered to be a relatively sim-

ple multibody system model and it contained the following 11 bodies:

­ Hydraulic cylinders (cylinder_left and cylinder_right)

­ Damping cylinder (cylinder_small)

­ Cutting edge (edge)

­ Cutter frames (frame_left and frame_right)

­ Cutter levers (lever_left and lever_right)

­ Hydraulic cylinder pistons (piston_left and piston_right)

­ Damping cylinder piston (piston_small)

In total, the model included the following 13 joints:

­ Cylindrical joints between hydraulic cylinder and piston

(CYL_piston_left_cylinder_left,

CYL_piston_right_cylinder_right, and

CYL_piston_small_cylinder_small)

­ Fixed joint between cutter frames and modelling ground

(FIX_frame_left_ground and FIX_frame_right_ground)

­ Cardan joints connecting hydraulic cylinders

(HOO_cylinder_left_frame_left, HOO_cylinder_right_frame_right,

HOO_cylinder_small_frame_right, HOO_piston_left_leverl_left,

HOO_piston_right_lever_right, and HOO_piston_small_lever_right)

­ Revolute joints connecting the levers to the frames

(REV_lever_left_frame_left and REV_lever_right_frame_right)

The model had the following nine force components:

­ Gravity (gravity)

­ Bushings connecting the edge and the levers (BUS_edge_lever_left and

BUS_edge_lever_right)

­ Forces representing damping in the hydraulic cylinders

(SFO_cylinder_damping_left and SFO_cylinder_damping_right)

RESEARCH REPORT VTT-R-08126-13

32 (46)

­ Forces representing the end stoppers of the hydraulic cylinders

(SFO_cylinder_endstop_left and SFO_cylinder_endstop_right)

­ Forces representing the hydraulic force of the hydraulic cylinders

(SFO_cylinder_left and SFO_cylinder_right)

After the joint and force components were defined, the model was ready for sim-

ple test simulation, such as computing static equilibrium analysis and simple dy-

namic simulations. Even though the model does not represent the real system at

this phase, it is important to run these test simulations regularly and check that the

model behaves reasonably. E.g. this model, if properly modelled, should find suc-

cessfully static equilibrium so that the hydraulic cylinders are compressed to min-

imum length and the pistons hit the end stops (the hydraulic pressure forces were

not yet modelled at this modelling phase).

The hydraulic system was modelled and simulated in Simulink using Simscape

hydraulics library. For the runtime communication of the MSC Adams solver and

Simulink, additional model components were created in the mechanical system

model to

1) measure hydraulic cylinder lengths and compression speeds, and

2) supply the hydraulic force value to the force components in the mechani-

cal system model.

State variable components were used in MSC Adams for defining the communica-

tion interface between the software applications:

­ Input signals from Simulink for hydraulic forces

(VAR_cylinder_force_left and VAR_cylinder_force_right)

­ Output signals to Simulink as measurements (VAR_cylinder_length_left,

VAR_cylinder_length_right, VAR_cylinder_velocity_left, and

VAR_cylinder_velocity_right)

In Figure 23 is shown a screen image of the definition of the communication inter-

face between MSC Adams and Simulink.

Figure 23: Definitions of the communication interface between MSC Adams solv-

er and Simulink.

RESEARCH REPORT VTT-R-08126-13

33 (46)

It is possible to define the co-simulation mechanism to be FMI instead of the Ad-

ams-specific one shown in Figure 23. In that case, the selection for the target

software in the Adams/Controls Plant Export dialog would have been FMU. For

that selection there would have been an additional option to define the process

communication to use TCP/IP instead of PIPE communication. At the time of

writing this report, Simulink did not natively support FMI communication mecha-

nism. There are two third party toolboxes available for Matlab/Simulink to add

support for FMI:

­ FMI Toolbox for Matlab (FMI for model exchange and for co-simulation),

by Modelon Ab
19

­ FMI Blockset for Simulink (FMI for co-simulation), by Claytex
20

The FMI interface was not used in this case, because it was not available in the

author’s modelling and simulation test environment.

4.2.2 Hydraulic and control system of the test case

The hydraulic, control, and automation systems were modelled and simulated in

the Simulink/Simscape environment. The model hierarchy and visual implementa-

tion followed the architecture of the systems. In Figure 24 is shown the top level

of the overall case system. In this figure, the orange block represents the mechani-

cal subsystem, the magenta block represents the automation and control subsys-

tem, and the green block represents the hydraulic subsystem. The arrows between

the blocks represent the output-input signals of the system; most of the signals in

this level have physical meaning, such as position, velocity, and force. The control

signal between control and hydraulic subsystems is normalised to be between [−1,

+1].

The organisation of the subsystems in the Simulink emphasises the modular struc-

ture of the virtual prototype of the target system and simplifies the division of the

simulation model development for several engineers. In addition, the meaningful

interfaces of the subsystems minimise the risk for misunderstandings and errors in

the modelling phase and when connecting the sub-models for creating the whole

system model.

19

 Modelon FMI Toolbox for Matlab: http://www.modelon.com/products/fmi-toolbox-for-matlab/
20

 Claytex FMI Blockset for Simulink: http://www.claytex.com/products/fmi-blockset-for-simulink/

http://www.modelon.com/products/fmi-toolbox-for-matlab/
http://www.claytex.com/products/fmi-blockset-for-simulink/

RESEARCH REPORT VTT-R-08126-13

34 (46)

Figure 24: The top level view to the overall test system model. The orange block

represents the mechanical subsystem, the pink block represents the automation

and control subsystem, and the green block represents the hydraulic subsystem.

The contents of the mechanical subsystem are depicted in Figure 25. The Sim-

ulink reference to the mechanical subsystem, i.e. the necessary Simulink model

components that connect the external simulation of the mechanical subsystem to

the other subsystems modelled in Simulink, is exported from the MSC Adams

View pre-processor and does not need to be edited in Simulink. Exporting the

Controls Plan model from MSC Adams produces the following files into the mod-

elling directory:

­ <file name>.adm, a MSC Adams/Solver input file;

­ <file name>.cmd, a MSC Adams/View command input file (optional);

­ <file name>.m, a Matlab command input file;

­ <file name>.xmt_txt, a Parasolid geometry input file (optional);

The optional files are needed if the mechanical model is visualised during the

simulation in MSC Adams View pre-processor. The procedure to import the me-

chanical system model into Simulink is described in detail in the MSC Adams

documentation [24]. When the mechanical system model has been imported into

Simulink, only the numerical solving and software application communication pa-

rameters have to be set. Otherwise, the subsystem model does not need to be

changed.

RESEARCH REPORT VTT-R-08126-13

35 (46)

a) b)

Figure 25: a) The mechanical subsystem model, written from the MSC Adams

View pre-processor. b) The numerical solving and software application communi-

cation parameters in Simulink.

The automation and control subsystem in the demonstration case is simplified and

it is practically a template for a realistic control system model (Figure 26). Despite

of the simplicity, the control system model demonstrates the modularity of the vir-

tual prototype architecture and shows how the input and output signals are treated

in the model interfaces. In Figure 26, the white icons are the components of the

control subsystem, the orange icons represent the input signals to the model of the

control subsystem, and the light blue icon represents the control subsystem output

signal. The modelled control system does not use the input signals, and only pro-

duces time dependent signal for the hydraulic subsystem; the output signal form is

presented in Figure 27.

Figure 26: The model of the control subsystem in Simulink. The model is simple

but shows the modularity of the overall model and how the signals are treated at

the subsystem model interfaces.

RESEARCH REPORT VTT-R-08126-13

36 (46)

Figure 27: The form of the control subsystem output signal as a function of time.

The hydraulic subsystem that is driving the mechanism in the overall model is

modelled and simulated using Matlab/Simscape physical system simulation librar-

ies in Simulink, depicted in Figure 28. In the figure:

­ the white icons represent hydraulic components, such as a pump, a valve,

cylinders, and pipes;

­ the dark yellow icons represent monitor components, used for plotting simu-

lation results during and after a simulation;

­ the orange icons represent input signals to the hydraulic subsystem;

­ the light blue icons represent the output signals from the hydraulic subsys-

tem; and

­ the light grey icons represent lumped model structures that do not have clear

physical meaning but are necessary to connect non-physical Simulink sig-

nals to physical signals in Simscape in the simulation model (see Figure 29

as an example of lumped model “Cylinder connect left”; see [25] for more

information).

The hydraulic subsystem contains the following physical components:

­ a hydraulic fluid source (tank);

­ an idealised pump;

­ a 4/3 directional valve;

­ two double-acting hydraulic cylinders;

­ a hydraulic fluid tank; and

­ hydraulic piping.

The hydraulic pipe walls can be treated either as rigid or flexible.

RESEARCH REPORT VTT-R-08126-13

37 (46)

Figure 28: The model of the hydraulic subsystem in Simulink.

Figure 29: The contents of the “Cylinder connect left” lumped model component.

The lumped components in the model of the hydraulic subsystem do not have clear

physical counterpart in the real system, but are necessary from the modelling

point of view.

4.2.3 Running the overall simulation model

The overall simulation model, including mechanical, automation and control, and

hydraulic subsystems, is run using so-called co-simulation approach. In the co-

simulation approach, the numerical simulation of the overall system is done using

two or more separate numerical solver processes that communicate with each oth-

er either after each iteration step of a computational time-step or after a successful

computational time-step. If the communication between the solving processes

happens after each successful computational time-step, in each solver process, the

solutions of the other processes are assumed to be constant during the iterative

solving of a time-step. In a case of simulating a continuous coupled system, this

approach is an approximation and may lead to qualitatively and quantitatively in-

accurate results. The approach is acceptable in many cases due to the advantages

RESEARCH REPORT VTT-R-08126-13

38 (46)

of the approach, such as the simplicity of the modelling process and good enough

accuracy for engineering purposes.

The communication between the solving process of the mechanical subsystem,

implemented in MSC Adams Solver, and the solving process of the control and

hydraulic subsystems, done in Simulink, happens after each successful computa-

tional time-step. In other words, during the iterative solving of a time-step of the

control and hydraulic subsystems in Simulink, the system states of the mechanical

subsystem are assumed to be constant in MSC Adams Solver. To prevent any sig-

nificant errors in the solution, one millisecond time-stepping was used for the in-

ter-process communication (see Figure 25 b). In the co-simulation with MSC Ad-

ams and Simulink, the Simulink process is the master process and the MSC Ad-

ams process is the slave process. This means, the Simulink process dictates the

time-stepping and calls the MSC Adams process to compute a new one millisec-

ond step and to send the time-step results to Simulink. Both of the numerical solv-

ers are using variable time-steps, which mean that the numerical solver can adjust

the size of the time-step according to the transients in the system. The time-

stepping is still adjusted to match the communication time-stepping, i.e. the max-

imum size of a time-step is limited to the size of the communication time-step (i.e.

one millisecond in the demonstration case).

4.2.4 Simulation results

Computational simulation of systems, such as the mechanical, hydraulic, and au-

tomation and control system presented in the above example, can produce large

amount of numerical data. Depending on the user’s selections, the data may in-

clude the states and their derivatives of the simulated system and any auxiliary da-

ta the user has defined. In practice, the data can be e.g. locations, velocities and

accelerations of mechanical parts in the system, measured either in the global co-

ordinate system or relative to some other part of the system. In addition, user can

define arbitrary functions to be recorded during the simulation, such as damper

absorbed power. From the hydraulic and control system models, many measures

can be defined, such as pressures or flow rates in different locations of the hydrau-

lic system, or control signal values as a function of time.

Figures 28–31 present output measures plotted from the mechanical system model

(simulated with MSC Adams). The measures are from the lifting edge centre point

measured relative to the global coordinate system. The location of the measure-

ment point is presented in Figure 30. Figure 31 presents the displacement of the

lifting edge relative to the global coordinate system, Figure 32 velocity and Figure

33 acceleration respectively. Figure 34 present a user defined measure, the power

absorbed by the motion damper of the mechanical system (the motion damper is

shown in Figure 30, the lower cylinder in the left frame). Examples of the simula-

tion results plotted from the hydraulic system (simulated with Simulink) are

shown in Figures 32 and 33. In Figure 35 is presented pressures on the cylinder

side of the directional valve. Pressures in the right side hydraulic cylinder are pre-

sented in Figure 36. The hydraulic system diagram is presented in Figure 28.

RESEARCH REPORT VTT-R-08126-13

39 (46)

Figure 30: Location of the measurement point for displacement, velocity and ac-

celeration of the lifting edge.

Figure 31: An example of an output measure, the lateral (x coordinate direction

in modelling coordinate system) and vertical displacement of the lifting edge.

Figure 32: An example of an output measure, the lateral (x coordinate direction

in modelling coordinate system) and vertical velocity of the lifting edge.

RESEARCH REPORT VTT-R-08126-13

40 (46)

Figure 33: An example of an output measure, the lateral (x coordinate direction

in modelling coordinate system) and vertical acceleration of the lifting edge.

Figure 34: An example of a user defined function expression as an output meas-

ure, in this case the power absorbed by the side damper of the system.

Figure 35: Pressures measured on the hydraulic cylinders’ side of the directional

valve. “Work” is pressure in the A channel of the valve and “Return” is pressure

in the B channel of the valve.

RESEARCH REPORT VTT-R-08126-13

41 (46)

Figure 36: Hydraulic pressures in the right side cylinder. Cylinder side A is the

cylinder’s extension side and B is the compression side.

5 Conclusions

Simulation of the overall system can be used for machine automation design and

research, and the present software tools already support the process, which was

demonstrated in the case study described in this report. There are still challenges

in data exchange between different software applications, but in most cases these

obstacles can be solved. In Section 2.1 of this report, the concept of separating

product data from the modelling and simulation tools that are using it was intro-

duced. The vision for the future for this concept is to have an overall product

model that combines and links all the relevant product data, including the design

data, into one model. With the present software tools this vision is still relatively

far, even though there are available integrated design environments that provide

tools and data management for design and simulation of many different engineer-

ing domains. There is still need for further research and development in this area

and the importance of standardisation cannot be overemphasised.

Virtual prototypes that include all the major subsystems of the product or the sys-

tem can speed up the design process and enable improving the quality of the de-

sign. To achieve this, both the software tools and the process of doing the design

have to be fitted to operate together. With the present software applications, this

requires either designing the process and, based on it, selecting the tools from the

offering of many software vendors or selecting one software vendor for providing

the overall integration system and then sticking to this choice. The first approach

gives more flexibility in selecting the best suited tools for each part of the process

but requires understanding of the process and knowledge of the available software

tools. The second option is usually more straightforward but it ties the user to one

software vendor and may decreasethe room for other options in the selection of

software applications in the process. The additional option, i.e. selecting software

applications for different parts of the process so that all the software applications

integrate fluently together and utilise a common database does not yet exist.

6 Summary

In this report, the use of virtual prototyping and computational product develop-

ment of multi-technical systems were discussed. The focus was on using multi-

technical simulation for automation and control system development and testing.

RESEARCH REPORT VTT-R-08126-13

42 (46)

In the first half of the report, the simulation-based product process and the role of

simulation in it was discussed. In addition, the vision of separating the valuable

product data (including design and simulation data) was proposed and briefly dis-

cussed. The second half of the report focused on the study case of a process to uti-

lise existing CAD model for creating a virtual, simulation-based test environment

for automation and control system development and testing. In the beginning of

this part, four different approaches for selecting the software applications were

discussed. Then, the implementation of the process in the demonstration case, i.e.

the modelling of the overall system, running the simulations and using the results,

were described and discussed.

The demonstration showed that, at least for the selected case, modelling, simula-

tion and post-processing of a multi-technical simulation system is relatively

straightforward and fast with the selected tools. The usefulness and added value of

using simulation in product process were discussed already in the introduction of

this report. The demonstration gives some understanding of the process for im-

plementing one relatively small multi-technical system but does not give realistic

feedback about the challenges in industrial-scale process for large and complex

systems’ virtual prototyping and related data exchange and data management.

RESEARCH REPORT VTT-R-08126-13

43 (46)

References

[1] Benioff, M. & Lazowska, E. Computational Science: Ensuring America's Competitive-

ness. President's Information Technology Advisory Committee (PITAC), 2005. 104 p.

http://www.nitrd.gov/pitac/reports/20050609_computational/computational.pdf (cited

on August 1, 2013).

[2] Kortelainen, J. Semantic Data Model for Multibody System Modelling. Doctoral thesis.

Espoo: VTT Technical Research Centre of Finland, 2011. 119 p. + 34 p. (VTT Publica-

tions 766.) ISBN 978-951-38-7742-2.

[3] ISO 10303-203. Industrial automation systems and integration – Product data represen-

tation and exchange – Part 203: Application protocol: Configuration controlled 3D de-

sign of mechanical parts and assemblies. Standard, International Organization for

Standardization, 2005.

[4] ISO 10303-214. Industrial automation systems and integration – Product data represen-

tation and exchange – Part 214: Application protocol: Core data for automotive me-

chanical design processes. Standard, International Organization for Standardization,

2005.

[5] Manola, F. & Miller, E. RDF Primer. The World Wide Web Consortium, 2004.

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (cited on August 1, 2013).

[6] Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P. F. & Rudolph, S. OWL 2 Web

Ontology Language Primer (Second Edition). The World Wide Web Consortium, 2012.

http://www.w3.org/TR/2012/REC-owl2-primer-20121211/ (cited on August 1, 2013).

[7] Böhms, M., Leal, D., Graves, H. & Clark, K. Product modelling using Semantic Web

technologies. The World Wide Web Consortium, 2009.

http://www.w3.org/2005/Incubator/w3pm/XGR-w3pm-20091008/ (cited on August 1,

2013).

[8] Wikipedia, “Windows XP”: http://en.wikipedia.org/wiki/Windows_xp (cited on August

1, 2013).

[9] Modelica – A Unified Object-Oriented Language for Physical Systems Modeling. Lan-

guage Specification, Version 3.2, Revision 1. Modelica Association, 2012.

https://www.modelica.org/documents/ModelicaSpec32Revision1.pdf (cited on August

1, 2013).

[10] The website of the Modelica Association: https://www.modelica.org/ (cited on August

1, 2013).

[11] Blochwitz, T., Otter, M., Arnold, M., Bausch, C., Clauß, C., Elmqvist, H., Junghanns,

A., Mauss, J., Monteiro, M., Neidhold, T. & others. The Functional Mockup Interface

for Tool independent Exchange of Simulation Models. In proceedings of 8th Interna-

tional Modelica Conference, Dresden, Germany, 2011. pp. 20–22.

[12] Functional Mock-up Interface for Model Exchange. Technical specification, document

version 1.0, MODELISAR Consortium, 2010.

https://svn.modelica.org/fmi/branches/public/specifications/FMI_for_ModelExchange_

v1.0.pdf (cited on August 1, 2013).

[13] Functional Mock-up Interface for Co-Simulation. Technical specification, document

version 1.0, MODELISAR Consortium, 2010.

http://www.nitrd.gov/pitac/reports/20050609_computational/computational.pdf
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/2012/REC-owl2-primer-20121211/
http://www.w3.org/2005/Incubator/w3pm/XGR-w3pm-20091008/
http://en.wikipedia.org/wiki/Windows_xp
https://www.modelica.org/documents/ModelicaSpec32Revision1.pdf
https://www.modelica.org/
https://svn.modelica.org/fmi/branches/public/specifications/FMI_for_ModelExchange_v1.0.pdf
https://svn.modelica.org/fmi/branches/public/specifications/FMI_for_ModelExchange_v1.0.pdf

RESEARCH REPORT VTT-R-08126-13

44 (46)

https://svn.modelica.org/fmi/branches/public/specifications/FMI_for_CoSimulation_v1.

0.pdf (cited on August 1, 2013).

[14] FMI PLM Interface – Specification for Product Lifecycle Management (PLM) of mod-

eling, simulation and validation information. Technical specification, document version

1.0, MODELISAR Consortium, 2011.

https://svn.modelica.org/fmi/branches/public/specifications/FMI_for_PLM_v1.0.pdf

(cited on August 1, 2013).

[15] Functional Mock-up Interface for Model Exchange and Co-Simulation. Technical Spec-

ification, document version 2.0 release candidate 1, MODELISAR Consortium, 2013.

https://svn.modelica.org/fmi/branches/public/specifications/FMI_for_ModelExchange_

and_CoSimulation_v2.0_RC1.pdf (cited on November 18, 2013).

[16] Blochwitz, T. et al. Functional Mockup Interface 2.0: The Standard for Tool independ-

ent Exchange of Simulation Models. In proceedings of 9th International Modelica Con-

ference, Munich, Germany, 2012. pp. 173–184.

[17] Paper machine press sections. Technical documentation, Metso Product Vault. Metso

Paper, Inc. 2013. http://www.metso.com/MP/Marketing/Vault2MP.nsf/BYWID2/WID-

051219-2256E-9A525/$File/Press_sections_PBL.pdf (cited on November 20, 2013).

[18] Bastian, J., Clauß, C., Wolf, S. & Schneider, P. Master for Co-Simulation Using FMI.

In proceedings of 8th International Modelica Conference, Dresden, Germany, 2011.

[19] Andersson, C., Åkesson, J., Führer, C. & Gäfvert, M. Import and Export of Functional

Mock-up Units in JModelica.org. In proceedings of 8th International Modelica Confer-

ence, Dresden, Germany, 2011

[20] Sun, Y., Vogel, S., Steuer, H. & Sector, E. Combining Advantages of Specialized Simu-

lation Tools and Modelica Models using Functional Mock-up Interface (FMI). In pro-

ceedings of 8th International Modelica Conference, Dresden, Germany, 2011.

[21] Schubert, C., Neidhold, T. & Kunze, G. Experiences with the new FMI Standard Se-

lected Applications at Dresden University. In proceedings of 8th International Modelica

Conference, Dresden, Germany, 2011.

[22] ISO/IEC15288:2008. Systems and software engineering — System life cycle processes.

Standard, International Organization for Standardization, 2008.

[23] Haskins, C., Forsberg, K. & Krueger, M. (editors). Systems Engineering Handbook – A

Guide for System Life Cycle Processes and Activities. International Council on Systems

Engineering (INCOSE), version INCOSE-TP-2003-002-03.1, 2007.

[24] Online documentation for MSC Adams/View, version 2012.2.

[25] Inline documentation for Matlab/Simulink/Simscape, version R2012a (7.14.0.739).

https://svn.modelica.org/fmi/branches/public/specifications/FMI_for_CoSimulation_v1.0.pdf
https://svn.modelica.org/fmi/branches/public/specifications/FMI_for_CoSimulation_v1.0.pdf
https://svn.modelica.org/fmi/branches/public/specifications/FMI_for_PLM_v1.0.pdf
https://svn.modelica.org/fmi/branches/public/specifications/FMI_for_ModelExchange_and_CoSimulation_v2.0_RC1.pdf
https://svn.modelica.org/fmi/branches/public/specifications/FMI_for_ModelExchange_and_CoSimulation_v2.0_RC1.pdf
http://www.metso.com/MP/Marketing/Vault2MP.nsf/BYWID2/WID-051219-2256E-9A525/$File/Press_sections_PBL.pdf
http://www.metso.com/MP/Marketing/Vault2MP.nsf/BYWID2/WID-051219-2256E-9A525/$File/Press_sections_PBL.pdf

RESEARCH REPORT VTT-R-08126-13

45 (46)

APPENDIX A: List of software applications supporting FMI 1.0

Below is a list of software applications that support FMI version 1.0. The data is

copied from the FMI website
21

 on July 30, 2013. The meaning of the feature sup-

port in the table is as follows:

­ Planned: not yet available

­ Available: no cross check results submitted

­ Verified: passed the cross check

Table 2: FMI support in tools, compatibility table.

Tool supporting FMI Model exchange Co-simulation Notes

 Export Import Slave Master

Adams Planned Available Available High end multibody dynamics simulation software
from MSC Software

AMESim Available Available Available Planned Modelica environment from LMS-Imagine

ANSYS Simplorer Planned Planned ANSYS Simplorer is a multi-domain, multi-
technology simulation program from ANSYS.

ASim - AUTOSAR

Simulation

Available Available AUTOSAR product from Dassault Systèmes

Atego Ace Available Available Co-simulation environment with AUTOSAR and HIL

support

@Source Available Simulink via @Source

Building Controls

Virtual Test Bed

 Available BCVTB is a Software environment, based on Ptolemy

II, for co-simulation of, and data exchange with,

building energy and control systems.

CATIA Available Available Available Available Environment for Product Design and Innovation,
including systems engineering tools based on Modeli-

ca, by Dassault Systèmes

ControlBuild Available Available Available Available Environment for IEC 61131-3 control applications

from Dassault Systèmes

CosiMate Available Available Co-simulation Environment from ChiasTek

Cybernetica CENIT Available Planned Industrial product for nonlinear Model Predictive

Control (NMPC) from Cybernetica.

Cybernetica ModelFit Available Available Software for model verification, state and parameter

estimation, using logged process data. By Cyberneti-
ca.

DSHplus Planned Planned Fluid power simulation software from FLUIDON

Dymola Verified Available Verified Available Modelica environment from Dassault Systèmes.
ModelExchange also available for Simulink using

Simulink Coder.

EnergyPlus Planned Available Whole building energy simulation program

FMI Add-in for Excel Verified FMI Add-in for Microsoft Excel by Modelon. Offers

support for batch simulation of FMUs.

FMI add-on for NI

VeriStand

 Available NI VeriStand supports FMI through the use of the

FMI add-on for NI VeriStand from Dofware

FMI Blockset for

Simulink

 Available Import of FMI Co-Simulation models into Simulink -

provided by Claytex.

FMI Library Verified Verified Open source (BSD) C library for integration of FMI
technology in custom applications by Modelon.

FMI Target for Sim-

ulink Coder

 Available Export of stand-alone FMUs for Co-Simulation from
Simulink using Simulink Coder - provided by ITI

FMI Toolbox for Car-

Maker

 Available Available For IPG CarMaker via FMI Toolbox for CARMAK-

ER from Modelon.

FMI Toolbox for

MATLAB

Verified Verified Planned Verified FMI Toolbox for MATLAB from Modelon can be

used for MATLAB and Simulink.

FMU SDK Available Available Available Available FMU Software Development Kit from QTronic.

21

 FMI support in tools, compatibility table: https://www.fmi-standard.org/tools

https://www.fmi-standard.org/tools

RESEARCH REPORT VTT-R-08126-13

46 (46)

ICOS "Independent

Co-Simulation"

 Available Available Available ICOS is a co-simulation tool developed by Virtual

Vehicle

JFMI Available Available A Java Wrapper for the Functional Mock-up Interface,

based on FMU SDK

JModelica.org Verified Verified Verified Verified Open source Modelica environment from Modelon

LMS Virtual.Lab

Motion

Planned Available Available Available Virtual.Lab Motion is a high end multi body software

from LMS International

MapleSim Verified Planned Planned Planned Modelica-based modeling and simulation tool from

Maplesoft

MWorks Available Planned Planned Planned Modelica environment from Suzhou Tongyuan

NI LabVIEW Planned Graphical programming environment for measure-
ment, test, and control systems from National Instru-

ments

OpenModelica Available Available Planned Available Open source Modelica environment from OSMC

OPTIMICA Studio Verified Planned Planned Planned Modelica environment from Modelon

Ptolemy II Planned Software environment for design and analysis of
heterogeneous systems.

PyFMI Verified Verified For Python via the open source package PyFMI from

Modelon. Also available as part of the JModelica.org

platform.

RecurDyn Planned Planned Planned Planned High End Multi Flexible Body Dynamcis Software

from FunctionBay

Reference FMUs Planned Planned Reference FMUs supplied by enthusiasts and volun-
teers to show case specific FMU features

SCADE Display Planned Planned SCADE Display facilitates embedded graphics,
display and HMI development and certified code

generation for safety-critical displays from ANSYS.

SCADE Suite Available Available SCADE Suite is a model-based development envi-

ronment with certified code generation for safety
critical embedded applications from ANSYS.

Silver Verified Verified Verified Verified Virtual integration platform for Software in the Loop
from QTronic

SIMPACK Planned Available Planned Available High end multi-body simulation software from SIM-

PACK AG

SimulationX Verified Verified Verified Verified Multi-domain simulation tool for design, analysis and

virtual prototyping of complex systems by ITI.

SystemModeler Planned Planned Planned Planned Modelica environment from Wolfram Research.

TLK FMI Suite Available Available TLK FMI Suite provides LabVIEW and Simulink

blocks for FMU simulation

TLK TISC Suite Available Available Co-simulation environment from TLK-Thermo

TWT Co-Simulation

Framework

 Available Available Communication layer tool to flexibly plug together

models for performing a co-simulation; front-end for
set-up, monitoring and post-processing included

TWT FMU Trust

Centre

 Available Cryptographic protection and signature of models
including their safe PLM storage; secure authentica-

tion and authorization for protected (co-)simulation

xMOD Available Available Heterogeneous model integration environment &

virtual instrumentation and experimentation laborato-
ry from IFPEN distributed by D2T.

	1 Introduction
	1.1 Objectives

	2 About modelling and simulation in product process
	2.1 General and application-specific approach
	2.1.1 Product life-cycle data management

	2.2 Modelica simulation language
	2.2.1 Requirements-driven development and design, SysML and ModelicaML

	2.3 Functional Mock-up Interface version 1.0
	2.3.1 FMI for model exchange
	2.3.2 FMI for co-simulation
	2.3.3 FMI for PLM

	2.4 New features in FMI 2.0
	2.4.1 Merging the documents, schema and header files of Model Exchange and Co-Simulation
	2.4.2 New functionalities and flexibility of use
	2.4.3 Performance and reliability upgrades
	2.4.4 Future of FMI usage and progress of the simulation tools

	3 Virtual automation test environment
	3.1 Target system and its subsystems
	3.2 Approaches for the implementation
	3.2.1 CATIA V6 environment
	3.2.2 CATIA V5 and LMS Virtual.Lab Motion
	3.2.3 General CAD and general MBS
	3.2.4 A CAD software and MatWorks Simscape/SimMechanics

	4 Implementation
	4.1 Original approach with CATIA V6 and Modelica
	4.2 Complementary approach with MSC Adams and Simulink
	4.2.1 Mechanical system of the test case
	4.2.2 Hydraulic and control system of the test case
	4.2.3 Running the overall simulation model
	4.2.4 Simulation results

	5 Conclusions
	6 Summary
	APPENDIX A: List of software applications supporting FMI 1.0

