
This document is downloaded from the
Digital Open Access Repository of VTT

VTT
http://www.vtt.fi
P.O. box 1000
FI-02044 VTT
Finland

By using VTT Digital Open Access Repository you are
bound by the following Terms & Conditions.

I have read and I understand the following statement:

This document is protected by copyright and other
intellectual property rights, and duplication or sale of all or
part of any of this document is not permitted, except
duplication for research use or educational purposes in
electronic or print form. You must obtain permission for
any other use. Electronic or print copies may not be
offered for sale.

Title Industrial open source solutions for product life
cycle management

Author(s) Campos, J; Kortelainen, Juha; Jantunen, Erkki
Citation Cogent Engineering vol. 1(2014):1
Date 2014
URL http://dx.doi.org/10.1080/23311916.2014.939737
Rights © 2014 The Author(s). This open access article

is distributed under a Creative Commons
Attribution (CC-BY) 3.0 license.
This article may be downloaded for personal use
only

http://dx.doi.org/10.1080/23311916.2014.939737

Campos et al., Cogent Engineering (2014), 1: 939737
http://dx.doi.org/10.1080/23311916.2014.939737

Production & Manufacturing | Research Article

Industrial open source solutions for product life
cycle management
Jaime Campos1*, Juha Kortelainen2 and Erkki Jantunen2

Abstract: The authors go through the open source for product life cycle manage-
ment (PLM) and the efforts done from communities such as the open source ini-
tiative. The characteristics of the open source solutions are highlighted as well.
Next, the authors go through the requirements for PLM. This is an area where more
attention has been given as the manufacturers are competing with the quality and
life cycle costs of their products. Especially, the need of companies to try to get a
strong position in providing services for their products and thus to make themselves
less vulnerable to changes in the market has led to high interest in product life cycle
simulation. The potential of applying semantic data management to solve these
problems discussed in the light of recent developments. In addition, a basic road-
map is presented as to how the above-described problems could be tackled with
open software solutions.

Subjects: Engineering & Technology, Information & Communication Technology (ICT),
Technology

Keywords: product life cycle, simulation, data management, Semantic Web, open source
software

*Corresponding author: Jaime Campos,
Department of Informatics, Linnaeus
University, Växjö, Sweden
E-mail: jaime.campos@lnu.se

Reviewing editor:
Zude Zhou, Wuhan University of
Technology, China

Additional article information is
available at the end of the article

ABOUT THE Author
Dr Jaime Campos is an associate professor at the
Department of Informatics, Linnaeus University,
Sweden. He graduated in both Informatics and
Business Economics from the School of Business
at the University of Gothenburg. His PhD focuses
on the development of mobile and desktop
applications within the EU finance project
DYNAMITE (Dynamic Decisions in Maintenance).
Within this project, he has worked directly with
VTT (Technical Research Centre of Finland)
(www.vtt.fi) which was the project coordinator.
The application developed is based on Web and
embedded technologies and designed to provide
various services for the production industry. He
has been a reviewer of a number of scientific
journals and a project manager of research
projects. His main research interests include the
Information and Communication Technologies,
especially Web technologies as the Semantic Web,
Web 2.0, Agent and Mobile technologies in the
industrial domain, especially e-maintenance.

Pubic Interest Statement
Managing product and business data in product
life cycle process are becoming increasingly
challenging. Companies are operating in a global
environment, their processes and product cycles
are becoming faster, and the need for having
the right data at the right place in right time is
becoming crucial. Large information technology
(IT) systems are the tools to manage this
complexity, but designing and implementing these
IT systems is a complex and demanding challenge
itself. This article goes through the concept of
applying open source development model for
product life cycle management (PLM) and the
efforts done from communities such as the open
source initiative (OSI). The characteristics of the
open source solutions are highlighted and the
authors go through the requirements for PLM. The
potential of applying semantic data management
to solve the challenges is discussed in the light of
recent developments.

Received: 05 March 2014
Accepted: 19 June 2014

© 2014 The Author(s). This open access article is distributed under a Creative Commons Attribution
(CC-BY) 3.0 license.

Page 1 of 15

http://crossmark.crossref.org/dialog/?doi=10.1080/23311916.2014.939737&domain=pdf
mailto:jaime.campos@lnu.se
http://www.vtt.fi
http://creativecommons.org/licenses/by/3.0/

Page 2 of 15

Campos et al., Cogent Engineering (2014), 1: 939737
http://dx.doi.org/10.1080/23311916.2014.939737

1. Introduction
The challenge in manufacturing and service-based business can be compressed into the following
statement: to optimise quality with minimum resources fast into the market. This multi-objective
optimisation task has three complex sub-objectives that are often conflicting with each other.
Increasing quality usually increases costs and may also require more time in order to get the product
to the market. Simulation-based product development methods provide help for this by providing the
ability for concurrent design of different subsystems of the product and enabling the coupling of the
different design domains early in the development process. The trend of increasingly using simulation
in the early phases of the product life cycle can be seen e.g. in vehicle and aeroplane industry, where
the current short length of the design cycle is mostly achieved by using computational methods and
concurrent product development. The application of simulation in the product life cycle process has
been seen as one of the key factors for the success of industry (Glotzer et al., 2009).

As the competition in the markets keeps increasing, due to e.g. transition to global markets adop-
tion of new design and manufacturing technologies, the companies are forced to look for new areas
for their business to increase the solidity of the business. Especially in the mechanical engineering
industry, the service business has become the second and equally important supporting pillar for the
business. This, on the other hand, sets more expectations and demands on the application of simu-
lation in the whole product process. Because the service business has increased its importance for
the overall business, the influence of the design of the product has to be taken into account for the
whole product life cycle, including the service business. For a product of 25 years of expected life
cycle, design decisions that hold back the service business for the whole product life cycle have high
importance. Consequently, to optimise the whole business and product life cycle, all the aspects of
the product life cycle need to be taken into account in the product development phase. In addition
to technical and business point of views, ecological aspects and legislation set both opportunities
and constraints to the whole product process management, in which simulation can provide valua-
ble help. The simulation process can be divided into the following phases: modelling (creation of the
computational representation of the system to be studied), simulation (numerical solving the com-
putational model with given initial values of the system and the simulation case), and analysis of the
results (necessary actions to manipulate the results data easier processing and making conclusions
of the data). For reliable simulation, the models have to be accurate and the modelling data have to
be relevant and up-to-date. For large-scale simulations, such as business scenarios and durability
analyses, gathering and managing modelling data becomes a challenge. However, the basic pur-
pose of ICTs, such as information systems, decision support systems and simulation, is to acquire
and represent information and knowledge (Fernandez, Labib, Walmsley, & Petty, 2003; Huber &
Carlson, 1990; Nagarur & Kaewlang, 1999). It is believed that the more complete data, information
and knowledge a company has in different situations, the more accurate decisions are made
(Turban, Leidner, McLean, & Wetherbe, 2007). The authors also state that in such a situation, the
decision-maker can be viewed as a perfect predictor of the future. In this article, the characteristics
of open source software and the advantages of standardisation and open specification are high-
lighted. Thereafter, the challenges and requirements for product life cycle simulation (PLCS) are
discussed. In addition, the bottlenecks of the development of PLCS solutions and discussion on
actions to remove or decrease them are provided. In section four, an example of an open source
software approach for a PLCS solution utilising semantic data model for simulation data is intro-
duced. The example emphasises design data management, but the concept can be extended to the
other areas of product life cycle management (PLM).

2. Open source development model and standardisation for PLCS
Centralised software solutions for enterprise data management and design data management have
the tendency to become large, complex and monolithic. The size and complexity of such systems is
difficult to avoid, due to the size and complexity of the system that they are designed to represent,
but the architecture and design of the software solution have several options and justifications.
Monolithic architectures have advantages and disadvantages. The advantages of the monolithic
architecture are e.g. high-level of integration of the components in the software system and more

D
ow

nl
oa

de
d

by
 [

V
T

T
]

at
 0

5:
55

 0
1

Se
pt

em
be

r
20

14

Page 3 of 15

Campos et al., Cogent Engineering (2014), 1: 939737
http://dx.doi.org/10.1080/23311916.2014.939737

simple software management in the enterprise than with a solution composed of separate, inde-
pendent components. The disadvantages of such architecture are e.g. dependency of one software
vendor and difficulties in extending the software system with third-party software components.

The opposite of the centralised software architecture is a component-based architecture, in which
the interfaces of the components in the system are open and well-defined. This architecture is more
suitable for an ecosystem, because it also allows small vendors, such as software component pro-
viders, service providers and end-users, to provide components for the system. The advantages of
this architecture are e.g. independence of one dominant software vendor, possibility to change indi-
vidual components without changing the whole system and natural evolution of the overall system
development due to built-in opportunity for healthy competition. In addition, this approach enables
small software vendors to penetrate the ecosystem by selecting a segment that fits their require-
ments and possibilities. The disadvantages are e.g. the need for fruitful environment, including crea-
tion and maintenance of the standardisation and necessary software infrastructure, and lack of one
obvious leader of the development. The increasing interest in open source software development
model in the past years has shown not only the potential of the model, but also the challenges.

2.1. Open source development model in software business
The open source initiative (OSI) is a non-profit organisation with a global scope for the purposes of
education and active support of the benefits of open source, as well as collaboration between part-
ners in the open source community (http://www.opensource.org/). The characteristic of the open
source software is that it is developed through code contributions, i.e. in the form of patches (Hertel,
Niedner, & Hermann, 2003). This is done through the modification of the existing open source code.
The aim is, for example, to increase the quality of the code and add more functions to it. Typically,
several programmers, who might work independently, make changes to the code, i.e. to various
patches. The open source projects are successful because they are more beneficial economically,
since the open source projects involve developers from many different locations and organisations
that share code to develop software application for free (Lerner & Tirole, 2002). The authors, Lerner
and Tirole (2002), mention that the economic benefits are linked to the openness of the code, which
is beneficial, for instance, when complex software is needed where the patches play an important
role, since there are many developers involved that support each other in fixing errors. Paulson,
Succi, and Eberlein (2004) describe an empirical study, which compares the open source and closed
source software projects. They found, for instance, evidence that the open source software increases
the creativity of the software developers, what was validated through the metric functions, i.e. soft-
ware functions that are added over time to the different software applications. Another interesting
finding was that open source projects generally have fewer defects than closed source projects, as
defects are found and fixed more rapidly. This was validated through the metric amount of functions
modified over time as well as the metric functions modified as a percentage of total functions. The
OSI mentions that one of their main missions is to support the benefits of the distributed peer review
and transparency in the development process since the benefits to be expected from this approach
are better quality, higher reliability, more flexibility, lower cost and an end to predatory vendor lock-
in. There are also some major players that have built their business around open source projects.
Examples of these are Novell, Red Hat, as well as, Internet companies such as Google, Yahoo and
Facebook. All these companies have built their business primarily based on open source projects
(DeKoenigsberg, 2008). It is well known that in the late 80s the commercialised software was a com-
mon way to acquire the software applications for many companies, i.e. closed source projects
(Muselli, 2008). After this period, many companies started to switch into the open source software
application licences. This provided the companies with the rights of the software such as free use,
copy, modification, distribution and modification of the source code. Consequently, the factors to
consider when it concerns the open source software for companies are, for example, the different
types of software licences, business models, i.e. the value provided to customers and its costs. In
addition, the open source publishers are normally not the company that earns profit from the vari-
ous resources they implement. It is, therefore, crucial for companies to understand the possibilities
to earn profit from the open source software, because the business model differs from the closed

D
ow

nl
oa

de
d

by
 [

V
T

T
]

at
 0

5:
55

 0
1

Se
pt

em
be

r
20

14

http://www.opensource.org

Page 4 of 15

Campos et al., Cogent Engineering (2014), 1: 939737
http://dx.doi.org/10.1080/23311916.2014.939737

software (Teece, 1986). However, commercial developers have established processes to ensure soft-
ware quality, while the open source software depends mostly on the community, and the defect
reporting to achieve some quality level (Syed-Mohamad & McBride, 2008). In addition to this, there
are other aspects that a company needs to consider when the open source solutions are taken into
account, for instance, the software licence, i.e. the conditions of both the value creation and the
revenue that are captured, since the licence type influences the business model. Muselli (2008) iden-
tifies four strategic goals that influence the choice of a software licence. These can be mixed
together resulting in different final strategies. The first main objective of the strategy is to establish
effective development collaboration with a community of users. The second main objective is to dif-
fuse the software, i.e. through free use or free distribution. The third is to take control over competi-
tors. This is done, for example, through licence clauses in order to control the imitation, and
finally, the fourth called patrimonial valuation has to do with the possibility of getting direct reve-
nues from license fees. The two first strategies lean towards value creation and the two last into
revenue capture. All of these in different combinations result in either leaning towards the value
creation or profit earning strategy. The combination between value creation and profit licences
strategy provides a wanted balance.

2.2. Standardisation in PLM
According to Duran (2007), there are three categories of standards in use today. The first one is the
open standards, i.e. an agreement that people enable that products and systems made by different
parties work together (Srinivasan, 2005). The second category is the industrial standards which are
technologies that are commonly used, but are not necessarily open and democratically managed by
a group of users e.g. Java (Srinivasan, 2005). The last category is de facto standards in use today
because of their value or association with other technologies and not necessarily because they were
produced by a standard organisation (Srinivasan, 2005). The PLM software vendors usually want to
make their products in line with the de facto standard, because this allows them to control the con-
tent and the price of their products (Srinivasan, 2005). This conflict adds to the difficulty in providing
really interoperable systems despite similarity in PLM suppliers (Fasoli et al., 2011).

Today there are a large number of standards that companies are using, as shown in Figure 1
(Fasoli et al., 2011). The map in Figure 1 shows that different types of standards are needed at dif-
ferent stages of the product’s life cycle. The standards have been classified based on the work of
Terzi, Bouras, Dutta, Garetti, and Kiritsis (2010) and according to their position among the life cycle
and content: product, process or enterprise service (Fasoli et al., 2011). According to Fasoli et al.
(2011), the only development that has allowed each of the above systems to really work for their
customers is the integration of the Internet into PLM systems and the development of service-ori-
ented architecture (SOA). This feature allows companies to be able to access other companies’
product data at any time and from anywhere. A well-designed SOA should use a native XML
database-powered metadata repository and data orchestration engine at its core.

Figure 1. Map of interoperability
standards in the product life
cycle.

D
ow

nl
oa

de
d

by
 [

V
T

T
]

at
 0

5:
55

 0
1

Se
pt

em
be

r
20

14

Page 5 of 15

Campos et al., Cogent Engineering (2014), 1: 939737
http://dx.doi.org/10.1080/23311916.2014.939737

The process of standardisation requires the identification of relevant standards that support the
existing ones, i.e. address the hierarchy of existing and evolving standards and how they might be
useful to PLM for instance to support the exchange of products, processes, operations and the supply
chain information, etc. (Sudarsan, Fenves, Sriram, & Wang, 2005). However, the vendors of PLM sys-
tems promise improved product quality, time-to-market, costs benefits, etc., but, for its successful
implementation, the use of ontologies becomes important, since it provides critical semantic foun-
dations, which support both interoperability between software platforms and data integration. In
addition, it provides the software developers and information scientists with the possibility to con-
centrate on the various data and information that the system will utilise instead of emphasising
functionalities and other aspects of the system themselves (McGuinness, 2005; Smith & Welty,
2001). Sudarsan et al. (2005) mention that the PLM concepts promise consistent and logical integra-
tion of all the information through all the different phases of the product life cycle providing the
possibility of a more comprehensive decision-making. They, therefore, propose a framework with the
intention to support the PLM information needs and semantics of the specific domain. In addition,
another work proposes ontology-based semantic standards for PLM (Kiritsis, 2011). In another pub-
lication by the same author, he presents an overview of the research done in the area of semantics
and ontology-based technologies for product and asset life cycle management (Kiritsis, 2013). It is
recommended for purposes of interoperability of industrial systems, such as the PLM applications to
use the ISO 15926 (Industrial automation systems and integration—Integration of life-cycle data
for process plants including oil and gas production facilities), which is a standard for data modelling
and interoperability mainly for process plant data that utilises the Semantic Web technologies, such
as RDF, OWL and FOL RuleML. The ISO 15926 standard contains an upper level ontology and refer-
ence data ontology. In addition, there are two other ISO standards to be considered such as, ISO
10303 (STEP) and ISO 15288. The first one is a standard that describes how to present and exchange
digital product information. The second, i.e. ISO 15288 is a standard for system and software engi-
neering life cycle processes. It provides a common framework, which describes the life cycle of sys-
tems created by humans and defines a set of processes and associated terminology within the
framework.

However, there are several methodologies or approaches available for developing ontologies,
such as those proposed by Uschold and Grunninger (1996), Gomez-Perez (1997), Suguri, Kodama,
Miyazaki, Nunokawa, and Noguchi (2001), and Obitko and Marik (2002). There is no well-accepted
methodology for constructing an ontology and there is still much work to do for achieving a unified
view or acceptance of a methodology for ontology development. In any case, Guarino (1998) men-
tions that the next thing to model and develop in a system, after the database, is the application
programs (software) ontology. There lay the knowledge and business rules from the application
domain. These rules provide decision-making support and prognostics possibilities. The rules nor-
mally use techniques based on statistical, artificial intelligence, model-based approaches, etc.

One of the major problems when developing user interfaces is to provide the user with queries
they can make. If it is not known by the user, the querying and exploration of data will be difficult
and the software system will not be used up to its optimal level. Furthermore, since the ontologies
represent relationships that exist among the concepts in a domain, it makes it convenient to design
a user interface that offers the user the possibility to ask comprehensive, but complex and meaning-
ful questions (Bechhofer, Stevens, Ng, Jacoby, & Goble, 1999). User interfaces need thorough design
because they are connected to semantic information such as constraints on classes and relation-
ships in a certain domain (Guarino, 1998). Dahlbom (1995) mentions the Infological equation, which
is an important factor when developing user interfaces, since it highlights the importance of the user
pre-knowledge. Other important works that highlight the characteristics of user interfaces and hu-
man computer interactions are that of Stephanidis, Karagiannidis, and Koumpis (1997), Lewis
(1998), Agah and Tanie (2000), and Höök (2000). A detailed discussion about the use of ontologies
and the challenges in semantic integration that the domain faces can be found in a paper written by
Uschold and Gruninger (2004). Moreover, Kalfoglou and Schorlemmer (2003) provide a state of the

D
ow

nl
oa

de
d

by
 [

V
T

T
]

at
 0

5:
55

 0
1

Se
pt

em
be

r
20

14

Page 6 of 15

Campos et al., Cogent Engineering (2014), 1: 939737
http://dx.doi.org/10.1080/23311916.2014.939737

art paper on using ontologies for semantic integration. Another aspect, not present in the map of
interoperability standards in the product life cycle presented in Figure 1, is the processes and com-
munications point of view. For this, the standard ISO 15288 (Systems and software engineering—
System life cycle processes) provides definitions of concepts and practices. Combining the
understanding of the importance of PLM with supporting PLM systems and well-defined and utilised
product life cycle processes enable the efficient management of an overall and globally optimised
product process.

3. Requirements for PLCS
The interest towards PLCS has increased remarkably when manufacturers have got interested in
providing services for their products in order to make themselves less vulnerable to competition
and variation in sales. Another factor that has raised the interest in PLCS is the possibility of com-
paring varying design choices in order to make the product technically superior, environmental
friendly and optimal design when the complete life cycle is taken into account. The historical devel-
opment of PLM, i.e. its evolution, has originated from two directions, (Lee, Ma, Thimm, & Verstraeten,
2008). The first one starts from enterprise management and continues with the material resource
planning, enterprise resource planning, customer relationship management and ends in the supply
chain management before it evolves into one of the parts of the PLM. The other part has its back-
ground in the management of product information, i.e. computer aided design, manufacturing, and
engineering (CAD/CAM/CAE), and product data management (PDM) systems. The early systems
were limited to engineering information, which required engineering skill and knowledge. The PLM
emerged during the late 90s and its main objective is to manage all the information that passes
through all phases of the product life cycle such as design, manufacturing, sales and after sales.
The evolution of PLM has led to the fragmentation of the overall PLM solution to targeted sub-solu-
tions that do not form a whole and solid PLM system for the enterprise. Often, enterprises have
separate systems for the two categories emphasised above, one system or several linked systems
for enterprise management and another system or several linked systems for product and design
data management. And in the area of product and design data management, it is common that
some of the computational tools in the design chain are not included into the centralised data
management at all.

However, the computational simulation of the product life cycle has become important as well
since it provides solutions for the complexity of decision-making, while taking into consideration the
interest of the whole enterprise. The complexity derives from the situation of dealing with various
layers of decision-making within a system (Jahangirian, Eldabi, Naseer, Stergioulas, & Young, 2010).
The availability and quality of the data for simulation are crucial. Thus, data management is one of
the central components of PLCS.

While the application of modelling and simulation in product process is becoming more common
and widely used, the challenge of organising, managing and sharing the data related to it is becom-
ing more critical. This is due to the amount of the data, because of scattering of the data into many
information systems, because of the variety of the form of the data, and due to the requirement of
easy accessibility of the data. The PDM and PLM systems are attempting to answer to the request for
centralised information systems for data management, but they are still lacking many important
features, such as flexible business and organisational simulation capabilities.

Today many companies use PLM programs in order to handle the design process of their products.
Naturally, it could be assumed that this kind of systems should provide a good basis for PLCS.
Unfortunately, the current level of PLM systems is far from optimal (Fasoli et al., 2011). In their
paper, Fasoli et al. (2011) discuss the features of the most widely used PLM systems and show that
there are quite remarkable gaps in these systems when their capability of covering the complete life
cycle of products is considered. Another important topic is that the capability of existing PLM sys-
tems to pass information between various design and manufacturing programs is very limited. The

D
ow

nl
oa

de
d

by
 [

V
T

T
]

at
 0

5:
55

 0
1

Se
pt

em
be

r
20

14

Page 7 of 15

Campos et al., Cogent Engineering (2014), 1: 939737
http://dx.doi.org/10.1080/23311916.2014.939737

reason to this is that typically a great number of programs are used to cover the different aspects of
a product’s life cycle. As these programs are separate from each other they do not easily pass data
between each other. In fact, in some cases the only way of passing information between programs
is to do that manually. Clearly, from this follows the most important aspect that needs to be solved
when PLCS systems are built, i.e. there is a need to have a working solution for passing data between
separate programs and systems. In addition, the level of detail must increase as the product goes
through different phases in its life cycle. When defining an ideal PLCS system, after the data issue
has been solved, an important aspect to consider is what kind of simulation should be available at
the different stages of the product’s life cycle. However, the same simulation studies and tests
should be possible to carry out either based on more limited data in the early stages or with more
reliable data at later stages. The principal design choices, such as, does it run on skis or wheels?
What are the loads and stresses of the product for required performance? What are the cost impacts
of the selected structures and components on the product life cycle? What kind of maintenance
policy is optimal?

4. Semantic data model for PLCS data management
The increasing application of simulation in product development has raised a new bottleneck of data
transfer between software applications. Unlike in enterprise data management, the software devel-
opment of computational tools has focused on single computational methods and algorithms in-
stead of large-scale data modelling and system integration. In the area of engineering simulation
software, this has led to wide variety of data models and file formats, even inside a single computa-
tional domain, such as finite element method (FEM) for structural analysis. The trend towards inte-
grated design systems and integration of computational tools has emphasised the need for
centralised data management and common data models for design and engineering simulation
data. The integration of different computational tools in product development is cumbersome. As an
example, the exchange of data between different CAD systems has been a challenge for the whole
time these tools have been in use in industry. One of the most important reasons for this is the com-
plexity and differences in the internal data presentation of these software applications. The other
important reason is the closed nature of commercial tools. Supporting the data models of other
software applications, even inside the same computational domain, is difficult. Extending the com-
munication and data integration of software applications to different engineering disciplines and
even further to include software applications focusing on business, environment and organisational
process management, makes the challenge even more difficult. This is due to the complexity of the
data and numerical computation, and the amount of data involved in the process. In addition, sup-
porting data exchange with software applications of other software vendors may not be motivating
from the business point of view.

A straightforward solution for the architecture for managing product data, including modelling
and simulation data, is to use a common database for the whole organisation involved in the prod-
uct process. This enables everyone in the process to access the up-to-date data and makes possible
the centralised version control of the data. In a common database architecture, the selection of the
database technology may become crucial for the flexibility and efficiency of the system. The model-
ling and simulation data of different engineering disciplines are usually diverse what comes to data
models and the amount of data involved in one simulation. For example, the modelling data of a
FEM for structural analysis includes tabular form data for geometry discretisation, i.e. the element
mesh, and the overall structure of the model data does not vary much from a model to a model. On
the other hand, a multibody system (MBS) simulation model does not usually contain large tabular
data, and the structure of the data is more varying, which is common to all systemic type of models.
According to this, the approach of applying a common database for all the modelling and simulation
data requires the database to support all the different data models and forms in the same
database.

Semantic data modelling has shown to be an interesting approach for describing complex and
heterogeneous data. The semantic data model is based on describing all the data using simple data

D
ow

nl
oa

de
d

by
 [

V
T

T
]

at
 0

5:
55

 0
1

Se
pt

em
be

r
20

14

Page 8 of 15

Campos et al., Cogent Engineering (2014), 1: 939737
http://dx.doi.org/10.1080/23311916.2014.939737

structures that are flexible to describe different forms of information. Describing knowledge in ma-
chine-processable form for software applications requires the data to be described in formal man-
ner, but so that it does not restrict the content of the data. For the low-level data model, the form of
a data triple has gained popularity. A data triple can be presented as a statement of a subject having
a property (predicate) that has a value (object). This is depicted in Figure 2 with a simple example of
presenting the information of the colour of a car.

The form of data in semantic data model is usually defined using ontologies, which can be seen as
application-specific vocabularies that define the meaning of the data together with the structure
and connectivity of the data components (i.e. data resources, such as “Car” and “Blue” represented
by ellipses, and relations, such as “hasColour” represented by an arrow in Figure 2). On the other
hand, ontologies can be seen as an analogy to class definitions in object-oriented programming.
Thus, the data triple is the low-level data structure for data nuggets, and ontologies add a data de-
scription layer to the system. Due to the form of a data triple, i.e. having a connecting relation (predi-
cate) between two resources (subject and object), mapping pieces of data is a built-in feature of the
semantic data model. Semantic data models are often visualised as data graphs. The semantic data
model is especially suitable for representing system simulation data, which is typically strictly de-
fined and can be naturally visualised as data graphs. As an example of the semantic approach, the
application of semantic data model on MBS simulation modelling data management is discussed in
more detail in Kortelainen and Mikkola (2010) and Kortelainen (2011).

4.1. Structure for product life cycle data model
Product life cycle data includes e.g. technical data of the product, such as design and manufacturing
data, but also other data related to the product process and the business. Thus, there is no one com-
plete data model for collecting and storing the product life cycle data, but a set of concepts and
technologies that enable creating and modifying the date model based on the requirements for the
specific product process and the users.

The structure and details of the data model for a specific product process depends, among other
things, on the product or engineering domain, organisation and its structure, existing software tools
and data systems, and working practices and processes. Integrating e.g. the engineering software
tools and data into the common data model requires mapping software application specific data
into the product model. This may mean that tens of different kind of data models and data file for-
mats are managed and mapped into the common product data model. Figure 3 illustrates the com-
plexity of the product life cycle data from the engineering software application integration point of
view. An example of defining a generic MBS domain ontology, i.e. the data model for MBS modelling
data, using Semantic Web technologies and open source ontology modelling tools is discussed in
detail in Kortelainen and Mikkola (2010) and Kortelainen and Mikkola (2013).

In Figure 3, grey rectangles inside the semantic data management system represent domain on-
tologies. Arrows with open heads inside the semantics data management system represent data
mappings and possible data conversions between different ontology representations of the product
data. Arrows with shaded heads represent data links between the semantic data management sys-
tem and external software applications or data systems. Rectangles with dashed lines represent
grouping of domain ontologies or software applications.

Figure 2. An example of a data
triple.

D
ow

nl
oa

de
d

by
 [

V
T

T
]

at
 0

5:
55

 0
1

Se
pt

em
be

r
20

14

Page 9 of 15

Campos et al., Cogent Engineering (2014), 1: 939737
http://dx.doi.org/10.1080/23311916.2014.939737

The semantic data management system that is holding the semantic data management sys-
tem is presented as the large rectangle in the centre of the figure. The core of the product data
model is the generic product ontology (highlighted with bold text and thick line of the rectangle
in the figure), which defines the upper-level concepts of the product data model. The product
ontology is defined in more detail in different generic domain ontologies, such as generic design
domain ontology. The generic domain ontologies are further defined in more detail in the generic
sub-domain ontologies, such as generic CAD domain ontology for the design domain. The generic
sub-domain ontologies define the common concepts and components of the particular sub-do-
main. On the right side of Figure 3, examples of engineering software applications that are used
in product design are presented. The data from the third-party software applications is linked
with the semantic data management system. To simplify the integration of especially third-party
software applications, the semantic data management system has software application specific
ontologies so that there is no need for data transformations in the data transfer between the
software application and the semantic data management system. The software application spe-
cific data is mapped to the general domain ontology and via that to the overall product model.
There may be more ontology layers between the generic product ontology (the core of the prod-
uct model) and the individual software application specific ontologies. Similar data model struc-
ture can be defined for all the domain ontologies, such as the maintenance and marketing
domain ontology.

Figure 3. Illustration of
the semantic data model
architecture for product
process data.

Other software

Software A

Software B

Software C

MBS software

MBS B

MBS C

MBS A

FEM software

FEM B

FEM A

FEM C

SEA software

SEA C

SEA B

SEA A

CFD software

CFD A

CFD C

CFD B

Syssim software

SysSim C

SysSim B

SysSim A

CAD software

CAD C

CAD A

CAD B

Enterprise data management systems

Database ERP

CRMDatabase

OtherDatabase

Semantic data management system

Design domain

CAD domain

CAD C

CAD A

CAD B

Generic
CAD

domain
ontology

Data link

Data link

Data link

Other domains

Software A

Software B

Software C

Generic
other

domain
ontologies

Data link

Data link

Data link

SEA domain

SEA C

SEA B

SEA A

Generic
SEA

domain
ontology

Data link

Data link

Data link

CFD domain

CFD A

CFD C

CFD B

Generic
CFD

domain
ontology

Data link

Data link

Data link

MBS domain

MBS B

MBS C

MBS A

Generic
MBS

domain
ontology

Data link

Data link

Data link

FEM domain

FEM B

FEM A

FEM C

Generic
FEM

domain
ontology

Data link

Data link

Data link

Syssim domain

SysSim C

SysSim B

SysSim A

Generic
Syssim
domain

ontology

Generic
design
domain

ontology

Generic
product
ontology

Generic
environment

domain
ontology

Generic
maintenance

domain
ontology

Generic
marketing

domain
ontology

Generic
service
domain

ontology

Generic
business
domain

ontology

Data link

Data link

Data link

Data link

Data link

Data link

D
ow

nl
oa

de
d

by
 [

V
T

T
]

at
 0

5:
55

 0
1

Se
pt

em
be

r
20

14

Page 10 of 15

Campos et al., Cogent Engineering (2014), 1: 939737
http://dx.doi.org/10.1080/23311916.2014.939737

Figure 3 shows that the overall data model for product data may become very large and complex.
On the right side of the figure are some possible engineering software applications, such as CAD and
FEM. It should be noticed that it is common that there are several different software applications
present in the product process. Subcontractors may have different tools than the process owner, and
even inside a large company, different units and departments can use different tools for the same
purpose. The data transfer between the semantic data management system and the individual
software applications can be implemented e.g. file-based using file formats that the software
application supports, or the data transfer can utilise some other communication method, such as
interprocess communication sockets.

The semantic data model has a built-in feature of mapping data details, i.e. linking data pieces in
the data model is straightforward. To take advantage of this feature, all data mappings between e.g.
the data of different software applications and data transformations should be done in the semantic
data management system. The data from software applications, such as FEM and MBS software
applications, should be read as is into the semantic database. The semantic ontology related to a
specific software application should be in principle the same as the native data model of that software
application, thus there would be no need for any data transformations in the data link. To map the
software application specific data with the data from other software application data should be done
via general domain ontology to minimise the propagation of data model changes into the whole prod-
uct data model, and thus, to minimise the maintenance work for the data management system.

The general engineering sub-domain ontologies as well as the general design domain ontology
should utilise standardised data models. An example of a standardised data model for product
structure data is ISO 10303 AP 203 Configuration controlled 3D designs of mechanical parts and
assemblies. An example of the data mappings between two different engineering software
application data is illustrated in Figure 4.

Figure 4. Illustration of the
data mapping for an MBS
model in the semantic data
management system.

Semantic data management system

Generic produc domain ontology

Product family

Product version 1 Product version 2 Product version N

Generic design domain ontology

Assembly

Sub-assembly 1 Sub-assembly 2 Sub-assembly N

Part 1 Part 2 Part N

CAD domain

Generic CAD domain ontology

STEP: Part 1 STEP: Part NSTEP: Part 2

CAD software application A ontology

CAD software application A:
Part 1 (semantic)

CAD software application A:
Part N (semantic)

CAD software application A:
Part 2 (semantic)

CAD software application A:
Sub-assembly 1 (semantic)

CAD software application A:
Assembly (semantic)

MBS domain

General MBS domain ontology

MBS: Assembly

MBS: Sub-assembly 1 MBS: Sub-assembly 2 MBS: Sub-assembly N

MBS: Part 1 + geometry MBS: Part 2 + geometry MBS: Part N + geometry

Other MBS data

MBS: Model

MBS software application B ontology

MBS software application B: data (semantic)

CAD software application A

CAD software application A:
Part 1 (native)

CAD software application A:
Part N (native)

CAD software application A:
Part 2 (native)

CAD software application A:
Sub-assembly 1

CAD software application A:
Assembly

MBS software application B

MBS software application B: data (native)

D
ow

nl
oa

de
d

by
 [

V
T

T
]

at
 0

5:
55

 0
1

Se
pt

em
be

r
20

14

Page 11 of 15

Campos et al., Cogent Engineering (2014), 1: 939737
http://dx.doi.org/10.1080/23311916.2014.939737

In Figure 4, the concept of mapping CAD geometry data with MBS model data is illustrated. A CAD
model defines the physical dimensions and shape of the components e.g. in a mechanism assembly.
This information can be used as the starting point for defining an MBS model of the mechanism. The
CAD geometry defines the dimensions of the system, design of the system parts, locations and ori-
entation of the joints, and together with the material (density) information, the mass properties of
the parts of the mechanism. The CAD model can be seen as the primary information document for
these properties. In Figure 4, the primary CAD information from CAD software A is linked with the
data management system (lower right corner of the graph). The primary data is read into the CAD
software A specific ontology in the system. The CAD model data is then linked with the generic CAD
domain ontology and the generic design domain ontology. In the similar manner, the primary MBS
modelling data comes from the MBS software B. The primary data are read into the MBS software B
specific ontology in the data management system. Further, the data are mapped with the general
MBS ontology. The CAD data are then linked with the MBS data in the semantic data management
system in the general domain ontology level. In this approach, changes e.g. in the MBS software
specific data, such as changing the MBS software, do not propagate further than the software ap-
plication specific ontology and the ontology mappings between the software application specific
ontology and the general MBS domain ontology.

How the ontologies are described depends on the data management system implementation. In
systems that rely on the Semantics Web technologies, the ontology definition can be provided e.g.
by utilising Resource Description Framework (RDF) specification. In other systems, such as the
Simantics platform described in more detail the next section, the ontology is defined in the system
specific form (in case of the Simantics platform, the ontology can be defined as a Simantics graph
format layer0).

4.2. Example of open source development model for data management solution
The request for centralised data modelling and management, and the need for common mecha-
nisms for describing complex and heterogeneous data and domain knowledge initiated the develop-
ment of the Simantics platform (Karhela, Villberg, & Niemistö, 2012), a software platform and a
semantic database system for simulation data management (http://www.simantics.org). The
Simantics platform utilises the server-client architecture. The client and the graphical user interface
of the system (Simantics Workbench) is built on the Eclipse platform, an open source software plat-
form used for many software development tools and application (http://www.eclipse.org). The serv-
er of the system (Simantics Core) is a triplestore type of a database management system that holds
the data in the form of data triples. The server and the client form an entity in such a way that the
data mass is stored into the server side but the main functionality of the system is on the client side.
The client system contains functional components, such as editors, visualisation components and
different kind of data views. The simulation functionality of the system is added by connecting so-
called plug-in components to the system. Plug-ins components are e.g. numerical solvers or other
external components for producing or modifying the data. In addition, the Simantics platform con-
tains a common type and data interface system (Simantics Databoard). The software architecture of
the Simantics platform is illustrated in Figure 5. The overall design and the selected software com-
ponents make the Simantics platform both a software platform and a software development envi-
ronment for semantic applications. The common software platform for application implemented on
the Simantics platform provides unified look and feel, which has been one of the positive arguments
for e.g. integrated design environments in general. On the other hand, the common semantic data-
base system of the Simantics platform provides the foundation for data integration and semantic
data analyses. The Simantics platform is licensed under an open source software license (Eclipse
Public License).

The open source development model has been utilised in several areas of the development of the
Simantics platform. The platform itself is open source software and it utilises another open
source software platform, Eclipse, as one of its main components. In addition to the open source

D
ow

nl
oa

de
d

by
 [

V
T

T
]

at
 0

5:
55

 0
1

Se
pt

em
be

r
20

14

http://www.simantics.org
http://www.eclipse.org

Page 12 of 15

Campos et al., Cogent Engineering (2014), 1: 939737
http://dx.doi.org/10.1080/23311916.2014.939737

licensing of the Simantics platform, an open source community, the THTH Simantics Division
(https://www.simantics.org/simantics/about-simantics/thth-simantics,  https://www.simantics.org/
members/index.php/Main_Page), is initiated around the platform development. The community is
organised into a non-profit association that holds all the rights of the software and manages the
development of the platform. One of the main objectives of the THTH Simantics Division is to form a
healthy and vital ecosystem around the Simantics platform and to accelerate the development of
simulation software solutions.

The THTH Simantics Division has members that pay a participation fee for the association and, as
the return, have a position in the association’s board that makes decisions on the development di-
rections of the the Simantics platform. In addition, the members of the association have access to
some specific software components that are not included into the open source release of the
Simantics platform. The plain Simantics platform is publicly available as source code through the
SVN service. The licensing of the Simantics platform enables both open source as well as closed
source software applications to be developed on the Simantics platform.

The actual software development of the Simantics platform is done mostly in the software applica-
tion development projects, such as the development of the APROS software (http://www.apros.fi/en/).
The licensing model for the Simantics platform requires that the modifications done for the Simantics
platform itself have to be published under the same license as the platform itself. The software
development process for the Simantics platform follows the principles of the Scrum process
(http://www.scrum.org/).

5. Discussion
The developments of the open source systems and their concepts provide the companies with new
business models on how to attain the latest technology. It is, therefore, important to understand its
characteristics and how companies can benefit from this development, what is a reality for all com-
panies using ICTs for different purposes. Consequently, the popularity of the open source applica-
tions is rising, and has become a subject of real interest for many organisations. This development
has taken place since the commercialised applications are considered to be having problems, such
as making the development expensive and inefficient since they are complex, difficult to extend,
update and change. The user interfaces are problematic as well, because they are not self-adapta-
ble, but standardised. Consequently, the standardisation is an important factor within the software
development since standardising the data models and interfaces can enable forming an ecosystem
for different actors, such as small software vendors to provide their solutions for some parts of the
overall system. The Eclipse platform development is a good example of this. Furthermore, the cost
of the above-mentioned applications is increasing, respectively. Many companies adapt their al-
ready existing software systems with partly open source modules for the emerging needs of their
business. This shows that the open source philosophy is here to stay and something that companies
have to consider when developing their ICT applications. For instance, companies implementing
open source software into their already existing software need to consider if the open source

Figure 5. The software
architecture of the Simantics
platform.

D
ow

nl
oa

de
d

by
 [

V
T

T
]

at
 0

5:
55

 0
1

Se
pt

em
be

r
20

14

https://www.simantics.org/simantics/about-simantics/thth-simantics
https://www.simantics.org/members/index.php/Main_Page
https://www.simantics.org/members/index.php/Main_Page
http://www.apros.fi/en/
http://www.scrum.org/

Page 13 of 15

Campos et al., Cogent Engineering (2014), 1: 939737
http://dx.doi.org/10.1080/23311916.2014.939737

organisation/company is a software distributor, a software producer or a service provider, what is
mentioned among other aspects as well in Munga, Fogwill, & Williams, 2009. It is, therefore, even
convenient to analyse the business model of the company, while using, for example, a framework
developed by researchers, such as Munga and Fogwill (2009) or Holck and Zicari (2006). This enables
one to understand the benefits of using the open source software and the value for its business
model. In addition, to integrate open source software entails the understanding of the specific
needs of the company’s business. Moreover, it is vital to be able to answer such questions as how
the open source software will be used (value offering), how the open source software will affect the
other parts of business (the market), how the open source software will be implemented in the
company, the connected costs and how the maintenance of it will be performed, etc. The open
source is an important phenomenon since it provides control over the software code, which pro-
vides possibilities to update it and make adequate changes that fit into the specific company. The
reason of the former mentioned is because of the characteristics of the open source, for instance,
the authorisations provide the right to use the software code, examine, change and distribute the
software to other partners in the specific companies supply chain. Continuously, the acquired open
source software will not be updated or new versions appear forcing the company to buy newer ver-
sions of the software. The update of the open software is done by the community and it can be
downloaded for free. Another important aspect deals with the risk of the software to disappear if
the original developers of the software stop producing it, since the open software is owned by the
community. In addition, the access to emergent technologies is simplified due to the fact that in-
novations in the open source software are normally on the forefront of research. All the above-
mentioned aspects are important for software in any domain as well as for the PLM software.
Consequently, the use of open source provides a new business model enables a new business model
to develop PLM and PLCS software and includes factors into the application in a faster way than in
a traditional business model, i.e. proprietary model and the product can be faster in use as well with
less costs.

It is also known that the recent developments conducted in the sphere of the ICTs and their use
on the open source software, especially Web technologies, such as the Web 2.0 and the Web ser-
vices, etc. are providing software applications and their organisations with new opportunities
(Campos, 2009). In the case of PLCS, there are new possibilities to integrate various processes and
different systems. In addition, it is also known that the PDM becomes more adaptable and flexible if
it is running on a web infrastructure. This has also been acknowledged in Lee et al. 2008. The devel-
opments of the latest ICTs, such as the Web Services, provide new ways for integration of the com-
panies’ data, information and even software applications. All this results in more comprehensive
decisions which can be taken, considering the whole life cycle of a product, leading to advantages in
productivity, and competitiveness for the organisation.

6. Conclusions
The Open Source Solutions provide the companies with not only various opportunities, but also chal-
lenges that need to be carefully considered, such as licences, community to choose, etc. to achieve
a successful implementation. The capability of carrying out PLCS has raised increasing interest due
to a number of reasons. This may specially refer to companies which are trying to improve their
design process and also increase their role in providing services for their products and thus become
less sensitive to changes in the market. In spite of the growing interest, it seems that the capability
of carrying out PLCS today has not really reached a high level. It seems that the biggest obstacle is
the lack of reliable data for simulation since companies might have the needed data but this data is
scattered between numerous programs and tools that are used for different purposes and that are
not easily transferred between these systems, i.e. integrated. It is, therefore, believed that semantic
data structures and ontologies can support the software simulation of the product life cycle, what
has become important because they give solutions to the complexity of decision-making. In addi-
tion, it is believed that companies can increase and optimise their requirements specification for the
PLCS through the understanding of the ontologies, i.e. the data and information that needs to be

D
ow

nl
oa

de
d

by
 [

V
T

T
]

at
 0

5:
55

 0
1

Se
pt

em
be

r
20

14

Page 14 of 15

Campos et al., Cogent Engineering (2014), 1: 939737
http://dx.doi.org/10.1080/23311916.2014.939737

gathered, stored and transferred into the different parts of the software business logic for purposes
of simulation. This together with the developments of the Web technologies, such as the Semantic
Web and the Web services, provide new possibilities to integrate heterogeneous data as well as
distributed applications, which offers possibilities to achieve the full simulation of the entire enter-
prise resulting in more comprehensive decision-making.

Author details
Jaime Campos1

E-mail: jaime.campos@lnu.se
Juha Kortelainen2

E-mail: juha.kortelainen@vtt.fi
Erkki Jantunen2

E-mail: erkki.jantunen@vtt.fi
1 �Department of Informatics, Linnaeus University, Växjö,

Sweden.
2 VTT Technical Research Centre of Finland, Espoo, Finland.

Citation information
Cite this article as: Industrial open source solutions for
product life cycle management, J. Campos, J. Kortelainen
& E. Jantunen, Cogent Engineering (2014), 1: 939737.

References
Agah, A., & Tanie, K. (2000). Intelligent graphical user interface

design utilizing multiple fuzzy agents. Interacting with
Computers, 12, 529–542.
doi:10.1016/S0953-5438(99)00022-3

Bechhofer, S., Stevens, R., Ng, G., Jacoby, A., & Goble, C.
(1999). Guiding the user: An ontology driven interface. In
Proceedings user interfaces to data intensive systems (pp.
158–161). http://dx.doi.org/10.1109/UIDIS.1999.791472

Campos, J. (2009). Development in the application of ICT in
condition monitoring and maintenance. Computers in
Industry, 60(1), 1–20.
http://dx.doi.org/10.1016/j.compind.2008.09.007

Dahlbom, B. (Ed.). (1995). The infological equation: Essays
in honor of Börje Langefors. Gothenburg: Gothenburg
University, Department of Informatics.

DeKoenigsberg, G. (2008). How successful open source projects
work, and how and why to introduce students to the open
source world. In 21 Conference on software engineering
education and training (CSEET 2008) (pp. 274–276).
Charleston, SC, USA.

Duran, F. (2007). Interoperability and standardization between
PLM systems: How different vendors can exchange
information across different operating systems and
programming languages. ESI4628 – IE Computer
Applications. University of Central Florida.

Fasoli, T., Terzi, S., Jantunen, E., Kortelainen, J., Sääski, J.,
& Salonen, T. (2011, May 2–4). Challenges in data
management in product life cycle engineering. In
J. Hesselbacj & C. Herrmann (Eds.), Glocalized solutions for
sustainability in manufacturing: Proceedings of the 18th
CIRP International Conference on life cycle engineering
(pp. 525–530). Technische Universität Braunschweig,
Germany: Springer-Verlag Berlin Heidelberg.
doi:10.1007/978-3-642-19692-8_91

Fernandez, O., Labib, A. W., Walmsley, R., & Petty, D. J. (2003).
A decision support maintenance management system:
Development and implementation. International Journal
of Quality Reliability Management, 20, 965–979.
http://dx.doi.org/10.1108/02656710310493652

Funding
This research was supported by the project Computational
methods in mechanical engineering product development
(SIMPRO), funded by Tekes—the Finnish Funding Agency for
Innovation and the participating organisations.

Glotzer, S., Kim, S., Cummings, P., Deshmukh, A., Head-Gordon,
M., Karniadakis, G., … Shinozuka, M. (2009). International
assessment of research and development in simulation-
based engineering and science (Report). Baltimore, MD:
World Technology Evaluation Center, WTEC.

Gomez-Perez, A. (1997). Knowledge sharing and reuse. In
J. Liebowitz (Ed.), Handbook of applied expert systems
(Vol. 10, pp. 1–35). Boca Raton, FL: CRC Press.

Guarino, N. (1998, June 6–8). Formal ontology and information
systems, formal ontology in information systems. In
Proceedings of the 1st International Conference on formal
ontology in information systems (FOIS98)
(pp. 3–15). Trento, Italy.

Hertel, G., Niedner, S., & Hermann, S. (2003). Motivation of
software developers in the F/OSS projects: An Internet-
based survey of contributors to the Linux kernel. Elsevier,
Research Policy, Open Source Software Development, 32,
1159–1177.

Holck, J., & Zicari, R. V. (2006). A framework analysis of business
models for open source software products with dual
licensing. CBS/INF Working Paper, No. 1, January 2007.
Copenhagen Business School, Department of Informatics.

Höök, K. (2000). Steps to take before intelligent user interfaces
become real. Interacting with Computers, 12, 409–426.
http://dx.doi.org/10.1016/S0953-5438(99)00006-5

Huber, L. E., & Carlson, H. R. (1990, May 20–23). Information.
The undermanaged resource. In Proceedings of the
International Industrial Engineering Conference (pp.
17–22). San Francisco, CA, USA.

Jahangirian, M., Eldabi, T., Naseer, A., Stergioulas, L. K., &
Young, T. (2010). Simulation in manufacturing and
business: A review. European Journal of Operational
Research, 203(1), 1–13.
http://dx.doi.org/10.1016/j.ejor.2009.06.004

Kalfoglou, Y., & Schorlemmer, M. (2003). Ontology mapping:
The state of the art. The Knowledge Engineering Review,
18(1), 1–31.
http://dx.doi.org/10.1017/S0269888903000651

Karhela, T., Villberg, A., & Niemistö, H. (2012). Open ontology
based integration platform for modeling and simulation
in engineering. International Journal of Modeling,
Simulation, and Scientific Computing, 03, 1250004, 36 pp.
http://dx.doi.org/10.1142/S1793962312500043

Kiritsis, D. (2011). Closed-loop PLM for intelligent products in
the era of the Internet of things. Computer-Aided Design,
43, 479–501.
http://dx.doi.org/10.1016/j.cad.2010.03.002

Kiritsis, D. (2013). Semantic technologies for engineering
asset life cycle management. International Journal of
Production Research, 51, 7345–7371.
http://dx.doi.org/10.1080/00207543.2012.761364

Kortelainen, J. (2011). Semantic data model for multibody
system modelling (doctoral thesis). VTT Publications 766,
119 p. + app. 34 p. ISBN: 978-951-38-7742-2.

Kortelainen, J., & Mikkola, A. (2010). Semantic data model
in multibody system simulation. Proceedings of the
Institution of Mechanical Engineers, Part K: Journal of
Multi-Body Dynamics, 224, 341–352.
http://dx.doi.org/10.1243/14644193JMBD257

Kortelainen, J., & Mikkola, A. (2013). Semantic restrictions and
rules in applications of multibody dynamics. The Journal
of Engineering with Computers. Retrieved September 29,
2013, from http://dx.doi.org/10.1007/s00366-013-0326-x

D
ow

nl
oa

de
d

by
 [

V
T

T
]

at
 0

5:
55

 0
1

Se
pt

em
be

r
20

14

mailto:jaime.campos@lnu.se
mailto:juha.kortelainen@vtt.fi
mailto:erkki.jantunen@vtt.fi
http://dx.doi.org/10.1016/S0953-5438(99)00022-3
http://dx.doi.org/10.1109/UIDIS.1999.791472
http://dx.doi.org/10.1016/j.compind.2008.09.007
http://dx.doi.org/10.1016/j.compind.2008.09.007
http://dx.doi.org/10.1007/978-3-642-19692-8_91
http://dx.doi.org/10.1108/02656710310493652
http://dx.doi.org/10.1108/02656710310493652
http://dx.doi.org/10.1016/S0953-5438(99)00006-5
http://dx.doi.org/10.1016/S0953-5438(99)00006-5
http://dx.doi.org/10.1016/j.ejor.2009.06.004
http://dx.doi.org/10.1016/j.ejor.2009.06.004
http://dx.doi.org/10.1017/S0269888903000651
http://dx.doi.org/10.1017/S0269888903000651
http://dx.doi.org/10.1142/S1793962312500043
http://dx.doi.org/10.1142/S1793962312500043
http://dx.doi.org/10.1016/j.cad.2010.03.002
http://dx.doi.org/10.1016/j.cad.2010.03.002
http://dx.doi.org/10.1080/00207543.2012.761364
http://dx.doi.org/10.1080/00207543.2012.761364
http://dx.doi.org/10.1243/14644193JMBD257
http://dx.doi.org/10.1243/14644193JMBD257
http://dx.doi.org/10.1007/s00366-013-0326-x

Page 15 of 15

Campos et al., Cogent Engineering (2014), 1: 939737
http://dx.doi.org/10.1080/23311916.2014.939737

Lee, S. G., Ma, Y.-S., Thimm, G. L., & Verstraeten, J. (2008).
Product lifecycle management in aviation maintenance,
repair and overhaul. Computers in Industry, 59, 296–303.
http://dx.doi.org/10.1016/j.compind.2007.06.022

Lerner, J., & Tirole, J. (2002). Some simple economics of open
source. The Journal of Industrial Economics, 50, 197–234.

Lewis, M. (1998). Designing for human-agent interaction. AI
Magazine, 19, 67–78.

McGuinness, D. L. (2005). Ontologies come of age. In D. Fensel,
J. A. Hendler, H. Lieberman, & W. Wahlster (Eds.), Spinning
the Semantic Web: Bringing the World Wide Web to its
full potential (pp. 171–191). Cambridge, MA: MIT Press.
Retrieved from http://www.google.com.ua/books?id=zQ3
4EoZO2IYC&printsec=frontcover”\l”v=onepage&q&f=false
http://www.google.com.ua/books?id=zQ34EoZO2IYC&prin
tsec=frontcover#v=onepage&q&f=false

Munga, N., & Fogwill, T. A. (2009, May 6–8). Analysis of the
value that open source contributes to business models.
In IST-Africa 2009 Conference and Exhibition. Kampala,
Uganda.

Munga, N., Fogwill, T., & Williams, Q. (2009). The adoption of
open source software in business models: A Red Hat and
IBM case study. In B. Dwolatzky, J. Cohen, & S. Hazelhurst
(Eds.), Proceedings of the 2009 Annual Research
Conference of the South African Institute of Computer
Scientists and Information Technologists (pp. 112–121).
New York, NY: ACM. doi:10.1145/1632149.1632165

Muselli, J. (2008, September 21–24). Open source software
publishers business models: The strategic role of business
licenses. In Proceedings of the 2008 IEEE ICMIT. Bangkok,
Thailand.

Nagarur, N. N., & Kaewlang, J. (1999). An object-oriented
decision support system for maintenance management.
Journal of Quality in Maintenance Engineering, 5,
247–257.

Obitko, M., & Marik, V. (2002). Ontologies for multi-agent
systems in manufacturing domain. In Proceedings 13th
international workshop on database and expert systems
applications (pp. 597–602). Aix en Provence, France.

Paulson, J. W., Succi, G., & Eberlein, A. (2004). An empirical
study of open-source and closed-source software
products. IEEE Transactions on Software Engineering, 30,
246–256. http://dx.doi.org/10.1109/TSE.2004.1274044

Smith, B., & Welty, C. (2001). FOIS introduction: Ontology-
towards a new synthesis. FOIS ‘01 Proceedings of
the International Conference on formal ontology in

information systems (Vol. 2001, pp. 3–9). New York, NY:
ACM. doi:10.1145/505168.505201

Srinivasan, V. (2005, July 11–13). Open standards for product
lifecycle management. In A. Bouras, B. Gurumoorthy,
& R. Sudarsan (Eds.), Proceedings of the International
Conference on product lifecycle management: Emerging
solutions and challenges for global networked enterprizes
(PLM’05) (pp. 475–484, Inderscience Enterprizes Ltd).
Lyon: Lumière University.

Stephanidis, C., Karagiannidis, C., & Koumpis, A. (1997).
Decision making in intelligent user interfaces. In
Proceedings of the 2nd International Conference on
intelligent user interfaces (pp. 195–202). New York, NY:
ACM. doi:10.1145/238218.238323

Sudarsan, R., Fenves, S. J., Sriram, R. D., & Wang, F. (2005).
A product information modeling framework for product
lifecycle management. Computer-Aided Design, 37,
1399–1411.
http://dx.doi.org/10.1016/j.cad.2005.02.010

Suguri, H., Kodama, E., Miyazaki, M., Nunokawa, H., & Noguchi,
S. (2001, May 28–June 1). Implementation of FIPA
ontology service. In Workshop on ontologies in agent
systems, 5th International Conference on autonomous
agents, Montreal, Canada.

Syed-Mohamad, S. M., & McBride, T. (2008). A comparison
of the reliability growth of open source and in-house
software. In 15th Asia-Pacific Software Engineering
Conference (APSEC08). Beijing, China.

Teece, D. J. (1986). Profiting from technological innovation:
Implications for integration, collaboration, licensing and
public policy. Research Policy, 15, 285–305.
http://dx.doi.org/10.1016/0048-7333(86)90027-2

Terzi, S., Bouras, A., Dutta, D., Garetti, M., & Kiritsis, D. (2010).
Product lifecycle management – From its history to
its new role. International Journal of Product Lifecycle
Management, 4, 360–389.
http://dx.doi.org/10.1504/IJPLM.2010.036489

Turban, E., Leidner, D., McLean, E., & Wetherbe, J. (2007).
Information technology for management – Transforming
organisations in the digital economy. Hoboken, NJ:
Wiley.

Uschold, M., & Grunninger, M. (1996). Ontologies: Principles,
methods and application. Knowledge Engineering Review,
11, 93–136.

Uschold, M., & Gruninger, M. (2004). Ontologies and semantics
for seamless connectivity. SIGMOD Record, 33, 58–64.

© 2014 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.
You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions
You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

D
ow

nl
oa

de
d

by
 [

V
T

T
]

at
 0

5:
55

 0
1

Se
pt

em
be

r
20

14

http://dx.doi.org/10.1016/j.compind.2007.06.022
http://dx.doi.org/10.1016/j.compind.2007.06.022
http://www.google.com.ua/books?id=zQ34EoZO2IYC&printsec=frontcover"\l"v=onepage&q&f=false
http://www.google.com.ua/books?id=zQ34EoZO2IYC&printsec=frontcover"\l"v=onepage&q&f=false
http://www.google.com.ua/books?id=zQ34EoZO2IYC&printsec=frontcover#v=onepage&q&f=false
http://www.google.com.ua/books?id=zQ34EoZO2IYC&printsec=frontcover#v=onepage&q&f=false
http://dx.doi.org/10.1145/1632149.1632165
http://dx.doi.org/10.1109/TSE.2004.1274044
http://dx.doi.org/10.1145/505168.505201
http://dx.doi.org/10.1145/238218.238323
http://dx.doi.org/10.1145/238218
http://dx.doi.org/10.1016/j.cad.2005.02.010
http://dx.doi.org/10.1016/j.cad.2005.02.010
http://dx.doi.org/10.1016/0048-7333(86)90027-2
http://dx.doi.org/10.1016/0048-7333(86)90027-2
http://dx.doi.org/10.1504/IJPLM.2010.036489
http://dx.doi.org/10.1504/IJPLM.2010.036489

	OA-kansipohja1
	23311916%2E2014%2E939737
	 Industrial open source solutions for product life cycle management
	1. Introduction
	2. Open source development model and standardisation for PLCS
	2.1. Open source development model in software business
	2.2. Standardisation in PLM

	3. Requirements for PLCS
	4. Semantic data model for PLCS data management
	4.1. Structure for product life cycle data model
	4.2. Example of open source development model for data management solution

	5. Discussion
	6. Conclusions

