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Preface

This report has been prepared under the research project “Coverage and rationality
of the software 1&C safety assurance” (CORSICA), which is part of the Finnish
Research Programme on Nuclear Power Plant Safety 2011-2014 (SAFIR2014). The
research project aims to improve the safety evaluation of 1&C systems in nuclear
industry by spreading knowledge about process assessment and rationality of
integrated evaluation methods. This paper presents CORSICA results from the
project year 2013. Three separate topics are presented: 1) test set generation for
function-block based systems, 2) model checking of FPGA designs, and 3) fault
injection in the context of FPGAs.

We wish to express our gratitude to the representatives of the organizations involved
and all those who have given their valuable input in the meetings and discussions
during the project.

Espoo, February 2014
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1. Introduction

The CORSICA research project aims to improve the safety evaluation of 1&C software in
nuclear industry by spreading knowledge about software process assessment and rationality
of integrated evaluation methods. In 2013, CORSICA has focused on V&V methods and their
utilization in verifying systems developed using field-programmable gate array (FPGA)
technology. Results related to three separate topics are presented in this paper: 1) test set
generation for function-block based systems, 2) model checking of FPGA designs, and 3)
fault injection in the context of FPGAs.

One of the generic objectives of the CORSICA project is to improve the coverage and
rationality of evaluation methods. In 2013, we have developed a structural testing technique
for generating test sets for function-block based designs automatically. A proof of concept
tool has also been implemented. A simple function block based system is used as an example
for which the test cases are being calculated. The tool calculates the data path conditions and
test requirements for the system, and uses model checking to determine test cases that fulfil
the given test requirements.

In 2013, CORSICA has also focused on FPGAs since the technology has become relevant
for implementing safety systems in nuclear power plants. An extended case study was
previously implemented in the project, in which several fictional safety systems were
implemented using actual FPGA hardware. The case study has been documented in a
Master’s Thesis [LOtjonen, 2013]. In this report some of the work related to the case study is
further elaborated and expanded upon. First, our experiences on using the outputs of various
FPGA design phases for model checking are described. Secondly, a technique called fault
injection is briefly discussed in the context of FPGAs.

The rest of the paper is as follows. Test set generation for function block based systems is

discussed in Section 2. Model checking of FPGAs is covered in Section 3, and fault injection
methods are reviewed in Section 4.

2. Test set generation for function-block based systems

2.1 Introduction

The ISO/IEC 29119-4 [IEC/ISO/IEEE 29119-4] standard defines techniques for specification-
based, structure-based, and experience-based testing. In the nuclear automation domain,
specification-based and structure-based testing are commonly used. Specification-based
testing means that the tests are derived from the requirement specification of the system.
Structure-based tests are derived only from the structure of the system. The use of both
testing techniques is also required in regulatory documents. Structure-based testing is
required e.g. in the USNRC Regulation Guide 1.171 [USNRC, 1997].

Many nuclear instrumentation and control (I&C) systems are designed based on a function-
block presentation that is eventually translated into C code. For example, AREVA’'s TXS
platform is specified using function blocks and the application is converted to C code.
However, generated code is not typically used for structural testing. One approach for
applying structure-based testing is to use the function-block design for determining the tests.
However, the structural testing techniques for function-block diagrams are not mature, and
are not well-established. [Jee et al., 2009]

In their research Jee et al. have discovered that the conventional structural testing
techniques and coverage criteria, originally developed for procedural programming
languages, do not work well on FBD programs. [Jee, 2010] One reason is that the function-
block diagrams are fundamentally different from code when it comes to testing, and the
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traditional definitions of code coverage do not apply. In code, only part of the code is covered
in a single test case. In function block diagrams the whole system is usually’ “covered” on
every time step, i.e. all function blocks have some input, and produce some output. To allow
the structural testing of function block based designs Jee et al. have developed some novel
coverage metrics that can be used as a basis for planning structural tests. The coverage
metrics are based on interpreting the system as a data-flow diagram.

In this work we use these coverage metrics designed for function block based systems and
introduce a novel approach to generating test sets that have maximum coverage according
to these metrics. We have implemented the approach as Python code, and demonstrate the
implementation on a small example system.

2.2 Structure-based testing

Test coverage is a measure used to describe the degree to which a software artefact has
been tested according to a particular test suite. Most test coverage measures assume that
the software artefact is code, and the test design technigues focus on coverage of
statements or decisions in the code.

ISO/IEC 29119-4 defines test design techniques for specification-based, structure-based and
experience-based testing. When test coverage is defined, the definition is based on the used
test technique. According to the standard, structure-based test design techniques include:

1. Statement testing

2. Branch testing

3. Decision testing
4. Branch condition testing
5. Branch condition combination testing

6. Modified condition decision coverage testing
7. Data flow testing

The first six techniques are control-flow based techniques. Control-flow refers to order in
which the system under test executes its instructions. A program can be modelled as a
control-flow graph, in which all the possible execution sequences are represented as paths of
the graph. Control-flow based testing techniques define coverage with respect to this graph.

These control-flow based testing techniques are directly applicable to code. The use of the
techniques for function block diagrams (as defined in IEC 61131-3) can be problematic. The
reason is that each function block is executed at each time point. Only modified condition
decision coverage testing (MCDC) is in some sense relevant even though it is control-flow
based. In MCDC the coverage criterion is satisfied if each condition of a decision is shown to
independently affect the outcome of the decision. A condition affects a decision if a change
of the value of the condition also changes the decision. A somewhat similar definition is used
in the coverage metrics of Section 3.

The most relevant test design technique to our work is data flow testing. The data flow
testing methodology uses the following definitions:

! Different function-block based design paradigms exist. The function block diagrams as defined in IEC
61499 are executed in an event-based manner. For these function blocks the control-flow-based
testing techniques might be more suitable.
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e c-use: the value of a variable is read in any statement other than a conditional
expression.

e p-use: data use associated with the decision outcome of the predicate portion of a
decision statement.

The sub-categories of data flow testing according to the standard are:

o All-definitions Testing: The paths from variable definitions to some use of that
definition are identified as test coverage items. At least one definition-free sub-path
with relation to a specific variable from the definition to one of its uses will have been
covered.

o All-C-Uses Testing: The control flow sub-paths from each variable definition to each
c-use of that definition shall be identified as test coverage items. “All-C-uses” requires
that at least one definition-free sub-path (with relation to a specific variable) from the
definition to one of its c-uses will have been covered for all variable definitions.

o All-P-Uses Testing: The control flow sub-paths from each variable definition to each
p-use of that definition shall be identified as test coverage items. “All-P-uses” requires
that at least one definition-free sub-path (with relation to a specific variable) from the
definition to one of its p-uses will have been covered for all variable definitions.

e All-Uses Testing: The control flow sub-paths from each variable definition to every
use (both p-use and c-use) of that definition shall be identified as test coverage items.
“All-Uses” requires that at least one definition-free sub-path (with relation to a specific
variable) from the definition to each of its uses will have been covered for all variable
definitions.

o All-DU-Paths Testing: The control flow sub-paths from each variable definition to
every use (both p-use and c-use) of that definition shall be identified as test coverage
items. “All-DU-Paths” requires that all definition-free sub-paths (with relation to a
specific variable) from the definition to each of its uses will have been covered for all
variable definitions. All-DU-Paths testing requires all loop-free sub-paths from a
variable definition to its use be tested to attempt to achieve 100% test item coverage.

These more specific data flow techniques are not directly usable to function-block based
systems, but they are by their nature more compliant with the function block diagram
ideology. The coverage diagrams derived in the next section are mostly based on these
data-flow techniques but similarities to e.g. MCDC technique exist.

2.3 Structure-based testing for function block diagrams

Coverage metrics for structure-based testing have traditionally been defined for program
code but not so much for other forms of design such as function block diagrams.

Programmable logic controllers (PLCs) are widely used to implement safety instrumented
systems. The IEC standard 61131-3 [IEC, 1993] defines five standard programming
languages for PLCs. Function Block Diagram (FBD) is a commonly used graphical
programming language, in which the design consists of a set of simple elementary function
blocks such as AND, OR, or timer function blocks, and the connections between these
components. More complex function blocks can be defined as well.

In this work, we discuss function block based systems in a wider sense. The reason for this
is that the IEC 61131-3 standard is not always strictly followed and other vendor-specific
implementations are typical. The coverage criteria defined for function block diagrams can be
generalized for other function block based designs as well. By this we mean designs that do
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not necessarily comply to the IEC 61131-3, and applications running on hardware other than
PLCs.

We assume that the function block diagram consists of interconnected components (function
blocks), and can be interpreted as a data flow graph. We also assume that the diagram is
interpreted to operate indefinitely and cyclically. The inputs are read and outputs are updated
on each program cycle. Logic designs that have an internal feedback loop result in infinite
data paths when the data flow graph of the system is examined. In our example case we
deal with an internal feedback loop by breaking the loop, and adding a new input signal to
the system. Some function blocks can have internal states (such as timers), other function
blocks just perform simple operations (AND, OR).

An example of a function block diagram can be seen in Figure 1.

INPUTS OUTPUTS
INSTANCEL
TYPEL
SOURCE1 oL ouT1
INSTANCEO.VARL ——] IN2 ouT2
INSTANCE2
vi\m ‘m e
07 HE INL 0UT1 [)—————1 DESTINATION1
SOURCE2 IN2
ouT2 DESTINATION2
REF1 IN3

TITLE FIELDS

Figure 1. A function block diagram

The structure-based testing of function-block based systems requires a related coverage
criterion that is used as reference. Jee et al. have developed three suitable coverage criteria:
basic coverage (BC), input condition coverage (ICC), and complex condition coverage
(CCC). To the best of our knowledge, test coverage criteria prior to the ones in [Jee et al.,
2009] did not exist.

An alternative approach for the structural testing of function block based systems is
presented in [Pyykkd, 2010]. In this work the traditional coverage metrics are manually
modified so that they can be used.

In our work we have focused solely on the coverage metrics introduced in [Jee et al., 2009].
The coverage criteria are based on interpreting the function block diagram as a data-flow
graph, and calculating the data paths of that graph. Consecutively, a condition can be written
for each data path. In what follows we first briefly go through data path conditions of a
function block diagram and how they are calculated. After this we explain how test
requirements according to the coverage criteria can be calculated based on the data path
conditions.
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231 D-paths

In [Jee et al., 2009], the structural coverage criteria are based on a data path or d-path. First
the function block diagram F is defined as a tuple F = (FBs, V, E), where FBs is a set of
function blocks, V is a set of variables, and E is a set of edges. Edge is defined as a
connection between two function blocks or a function block and a variable. Function blocks
can be defined with respect to the edges. For example, the function block AND is defined as:
eour = AND(ens, enz), Where equr is the output edge of the function block and en; and en, are
the input edges.

A d-path is defined as a finite sequence (e, e, ... e,) of edges where all the edges succeed
each other. Since d-paths are finite, any internal feedback loop in a function block diagram
needs to be removed (see below for an example). A unit d-path is of length 2 and in the form
(ei, €,). For example, the AND function block has two unit d-paths:

P1 = (€in1, EouT)

P2 = (€in2, €ourt)

DP denotes the set of all d-paths from input edges to output edges. DP,, denotes all d-paths
of length n. D-paths are denoted p; where i is the length of the path and j is a unique
identifier (if there are several d-paths of that length).

Example of a d-path:
P41 = (inputl, AND1.output, TON1.outputl, output2)

A d-path condition (DPC) is the condition along the d-path under which input value plays a
role in computing the output. It can be defined recursively as follows:

_ true, ifn=1
DPC(py) = {DPC(pn_l) && FBC({ey-1,€p)),ifn =2

where a function block condition FBC((en.1, en)) is defined for each function block.

Function block condition (FBC) is the value under which the value at the output edge e, is
influenced by the value at the input edge e;. According to [Jee et al., 2009] there are four
types of FBCs:

1. Allinputs always influence the value of the output. For example, in the basic addition
function ADD, all inputs always influence the output. FBC is true for all unit d-paths.

2. Input value appears on output edge only in certain conditions. For example, the AND
function block: the function block condition FBC({en1, €out)) = et || enz-

3. Some or all input values are used in the output computation under specific condition.
4. Internal variables as well as inputs must be analysed to determine the output.

Truth tables help in determining the FBCs in these cases.

The DPC can be calculated recursively, and finally the expression can be transformed into

an expression with only input and internal variables by substituting intermediate variables
with the functions.
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232 Test coverage criteria

Based on the definition of DPC three different coverage criteria can be written for FBD
programs.

e Basic coverage (BC)
e Input condition coverage (ICC)
e Complex condition coverage (CCC)

Basic coverage focuses on covering every d-path in the FBD program under test at least
once. The BC criterion is satisfied iff there is a test in which the DPC is fulfilled for each d-
path. BC is a straight-forward criterion but it can be ineffective in detecting logical errors e.g.
when a wrong function block is used.

Input condition coverage (ICC) is satisfied by a set of test cases iff there are two tests for all
d-paths: 1) A test in which the DPC is true and the input of the d-path is true, 2) a test in
which the DPC is true and the input of the d-path is false.

Complex condition coverage (CCC) is satisfied when there is a test case for each edge along
the d-path such that: 1) the DPC is satisfied and that edge is true, and 2) a test case in which
that edge is false.

In practice, the coverage criterion and the data path conditions are used to generate a set of
test requirements that have to be fulfilled by one of the tests in order to achieve 100% test
coverage. Each test requirement is a logical formula consisting of signals of the function
block diagram. If the formula is true in some test case at any time point, then the test
requirement is fulfilled.

2.4 Example system design description

As a running example, we utilize a small function-block based system, illustrated in Figure 2.
The example is a stepwise shutdown system (modified from [L&tjonen, 2013] [Lotjonen et al.,
2013]) that has been designed as a preventive safety system to drive a process into a normal
operating state without having to rapidly shut the process down. It can be triggered by an
input (e.g. high measurement value) or by the operator using a manual trip command. An 18
s control cycle is used that consists of a 4 s control followed by 14 s idle time after which the
cycle is started again if the measurements are still high. In addition, the operator can add
four second control cycles manually if the 14 second idle time seems too long. The design
contains an error: if the manual trip command is given during the 4 second control the
system freezes until the input disappears. The design error is intentionally left to the example
so that we can see whether the generated test sets will be able to detect the error.

Process
input ‘
4s—p
) | L

Manual OR NOT » AND > » Control
trip 1 Ly 1 ™

002 »R
Manual > Vot 145—p
trip 2

A 4

Delay
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Figure 2. Stepwise shutdown system

In this work the example system is used as a reference case to demonstrate how a set of
test cases can be generated according to given test coverage criteria.

2.5 Data path conditions for the example design

We interpret the example system as a data flow diagram, and use the coverage criteria
defined for function-block based systems: basic coverage (BC), input condition coverage
(ICC), and complex condition coverage (CCC). All three of these metrics are used to produce
a set of test requirements. If all of these requirements are fulfilled by one of the tests in the
test set, the test set has 100 % coverage according to the criterion. All three coverage criteria
are based on the concept of data-path conditions. In order to use the criteria in our example
system we have to be able to determine the data-path conditions of the system.

The first thing to do in our example case is to remove the feedback loop. This is because the
coverage criteria are designed for systems that do not have feedback loops. A feedback loop
would cause infinite data paths in the system, and this is unwanted. In our example the
feedback is replaced with a new input Feedback, see Figure 3. Feedback is a free input
whose value is chosen non-deterministically. The input is used only for creating the data path
conditions. The actual tests are generated for the original system that still has the feedback
loop intact.

We have also added the time parameters of the pulse function blocks (4s and 14s) as explicit
inputs of the function blocks. In our analysis we have also left the Delay function block out of
examination, since it was only used in the original design to deal with the feedback loop.

Process

input

» 4s—p!
Manual : OR NOT | % AND ——» [ | ———» Control
trip 1 > 1002 X ’—>
Manual » Vvote 14s—p| ‘
trip 2 B o

Feedback

Figure 3. The example system with the feedback loop removed

Once the feedback has been removed, we can identify the data paths of the system. One of
the data paths of the example system is illustrated in Figure 4. Note that the paths originating
from the time parameters of the pulse function blocks are also data paths. In total, the
example system has eight data paths.

Process
input

l L. 4s—pf ]
Manual NOT +——» AND P J L F Control
TPl e 1002  F r L
Manual > Vo€ 14s—p| [
trip 2 ( B o
Feedback

Figure 4. One of the data paths of the example system
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The function block conditions related to the function blocks in our case study are listed
below. They were determined manually following [Jee et al., 2009], and include some internal
variables of the function blocks, see Appendix A for reference.

FBCanp((inputl, output)) = (! Inputl) | input2

FBCanp({input2, output)) = (!input2) | inputl

FBCror({inputl, output)) = TRUE

FBCpuLse((inputl, output)) =! (clock >0) & ! prev & ! prevout
FBCpuLse((time, output)) = clock > 0

FBCor((inputl, output)) = inputl | (! input2)

FBCor(({input2, output)) = input2 | (! inputl)

FBCio02vore({inputl, output)) = inputl | (! input2)

FBCio02vore({input2, output)) = (input2 | (! inputl )

FBCreser_putse({inputl, output)) =! (clock >0) & ! prev & ! prev & ! reset
FBCreser_puLse({reset, output)) = reset | (! prev & ! prevout & inputl)| (clock > 0)
FBCreser_puise({time, output)) = (clock > 0) & ! reset

The data path condition is composed by combining the individual function block conditions on
that path. The example design has eight data path conditions:

1.

2.

b w

D-path condition 1: ( (process_input | (! VOTELl.outputl)) & ((!' OR1l.outputl) |
NOT1.outputl) & (! (PULSE2.clock >0) & ! PULSE2.prev & ! PULSE2.prevout))
D-path condition 2: ( ((PULSE1l.clock > 0) & ! VOTEl.outputl ) & ( TRUE) & ((!
NOT1.outputl) | ORLl.outputl) & (! (PULSE2.clock > 0 ) & ! PULSE2.prev & !
PULSEZ2.prevout))

D-path condition 3: ( (PULSE2.clock > 0) )

D-path condition 4: ( (! (PULSEl.clock >0) & ! PULSE1.prev & | PULSE1.prev & !
VOTEl.outputl) & ( TRUE) & ((! NOT1l.outputl) | OR1l.outputl) & (! (PULSE2
.clock >0) & ! PULSE2.prev & ! PULSE2.prevout))

D-path condition 5: ( (manual_tripl | (! manual_trip2)) & TRUE & (VOTE1.outputl
| (! process_input)) & ((! OR1.outputl) | NOT1l.outputl) & (! (PULSE2.clock>0) &
I PULSE2.prev & ! PULSEZ2.prevout))

D-path condition 6: ( (manual_tripl | (! manual_trip2)) & TRUE & (
VOTEl.outputl | (! PULSEl.prev & ! PULSEl.prevout & DELAY1.outputl)|
(PULSEl.clock > 0)) & ( TRUE) & ((! NOT1l.outputl) | OR1l.outputl) & (!
(PULSE2.clock > 0) & PULSE2.prev & ! PULSEZ2.prevout))

D-path condition 7: ( (manual_trip2 | (! manual_tripl )) & TRUE &
(VOTEL.outputl | (! process_input )) & ((! OR1l.outputl) | NOT1.outputl) & (!
(PULSE2.clock >0) & ! PULSE2.prev & ! PULSEZ2.prevout))

D-path condition 8: ( (manual_trip2 | (! manual_tripl )) & TRUE & (
VOTEl.outputl | (! PULSEl.prev & ! PULSEl.prevout & DELAY1.outputl)|
(PULSEl.clock > 0)) & ( TRUE) & ((! NOT1l.outputl) | OR1l.outputl) & (!
(PULSE2.clock >0) & ! PULSE2.prev & ! PULSEZ2.prevout))

For example, the data path condition 1 corresponds to the data path illustrated in Figure 4.
Based on these data path conditions and the selected coverage criteria (BC, ICC or CCC) a
set of test requirements can be extracted. The BC coverage criterion is met when each DPC
is fulfiled by one of the test cases. In other words the eight DPCs as such are the test
requirements that need to be fulfilled by some test case.

The ICC criteria are a bit more demanding. It is required that for each Boolean input of a d-
path, there is a test case in which: 1) the data path condition is fulfilled and the input is false;
2) a data path condition is fulfiled and the input is true. In our example this results in 14
different test requirements. The number is not 16 because two of the inputs of the system are
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not Boolean, and thus the data paths that originate from these inputs produce only one test
requirement instead of two.

The CCC criteria are even more demanding. It is required that for each Boolean variable
within a d-path, there is a test case in which: 1) the data path condition is fulfiled and the
variable is false; 2) a data path condition is fulfilled and the variable is true. For the data path
condition corresponding to the data path in Figure 3, it would additionally be required that
e.g. the signal from the OR function block to the AND function block is true/false in some test
case while the data path condition holds. In our example system the CCC criterion results in
80 test requirements.

Once the desired coverage criterion is selected and the relevant test requirements are
produced we need to define test cases that fulfil these requirements. In simple designs this
may be straight-forward. However, in case of complex designs with timers and feedback it is
not so simple. The reason for this is that the test requirement may require the timer function
blocks of the system to be in certain states, and sometimes it can be very difficult to find out
how to get to such a system state. Sometimes reaching a system state may be impossible
due to some constraints outside the data path.

2.6 Automatic test set generation concept
2.6.1 General concept description

In this concept the test cases are identified using model checking. In particular, the test
cases are counter-examples output by the model checking tool. A requirement for this
approach is that the examined system has been modelled as a model checking model. A
methodology for modelling function block diagram designs already exists; see e.g. [Pakonen
et al., 2013].

Once the desired coverage criterion has been selected and the set of test requirements is
deduced, the test case identification can begin. Each test requirement is transformed into a
temporal logic clause stating that the state required by the test requirement cannot be
reached. This transformation is quite simple since the test requirement is already a suitable
logical formula. Once the temporal logic formula has been produced we check whether it
holds on the model checking model. If a path exists to a state in which the test requirement is
fulfilled, it is given as a counter-example. The counter-example can be used to define test
cases that achieve high coverage. The general idea of the test generation concept is
illustrated in Figure 5.
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-VAR

(! VOTE1.output1)) & ((! OR1.outputt) |
NOT1.output1) & (! (PULSE2.clock>0) &!
PULSE2.prev & ! PULSEZ2.prevout));

DELAY1 : DELAY(PULSE2.output1);

VOTE1 : _1002(manual_trip1, manual_trip2);
OR1 : OR_2(process_input, VOTE1.output1);
PULSE1 : RESET_PULSE(DELAY1.output1, VOTEL.output1, 14);
NOT1 : NOT(PULSE1.output1);
AND1 : AND_2(OR1.output1, NOT1.output1); |
PULSE2 : PULSE(AND1.output1, 4);

- DEFINE I

control := PULSE2.output1;
ASSIGN

MODULE AND_2(input1, input2)
- DEFINE

output1 := input1 & input2;

MODULE OR_2(input1, input2)
- DEFINE
output1 := input1 | input2;

MODULE _1002(input1, input2)

Counter-example
Model checking

Figure 5. Test generation concept

2.6.2 Concept implementation

A proof of concept tool was created in the Python programming language. In addition to the
developed program code, the model checking model of the examined system is needed. We
used the stepwise shutdown system as an example. The model is in Appendix A.

In this prototype tool the possibility to use arbitrary system designs as input was not
implemented. Instead, the example system (stepwise shutdown system) was hard coded to
the implementation. This means that the function block conditions (FBC) required to calculate
the data path conditions were written directly as Python code for each function block type. In
addition to this, the structure of the example system (i.e. the connections between the
function blocks) were also hard coded, and not read from e.g. some input file. In a possible
future implementation, the system description could be read from some input file, or possibly
the model checking model could be used as input for determining the system structure. The
function block conditions could also be read from some external file once they have been
manually written.

Once the structure of the system is read, determining the data paths is quite easy. In our
implementation we start from the inputs of the system and search for paths to the outputs
using depth-first search. After all paths have been found we remove possible duplicates.

The data path conditions are determined by analysing the data paths one by one, and
composing the data path condition simply based on the function blocks on that data path.
Each function block on the path results to appending the data path with a function block
condition, in which the relevant function block condition template is instantiated with the
signal values related to this instance of the function block. The data path condition is the
conjunction of the function block conditions on that path.

As an example, the function block condition of the AND function block is presented. AND has
two inputs and one output. The corresponding function block condition (FBC) has two parts:
a condition on which inputl has influence on the output, and a condition on which input2 has
influence on the output. Following the FBCs defined in [Jee et al., 2009] the conditions are
written as follows:
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e FBC(inputl, outputl) = (! inputl) | input2
o FBC(input2, outputl) = (! input2) | inputl

In our implementation code these conditions are stored in a format in which the variables
inputl and input2 are replaced with placeholders that are replaced with the variables of the
AND function block instance. In implementation code the FBC is stored as:

o “((! %i0%) | %i1%) "
o " ((! %il%) | %i0%) "

As the data path condition is being created the temporary variables i0 and i1 are replaced.
For example, in our running example (see Appendix A) in the case of the AND1 function
block instance the input variables would be replaced with “OR1.output” and “NOT1.outputl”.

It is also quite simple to create the set of test requirements. The set of data path conditions is
supplemented with the constraints demanded by the different coverage criteria. Finally the
set of test requirements can be transformed into usable temporal logic formulas by adding
the universal “globally” operator in the beginning of the negated test requirement clause. In
the syntax of the model checking tool NuSMV the resulting formula is of the form:

LTLSPEC G ! (test-requirement);

Each test requirement can be transformed into a temporal logic formula. The model checking
tool can then be used to produce a counter-example (to be used as a test case)
corresponding to each formula (if one exists).

One disadvantage of the above mentioned method is that a test case is created for each test
requirement separately. Often it is possible to satisfy the test requirements using fewer test
cases, so that a single test case fulfils multiple test requirements. The minimization of the
number of test cases is discussed below.

2.6.3 Test case optimization

For the CCC test coverage metrics, our running example produces 80 separate test
requirements. Following our test generation concept this would lead to 80 test cases for one
simple logic diagram. Fortunately, the number of test cases can be drastically decreased. It
is possible to create test cases that fulfil multiple test requirements at once. It may even be
possible to fulfil all requirements in one complex test case.

In practice this can be done by combining two (or several) temporal logic formulas into a
single temporal logic formula that covers all the associated test requirements. As an
example, assume we have two test requirements: test req_1 and test req_2. The
corresponding temporal logic formula for these two test requirements in NuSMV would be of
the form:

LTLSPEC G ! ( test_ req 1 ) | G I ( test_req_ 2 );

In practice the formula states that no path exists in which both of the test requirements are
true at some time point. If such a path exists it will be output by the model checking tool as a
counter-example.

Now it is possible for example to create a single temporal logic formula encompasses all of
the test requirements. However, a test that fulfils all test requirements may be infeasible, or
just very complex, or consisting of very many time steps. In some cases a single test
requirement is infeasible, and these cases should also be detected and sorted out.
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We implemented a simple greedy test case optimization algorithm that begins with the first
test requirement and determines whether a test case for that single test requirement is
feasible. If it is feasible we look at the counter-example that was output and store the length
of that counter-example. Then we attach a new test requirement to the examined set of test
requirements, and find out whether a counter-example of the same length that fulfils all test
requirements in the set is feasible. If such a counter-example is still possible we continue by
attempting to add even more test requirements to the set. If the counter-example becomes
infeasible, we exclude the most recent test requirement and continue by adding one from the
set of unexamined test requirements. Once all test requirements have been gone through,
we have a single test case that fulfils n out of the N test requirements. The process is then
repeated with the N - n remaining test requirement until every test requirement is covered by
some test case, or it has been determined that the test requirement cannot be fulfilled. This
simple greedy optimization in the example system leads to three test cases for the 80 test
requirements that are produced by the CCC coverage metric.

2.7 Results

Our Python implementation of the tool was run, and the tests sets according to the different
coverage metrics (BC, ICC, CCC) were generated. The greedy test optimization as
described in Section 2.6.3 was used. The testing of the method was done on a PC with Intel
Core i7 Q740 processor and 3 GB of RAM. For model checking, NuSMV version 2.5.4 was
used. The clock cycle used for the model checking of the example system was 1s.

The basic coverage (BC) metric resulted in 8 test requirements on the example system. The
test requirements are equivalent to the data path conditions of the system:

e Testrequirement 1: ( (process_input | (! VOTE1.outputl)) & ((! OR1l.outputl) |
NOT1.outputl) & (! (PULSE2.clock >0) & ! PULSE2.prev & ! PULSE2.prevout))

e Testrequirement 2: ( ((PULSEl.clock>0) & ! VOTEl.outputl ) & (TRUE) & ((!
NOT1.outputl) | OR1.outputl) & (! (PULSE2.clock >0) & ! PULSE2.prev & !
PULSEZ2.prevout))

e Testrequirement 3: ( (PULSE2.clock > 0))

e Testrequirement 4: ( (! (PULSEl.clock >0) & ! PULSE1l.prev & ! PULSE1.prev & !
VOTELl.outputl) & (TRUE) & ((! NOT1l.outputl) | OR1.outputl) & (!
(PULSE2.clock >0) & | PULSE2.prev & ! PULSEZ2.prevout))

e Testrequirement 5: ( (manual_tripl | (! manual_trip2)) & TRUE & (VOTEl.outputl
| (! process_input)) & ((! OR1.outputl) | NOT1l.outputl) & (! (PULSEZ2.clock >0) &
I PULSEZ2.prev & ! PULSEZ2.prevout))

e Testrequirement 6: ( (manual_tripl | (! manual_trip2)) & TRUE & (
VOTEZL.outputl | (! PULSELl.prev & ! PULSE1.prevout & DELAY1.outputl)|
(PULSE1.clock >0)) & (TRUE) & ((! NOT1.outputl) | OR1.outputl) & (!
(PULSE2.clock >0) & | PULSE2.prev & ! PULSEZ2.prevout))

e Testrequirement 7: ( (manual_trip2 | (! manual_tripl )) & TRUE &
(VOTE1.outputl | (! process_input)) & ((! OR1.outputl) | NOT1.outputl) & (!
(PULSE2.clock >0) & | PULSE2.prev & ! PULSEZ2.prevout))

o Testrequirement 8: ( (manual_trip2 | (! manual_tripl1)) & TRUE & (
VOTEZL.outputl | (! PULSELl.prev & ! PULSE1.prevout & DELAY1.outputl)|
(PULSE1.clock >0)) & (TRUE) & ((! NOT1.outputl) | OR1.outputl) & (!
(PULSE2.clock >0) & | PULSE2.prev & ! PULSEZ2.prevout))
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Based on the greedy optimization, two test cases were created that fulfil the test
requirements. Test 1 satisfies test requirements 1 and 4, while test 2 satisfies the rest of the
requirements (2, 3, 5, 6, 7, and 8). Using our implementation the time needed to generate the
tests was 2.9 seconds in total, including test requirement generation, model checking and
optimization. The resulting two test cases are as follows:

BC Test case 1:

e Time point 1:

0 INPUT: Process input = TRUE

o INPUT: Manual tripl = FALSE

o INPUT: Manual trip2 = FALSE

0 EXPECTED OUTPUT: Control = TRUE

BC Test case 2:

e Time point 1:

0 INPUT: Process input = TRUE

o INPUT: Manual tripl = TRUE

o INPUT: Manual trip2 = TRUE

0 EXPECTED OUTPUT: Control = TRUE
e Time point 2:

o0 INPUT: Process input = TRUE

o INPUT: Manual tripl = TRUE

o INPUT: Manual trip2 = TRUE

0 EXPECTED OUTPUT: Control = TRUE
e Time point 3:

o0 INPUT: Process input = TRUE

o INPUT: Manual tripl = TRUE

o INPUT: Manual trip2 = TRUE

0 EXPECTED OUTPUT: Control = TRUE
e Time point 4:

o0 INPUT: Process input = TRUE

o INPUT: Manual tripl = TRUE

o INPUT: Manual trip2 = TRUE

o EXPECTED OUTPUT: Control = TRUE
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e Time point 5:

0 INPUT: Process input = TRUE

o INPUT: Manual tripl = TRUE

o INPUT: Manual trip2 = TRUE

0 EXPECTED OUTPUT: Control = TRUE
e Time point 6:

0 INPUT: Process input = TRUE

o INPUT: Manual tripl = TRUE

o INPUT: Manual trip2 = TRUE

0 EXPECTED OUTPUT: Control = FALSE
e Time point 7:

0 INPUT: Process input = TRUE

o INPUT: Manual tripl = FALSE

o INPUT: Manual trip2 = FALSE

0 EXPECTED OUTPUT: Control = FALSE

The intermediate values of the function blocks are not listed in the test cases since the
values are determined solely on the input signal values. Test case 1 is a simple test case
consisting of a single time point in which the control output should be set when the process
input is true. The second test case ensures that the control output eventually becomes false
after the pulse and that the manual trip commands do not cause anything unexpected.

The input condition coverage (ICC) metric resulted in 14 test requirements on the example
system. The test requirements are listed in Appendix B. Three test cases were generated
based on the test requirements. Test 1 satisfies test requirements 1 and 6. Test 2 satisfies
test requirements 2, 8 and 12. Test 3 satisfies test requirements 3, 4, 7, 9, 10, 11, 13 and 14.
Test requirement 5 was infeasible meaning that a state in which the requirement is true
cannot be reached in the example system. Test requirement 5 is infeasible because it
requires that the feedback signal is true while the internal memory indicating the previous
control output value is false. In the actual system where the feedback loop is intact these two
signals are the same signal which causes the requirement to be infeasible. The test cases for
the ICC coverage metric are as follows:

ICC Test case 1:
e Time point 1:
o0 INPUT: Process input = TRUE
o INPUT: Manual tripl = FALSE
o INPUT: Manual trip2 = FALSE

o EXPECTED OUTPUT: Control = TRUE
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ICC Test case 2:

e Time point 1:

0 INPUT: Process input = FALSE

o INPUT: Manual tripl = FALSE

o INPUT: Manual trip2 = FALSE

0 EXPECTED OUTPUT: Control = FALSE

ICC Test case 3:

e Time point 1:

0 INPUT: Process input = TRUE

o INPUT: Manual tripl = TRUE

o INPUT: Manual trip2 = TRUE

0 EXPECTED OUTPUT: Control = TRUE
e Time point 2:

o0 INPUT: Process input = TRUE

o INPUT: Manual tripl = FALSE

o INPUT: Manual trip2 = TRUE

0 EXPECTED OUTPUT: Control = TRUE
e Time point 3:

o0 INPUT: Process input = TRUE

o INPUT: Manual tripl = TRUE

o INPUT: Manual trip2 = FALSE

0 EXPECTED OUTPUT: Control = TRUE
e Time point 4:

o0 INPUT: Process input = TRUE

o INPUT: Manual tripl = FALSE

o INPUT: Manual trip2 = TRUE

0 EXPECTED OUTPUT: Control = TRUE
e Time point 5:

0 INPUT: Process input = TRUE

o INPUT: Manual tripl = TRUE
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o INPUT: Manual trip2 = FALSE

0 EXPECTED OUTPUT: Control = TRUE
e Time point 6:

0 INPUT: Process input = TRUE

o INPUT: Manual tripl = TRUE

o INPUT: Manual trip2 = FALSE

0 EXPECTED OUTPUT: Control = FALSE
e Time point 7:

0 INPUT: Process input = TRUE

o INPUT: Manual tripl = FALSE

o INPUT: Manual trip2 = FALSE

o0 EXPECTED OUTPUT: Control = FALSE

Test case 1 is similar to the test case 1 generated for BC. The second test case does not
occur in the BC tests. The second test case makes sure that the control output is not set
when the inputs are false. The third test case is again quite similar to BC test case 2 except
that the manual trip commands alternate. The time needed to generate the ICC test cases
was 6.9 seconds including test requirement generation, model checking and optimization.

The complex condition coverage (CCC) metric results in 80 test requirements. Because of
the large amount of test requirements, the clauses are not included in this report. Three test
cases were generated based on the test requirements. Test 1 satisfies test requirements 1,
3,5,7,20, 22, 23, 25 and 27. Test 2 satisfies test requirements 2, 4, 6, 8, 30, 32, 34, 36, 38,
40, 56, 58, 60, 62, 64 and 66. Test 3 satisfies test requirements 9, 12, 14, 16, 17, 29, 31, 33,
35, 37, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 59, 61, 63, 65, 67,
68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79 and 80. Test requirements 10, 11, 13, 15, 18,
19, 21, 24, 26, and 28 were infeasible, i.e. the condition could not be reached in the example
system. As an example of the infeasible cases, test requirement 10 is infeasible because it
requires that the output of a pulse function block (PULSEL1) is false while the internal clock of
the pulse is running. This cannot occur in the system because the output is set whenever the
clock is running. The CCC test cases are as follows:

CCC Test case 1:
e Time point 1:
o INPUT: Process input = TRUE
o INPUT: Manual tripl = FALSE
o INPUT: Manual trip2 = FALSE
0 EXPECTED OUTPUT: Control = TRUE

CCC Test case 2:
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EXPECTED OUTPUT: Control = FALSE

CCC Test case 3:

e Time point 1:

(0}

(0}

(0]

(0]

INPUT: Process input = TRUE
INPUT: Manual tripl = TRUE

INPUT: Manual trip2 = TRUE

EXPECTED OUTPUT: Control = TRUE

e Time point 2:

(0}

(0}

(0}

(0}

INPUT: Process input = TRUE
INPUT: Manual tripl = TRUE

INPUT: Manual trip2 = FALSE

EXPECTED OUTPUT: Control = TRUE

e Time point 3:

(0}

(0}

(0}

(0}

INPUT: Process input = TRUE
INPUT: Manual tripl = TRUE

INPUT: Manual trip2 = FALSE

EXPECTED OUTPUT: Control = TRUE

e Time point 4:

(0}

(0}

(0}

(0}

INPUT: Process input = TRUE
INPUT: Manual tripl = TRUE

INPUT: Manual trip2 = FALSE

EXPECTED OUTPUT: Control = TRUE

e Time point 5:

(0}

(0}

(0}

INPUT: Process input = TRUE
INPUT: Manual tripl = FALSE

INPUT: Manual trip2 = TRUE
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0 EXPECTED OUTPUT: Control = TRUE
e Time point 6:

0 INPUT: Process input = TRUE

o INPUT: Manual tripl = FALSE

o INPUT: Manual trip2 = TRUE

0 EXPECTED OUTPUT: Control = FALSE
e Time point 7:

0 INPUT: Process input = TRUE

o INPUT: Manual tripl = FALSE

o INPUT: Manual trip2 = FALSE

0 EXPECTED OUTPUT: Control = FALSE

The test cases 1 and 2 are equivalent to the test cases 1 and 2 for the ICC metric. The third
test case is very similar to ICC test case 3 except for minor differences in how the manual
trip commands alternate. The total time needed for the generation of the CCC test cases
including test requirement generation, model checking and optimization was 42,7 seconds.

2.8 Conclusions

In this work we have introduced a new concept for automatically generating structure-based
tests for function block diagrams. The tests are generated based on a structure-based
coverage metrics. The coverage metrics used here were the basic coverage (BC), input
condition coverage (ICC), and complex condition coverage as defined in [Jee et al., 2009]. In
our test generation method we utilize a model checking model of the examined system. We
first transform the test requirements into temporal logic formulas in such a way that the
counter-examples output when the temporal formulas are model checked can be used as
test cases that fulfil the test requirements. The main contribution of our work is this novel
approach for using model checking for producing test cases according to a structural
coverage metric. In addition to this, we have implemented the concept using the Python
programming language and have demonstrated the use of the concept in a small case study
system. We have also applied a simple greedy heuristic for minimizing the number of test
cases needed for fulfilling the test requirements.

Our test generation concept currently requires a fair amount of manual work. A model
checking model of the examined system is needed. Large models should not be a huge
problem since the full model behaviour is not needed in the technique. The test sequences
can be found by analysing only a rather small number of time steps starting from the initial
state of the model. Also, each function block type has to be manually analysed and the
logical constraints that describe the conditions on which an input of the function block
influences an output of the function block have to be manually written. The structure of the
function block diagram has to be described in some way as well. In our implementation the
structure of the case study system was hard coded into the implementation. Since the
structure is already modelled in the model checking model, it should be investigated how that
model could be used for determining the structure automatically.

In our case study we found that three test cases suffice for fulfilling all feasible test
requirements, when the most rigorous coverage metric (CCC) was used. 100% test coverage
is not always possible. Some test requirements were infeasible. It should be also noted that
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the use of the most rigorous coverage metric CCC produced almost identical test cases
when compared to the less rigorous ICC coverage metric. Our case study was perhaps too
simple so that the intricacies of the CCC coverage metric could not be seen. The most basic
coverage metric (BC) resulted in two test cases.

The case study system was chosen because it includes a design error: if the manual trip
command is given during the 4 second control the system freezes until the input disappears.
The generated test cases do express this kind of behaviour, the manual trip is indeed
pressed in during the 4s control in the test cases. However, the generated test cases do not
demonstrate the effect of the wrong operator action, namely the freeze of the output cannot
be seen in the short test case sequences. We speculate that if the internal variables of the
pulse blocks were interpreted as input signals in the coverage metric calculations, the freeze
of the control could possibly be seen in the generated test cases. We leave this question for
future work.

Finally, we would like to note the difference in the definition of the function block conditions of
the coverage metrics by [Jee et al., 2009], and the input-output condition as defined in e.g.
the MCDC coverage metric. In [Jee et al., 2009] the function block conditions (FBCs) are
written as a pair of constraints. The constraints express the fact that other inputs do not have
influence on the output. One constraint is for when the input is O and the other constraint is
for when the input signal is 1. The FBC is the combination of these constraints. As an
example, the FBC for one of the inputs of an AND function block is:

e FBC(inputl, outputl) = (! inputl) | input2

It states that when inputl is not true, it has influence on the output. If inputl is true, it
influences the output only when input2 is true as well. A similar input-output influence relation
is defined in the MCDC coverage metric. In MCDC the influence relation is somewhat
different: input has influence on the output when flipping of the input value, also flips the
output value. The related constraint describes the situation where this always occurs. If the
FBC for the AND function block was written based on this definition, it would be:

e FBC(inputl, outputl) = input2

The inputl has influence on the output only when the other input is true. The difference in
these two definitions is the case where both inputs are false. According to the [Jee et al.,
2009] definition, inputl has influence on the output since inputl is one of the inputs that are
false. According to the MCDC definition inputl does not have influence on the output.

In future, we plan to determine a way to generate the function block conditions automatically.
Using the MCDC definition for the input-output relations might be easier for automatic
generation purposes. We also plan to use the model checking model for determining the
function block diagram structure so that the amount of manual work and hard coding is
minimized. Some test case optimization heuristics could also be tried out, as well as a parser
that produces the test cases in a more readable format.

3. Using model checking for verification of different FPGA design
phases

3.1 Introduction

Field-programmable gate array (FPGA) is a programmable integrated circuit that consists of
a set of logic gates and wiring between them. Unlike in traditional application specific
integrated circuits (ASIC) the connections between circuit gates can be configured by the
user instead of the manufacturer. The FPGA technology is still rather new in the nuclear
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power industry for implementing safety system application functions. Power utilities, system
vendors, and regulators of different countries have their own views on how to license,
develop, and verify FPGA applications.

Developing applications for FPGAs is quite similar to developing software. However, the end-
product can be considered as hardware because FPGAs do not have an operating system or
a set of instructions that are executed. Instead a static configuration of logic gates
implements the desired functionality. The product is often considered less complex, even
though the development process is more complex than software development. [EPRI, 2009]

Due to the technology’s nature, the FPGA design life cycle is somewhat different from the
traditional software or hardware development life cycle, by having some additional design
phases. Also, various non-certified software tools are used in each design phase for
automatically generating the next design phase. In safety-critical domains we have to be
certain that this chain of transformations produces a correct final product.

Many V&V methods are currently used, simulation being one example. Formal methods have
been used as well. Model checking is a formal method developed to verify the correct
functioning of a system design model by examining all of its possible behaviours. The models
used in model checking are quite similar to those used in simulation. However, unlike
simulation, model checkers examine the behaviour of the system design with all input
sequences and compare it with the system specification. Model checking has its roots in
hardware verification where it first proved to be effective for verifying large and complex
integrated circuits [Burch et al., 1992; Fix, 2008].

In this section we document our preliminary experiences of using model checking for
analysing FPGA based implementation. We especially have attempted to use the various
design phases of the FPGA design life cycle as input for model checking. The objective of
this work has been to find out how model checking could be used to analyse some of the
low-level representations of the system, and whether this kind of analysis is worthwhile and
reasonable. We have used the case study presented in [L&tjonen, 2013] and created various
models corresponding to the different design phases of that case study system.

3.2 FPGA development life-cycle
The FPGA specific design phases of an FPGA based application are illustrated in Figure 6.

The early design phases — such as requirements specification, architectural design, and
detailed design — are quite similar to the design phases of more traditional software based
automation systems, and are therefore not illustrated in the figure.

The first FPGA specific design phase after detailed design is behavioural description. The
behavioural description typically means that the desired system is described using a
hardware description language (HDL). One example of a hardware description language is
VHDL (very high speed integrated circuit hardware description language). The following
design phase is synthesis, in which the description is translated into a more hardware
oriented format, describing the design implementation in terms of logic gates. The output of
the synthesis phase is a mid-level netlist that describes how the design is implemented using
logic gates and memories. This netlist is typically produced using a software tool.

The next design phase is place and route, in which the mid-level netlist is adjusted to the
particular FPGA device. The product of the design phase is a low-level netlist that has
information the particular gates used for implementing the design. In this phase the timing of
the signals have to be taken into consideration as well. The implementation of the design
must be such that the gates are always able to receive their inputs signals on time, and that
differences in input signal propagation times do not cause unwanted output states, i.e. no
race conditions exist in the implementation of the logic.
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After place and route the low-level netlist can be programmed to the device. Some FPGA
technologies use a hit stream programming file.

8ehaviowsral | > Renister transfer
description level simulation
F Y
HOL Source files, |
Schematic Diagrams |
Synthesls | —m —m —m — — — — — — — — — — = = = e Functional simulation (=
Mid-leved netlist,
Optimised logic

[—— — —

Place & Roule = = — = —= = = = — — P Gate-level simulation

Bit stream programming file

Low-level netlist, T
|
|

Programming — =— — | Hardware testing

Figure 6. FPGA specific design phases [Smith, 2010] [NRC 2010]

3.3 Related work

Model checking and other formal verification methods have already been applied in the
context of FPGA applications. In what follows we briefly go through some of the related
research.

One of the main applications of formal methods in the FPGA context is logic equivalence
checking (LEC). LEC is used to verify that the designs in different phases are logically
equivalent i.e. it does not reveal design errors. [Simpson, 2010] The logic equivalence
checking technique is also discussed e.g. in [Sheeran et al., 2000] where a SAT-solver is
used together with induction to verify FPGA cores.

An early system for verifying VHDL descriptions called Prevail is presented in [Borrione et al.,
1992]. Prevail is used for generating circuit presentations out of VHDL code and for proving
that the generated circuit corresponds to the original VHDL code.

[Wasaki et al., 2009] discusses a meta hardware description language called Melasy that can
be used for generating hardware description languages (HDL) and for model checking as
well. This removes the need for describing the FPGA system in another language (e.g. a
separate model checking model) to verify it.

In the work of [Déharbe et al., 1998] the VHDL code itself is used for model checking.
[Déharbe et al., 1998] describe a tool called CV that uses VHDL code as input for symbolic
model checking.
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Commercial model checking tools exist as well. One example is IBM’s RuleBase. [Beer et al.,
1996] [Daumas et al., 2012] RuleBase uses a version of the model checking tool SMV as its
verification engine. The tool supports standard commonly used hardware description
languages such as VHDL.

34 Case study description

Model checking was applied to a practical case study, a fictional safety automation system
titted the Power Limitation System (PLS). PLS consists of three subsystems that were
implemented using two separate FPGA devices: the Fast Stepwise Shutdown System
(FSWS), the Slow Stepwise Shutdown System (SSWS), and the Priority Logic (PL). The
SSWS responds to a medium alarm input value, while the FSWS only reacts when a high
alarm input value is received. The FSWS can also be initiated manually. Finally the PL
prioritizes the different control signals in order to determine the correct output of the overall
system. Manual control has the highest priority, FSWS has the second highest priority, and
SSWS has the lowest priority. The application level design diagram of the systems can be
seen in Figure 7. For more detailed information, see [L6tjoénen, 2013].

MANUAL
>

FSWs

ALARM HIGH
1=

FSWS MAN

PL_OUT3
—L >

Figure 7. Application level design diagram of the case study systems

3.5 Model checking of the FPGA designs

We created three model checking models that correspond to the different design phases of
the PLS system. The models that we created were:

e Application level design model. The model was created using the function block
diagrams of the application level design material as input. Methodology for modelling
function block diagrams already exists so model development was quite straight-
forward. This model was intended as a reference model against which the other more
detailed models could be compared.

e VHDL-level model. The model was created using the VHDL source code as input.
This model takes into account the way the function blocks were implemented. In
addition, the timing behaviour of the system was modelled in more detail.

e Synthesis-level model. Another model was created that used the gate level netlist
representation of the system as input. The timer function blocks resulted in overly
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complex implementation that could not be easily modelled. Consequently only the PL
subsystem was modelled on this level.

The model checking tool that was used in the work was NuSMV [Cavada et al., 2010]. The
tool has previously been used in many research case studies at VTT [Lahtinen et al., 2012].
The model checked requirements were formalised using a formal logic called linear temporal
logic (LTL). In what follows we go through these model variants in more detail.

351 Application level design model
First, a small function block library was created based on the function blocks that were used
in the PLS system. After this all three subsystems of PLS were modelled by creating

instances of the function blocks and creating the connections between the function blocks
according to the design. As an example, the model code for the PL subsystem is as follows:

MODULE PL(CIN1, EN1, IN2, EN2, IN3, EN3)

VAR
INVL : INV(IN1);
INV2 : INV(EN1);:
INV3 : INV(IN2);
INV4 = INV(EN2):
INVS = INV(IN3);
INV6 : INV(EN3):
AND1 : AND(INV1.OUTPUT, INV2.OUTPUT);
AND2 : AND(INV3.OUTPUT, RL1.OUTPUT);
AND3 : AND(INV5.OUTPUT, RL2.OUTPUT);
AND4 : AND(EN2, INV6.OUTPUT);
OR1 : OR(INV2.OUTPUT, AND4.OUTPUT);
OR2 : OR(INV2.OUTPUT, INV4.OUTPUT);
RL1 : SR_FLIPFLOP(INV4.OUTPUT, OR1.OUTPUT);
RL2 : SR_FLIPFLOP(AND4.OUTPUT, OR2.OUTPUT);
INV7 : INV(AND1.OUTPUT);
INVS8 : INV(AND2.OUTPUT);
INVO : INV(AND3.OUTPUT);
DEFINE
OUT1 := INV7.OUTPUT;
OUT2 := INV8.OUTPUT;
OUT3 := INV9.OUTPUT;
ASSIGN

This memory elements used in the PL implementation were modelled here as set-reset flip-
flops. The model code for the used flip-flop is below:

MODULE SR_FLIPFLOP(set, reset)
VAR

mem : boolean;

DEFINE

OUTPUT := case
reset : FALSE;

set : TRUE;
TRUE : mem;
esac;
ASSIGN

init(mem) := FALSE;
next(mem) := OUTPUT;
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The model corresponding to the application level design level was built so that the system
has no clock signal in the model. In NuSMV, the notion of time is discrete, meaning that time
is interpreted to consist of separate steps that follow each other. The modelled system
operates as a single synchronous unity, in which every function block operates once during a
single time point. For individual function blocks this means that processing the inputs and
producing the corresponding outputs happens immediately, i.e. no time delays are modelled
for intrinsic calculations of the logic. As an example, see the implementation of the AND
function block. The output of the AND block is simply a macro definition based on the two
inputs, no variables or time delays are involved:

MODULE AND(inputl, input2)
VAR

DEFINE

OUTPUT := inputl & input2;
ASSIGN

Only a few requirements were verified on the model since the main focus of the work was in
modelling of the system. The time needed for model checking was less than a second. The
checked requirements were (Note: the negations used in LTL stem from the active low
design of the system):

1. While the input Manual is inactive, while input high Alarm is inactive, while Medium
alarm is active, the output PL_OUT3 of the PL subsystem shall follow the output
PT_OUT of the SSWS subsystem. The requirement can be formalized in LTL:

G (! MANUAL & ! ALARM HIGH & ALARM_MED -> (PL_OUT3 <->
SSWS1.PT_OUT))

2. While the Manual input is active, the PL_OUT1 of the PL system shall be active. The
requirement can be formalized in LTL:

G (MANUAL -> PL_OUT1)

3. While the Manual control command and the Manual control enable signal are active,
the PL_OUTZ1 output shall be active. The requirement can be formalized in LTL:

G (('IN1 & 'EN1) -> ! PL_OUT1)

4. While IN3 signal and the EN3 enable signal and the PL_OUTL1 output are active,
while the Manual control command and the Manual control enable signal are inactive,
when the IN2 signal and the EN2 enable signal are activated, PL_OUT3 shall be
inactivated and PL_OUT2 shall be activated. The requirement can be formalized in
LTL:

G(! PL.OUT3 & ! IN3 & ! EN3 & IN1 & EN1 & X(! IN2 & ! EN2 & IN1
& EN1) -> X(PL_OUT3 & ! PL_OUT2))

All requirements could be verified on the model. The requirements hold.
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VHDL-level model

The next level of model checking was performed based on the descriptions of the systems
written using the VHDL source code. The model was built manually using the VHDL source
code as input for the model.

The VHDL-level model is quite similar to the application level design model. Both models use
a function block library as the basis of the model. Some aspects of the system were
modelled in more detail in the VHDL-level model:

The flip-flops of the PLS system were implemented using R-latches, see Figure 8.
These R-latches are composed using the fundamental logic blocks (inverters, AND
blocks, and NOR blocks). The implementation of the flip-flop is thus more detailed
when compared to the application level design model. The model code for the R-latch
is below:

MODULE R_LATCH(set, reset)

VAR

INV1 - INV(reset);

AND1 : AND(set, INV1.OUTPUT);

NOR1 : NOR(CAND1.OUTPUT, NOR2.0OUTPUT);
NOR2 : NOR(NOR1.OUTPUT, reset);
DEFINE

OUTPUT := NOR2.OUTPUT;

ASSIGN

The timing used in the model differs from the timing of the application level design
model. In the VHDL-level model, each individual function block takes one time point
to update its outputs based on the inputs. This means that it takes several time steps
for a signal to travel through the whole PLS system. This is somewhat more realistic
than the synchronic implementation of the application level design model, in which a
signal travels through the system instantly. As an example for this kind of modelling,
see the model code for the AND function block:

MODULE AND(inputl, input2)

VAR

OUTPUT : boolean;

DEFINE

ASSIGN

init(OUTPUT) := FALSE;
next(OUTPUT) := inputl & input2;

The clock signal of the PLS system was not explicitly modelled. This is because of
the discrete notion time used in the NuSMV tool. The discrete time structure can be
seen as a model of the clock signal.

The delays of the PULSE function blocks were modelled so that there are 10 time
steps in a second (a three-second PULSE block takes 30 time steps). This modelling
solution is not totally realistic since the length of the pulse is in reality a lot longer than
the time it takes for a signal to travel through a function block (1 time step). Some
clock cycle abstraction is needed for feasibility.
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R-latch

NOR2

Figure 8. R-latch design. Reset (R) signal has a higher priority than the Set (S) signal.

The whole PLS system could be modelled and requirements could be verified on the
modelled system. The same requirements were verified as were used in the application level
design model. However, because of differences in the modelling, the temporal logic formulas
had to be slightly altered. The time needed for model checking was less than a second. The
checked requirements were:

1. While the input Manual is inactive, while input high Alarm is inactive, while Medium
alarm is active, the output PL_OUT3 of the PL subsystem shall follow the output
PT_OUT of the SSWS subsystem. The requirement can be formalized in LTL:

G(! MANUAL & ! ALARM HIGH & ALARM MED -> F ((PL_OUT3 <->
SSWS1.PT_OUT) | MANUAL | ALARM_HIGH | ! ALARM_MED))

2. While the Manual input is active, the PL_OUT1 of the PL system shall be active. The
requirement can be formalized in LTL:

G(MANUAL -> F (PL_OUT1 | ! MANUAL))

3. While the Manual control command and the Manual control enable signal are active,
the PL_OUTZ1 output shall be active. The requirement can be formalized in LTL:

G ((VIN1 & 'EN1) -> F I PL_OUT1)

4. While IN3 signal and the EN3 enable signal and the PL_OUTL1 output are active,
while the Manual control command and the Manual control enable signal are inactive,
when the IN2 signal and the EN2 enable signal are activated, PL_OUT3 shall be
inactivated and PL_OUT2 shall be activated. The requirement can be formalized in
LTL:

G(! PL.OUT3 & ! IN3 & ! EN3 & IN1 & EN1 & X(! IN2 & ! EN2 & IN1
& EN1) -> X F ((PL_OUT3 & ! PL_OUT2) | ' EN1 | ! IN1 | IN2 |
EN2))

3.5.3 Synthesis-level model

The FPGA design tools produce gate-level representations of the designs as output of the
synthesis design phase. These gate-level schematic diagrams can quite easily be used as
input for model checking. An example of the schematic diagrams that can be obtained from
the FPGA design tools is in Figure 9. The figure illustrates an implementation of a three-
second pulse function block. The diagram does not show all the details of the
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implementation, i.e. the counter elements can be further expanded into bit level
representations that implement the design.

CLK >
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counter[274{%1010! m— ;1:)_‘7

b . counter_4[27:0]
unp_counter[5:32] _A27:0] i counter un9_counter

Figure 9. High-level description of a three-second pulse function block generated by the
Synplify software tool

When all of the design elements are fully expanded into bit l