
This document is downloaded from the
Digital Open Access Repository of VTT

VTT
http://www.vtt.fi
P.O. box 1000
FI-02044 VTT
Finland

By using VTT Digital Open Access Repository you are
bound by the following Terms & Conditions.

I have read and I understand the following statement:

This document is protected by copyright and other
intellectual property rights, and duplication or sale of all or
part of any of this document is not permitted, except
duplication for research use or educational purposes in
electronic or print form. You must obtain permission for
any other use. Electronic or print copies may not be
offered for sale.

Title Counterintuitive results from Bayesian belief
network software reliability model

Author(s) Tyrväinen, Tero
Citation Research Report : VTT-R-04235-14

VTT, 2014
Date 2014
Rights This report may be downloaded for personal

use only.

 RESEARCH REPORT VTT-R-04235-14

Counterintuitive results from
Bayesian belief network software
reliability model
Authors: Tero Tyrväinen

Confidentiality: Public

Contents

1 Introduction 2

2 The Bayesian belief network model 4

3 Testing decreases confidence 4

3.1 General analysis using an example case 4

3.2 Assumptions related to testing 7

3.3 Parameter values . 8

4 Verification decreases confidence 11

4.1 General analysis using an example case 11

4.2 Assumptions related to verification 12

4.3 Parameter values . 14

5 Conclusions 15

1

1. Introduction

In the future, the safety automation of nuclear power plants will be software-

based to a great extent. Therefore, when assessing the risk of a nuclear power

plant, software failure have to be taken into account. Assessing software

failures is challenging because software failures are usually not caused by

random errors like failures of physical components. Instead, they are mainly

caused by systematic faults originating, for example, from faulty design or

mistakes in programming.

One approach that has been studied in the context of software reliability

analysis is Bayesian Belief Networks (BBN) [1]. Littlewood and Wright pre-

sented a BBN model for software reliability analysis in their article The use

of multilegged arguments to increase confidence in safety claims for software-

based systems: A study based on a BBN analysis of an idealized example [2].

In the model, a claim that the probability that the software fails on demand

(p.f.d.) is smaller than a specified value is analysed and the confidence to

that claim depends on testing and verification results and the prior confi-

dence on the software specification and the oracle used in testing. The node

structure of the model is presented in Figure 1.

Littlewood and Wright introduced counterintuitive results: testing or ver-

ification can reduce the confidence on the software’s reliability even if no

faults are found. In the article, it is explained that testing decreases the

confidence because the doubt on the oracle increases when a large number of

tests is performed without finding any faults. Similarly, it is explained that

a positive verification result can increase the doubt on the software specifica-

tion so that the confidence on the software decreases. Littlewood and Wright

2

Figure 1: A BBN model for software reliability analysis.

3

do not know if this is only a property of the model or a generally valid re-

sult. This document explains why the model produces these counterintuitive

results.

2. The Bayesian belief network model

The detais of the Littlewood and Wright model can be found in [2]. This

document presents the formulas in the extent that is needed to understand

the analyses. The case that is analysed is how probable it is that the soft-

ware’s failure on demand probability is smaller than specified value s if no

faults were found in testing or verification. The calculation formula that was

used in the article is

P (S < s|IO) (1)

=1−
ξ(1− p0|c)[πccµ

′
I1−s(b

′
+ n, a

′
) + πciI1−s(b

′
, a

′
)]

(1− α)p0|cπc∗ + p0|iπi∗ + ξ(1− p0|c)[πccµ′ + πci] + (1− p0|i)[πicµ+ πii]

−
(1− p0|i)[πicµI1−s(b+ n, a) + πiiI1−s(b, a)]

(1− α)p0|cπc∗ + p0|iπi∗ + ξ(1− p0|c)[πccµ′ + πci] + (1− p0|i)[πicµ+ πii]
.

The variables and parameters of the model are presented in Table 1.

3. Testing decreases confidence

3.1. General analysis using an example case

The article presented a case where the confidence that p.f.d. is smaller

than 0.001 decreased from 0.99583 to 0.66803 when the number of tests

4

Table 1: The variables and parameters of the model.

Notation Meaning
S stochastic variable representing failure on demand probability
IO ideal observations, i.e. no faults found in testing or verification
α probability that verification fails if S = 0 and spec. is correct
ξ probability that software passes verification if S > 0 and spec. is correct
p0|c parameter of failure on demand probability distribution if spec. is correct
p0|i parameter of failure on demand probability distribution if spec. is incorrect
πc∗ prior probability that spec. is correct
πi∗ prior probability that spec. is incorrect
πcc prior probability that spec. and oracle are correct
πci prior probability that spec. is correct and oracle is incorrect
πic prior probability that spec. is incorrect and oracle is correct
πii prior probability that spec. and oracle are incorrect

µ β(a,b+n)
β(a,b)

µ
′ β(a

′
,b
′
+n)

β(a′ ,b′)

β beta function
a parameter of failure on demand probability distribution if spec. is incorrect
b parameter of failure on demand probability distribution if spec. is incorrect
a

′
parameter of failure on demand probability distribution if spec. is correct

b
′

parameter of failure on demand probability distribution if spec. is correct
n the number of tests
I1−s(b, a) regularized incomplete beta function
spec. specification

5

was increased from 0 to 17,921. The parameter values were s = 0.001,

a = 2.58276, b = 4.77020, a
′
= 16.68483, b

′
= 41, 133.7, p0|i = 2.00200 · 10−3,

p0|c = 4.21724·10−3, πcc = 0.994192, πci = 1.63910·10−3, πic = 7.81537·10−5,

πii = 4.09042 · 10−3, α = 0 and ξ = 1. With these parameters, the dominat-

ing term of the numerator of (1) is (1− p0|i)πiiI1−s(b, a). It has value 0.0041

while the values of other terms are below 0.0001 in the prior case and much

smaller in the posterior case. Term (1 − p0|i)πiiI1−s(b, a) does not depend

on the number of tests. Hence, the numerator does not change much when

the number of tests is increased. In the prior case, the dominating term of

the denominator is (1 − p0|c)πccµ
′
. It has value 0.9900. The sum of other

terms is approximately 0.01. When the number of tests is increased from 0

to 17,921, the value term (1− p0|c)πccµ
′

decreases to 0.0024. Because of this,

the value of the denominator decreases significantly and as the numerator

value remains approximately the same, confidence that p.f.d. is smaller than

0.001 decreases.

Term (1 − p0|i)πiiI1−s(b, a) represents the probability that the failure on

demand probability is over s and that no faults are found in testing when

the specification and oracle are incorrect. The value of the term does not

depend on the number of tests because it is assumed that no faults are

found when the oracle is incorrect regardless of the number of tests. Term

(1 − p0|c)πccµ
′

represents the probability that no faults are found in testing

when the specification and oracle are correct. The value of the term decreases

when the number of tests decreases because it is assumed that no faults are

found in testing with probability (1− s)n if the oracle is correct ((1− s)n is

included in µ
′
).

6

In the example case, there are two main factors that cause the confidence

to decrease when the testing is added. First, parameter values are such that

term (1− p0|i)πiiI1−s(b, a) dominates the numerator and term (1− p0|c)πccµ
′

dominates the denominator in the prior case. Second, the probability that

no faults are found in tests is assumed to be much smaller if the oracle is

correct than if the oracle is incorrect.

3.2. Assumptions related to testing

Littlewood and Wright stated in their article that the conservative assump-

tion that no faults are found when the oracle is incorrect has a large role in

these counterintuitive results but it is still not essential to them. It seems

quite evident that the conservative assumption is not realistic in most cases.

However, it is a difficult problem to determine a better formula. In this

study, alternative formula

P (T = no failures | S = s,O = incorrect) = g + (1− g)× (1− s)
n
e , (2)

where 0 ≤ g ≤ 1 and e ≥ 1, is used to demostrate how phenomena of the

above example becomes rarer when the assumption is less conservative. This

document does not speak out which is the most realistic formula. In formula

(2), no faults are found with probability g even if the number of tests reaches

infinity. In the case of correct oracle, it is assumed that a fault is found in a

test with probability s. In the case of formula (2), a fault can be found in a

test but the probability for that is smaller than s if g > 0 or e > 1.

Table 2 and Figure 2 present how confidence P (S < 0.001|IO) depends

7

Table 2: Confidence with alternative formulas
g e P (T = no failures | S = 0.001, O = incorrect) P (S < 0.001|IO)

0.9 2 0.900 0.687
0.9 10 0.917 0.689
0.7 2 0.700 0.730
0.7 10 0.750 0.736
0.5 2 0.500 0.785
0.5 10 0.583 0.793
0.3 2 0.300 0.853
0.3 10 0.417 0.862
0.1 2 0.100 0.943
0.1 10 0.250 0.948
0 2 0.000128 1.00
0 10 0.167 1.00

on parameters g and e in the example case. In this case, the probabil-

ity that faults are found in testing when the oracle is incorrect has to be

very high so that the confidence increases due to 17,921 tests. It should be

noted that confidence P (S < 0.001|IO) does not only depend on P (T =

no failures | S = 0.001, O = incorrect) but also the whole distribution of

P (T = no failures | S = s,O = incorrect). Because of this, confidence is

higher when g = 0 and e = 10 than when g = 0.1 and e = 2 even though

probability P (T = no failures | S = 0.001, O = incorrect) is larger. It can

be seen that parameter g has more significant role in increasing the confidence

than e.

3.3. Parameter values

Parameter values determine which terms dominate the numerator and de-

nominator in (1). The prior confidence on the specification and the oracle is

8

Figure 2: Confidence as the function of g.

very large which causes term (1−p0|c)πccµ
′
to dominate the denominator. By

decreasing πcc, the prior confidence on the software P (S < 0.001) decreases

as can be seen in Table 3, except if only πci is increased because the prior

confidence on the specification does not change. Also, when only πci and πic

are increased, the posterior confidence increases.

Parameters a
′

and b
′

affect µ
′

= β(a
′
,b
′
+n)

β(a′ ,b′)
which is the factor that de-

creases (1−p0|c)πccµ
′

from 0.9900 to 0.0024 when n increases. Table 4 shows

how varying the parameters affects the prior and posterior confidence. De-

creasing a
′

increases the posterior confidence. Decreasing b
′

decreases the

prior confidence significantly. However, the effects are smaller when both

parameters are decreased at the same time.

9

Table 3: Results when the prior confidence to the specification and oracle is varied

πcc πci πic πii P (S < 0.001) P (S < 0.001|IO)
0.8942 0.04164 0.0100782 0.05409 0.9360 0.4690
0.4942 0.20164 0.0500782 0.25409 0.6964 0.4476
0.0442 0.38164 0.0950782 0.47909 0.4270 0.4448
0.0142 0.98164 0.0000782 0.00409 0.9958 0.9959
0.4942 0.00164 0.5000782 0.00409 0.4968 0.5916
0.8942 0.05164 0.0500782 0.00409 0.9459 0.9339
0.7942 0.10164 0.1000782 0.00409 0.8960 0.9633
0.4942 0.25164 0.2550782 0.00409 0.7463 0.9843

Table 4: Results when parameters a
′

and b
′

are varied

a
′

b
′

P (S < 0.001) P (S < 0.001|IO)
10 41, 133.7 0.9958 0.8883
5 41, 133.7 0.9958 0.9763

0.05 41, 133.7 0.9958 0.9958
16.68483 20, 000 0.7992 0.5570
16.68483 10, 000 0.0370 0.4295
16.68483 1, 000 0.0042 0.4241

10 20, 000 0.9909 0.6466
5 10, 000 0.9670 0.7380

10

4. Verification decreases confidence

4.1. General analysis using an example case

The article presented a case where the confidence that p.f.d. is smaller than

0.001 decreased from 0.99972 to 0.77064 when the software was verified to

be correct. This verification is taken into account in (1) so that α changes

from 0 to 0.3950 and ξ changes from 1 to 1.2006 · 10−4. The parameter

values were s = 0.001, a = 1.2742, b = 0.2106, a
′

= 3.2095, b
′

= 27, 095,

p0|i = 1.5547 · 10−4, p0|c = 1.3812 · 10−3, πc∗ = 0.9997156, πi∗ = 2.844 · 10−4

and n = 0. With these parameters, the dominating term of the numerator

of (1) is (1− p0|i)[πicµI1−s(b+n, a) +πiiI1−s(b, a)] = (1− p0|i)πi∗I1−s(b, a). It

has value 2.8435 · 10−4 while the other part has prior value 1.0940 · 10−9 and

much smaller posterior value. Term (1 − p0|i)πi∗I1−s(b, a) does not depend

on the verification. Hence, the numerator does not change much due to

verification. In the prior case, the dominating term of the denominator is

ξ(1− p0|c)[πccµ
′
+πci] = ξ(1− p0|c)πc∗. It has value 0.9983. The sum of other

terms is approximately 0.0017. When the positive verification is performed,

the value of term ξ(1−p0|c)πc∗ decreases to 1.1986 ·10−4. Because of this, the

value of the denominator decreases significantly and as the numerator value

remains approximately the same, confidence that p.f.d. is smaller than 0.001

decreases.

Term (1− p0|i)πi∗I1−s(b, a) represents the probability that the failure on

demand probability is over s and that no faults are found in verification when

the specification is incorrect. The value of the term does not depend on

whether the verification is performed because it is assumed that verification

11

result is always positive if the specification is incorrect. Term ξ(1 − p0|c)πc∗
represents the probability that no faults are found in verification when the

specification is correct. The value of the term decreases due to verification

because it is assumed that no faults are found in verification with probability

ξ if the specification is correct (in the prior case, ξ = 1 because no verification

has been performed).

Again, the confidence decreases when the verification is added due to

two factors. First, parameter values are such that term (1− p0|i)πi∗I1−s(b, a)

dominates the numerator and term ξ(1−p0|c)πc∗ dominates the denominator

in the prior case. Second, the probability that no faults are found in veri-

fication is assumed to be much smaller if the specification is correct than if

the specification is incorrect.

4.2. Assumptions related to verification

Littlewood and Wright wrote in their article that the conservative assumption

that no faults are found in verification when the specification is incorrect

could be replaced by a value obtained from experts’ judgement. This would

simply be a probability that no faults are found in verification when the

specification is incorrect and S > 0. Let this probability be denoted by γ.

The case where S = 0 could be handled similarly. Table 5 and Figure 3

present how the confidence to the software depends on γ. In this example,

the probability that faults are found in verification when the specification is

incorrect has to be very large so that the confidence increases.

12

Table 5: Results when parameter γ is varied

γ P (S < 0.001|IO)
0.8 0.8077
0.6 0.8485
0.4 0.8936
0.2 0.9438

0.0005 0.9999

Figure 3: Confidence as the function of γ.

13

Table 6: Results when parameters a
′

and b
′

are varied

a
′

b
′

I1−s(b
′
, a

′
) P (S < 0.001) P (S < 0.001|IO)

10 27, 095 0.0000535 0.9997 0.7706
50 27, 095 0.9999 0.0014 0.6739

3.2095 10, 000 0.0037 0.9960 0.7703
3.2095 1, 000 0.9393 0.0620 0.6798

4.3. Parameter values

Term (1 − p0|i)πi∗I1−s(b, a) dominates the numerator because I1−s(b
′
, a

′
) is

very small due to the values of parameters a
′

and b
′
. Table 6 shows that

the prior confidence decreases significantly if a
′

is increased enough or b
′

is

decreased enough. This example shows that I1−s(b
′
, a

′
) is very sensitive to

the parameter values. With the original values, probability S is very likely

to be less than 0.001 if the specification is correct and very likely to be larger

than 0.001 if the specification is incorrect. If probability S is also likely to

be larger than 0.001 if the specification is correct, the prior confidence is

very low and the posterior confidence is significantly higher than the prior

confidence.

Term ξ(1− p0|c)πc∗ dominates the denominator because parameter πc∗ is

very large compared to πi∗. Reducing the prior confidence to the specification

does however not make posterior confidence P (S < 0.001|IO) to be larger

than prior confidence P (S < 0.001) in this case. It just decreases both the

prior and posterior confidence. Also, increasing parameter ξ does increase the

posterior confidence, but the posterior confidence only approached the prior

confidence asymptotically. The prior confidence is higher than the posterior

confidence for all ξ values that are smaller than 1.

14

5. Conclusions

The calculation formula for confidence P (S < s|IO) is, in more general form,

P (S < s|IO) (3)

=1− Pccπcc + Pciπci + Picπic + Piiπii
Q0cP0|cπc∗ +Q0iP0|iπi∗ +Qccπcc +Qciπci +Qicπic +Qiiπii

,

where Pxy is the probability that S > s and that no faults are found in

verification or testing if the specication is correct/incorrect (x = c/x = i)

and the oracle is correct/incorrect (y = c/y = i), Q0y is the probability that

no faults are found in verification or testing if S = 0 and the specification

is correct/incorrect (y = c/y = i), P0|y is the probability that S = 0 if the

specification is correct/incorrect (y = c/y = i) and Qxy is the probability

that no faults are found in verification or testing if S > 0 and the specication

is correct/incorrect (x = c/x = i) and the oracle is correct/incorrect (y =

c/y = i).

In formula (3), at least Pcc, Pic, Qcc and Qic decrease due to additional

testing. If incorrect oracle can detect some failures, also Pci, Pii, Qci and

Qii decrease due to additional testing but less than Pcc, Pic, Qcc and Qic.

Depending on which terms are dominant before testing, either the numera-

tor or denominator can decrease more. If the denominator decreases more,

the confidence to the software decreases. This can happen with calculation

formulas that differ from [2]. In this light, it seems theorethically possible

that testing where no faults are found could decrease the confidence to the

software.

Similarly, at least Pcc, Pci, Q0c, Qcc and Qci decrease due to additional

15

verification. If failures can be found in verification even if the specification is

incorrect, also Pic, Pii, Q0i, Qic and Qii decrease due to verification but less

than Pcc, Pci, Q0c, Qcc and Qci. Again, it is possible that the denominator

decreases more due to this and the confidence to the software decreases.

Hence, it seems theorethically possible that additional verification where no

faults are found could decrease the confidence to the software.

References

[1] Roventa E, Spircu T. Bayesian (belief) networks. In: Roventa E, Spircu

T. Management of knowledge imperfection in building imperfect sys-

tems. Berlin: Springer; 2009. p. 133-52. ISBN 3540774629.

[2] Littlewood B, Wright D. The use of multilegged arguments to increase

confidence in safety claims for software-based systems: A study based on

a BBN analysis of an idealized example. IEEE Transactions on Software

Reliability. 2007; 33:347-65.

16

	OA-C-kansi
	OA-Counterintuitive-results-from
	BBN_allekirjoitus
	Counterintuitive results from Bayesian belief network software reliability model
	BBN2
	Counterintuitive results from Bayesian belief network software reliability model

