
 RESEARCH REPORT VTT-R-00998-14

SIMPRO

Parameter Optimisation Using
Heeds MDO and DAKOTA

Authors: Pekka Rahkola

Confidentiality: Project confidential (will be public after the project)

RESEARCH REPORT VTT-R-00998-14

 1 (29)

Report’s title

Parameter Optimisation Using Heeds MDO and DAKOTA
Customer, contact person, address Order reference

Tekes

Matti Säynätjoki

Kyllikinportti 2, P.O. Box 69, FI-00101 Helsinki, Finland

Project name Project number/Short name

Computational methods in mechanical engineering product

development

78634/SIMPRO

Author(s) Pages

Pekka Rahkola 29/-
Keywords Report identification code

Elevator, modelling, multibody, optimisation, simulation VTT-R-00998-14
Summary

The objective of the work was to study the process of the parameter optimisation applied to a
multibody simulation model and to run two optimisation cases using two optimisation software
applications: HEEDS MDO 7.1 and DAKOTA version 5.3.1.

The industrial case studies were performed using a simulation model of an elevator. The se-
lected vibration feature was optimised using different design variables of the system. The
feature was evaluated using a scalar valued objective function and also inequality constraints
for the optimisation were defined.

Both optimisation case studies were successful. Both case studies were run with the default
parameter values of the optimisation methods. Tools for the parameter optimisation and es-
pecially the mathematical algorithms inside them were found capable and robust for parame-
ter optimisation of multibody models.

Confidentiality Project confidential (will be public after the project)

Espoo 27.2.2015
Written by

Pekka Rahkola,
Senior Scientist

Reviewed by

Kai Katajamäki,
Principal Scientist

Accepted by

Johannes Hyrynen,
Head of Research Area

VTT’s contact address

VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Finland

Distribution (customer and VTT)

Tekes, 1 copy
VTT, 1 copy

The use of the name of the VTT Technical Research Centre of Finland (VTT) in advertising or publication in part of

this report is only permissible with written authorisation from the VTT Technical Research Centre of Finland.

RESEARCH REPORT VTT-R-00998-14

 2 (29)

Contents

Contents ... 2

1. Introduction ... 3

2. Objective ... 3

3. Optimisation Process in General ... 3

4. Simulation Case .. 7

5. Case Study Using HEEDS MDO ... 8

5.1 Preparing the Simulation Model for the Parameter Optimisation 8
5.2 Defining the Project .. 11
5.3 Defining the Study .. 14
5.4 Viewing the Results .. 15

6. Case Study Using DAKOTA .. 18

6.1 Preparing the Simulation Model for the Optimisation Project 18
6.2 Defining the Study .. 20
6.3 Running the Study .. 23
6.4 Viewing the Results .. 24

7. Conclusions .. 25

7.1 Case Studies .. 25
7.2 Optimisation Process .. 26

8. Summary .. 28

References ... 29

RESEARCH REPORT VTT-R-00998-14

 3 (29)

1. Introduction

The use of modelling and simulation, and more widely the use of computational models, is
common within engineering work. Typical applications of modelling and simulation are relat-
ed to physical systems, for example structural dynamics and vibration of a mechanical sys-
tem or electromagnetics of electrical systems. The main benefits of the modelling and simu-
lation are the cost efficiency, when the need to build physical prototypes is smaller, shorter
time to market, when more information of the product can be gathered faster and in the earli-
er phase of the design process, and even safety, when testing can be done virtually. The use
of computational models gives valuable information of the system without the need to build
and test the system in real life.

In engineering work the making of design choices often lead to the making of compromises,
when design aspects are competing against each other. For example, the performance of the
system should be maximised while the mass of it should be minimised. This sets the re-
quirement to find optimal designs in a systematic way. The increase of computational power
has made it possible to simulate extensive analysis rather than only limited design cases [1].
The use of optimisation needs the coupling between the simulation software and the optimi-
sation process, the handling of the iterative optimisation process, and management of the
models and results. Usually the sensitivity of the system between the optimised design vari-
ables system behaviour and response is also studied. This can be done using design of ex-
periment (DOE) studies.

In mechanical engineering the main subfields of optimisation are the parameter optimisation,
and the topology optimisation. In parameter optimisation the performance of the system is
optimised by varying design variables of the system inside a defined range. In topology opti-
misation the layout of the material in a pre-defined space is optimised against a given set of
loads, boundary conditions, and other design constraints. This work focuses on parameter
optimisation applied to a mechanical system.

2. Objective

The objective of the work was to study the process of the parameter optimisation and to run
two optimisation cases using two optimisation software applications. In this report the optimi-
sation process is first described in general by defining the main components and functions of
the optimisation problem and formulating it in a mathematical form. After that two optimisa-
tion software case studies using HEEDS MDO 7.1 and DAKOTA version 5.3.1 are intro-
duced. The codes are tested with an optimisation run applied to a multibody simulation mod-
el of an elevator. In the conclusion section the main steps of using parameter optimisation in
engineering work are discussed.

3. Optimisation Process in General

The main components of an optimisation process are the target system, design variables
with their limits, objective functions and constrain functions, and optimisation algorithm. In a
typical case the target system is a computational model of a system to present its behaviour.
An example is a multibody model for a dynamic analysis of a mechanical system. Design
parameters are parameters of the target system; for example mass of a body, distance be-
tween connection points, or the stiffness of a spring component. Design variables together
with their limits define the design space for the optimisation process. Design variables have
an effect on the target system’s behaviour, which is measured using the objective functions.
In a case of a multibody simulation of a mechanical system, the objective function is usually
displacement, velocity, or acceleration response of the system. Constraint functions are also
measures of the system, which judges the feasibility of the design inside the design space.

RESEARCH REPORT VTT-R-00998-14

 4 (29)

An example of a constraint function could be the mass of a part, which has the maximum
value defined, or the displacement response of a part, which has also the maximum value
defined. The optimisation algorithm is the logic which controls the iterative optimisation pro-
cess. It defines the values for the design variables during the process based on simulation
process evaluations.

The purpose of the optimisation process is to minimise or maximise one or several objective
functions by changing a set of design parameters inside a design space and without violating
design constraints. In a mathematical form the optimisation problem can be formulated as
follows: minimise (or maximise) the objective function

𝐹(𝒃) = 𝐹(𝒃, 𝑡), 𝑡 ∈ [𝑡0, 𝑡1] (1)

using a set of design variables 𝒃 ∈ 𝑅𝑛 inside the design space

𝑏𝑖,𝑚𝑖𝑛 < 𝑏𝑖 < 𝑏𝑖,𝑚𝑎𝑥, 𝑖 = 1,… , 𝑛. (2)

At the same time inequality constraints (also equality constrains may be used) needs to be
fulfilled,

𝑔𝑗(𝒃, 𝑡) < 𝑐𝑗, ∀𝑡 ∈ [𝑡𝑜, 𝑡1], 𝑗 = 1,… ,𝑚. [2] (3)

The objective function 𝐹(𝒃) can be a scalar-valued function or a vector-valued function.
There are three basic types for objective functions [2]:

- Response independent; the value for the objective function is defined for example
based on geometry or other design variables.

- Time point; the value for the objective function is defined at specific time point from
the time series, for example a peak-to-peak value on acceleration time series. This is
the typical case for a simulation model optimisation, because the responses of the
simulation model are functions of time.

- Integral type; the value for the objective function is defined using all time points from
the time series, for example an RMS value calculated on acceleration time series.

Usually the shape of the object function is not known unless the target system is for example
an analytical function. Depending on the shape of the objective function, it may have zero,
one or several minimums or maximums. In a case of multi-objective optimisation there is no
unambiguous solution, but the result can be shown as Pareto curves. It means that from the
evaluation of the object function point of view, all designs lying on the Pareto curves are as
good as others.

Designs inside the design space can be categorised into feasible and infeasible designs
based on the constraints 𝑔(𝒃). An example of a constrain function could be a displacement

of a body during the simulation time span 𝑡 ∈ [𝑡0, 𝑡1]. If an inequality constraint is defined, a
feasible design is met, when the displacement is below the constraint limits. Constraints are
also defined using the result time series and they can be scalar or vector functions. The
same basic types introduced for object functions are valid for constraints as well [2].

The optimisation process is controlled by the optimisation method. The behaviour of the sys-
tem defines the requirements for the used method. There are several different approaches,
which are selected based on the behaviour of the simulation process and the type of the op-
timisation. This section will give a short description of the used optimisation methods for con-
tinuous design spaces. In gradient based methods, which are known also as deterministic
optimisation methods, the next evaluated design during the iterative process is defined using
the previous design and a step in a certain direction. This procedure can be defined as an
iterative formula

RESEARCH REPORT VTT-R-00998-14

 5 (29)

𝑏𝑞 = 𝑏𝑞−1 + 𝛼𝑆𝑞, (4)

where the design 𝑏𝑞 is defined using the former design 𝑏𝑞−1 and a step 𝛼 in a direction of 𝑆𝑞
[2]. The search direction is usually based on the gradient information and the solution navi-
gates and converges into the direction of the smallest gradient. There are different ways to
estimate the gradient. Well-known examples are for instance finite differences, likelihood
ratios, and perturbation analysis [3]. Gradient based methods are suitable and efficient for
the local optimisation, but they cannot be used in the global optimisation problems, when the
response surface is non-convex. Due to the deterministic nature the parallelization of gradi-
ent based methods is difficult.

Global search method is required, when the response surface is non-convex, gradient infor-
mation is not available or it cannot be estimated reliably. When using deterministic methods
in a case of nonlinear system responses, the optimisation may end up in a local minimum
and there is no way to guarantee that the optimum is more than local. The basic function with
the global methods is to overcome the trap between the local and the global optimum. Sto-
chastic methods, which are based on using random variables, are capable on finding global
optimums in large design spaces. Stochastic methods go through the design space coarsely
and focus the study on the promising area of the design space. Other suitable approaches
for the global optimisation procedures are also methods based on heuristics. Examples of
such methods are for instance simulated annealing and evolutionary algorithms [3]. The sim-
ulated annealing has some analogy to the annealing process in metallurgy. The initial design
is chosen randomly. The next design to be evaluated is chosen from the neighbour. If the
objective functions get better, that design will be the current solution design. If the neighbour
design is not better, the method will keep that solution with a probability which increases dur-
ing the iteration. Evolutionary algorithms use mechanisms, which are taken from the biologi-
cal evolution [4]. These algorithms operate on a population of solution rather than a single
solution. Genetic operators are applied to the population to define the new offspring. During
the evolution poor designs will extinct and better designs reach towards the optimum.

In general global optimisation methods are computationally more expensive than efficient
local methods because they need usually more iterations. On the other hand the capability
for the parallelization of optimisation process is better. If the number of iterations is high and
at the same time simulation process is computationally expensive, a suitable approach can
be Response Surface Methodology. The method is based on a metamodel, which is fast to
calculate. The metamodel, which is a regression surface model, is defined using surface fits
into several response points defined using the original model. This metamodel can be used
to defined the model output with a certain accuracy in a few seconds. The optimisation is
done using the regression function and the approach is efficient [4].

The schematic presentation of an optimisation process for a simulation process as the target
system is shown in Figure 1. The simulation model has its input files for the execution and
baseline values for the design variables. The optimisation process is solved iteratively. When
the simulation process is finished, object and constrain functions are evaluated, and the de-
sign feasibility is defined. After that the optimisation method defines new values for the de-
sign parameters based on the implemented algorithm and runs the simulation process again,
if the optimum solution is not yet reached. Based on the method implementation and logic
behind the iterated values of the design parameters and the progress of the solution conver-
gence are different.

The success and efficiency of the optimisation can be increased if the behaviour of the opti-
mised system is known beforehand. Typical analyses, which give information about the dy-
namics of the studied system, are:

- Parameter study to define the effect of one or several design parameters on the sys-
tem response. This can be used for example to define the sensitivity of the system

RESEARCH REPORT VTT-R-00998-14

 6 (29)

relative to the studied design parameters within the design space or around a certain
design point.

- Design of Experiments (DOE) to study the effect of a design space on the system re-
sponse. DOE studies can be used for example to perform a sensitivity analysis, which
identifies those design variables that have the most influence on the response [5].
This information is valuable before the optimisation run to define the essential param-
eters for the study. Another use is to define the system response for a set of design
parameters to be used with the response surface methodology (see optimisation
method description above).

- Uncertainty quantification analysis to study the robustness and reliability of the sys-
tem response. In these studies stochastic distributions are applied to design parame-
ters to define the effect of system behaviour against changes in environment or toler-
ances. As an example the effect of input uncertainty on the response uncertainty can
be studied.

These analyses give information about the dynamics of the studied system, which may help
to find the optimum design and also gives information of the system behaviour around the
optimum solution. These analyses are usually included in optimisation software packages.

Figure 1. Schematics of an optimisation process for a multibody system simulation model.

Optimisation algorithm:

Parameter values

Simulation

(Adams)

Objective

functions

Baseline

parameters

Design evaluation:

Feasible / Infeasible

Optimum

design

Constraint

functions

Input files

It
e

ra
ti
o
n

Post-processing

(Python)

RESEARCH REPORT VTT-R-00998-14

 7 (29)

4. Simulation Case

In this work the parameter optimisation is applied to a multibody system simulation model.
The multibody system approach is suitable for modelling of mechanical systems with large
motions and rotations involved. Multibody models consist from bodies, which are connected
together using idealised joints or force elements like springs and dampers. The properties of
the bodies are defined by the geometry (mass and inertia), the joints by the location, orienta-
tion and degree of freedom information and force elements by the spring stiffness and damp-
ing values etc. The bodies may be considered as rigid or deformable if it is has effect on the
dynamics of the system. [1]

In this work the object for the optimisation study is a multibody system simulation model of an
elevator. The elevator model of the example case is shown in Figure 2. The simulation mod-
el, which is described in [5], is developed using MSC.Adams 2013.1 software. Main assem-
blies of the elevator model are the frame structure, the platform, and wheels with supporting
structures. All bodies are modelled as rigid. The model has total 36 degrees of freedom. The
duration of the simulation case is about 4 minutes.

Figure 2. Multibody simulation model of the studied elevator.

RESEARCH REPORT VTT-R-00998-14

 8 (29)

There are two different test cases for optimising the selected vibration feature of the elevator
described in this report. The needed variables of the simulation model are parametrised us-
ing design variables. The responses of the model for the elevator behaviour evaluation are
displacements and accelerations. The objective function for the studied time dependent op-
timisation process consists of integral and point type of components. In the studied cases a
scalar optimisation is used: the sum of objective function components is minimised. All objec-
tive values are non-negative and independent. Thus minimising the sum of them is reasona-
ble and there is no need for the use of multi-objective optimisation. Both optimisation cases
include also nonlinear constraint functions for certain responses, which needs to be under
certain boundaries.

5. Case Study Using HEEDS MDO

Heeds MDO is design optimisation software from Red Cedar Technology1. Software is suita-
ble for scalar and multi-objective design parameter optimisation with multiple constraints,
design of experiments (DOE) studies, and robustness and reliability studies, which cover
sensitivity analysis using stochastic variables and constraint violation studies [7]. In a graph-
ical user interface HEEDS MDO has tools to create and manage the iterative calculation pro-
cess and to view the results. Important product features of HEEDS MDO are the capability to
parallel computation, and the use of portals, which are ready defined interfaces to establish
HEEDS MDO processes for commonly used modelling and simulation tools. Portals are cur-
rently available for example to Adams, Abaqus, Ansys, Nastran, Excel, Matlab, and Python.

In HEEDS MDO a new study, which can be an optimisation, DOE or robustness and reliabil-
ity study, is called a project. The project contains one or several processes, which can be for
example simulation using FE code or a post-processing using Python script. A process is
defined using input and output files and the execution command with its command options.
Processes have design variables as inputs and responses as outputs. Design variables of
the project are connected to the input files of processes and responses are connected to
output files of processes. Processes can be connected together and outputs of one process
can be used as inputs of another process. The study in the project is defined using the de-
sign variables and responses. For example in an optimisation study, design variables of the
project are connected to parameters of the optimised model and objectives and constrains
are defined using model’s responses.

5.1 Preparing the Simulation Model for the Parameter Optimisation

The easiest way to define a process in HEEDS MDO is to use a portal. There is a portal for
Adams available in HEEDS MDO and it will be used in this study. Adams portal allows the
user to create design variables and responses for the HEEDS MDO process directly from the
design variables and objective components defined in the Adams model. As an input file for
the Adams portal only the binary formatted Adams database file is defined. Before the defini-
tion of HEEDS MDO process using Adams portal can be started, there are few steps, which
have to be done to the Adams model. The steps needed for the Adams model to prepare it
for the optimisation run are described in the following.

First the simulation model in Adams must have design variables and design objectives to be
used as design variables and responses in the HEEDS MDO process. Measures of the Ad-
ams model to be used as responses in HEEDS MDO process are defined using Design Ob-
jectives. An example of a design objective creation is shown in Figure 3. The design objec-
tive is defined using a request component and it stores the displacement measurement dur-
ing the simulation. After the creation of design objectives the model needs a simulation script
to define the simulation case. In this case study the simulation script contains a static equilib-

1
 Red Cedar Technology: http://www.redcedartech.com/

http://www.redcedartech.com/

RESEARCH REPORT VTT-R-00998-14

 9 (29)

rium analysis in the beginning and then dynamic analysis (see Figure 4). As a last step for
the use of Adams database file with HEEDS MDO, the full name option in Adams/View has
to be used. It can be set from Settings  Names  Full names.

Figure 3. The creation of a design objective in Adams/View.

Figure 4. The creation of a simulation script in Adams/View.

In the studied case the simulation model requires input files for the tire model. The location
for the input files in the model can be given as a path relative to the model directory or as an
absolute path. In this case paths to these input files are given as absolute paths in the Ad-
ams model. The benefit of this approach is that the model can be simulated in any folder and
the input files are always accessible, without the need to copy the input files with the model
file. This has more importance in an iterative optimisation process with hundreds or thou-
sands of evaluated designs. If the place for the input files would be given as a path relative to
the model file, all input files needs to be copied to the directory where the simulation is run.
An alternative way to do this in HEEDS MDO would be to use an option in the preferences to
run the simulations a fixed model directory. Then there would be no need to copy neither the
input files nor the model file, only case results.

When using the Adams portal in HEEDS MDO, the simulation is run in Adams/View batch
mode. To pass information of the simulation progress or error messages in a case of simula-
tion failures to HEEDS MDO, the log file written by the Adams/View can be used. The option
for the solver to write the message file is found from Settings  Solver settings  Display 
Show Messages  Yes (see Figure 5). By default only warnings and errors are written to the
log file. To get information of the progress of the solving process, the severity level of mes-
sage settings should be changed to the information level (see Figure 6) from Message win-
dow  Settings  Message settings  Severity level  Information.

RESEARCH REPORT VTT-R-00998-14

 10 (29)

For the use of Adams portal in HEEDS MDO, two additional files beside the Adams database
file are needed. The first one is an xml file containing a description of model design variables
and design objectives. The xml file is created by the HEEDS plugin. The second is a text file
with a2h extension, which contains the name for Adams database file and execution com-
mand for the Adams run. All these files are exported from Adams using the plugin manager’s
HEEDS Export button. The export dialog asks the model name, the name for the exported
files and the simulation script to be used (see Figure 7). After these steps the simulation
model defined in Adams/View is ready to be used in HEEDS MDO via Adams portal. To
make the HEEDS Export plugin work three files, HEEDS_plugin.bin, HEEDS_plugin_plg.xml,
and MDOIcon-48x48-32.xpm, coming with the HEEDS MDO installation was copied into giv-
en place of the Adams installation:

C:\MSC.Software\Adams_x64\2013_1\Win64

Figure 5. The modification of solver settings to show simulation messages.

Figure 6. The modification of the message setting’s severity level.

RESEARCH REPORT VTT-R-00998-14

 11 (29)

Figure 7. The HEEDS export dialog in Adams/View.

5.2 Defining the Project

In this case study the optimisation project in HEEDS MDO contains two processes: simula-
tion using Adams/View, called AdamsRun, and post-processing using a Python script, called
PostProcess (see Figure 8). There is a connection from the AdamsRun to the PostProcess,
which defines the execution order of the processes in the iteration loop. In this case Ad-
amsRun is executed first and after it is finished PostProcess is started.

AdamsRun process is set up using the Adams portal. After selecting the Adams portal during
the project definition, the execution command and command options for Adams becomes
visible (see Figure 8). The execution command for Adams is mdi.bat, which is found from the
Adams installation directory. In this case study the execution command in Windows environ-
ment is

C:\MSC.Software\Adams_x64\2013_1\common\mdi.bat

Default command options of the Adams portal were ready to use. Default command options
are done using HEEDS MDO variables %APPNAME% and %ANALYSIS%, which are re-
placed with strings during the design evaluation (see Figure 8). The execution command for
Adams after string replacement is

aview ru-st b HEEDS_updata_AdamsRun.cmd exit

which tells that Adams/View (aview) is run using as a standard version (ru-st) in batch mode
(b) and the command file (HEEDS_update_AdamsRun.cmd) is loaded [8]. The command file
that is read is created automatically by HEEDS MDO. It contains Adams/View commands to
read the binary formatted Adams database file, modify the design parameters of the model,
run the simulation script, evaluate the design objectives, and write them into a file.

When using the Adams portal the input and output file needed for the process is the binary
formatted Adams database. In addition to the database file also files with extensions .a2h
and .xml, which are exported from Adams/View using HEEDS plugin (see Chapter 5.1), has
to be in the same location as the database file.

To make sure that the simulation run using Adams/View has finished successfully during the
optimisation process, a success check needs to be defined. There are several options for the
success check definition available in HEEDS MDO. In this case the check is done by search-
ing a string “finished” from the log file written by Adams/View (see Figure 9). If the simulation
using Adams/View has stopped due to an error, then the “finished” string is not found. In this
case HEEDS MDO will mark that design as an error design and results of it are not taken into
account in the project. The use of success check is important, because it is the only way for
HEEDS MDO to know that the simulation or any other process has ended successfully.
Without any success check a failed simulation with some results files existing can lead the
optimisation process in a wrong direction. At the moment only one success check can be
defined for one process. Sometimes there would be also a need for several success checks,
for example separate checks for a static equilibrium analysis and a dynamic analysis in a

RESEARCH REPORT VTT-R-00998-14

 12 (29)

case of an Adams/View run. If the static analysis fails, the dynamic analysis may still be suc-
cessful, but the results may not be sufficient.

The second analysis in the process is called PostProcess, which executes a Python script.
There are three input files and one output file needed for the PostProcess (see Figure 10):

- adamsRun.res Input Result file saved from the Adams run

- pyPostProcess.py Input Python script for the post-processing

- runPostProcess.bat Input Batch file for running the Python script

- postProcess.dat Output Result file of the post-processing

Figure 8. The usage of the Adams portal in HEEDS MDO.

RESEARCH REPORT VTT-R-00998-14

 13 (29)

Figure 9. The definition of the success check for the Adams run in HEEDS MDO.

Figure 10. Definition of the process called PostProcess in HEEDS MDO.

The execution command for the PostProcess analysis is the batch file runPostProcess.bat,
which calls Python and runs the script given as an input file. The script reads the result file of
the Adams run, calculates the objective function values of the result time series, and saves
them into the output file postProcess.dat.

RESEARCH REPORT VTT-R-00998-14

 14 (29)

PostProcess analysis is built with the general portal even there would have been a portal and
an installation for Python available in the HEEDS MDO. The reason for not to use Python
portal was that the PostProcess script needs some additional libraries, for example NumPy,
which aren’t included in the default HEEDS MDO installation. To be able to run another Py-
thon installation instead of Heeds’ one, environment variables pointing to HEEDS MDO’s
Python has to be unset. This is done in runPostProcess.bat file.

After importing input and output files for the analyses, project parameters, variables and re-
sponses, has to be defined and connected to these files. The type of variables can be con-
tinuous, discrete, stochastic, dependent, or constant. The phase of connecting design varia-
bles and responses to the input and output files is called tagging. When using the Adams
portal, the tagging can be done using automatic tagging wizard, which is started right after
importing the Adams input file. The wizard gives a list of all design variables of the Adams
model also from the sub model levels. The user selects the needed design variables and
HEEDS MDO creates automatically variables of those. The wizard is suitable for one dimen-
sional design variables, but the disadvantage is that it cannot handle vector variables. Design
objectives defined in the Adams model are also found by HEEDS MDO and these can be
tagged as responses. After that responses are defined automatically.

In a case of using the general portal for process definition, which is valid for PostProcess
analysis, variables and responses have to be defined and tagged manually. In this case
study there are four response values connected to PostProcess analysis, which are found
from the output file postProcess.dat. The output file is a delimited text file and using the op-
tion Delimited and correct delimiters on the Tagging tab the output file is opened and parsed
correctly and the appropriate cells can be selected. After the tagging the response names
are filled to the cells.

5.3 Defining the Study

After the needed analyses are defined and the parameters and responses are created and
tagged for the project, the study is ready to be defined. The study can be an optimisation
study, a DOE study, a robustness and reliability study, or a direct evaluation. Each study type
has its own individual definitions. In this case study a scalar optimisation is used. The defini-
tion of this study contains variables, responses, and the solving method. Variables and re-
sponses of the study are selected from the project parameters. For the variables proper limits
according to the optimisation case needs to be defined. Objectives and constraints of the
optimisation are selected from the responses of the project. In this case study a scalar opti-
misation with four objectives and eight constraints is used. For a scalar optimisation case the
weighted sum of all objectives is used.

The method searches iteratively the optimum point by changing the tagged variables and
calculating the response values and checking the constraint violations. There is a large varie-
ty of methods available for scalar optimisation in HEEDS MDO. The selected method for the
studied case is SHERPA, which is also the default search algorithm in HEEDS MDO.
SHERPA method is a hybrid method which combines both global and local search methods
[3]. In HEEDS MDO the designs are ranked during the search using a performance value
which takes into account the objective values and constraint violations. For an infeasible de-
sign which doesn’t satisfy all constraints, constraint violations give penalty and degrade the

performance. The performance rating of a design is defined using values of objectives 𝑂𝑖,
constraints 𝐶𝑖, corresponding normalization factors 𝑂𝑛𝑜𝑟𝑚,𝑖 and 𝐶𝑛𝑜𝑟𝑚,𝑗, weighting factors

𝑂𝑤𝑔ℎ𝑡,𝑖 and 𝐶𝑤𝑔ℎ𝑡,𝑗, and 𝑆𝑖, which defines the sign for the objectives; for objectives to be min-

imised it is −1 and for objectives to be maximised it is 1. In a case of 𝑛 objectives and 𝑚
constraints the performance value of the design is given by equation

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = ∑
𝑂𝑤𝑔ℎ𝑡,𝑖𝑆𝑖𝑂𝑖

𝑂𝑛𝑜𝑟𝑚,𝑖

𝑛
𝑖=1 − ∑

𝐶𝑤𝑔ℎ𝑡,𝑗𝑔𝑗
2

𝐶𝑛𝑜𝑟𝑚,𝑗
2

𝑚
𝑗=1 , (5)

RESEARCH REPORT VTT-R-00998-14

 15 (29)

where a constraint violation 𝑔𝑗 is defined by

𝑔𝑗 = {
𝐶𝑛𝑜𝑟𝑚,𝑗 − 𝐶𝑗 , 𝐶𝑗 > 𝐶𝑛𝑜𝑟𝑚,𝑗

0 , 𝐶𝑗 ≤ 𝐶𝑛𝑜𝑟𝑚,𝑗
. [3] (6)

The user can set the values for weighting factors, and normalization factors. In this study
default values for the weighting factors were used: 𝑤𝑂,𝑖 for all objectives are unity and 𝑤𝐶,𝑗 for

all constraints are 10000. As normalization factors 𝑂𝑛𝑜𝑟𝑚,𝑖 objective values from the baseline

design were used, and as normalization factors 𝐶𝑛𝑜𝑟𝑚,𝑗 constraint limits were used. For the

studied case the use of the objective normalization sets the importance level of all objectives
during the optimisation the same.

Figure 11. The definition of an optimisation study.

5.4 Viewing the Results

In the studied case the default optimisation method called SHERPA was used. The maxi-
mum number of evaluations was set to 400. The method was found robust and capable of
converging to a global optimum for the tested case. The history plot for the design perfor-
mance of the optimisation run is shown in Figure 12. The baseline design is shown as a grey
box in the lower left corner, and the best design as a yellow circle. The rate of the change for
the performance value is high for the first 150 design and it starts to slow down after that.
The derivative of the performance value reaches towards zero when design id reaches 400.
This means that the potential improvement on the performance is achieved and the number
of design evaluations is high enough.

The second plot in Figure 13 shows the objective values as a function of performance value
for feasible designs. The plot shows the change of objective values, when the designs get
better. In this case both objectives have got better relative to the baseline value. It can be

RESEARCH REPORT VTT-R-00998-14

 16 (29)

seen that there are individual objective values which are lower than the values of the opti-
mum point. However the sum of all objectives defines the performance of the design.

Figure 14 shows an example of a parallel plot which contains the view for relationship of var-
iables and responses of all designs at the same time. Parallel plots can be used to give an
overview of the case behaviour. The parallel plot highlights the baseline design and the best
design and shows the limits used for constraints.

Figure 15 shows an example of a constraint violation plot for the study. It shows the number
of individual constrain violations during the study. It can be used to define what violations are
the most critical and hardest to fulfil.

Figure 12. The performance value as a function of design id.

RESEARCH REPORT VTT-R-00998-14

 17 (29)

Figure 13. The objective values as a function of performance value for feasible designs. The
baseline design is visualised as the grey box in the left side and the best designs are visual-
ised with the yellow circles.

Figure 14. An example of a parallel plot for five design parameters and their constraints.

RESEARCH REPORT VTT-R-00998-14

 18 (29)

Figure 15. An example of a constraint plot for four constrains.

6. Case Study Using DAKOTA

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) is a tool,
which provides iterative analysis methods and interface to work with simulation codes. Soft-
ware is capable of doing scalar and multi-objective optimisation, and uncertainty quantifica-
tions, DOE studies, parameter estimation, and sensitivity and variance analysis. DAKOTA is
developed at Sandia National Laboratories New Mexico and the development project has
started in 1994. The DAKOTA is an open source tool and the version 5.3.1, which was used
in the case study, is licensed under the GNU Lesser General Public License (LGPL).

A schematic presentation of an iterative DAKOTA process is shown in Figure 16. A study in
DAKOTA is defined as a textual DAKOTA input file (.in extension), which defines design var-
iables, and responses for the study, as well as the study type, parameters and other options.
For each evaluated design DAKOTA writes a parameter file, which is used to create the input
file for the simulation execution. The simulation process is executed as an external process
using a simulation script. Responses for the design evaluation are gathered into the DAKO-
TA result file from the simulation output file. The coupling between DAKOTA and the simula-
tion process is done using input and output files. This approach is called a black-box cou-
pling, because DAKOTA doesn’t need to know the internal functionality of the simulation
code [5]. When the DAKOTA process is finished, variables and responses of evaluated de-
signs are written into DAKOTA output file (.out extension).

6.1 Preparing the Simulation Model for the Optimisation Project

In this case study DAKOTA runs a simulation process of Adams (see Chapter 4). Simulation
in Adams can be done from the graphical pre-processor tool Adams/View or from the com-
mand line by calling the Adams/Solver directly. With the HEEDS MDO case study the simula-

RESEARCH REPORT VTT-R-00998-14

 19 (29)

tion was executed by calling the Adams/View and running simulation commands with it, while
in this DAKOTA case study the simulation is done by calling the Adams/Solver directly.

When using the Adams/Solver directly, the Adams simulation model needs to be described
as an Adams/Solver dataset file, which is a complete textual description of the model using
Adams/Solver Data Language statements [8]. The Adams/solver dataset file of a simulation
model can be exported from Adams/View. An essential thing about the Adams/Solver da-
taset file is that the model structure is flattened. This means that for example design varia-
bles used in the model are replaced with the design variable values and submodel structures
defined in the model are not available anymore. For the use of the Adams/Solver dataset file
in a DAKOTA optimisation loop, the model flattening means that the parameterization done
in the simulation model cannot be used anymore. To be able to use Adams/Solver dataset
files in a DAKOTA loop, all instances of needed design variables in the dataset file has to be
tagged manually. The easiest way to do the tagging is to replace the value of the design var-
iable in the model with a unique value, then exporting the model as an Adams/Solver dataset
file, and then replacing the unique value strings with tagged variable names. In this case
study design variables are tagged using variable name in <> quotation marks.

Figure 16. A schematic picture of the DAKOTA iterative process with a simulation code [5].

Despite the need for the manual tagging of design variables, the use of the Adams solver
dataset files is easy and efficient, because the format of the Adams/Solver dataset file is
clear and using string replacement the tagging is straightforward to do. The limitation to the
use of the dataset file is that geometries in the simulation model cannot be parameterised.
During the model flattening mass and inertia properties of all bodies based on the geometry
are calculated and after this dimensions of geometry definitions are not available in the da-
taset file anymore.

Before the tagged Adams/Solver dataset can be sent to the Adams/Solver in a DAKOTA
process, the tags have to be replaced with appropriate values of the design variables. This is
done using a Python pre-processing script, which does the string replacement for the tagged
variables. After that the simulation can be executed in shell script (in Linux environment) us-
ing a command

aview2013.1/mdi –c ru-st i run.acf

DAKOTA

Simulation process,

Adams call

Simulation

script:

run.sh

DAKOTA

Result file:

dakota.dat

dakota.out

Input file for

simulation

case.adm

Output file for

simulation:

case.res

DAKOTA

Parameters

file: params.in

DAKOTA

input file:

dakota.in

DAKOTA

output file:

dakota.out

Iteration

RESEARCH REPORT VTT-R-00998-14

 20 (29)

which tells that Adams/Solver is called from command line (-c) as a standard version (ru-st)
in interactive mode (i) using the solver command file (run.acf) [8] (note that in Linux environ-
ment the command line option -c is needed, while in Windows environment it is not). The
solver command file run.acf contains the following lines

template.adm

case

sim/sta

sim/dyn, end=25.0 dtout=0.005

It defines the name of the Adams/Solver dataset file (template.adm), name of the output files
(case.res, case.msg), and simulation commands. In this case there is the calculation of the
static equilibrium (sim/sta) and after that dynamic analysis with duration of 25.0 s and output
time step of 0.005 s (sim/dyn, end=25.0 dtout=0.005).

6.2 Defining the Study

DAKOTA process is defined using a DAKOTA input file. An example of a DAKOTA input file
(dakota_example.in) for parameter optimisation with two design variables, one objective
function and one inequality constraint function is shown in Figure 17. The structure of the
input file is divided into six sections using keywords strategy, method, model, variables, inter-
face, and responses. The strategy section acts a control layer for the DAKOTA process. In
this case single_method is used, which means that one model is run in one iterative process.
Other available strategies such as hybrid optimisation or Pareto optimisation are used in
DAKOTA’s advanced optimisation approaches [5]. Strategy section includes also the defini-
tion of DAKOTA’s tabular output file using keyword tabular_graphics_data.

The method section defines the type of the DAKOTA study, which can be parameter study,
optimisation, uncertainty quantification etc. In this case an optimisation method called
coliny_direct is used. Each method type contains own set of parameters. For the used opti-
misation method parameters max_iterations and max_function_evaluations are defined.

The model section defines the interface between the DAKOTA process and the simulation
process. The keyword single, which is also the default case, defines that design variables
and responses of a DAKOTA process are connected using a single interface through a direct
simulation evaluation. More advanced options under the model section are used to define
multi-level processes with sub-models and sub-iterators.

Variables section defines the design variables of the study. Design variables can be continu-
ous or discrete. In the example there are two continuous variables with lower and upper
bounds, and descriptors, which define the tagging names used in the Adams/Solver dataset
file.

Under the interface section the connection between the DAKOTA and the simulation code is
defined. To run an external simulation code as a separate process either a system call or a
fork call can be used, while fork is strongly recommended by the manual, especially when
multiple parallel analyses are run asynchronously. The difference between system and fork
calls lie in the system functions that are used to run the process. In both calls the coupling
between DAKOTA and the simulation process is done using input and output files. In large
DAKOTA runs the amount of this kind of file I/O can be a bottle neck. For such cases the
third interface option direct can be useful. In this option the simulation code needs to be con-
verted to a subroutine and linked into the DAKOTA executable. The use of this direct inter-
face makes the process managing simpler and decreases the file I/O. Direct function inter-

RESEARCH REPORT VTT-R-00998-14

 21 (29)

faces are available for Matlab and for instance Sandia’s structural dynamics code Salinas
and multiphysics framework SIERRA [5].

The analysis driver defines the name of the test function, in this case run.sh, which includes
commands to be run during each design evaluation. The first command in the shell script
run.sh is Python pre-processing script, which reads the design variables values from the
DAKOTA’s parameters file called params.in and replaces the tagged variables in the Ad-
ams/Solver dataset file with these values. The second command calls Adams/Solver to run
the simulation. The third command is Python post-processing script, which reads the result
file of the simulation, calculates response values, and writes them into DAKOTA’s results file
called result.out.

All input files and also output files (which may be empty) that are involved in the simulation
run are located in a template directory called case_template. Each simulation run is invoked
in an own directory. This functionality is defined using the keyword work_directory. When a
new design evaluation is started, DAKOTA creates a new work directory called case, copies
all files and directories defined in the template directory into it using soft links and runs the
simulation. Input and output files and directories defined at the case_template directory are
the following:

- template.adm Input The Adams/Solver dataset file

- run.acf Input Solver commands

- run.sh Input The shell script for the DAKOTA loop

- case.res Output Result file from the case evaluation

- case.msg Output The message file from the case evaluation

- pyPreProcess.py Input Python pre-processing script

- pyPostProcess.py Input Python post-processing script

- TyreData Input Directory containing tyre data files

- RoadData Input Directory containing road data files

For an evaluated case the case directory contains also two DAKOTA files:

- params.in Input DAKOTA parameter file

- results.out Output DAKOTA results file

The interface section includes also the definition of parallelization during the process evalua-
tion. DAKOTA provides large variety of mechanisms for the parallelization from a one multi-
processor workstation to a computing cluster. The utilization of parallelism depends on the
study type and algorithm. Global and derivative free optimisation methods available in DA-
KOTA are capable for parallel computing by dividing the search area into sub-problems that
can be sent to separate computing resource. In the example case parallel computing is de-
fined using keyword evaluation_concurrency and two evaluations can be run at the same
time. The evaluation is done in an asynchronous mode, which, means that parallel evalua-
tions are not synchronised and both computing resources may start a new evaluation when
the previous evaluation is finished.

Response section contains the definition of response functions of the DAKOTA process. In
the example optimisation problem there is one objective function and one nonlinear inequali-
ty constraint function with upper bound defined. Response function values are found from the
DAKOTA results output file using the descriptors names. In a case of multiple objective func-

RESEARCH REPORT VTT-R-00998-14

 22 (29)

tions the weighting of objective function values is available. Response section also includes
the definition of response function’s derivative (gradients) and second order derivative (hes-
sians) usage. For the example case of derivative free optimisation problem gradient and
hessian information is not available.

DAKOTA installation package includes a wide collection of complete DAKOTA example cas-
es. When a new DAKOTA process is to be defined, a good starting point is to take a suitable
DAKOTA input file from the example cases, and modify it using a text editor. A useful tool,
when modifying or defining a DAKOTA input file from the scratch, is also JAGUAR from San-
dia. It is a graphical tool to generate the DAKOTA input file specifications by suggesting
available keywords for input file sections. An example view of JAGUAR graphical user inter-
face is shown in Figure 18. Features of JAGUAR to help the input file definition are syntax
checking, highlighting, auto-completion of keywords, text formatting functions, and links to
the DAKOTA online help. [10]

Figure 17. An example of DAKOTA input file for the parameter optimisation case.

Dakota Input File: dakota_example.in

strategy

graphics

tabular_graphics_data

tabular_graphics_file = 'dakota_example.dat'

single_method

method

max_iterations = 500

max_function_evaluations = 1000

coliny_direct

model

single

variables

continuous_design = 2

lower_bounds 10.0 10.0

upper_bounds 100.0 200.0

descriptors 'spring_stiffness' 'spring_damping'

interface

analysis_drivers 'run.sh'

fork

parameters_file 'params.in'

results_file 'results.out'

file_save

work_directory

named 'case'

directory_tag

directory_save

template_directory 'case_template'

asynchronous

evaluation_concurrency 2

responses

descriptors 'Obj_function' 'Constraint'

objective_functions = 1

nonlinear_inequality_constraints = 1

upper_bounds 0.001

no_gradients

no_hessians

RESEARCH REPORT VTT-R-00998-14

 23 (29)

Figure 18. View of the JAGUAR GUI.

6.3 Running the Study

The parameter optimisation case study using DAKOTA is run in Linux environment. The in-
put file of the process is basically the same as the example case shown in the previous chap-
ter except the number of design parameters, objective and constraint functions and their
boundary values. In this case study the weighted sum of objectives functions with inequality
constraint functions is optimised.

The optimisation method used in the example case is called Division of RECTangles (DI-
RECT), which is a global derivative free method. DIRECT algorithm divides the design space
into subspaces and focuses the search on the promising areas. There are two implementa-
tions of the DIRECT algorithm. The used version is coliny_direct, because it supports nonlin-
ear constraints, which are defined in the case study. In the case study necessary parameters
needed for the coliny_direct are the maximum number of iterations and function evaluations.
The maximum evaluation concurrency for this method is twice the amount of design parame-
ters. An alternative global derivative free method for the case study would be an evolutionary
algorithm. It simulates the evolutionary process by defining design evaluation generations,
where the fittest ones of generation can reproduce and form new design evaluations and
finally converging to the optimum design.

RESEARCH REPORT VTT-R-00998-14

 24 (29)

Before running the DAKOTA input file, it can be checked using command

dakota –i dakota_example.in –check

DAKOTA run using specified input and output files can be started using a command

dakota –i dakota_example.in –o dakota_example.out

DAKOTA can also be run in additional execution modes: (1) pre-run, which generates the set
of points at which the system will be evaluated, and (2) post-run, which defined final statistics
of a run. DAKOTA has also restart functionality. Using .rst file a DAKOTA run can be contin-
ued, if the execution has stopped for some reason. All DAKOTA run modes can also be exe-
cuted from the JAGUAR.

6.4 Viewing the Results

The optimisation run with maximum of 1000 iterations was performed. DAKOTA finished the
run after evaluation number 507. The objective function value as a function of design evalua-
tion number is shown in Figure 19. It can be seen the rate of the change for the performance
value is high for the first about 80 designs and after that the gain is small. The amount of
objective function change after the 80 design is small and smaller amount of designs would
have been sufficient. Normalised objective function values as a function of design evaluation
number is shown in Figure 20.

Figure 19. Objective function value as a function of design id.

RESEARCH REPORT VTT-R-00998-14

 25 (29)

Figure 20. Normalised individual objective values as function of objective function value.

7. Conclusions

7.1 Case Studies

The case studies for the parameter optimisation applied to a multibody simulation were suc-
cessful. Two different case studies were defined and run with two different optimisation tools.
Both case studies were run with the default parameter values of the optimisation methods.
Optimisation tools and the mathematical algorithms inside them were found capable and ro-
bust for parameter optimisation of multibody models without extensive knowledge of optimi-
sation before.

The first case study was done using HEEDS MDO. The definition of an optimisation pro-
cesses using the graphical user interface was found easy and straightforward. Clearly for-
matted user interface with active helping instructions makes the definition of analyses and
connections efficient. Tools for tagging the general input and output file are fluent and easy
due the visualization of the file. As a new feature HEEDS MDO version that was used in the
case study had an interface to connect an Adams/View simulation model to the process. The
use of this so-called “Adams portal” was found user-friendly and efficient. Using the portal the
Adams binary file is imported and design variables and design objectives defined in the Ad-
ams model can be tagged and used directly in HEEDS MDO process. For the optimisation
process solving the default optimisation method SHERPA was found to be robust as all test-
ed cases were successful. Visualization of results could be done quickly using plotting func-
tions within HEEDS MDO. The further post-processing and visualization of results was done
in HEEDS POST. Disadvantage of post-processing tools was the modification capabilities of
plots. For example axis definitions or labels font characteristics were found difficult or impos-
sible to define. This would be needed to get clear and understandable results plots in some
cases.

The second case study was done using DAKOTA code. Starting from the example cases that
come with the DAKOTA installation, the definition of the optimisation process was straight-
forward. When new features are needed to be implemented to the DAKOTA input file, JAG-

RESEARCH REPORT VTT-R-00998-14

 26 (29)

UAR can ease the definition remarkably. As a command line tool for optimisation analyses
DAKOTA needs more attention in the beginning but after a while it is efficient to use. The
usage of DAKOTA needs some scripting because interfaces between the simulation and
post-processing codes and DAKOTA need to be defined. The value of DAKOTA is that it is a
capable general tool for any process and it has open source licensing.

7.2 Optimisation Process

Even though the definition and execution of the optimisation process can be easy and
straightforward, some issues are important to be checked to get a successful optimisation
study. First of all, it is important to understand the case that is being optimised. This means
that the dynamics of the system and the effects of design parameters on the system re-
sponses should be at least roughly known. Valuable information can be get for example by
performing DOE studies for the studied design parameters. Then regarding to the studied
system, all relevant excitations of the system has to be present. Otherwise the optimum solu-
tion may be relevant in the mathematical sense, but has no relevance in the real system de-
sign.

The main components of the optimisation process are design parameters, objective and con-
straint functions and the solving method. Case studies were defined with four objectives,
which were different in their nature. The sum of objective values was defined and thus the
objective function was as a scalar. If objectives values would have been competing against
each other’s, multi-objective study had to be declared. Results of a multi-objective study are
given as Pareto plots, which show the equal designs. In multi-objective study one optimal
solution is not given.

When multiple objectives are treated as a sum, an important aspect is the normalization and
weighting of objective functions. The normalization is used to scale each objective value to
the same range to get them effecting on the weighted sum with the same proportions. Oth-
erwise the largest objective value can dominate the objective function value while the smaller
magnitude value can have hardly any effect at all even though it may be significant for the
optimised design. In the studied cases the objective values of the baseline design were used
as the scaling factors. This is needed to take into account the different scale of different ob-
jective values. The weighting factor defines the importance of an individual objective value on
the scalar objective function value. An example of the weighting could be the optimisation of
total material costs. Prices of different materials can be used as the weights when objective
function components are the masses of different material on the design. In the studied case
the weighting was not needed and weighting factors were defined as unity.

During the iterative optimisation process design variables of the simulation needs to be up-
dated and the simulation code called from the command line. Approaches to update the
model and perform the simulation differed between the studied cases. HEEDS MDO’s Ad-
ams portal called Adams/View, which updates the design variables and performs the simula-
tion using Adams/View commands. In the DAKOTA case the simulation model was defined
as a text file. The tagged design variables were updated using string replacement and the
modified model file was sent to Adams/Solver. The capabilities of these approaches differ a
lot. When design variables are updated inside Adams/View, it gives possibilities to wider
model modifications during the model update using Adams/View command language. Design
variables can be used for example for the geometry while in the flattened Adams/Solver input
it can be used only in function expressions. Optimisation tools didn’t limit the use of these
approaches; both approaches could have been used with both tools.

The core of the optimisation process is the algorithm which manages the iterative process. In
HEEDS MDO and DAKOTA there are several algorithms available, which are suitable for
different type of systems. In a case of a multibody model, an optimisation of a non-linear sys-
tem is needed. When using multibody models the gradient is not available, unless it is ap-
proximated somehow and thus gradient-free methods needs to be used. In the case studies

RESEARCH REPORT VTT-R-00998-14

 27 (29)

the focus was on the optimisation process and therefore different methods were not studied.
After the optimisation process is defined and solved the process continues by defining the
properties of the found optimum point. Valuable information can be the behavior of the sys-
tem near the optimum point, which can be done using sensitivity analysis.

RESEARCH REPORT VTT-R-00998-14

 28 (29)

8. Summary

The use of optimisation gives a way to find optimal designs systematically. This is needed in
engineering work, when design aspects are competing against each other and the making of
design choices often lead to the making of compromises. In parameter optimisation the sys-
tem performance, which is defined as a number or a set of numbers, is optimised by varying
design variables of the system inside a defined range.

In this work the parameter optimisation problem definition and typical methods for solving
were studied in general. Two parameter optimisation case studies were performed using a
multibody simulation model of an elevator. The selected vibration feature was optimised us-
ing several design variables of the system. The feature was evaluated using a scalar valued
objective function and also inequality constraints for the optimisation were defined.

Case studies were done using software HEEDS MDO and DAKOTA. Both case studies were
run with the default parameter values of the optimisation methods. This means that the tools
and especially the mathematical algorithms inside them are capable and robust for parame-
ter optimisation of multibody models. In the studied cases both tools could be used success-
fully even by an unexperienced optimisation user.

RESEARCH REPORT VTT-R-00998-14

 29 (29)

References

[1] Eberhard, P., Bestle, D., Schiehlen, W. Optimization of Mechanical Systems. In a pub-
lication: Advanced Design of Mechanical Systems: From Analysis to Optimization. Udi-
ne: CISM Courses and Lectures, 2009. Vol. 511, p. 237−252. ISBN 978-3-211-99460-
3.

[2] Lodewijk, F. P. E. Optimization of Multibody Systems using Approximation Concepts.
Eindhoven: Technische Universiteit Eindhoven, 1997. 140 p. ISBN 90-386-0520-X.

[3] Fu, M. C., Glover, F. W., April, J. Simulation optimization: A Review, new develop-
ments, and applications. Proceedings of the 2005 Winter Simulation Conference. 14 p.

[4] Tekin, E., Sabuncuoglu, I. Simulation optimization: A comprehensive review on theory
and applications. IIE Transactions, 2004. 30:11, p. 1067−1081. ISSN 0740-817X.

[5] Simbierowicz, G., Kortelainen, J. Assessment of different computational methods used
for estimating the lateral quaking in a high-rise elevator. Proceedings of the 20th Inter-
national Congress on Sound and Vibration, 2013. 8 p. Available at:
http://www.icsv20.org/content/papers/papers/full_paper_185_20130411190404499.pdf

[6] Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Pa-
rameter Estimation, Uncertainty Quantification, and Sensitivity Analysis. Version 5.4
User’s Manual. Livermore: Sandia National Laboratories, 2009. 333 p. Available at:
http://dakota.sandia.gov/docs/dakota/stable/Users-stable.pdf. Cited 11.2.2014.

[7] HEEDS MDO, Multidisciplinary design optimization software. East Lansing, Michigan,
USA: Red Cedar Technology, 2013. 4 p. Available at:
http://www.redcedartech.com/pdfs/HEEDS_MDO_Brochure_web.pdf. Cited 11.2.2014.

[8] Adams Online Help. Version 2013.1.

[9] Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Pa-
rameter Estimation, Uncertainty Quantification, and Sensitivity Analysis. Version 5.4
Reference Manual. Livermore: Sandia National Laboratories, 2009. 237 p. Available at:
http://dakota.sandia.gov/docs/dakota/5.4/html-ref/index.html. Cited 11.2.2014.

[10] Adams, B. M., Chan, E., Lefantzi, S., Ruthruff, J. DAKOTA JAGUAR 2.1 User’s Manu-
al. Livermore: Sandia National Laboratories, 2011. 41 p. Available at:
http://dakota.sandia.gov/docs/dakota-jaguar/2.1/JaguarUsersManual2.1.pdf. Cited
13.2.2014.

http://www.icsv20.org/content/papers/papers/full_paper_185_20130411190404499.pdf
http://dakota.sandia.gov/docs/dakota/stable/Users-stable.pdf
http://www.redcedartech.com/pdfs/HEEDS_MDO_Brochure_web.pdf
http://dakota.sandia.gov/docs/dakota/5.4/html-ref/index.html
http://dakota.sandia.gov/docs/dakota-jaguar/2.1/JaguarUsersManual2.1.pdf

