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Preface

This report has been prepared as part of the research project Safety Evaluation and
Reliability Analysis of Nuclear Automation (SARANA), which is part of the Finnish Research
Programme on Nuclear Power Plant Safety 2011–2014 (SAFIR2014). This report describes
the development of modelling methodology for hardware failures. The new methodology
allows properties to be verified on the plant-level under certain failure assumptions.

We wish to express our gratitude to the representatives of the organizations and all those
who have given their valuable input in the meetings and discussions during the project.
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Abbreviations

ACP AC power system
ADS Automatic depressurisation system
APU Acquisition and processing unit
BDD Binary decision diagram
BMC Bounded model checking
BWR Boiling water reactor
CCF Common cause failure
CCW Component cooling water system
CD Core damage
COM Communications module
CTL Computation tree logic
DPS Diverse protection system
ECC Emergency core cooling system
EFW Emergency feed water system
FMEA Failure mode and effects analysis
FTA Fault tree analysis
I&C Instrumentation and control
LOCA Loss of coolant accident
LOFW Loss of feed water
LOOP Loss of online power
LTL Linear temporal logic
MFW Main feed water system
NPP Nuclear power plant
PRA Probabilistic risk assessment
RHR Residual heat removal system
RPS Reactor protection system
RPV Reactor pressure vessel
SAT Propositional satisfiability problem
SWS Service water system
VU Voting unit
V&V Verification and validation
YVL Finnish nuclear regulatory guide (Ydinvoimalaitosohjeet)
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1. Introduction

The verification of digital instrumentation and control (I&C) systems is challenging because
programmable logic controllers enable complicated control functions, and the state spaces of
the designs easily become too large for comprehensive manual inspection. Design
verification can eliminate design errors that are hard to detect later in the development
process. These errors are very expensive to repair, often leading to a major redesign and
reimplementation cycle. Typically, verification and validation (V&V) activities rely heavily on
subjective evaluation, which covers only a limited part of the possible behaviours of the
system. Therefore, more rigorous formal methods are needed; see, for example, [Valkonen
et al., 2008] for an overview.

Model checking [Clarke et al., 1999] is a formal method that can be used to verify the
correctness of system designs. Internationally, it has been used in the verification of, e.g.,
hardware and microprocessor designs, data communications protocols and operating system
device drivers. Several model checking systems and tools exist. In this work, we have
focused on the model checking tool NuSMV. The tool is able to determine automatically
whether a given state machine model satisfies given specifications.

In our previous work [Lahtinen et al., 2012c] we have primarily focused on verifying the logic
designs of systems using various model checking methodologies. There is, however, need to
examine safety systems used in a nuclear power plant on a higher level. Namely, the overall
system safety needs to be examined on the plant level. The purpose of this examination is to
e.g. evaluate whether the system architecture is designed so that it is sufficiently fault
tolerant. The Finnish regulatory guides on nuclear safety (YVL guides) require that all
individual safety systems are single-failure tolerant. For some systems it should also be
possible to perform the safety function even if any single-component fails and any other
component is simultaneously out of operation due to repair or maintenance.

Traditionally, the verification of the plant level architecture has been performed using
methods such as fault tree analysis (FTA), and failure mode and effects analysis (FMEA).
These techniques, however, do not take into account the actual behaviour of the digital
automation systems (i.e. the potential errors in the logic of the automation systems).
Probabilistic risk assessment (PRA) methods are being developed to account software faults
as well (see e.g. [Authén et al., 2012a]) but the methodology is still under development and
there is currently no consensus over the best practices. Model checking can be used to verify
the logical designs exhaustively. Thus, it is tempting to try to expand the scope of model
checking so that effects of hardware failures to the plant-level behaviour can be exhaustively
analysed under certain failure assumptions.

In our earlier work regarding the modelling of hardware failures [Lahtinen et al., 2012b] we
developed preliminary methodology for hardware fault models using a small fictitious
example model. These fault models included faults in telecommunication links,
microprocessor faults, and electrical faults influencing all equipment in a cabinet. The
intention of this methodology is to examine the effects of a set of hardware failures to the
system’s operation. In this paper we improve on this methodology. We have created 1) a
failure module that covers all hardware components and their failure modes, 2) link modules
that encapsulate information transfer in the model, and 3) a process module for covering the
effects of initiating events. The new methodology also covers more plant hardware
equipment such as pumps and valves.

The developed modelling technique is highly modular and encapsulated, which results in
decreased effort when the model is created. When verification is performed on the plant
level, the resulting models tend to become large, and abstraction is typically required in order
to be able to analyse certain properties. The methodology we have created allows abstract
configurations of the model to be created quite effortlessly by replacing whole modules with
more abstract ones.
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The methodology intends to bridge the gap between model checking and PRA methods. The
methodology is quite compatible with PRA methodology since the case study model was
created based on PRA material as input. It allows the verification of system properties under
various failure assumptions and “on the plant level”, which has previously been quite difficult.
Assumptions on common cause failures can also be made.

We have applied the developed methodology on an example case study. We have used a
PRA-model as reference material and created a corresponding model that can be used for
model checking. The PRA-model depicts a fictitious nuclear power plant originally made for
illustration purposes to demonstrate basic elements of the risk and reliability analysis
software Risk Spectrum (trademark of Scandpower Lloyd’s Register). The model has been
analysed and improved upon in the DIGREL project [Authén et al., 2010]. The model is a
fictive and simplified nuclear power plant (NPP) that has acted as a reference model when
different analysis methods (PRA) have been developed. The PRA model represents a boiling
water reactor (BWR), which has four-redundant safety systems. The model includes eight
different systems of which we have modelled seven. The power distribution system was not
modelled in our work. Further information on the used model can be found in Section 3 and
in [Authén et al, 2013].

The rest of the paper is organised as follows. In Section 2 we briefly introduce the formal
method called model checking. In Section 3 we describe the example system used in the
case study. In Section 4 we present the developed methodology for modelling hardware
failures. The verification results from the case study are in Section 5, and the conclusions are
in Section 6.

2. Model checking

Model checking [Clarke et al., 1999], [Clarke & Emerson, 1981], [Queille & Sifakis, 1982] is a
computer-aided verification method developed to formally verify the correct functioning of a
system design model by examining all of its possible behaviours. The models used in model
checking are quite similar to those used in simulation. However, unlike simulation, model
checkers examine the behaviour of the system design with all input sequences and compare
it with the system specification. In model checking, at least in principle, the analysis can be
fully automated with computer-aided tools. The specification is expressed in a suitable
language, temporal logics being a prime example, describing the permitted behaviours of a
system. Given a model and a specification as inputs, a model checking algorithm determines
whether the system has violated its specification. If none of the behaviours of the system
violates the given specification, the (model of the) system is correct. Otherwise, the model
checker will automatically give a counter-example execution of the system demonstrating
how the specification has been violated.

In this work we have used the model checker NuSMV [Cavada et al., 2010], [NuSMV, 2011],
which was originally designed for hardware model checking. NuSMV is a state-of-the-art
symbolic model checker that supports synchronous state machine models in which the real-
time behaviour must be modelled with discrete time steps using explicit counter variables
that are incremented at a common clock frequency. In NuSMV the formal specification can
be written as a state invariant clause, or in a more complex specification language such as
Linear Temporal Logic (LTL) or Computation Tree Logic (CTL) [Clarke et al., 1999], making it
quite flexible in expressing design specifications. In this work we have primarily used state
invariant specifications. There are several possible algorithms that can be used for verifying
state invariant specifications. In NuSMV, at least three variants are available: 1) a Binary
Decision Diagram (BDD) based approach [Bryant, 1986] [McMillan, 1993], 2) a propositional
satisfiability solving (SAT) based approach [Biere et al., 1999], [Biere et al., 2006], and 3) an
advanced variant of the SAT-based approach called k-induction [Sheeran et al., 2000], [Eén
& Sörensson, 2003], in which the state invariants are proved using induction, and the base
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step and the induction step are reduced to bounded model checking problems. In this work
we have used the k-induction algorithm for verifying the specifications.

3. Description of the example system

The case study system used in this work is originally a PRA-model of a nuclear power plant
originally made for illustration purposes to demonstrate basic elements of the risk and
reliability analysis software Risk Spectrum (trademark of Scandpower Lloyd’s Register). The
model has been analysed and improved upon in the DIGREL project. The model depicts a
fictive and simplified NPP that has acted as a reference model when different analysis
methods (PRA) have been developed. The PRA model represents a boiling water reactor
(BWR), which has four-redundant (4 x 100%) safety systems. The example model includes
eight different systems. The example model should not be interpreted as a representative
boiling water reactor, but rather as an example for demonstrating the reliability analysis of
representative nuclear safety I&C. The data on the case study model presented on the tables
of this paper has been mainly extracted from [Authén et al., 2012a] and [Authén et al., 2013].
See these documents for further information on the used model.

3.1 Safety systems

The example model represents a fictive boiling water reactor (BWR), which has four-
redundant safety systems. The example model includes the following systems:

- ACP – AC power system

- CCW – Component cooling water system

- ECC – Emergency core cooling system

- EFW – Emergency feedwater system

- ADS – Automatic depressurisation system

- RHR – Residual heat removal system

- SWS – Service water system

- MFW – Main feedwater system.

The safety systems other than the AC power system, read measurements, and perform
calculations on these measurements. On certain conditions the safety systems actuate their
dedicated pumps / valves. The list of measurements is presented in Table 1. A measured
value such as the RPV water level (reactor pressure vessel) is measured using multiple
components with different component IDs. The components are also four redundant: the
letter i in the component ID is a place holder for identifying the redundancy of the component
(1-4). In the table it is also shown whether the measurement belongs to the reactor protection
system (RPS) or to the diverse protection system (DPS) and the related signal ID that is
used is also shown.

Measurement Component ID Limit Purpose RPS DPS
RPV water
level, fine level RPVi1CL001 L2 Low level Core cooling

protection RSS04

RPVi2CL001 H2 Extra high level RPV overfilling
protection DSS05
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RPVi2CL001 L2 Low level Core cooling
protection DSS04

RPV water
level, coarse
level

RPVi1CL002 L4 Extremely low
level

Core cooling
protection

RI002
RTB01

RPVi2CL002 L3 Extra low level Core cooling
protection DX001

RPVi2CL002 L4 Extremly low
level

Core cooling
protection DI002

Feedwater
system pump
suction
pressure

MFWi0CP001 L1

Low pressure
before
feedwater
pump

Loss of
feedwater
supervision

DSS13

Feedwater
system room
temperature

MFWi0CT001 H1 High room
temperature

Leakage
supervision DM005

Containment
pressure RCOi1CP001 H1 High pressure

in containment
Leakage
supervision

RI005
RTB02

RCOi2CP001 H1 High pressure
in containment

Leakage
supervision DI005

Condensation
pool
temperature

RCOi0CT001 H1

High
temperature in
condensation
pool

Residual heat
removal RX003

Water level in
the ECC pump
room

ECCi0CL001 H1 Water on the
floor

Leakage
supervision RH00i

Water level in
the EFW pump
room

EFWi0CL001 H1 Water on the
floor

Leakage
supervision DH00i

AC power
voltage bus bar
ACP-i

ACPi1CE001 L1 Low voltage on
bus bar ACP-i

Loss of offsite
power
supervision

RZ00i

ACPi2CE001 L1 Low voltage on
bus bar ACP-i

Loss of offsite
power
supervision

DZ00i

Table 1. Measurements. Adapted from [Authén et al., 2013].

The conditions on which the different actuators of the plant should be operated are presented
in Table 2. For example, the pumps operated by the CCW safety system should be started in
case of a reactor scram or high temperature in the condensation pool. The table presents the
conditions of actuation on the signal level as well. The right-most column in the table
presents the default value that is used instead of the measured value in case a fault is
detected from a device associated with that measurement.
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System Actuator Control Condition for control type  Signal ID DFLT
ACP Diesel

generator
Start Reactor scram due to containment isolation

or low voltage in respective bus bar
RSS12 + RZ00i + DZ00i 0

Stop Manual stop and not active start signal NOT(RSS12 + RZ00i +
DZ00i) * MAN-0iDG01

1

ADS Pressure
relief valve

Open Depressurisation signal RADS1 {RTB0} 0

Close Manual close and not active
depressurisation signal

RADS2 {NOT(RTB00) *
MAN-ADSi, i = 1-8}

1

CCW Pump Start Reactor scram or high temperature in the
condensation pool

RSS00 + RX003 0

Stop Manual stop and not active start signal NOT(RSS00 + RX003) *
MAN-CCW0iPM01

1

ECC Pump Start Containment isolation and no water leakage
in the respective pump room

NOT(RH00i) * RI000 0

Stop Water leakage in the respective pump room RH00i 1
ECC Motor-

operated
valve

Open Containment isolation and no water leakage
in the respective pump room

NOT(RH00i) * RI000 0

Close Water leakage in the respective pump room RH00i 1
EFW Pump Start Feedwater system isolation, reactor scram

due to low water level in reactor or
containment isolation and no water leakage
in the respective pump room

NOT(DH00i) * (DM000 +
DSS04 + DI000)

0

Stop Water leakage in the respective pump room DH00i 1
EFW Motor-

operated
valve

Open Reactor scram due to low water level in
reactor, diverse low water level condition or
very low water level condition and no water
leakage in the respective pump room

NOT(DH00i) * (DSS04 +
DX001 + DI002)

0

Close Water leakage in the respective pump room
or very high water level in reactor

DH00i + DSS05 1

HVA AC cooler Start Start EFW NOT(DH00i) * (DM000 +
DSS04 + DI000)

0

Stop Manually MAN-HVA0iAC01 1
MFW Pump Start Manual start and not active stop signal NOT(DM000 + DSS05) *

MAN-MFWi, i = 1, 2, 3
0

Stop Feedwater system isolation or very high
water level in reactor

DM000 + DSS05 1

RHR Pump Start Reactor scram or high temperature in the
condensation pool and no water leakage in
the respective pump room

RSS00 + RX003 0

Stop Manual stop and not active start signal NOT(RSS00 + RX003) *
MAN-RHR0iPM01

0

RHR Motor-
operated
valve

Open Reactor scram or high temperature in the
condensation pool and no water leakage in
the respective pump room

RSS00 + RX003 0

Close Manual stop and not active start signal NOT(RSS00 + RX003) *
MAN-RHR0iVM02

0

SWS Pump Start Reactor scram or high temperature in the
condensation pool

RSS00 + RX003 0

Stop Manual stop and not active start signal NOT(RSS00 + RX003) *
MAN-RHR0iVM02

0

RSS
Control rods Reactor Scram RSS {RSS00} + DSS

{DSS00}
1

Table 2. Actuator functions. Adapted from [Authén et al., 2013].

The signals of Table 2 are further elaborated in Table 3. The actuation signals in Table 2 are
calculated based on other signals and eventually based on some measurements and manual
commands. The actuation logic can be deduced from Table 3. As an example, in Table 2 it is
stated that EFW pumps are stopped when there is water leakage in the pump room (signal
DH00i). In Table 3 we can trace the signal DH00i to a condition “EFWi0CL001-H1 +
EFWi0CL002-H1”. Both of these signals are sensors that measure the water level in the
pump room. Other signals can be traced in a similar fashion. Table 3 also indicates how the
automation signals respond to different initiating events (a loss of coolant accident (LOCA),
loss of online power (LOOP), loss of feed water (LOFW) and Transient). “Always” means that
the signal always becomes true if the initiating event is true. “Spurious” means that the signal
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is false during the initiating event and can only become true in case there is a fault in the
equipment related to the signal. “Manual” means that the signal can be true during the
initiating event if related manual commands are given.

Signal Description Condition LOCA LOOP LOFW Transient
RPS
RH00i Isolation of the ECC pump room i ECCi0CL001-H1

+ ECCi0CL002-
H1

Spurious Spurious Spurious Spurious

RI000 Containment isolation 2/4*(RI002-i +
RI005-i)

<-
RI002,
RI005

<- RI002 <- RI002 <- RI002

RI002 Containment isolation due to extremly low
level in RPV

2/4*(RPVi0CL00
2-L4)

Always Always Always Always

RI005 I isolation due to high pressure in
containment

2/4*(RCOi0CP0
01-H1)

Always

RM000 Feedwater isolation 2/4*(RM005-i) <-
RM005

<-
RM005

<-
RM005

<- RM005

RM005 Feedwater isolation due to high
temperature in feedwater system
compartment

2/4*(MFWi0CT0
01-H1)

Spurious Spurious

RSS00 Reactor scram 2/4*(RSS04-i +
SS05-i + SS12-i
+ SS13-i)

<-
RSS04,
RSS12

(<-
RI000),
RSS13

<-
RSS04,
RSS12

(<-
RI000),
RSS13

<-
RSS04,
RSS12

(<-
RI000),
RSS13

<- RSS04,
RSS12 (<-

RI002)

RSS04 Reactor scram due to low water level in
RPV

2/4*(RPVi0CL00
1-L2)

Always Always Always Always

RSS05 Reactor scram due to high water level in
RPV

2/4*(RPVi0CL00
1-H2)

Probabl
e

Spurious Spurious Spurious

RSS12 Reactor scram due to containment
isolation (I- or M-isolation)

2/4*(RI000-i +
RM000-i)

<- RI000 <- RI000 <- RI000 <- RI000

RSS13 Low pressure before feedwater pump 2/4*(MFWi0CP0
01-L1)

Always Always

RTB00 Depressurisation of the primary circuit RTB01 * RTB02 <-
RTB01

&
RTB02

<-
RTB01

&
RTB02

<- RTB01
& RTB02

RTB01 Depressurisation of the primary circuit
condition 1: extreme low level in reactor
(same as I002)

2/4*(RPVi0CL00
2-L4)

Always Always Always Always

RTB02 Depressurisation of the primary circuit
condition 2: high pressure in containment
(same as I005) or manual actuation

RTB03 +
2/4*(RCOi0CP0
01-H1)

Always Manual Manual Manual

RTB03 Manual TB MAN-TB
RX003 High temperature in condensation pool 2/4*(RCOi0CT0

01-H1)
Always Always Always Always

RZ00i Low voltage in AC bus bar i ACPi0CE001-L1 Always Always Always Always
DPS
DH00i Isolation of the EFW pump room i EFWi0CL001-

H1 +
EFWi0CL002-
H1

Spurious Spurious Spurious Spurious

DI000 Containment isolation 2/4*(DI002-i +
DI005-i)

<-
DI002,
DI005

<- DI002 <- DI002 <- DI002

DI002 Containment isolation due to extremly low
level in RPV

2/4*(RPVi0CL00
2-L4)

Always Always Always Always

DI005 I isolation due to high pressure in
containment

2/4*(RCOi0CP0
01-H1)

Always

DM000 Feedwater isolation 2/4*(DM005-i) <-
DM005

<-
DM005

<-
DM005

<- DM005

DM005 Feedwater isolation due to high
temperature in feedwater system
compartment

2/4*(MFWi0CT0
01-H1)

Spurious Spurious

DSS00 Reactor scram 2/4*(DSS04-i +
SS05-i + SS12-i
+ SS13-i)

<-
DSS04,
DSS12

(<-
DI000),
DSS13

<-
DSS04,
DSS12

(<-
DI000),
DSS13

<-
DSS04,
DSS12

(<-
DI000),
DSS13

<- DSS04,
DSS12 (<-

DI002)

DSS04 Reactor scram due to low water level in
RPV

2/4*(RPVi0CL00
1-L2)

Always Always Always Always
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DSS05 Reactor scram due to high water level in
RPV

2/4*(RPVi0CL00
1-H2)

Probabl
e

Spurious Spurious Spurious

DSS12 Reactor scram due to containment
isolation (I- or M-isolation)

2/4*(DI000-i +
DM000-i)

<- DI000 <- DI000 <- DI000 <- DI000

DSS13 Low pressure before feedwater pump 2/4*(MFWi0CP0
01-L1)

Always Always

DX001 Extra low level in RPV 2/4*(RPVi0CL00
2-L3)

Always Always Always Always

Table 3. Protection functions. Adapted from [Authén et al., 2013] and [Gustafsson, 2012].

Below in Figure 1 is a simplified flow diagram related to the safety systems in the case study
model. The flow diagram illustrates some of the valves and pumps related to the safety
systems. For most safety systems, only one redundant implementation of the system is
shown in the diagram.

Figure 1. Flow diagram illustrating one redundancy of the safety systems. Adapted from
[Authén et al., 2013].

3.2 Safety system requirements

Five initiating events are considered in the case study. The initiating events are presented in
Table 4. Depending on the initiating event there are different success criteria for the safety
systems. For example, in the case of a large LOCA initiating event both ECC and RHR
should operate sufficiently. Sufficient operation means for ECC that in one of the four
redundancies, the pump is running and the corresponding valve is open.
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Initiating event MFW EFW ADS ECC RHR
LOCA – Large Loca No credit No credit Not

required
1oo4 1oo4

LOFW – Loss of main feedwater No credit 1oo4 4oo8 1oo4 1oo4
LOOP – Loss of offsite power 2oo3 1oo4 4oo8 1oo4 1oo4
Transient 2oo3 1oo4 4oo8 1oo4 1oo4
Common cause initiator loss of DC
power bus bar

2oo3 1oo4 4oo8 1oo4 1oo4

Table 4. Safety system success criteria. Adapted from [Authén et al., 2013].

Event trees exist for each initiating event as well. From the event trees it is possible to see
which systems are required to operate for the plant to survive the initiating event without any
core damage. The event tree for the Large LOCA initiating event is in Figure 2. From the
event tree we can see that if either of the safety systems (ECC or RHR) fails in all
redundancies, the result is core damage (CD). Similar event trees exist for all initiating
events. These event trees are not presented in this paper.

Figure 2. Large LOCA event tree

In addition to the successful operation of the front-line safety systems, the supporting
systems are required to operate successfully as well. Respective EFW or ECC train is cooled
by the component cooling water system (CCW) train, which is cooled by the corresponding
service water system (SWS) train.

3.3 Safety system architecture

Most of the safety systems are designed four-redundant. This means that their actuation
logic is implemented in four separate acquisition and processing unit (APU) computers.
Measurements are separately brought to each APU. The APUs calculate their control signals
independently and pass the resulting signals to voting units. Voting units collect the APU
control signals together and actuate their dedicated safety device whenever 2 out of 4 of the
APU signals indicate that the device should be started. The basic safety system architecture
is illustrated in Figure 3.

Consequences

-LA | Large LOC
A

A

-LA | Large LOC
A

A

ECC---01 | ECC
 system failure
task 1 (3-o-o-4
 trains)
ECC

-LA | Large LOC
A

A

RHR---01 | Res
idual heat remo
val system fails

RHR

CD
#0  3.22E-9

CD
#1  1.48E-5
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Figure 3. Safety system architecture. Adapted from [Authén et al., 2013].

The safety systems are divided into two separate subsystems: Reactor Protection System
(RPS) and Diverse Protection System (DPS), which are implemented on different automation
hardware, i.e. there exists four APU computers and voting units for the RPS safety systems,
and four APU computers and voting units for the DPS safety systems. The RPS safety
systems are: automatic depressurisation system (ADS), component cooling water system
(CCW), emergency core cooling system (ECC), service water system (SWS) and residual
heat removal system (RHR). The DPS safety systems are emergency feedwater system
(EFW), and main feedwater system (MFW). The AC power system belongs to both RPS and
DPS.

3.4 I&C failure modes

3.4.1 Instrumentation

Measuring devices have four failure modes that are included in the case study model:

Fails high: the measured value indicates a value that is higher than the correct value.

Fails low: the measured value indicates a value that is lower than the correct value.

Drift of value: the measured value differs from the correct value.

Freeze of value: the measured value incorrectly remains at some value.

3.4.2 Pumps and valves

Pumps have two failure modes:

Failure-on-demand: the pump is given a starting command, and the pump does not
start.

Spurious actuation: The pump starts even though no start command has been
given.



RESEARCH REPORT VTT-R-00213-14
14 (35)

Valves have one failure mode:

Failure to open: The valve is stuck close, and does not open when an open
command is given.

3.4.3 I&C units

The APU computers and voting units are both I&C units that have many hardware
components. A simple structural diagram of an I&C unit is in Figure 4. APU computers for
example can be set to communicate via the bus link. In this case the relevant modules of the
I&C unit in which a failure can affect that communication are the CPU module, the COM
module, the subrack module (power supply) and the bus link between the two APUs.

Figure 4. I&C unit structure. Adapted from [Authén et al., 2013].

The list of hardware components and their failure modes is in Table 5. All of the components
are not currently in the scope of the model. A limited set of hardware components and failure
modes is in Table 6. The limited scope corresponds to the level of detail used in modelling of
the case study as well.

Hardware Components Failure Modes
Processor module Hang

Communication dropout
Delayed signal
Random behaviour

Analog Input Module Signal fails high/low
Signal drifts
Signal hangs/freeze

Analog Input Module, Single
channel

Signal fails high/low

Signal drifts
Signal hangs/freeze

Analog Output Module Signal fails high/low
Signal drifts
Signal hangs/freeze

Analog Output Module, Single
channel

Signal fails high/low

Signal drifts
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Signal hangs/freeze
Digital Input Module Signals stuck to current value
Digital Input Module, Single
channel

Signal stuck to current value

Signal fails to opposite state
Digital Output Module Signals stuck to current value
Digital Output Module, Single
channel

Signal stuck to current value

Signal fails to opposite state
Signal Conditioning Module Signal fails high/low

Signal drifts
Signal hangs/freeze

Communication module Failure to establish communication
Watch-Dog Timer Fails to activate

Activates without computer failure
Backplane Loss of backplane
Power supply Interruption

Short circuit
Ground contact

Table 5. Full list of I&C unit components and failure modes. Adapted from [Authén et al.,
2013].

Hardware Components Failure Modes
Processor module Hang

Communication dropout
Delayed signal
Random behaviour

Analog Input Module Signal fails high/low
Signal drifts
Signal hangs/freeze

Digital Input Module Signals stuck to current value
Digital Output Module Signals stuck to current value
Communication module Failure to establish communication
Backplane Loss of backplane
Power supply Interruption

Short circuit
Ground contact

Table 6. Limited scope hardware components and failure modes. Adapted from [Authén et
al., 2013].

3.4.4 Communication link

Communication network (i.e. network buses) has been modelled as communication links in
the model. A communication link is always between two entities, and has only one failure
mode:

Loss of function: the connection is not working.
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4. Model checking methodology for hardware failures

4.1 Case study scope

In this work we have created a model that can be used for model checking. The DIGREL
model description has been used as reference material. We have modelled seven of the
safety systems that are part of the DIGREL model. The modelled systems are:

- CCW – Component cooling water system

- ECC – Emergency core cooling system

- EFW – Emergency feedwater system

- ADS – Automatic depressurisation system

- RHR – Residual heat removal system

- SWS – Service water system

- MFW – Main feedwater system.

Only the AC power system was not included in the model. This was simply because the
inclusion of the power system might require too much effort. The AC power system can be
added to the model in future research.

An automation logic design was created for each safety system. The logic was manually
designed in a rather straight-forward manner based on the DIGREL model material (Table 2
and Table 3). In addition to these safety system logics, the equipment required to operate
and actuate each system was modelled. Each system has redundant sub-systems that were
also modelled. The APU computers that implement the design logics are mostly four-
redundant. This means that four computers execute the same safety system logic
simultaneously. The measurements used by each APU are also typically four-redundant. The
different redundancies also transfer information between each other via network buses.

No priority logic that would take care of conflicting signals or the completion of actuation of
safety measures was modelled. This kind of functionality was not defined in the reference
material either.

4.2 Modelling methodology principles

Some basic principles were followed in the development of the new modelling methodology.
One main principle was to keep the methodology as modular as possible. High level of
modularization often reduces the amount of manual modelling work when a single
functionality is only modelled once and then reused as a module. Modularization also makes
the abstraction of the model simpler as individual modules can be easily replaced with more
abstract ones. Another modelling principle was that the developed methodology should be
compatible with the previous techniques for modelling logic designs, and that the previous
methodology for function block based logic designs should remain unchanged.

The applied modelling methodology is illustrated in a general level in Figure 5. The green
boxes represent structures of the model (different modules), the blue circles represent
variables in the model, and arrows illustrate information flow in the model. The essential
ideas governing the modelling methodology are:
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 A separate failure module that decides which hardware components experience a
failure. The module has as input the information of how many common cause failures
and other single failures are allowed simultaneously in the model. Based on this
information, the failure module can decide in a non-deterministic manner any
combination of failures on the plant level so that the failure assumption given as input
is fulfilled. The failure module defines a separate module for each hardware
component as well. These hardware component modules are used as parameters for
the link modules.

 Link modules are used whenever some piece of information is transferred from one
place to another in the plant automation. For example, the output of an APU
computer is used as input on the voting unit. In addition to the value output by the
APU, the value received and interpreted by the voting unit depends on whether the
hardware equipment related to transferring the information have somehow failed.
Another example is the measurement of water level and the use of the measured
value as input on an APU computer. The read value depends on whether e.g. the
measurement device or the input module of the APU has failed, and whether the
failure has been detected. The link modules handle this behaviour in the model.

 A process module is used for deciding what the physical parameter values (e.g.
reactor temperature, pressure) in the plant are. In our modelling method the only
factor limiting the value of these physical parameters is the accident scenario. For
example, in a loss of coolant accident (LOCA) the reactor containment water level
must rise. The process module is otherwise kept as free as possible. In our model the
operational states of pumps and valves do not affect the physical parameters. In
other words there are no feedbacks implemented in the model environment. It would
be technically possible to model these feedbacks but this would overcomplicate the
model. Secondly, the intention in our modelling is not to cover the process aspect of
the plant in a very detailed manner. Simulation tools exist for this purpose. In addition,
the model checking tool used does not fit well for modelling complex physical
processes involved in plant behaviour that require the use of more than basic
mathematical operators.
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Figure 5. Modelling methodology – information flow in the model.

4.3 Model development

4.3.1 Logic modules

The developed logic modules depict the automation logic that is implemented in the APU
computers. The logic was written based on the DIGREL model descriptions, namely Table 2
and Table 3. The logic design was written using a function block based approach because
that has been a convention in our earlier work. The logic depicted in the tables could be
designed using function blocks: AND, OR, NOT, 2oo4 vote. No timers were added to the
design, even though using timers could result in a more realistic model. However,
requirements for timings did not exist, and it was decided that there was no need to
overcomplicate the model.

In addition to the logic implemented in the APU computers, voting unit logic was also
implemented in separate modules. The voting unit modules were simple modules that
typically had eight inputs: four start or open commands from the redundant APUs and four
stop or close commands from the APUs. The voting unit simply calculated its two outputs,
start/open and stop/close using 2oo4 function blocks on the input signals. Potential
conflicting control signals (e.g. both start and stop signal true at the same time) were not
restricted in any way in these voting units.

4.3.2 Link modules

Link modules are used whenever some piece of information is transferred from one place to
another. Link module executes this transfer of information but simultaneously the effects of
possible faults affecting the information are taken into account. Since there exists only a
rather small number of different type of links (e.g. APU-to-APU, measurement to APU, etc.) it
is reasonable to create link type modules that can be parameterized with equipment related
to the particular link. In other words, we can create link type modules for a set of links instead
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of modelling each link separately. This decreases the amount of manual modelling work
tremendously. In our case study model, five different link types exist:

 Measurement to APU: The transfer of a physical parameter to the APU computer via
the measuring device.

 APU to APU: The different redundancies exchange information with each other via a
network bus.

 APU to Voting unit: The control commands calculated by the APUs are transferred to
voting units.

 Voting unit to pump: The actuation commands given by the voting units are
transferred to a pump.

 Voting unit to valve: The actuation commands given by the voting units are
transferred to a valve.

A link type module was written for each link type. The link type modules have as parameter:

 the variable transferred via the link,

 the hardware component modules of relevant hardware, and

 a default value that is used to replace the transferred variable value in case of a
failure that is detected.

As an example, the link type module for measurement-to-APU links is below.

MODULE LINK_MEAS_APU(in1, measurement, apu, DFLT)
VAR
prevout : boolean;
DEFINE
output1 := case

apu.backplane_or_powersupply_status != OK : FALSE;
apu.digital_input_status = stuck_to_current_detected :
DFLT;
apu.digital_input_status = stuck_to_current_undetected :
prevout;
measurement.status = fail_high_detected : DFLT;
measurement.status = fail_low_detected : DFLT;
measurement.status = drift_detected : DFLT;
measurement.status = freeze_detected : DFLT;
measurement.status = fail_high_undetected : TRUE;
measurement.status = fail_low_undetected : FALSE;
measurement.status = drift_undetected : ! in1;
measurement.status = freeze_undetected : prevout;
TRUE : in1;
esac;

ASSIGN
init(prevout):=FALSE;
next(prevout):= output1;

The parameter in1 refers to the variable transferred by the link module, measurement is the
measuring device from which the value is received, apu refers to the APU computer
receiving the information, and DFLT is the related default value. The transferred variable
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value is a Boolean variable. The TRUE value of the variable means that the threshold related
to the measurement has been surpassed. The FALSE value of the variable means that the
physical value is still below the related threshold. The module consists of a single case
clause that defines the value of output1. The case clause goes through all possible failure
modes of the measuring device and the APU that can influence how the variable is read and
interpreted in the APU logic. In case of a detected failure (failure modes attached with
“_detected”) the module uses the DFLT value for output1. In case of non-detected failures
the output is changed according to the failure mode. For example, in the fail-high failure
mode the measured value is replaced with TRUE indicating that the measurement is above
the respecting limit. Two of the failure modes are such that the variable value freezes to the
previous value. This has been modelled using a separate variable prevout. In case of a
freeze failure the output is set to variable value experienced in the previous time point. The
link type module described above could be instantiated using e.g. the following expression:

LINK_RPV20CL001-H2_APU1 : LINK_MEAS_APU(processmodule.RPVi0CL001-
H2, failuremodule.MEAS_RPV20CL001-H2, failuremodule.APU1,
RPVi0CL001-H2_DFLT);

4.3.1 Failure module

All the failures of the model are modelled in a separate failure module. To be more specific,
failures have been modelled using a set of modules. A single aggregate failure module is
used to collect and store all instances of modelled hardware components and connections.
Each hardware component and network connection has its own module. A hardware
component module exists for APU computers, connections, pumps, valves and
measurements. In addition, a separate common cause failure module is used for modelling
CCF’s. The CCF module creates instances of CCF’s that have been modelled. Figure 6
illustrates the model structure related to modelling failures. Each box represents a module in
the model. The arrows indicate that the module creates an instance of another module that
the arrow is pointing at.

Figure 6. The model structure for modelling failures

4.3.1.1 Hardware component modules
Each hardware component type has its own module. Below is the hardware component type
module for APU’s and voting unit computers.

MODULE APU_failuremodule(id, CCFmodule)
VAR
FROZENVAR processor_status : {OK, hang_detected, hang_undetected,
dropout_detected,dropout_undetected, delayed_detected,
delayed_undetected, rand_detected, rand_undetected};
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FROZENVAR digital_input_status : {OK, stuck_to_current_detected,
stuck_to_current_undetected};
FROZENVAR digital_output_status : {OK, stuck_to_current_detected,
stuck_to_current_undetected};
FROZENVAR backplane_or_powersupply_status : {OK,
loss_of_function};
DEFINE

nro_faults :=  toint(processor_status != OK)
+ toint(digital_input_status != OK)
+ toint(digital_output_status != OK)
+ toint(single_failure_in_backplane) ;

single_failure_in_backplane := (backplane_or_powersupply_status !=
OK) & ! CCFmodule.APU_backplane_CCF.realizes;

ASSIGN
init(backplane_or_powersupply_status):= case

CCFmodule.APU_backplane_CCF.realizes & (id in
CCFmodule.APU_backplane_CCF.affected_ids) :
CCFmodule.APU_backplane_CCF.failure_mode;
TRUE : {OK, loss_of_function};

esac;

The module has as parameter the hardware component id number and the CCF module.
Because the APU computer has many elements that can fail, each element has its own
variable. The following APU elements have been modelled: processor, digital input module,
digital output module, backplane and power supply. The variables are of type FROZENVAR
which in the NuSMV modelling language means that the variable value cannot change after
the initial time point. In our failure modelling, we assume that faulty equipment do not
suddenly become non-faulty and vice versa. As an example, the variable that covers
backplane and power supply failures has two possible states: either there are no failures in
these parts of the APU (status is OK) or these parts have failed in which case the only failure
mode experienced is loss_of_function. The other APU parts have several failure modes out
of which some can be divided into two subcategories: detected failures and undetected
failures. The failure modes are named accordingly. In addition to these variable declarations
the hardware component module also calculates the number of experienced failures in the
particular APU since several simultaneous failures can be possible. Since common cause
failures have influence on the status of individual components the module also uses init
clauses to force the related variables to the values dictated by the effective common cause
failures.

4.3.1.2 The aggregate failure module
The aggregate failure module creates instances of the hardware component modules. All the
hardware in the plant is instantiated including APU/VU computers, connections, pumps,
valves and measurements. The aggregate failure module has as parameter the failure
assumptions used in the model. This includes the number of simultaneous common cause
failures and single failures that are allowed in the model. These inputs simply restrict the
failure module so that overly many simultaneous failures are not possible. All hardware
component module failures are added up and an INVAR clause is added to restrict the
module to handling only those situations that are according to the failure assumptions. The
relevant model code is below.

nro_of_faults := measurement_faults + APU_faults + VU_faults +
connection_faults + equipment_faults;
INVAR nro_of_faults <= nro_of_allowed_failures;
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4.3.1.3 Common cause failures
The aggregate failure module also creates an instance of the common cause failure module.
This module is a data structure collecting all instances of common cause failures. The
common cause failure module also calculates the realizing common cause failures together
and makes sure that the number of simultaneous CCF:s is not against the given failure
assumptions. The relevant model code is below.

MODULE CCF_failuremodule(nro_of_allowed_CCFs)
VAR
APU_backplane_CCF : CCF({1,2,3,4}, loss_of_function);
APU_APU_connections_CCF : CCF({1,2,3,4,5,6}, loss_of_function);

DEFINE
nro_of_CCFs := toint(APU_backplane_CCF.realizes)
+ toint(APU_APU_connections_CCF.realizes);

INVAR nro_of_CCFs <= nro_of_allowed_CCFs;
ASSIGN

A separate CCF module has been defined for modelling a common cause failure. The
module has as parameter a set of id numbers that are affected by the CCF, and the failure
mode related to that CCF. This module does not include any calculations; it simply exists for
data structuring purposes. The model code for the CCF module is below.

MODULE CCF(ids, failuremode)
VAR
realizes : boolean;
DEFINE
affected_ids := ids;
failure_mode := failuremode;
ASSIGN

4.3.1 Process module

The process module decides on the values of the physical parameters of the plant. These
values are the actual physical values independent from the measurement values that may
diverge from the actual values. These physical parameters have been modelled mainly as
Boolean variables instead of real valued variables. This is because the physical parameters
are typically compared only against a single limit value. From the model perspective it only
matters whether the physical parameters are below or above this limit. This behaviour can be
achieved using only Boolean variables.

The process module has as parameter the scenario that is under examination. The scenario
is one of the following: LOCA, LOOP, LOFW, TRANSIENT, or FREE. The first four are
accident scenarios that force certain physical parameters to have a particular value. For
example, in all accident scenarios the reactor water level becomes low. Consequently, the
corresponding variables in the model shall also indicate that the reactor water level is low.
The process module consists of clauses that implement these kinds of rules for all scenarios.
In case of the FREE scenario the physical parameters of the plant experience no restrictions
what so ever: the values of the parameters are selected non-deterministically, and all
combinations and sequences of variable values are possible. Below is the model code for
reactor containment pressure. In case of the LOCA scenario the pressure is always high. In
other scenarios any value is possible.
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init(RCOi0CP001-H1) := case
scenario = LOCA : TRUE;
TRUE : {TRUE, FALSE};

esac;
next(RCOi0CP001-H1) := case

scenario = LOCA : TRUE;
TRUE : {TRUE, FALSE};

esac;

The process module is created so that it has as little functionality as possible. This is
intentional. For model checking it is advisable to not make the process module too detailed.
The reasons for this are mainly that the model checking tool does not fit too well for
modelling the physical process in a very detailed level. The NuSMV is not fit for modelling
complex physical behaviour very accurately. Modelling the process in a detailed way also
causes the state space of the model to become very large, which is not wanted. Additionally,
if the environment model has more detail it becomes more probable that some behaviour
may be left uncovered in the analysis. In model checking it is more useful to create rather
simple over-approximated environment models, in which all kind of behaviour is possible. In
this way, the truth value of safety properties is preserved, since if there is no unwanted
behaviour in a model with a rather free environment, the safety properties are also true in a
more restricted environment model. For these same reasons we have not included any
feedback to the process module. Feedback tends to overcomplicate the model too much. It
would be technically possible to add certain simple feedback, e.g. if the pumps and valves of
a certain safety system are operational and open, the water level in the reactor containment
should rise. These kinds of feedbacks were not implemented in the model.

4.3.2 Equipment modules

Separate modules were created for pumps and valves as well. In this model the modules
were not exactly necessary since these modules merely pass the on and off commands
received from the voting units via corresponding links. There are no priority issues involved in
this model, which makes the modules quite unnecessary. The modules were nonetheless
created for future compatibility handling, and for the possible addition of some priority logic in
the future, for example if manual commands are added to the model, some prioritization with
the automation commands is probably needed.

4.3.3 Detected and undetected failures

The detected and undetected failures were modelled as separate failure modes following the
reference material. The detection of failures is perceived by the link modules that replace the
signal values with a predetermined default value in case of one of the detected failure modes
is present. In a realistic I&C system the detected failures can be detected by the I&C unit
equipment, and in case of such a detection the signal might be marked e.g. using a status
bit. The replacement of the signal value with some predetermined default value could also be
part of the I&C application logic. In this case study, the status bits were not used or modelled
since such behaviour and logic was not described in the reference material, and the modeller
did not want to diverge too far from the input material descriptions. Technically, a status bit
implementation would be possible, but the resulting model would probably become
somewhat more demanding to verify.

4.3.4 Scenarios

The PRA analysis uses various initiating events whose consequences are evaluated. An
initiating event is an event that creates a disturbance in the plant and has a potential to lead
to core damage, depending on the successful operation of the various mitigating systems of
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the plant. [IAEA, 1993] Various initiating events were also modelled in our case study in
order to follow this approach used in the PRA world. Four initiating events (LOCA, LOOP,
LOFW, and Transient) were modelled using a single enumerative variable that determines
the used scenario. The value of the scenario variable forces certain process parameters to
some values in the model. In addition to the initiating events the variable scenario could also
have the value free, in which case any of the physical process parameter values were
allowed. In what follows, the initiating events are gone through in more detail:

- LOCA. A loss of coolant accident means that the primary coolant is not available due
to e.g. damage in the primary coolant circuit. In the simplified model, this means that
the reactor pressure vessel water level is low, the reactor containment pressure
becomes high and the temperature in the condensation pool becomes high.

- LOOP. Loss of online power. In the simplified model the initiating event leads to low
water level in the reactor pressure vessel, high temperature in the condensation pool,
and low pressure before feed water pump.

- LOFW. Loss of feed water may occur due to e.g. main feed water pump failures. The
effect on the model scope is low pressure before the feed water pump, low water
level in the reactor pressure vessel, and high temperature in the condensation pool.

- Transient. Transient initiating events are those which introduce disturbance in normal
plant operation without the loss of primary coolant. These events require the
shutdown of the reactor. [IAEA, 1993] Effects on process parameters in the model are
reactor pressure vessel water level decrease, and high temperature in the
condensation pool.

4.4 Abstractions and other measures for verifying properties

The case study model becomes very large and complex, which makes the verification of
properties challenging. Especially the link modules cause the model to become very
complex. However, there are several abstractions and model checking techniques and
parameters that make the verification of some properties on this very large model feasible.
This section goes through the main techniques that are relevant in our case study and can
be used to enable the verification of properties on the model within a sensible time limit. The
verification results are in Section 5.

4.4.1 Program slicing and interface modules

If only one of the subsystems is addressed in a given requirement it is often possible to only
include that subsystem in the model. This means that only part of the model needs to be
examined to verify the property. Program slicing can be performed manually to obtain the
reduced model i.e. manually edit the model file so that unnecessary parts are removed, and
the interfaces to those parts modified so that the model remains functional. In our earlier
work (see e.g. [Lahtinen et al., 2012a]) we have also applied the compositional minimization
technique to abstracting function block based designs. In compositional minimization certain
modules of the model are replaced with interface modules.  An interface module contains no
function blocks, and the outputs of the module are defined as free variables. The inputs of an
interface module are left intact because of technical issues allowing compatibility with the
model, but the inputs have no influence on the outputs. Definition of the output variables as
free variables is a complete over-approximation of the module, i.e. no restrictions on the
behaviour of the module are set.

In this case study, interface modules can be created for the modules that encompass the
logical functionality of the I&C systems. Technically interface modules could be created for
other modules as well (for example the link modules) but it is not clear yet whether this is
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practical and useful. In practice, the use of interface modules makes the construction of
abstract model configurations quite quick and effortless. For each module in the system, the
modeller just has to choose which version of the module is used (the concrete version or the
interface version), and the final model is created via a computer script that constructs the
model according to the selections.

4.4.1 Compositional verification

In addition to the compositional minimization type approach it may be possible to utilize other
compositional verification techniques as well. The most relevant in this context is probably
assume-guarantee type reasoning [P reanu, 1999] [Rushby, 2001]. In this technique, an
assumption is made of the environment of a module. The assumption is then verified on the
environment. When the assumption is known to hold, we can check if a specification is true
in an individual module under this assumption. If the specification is true in the individual
module, it is also true in the whole system. It may be possible to use this approach in our
case study as well. If a particular requirement cannot be verified on the full model it could be
verified as two or more sub-requirements. Each sub-requirement would be verified using only
part of the model, and if all sub-requirements were true, this would also indicate that the
original property is true in the whole model.

4.4.2 Link module abstractions

In our case study the link modules cause a significant portion of the complexity of the model.
The link modules can, however, be abstracted as well. Using interface modules instead of
concrete link modules is one option that was not really rigorously explored in the case study.
Several instances of the link modules are created in the model, and it seems that using
interface modules might result in too much abstraction in order to get reasonable results. In
some models replacing link modules with interface modules may be practical.

Instead of interface modules we used a lighter abstraction. We created simplified versions of
the link type modules that still covered a large portion of the functionality of the link modules
but the complex failure behaviour was simplified.

As an example consider the concrete version of the link type module for measurement-to-
APU links below.

MODULE LINK_MEAS_APU(in1, measurement, apu, DFLT)
VAR
prevout : boolean;
DEFINE
output1 := case

apu.backplane_or_powersupply_status != OK : FALSE;
apu.digital_input_status = stuck_to_current_detected :
DFLT;
apu.digital_input_status = stuck_to_current_undetected :
prevout;
measurement.status = fail_high_detected : DFLT;
measurement.status = fail_low_detected : DFLT;
measurement.status = drift_detected : DFLT;
measurement.status = freeze_detected : DFLT;
measurement.status = fail_high_undetected : TRUE;
measurement.status = fail_low_undetected : FALSE;
measurement.status = drift_undetected : ! in1;
measurement.status = freeze_undetected : prevout;
TRUE : in1;
esac;

ASSIGN



RESEARCH REPORT VTT-R-00213-14
26 (35)

init(prevout):=FALSE;
next(prevout):= output1;

The link type module has one internal variable prevout which complicates the state spaces of
the models, in which the link is used because the value of the internal variable depends on
the value of the output1 of the module on the previous time point. In the abstract version of
the module the internal variable prevout can be replaced with a free variable random which
can choose its value non-deterministically at every time point. The abstraction is an over-
approximation and preserves the truth value of universal properties (e.g. safety properties). If
some bad behaviour is non-existent in the abstract model, then the bad behaviour is also
non-existent in the more concrete model as well. The resulting abstract link type module is
below.

MODULE LINK_MEAS_APU(in1, measurement, apu, DFLT)
VAR
random : boolean;
DEFINE
output1 := case

apu.backplane_or_powersupply_status != OK : FALSE;
apu.digital_input_status = stuck_to_current_detected : DFLT;
apu.digital_input_status = stuck_to_current_undetected : random;

measurement.status = fail_high_detected : DFLT;
measurement.status = fail_low_detected : DFLT;
measurement.status = drift_detected : DFLT;
measurement.status = freeze_detected : DFLT;
measurement.status != OK : random;
TRUE : in1;

esac;
ASSIGN

4.4.3 Exclusion of liveness properties

In the case study we have thus far concentrated on verifying basic state invariant properties
only. The reason for this is that verifying LTL or CTL properties in general seems to take too
much time on the model. Bounded model checking (BMC) can be performed on the model
but most BMC techniques can only output counter-examples to specifications and not give
any proofs.

One exception to this is the incremental k-induction algorithm implemented in NuSMV. The
algorithm can in many cases also prove that specifications are true. The algorithm supports
only state invariant properties, but seems to be quite fast compared to the other NuSMV
model checking algorithms. The utilization of the algorithm forces us to exclude liveness
properties from the case study. The invariant checking algorithm could also be used for
checking liveness properties if a liveness to safety reduction could be applied on the model.
We leave this for future work.

5. System verification results

We were able to verify several formal specifications on the case study model. The
specifications were formalized from the list of requirements in Table 7.
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Number Requirement
1   In case of a LOCA initiating event, the plant safety

  systems shall fulfil the related success criteria.
2   In case of a LOFW initiating event, the plant safety

  systems shall fulfil the related success criteria.
3   In case of a LOOP initiating event, the plant safety

  systems shall fulfil the related success criteria.
4   In case of a TRANSIENT initiating event, the plant safety

  systems shall fulfil the related success criteria.
5   In case of a LOFW/LOOP/TRANSIENT initiating event,

  the EFW safety system shall start a pump and open a
  valve in at least one of the four redundant subsystems.

6   In case of a LOCA/LOFW/LOOP/TRANSIENT initiating
  event, the ECC safety system shall start a pump and open
  a valve in at least one of the four redundant subsystems.

7   In case of a LOOP/TRANSIENT initiating event, at least
  two out of the three MFW pumps shall be started.

8   In case of a LOFW/LOOP/TRANSIENT initiating event,
  at least four out of the eight ADS release valves shall be
  opened.

9   In case of a LOCA/LOFW/LOOP/TRANSIENT initiating
  event, at least one out of the four RHR pumps shall be
  started.

Table 7. Requirements checked on the case study model

The first four requirements are plant-level requirements that require the inclusion of several
safety systems in order to be verified. The requirements 5 through 9 are requirements for
individual safety systems.

The plant-level requirements are based on the success criteria on which the plant survives a
given initiating event.

The plant survives a LOCA event if one train of the ECC system and one train of the RHR
system operates. In our model an ECC train operates when the pump is running and the
valve is open. In addition, the supporting systems must operate on the same redundancy
(SWS and CCW pump running). The RHR train operates whenever the pump is running.

The plant survives a LOFW event when ECC and RHR operate on at least one train and the
ADS operates on at least four out of eight trains. Additionally, the EFW system contributes to
the plant cooling but it is not absolutely required for the success criteria to be fulfilled. For
ECC and EFW systems the supporting systems must also be operating (CCW, SWS).

The plant survives a LOOP and a Transient event when ECC and RHR operate on at least
one train and the ADS operates on at least four out of eight trains. Additionally, the EFW and
MFW systems contribute to the plant cooling but they are not absolutely required for the
success criteria to be fulfilled. For ECC and EFW systems the supporting systems must also
be operating (CCW, SWS).
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The plant level requirements are such that if no failures are assumed they should be true.
Depending on the requirement several hardware failures can be tolerated. We checked the
requirements using several different failure assumptions: no single failures assumed, one
single failure allowed, two single failures allowed, and three single failures allowed. CCF
failures were not assumed.

The requirements are such that they can be written as state invariants. In this case study, we
were limited to simple state invariants because they can be verified using a bounded model
checking method called k-induction that is much less computationally demanding than more
traditional BDD-based model checking methods. The k-induction method could be used to
verify all the specifications in this case study. In NuSMV the method can be invoked using
the check_invar_bmc_inc command. A bound of 2 was sufficient for verifying the properties
of the case study. The k-induction method could prove the properties on bound 1. We also
used the NuSMV parameters –dynamic and –coi for better performance.

In what follows we briefly go through each requirement and present the corresponding
formalized invariants, and the abstractions and assumptions that were used in the
verification.

Requirement 1.
 Only the parts of the system covering the systems (RHR, ECC, SWS and CCW) need

to be included in the model. Because of this, other safety system logics were
replaced with interface modules.

 The fulfilment of the property depends on whether the ECC system is operating. The
ECC system is stopped whenever a high water level is detected in the ECC pump
room. Because of this we assume that the water level does not rise. This assumption
does not prevent faulty measurements of the water level.

 For link modules we use the abstract link modules as described in Section 4.
 Different failure assumptions were made. As an example the resulting formalized

property assuming two single failures is:

INVARSPEC (failures = 2 & CCFs = 0 & scenario = LOCA & !
processmodule.ECCi0CL001-H1 & ! processmodule.ECCi0CL002-H1  ->
LOCA_No_Core_Damage);

Requirement 2.
 Only the parts of the system covering the systems (EFW, ADS, RHR, ECC, SWS and

CCW) need to be included in the model. Because of this, other safety system logics
were replaced with interface modules.

 The fulfilment of the property depends on whether the ECC system is operating. The
ECC system is stopped whenever a high water level is detected in the ECC pump
room. Because of this we assume that the water level does not rise. This assumption
does not prevent faulty measurements of the water level.  For the same reasons, we
also assume that the water level does not rise in the EFW pump room.

 The ADS valves open automatically if there is high pressure in the reactor
containment. Otherwise the valves must be opened manually. Because of this, we
assume that one of these conditions (high pressure or manual open command) is
also true.

 In our model all of the ADS valves are manually opened using a single switch. We
assume that the switch itself does not fail because otherwise a single failure in the
switch could prevent the system from operating. In a more realistic model, there
would probably be a separate switch for each valve.

 For link modules we use the abstract link modules as described in Section 4.
 Different failure assumptions were made. As an example the resulting formalized

property when no failures are assumed is:



RESEARCH REPORT VTT-R-00213-14
29 (35)

INVARSPEC (failures = 0 & CCFs = 0 & scenario = LOFW & !
processmodule.ECCi0CL001-H1 & ! processmodule.ECCi0CL002-H1 & !
processmodule.EFWi0CL001-H1 & ! processmodule.EFWi0CL002-H1 &
(processmodule.MAN_DEPRESSURISATION_VALVEi_OPEN  |
processmodule.RCOi0CP001-H1)  &
failuremodule.MEAS_MAN_DEPRESSURISATION_VALVEi_OPEN.status = OK
-> LOFW_No_Core_Damage);

Requirement 3.
 For the verification of this property, no interface modules were used.
 The assumptions for the systems EFW, ECC and ADS are the same as in

requirement 2.
 The MFW system is prevented from operating if a high water level is detected in the

reactor pressure vessel or if there is high temperature in the feedwater system room.
We assume that these parameters are not true.

 The MFW system starts with a manual command. We assume that the manual
command is also given.

 In the model, only a single manual switch was modelled for all three MFW pumps. We
also assume that the switch does not fail.

 For link modules we use the abstract link modules as described in Section 4.
 Different failure assumptions were made. As an example the resulting formalized

property when a single failure is assumed is:

INVARSPEC (failures = 1 & CCFs = 0 & scenario = LOOP &
processmodule.MAN-MFWi & ! processmodule.MFWi0CT001-H1 & !
processmodule.RPVi0CL001-H2 & failuremodule.MEAS_MAN-
MFWi.status = OK & ! processmodule.ECCi0CL001-H1 & !
processmodule.ECCi0CL002-H1 & ! processmodule.EFWi0CL001-H1 & !
processmodule.EFWi0CL002-H1 &
(processmodule.MAN_DEPRESSURISATION_VALVEi_OPEN  |
processmodule.RCOi0CP001-H1)  &
failuremodule.MEAS_MAN_DEPRESSURISATION_VALVEi_OPEN.status = OK
-> LOOP_No_Core_Damage);

Requirement 4.
 For the verification of this property, no interface modules were used.
 The assumptions for the systems EFW, ECC, ADS, and MFW are the same as in

requirement 3.
 For link modules we use the abstract link modules as described in Section 4.
 Different failure assumptions were made. As an example the resulting formalized

property when three failures are assumed is:

INVARSPEC (failures = 3 & CCFs = 0 & scenario = TRANSIENT &
processmodule.MAN-MFWi & ! processmodule.MFWi0CT001-H1 & !
processmodule.RPVi0CL001-H2 & failuremodule.MEAS_MAN-
MFWi.status = OK & ! processmodule.ECCi0CL001-H1 & !
processmodule.ECCi0CL002-H1 & ! processmodule.EFWi0CL001-H1 & !
processmodule.EFWi0CL002-H1 &
(processmodule.MAN_DEPRESSURISATION_VALVEi_OPEN  |
processmodule.RCOi0CP001-H1)  &
failuremodule.MEAS_MAN_DEPRESSURISATION_VALVEi_OPEN.status = OK
-> TRANSIENT_No_Core_Damage);

Requirement 5.
 For the verification of this property, only the part of the model concerning the EFW

system and the supporting systems (SWS, CCW) was included.
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 We assume that the water level in the EFW pump room remains low, since otherwise
the function is prevented.

 For link modules we use the abstract link modules as described in Section 4.
 Different failure assumptions were made. As an example the resulting formalized

property when no failures are assumed is:

INVARSPEC  (CCFs = 0 & failures = 0 & (scenario = LOFW |
scenario = LOOP | scenario = TRANSIENT) & !
processmodule.EFWi0CL001-H1 & ! processmodule.EFWi0CL002-H1 ->
EFW_1oo4);

Requirement 6.
 For the verification of this property, only the part of the model concerning the ECC

system and the supporting systems (SWS, CCW) was included.
 We assume that the water level in the ECC pump room remains low, since otherwise

the function is prevented.
 For link modules we use the abstract link modules as described in Section 4.
 Different failure assumptions were made. As an example the resulting formalized

property when no failures are assumed is:

INVARSPEC  (CCFs = 0 & failures = 0 & (scenario = LOCA |
scenario = LOFW | scenario = LOOP | scenario = TRANSIENT) & !
processmodule.ECCi0CL001-H1 & ! processmodule.ECCi0CL002-H1 ->
ECC_1oo4);

Requirement 7.
 For the verification of this property, only the part of the model concerning the MFW

system was included.
 The MFW system is prevented from operating if a high water level is detected in the

reactor pressure vessel or if there is high temperature in the feedwater system room.
We assume that these parameters are not true.

 The MFW system starts with a manual command. We assume that the manual
command is also given.

 In the model, only a single manual switch was modelled for all three MFW pumps. We
also assume that the switch does not fail.

 For link modules we use the abstract link modules as described in Section 4.
 Different failure assumptions were made. As an example the resulting formalized

property when no failures are assumed is:

INVARSPEC  (CCFs = 0 & failures = 0 & (scenario = LOOP |
scenario = TRANSIENT) & processmodule.MAN-MFWi & !
processmodule.MFWi0CT001-H1 & ! processmodule.RPVi0CL001-H2 ->
MFW_2oo3);

Requirement 8.
 For the verification of this property, only the part of the model concerning the ADS

system was included.
 The ADS valves open automatically if there is high pressure in the reactor

containment. Otherwise the valves must be opened manually. Because of this, we
assume that one of these conditions is also true.

 In our model all of the ADS valves are manually opened using a single switch. We
assume that the switch itself does not fail because otherwise a single failure in the
switch could prevent the system from operating.

 For link modules we use the abstract link modules as described in Section 4.
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 Different failure assumptions were made. As an example the resulting formalized
property when no failures are assumed is:

INVARSPEC  (CCFs = 0 & failures = 0 & (scenario = LOFW |
scenario = LOOP | scenario = TRANSIENT) &
(processmodule.MAN_DEPRESSURISATION_VALVEi_OPEN  |
processmodule.RCOi0CP001-H1) -> ADS_4oo8);

Requirement 9.
 For the verification of this property, only the part of the model concerning the RHR

system was included.
 For link modules we use the abstract link modules as described in Section 4.
 Different failure assumptions were made. As an example the resulting formalized

property when no failures are assumed is:

INVARSPEC  (CCFs = 0 & failures = 0 & (scenario = LOCA |
scenario = LOFW | scenario = LOOP | scenario = TRANSIENT) ->
RHR_1oo4);

Some of the variables used in the formal specifications (e.g. ECC_1oo4) were calculated
using simple case clauses:

ECC_1oo4 :=  case
ECC_PM01_RUNNING & ECC_VM01_OPEN &
CCW_1_OPERATING_NORMALLY : TRUE;
ECC_PM02_RUNNING & ECC_VM02_OPEN &
CCW_2_OPERATING_NORMALLY : TRUE;
ECC_PM03_RUNNING & ECC_VM03_OPEN &
CCW_3_OPERATING_NORMALLY : TRUE;
ECC_PM04_RUNNING & ECC_VM04_OPEN &
CCW_4_OPERATING_NORMALLY : TRUE;
TRUE : FALSE;

esac;

The system level variables such as LOCA_No_Core_Damage were then calculated based
on the related event trees (LOCA event tree is illustrated in Figure 2) and case clauses:

LOCA_No_Core_Damage := ECC_1oo4 & RHR_1oo4;

The verification results, and verification times for the requirements under different failure
assumptions are presented in Table 8.

Requirement
number

Assumed
single

failures

Result Verification time

1 0 TRUE 82 s
1 1 TRUE 79 s
1 2 TRUE 78 s
1 3 FALSE 76 s
2 0 TRUE 78
2 1 TRUE 87 s
2 2 TRUE 86 s
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2 3 FALSE 83 s
3 0 TRUE 106 s
3 1 TRUE 103 s
3 2 TRUE 108 s
3 3 FALSE 108 s
4 0 TRUE 101 s
4 1 TRUE 96 s
4 2 TRUE 92 s
4 3 FALSE 78 s
5 0 TRUE 72 s
5 1 TRUE 76 s
5 2 TRUE 71 s
5 3 FALSE 64 s
6 0 TRUE 61 s
6 1 TRUE 63 s
6 2 TRUE 63 s
6 3 FALSE 58 s
7 0 TRUE 81 s
7 1 TRUE 82 s
7 2 FALSE 63 s
8 0 TRUE 65 s
8 1 TRUE 59 s
8 2 TRUE 61 s
8 3 FALSE 52 s
9 0 TRUE 29 s
9 1 TRUE 29 s
9 2 TRUE 31 s
9 3 FALSE 30 s

Table 8. Verification results and times for the model checked properties

The requirement 7 is single-failure tolerant but does not hold when two simultaneous single
failures are assumed. Other requirements are true even if two single failures are assumed
and not true when three single failures are assumed.

We can also see that the verification times for requirements 3 and 4 are slightly higher than
for other requirements. Also the verification times for requirements 1 and 2 are higher than
for requirements 5 through 9. This is supposedly due to leaving out unneeded model parts in
requirements 5 through 9, and the use of interface modules in requirements 1 and 2.

We can also see that the failure assumption does not seem to have a lot of influence on the
verification times.
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6. Conclusions

In this work, we have presented new methodology to model failures in a system and tried out
the methodology in a case study covering several safety systems of a nuclear power plant.
The new models take into account the hardware configuration of a system and the various
failure modes of the different hardware components.

To test the hardware failure modelling methodology, an imaginary system was modelled as a
case study. The modeled example includes seven many-redundant safety systems. The
automation logic of the systems was interpreted based on PRA notations. In addition to the
design logics of the I&C systems, the hardware equipment realizing these functions has been
included in the model. Failure modes of automation hardware were also modelled according
to the reference PRA material.

Using the developed methodology, we managed to verify several system properties using
model checking. When we have proved with a model checker that the system model satisfies
its formally specified properties, that is a mathematical statement of the correctness of two
formal objects. We of course have to consider the possibilities of modelling errors in both the
model as well as the formal properties, as well as the possibility of bugs in the model checker
implementation. For further discussion on the topic, see e.g. [Kuismin & Heljanko, 2013].

The performed case study system has previously been used in many PRA studies. Our case
study model is entirely based on the same reference material that is used as input in PRA
analyses. Because of this, the case study has given a better understanding on the two
approaches. It is possible that an even tighter integration between these two approaches is
possible. A single well-defined system-level model of the plant could be used for both PRA
and model checking.

The main contribution of the work is the novel methodology for modelling hardware failures in
an automation system. In practice, this means that in addition to the logic modules we have
traditionally modelled, we can also create 1) a failure module that covers all hardware
components and their failure modes, 2) link modules that encapsulate information transfer in
the model, and 3) a process module for covering the effects of initiating events.

The methodology intends to bridge the gap between model checking and PRA methods. It
allows the verification of system properties under various failure assumptions, which has
previously been quite difficult. Assumptions on common cause failures can also be made. It
is possible to verify fault-tolerance requirements on the plant level as well.

However, the developed methodology has some drawbacks. When complex I&C systems
are modelled on this level of detail the resulting model can become very large, and the
verification of typical properties on the whole model is very challenging. Currently we are
limited to verifying simple safety properties. The model is so large that the typically used
BDD-based model checking algorithm cannot be used. Another algorithm called k-induction
can handle the large model better, but this algorithm can only handle simple state invariant
properties (safety properties). More complicated system properties could be verified by using
a liveness-to-safety reduction (see [Kuismin & Heljanko, 2013]) that transforms the more
complex system property into a simple state invariant property.

In addition, the case study logics are quite simple. If e.g. more timing or feedbacks are added
to the model, the state space will become even larger. Some modular abstraction or
compositional verification techniques can be used to make the verification more feasible in
some instances. In this work we have already used some of these techniques.

The model checking methodology for large and complex systems has been previously
addressed in the SARANA project through a specific algorithm that is based on the modular
composition of the model. It is still an open question whether a similar approach could be



RESEARCH REPORT VTT-R-00213-14
34 (35)

used for models that encompass the hardware failures of the system as well. We leave this
question for future work.
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