
RESEARCH REPORT VTT-R-00212-14

CORSICA 2013 work report: Test
set generation, FPGA model
checking, and fault injection
Authors: Jussi Lahtinen, Jukka Ranta, Lauri Lötjönen

Confidentiality: Public

RESEARCH REPORT VTT-R-00212-14
1 (47)

Report’s title

CORSICA 2013 work report: Test set generation, FPGA model checking, and fault injection
Customer, contact person, address Order reference

VYR
3/2013SAF

Project name Project number/Short name

Coverage and rationality of the software I&C safety assurance 77376 CORSICA
Author(s) Pages

Jussi Lahtinen, Jukka Ranta, Lauri Lötjönen 48/
Keywords Report identification code

test set generation, test coverage, FPGA, model checking,
fault injection

VTT-R-00212-14

Summary

The CORSICA research project aims to improve the safety evaluation of I&C software in
nuclear industry by spreading knowledge about software process assessment and rationality
of integrated evaluation methods. Results related to three separate topics of the CORSICA
project are presented in this paper: 1) test set generation for function-block based systems, 2)
model checking of FPGA designs, and 3) fault injection in the context of FPGAs.

One of the generic objectives of the CORSICA project is to improve the coverage and
rationality of evaluation methods. In this work we have developed a structural testing
technique for generating test sets for function-block based designs automatically. A proof of
concept tool has also been implemented.

In 2013, CORSICA also focused on field programmable gate array (FPGA) technology since
it has become relevant for implementing safety systems in nuclear power plants. In this
paper, our experiences on using the outputs of various FPGA design phases for model
checking are described. In addition, a technique called fault injection is briefly discussed in
the context of FPGAs.

Confidentiality Public
Espoo, 19.2.2014
Written by

Jussi Lahtinen
Research Scientist

Reviewed by

Antti Pakonen
Research Scientist

Accepted by

Riikka Virkkunen
Head of Research Area

VTT’s contact address
VTT Technical Research Centre of Finland
P.O. Box 1000, FI-02044 VTT, Finland
Phone internat. +358 20 722 4520
Fax +358 20 722 4374
Distribution (customer and VTT)
SAFIR2014 Reference group 2

The use of the name of the VTT Technical Research Centre of Finland (VTT) in advertising or publication in part of
this report is only permissible with written authorisation from the VTT Technical Research Centre of Finland.

RESEARCH REPORT VTT-R-00212-14
2 (47)

Preface

This report has been prepared under the research project “Coverage and rationality
of the software I&C safety assurance” (CORSICA), which is part of the Finnish
Research Programme on Nuclear Power Plant Safety 2011–2014 (SAFIR2014). The
research project aims to improve the safety evaluation of I&C systems in nuclear
industry by spreading knowledge about process assessment and rationality of
integrated evaluation methods. This paper presents CORSICA results from the
project year 2013. Three separate topics are presented: 1) test set generation for
function-block based systems, 2) model checking of FPGA designs, and 3) fault
injection in the context of FPGAs.

We wish to express our gratitude to the representatives of the organizations involved
and all those who have given their valuable input in the meetings and discussions
during the project.

Espoo, February 2014

Authors

RESEARCH REPORT VTT-R-00212-14
3 (47)

Contents

Preface ... 2

Contents ... 3

1. Introduction ... 4

2. Test set generation for function-block based systems ... 4

2.1 Introduction ... 4
2.2 Structure-based testing ... 5
2.3 Structure-based testing for function block diagrams .. 6

2.3.1 D-paths ... 8
2.3.2 Test coverage criteria ... 9

2.4 Example system design description .. 9
2.5 Data path conditions for the example design .. 10
2.6 Automatic test set generation concept .. 12

2.6.1 General concept description ... 12
2.6.2 Concept implementation ... 13
2.6.3 Test case optimization .. 14

2.7 Results ... 15
2.8 Conclusions .. 21

3. Using model checking for verification of different FPGA design phases 22

3.1 Introduction ... 22
3.2 FPGA development life-cycle .. 23
3.3 Related work ... 24
3.4 Case study description.. 25
3.5 Model checking of the FPGA designs ... 25

3.5.1 Application level design model .. 26
3.5.2 VHDL-level model ... 28
3.5.3 Synthesis-level model ... 29

3.6 Discussion and conclusions .. 32

4. Fault injection .. 33

4.1 Introduction ... 33
4.2 Objectives of fault injection ... 34

4.2.1 Evaluate the effectiveness of the design and V&V process 34
4.2.2 Test error detection and fault recovery of the system 35
4.2.3 Trigger functions that are inactive under normal operating conditions and

allow wider test coverage of the code ... 35
4.2.4 Fault injection at early design phases ... 35

4.3 Methods to inject faults ... 35
4.4 Application of fault injection to V&V of FPGA based systems 36
4.5 Tools ... 37

References ... 39

Appendix A – The model checking model of the example system .. 42

Appendix B - The test requirements of the example system for achieving 100% Input
Condition Coverage .. 46

RESEARCH REPORT VTT-R-00212-14
4 (47)

1. Introduction

The CORSICA research project aims to improve the safety evaluation of I&C software in
nuclear industry by spreading knowledge about software process assessment and rationality
of integrated evaluation methods. In 2013, CORSICA has focused on V&V methods and their
utilization in verifying systems developed using field-programmable gate array (FPGA)
technology. Results related to three separate topics are presented in this paper: 1) test set
generation for function-block based systems, 2) model checking of FPGA designs, and 3)
fault injection in the context of FPGAs.

One of the generic objectives of the CORSICA project is to improve the coverage and
rationality of evaluation methods. In 2013, we have developed a structural testing technique
for generating test sets for function-block based designs automatically. A proof of concept
tool has also been implemented. A simple function block based system is used as an example
for which the test cases are being calculated. The tool calculates the data path conditions and
test requirements for the system, and uses model checking to determine test cases that fulfil
the given test requirements.

In 2013, CORSICA has also focused on FPGAs since the technology has become relevant
for implementing safety systems in nuclear power plants. An extended case study was
previously implemented in the project, in which several fictional safety systems were
implemented using actual FPGA hardware. The case study has been documented in a
Master’s Thesis [Lötjönen, 2013]. In this report some of the work related to the case study is
further elaborated and expanded upon. First, our experiences on using the outputs of various
FPGA design phases for model checking are described. Secondly, a technique called fault
injection is briefly discussed in the context of FPGAs.

The rest of the paper is as follows. Test set generation for function block based systems is
discussed in Section 2. Model checking of FPGAs is covered in Section 3, and fault injection
methods are reviewed in Section 4.

2. Test set generation for function-block based systems

2.1 Introduction

The ISO/IEC 29119-4 [IEC/ISO/IEEE 29119-4] standard defines techniques for specification-
based, structure-based, and experience-based testing. In the nuclear automation domain,
specification-based and structure-based testing are commonly used. Specification-based
testing means that the tests are derived from the requirement specification of the system.
Structure-based tests are derived only from the structure of the system. The use of both
testing techniques is also required in regulatory documents. Structure-based testing is
required e.g. in the USNRC Regulation Guide 1.171 [USNRC, 1997].

Many nuclear instrumentation and control (I&C) systems are designed based on a function-
block presentation that is eventually translated into C code. For example, AREVA’s TXS
platform is specified using function blocks and the application is converted to C code.
However, generated code is not typically used for structural testing. One approach for
applying structure-based testing is to use the function-block design for determining the tests.
However, the structural testing techniques for function-block diagrams are not mature, and
are not well-established. [Jee et al., 2009]

In their research Jee et al. have discovered that the conventional structural testing
techniques and coverage criteria, originally developed for procedural programming
languages, do not work well on FBD programs. [Jee, 2010] One reason is that the function-
block diagrams are fundamentally different from code when it comes to testing, and the

RESEARCH REPORT VTT-R-00212-14
5 (47)

traditional definitions of code coverage do not apply. In code, only part of the code is covered
in a single test case. In function block diagrams the whole system is usually1 “covered” on
every time step, i.e. all function blocks have some input, and produce some output. To allow
the structural testing of function block based designs Jee et al. have developed some novel
coverage metrics that can be used as a basis for planning structural tests. The coverage
metrics are based on interpreting the system as a data-flow diagram.

In this work we use these coverage metrics designed for function block based systems and
introduce a novel approach to generating test sets that have maximum coverage according
to these metrics. We have implemented the approach as Python code, and demonstrate the
implementation on a small example system.

2.2 Structure-based testing

Test coverage is a measure used to describe the degree to which a software artefact has
been tested according to a particular test suite. Most test coverage measures assume that
the software artefact is code, and the test design techniques focus on coverage of
statements or decisions in the code.

ISO/IEC 29119-4 defines test design techniques for specification-based, structure-based and
experience-based testing. When test coverage is defined, the definition is based on the used
test technique. According to the standard, structure-based test design techniques include:

1. Statement testing

2. Branch testing

3. Decision testing

4. Branch condition testing

5. Branch condition combination testing

6. Modified condition decision coverage testing

7. Data flow testing

The first six techniques are control-flow based techniques. Control-flow refers to order in
which the system under test executes its instructions. A program can be modelled as a
control-flow graph, in which all the possible execution sequences are represented as paths of
the graph. Control-flow based testing techniques define coverage with respect to this graph.

These control-flow based testing techniques are directly applicable to code. The use of the
techniques for function block diagrams (as defined in IEC 61131-3) can be problematic. The
reason is that each function block is executed at each time point. Only modified condition
decision coverage testing (MCDC) is in some sense relevant even though it is control-flow
based. In MCDC the coverage criterion is satisfied if each condition of a decision is shown to
independently affect the outcome of the decision. A condition affects a decision if a change
of the value of the condition also changes the decision. A somewhat similar definition is used
in the coverage metrics of Section 3.

The most relevant test design technique to our work is data flow testing. The data flow
testing methodology uses the following definitions:

1 Different function-block based design paradigms exist. The function block diagrams as defined in IEC
61499 are executed in an event-based manner. For these function blocks the control-flow-based
testing techniques might be more suitable.

RESEARCH REPORT VTT-R-00212-14
6 (47)

c-use: the value of a variable is read in any statement other than a conditional
expression.

p-use: data use associated with the decision outcome of the predicate portion of a
decision statement.

The sub-categories of data flow testing according to the standard are:

All-definitions Testing: The paths from variable definitions to some use of that
definition are identified as test coverage items. At least one definition-free sub-path
with relation to a specific variable from the definition to one of its uses will have been
covered.

All-C-Uses Testing: The control flow sub-paths from each variable definition to each
c-use of that definition shall be identified as test coverage items. “All-C-uses” requires
that at least one definition-free sub-path (with relation to a specific variable) from the
definition to one of its c-uses will have been covered for all variable definitions.

All-P-Uses Testing: The control flow sub-paths from each variable definition to each
p-use of that definition shall be identified as test coverage items. “All-P-uses” requires
that at least one definition-free sub-path (with relation to a specific variable) from the
definition to one of its p-uses will have been covered for all variable definitions.

All-Uses Testing: The control flow sub-paths from each variable definition to every
use (both p-use and c-use) of that definition shall be identified as test coverage items.
“All-Uses” requires that at least one definition-free sub-path (with relation to a specific
variable) from the definition to each of its uses will have been covered for all variable
definitions.

All-DU-Paths Testing: The control flow sub-paths from each variable definition to
every use (both p-use and c-use) of that definition shall be identified as test coverage
items. “All-DU-Paths” requires that all definition-free sub-paths (with relation to a
specific variable) from the definition to each of its uses will have been covered for all
variable definitions. All-DU-Paths testing requires all loop-free sub-paths from a
variable definition to its use be tested to attempt to achieve 100% test item coverage.

These more specific data flow techniques are not directly usable to function-block based
systems, but they are by their nature more compliant with the function block diagram
ideology. The coverage diagrams derived in the next section are mostly based on these
data-flow techniques but similarities to e.g. MCDC technique exist.

2.3 Structure-based testing for function block diagrams

Coverage metrics for structure-based testing have traditionally been defined for program
code but not so much for other forms of design such as function block diagrams.

Programmable logic controllers (PLCs) are widely used to implement safety instrumented
systems. The IEC standard 61131-3 [IEC, 1993] defines five standard programming
languages for PLCs. Function Block Diagram (FBD) is a commonly used graphical
programming language, in which the design consists of a set of simple elementary function
blocks such as AND, OR, or timer function blocks, and the connections between these
components. More complex function blocks can be defined as well.

In this work, we discuss function block based systems in a wider sense. The reason for this
is that the IEC 61131-3 standard is not always strictly followed and other vendor-specific
implementations are typical. The coverage criteria defined for function block diagrams can be
generalized for other function block based designs as well. By this we mean designs that do

RESEARCH REPORT VTT-R-00212-14
7 (47)

not necessarily comply to the IEC 61131-3, and applications running on hardware other than
PLCs.

We assume that the function block diagram consists of interconnected components (function
blocks), and can be interpreted as a data flow graph. We also assume that the diagram is
interpreted to operate indefinitely and cyclically. The inputs are read and outputs are updated
on each program cycle. Logic designs that have an internal feedback loop result in infinite
data paths when the data flow graph of the system is examined. In our example case we
deal with an internal feedback loop by breaking the loop, and adding a new input signal to
the system. Some function blocks can have internal states (such as timers), other function
blocks just perform simple operations (AND, OR).

An example of a function block diagram can be seen in Figure 1.

Figure 1. A function block diagram

The structure-based testing of function-block based systems requires a related coverage
criterion that is used as reference. Jee et al. have developed three suitable coverage criteria:
basic coverage (BC), input condition coverage (ICC), and complex condition coverage
(CCC). To the best of our knowledge, test coverage criteria prior to the ones in [Jee et al.,
2009] did not exist.

An alternative approach for the structural testing of function block based systems is
presented in [Pyykkö, 2010]. In this work the traditional coverage metrics are manually
modified so that they can be used.

In our work we have focused solely on the coverage metrics introduced in [Jee et al., 2009].
The coverage criteria are based on interpreting the function block diagram as a data-flow
graph, and calculating the data paths of that graph. Consecutively, a condition can be written
for each data path. In what follows we first briefly go through data path conditions of a
function block diagram and how they are calculated. After this we explain how test
requirements according to the coverage criteria can be calculated based on the data path
conditions.

RESEARCH REPORT VTT-R-00212-14
8 (47)

2.3.1 D-paths

In [Jee et al., 2009], the structural coverage criteria are based on a data path or d-path. First
the function block diagram F is defined as a tuple F = FBs, V, E , where FBs is a set of
function blocks, V is a set of variables, and E is a set of edges. Edge is defined as a
connection between two function blocks or a function block and a variable. Function blocks
can be defined with respect to the edges. For example, the function block AND is defined as:
eOUT = AND(eIN1, eIN2), where eOUT is the output edge of the function block and eIN1 and eIN2 are
the input edges.

A d-path is defined as a finite sequence e1, e2 … en of edges where all the edges succeed
each other. Since d-paths are finite, any internal feedback loop in a function block diagram
needs to be removed (see below for an example). A unit d-path is of length 2 and in the form
ei, eo . For example, the AND function block has two unit d-paths:

p1 = eIN1, eOUT

p2 = eIN2, eOUT

DP denotes the set of all d-paths from input edges to output edges. DPn denotes all d-paths
of length n. D-paths are denoted pij where i is the length of the path and j is a unique
identifier (if there are several d-paths of that length).

Example of a d-path:

p41 = input1, AND1.output, TON1.output1, output2

A d-path condition (DPC) is the condition along the d-path under which input value plays a
role in computing the output. It can be defined recursively as follows:

() = , if 1
() && FBC ,) if 2

where a function block condition FBC(en-1, en) is defined for each function block.

Function block condition (FBC) is the value under which the value at the output edge eo is
influenced by the value at the input edge ei. According to [Jee et al., 2009] there are four
types of FBCs:

1. All inputs always influence the value of the output. For example, in the basic addition
function ADD, all inputs always influence the output. FBC is true for all unit d-paths.

2. Input value appears on output edge only in certain conditions. For example, the AND
function block: the function block condition FBC(eIN1, eOUT) = ! eIN1 || eIN2.

3. Some or all input values are used in the output computation under specific condition.

4. Internal variables as well as inputs must be analysed to determine the output.

Truth tables help in determining the FBCs in these cases.

The DPC can be calculated recursively, and finally the expression can be transformed into
an expression with only input and internal variables by substituting intermediate variables
with the functions.

RESEARCH REPORT VTT-R-00212-14
9 (47)

2.3.2 Test coverage criteria

Based on the definition of DPC three different coverage criteria can be written for FBD
programs.

 Basic coverage (BC)

 Input condition coverage (ICC)

 Complex condition coverage (CCC)

Basic coverage focuses on covering every d-path in the FBD program under test at least
once. The BC criterion is satisfied iff there is a test in which the DPC is fulfilled for each d-
path. BC is a straight-forward criterion but it can be ineffective in detecting logical errors e.g.
when a wrong function block is used.

Input condition coverage (ICC) is satisfied by a set of test cases iff there are two tests for all
d-paths: 1) A test in which the DPC is true and the input of the d-path is true, 2) a test in
which the DPC is true and the input of the d-path is false.

Complex condition coverage (CCC) is satisfied when there is a test case for each edge along
the d-path such that: 1) the DPC is satisfied and that edge is true, and 2) a test case in which
that edge is false.

In practice, the coverage criterion and the data path conditions are used to generate a set of
test requirements that have to be fulfilled by one of the tests in order to achieve 100% test
coverage. Each test requirement is a logical formula consisting of signals of the function
block diagram. If the formula is true in some test case at any time point, then the test
requirement is fulfilled.

2.4 Example system design description

As a running example, we utilize a small function-block based system, illustrated in Figure 2.
The example is a stepwise shutdown system (modified from [Lötjönen, 2013] [Lötjönen et al.,
2013]) that has been designed as a preventive safety system to drive a process into a normal
operating state without having to rapidly shut the process down. It can be triggered by an
input (e.g. high measurement value) or by the operator using a manual trip command. An 18
s control cycle is used that consists of a 4 s control followed by 14 s idle time after which the
cycle is started again if the measurements are still high. In addition, the operator can add
four second control cycles manually if the 14 second idle time seems too long. The design
contains an error: if the manual trip command is given during the 4 second control the
system freezes until the input disappears. The design error is intentionally left to the example
so that we can see whether the generated test sets will be able to detect the error.

RESEARCH REPORT VTT-R-00212-14
10 (47)

Figure 2. Stepwise shutdown system

In this work the example system is used as a reference case to demonstrate how a set of
test cases can be generated according to given test coverage criteria.

2.5 Data path conditions for the example design

We interpret the example system as a data flow diagram, and use the coverage criteria
defined for function-block based systems: basic coverage (BC), input condition coverage
(ICC), and complex condition coverage (CCC). All three of these metrics are used to produce
a set of test requirements. If all of these requirements are fulfilled by one of the tests in the
test set, the test set has 100 % coverage according to the criterion. All three coverage criteria
are based on the concept of data-path conditions. In order to use the criteria in our example
system we have to be able to determine the data-path conditions of the system.

The first thing to do in our example case is to remove the feedback loop. This is because the
coverage criteria are designed for systems that do not have feedback loops. A feedback loop
would cause infinite data paths in the system, and this is unwanted. In our example the
feedback is replaced with a new input Feedback, see Figure 3. Feedback is a free input
whose value is chosen non-deterministically. The input is used only for creating the data path
conditions. The actual tests are generated for the original system that still has the feedback
loop intact.

We have also added the time parameters of the pulse function blocks (4s and 14s) as explicit
inputs of the function blocks. In our analysis we have also left the Delay function block out of
examination, since it was only used in the original design to deal with the feedback loop.

Figure 3. The example system with the feedback loop removed

Once the feedback has been removed, we can identify the data paths of the system. One of
the data paths of the example system is illustrated in Figure 4. Note that the paths originating
from the time parameters of the pulse function blocks are also data paths. In total, the
example system has eight data paths.

Figure 4. One of the data paths of the example system

RESEARCH REPORT VTT-R-00212-14
11 (47)

The function block conditions related to the function blocks in our case study are listed
below. They were determined manually following [Jee et al., 2009], and include some internal
variables of the function blocks, see Appendix A for reference.

 FBCAND(input1, output) = (! Input1) | input2
 FBCAND(input2, output) = (! input2) | input1
 FBCNOT(input1, output) = TRUE
 FBCPULSE(input1, output) = ! (clock > 0) & ! prev & ! prevout
 FBCPULSE(time, output) = clock > 0
 FBCOR(input1, output) = input1 | (! input2)
 FBCOR(input2, output) = input2 | (! input1)
 FBC1oo2VOTE(input1, output) = input1 | (! input2)
 FBC1oo2VOTE(input2, output) = (input2 | (! input1)
 FBCRESET_PULSE(input1, output) = ! (clock > 0) & ! prev & ! prev & ! reset
 FBCRESET_PULSE(reset, output) = reset | (! prev & ! prevout & input1)| (clock > 0)
 FBCRESET_PULSE(time, output) = (clock > 0) & ! reset

The data path condition is composed by combining the individual function block conditions on
that path. The example design has eight data path conditions:

1. D-path condition 1: ((process_input | (! VOTE1.output1)) & ((! OR1.output1) |
NOT1.output1) & (! (PULSE2.clock > 0) & ! PULSE2.prev & ! PULSE2.prevout))

2. D-path condition 2: (((PULSE1.clock > 0) & ! VOTE1.output1) & (TRUE) & ((!
NOT1.output1) | OR1.output1) & (! (PULSE2.clock > 0) & ! PULSE2.prev & !
PULSE2.prevout))

3. D-path condition 3: ((PULSE2.clock > 0))
4. D-path condition 4: ((! (PULSE1.clock > 0) & ! PULSE1.prev & ! PULSE1.prev & !

VOTE1.output1) & (TRUE) & ((! NOT1.output1) | OR1.output1) & (! (PULSE2
.clock > 0) & ! PULSE2.prev & ! PULSE2.prevout))

5. D-path condition 5: ((manual_trip1 | (! manual_trip2)) & TRUE & (VOTE1.output1
| (! process_input)) & ((! OR1.output1) | NOT1.output1) & (! (PULSE2.clock > 0) &
! PULSE2.prev & ! PULSE2.prevout))

6. D-path condition 6: ((manual_trip1 | (! manual_trip2)) & TRUE & (
VOTE1.output1 | (! PULSE1.prev & ! PULSE1.prevout & DELAY1.output1)|
(PULSE1.clock > 0)) & (TRUE) & ((! NOT1.output1) | OR1.output1) & (!
(PULSE2.clock > 0) &! PULSE2.prev & ! PULSE2.prevout))

7. D-path condition 7: ((manual_trip2 | (! manual_trip1)) & TRUE &
(VOTE1.output1 | (! process_input)) & ((! OR1.output1) | NOT1.output1) & (!
(PULSE2.clock > 0) & ! PULSE2.prev & ! PULSE2.prevout))

8. D-path condition 8: ((manual_trip2 | (! manual_trip1)) & TRUE & (
VOTE1.output1 | (! PULSE1.prev & ! PULSE1.prevout & DELAY1.output1)|
(PULSE1.clock > 0)) & (TRUE) & ((! NOT1.output1) | OR1.output1) & (!
(PULSE2.clock > 0) & ! PULSE2.prev & ! PULSE2.prevout))

For example, the data path condition 1 corresponds to the data path illustrated in Figure 4.
Based on these data path conditions and the selected coverage criteria (BC, ICC or CCC) a
set of test requirements can be extracted. The BC coverage criterion is met when each DPC
is fulfilled by one of the test cases. In other words the eight DPCs as such are the test
requirements that need to be fulfilled by some test case.

The ICC criteria are a bit more demanding. It is required that for each Boolean input of a d-
path, there is a test case in which: 1) the data path condition is fulfilled and the input is false;
2) a data path condition is fulfilled and the input is true. In our example this results in 14
different test requirements. The number is not 16 because two of the inputs of the system are

RESEARCH REPORT VTT-R-00212-14
12 (47)

not Boolean, and thus the data paths that originate from these inputs produce only one test
requirement instead of two.

The CCC criteria are even more demanding. It is required that for each Boolean variable
within a d-path, there is a test case in which: 1) the data path condition is fulfilled and the
variable is false; 2) a data path condition is fulfilled and the variable is true. For the data path
condition corresponding to the data path in Figure 3, it would additionally be required that
e.g. the signal from the OR function block to the AND function block is true/false in some test
case while the data path condition holds. In our example system the CCC criterion results in
80 test requirements.

Once the desired coverage criterion is selected and the relevant test requirements are
produced we need to define test cases that fulfil these requirements. In simple designs this
may be straight-forward. However, in case of complex designs with timers and feedback it is
not so simple. The reason for this is that the test requirement may require the timer function
blocks of the system to be in certain states, and sometimes it can be very difficult to find out
how to get to such a system state. Sometimes reaching a system state may be impossible
due to some constraints outside the data path.

2.6 Automatic test set generation concept

2.6.1 General concept description

In this concept the test cases are identified using model checking. In particular, the test
cases are counter-examples output by the model checking tool. A requirement for this
approach is that the examined system has been modelled as a model checking model. A
methodology for modelling function block diagram designs already exists; see e.g. [Pakonen
et al., 2013].

Once the desired coverage criterion has been selected and the set of test requirements is
deduced, the test case identification can begin. Each test requirement is transformed into a
temporal logic clause stating that the state required by the test requirement cannot be
reached. This transformation is quite simple since the test requirement is already a suitable
logical formula. Once the temporal logic formula has been produced we check whether it
holds on the model checking model. If a path exists to a state in which the test requirement is
fulfilled, it is given as a counter-example. The counter-example can be used to define test
cases that achieve high coverage. The general idea of the test generation concept is
illustrated in Figure 5.

RESEARCH REPORT VTT-R-00212-14
13 (47)

Figure 5. Test generation concept

2.6.2 Concept implementation

A proof of concept tool was created in the Python programming language. In addition to the
developed program code, the model checking model of the examined system is needed. We
used the stepwise shutdown system as an example. The model is in Appendix A.

In this prototype tool the possibility to use arbitrary system designs as input was not
implemented. Instead, the example system (stepwise shutdown system) was hard coded to
the implementation. This means that the function block conditions (FBC) required to calculate
the data path conditions were written directly as Python code for each function block type. In
addition to this, the structure of the example system (i.e. the connections between the
function blocks) were also hard coded, and not read from e.g. some input file. In a possible
future implementation, the system description could be read from some input file, or possibly
the model checking model could be used as input for determining the system structure. The
function block conditions could also be read from some external file once they have been
manually written.

Once the structure of the system is read, determining the data paths is quite easy. In our
implementation we start from the inputs of the system and search for paths to the outputs
using depth-first search. After all paths have been found we remove possible duplicates.

The data path conditions are determined by analysing the data paths one by one, and
composing the data path condition simply based on the function blocks on that data path.
Each function block on the path results to appending the data path with a function block
condition, in which the relevant function block condition template is instantiated with the
signal values related to this instance of the function block. The data path condition is the
conjunction of the function block conditions on that path.

As an example, the function block condition of the AND function block is presented. AND has
two inputs and one output. The corresponding function block condition (FBC) has two parts:
a condition on which input1 has influence on the output, and a condition on which input2 has
influence on the output. Following the FBCs defined in [Jee et al., 2009] the conditions are
written as follows:

RESEARCH REPORT VTT-R-00212-14
14 (47)

 FBC input1, output1 = (! input1) | input2

 FBC input2, output1 = (! input2) | input1

In our implementation code these conditions are stored in a format in which the variables
input1 and input2 are replaced with placeholders that are replaced with the variables of the
AND function block instance. In implementation code the FBC is stored as:

 “ ((! %i0%) | %i1%) "

 " ((! %i1%) | %i0%) "

As the data path condition is being created the temporary variables i0 and i1 are replaced.
For example, in our running example (see Appendix A) in the case of the AND1 function
block instance the input variables would be replaced with “OR1.output” and “NOT1.output1”.

It is also quite simple to create the set of test requirements. The set of data path conditions is
supplemented with the constraints demanded by the different coverage criteria. Finally the
set of test requirements can be transformed into usable temporal logic formulas by adding
the universal “globally” operator in the beginning of the negated test requirement clause. In
the syntax of the model checking tool NuSMV the resulting formula is of the form:

LTLSPEC G ! (test-requirement);

Each test requirement can be transformed into a temporal logic formula. The model checking
tool can then be used to produce a counter-example (to be used as a test case)
corresponding to each formula (if one exists).

One disadvantage of the above mentioned method is that a test case is created for each test
requirement separately. Often it is possible to satisfy the test requirements using fewer test
cases, so that a single test case fulfils multiple test requirements. The minimization of the
number of test cases is discussed below.

2.6.3 Test case optimization

For the CCC test coverage metrics, our running example produces 80 separate test
requirements. Following our test generation concept this would lead to 80 test cases for one
simple logic diagram. Fortunately, the number of test cases can be drastically decreased. It
is possible to create test cases that fulfil multiple test requirements at once. It may even be
possible to fulfil all requirements in one complex test case.

In practice this can be done by combining two (or several) temporal logic formulas into a
single temporal logic formula that covers all the associated test requirements. As an
example, assume we have two test requirements: test_req_1 and test_req_2. The
corresponding temporal logic formula for these two test requirements in NuSMV would be of
the form:

LTLSPEC G ! (test_req_1) | G ! (test_req_2);

In practice the formula states that no path exists in which both of the test requirements are
true at some time point. If such a path exists it will be output by the model checking tool as a
counter-example.

Now it is possible for example to create a single temporal logic formula encompasses all of
the test requirements. However, a test that fulfils all test requirements may be infeasible, or
just very complex, or consisting of very many time steps. In some cases a single test
requirement is infeasible, and these cases should also be detected and sorted out.

RESEARCH REPORT VTT-R-00212-14
15 (47)

We implemented a simple greedy test case optimization algorithm that begins with the first
test requirement and determines whether a test case for that single test requirement is
feasible. If it is feasible we look at the counter-example that was output and store the length
of that counter-example. Then we attach a new test requirement to the examined set of test
requirements, and find out whether a counter-example of the same length that fulfils all test
requirements in the set is feasible. If such a counter-example is still possible we continue by
attempting to add even more test requirements to the set. If the counter-example becomes
infeasible, we exclude the most recent test requirement and continue by adding one from the
set of unexamined test requirements. Once all test requirements have been gone through,
we have a single test case that fulfils n out of the N test requirements. The process is then
repeated with the N - n remaining test requirement until every test requirement is covered by
some test case, or it has been determined that the test requirement cannot be fulfilled. This
simple greedy optimization in the example system leads to three test cases for the 80 test
requirements that are produced by the CCC coverage metric.

2.7 Results

Our Python implementation of the tool was run, and the tests sets according to the different
coverage metrics (BC, ICC, CCC) were generated. The greedy test optimization as
described in Section 2.6.3 was used. The testing of the method was done on a PC with Intel
Core i7 Q740 processor and 3 GB of RAM. For model checking, NuSMV version 2.5.4 was
used. The clock cycle used for the model checking of the example system was 1s.

The basic coverage (BC) metric resulted in 8 test requirements on the example system. The
test requirements are equivalent to the data path conditions of the system:

Test requirement 1: ((process_input | (! VOTE1.output1)) & ((! OR1.output1) |
NOT1.output1) & (! (PULSE2.clock > 0) & ! PULSE2.prev & ! PULSE2.prevout))

Test requirement 2: (((PULSE1.clock > 0) & ! VOTE1.output1) & (TRUE) & ((!
NOT1.output1) | OR1.output1) & (! (PULSE2.clock > 0) & ! PULSE2.prev & !
PULSE2.prevout))

Test requirement 3: ((PULSE2.clock > 0))

Test requirement 4: ((! (PULSE1.clock > 0) & ! PULSE1.prev & ! PULSE1.prev & !
VOTE1.output1) & (TRUE) & ((! NOT1.output1) | OR1.output1) & (!
(PULSE2.clock > 0) & ! PULSE2.prev & ! PULSE2.prevout))

Test requirement 5: ((manual_trip1 | (! manual_trip2)) & TRUE & (VOTE1.output1
| (! process_input)) & ((! OR1.output1) | NOT1.output1) & (! (PULSE2.clock > 0) &
! PULSE2.prev & ! PULSE2.prevout))

Test requirement 6: ((manual_trip1 | (! manual_trip2)) & TRUE & (
VOTE1.output1 | (! PULSE1.prev & ! PULSE1.prevout & DELAY1.output1)|
(PULSE1.clock > 0)) & (TRUE) & ((! NOT1.output1) | OR1.output1) & (!
(PULSE2.clock > 0) & ! PULSE2.prev & ! PULSE2.prevout))

Test requirement 7: ((manual_trip2 | (! manual_trip1)) & TRUE &
(VOTE1.output1 | (! process_input)) & ((! OR1.output1) | NOT1.output1) & (!
(PULSE2.clock > 0) & ! PULSE2.prev & ! PULSE2.prevout))

Test requirement 8: ((manual_trip2 | (! manual_trip1)) & TRUE & (
VOTE1.output1 | (! PULSE1.prev & ! PULSE1.prevout & DELAY1.output1)|
(PULSE1.clock > 0)) & (TRUE) & ((! NOT1.output1) | OR1.output1) & (!
(PULSE2.clock > 0) & ! PULSE2.prev & ! PULSE2.prevout))

RESEARCH REPORT VTT-R-00212-14
16 (47)

Based on the greedy optimization, two test cases were created that fulfil the test
requirements. Test 1 satisfies test requirements 1 and 4, while test 2 satisfies the rest of the
requirements (2, 3, 5, 6, 7, and 8). Using our implementation the time needed to generate the
tests was 2.9 seconds in total, including test requirement generation, model checking and
optimization. The resulting two test cases are as follows:

BC Test case 1:

 Time point 1:

o INPUT: Process input = TRUE

o INPUT: Manual trip1 = FALSE

o INPUT: Manual trip2 = FALSE

o EXPECTED OUTPUT: Control = TRUE

BC Test case 2:

 Time point 1:

o INPUT: Process input = TRUE

o INPUT: Manual trip1 = TRUE

o INPUT: Manual trip2 = TRUE

o EXPECTED OUTPUT: Control = TRUE

 Time point 2:

o INPUT: Process input = TRUE

o INPUT: Manual trip1 = TRUE

o INPUT: Manual trip2 = TRUE

o EXPECTED OUTPUT: Control = TRUE

 Time point 3:

o INPUT: Process input = TRUE

o INPUT: Manual trip1 = TRUE

o INPUT: Manual trip2 = TRUE

o EXPECTED OUTPUT: Control = TRUE

 Time point 4:

o INPUT: Process input = TRUE

o INPUT: Manual trip1 = TRUE

o INPUT: Manual trip2 = TRUE

o EXPECTED OUTPUT: Control = TRUE

RESEARCH REPORT VTT-R-00212-14
17 (47)

 Time point 5:

o INPUT: Process input = TRUE

o INPUT: Manual trip1 = TRUE

o INPUT: Manual trip2 = TRUE

o EXPECTED OUTPUT: Control = TRUE

 Time point 6:

o INPUT: Process input = TRUE

o INPUT: Manual trip1 = TRUE

o INPUT: Manual trip2 = TRUE

o EXPECTED OUTPUT: Control = FALSE

 Time point 7:

o INPUT: Process input = TRUE

o INPUT: Manual trip1 = FALSE

o INPUT: Manual trip2 = FALSE

o EXPECTED OUTPUT: Control = FALSE

The intermediate values of the function blocks are not listed in the test cases since the
values are determined solely on the input signal values. Test case 1 is a simple test case
consisting of a single time point in which the control output should be set when the process
input is true. The second test case ensures that the control output eventually becomes false
after the pulse and that the manual trip commands do not cause anything unexpected.

The input condition coverage (ICC) metric resulted in 14 test requirements on the example
system. The test requirements are listed in Appendix B. Three test cases were generated
based on the test requirements. Test 1 satisfies test requirements 1 and 6. Test 2 satisfies
test requirements 2, 8 and 12. Test 3 satisfies test requirements 3, 4, 7, 9, 10, 11, 13 and 14.
Test requirement 5 was infeasible meaning that a state in which the requirement is true
cannot be reached in the example system. Test requirement 5 is infeasible because it
requires that the feedback signal is true while the internal memory indicating the previous
control output value is false. In the actual system where the feedback loop is intact these two
signals are the same signal which causes the requirement to be infeasible. The test cases for
the ICC coverage metric are as follows:

ICC Test case 1:

 Time point 1:

o INPUT: Process input = TRUE

o INPUT: Manual trip1 = FALSE

o INPUT: Manual trip2 = FALSE

o EXPECTED OUTPUT: Control = TRUE

RESEARCH REPORT VTT-R-00212-14
18 (47)

ICC Test case 2:

 Time point 1:

o INPUT: Process input = FALSE

o INPUT: Manual trip1 = FALSE

o INPUT: Manual trip2 = FALSE

o EXPECTED OUTPUT: Control = FALSE

ICC Test case 3:

 Time point 1:

o INPUT: Process input = TRUE

o INPUT: Manual trip1 = TRUE

o INPUT: Manual trip2 = TRUE

o EXPECTED OUTPUT: Control = TRUE

 Time point 2:

o INPUT: Process input = TRUE

o INPUT: Manual trip1 = FALSE

o INPUT: Manual trip2 = TRUE

o EXPECTED OUTPUT: Control = TRUE

 Time point 3:

o INPUT: Process input = TRUE

o INPUT: Manual trip1 = TRUE

o INPUT: Manual trip2 = FALSE

o EXPECTED OUTPUT: Control = TRUE

 Time point 4:

o INPUT: Process input = TRUE

o INPUT: Manual trip1 = FALSE

o INPUT: Manual trip2 = TRUE

o EXPECTED OUTPUT: Control = TRUE

 Time point 5:

o INPUT: Process input = TRUE

o INPUT: Manual trip1 = TRUE

RESEARCH REPORT VTT-R-00212-14
19 (47)

o INPUT: Manual trip2 = FALSE

o EXPECTED OUTPUT: Control = TRUE

 Time point 6:

o INPUT: Process input = TRUE

o INPUT: Manual trip1 = TRUE

o INPUT: Manual trip2 = FALSE

o EXPECTED OUTPUT: Control = FALSE

 Time point 7:

o INPUT: Process input = TRUE

o INPUT: Manual trip1 = FALSE

o INPUT: Manual trip2 = FALSE

o EXPECTED OUTPUT: Control = FALSE

Test case 1 is similar to the test case 1 generated for BC. The second test case does not
occur in the BC tests. The second test case makes sure that the control output is not set
when the inputs are false. The third test case is again quite similar to BC test case 2 except
that the manual trip commands alternate. The time needed to generate the ICC test cases
was 6.9 seconds including test requirement generation, model checking and optimization.

The complex condition coverage (CCC) metric results in 80 test requirements. Because of
the large amount of test requirements, the clauses are not included in this report. Three test
cases were generated based on the test requirements. Test 1 satisfies test requirements 1,
3, 5, 7, 20, 22, 23, 25 and 27. Test 2 satisfies test requirements 2, 4, 6, 8, 30, 32, 34, 36, 38,
40, 56, 58, 60, 62, 64 and 66. Test 3 satisfies test requirements 9, 12, 14, 16, 17, 29, 31, 33,
35, 37, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 59, 61, 63, 65, 67,
68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79 and 80. Test requirements 10, 11, 13, 15, 18,
19, 21, 24, 26, and 28 were infeasible, i.e. the condition could not be reached in the example
system. As an example of the infeasible cases, test requirement 10 is infeasible because it
requires that the output of a pulse function block (PULSE1) is false while the internal clock of
the pulse is running. This cannot occur in the system because the output is set whenever the
clock is running. The CCC test cases are as follows:

CCC Test case 1:

 Time point 1:

o INPUT: Process input = TRUE

o INPUT: Manual trip1 = FALSE

o INPUT: Manual trip2 = FALSE

o EXPECTED OUTPUT: Control = TRUE

CCC Test case 2:

RESEARCH REPORT VTT-R-00212-14
20 (47)

 Time point 1:

o INPUT: Process input = FALSE

o INPUT: Manual trip1 = FALSE

o INPUT: Manual trip2 = FALSE

o EXPECTED OUTPUT: Control = FALSE

CCC Test case 3:

 Time point 1:

o INPUT: Process input = TRUE

o INPUT: Manual trip1 = TRUE

o INPUT: Manual trip2 = TRUE

o EXPECTED OUTPUT: Control = TRUE

 Time point 2:

o INPUT: Process input = TRUE

o INPUT: Manual trip1 = TRUE

o INPUT: Manual trip2 = FALSE

o EXPECTED OUTPUT: Control = TRUE

 Time point 3:

o INPUT: Process input = TRUE

o INPUT: Manual trip1 = TRUE

o INPUT: Manual trip2 = FALSE

o EXPECTED OUTPUT: Control = TRUE

 Time point 4:

o INPUT: Process input = TRUE

o INPUT: Manual trip1 = TRUE

o INPUT: Manual trip2 = FALSE

o EXPECTED OUTPUT: Control = TRUE

 Time point 5:

o INPUT: Process input = TRUE

o INPUT: Manual trip1 = FALSE

o INPUT: Manual trip2 = TRUE

RESEARCH REPORT VTT-R-00212-14
21 (47)

o EXPECTED OUTPUT: Control = TRUE

 Time point 6:

o INPUT: Process input = TRUE

o INPUT: Manual trip1 = FALSE

o INPUT: Manual trip2 = TRUE

o EXPECTED OUTPUT: Control = FALSE

 Time point 7:

o INPUT: Process input = TRUE

o INPUT: Manual trip1 = FALSE

o INPUT: Manual trip2 = FALSE

o EXPECTED OUTPUT: Control = FALSE

The test cases 1 and 2 are equivalent to the test cases 1 and 2 for the ICC metric. The third
test case is very similar to ICC test case 3 except for minor differences in how the manual
trip commands alternate. The total time needed for the generation of the CCC test cases
including test requirement generation, model checking and optimization was 42,7 seconds.

2.8 Conclusions

In this work we have introduced a new concept for automatically generating structure-based
tests for function block diagrams. The tests are generated based on a structure-based
coverage metrics. The coverage metrics used here were the basic coverage (BC), input
condition coverage (ICC), and complex condition coverage as defined in [Jee et al., 2009]. In
our test generation method we utilize a model checking model of the examined system. We
first transform the test requirements into temporal logic formulas in such a way that the
counter-examples output when the temporal formulas are model checked can be used as
test cases that fulfil the test requirements. The main contribution of our work is this novel
approach for using model checking for producing test cases according to a structural
coverage metric. In addition to this, we have implemented the concept using the Python
programming language and have demonstrated the use of the concept in a small case study
system. We have also applied a simple greedy heuristic for minimizing the number of test
cases needed for fulfilling the test requirements.

Our test generation concept currently requires a fair amount of manual work. A model
checking model of the examined system is needed. Large models should not be a huge
problem since the full model behaviour is not needed in the technique. The test sequences
can be found by analysing only a rather small number of time steps starting from the initial
state of the model. Also, each function block type has to be manually analysed and the
logical constraints that describe the conditions on which an input of the function block
influences an output of the function block have to be manually written. The structure of the
function block diagram has to be described in some way as well. In our implementation the
structure of the case study system was hard coded into the implementation. Since the
structure is already modelled in the model checking model, it should be investigated how that
model could be used for determining the structure automatically.

In our case study we found that three test cases suffice for fulfilling all feasible test
requirements, when the most rigorous coverage metric (CCC) was used. 100% test coverage
is not always possible. Some test requirements were infeasible. It should be also noted that

RESEARCH REPORT VTT-R-00212-14
22 (47)

the use of the most rigorous coverage metric CCC produced almost identical test cases
when compared to the less rigorous ICC coverage metric. Our case study was perhaps too
simple so that the intricacies of the CCC coverage metric could not be seen. The most basic
coverage metric (BC) resulted in two test cases.

The case study system was chosen because it includes a design error: if the manual trip
command is given during the 4 second control the system freezes until the input disappears.
The generated test cases do express this kind of behaviour, the manual trip is indeed
pressed in during the 4s control in the test cases. However, the generated test cases do not
demonstrate the effect of the wrong operator action, namely the freeze of the output cannot
be seen in the short test case sequences. We speculate that if the internal variables of the
pulse blocks were interpreted as input signals in the coverage metric calculations, the freeze
of the control could possibly be seen in the generated test cases. We leave this question for
future work.

Finally, we would like to note the difference in the definition of the function block conditions of
the coverage metrics by [Jee et al., 2009], and the input-output condition as defined in e.g.
the MCDC coverage metric. In [Jee et al., 2009] the function block conditions (FBCs) are
written as a pair of constraints. The constraints express the fact that other inputs do not have
influence on the output. One constraint is for when the input is 0 and the other constraint is
for when the input signal is 1. The FBC is the combination of these constraints. As an
example, the FBC for one of the inputs of an AND function block is:

 FBC input1, output1 = (! input1) | input2

It states that when input1 is not true, it has influence on the output. If input1 is true, it
influences the output only when input2 is true as well. A similar input-output influence relation
is defined in the MCDC coverage metric. In MCDC the influence relation is somewhat
different: input has influence on the output when flipping of the input value, also flips the
output value. The related constraint describes the situation where this always occurs. If the
FBC for the AND function block was written based on this definition, it would be:

 FBC input1, output1 = input2

The input1 has influence on the output only when the other input is true. The difference in
these two definitions is the case where both inputs are false. According to the [Jee et al.,
2009] definition, input1 has influence on the output since input1 is one of the inputs that are
false. According to the MCDC definition input1 does not have influence on the output.

In future, we plan to determine a way to generate the function block conditions automatically.
Using the MCDC definition for the input-output relations might be easier for automatic
generation purposes. We also plan to use the model checking model for determining the
function block diagram structure so that the amount of manual work and hard coding is
minimized. Some test case optimization heuristics could also be tried out, as well as a parser
that produces the test cases in a more readable format.

3. Using model checking for verification of different FPGA design
phases

3.1 Introduction

Field-programmable gate array (FPGA) is a programmable integrated circuit that consists of
a set of logic gates and wiring between them. Unlike in traditional application specific
integrated circuits (ASIC) the connections between circuit gates can be configured by the
user instead of the manufacturer. The FPGA technology is still rather new in the nuclear

RESEARCH REPORT VTT-R-00212-14
23 (47)

power industry for implementing safety system application functions. Power utilities, system
vendors, and regulators of different countries have their own views on how to license,
develop, and verify FPGA applications.

Developing applications for FPGAs is quite similar to developing software. However, the end-
product can be considered as hardware because FPGAs do not have an operating system or
a set of instructions that are executed. Instead a static configuration of logic gates
implements the desired functionality. The product is often considered less complex, even
though the development process is more complex than software development. [EPRI, 2009]

Due to the technology’s nature, the FPGA design life cycle is somewhat different from the
traditional software or hardware development life cycle, by having some additional design
phases. Also, various non-certified software tools are used in each design phase for
automatically generating the next design phase. In safety-critical domains we have to be
certain that this chain of transformations produces a correct final product.

Many V&V methods are currently used, simulation being one example. Formal methods have
been used as well. Model checking is a formal method developed to verify the correct
functioning of a system design model by examining all of its possible behaviours. The models
used in model checking are quite similar to those used in simulation. However, unlike
simulation, model checkers examine the behaviour of the system design with all input
sequences and compare it with the system specification. Model checking has its roots in
hardware verification where it first proved to be effective for verifying large and complex
integrated circuits [Burch et al., 1992; Fix, 2008].

In this section we document our preliminary experiences of using model checking for
analysing FPGA based implementation. We especially have attempted to use the various
design phases of the FPGA design life cycle as input for model checking. The objective of
this work has been to find out how model checking could be used to analyse some of the
low-level representations of the system, and whether this kind of analysis is worthwhile and
reasonable. We have used the case study presented in [Lötjönen, 2013] and created various
models corresponding to the different design phases of that case study system.

3.2 FPGA development life-cycle

The FPGA specific design phases of an FPGA based application are illustrated in Figure 6.

The early design phases – such as requirements specification, architectural design, and
detailed design – are quite similar to the design phases of more traditional software based
automation systems, and are therefore not illustrated in the figure.

The first FPGA specific design phase after detailed design is behavioural description. The
behavioural description typically means that the desired system is described using a
hardware description language (HDL). One example of a hardware description language is
VHDL (very high speed integrated circuit hardware description language). The following
design phase is synthesis, in which the description is translated into a more hardware
oriented format, describing the design implementation in terms of logic gates. The output of
the synthesis phase is a mid-level netlist that describes how the design is implemented using
logic gates and memories. This netlist is typically produced using a software tool.

The next design phase is place and route, in which the mid-level netlist is adjusted to the
particular FPGA device. The product of the design phase is a low-level netlist that has
information the particular gates used for implementing the design. In this phase the timing of
the signals have to be taken into consideration as well. The implementation of the design
must be such that the gates are always able to receive their inputs signals on time, and that
differences in input signal propagation times do not cause unwanted output states, i.e. no
race conditions exist in the implementation of the logic.

RESEARCH REPORT VTT-R-00212-14
24 (47)

After place and route the low-level netlist can be programmed to the device. Some FPGA
technologies use a bit stream programming file.

Figure 6. FPGA specific design phases [Smith, 2010] [NRC 2010]

3.3 Related work

Model checking and other formal verification methods have already been applied in the
context of FPGA applications. In what follows we briefly go through some of the related
research.

One of the main applications of formal methods in the FPGA context is logic equivalence
checking (LEC). LEC is used to verify that the designs in different phases are logically
equivalent i.e. it does not reveal design errors. [Simpson, 2010] The logic equivalence
checking technique is also discussed e.g. in [Sheeran et al., 2000] where a SAT-solver is
used together with induction to verify FPGA cores.

An early system for verifying VHDL descriptions called Prevail is presented in [Borrione et al.,
1992]. Prevail is used for generating circuit presentations out of VHDL code and for proving
that the generated circuit corresponds to the original VHDL code.

[Wasaki et al., 2009] discusses a meta hardware description language called Melasy that can
be used for generating hardware description languages (HDL) and for model checking as
well. This removes the need for describing the FPGA system in another language (e.g. a
separate model checking model) to verify it.

In the work of [Déharbe et al., 1998] the VHDL code itself is used for model checking.
[Déharbe et al., 1998] describe a tool called CV that uses VHDL code as input for symbolic
model checking.

RESEARCH REPORT VTT-R-00212-14
25 (47)

Commercial model checking tools exist as well. One example is IBM’s RuleBase. [Beer et al.,
1996] [Daumas et al., 2012] RuleBase uses a version of the model checking tool SMV as its
verification engine. The tool supports standard commonly used hardware description
languages such as VHDL.

3.4 Case study description

Model checking was applied to a practical case study, a fictional safety automation system
titled the Power Limitation System (PLS). PLS consists of three subsystems that were
implemented using two separate FPGA devices: the Fast Stepwise Shutdown System
(FSWS), the Slow Stepwise Shutdown System (SSWS), and the Priority Logic (PL). The
SSWS responds to a medium alarm input value, while the FSWS only reacts when a high
alarm input value is received. The FSWS can also be initiated manually. Finally the PL
prioritizes the different control signals in order to determine the correct output of the overall
system. Manual control has the highest priority, FSWS has the second highest priority, and
SSWS has the lowest priority. The application level design diagram of the systems can be
seen in Figure 7. For more detailed information, see [Lötjönen, 2013].

Figure 7. Application level design diagram of the case study systems

3.5 Model checking of the FPGA designs

We created three model checking models that correspond to the different design phases of
the PLS system. The models that we created were:

Application level design model. The model was created using the function block
diagrams of the application level design material as input. Methodology for modelling
function block diagrams already exists so model development was quite straight-
forward. This model was intended as a reference model against which the other more
detailed models could be compared.

VHDL-level model. The model was created using the VHDL source code as input.
This model takes into account the way the function blocks were implemented. In
addition, the timing behaviour of the system was modelled in more detail.

Synthesis-level model. Another model was created that used the gate level netlist
representation of the system as input. The timer function blocks resulted in overly

RESEARCH REPORT VTT-R-00212-14
26 (47)

complex implementation that could not be easily modelled. Consequently only the PL
subsystem was modelled on this level.

The model checking tool that was used in the work was NuSMV [Cavada et al., 2010]. The
tool has previously been used in many research case studies at VTT [Lahtinen et al., 2012].
The model checked requirements were formalised using a formal logic called linear temporal
logic (LTL). In what follows we go through these model variants in more detail.

3.5.1 Application level design model

First, a small function block library was created based on the function blocks that were used
in the PLS system. After this all three subsystems of PLS were modelled by creating
instances of the function blocks and creating the connections between the function blocks
according to the design. As an example, the model code for the PL subsystem is as follows:

MODULE PL(IN1, EN1, IN2, EN2, IN3, EN3)
VAR

INV1 : INV(IN1);
INV2 : INV(EN1);
INV3 : INV(IN2);
INV4 : INV(EN2);
INV5 : INV(IN3);
INV6 : INV(EN3);

AND1 : AND(INV1.OUTPUT, INV2.OUTPUT);
AND2 : AND(INV3.OUTPUT, RL1.OUTPUT);
AND3 : AND(INV5.OUTPUT, RL2.OUTPUT);
AND4 : AND(EN2, INV6.OUTPUT);

OR1 : OR(INV2.OUTPUT, AND4.OUTPUT);
OR2 : OR(INV2.OUTPUT, INV4.OUTPUT);
RL1 : SR_FLIPFLOP(INV4.OUTPUT, OR1.OUTPUT);
RL2 : SR_FLIPFLOP(AND4.OUTPUT, OR2.OUTPUT);

INV7 : INV(AND1.OUTPUT);
INV8 : INV(AND2.OUTPUT);
INV9 : INV(AND3.OUTPUT);

DEFINE
OUT1 := INV7.OUTPUT;
OUT2 := INV8.OUTPUT;
OUT3 := INV9.OUTPUT;

ASSIGN

This memory elements used in the PL implementation were modelled here as set-reset flip-
flops. The model code for the used flip-flop is below:

MODULE SR_FLIPFLOP(set, reset)
VAR
mem : boolean;
DEFINE

OUTPUT := case
reset : FALSE;
set : TRUE;
TRUE : mem;

esac;
ASSIGN
init(mem) := FALSE;
next(mem) := OUTPUT;

RESEARCH REPORT VTT-R-00212-14
27 (47)

The model corresponding to the application level design level was built so that the system
has no clock signal in the model. In NuSMV, the notion of time is discrete, meaning that time
is interpreted to consist of separate steps that follow each other. The modelled system
operates as a single synchronous unity, in which every function block operates once during a
single time point. For individual function blocks this means that processing the inputs and
producing the corresponding outputs happens immediately, i.e. no time delays are modelled
for intrinsic calculations of the logic. As an example, see the implementation of the AND
function block. The output of the AND block is simply a macro definition based on the two
inputs, no variables or time delays are involved:

MODULE AND(input1, input2)
VAR
DEFINE
OUTPUT := input1 & input2;
ASSIGN

Only a few requirements were verified on the model since the main focus of the work was in
modelling of the system. The time needed for model checking was less than a second. The
checked requirements were (Note: the negations used in LTL stem from the active low
design of the system):

1. While the input Manual is inactive, while input high Alarm is inactive, while Medium
alarm is active, the output PL_OUT3 of the PL subsystem shall follow the output
PT_OUT of the SSWS subsystem. The requirement can be formalized in LTL:

G (! MANUAL & ! ALARM_HIGH & ALARM_MED -> (PL_OUT3 <->
SSWS1.PT_OUT))

2. While the Manual input is active, the PL_OUT1 of the PL system shall be active. The
requirement can be formalized in LTL:

G (MANUAL -> PL_OUT1)

3. While the Manual control command and the Manual control enable signal are active,
the PL_OUT1 output shall be active. The requirement can be formalized in LTL:

G ((!IN1 & !EN1) -> ! PL_OUT1)

4. While IN3 signal and the EN3 enable signal and the PL_OUT1 output are active,
while the Manual control command and the Manual control enable signal are inactive,
when the IN2 signal and the EN2 enable signal are activated, PL_OUT3 shall be
inactivated and PL_OUT2 shall be activated. The requirement can be formalized in
LTL:

G(! PL_OUT3 & ! IN3 & ! EN3 & IN1 & EN1 & X(! IN2 & ! EN2 & IN1
& EN1) -> X(PL_OUT3 & ! PL_OUT2))

All requirements could be verified on the model. The requirements hold.

RESEARCH REPORT VTT-R-00212-14
28 (47)

3.5.2 VHDL-level model

The next level of model checking was performed based on the descriptions of the systems
written using the VHDL source code. The model was built manually using the VHDL source
code as input for the model.

The VHDL-level model is quite similar to the application level design model. Both models use
a function block library as the basis of the model. Some aspects of the system were
modelled in more detail in the VHDL-level model:

 The flip-flops of the PLS system were implemented using R-latches, see Figure 8.
These R-latches are composed using the fundamental logic blocks (inverters, AND
blocks, and NOR blocks). The implementation of the flip-flop is thus more detailed
when compared to the application level design model. The model code for the R-latch
is below:

MODULE R_LATCH(set, reset)
VAR
INV1 : INV(reset);
AND1 : AND(set, INV1.OUTPUT);
NOR1 : NOR(AND1.OUTPUT, NOR2.OUTPUT);
NOR2 : NOR(NOR1.OUTPUT, reset);
DEFINE
OUTPUT := NOR2.OUTPUT;
ASSIGN

 The timing used in the model differs from the timing of the application level design
model. In the VHDL-level model, each individual function block takes one time point
to update its outputs based on the inputs. This means that it takes several time steps
for a signal to travel through the whole PLS system. This is somewhat more realistic
than the synchronic implementation of the application level design model, in which a
signal travels through the system instantly. As an example for this kind of modelling,
see the model code for the AND function block:

MODULE AND(input1, input2)
VAR
OUTPUT : boolean;
DEFINE
ASSIGN
init(OUTPUT) := FALSE;
next(OUTPUT):= input1 & input2;

 The clock signal of the PLS system was not explicitly modelled. This is because of
the discrete notion time used in the NuSMV tool. The discrete time structure can be
seen as a model of the clock signal.

 The delays of the PULSE function blocks were modelled so that there are 10 time
steps in a second (a three-second PULSE block takes 30 time steps). This modelling
solution is not totally realistic since the length of the pulse is in reality a lot longer than
the time it takes for a signal to travel through a function block (1 time step). Some
clock cycle abstraction is needed for feasibility.

RESEARCH REPORT VTT-R-00212-14
29 (47)

Figure 8. R-latch design. Reset (R) signal has a higher priority than the Set (S) signal.

The whole PLS system could be modelled and requirements could be verified on the
modelled system. The same requirements were verified as were used in the application level
design model. However, because of differences in the modelling, the temporal logic formulas
had to be slightly altered. The time needed for model checking was less than a second. The
checked requirements were:

1. While the input Manual is inactive, while input high Alarm is inactive, while Medium
alarm is active, the output PL_OUT3 of the PL subsystem shall follow the output
PT_OUT of the SSWS subsystem. The requirement can be formalized in LTL:

G(! MANUAL & ! ALARM_HIGH & ALARM_MED -> F ((PL_OUT3 <->
SSWS1.PT_OUT) | MANUAL | ALARM_HIGH | ! ALARM_MED))

2. While the Manual input is active, the PL_OUT1 of the PL system shall be active. The
requirement can be formalized in LTL:

G(MANUAL -> F (PL_OUT1 | ! MANUAL))

3. While the Manual control command and the Manual control enable signal are active,
the PL_OUT1 output shall be active. The requirement can be formalized in LTL:

G ((!IN1 & !EN1) -> F ! PL_OUT1)

4. While IN3 signal and the EN3 enable signal and the PL_OUT1 output are active,
while the Manual control command and the Manual control enable signal are inactive,
when the IN2 signal and the EN2 enable signal are activated, PL_OUT3 shall be
inactivated and PL_OUT2 shall be activated. The requirement can be formalized in
LTL:

G(! PL_OUT3 & ! IN3 & ! EN3 & IN1 & EN1 & X(! IN2 & ! EN2 & IN1
& EN1) -> X F ((PL_OUT3 & ! PL_OUT2) | ! EN1 | ! IN1 | IN2 |
EN2))

3.5.3 Synthesis-level model

The FPGA design tools produce gate-level representations of the designs as output of the
synthesis design phase. These gate-level schematic diagrams can quite easily be used as
input for model checking. An example of the schematic diagrams that can be obtained from
the FPGA design tools is in Figure 9. The figure illustrates an implementation of a three-
second pulse function block. The diagram does not show all the details of the

RESEARCH REPORT VTT-R-00212-14
30 (47)

implementation, i.e. the counter elements can be further expanded into bit level
representations that implement the design.

Figure 9. High-level description of a three-second pulse function block generated by the
Synplify software tool

When all of the design elements are fully expanded into bit level logic blocks the design can
become rather large. In our PLS example case the combination of the PULSE function
blocks and the rather fast clock cycle that was used result in a complex looking design. This
is because the timer variables need multiple bits for counting. As an example, a small part of
a single PULSE function block is presented in Figure 10. The whole gate-level presentation
of this single pulse function block is approximately 10 times larger than what is shown.

Figure 10. Part of the gate-level netlist of the six-second PULSE function block

Because of the complexity induced by the counters used in pulse function blocks the whole
PLS could not be modelled. Instead, only the part of the system where the pulse function
blocks were not used, the PL subsystem, was modelled. The gate-level schematic is in
Figure 11. Every function block is implemented using two parts: the combinatorial part that is
performed instantaneously, and a d flip-flop that is used to store the value of the
combinatorial part. This design implementation principle is also clearly visible in Figure 11.

RESEARCH REPORT VTT-R-00212-14
31 (47)

Figure 11. Netlist of the PL subsystem.

The PL subsystem was modelled so that a separate function block for the d flip-flop was
added to the function block library. The model code is below:

MODULE D(input)
VAR

mem : boolean;
DEFINE

OUTPUT := mem;
ASSIGN
init(mem) := FALSE;
next(mem) := input;

The combinatorial elements (AND, OR, NOR, INV) were modelled so that the outputs are
instantaneously calculated. As an example, the model code for the AND function block is
below:

MODULE AND(input1, input2)
VAR
DEFINE
OUTPUT := input1 & input2;
ASSIGN

The two requirements involving only the PL subsystem were verified using model checking.
The time needed for model checking was less than a second. The checked requirements
were:

1. While the Manual control command and the Manual control enable signal are active,
the PL_OUT1 output shall be active. The requirement can be formalized in LTL:

G ((!IN1 & !EN1) -> F ! PL_OUT1)

2. While IN3 signal and the EN3 enable signal and the PL_OUT1 output are active,
while the Manual control command and the Manual control enable signal are inactive,
when the IN2 signal and the EN2 enable signal are activated, PL_OUT3 shall be
inactivated and PL_OUT2 shall be activated. The requirement can be formalized in
LTL:

G(! PL_OUT3 & ! IN3 & ! EN3 & IN1 & EN1 & X(! IN2 & ! EN2 & IN1
& EN1) -> X F ((PL_OUT3 & ! PL_OUT2) | ! EN1 | ! IN1 | IN2 |
EN2))

In addition to model checking these two requirements, we also managed to perform
equivalence checking between the VHDL-level model and the synthesis-level model. The
modelling methodology regarding the time behaviour was similar in the two models. This

RESEARCH REPORT VTT-R-00212-14
32 (47)

allowed us to verify that the outputs of the two models always correspond to each other if the
inputs of the models are the same. We did this equivalence checking by creating a model
that had the two models as separate modules. Then the same set of input variables was
connected to both modules. It is then quite easy to verify that the outputs of the modules
correspond to each other in all possible cases:

G (PL_VHDL.OUT1 <-> PL_SYNTHESIS.OUT1)
G (PL_VHDL.OUT2 <-> PL_SYNTHESIS.OUT2)
G (PL_VHDL.OUT3 <-> PL_SYNTHESIS.OUT3)

3.6 Discussion and conclusions

We created three models of the PLS system: the application level design model, the VHDL-
level model, and the synthesis-level model based on a gate-level schematic diagram. Design
diagrams such as function block diagrams we have already modelled and verified in previous
case studies, see e.g. [Lahtinen et al., 2012]. In our experience, the model checking of the
function block diagrams has been very useful and worthwhile.

In this case study, the VHDL-level model and the synthesis-level model were functionally
equivalent. Analysing VHDL can be beneficial if the language used in application design is
not well-defined. On the VHDL-level it is possible to see how the more complex function
blocks have been implemented. A model based on the actual implementation code more
likely corresponds to the actual system behaviour.

In this work we have created the VHDL-level model and the synthesis-level model manually
based on VHDL code and schematic diagrams output by the FPGA design tools. This is not
optimal since it takes a fair amount of work and the manual modelling phase is always
suspect to errors. It would be much more useful if the VHDL code itself could be used for
model checking. Some tools for this purpose exist, for example, the CV tool by [Déharbe et
al., 1998].

One of the main observations made during this work is that modelling the system on the
gate-level can be very laborious when the system has counters that use large integer
variables. These kinds of counters were in the case study system because the clock cycle of
the FPGA device was on the megahertz scale while the time delays used in the designed
system were on the scale of seconds. The counters lead to large implementations when they
are examined on the gate-level. It is also probable that if the design was precisely modelled
on the gate-level, there would be problems in the property verification phase of model
checking (state explosion and/or huge counter-example length). The problem could be
avoided be using a longer clock cycle in the FPGA device, or by creating abstractions for the
counters.

In this work we did not use the low-level netlist output by the place and route design phase.
On this level the placement of the used gates on the FPGA chip (chip planning) is also taken
into consideration. In practice, the placement of gates on the chip has influence on the time it
takes for a signal to travel from one gate to another. If we wanted to model the system on
this level, these time delays would have to be modelled as well. In all other aspects the low-
level netlist produced in place and route corresponds to the synthesis-level netlist. In our
preliminary experience it could be possible to create models that take the chip planning into
account but such modelling would probably be unpractical. In addition, for verifying such
models we would have to use some other model checking tool that is more capable for
analysing real-valued time delays. In all probability, using model checking for the most
detailed design phase where the chip planning is taken in to account is not sensible,
especially because there are tools designed specifically for analysing that the timings of the
chip are adequate. Furthermore, there are tools used in FPGA design that check the
equivalence of two consecutive design phases. These kinds of tools are probably more
useful for verifying that the low-level phases have been performed correctly.

RESEARCH REPORT VTT-R-00212-14
33 (47)

4. Fault injection

4.1 Introduction

The term fault injection covers a number of approaches with different objectives and can
mean quite different things in different contexts. There is hardware and software fault
injection. Further, software fault injection can refer to injection of faults into software or use of
software approaches to mimic hardware faults. Also, the injected faults can test robustness
and fault tolerance of a system or the ability of V&V activities to detect faults in the design.
This chapter first introduces fault injection in general with a slight emphasis on software
applications and then discusses FPGA specific topics.

Fault refers to a property of the system, error is a manifestation of the fault and may result in
a failure of the system to perform its intended function. The term fault injection covers
injecting both faults and errors and typically involves observation and investigation of the
resulting failures. The common characteristic of different fault injection strategies and
methods is the intentional introduction of faults or errors into a system’s design or to a
running (or simulated) version of the system. The response of the system is then measured
and used for quality assessment. For evaluating V&V, the response is the detection of faults.
That is, the object of interest can be the system and its ability to handle faults or the ability of
the design and V&V processes to produce a fault-free system. This means that the selection
of faults that are injected can have a significant effect on the conclusions, because while
numerous different types of faults are possible, they are not equally likely to exist in the
design. Recent work and introduction to software fault injection for testing fault tolerance can
be found in [Cotroneo, Madeira, 2013] and [Natella et al., 2013].

The context and methods of fault injection can vary greatly depending on the type of system,
stage of design and used methods and tools, objectives of the fault injection experiments,
and available resources. The system, a product of a design process, to be analysed using
fault injection can consist of software and/or hardware. Similarly the errors or faults can be
introduced through the design, implementation of the design, inputs to the system, or the
software and hardware platform the system runs on. Faults can be injected also into a
simulated version of the system before the design is implemented. Furthermore, instead of
actually compiling and running a piece of software the faults can be injected during symbolic
execution of the code. When testing and analysis is focused on the design and V&V
processes, those processes are seen as the “system” to which the faults are injected. The
observed response is the discovery of the known injected faults. This is also known as
mutation testing with the objective of determining which incorrect “mutant” versions are
detected and thereby assess quality of the V&V process and improve the testing methods
and test cases.

As the objective and approaches of fault injection vary greatly, so does the need for
specialised tools. Changing a few lines of code by hand in the programming environment
only requires help in keeping track of the changes. At the other end of the spectrum,
introducing physical failures, e.g. by radiation, requires laboratory conditions. From software
product point of view, the primary considerations for tools are automatic injection of errors
and collecting and analysing the results. Figure 12 gives an overview of fault injection in the
context of software.

RESEARCH REPORT VTT-R-00212-14
34 (47)

Figure 12. Overview of fault injection approaches for software. Blue texts indicate methods of
fault injection and green texts observations made from the fault injection tests.

4.2 Objectives of fault injection

4.2.1 Evaluate the effectiveness of the design and V&V process

Though it may be impossible to verify that there are no faults in a design or identify existing
faults, the number of faults can be estimated using a known set of faults. The discovery of
faults in a design is “simulated” using a set of intentionally introduced faults. A number of
known faults are introduced into the software source code, HDL (Hardware Description
Language) code of an FPGA design, or the design in another format. For example, “a=a+1”
can be changed to “a=a-1” or an incorrect variable is used in a function call. Normal
verification activities are then performed and the fraction of the introduced errors that are not
discovered is used as an estimate of what proportion of unknown actual errors remain
undiscovered. The distribution of the types of errors injected should correspond to the
distribution of actual errors typically created by designers for the results to be meaningful.
This testing of V&V effectiveness can also focus on a specific tool or method, such as a
static code analyser, however, automation of the testing and analysis procedures is needed
for efficiently repeating them for different fault sets.

Processor

…..............
...Design...

.documents.
…..............
...Source...
....Code....
…..............

Errors according to a
profile typical to the
software in question

Radiation
(heavy ions, EM)
Power fluctuation
Temperature

Executable

Memory

Automatic injection
during compilation

….........
.Input.
..Data..
….........

Special (corner) cases
Incorrect or inconsistent data

Fraction of injected
faults discovered
during V&V

Expected behaviour
and response

Runtime fault
detection,
recovery and
tolerance

Runtime
injection

….........
.Output.
..Data..
….........

RESEARCH REPORT VTT-R-00212-14
35 (47)

4.2.2 Test error detection and fault recovery of the system

This is the common application of fault injection methods and is used for both design faults
and those resulting from hardware faults, incorrect inputs, and other runtime issues. Typically
systems include functions which detect errors and try to recover from them during operation.
These include, e.g., input validity checking, use of triple modular redundancy, and watchdog
timers. If an error is detected, corrective action can be taken to try to restore correct internal
state and normal operation of the system or drive the system to a safe mode. To test these
functions, faults and error states are artificially triggered by suitable manipulation of the
design, inputs to the system, or manipulation of hardware (mechanical, electrical, radiation).
Essentially, an error or fault is simulated and the response of the system is observed. The
error can originate in another system represented by the inputs or be a software or hardware
fault of the system under testing. When manipulating the inputs, they can be designed to
trigger a specific response from the system. This may be done through both the format of the
inputs and their range of values. Faults injected into the design (software) of the system can
simulate design errors and allow evaluation of the system’s ability to detect internal errors
and recover from them. Additionally, some hardware faults can be emulated using software.
Fault injection through hardware can simulate a failure of some component but also an error
in data caused, e.g., by a single event upset (SEU) in SRAM or the state of a flip-flop in an
FPGA. SEU are electrical disturbances cause by ionizing radiation resulting in changes in the
state of the memory or signals.

4.2.3 Trigger functions that are inactive under normal operating conditions and allow
wider test coverage of functionality

Some functions (segments of code in software or components on an FPGA) are only
activated under specific circumstances. These include the error detection and recovery
functions mentioned in the previous section but also functions used under uncommon
operating conditions. In addition to driving the system into a state in which the functions are
executed, the conditions that trigger the function can be altered, e.g., by changing parameter
values controlling the threshold or simply changing the content of an “if”-statement. Thus, it is
not necessary to actually drive the system into the state which triggers the functions but, on
the other hand, the response might be incorrect as the state does not match the conditions
the function is intended for.

4.2.4 Fault injection at early design phases

In some cases it is possible to perform fault injection early on before implementation of the
design. A high abstraction level description of a system (“electronic system level” using e.g.
System C or System Verilog) describes components and their interaction without the details
of implementation. If the functionality can be simulated in an early design phase, the effect of
some types of faults on the behaviour of the system can be tested. In particular error
propagation between the components and faults in the communication protocols are potential
targets.

4.3 Methods to inject faults

From the perspective of software based automation systems the program source code is a
natural target for fault injection. A very similar approach is to manipulate the hardware
description language (HDL) code of hardware, e.g. FPGA, based systems. In addition to the
source code, the injection can also be done into a compiled form of the code (e.g. software
object code or hardware netlist). Using automated tools the engineer doesn’t have to actually
make the changes to the code. The tools inject the faults during compile and even the
generation and selection of faults to be injected can be automated.

RESEARCH REPORT VTT-R-00212-14
36 (47)

The injection can also take place during runtime. The fault can be in the code but is only
activated by, e.g., a timer, interrupt trigger, execution entering some specific path, or a
memory area being accessed. Direct manipulation of the program in memory while it is
executing is also possible, thus the fault can be injected and removed during execution. This
can be done with a software layer between the application and the operating system. The
effects the additional software layer may have on the performance, especially timing
properties, of the system needs to be carefully evaluated for real time systems. Also
specialised hardware can be used to alter the program during runtime.

Fault injection through manipulation of the inputs of the system can be implemented using
altered input files, direct manipulation of RAM, or using a simulated operating environment.
Input files containing errors can implement many types of faults and error situations as the
content can be manipulated freely. The runtime data in memory can be controlled with, for
example, a similar software layer as used for runtime injection of faults into the program’s
functionality. This allows a further dimension compared to altered input files. A fault injected
during execution can simulate also memory corruption or hardware failure in addition to
external inputs to the system. A simulated operating environment can provide also an
analysis of chains of events and wider scope of consequences resulting from the fault as the
system under investigation interacts with other systems. However, forcing a complex
simulation model into a specific state which is also physically consistent may be laborious.

Physical- or hardware injection can refer to causing physical errors or failures (hardware
malfunction) in the system or using special hardware instrumentation to inject the desired
faults (e.g. alter the signals between an FPGA and circuit board). Methods to cause physical
errors and faults include the use of power surges, electromagnetic interference, and heavy
ion radiation. An even more concrete form of physical fault injection is the physical alteration
of the system’s hardware. The objective can be to test how well the system can handle faults
in the form of hardware failures (detect, recover, reconfigure, tolerate). The faults injected
using methods such as ion radiation or electromagnetic interference are not repeatable as it
may be impossible to know what actually happened inside the component, especially, if the
fault is transient, i.e., not a permanent physical alteration but an incorrect signal or state in
the circuitry. Physical injection can also refer to using an equipment layer between the
processor or memory and the board (i.e. injection not done within software). Also, testing
pins (JTAG) of electronic components can be used for this purpose.

In addition to testing individual systems, communication between systems or subsystems
can be targeted for fault injection. Fundamentally this targets errors or inconsistencies in the
design of the protocol or how different systems implement it. A classic example of
miscommunication is the Ariane 5 crash where an error signal was interpreted as a
measurement and thus resulted in a control signal with a wildly incorrect value. One system
was expecting an integer representing a measurement value but the other system sent an
integer that should have been recognized as indicator of error. In this particular example
even testing with predicted flight trajectory data would have exposed the problem without
need for fault injection. The approach of injecting errors to the communication between
systems can be used for testing black box pieces of software (e.g. COTS libraries). Even
without access to the source code the propagation of the errors can be analysed as the
signals between the black boxes are observable.

4.4 Application of fault injection to V&V of FPGA based systems

FPGA based systems usually use a design life cycle similar to software development. The
result, however, is a hardware component with physically hardwired functionality. There is no
operating system and all functions have dedicated hardware (transistors in the circuitry)
instead of a central processor handling sequential instructions of several programs
(operating system, hardware drivers, and applications). Still, the similarity between HDL and
software source code make many fault injection approaches similar between FPGAs and

RESEARCH REPORT VTT-R-00212-14
37 (47)

software. It is not a recommended approach for safety related applications, but FPGAs can
be used to implement microprocessor cores and then run software, thus complicating the
overall design and combining need for V&V of both software and FPGA design.

The stages of design, see Figure 6 in Chapter 3, can all be targeted with some type of fault
injection testing. In an FPGA the memory and processing are implemented in the same
device. The memory on the device holds the state data of the system (i.e. data being
processed) and configuration data (i.e. programmed functionality) of the device. This is
similar to a computer’s memory containing the program and its data but in an FPGA the data
is not transferred back and forth between memory and processor. Also, whereas the memory
of a computer is fully accessible, the memory on an FPGA has limited accessibility. Reading
the entire state of the system or its configuration may be impossible, thus limiting the
possibility of tracking error propagation.

One aspect of interest is the tolerance of the FPGA to single event upsets. The configuration
of the device, i.e. how the functionality is implemented and distributed onto the hardware,
has an effect on SEU sensitivity. Hence, the same functionality can be implemented with
different tolerance to physical disturbances. The chosen technology (SRAM, flash, antifuse)
of the FPGA also has a significant effect on SEU tolerance. Antifuse technology has the
property that it is one-time configurable, and runtime changes, and thereby fault injection, to
configuration are not possible. Also, from the point of view of device selection the fault
tolerance of the configuration process should be considered. It should be possible to verify
that the configuration in the device is as intended. An approach using the extra computing
resources on an FPGA to implement runtime fault injection is given in [Nazar, Carro, 2012]
where unused areas of the device implement functions that create changes in the
configuration memory.

The Figure 12 works well also for giving an overview of the use of fault injection in FPGA
design V&V, if the source code is replaced with HDL code, compilation is replaced by
synthesis and place and route, executable program is replaced by configuration file, and
instead of separate memory and processor there is only the FPGA device. Certainly the tools
and details differ but the overall view is similar.

4.5 Tools

A number of tools are presented in [Natella et al., 2013], [Hsueh et al., 1997], and [Hissam et
al., 2004]. Suitable tools depend on the chosen programming language, hardware choices,
and objectives. Desirable properties of tools for fault injection are described in [Vinter et al.,
2007]. The nature of the system and methods to inject faults affect heavily the achievability of
these properties. The properties are listed here as a checklist of what to consider when
evaluating and selecting tools.

Reachability refers to the ability of the tool to access and inject faults to different parts
of the target system
Controllability in space means the accuracy of where the fault is injected while
controllability in time means the accuracy of when then fault is injected
Repeatability allows an experiment to be repeated with consistent results
Reproducibility means that the statistical properties of a set of tests can be
reproduced
Intrusiveness refers to the amount of unwanted side effects the fault injection has on
the system behaviour and performance and can be divided into intrusiveness in time
and space
Flexibility allows the easy modification of the “where” and “when” of faults that are
injected in the tests

RESEARCH REPORT VTT-R-00212-14
38 (47)

Effectiveness is the ability to activate fault handling mechanisms in the system
Efficiency refers to the time and effort required to run the tests
Observability means the ease and coverage of observing and measuring the effect
the faults have on the system

RESEARCH REPORT VTT-R-00212-14
39 (47)

References

Beer, I., Ben-David, S., Eisner, C., Landver, A. RuleBase: an Industry-Oriented Formal
Verification Tool. Proceedings of 33rd Design Automation Conference (DAC 96). pp.
655-660, Las Vegas, NV, 3-7 Jun, 1996.

Borrione, D.D., Pierre, L.V., Salem, A.M. Formal Verification of VHDL Descriptions in the
Prevail Environment. IEEE Design & Test of Computers. Vol. 9. Number 2, pp. 42-56,
1992.

Burch, J., Clarke, E., McMillan, K., Dill, D., Hwang, L. Symbolic model checking: 10^20 states
and beyond. Information and Computation 1992;98(2) pp. 142–70, 1992.

Cavada, R., Cimatti, A., Jochim, C.A., Keighren, G., Olivetti, E., Pistore, M., Roveri, M.,
Tchaltsev, A.: NuSMV 2.5 User Manual. FBK-irst., 2010.

Cotroneo, D., Madeira, H. “Introduction to Software Fault Injection”, in Cotroneo, D. (ed),
Innovative Technologies for Dependable OTS-Based Critical Systems, Springer,
2013.

Daumas, F., Druilhe, A., Thuy, N. Justification Framework for the Formal Verification of a
Microprocessor FPGA Emulator Application to the MC6800 p. 5th FPGA IAEA
Workshop, Beijing, 2012.

Déharbe, D, Shankar, S., Clarke, E.M. Model Checking VHDL with CV. Proceedings of the
Second International Conference on Formal Methods in Computer-Aided Design.
FMCAD '98. 508-514. Springer-Verlag, London, UK, 1998.

Electric Power Research Institute. EPRI TR-1019181: Guidelines on the Use of Field
Programmable Gate Arrays (FPGAs) in Nuclear Power Plant I&C Systems. EPRI,
Palo Alto, California, USA, 2009.

Fix, L. Fifteen years of formal property verification in Intel. 25 Years of model checking.
Lecture Notes in Computer Science 2008;5000, pp. 139–44, 2008.

Hissam, Z., Ayoubi, R., Velazco, R. A Survey on Fault Injection Techniques. The
International Arab Journal of Information Technology, Vol. 1, No. 2, pp. 171-186, July
2004.

Hsueh, C-H, Tsai, T.K., Iyer, R.K. Fault Injection Techniques and Tools. Computer, Vol. 30,
No. 4, pp. 75-82, April 1997.

IEC 61131-3. International Standard for Programmable Controllers – Part 3: Programming
Languages, IEC, 1993.

IEC/ISO/IEEE 29119-4. Software and systems engineering – Software testing – Part 4: Test
techniques, International standard, 2013.

Jee, E., Jeon, S., Bang, H., Cha, S. Testing of Timer Function Blocks in FBD. XIII ASIA
PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC'06). 2006.

Jee, E., Yoo, J., Cha, S., Bae, D. A data flow-based structural testing technique for FBD
programs, Information and Software Technology, Volume 51, Issue 7, July 2009,
Pages 1131-1139, ISSN 0950-5849, 10.1016/j.infsof.2009.01.003.

RESEARCH REPORT VTT-R-00212-14
40 (47)

Jee, E., Kim, S., Cha S., Lee, I., Automated Test Coverage Measurement for Reactor
Protection System Software implemented in Function Block Diagram, SAFECOMP
2010. The 29th International Conference on Computer Safety, Reliability and
Security. September 14 - 17 2010. Vienna, Austria.

Lahtinen, J., Valkonen, J., Björkman, K., Frits, J., Niemelä, I., Heljanko, K. Model-checking of
safety-critical software in the nuclear engineering domain. Reliability Engineering and
System Safety 105. pp. 104-113, Elsevier, 2012.

Lötjönen, L. FPGA Implementation of the Stepwise Shutdown System. VTT Research report.
VTT-R-06053-12. Espoo, Finland. 2012.

Lötjönen, L. Field-Programmable Gate Arrays in Nuclear Power Plant Safety Automation.
Master’s Thesis. Aalto University. 2013. Available online:
https://aaltodoc.aalto.fi/handle/123456789/10921

Lötjönen, L., Ranta, J., Lahtinen, J., Valkonen, J., Holmberg, J-E. 2013. Use of Field-
Programmable Gate Arrays in Nuclear I&C Safety Systems – Case Stepwise
Shutdown System. Automaatio XX. Helsinki, Finland.

Natella, R., Cotroneo, D., Duraes, J.A., Madeira, H.S. On Fault Representativeness of
Software Fault Injection. IEEE Transactions on Software Engineering, Vol. 39, No. 1,
January 2013.

Nazar, G.L., Carro, L. Fast Single-FPGA Fault Injection Platform. 2012 IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT), Austin, Texas, U.S.A., October 3 - 5, 2012.

Pakonen, A., Mätäsniemi, T., Lahtinen, J., Karhela, T., A Toolset for Model Checking of PLC
Software, 18th IEEE International Conference on Emerging Technologies and
Factory Automation, ETFA2013, 10-13 September 2013, Cagliari, Italy, Proceedings.
IEEE, 2013.

Pyykkö, P. Dynamic testing of safety-critical software, M.Sc. thesis, Helsinki University of
Technology, Espoo, Finland, 2010.

Sheeran, M., Singh, S., Stålmarck, G. Checking Safety Properties Using Induction and a
SAT-Solver. W.A. Hunt, Jr. and S.D. Johnson (Eds.): FMCAD 2000, LNCS 1954, pp.
108-125, 2000.

Shin, D., Jee, E., Bae, D-H. Empirical Evaluation on FBD Model-Based Test Coverage
Criteria Using Mutation Analysis, R.B. France et al. (Eds.): MODELS 2012, LNCS
7590, pp. 465–479, 2012.

Simpson, P. FPGA Design – Best Practices for Team-based Design. ISBN 978-1-4419-6338-
3. Springer, New York, USA, 2010.

Smith, G, FPGAs 101, Newnes, Boston, 2010, http://dx.doi.org/10.1016/B978-1-85617-706-
1.00004-7.

USNRC. Software Unit Testing for Digital Computer Software Used in Safety Systems of
Nuclear Power Plants, Regulatory Guide 1.171, September 1997.

USNRC. Review Guidelines for Field-Programmable Gate Arrays in Nuclear Power Plant
Safety Systems. U.S. NRC, NUREG/CR-7006, (ORNL/TM-2009/20), 2010. Available
at: http://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr7006 (accessed:
7 November, 2013).

http://dx.doi.org/10.1016/B978-1-85617-706-1.00004-7
http://dx.doi.org/10.1016/B978-1-85617-706-1.00004-7

RESEARCH REPORT VTT-R-00212-14
41 (47)

Vinter, J., Bromander, L., Raistrick, P., Edler, H. FISCADE - A Fault Injection Tool for
SCADE Models. Automotive Electronics, 2007 3rd Institution of Engineering and
Technology Conference on. The University of Warwick, Coventry, UK, June 28 – 29,
2007.

Wasaki, K., Iwasaki, N. Development of a Meta Description Language for Software/Hardware
Cooperative Design and Verification for Model-Checking Systems. International
Journal of Electrical and Electronics Engineering 3:4, 2009.

RESEARCH REPORT VTT-R-00212-14
42 (47)

Appendix A – The model checking model of the example system

MODULE main

VAR

--### Free inputs in the model (measurements and operator
commands):

process_input : boolean;

manual_trip1 : boolean;

manual_trip2 : boolean;

--## MODEL COMPOSITION:

DELAY1 : DELAY(PULSE2.output1);

VOTE1 : _1oo2(manual_trip1, manual_trip2);

OR1 : OR_2(process_input, VOTE1.output1);

PULSE1 : RESET_PULSE(DELAY1.output1, VOTE1.output1, 14);

NOT1 : NOT(PULSE1.output1);

AND1 : AND_2(OR1.output1, NOT1.output1);

PULSE2 : PULSE(AND1.output1, 4);

DEFINE

control := PULSE2.output1;

MODULE AND_2(input1, input2)

DEFINE

output1 := input1 & input2;

MODULE OR_2(input1, input2)

DEFINE

output1 := input1 | input2;

MODULE DELAY(input1)

VAR

prev : boolean;

RESEARCH REPORT VTT-R-00212-14
43 (47)

DEFINE

output1 := prev;

ASSIGN

init(prev) := FALSE;

next(prev) := input1;

MODULE NOT(input1)

DEFINE

output1 := ! input1;

MODULE PULSE(input1, time)

VAR

prev : boolean;

prevout : boolean;

clock : 0..300;

DEFINE

delay := time;

rising_edge := ! prev & ! prevout & input1;

output1 := case

rising_edge : TRUE;

clock > 0 : TRUE;

TRUE : FALSE;

esac;

ASSIGN

init(prev) := FALSE;

next(prev) := input1;

init(prevout) := FALSE;

next(prevout) := output1;

init(clock) := 0;

next(clock) := case

rising_edge : delay;

RESEARCH REPORT VTT-R-00212-14
44 (47)

clock = 0 : clock;

TRUE : clock - 1;

esac;

MODULE RESET_PULSE(input1, reset, time)

VAR

prev : boolean;

prevout : boolean;

clock : 0..300;

prev_reset : boolean;

DEFINE

delay := time;

rising_edge := ! prev & ! prevout & input1;

reset_press := reset & ! prev_reset ;

output1 := case

reset_press : FALSE; --# newline

rising_edge : TRUE;

clock > 0 : TRUE;

TRUE : FALSE;

esac;

ASSIGN

init(prev) := FALSE;

next(prev) := input1;

init(prevout) := FALSE;

next(prevout) := output1;

init(prev_reset) := FALSE;

next(prev_reset) := reset;

init(clock) := 0;

next(clock) := case

reset_press : 0;

rising_edge : delay;

RESEARCH REPORT VTT-R-00212-14
45 (47)

clock = 0 : clock;

TRUE : clock - 1;

esac;

RESEARCH REPORT VTT-R-00212-14
46 (47)

Appendix B - The test requirements of the example system for
achieving 100% Input Condition Coverage

Test requirement 1: (process_input & ((process_input | (!
VOTE1.output1)) & ((! OR1.output1) | NOT1.output1) & (!
(PULSE2.clock > 0) & ! PULSE2.prev & ! PULSE2.prevout)))

Test requirement 2: (! process_input & ((process_input | (!
VOTE1.output1)) & ((! OR1.output1) | NOT1.output1) & (!
(PULSE2.clock > 0) & ! PULSE2.prev & ! PULSE2.prevout)))

Test requirement 3: (((PULSE1.clock > 0) & ! VOTE1.output1)
& (TRUE) & ((! NOT1.output1) | OR1.output1) & (!
(PULSE2.clock > 0) & ! PULSE2.prev & ! PULSE2.prevout))

Test requirement 4: ((PULSE2.clock > 0))

Test requirement 5: (DELAY1.output1 & ((! (PULSE1.clock > 0)
& ! PULSE1.prev & ! PULSE1.prev & ! VOTE1.output1) & (TRUE)
& ((! NOT1.output1) | OR1.output1) & (! (PULSE2.clock > 0)
& ! PULSE2.prev & ! PULSE2.prevout)))

Test requirement 6: (! DELAY1.output1 & ((! (PULSE1.clock >
0) & ! PULSE1.prev & ! PULSE1.prev & ! VOTE1.output1) &
(TRUE) & ((! NOT1.output1) | OR1.output1) & (!
(PULSE2.clock > 0) & ! PULSE2.prev & ! PULSE2.prevout)))

Test requirement 7: (manual_trip1 & ((manual_trip1 | (!
manual_trip2)) & TRUE & (VOTE1.output1 | (!
process_input)) & ((! OR1.output1) | NOT1.output1) & (!
(PULSE2.clock > 0) & ! PULSE2.prev & ! PULSE2.prevout)))

Test requirement 8: (! manual_trip1 & ((manual_trip1 | (!
manual_trip2)) & TRUE & (VOTE1.output1 | (!
process_input)) & ((! OR1.output1) | NOT1.output1) & (!
(PULSE2.clock > 0) & ! PULSE2.prev & ! PULSE2.prevout)))

Test requirement 9: (manual_trip1 & ((manual_trip1 | (!
manual_trip2)) & TRUE & (VOTE1.output1 | (! PULSE1.prev
& ! PULSE1.prevout & DELAY1.output1)| (PULSE1.clock > 0)) &
(TRUE) & ((! NOT1.output1) | OR1.output1) & (!
(PULSE2.clock > 0) & ! PULSE2.prev & ! PULSE2.prevout)))

Test requirement 10: (! manual_trip1 & ((manual_trip1 | (!
manual_trip2)) & TRUE & (VOTE1.output1 | (! PULSE1.prev
& ! PULSE1.prevout & DELAY1.output1)| (PULSE1.clock > 0)) &
(TRUE) & ((! NOT1.output1) | OR1.output1) & (!
(PULSE2.clock > 0) & ! PULSE2.prev & ! PULSE2.prevout)))

Test requirement 11: (manual_trip2 & ((manual_trip2 | (!
manual_trip1)) & TRUE & (VOTE1.output1 | (!
process_input)) & ((! OR1.output1) | NOT1.output1) & (!
(PULSE2.clock > 0) & ! PULSE2.prev & ! PULSE2.prevout)))

RESEARCH REPORT VTT-R-00212-14
47 (47)

Test requirement 12: (! manual_trip2 & ((manual_trip2 | (!
manual_trip1)) & TRUE & (VOTE1.output1 | (!
process_input)) & ((! OR1.output1) | NOT1.output1) & (!
(PULSE2.clock > 0) & ! PULSE2.prev & ! PULSE2.prevout)))

Test requirement 13: (manual_trip2 & ((manual_trip2 | (!
manual_trip1)) & TRUE & (VOTE1.output1 | (! PULSE1.prev
& ! PULSE1.prevout & DELAY1.output1)| (PULSE1.clock > 0)) &
(TRUE) & ((! NOT1.output1) | OR1.output1) & (!
(PULSE2.clock > 0) & ! PULSE2.prev & ! PULSE2.prevout)))

Test requirement 14: (! manual_trip2 & ((manual_trip2 | (!
manual_trip1)) & TRUE & (VOTE1.output1 | (! PULSE1.prev
& ! PULSE1.prevout & DELAY1.output1)| (PULSE1.clock > 0)) &
(TRUE) & ((! NOT1.output1) | OR1.output1) & (!
(PULSE2.clock > 0) & ! PULSE2.prev & ! PULSE2.prevout)))

	Preface
	Contents
	1. Introduction
	2. Test set generation for function-block based systems
	2.1 Introduction
	2.2 Structure-based testing
	2.3 Structure-based testing for function block diagrams
	2.3.1 D-paths
	2.3.2 Test coverage criteria

	2.4 Example system design description
	2.5 Data path conditions for the example design
	2.6 Automatic test set generation concept
	2.6.1 General concept description
	2.6.2 Concept implementation
	2.6.3 Test case optimization

	2.7 Results
	2.8 Conclusions

	3. Using model checking for verification of different FPGA design phases
	3.1 Introduction
	3.2 FPGA development life-cycle
	3.3 Related work
	3.4 Case study description
	3.5 Model checking of the FPGA designs
	3.5.1 Application level design model
	3.5.2 VHDL-level model
	3.5.3 Synthesis-level model

	3.6 Discussion and conclusions

	4. Fault injection
	4.1 Introduction
	4.2 Objectives of fault injection
	4.2.1 Evaluate the effectiveness of the design and V&V process
	4.2.2 Test error detection and fault recovery of the system
	4.2.3 Trigger functions that are inactive under normal operating conditions and allow wider test coverage of functionality
	4.2.4 Fault injection at early design phases

	4.3 Methods to inject faults
	4.4 Application of fault injection to V&V of FPGA based systems
	4.5 Tools

	References
	Appendix A – The model checking model of the example system
	Appendix B - The test requirements of the example system for achieving 100% Input Condition Coverage

