
 RESEARCH REPORT VTT-R-01067-14

SAREMAN project

Controlled natural language
requirements in the design and
analysis of safety critical I&C
systems

Authors: Teemu Tommila, Antti Pakonen

Confidentiality: Public

RESEARCH REPORT VTT-R-01067-14

1 (64)

Report’s title

Controlled natural language requirements in the design and analysis of safety critical I&C

systems
Customer, contact person, address Order reference

Nuclear Waste Management Fund

P.O. Box 32, FI-00023 GOVERNMENT, Finland

34/2013SAF

12.3.2013

Project name Project number/Short name

Safety requirements specification and management in nuclear
power plants

77380 / SAREMAN-2013

Author(s) Pages

Teemu Tommila, Antti Pakonen 56 + app. 8 p.
Keywords Report identification code

Requirements, Controlled Natural Languages, Model checking,

Templates, Patterns

VTT-R-01067-14

Summary

In order to be effectively communicated to all relevant stakeholders, requirements need to be

easily understandable, unambiguous, and verifiable. This research report studies the

possibilities of textual requirement templates in specifying and analysing safety critical

instrumentation and control systems. We use a Controlled Natural Language (CNL) in the

shape of a restricted vocabulary and templates for “standardised” requirement statements,

where terms of the particular application can be filled-in.

While the template-based approach applies to systems engineering in general, our particular

interest is in model checking, a formal method to exhaustively show that a system model

fulfils its stated functional requirements. Model checking is based on strict requirement

formalisation using temporal logic languages, which calls for specific expertise. With natural

language templates, oft-used requirement constructs can be re-used without having to work

with complex temporal logic expressions.

In this report we first discuss the theoretical foundations of system modelling and natural

language constructs, and then review related research on methods and tools. On the basis of

the literature and VTT’s previous experiences in model checking, we suggest a first set of

templates intended for model checking function block based control applications and list

desired features for a requirement authoring tool based on the templates. Topics for further

research include processing of chains of events that are too complex for practical expression

in writing, as well as mechanisms for integrating the suggested tool concept into existing

model checking, system development, and requirement management tools.

Confidentiality Public

VTT’s contact address

B.O. Box 1000, FI-02044 VTT, Finland

Distribution (customer and VTT)

SAFIR2014 Reference group 2

The use of the name of the VTT Technical Research Centre of Finland (VTT) in advertising or publication in part of

this report is only permissible with written authorisation from the VTT Technical Research Centre of Finland.

RESEARCH REPORT VTT-R-01067-14

2 (64)

Preface

This report has been written in the research project “Safety requirements specification and
management in nuclear power plants” (SAREMAN), a part of the Finnish Research
Programme on Nuclear Power Plant Safety 2011–2014 (SAFIR2014). The aim of the
SAREMAN project is to develop good practices for requirements definition and management
in nuclear power plants. Its focus is on the safety of Instrumentation and Control (I&C)
systems. However, due to the multi-disciplinary character of Requirements Engineering (RE),
also other plant systems and engineering disciplines are concerned in the project.

We wish to express our gratitude to the representatives of the SAFIR2014 member
organisations who have taken the time to engage in discussions and provide valuable input
throughout the project.

Espoo 31.1.2014

Authors

RESEARCH REPORT VTT-R-01067-14

3 (64)

Contents

Preface ... 2

Contents ... 3

1. Introduction ... 4

2. The conceptual basis .. 5

2.1 Propositions about states of affairs ... 5
2.2 Elements of the world ... 6
2.3 Artefact functions and actions of goal-oriented agents .. 7
2.4 Temporal and set relationships ... 9
2.5 On the English grammar ... 11
2.6 Towards the anatomy of a natural language proposition ... 12

3. Related research... 15

3.1 Controlled natural languages .. 15
3.2 Requirement templates ... 17

3.2.1 Requirement Boilerplates .. 18

3.2.2 CESAR Requirement Specification Languages ... 19

3.2.3 Easy Approach to Requirements Syntax (EARS) .. 22
3.3 Tools for requirements definition and analysis .. 23

3.3.1 DOORS .. 23

3.3.2 Requirements Authoring Tool (RAT) ... 25

3.3.3 Context RDS ... 27

3.3.4 CESAR DODT .. 28

3.3.5 Attempto Controlled English (ACE) ... 30

3.3.6 ReqUirements BoileRplate sanIty Checker (RUBRIC)................................. 31
3.4 Testing automation ... 33
3.5 Model checking and property specification patterns .. 35
3.6 Property Specification Language (PSL) .. 38

4. Requirement templates for safety-related I&C systems ... 39

4.1 Vocabulary .. 39
4.2 Sentences... 42

4.2.1 Propositions of states and events ... 42

4.2.2 Reserved words and requirement scopes ... 43

4.2.3 Types of complete sentences.. 44

5. Working practices and tool support ... 45

5.1 Requirements definition in model checking – a task description 45
5.2 Requirements of a template-based requirement editor.. 48

6. Summary and conclusions .. 52

References ... 54

Appendix A: Model checking templates for safety critical I&C ... 57

RESEARCH REPORT VTT-R-01067-14

4 (64)

1. Introduction

The aim of the SAREMAN project is to develop good practices for requirements definition
and management in nuclear power plants. Its focus is on the safety of Instrumentation and
Control (I&C) systems. However, due to the multi-disciplinary character of Requirements
Engineering (RE), also other plant systems and engineering disciplines are concerned in the
project.

In order to correctly communicate the needs of various stakeholders, requirements should be
unambiguous and easily understandable. Moreover, to cope with the frequent changes and,
in particular, to be able to demonstrate the safety of an I&C system to the regulating
authority, the project organisation should maintain the traceability among requirements, their
sources and the solutions satisfying the requirements.

Even if various diagrams and tabular presentations can be used to express requirements, a
big part of requirements are today communicated in written form using natural language. One
of the main problems here is that engineers tend use inconsistent terminology, vague words
and too complex sentences. Requirements are not verifiable, and they are hard to
understand and have several interpretations. Consequently, requirements often fail to do
their job in communicating the safety concerns of the regulator and the customer in the
supply chain.

These challenges are not limited to requirements. The demand for clarity and traceability
concerns all information created in an investment project. The complexity and amount of
information emphasises the role of computer tools and electronic information exchange
between project participants. Software tools are needed to automate and enhance design
activities and to analyse the quality of their results. Even more than in human-human
communication, the structure and meaning of the information must be agreed among all
participants.

The use of a Controlled Natural Language (CNL) is an old and common approach to tackle
the challenges of poor written requirements. Standards and textbooks list features of good
requirements and give recommendations for well-structured sentences. There are collections
of “standardised” requirement statements, i.e. natural language templates where terms of the

particular application can be filled-in. Some of these templates are also supported by
commercial requirements management tools. However, for more advanced software tools of
design synthesis and analysis, standardised sentence structures are not enough. The terms
inserted into them must come from a limited vocabulary of the domain and the particular
application. In other words, the tool must make use of a domain ontology and a model of the

individual I&C system.

This research report studies the possibilities of requirement templates combined with a
restricted vocabulary in designing and analysing safety critical I&C systems in nuclear power
plants. The goals are two-fold. The first research question concerns the terminology and
types of templates needed in I&C applications in general irrespective of computer tools. As
already seen in other domains, simple and practical guidance to engineers can rapidly
improve the quality of requirements. The lessons learned will be incorporated into the RE
guide being developed in the SAREMAN project. The second and primary research question
in this report is how templates and ontologies can be used to produce requirements that are
sufficiently formal to be processed by computer tools. One issue here is how the I&C-
oriented templates could be applied in existing requirements management tools. Our
particular interest is, however, in model checking. In this methodology, a formal model of
both the system and the requirements is needed to exhaustively check whether the
requirements are satisfied by the suggested I&C functions. We expect that templates help us
formalise human-readable requirements to the temporal logic presentation used in model
checker tools. The results of this study can hopefully be integrated to the model checking
tools studied in related research activities, especially in the SARANA project.

RESEARCH REPORT VTT-R-01067-14

5 (64)

The rest of this report is organised as follows. Chapter 2 discusses the theoretical
foundations of the domain ontology and natural language statements. This discussion makes
use of our previous work on conceptual modelling and role of requirements in systems
engineering (SAREMAN 2013a). Recognising that templates are already widely used in
engineering design, chapter 3 presents some examples of recommendations and tools
particularly relevant to us. As a combination of these ingredients, we suggest in chapter 4 a
first set of templates particularly intended for model checking function block based control
applications. More detailed descriptions of the templates are given in appendix A. Next, we
discuss in chapter 5 the desired features of a requirement editor tool in the context of model
checking. Finally, chapter 6 summarises the findings of the study and gives some
suggestions for next steps.

2. The conceptual basis

In SAREMAN, we speak about model-based engineering (SAREMAN 2013a). The system
model describes a future world in terms of various model elements. The main purpose of the

model is to communicate ideas. Therefore, model elements can be understood as
statements of stakeholders and designers. Adapted from human communication and the
speech-act theory, statements have a communicative role indicating whether they should be

interpreted as facts, requirements, intentions, etc. Some of the model elements represent
entities that will eventually exist in the real world (e.g. devices and software). Some others
are abstractions that rather describe what will happen (occur) during system operation
(function, event). Some model elements are statements about properties (e.g. accuracy) and
relationships (location of a device) between entities. In model checking the focus is on
functional requirements but in the wider context of systems engineering all kinds of
statements should be considered. Below we discuss informally a few obvious ingredients of
our natural language templates.

2.1 Propositions about states of affairs

We adopt here the term “state of affairs” from philosophy. A state of affairs more or less
corresponds to a “situation”. It is the way the actual world must be in order to make a given
proposition (statement) about the actual world true. Propositions can describe also attitudes

like beliefs and desires. For example, the statement “Socrates is wise” is said to express the
opinion that Socrates is wise and also to describe the actual state of affairs of Socrates being
wise (http://plato.stanford.edu/entries/states-of-affairs/). The communicative role of a

statement just above indicates the correct interpretation. Moreover, a state of affairs is a
possible situation in the world. So, a situation can have an associated probability. A
proposition about that situation can be true or false or perhaps have a confidence level
between 0 and 1.

We are speaking about dynamic systems where situations change over time. Accordingly,
state of affairs refers to a past, current or future situation out there in the real world. Of
course, we need also logical combinations of these basic propositions, as well as the events
of propositions turning from false to true and vice versa. So, a state of affairs can consist of
a set of consecutive and simultaneous (past, current and future) situations and events
(Figure 1). Given that our systems are complex, it makes sense to think of complex states of
affairs consisting of simpler ones, both in terms of time and decomposition of the world to
subsystems. For example, “system A is in state X and then in state Y” or “system A is in state
X and system B in state Y”.

http://plato.stanford.edu/entries/states-of-affairs/

RESEARCH REPORT VTT-R-01067-14

6 (64)

Figure 1. Evolution of states of affairs.

In engineering design, a statement is a (simple or complex) proposition about a future state
of affairs. In our case, the communicative role is usually “requirement” but, as claimed in the

SAREMAN conceptual model, it should not be embedded into the proposition but presented
as a separate attribute. In other words, we are looking for templates that are applicable not
only to requirements but also to facts, assumptions, etc. Moreover, we are speaking about
statements that can be expressed textually in a controlled natural language as one sentence.
For more complex chains and combinations of states of affairs we would need longer stories
or graphical presentations like sequence diagrams. Such techniques are out of our scope at
this point.

2.2 Elements of the world

So, we are trying to collect templates for propositions about a future world (when speaking
about design) or an existing one (when testing is considered). To do this, it is necessary to
first imagine what kind of entities and phenomena we might encounter in that world. These
entities are discussed in the SAREMAN conceptual model (SAREMAN 2013a). Figure 2
illustrates the main concepts. A nuclear power plant is a physical, real-world system that can
be hierarchically decomposed into parts here called NPP elements. The human organisation,
various technical systems and the operational environment are the main components.
People and devices are located in spaces (e.g. rooms) that are bounded by structures like

walls. Technical systems (process systems and I&C systems) consist of devices, software
and structural elements (e.g. cabinets). NPP elements can be in various operational states
(e.g. idle or running) and, depending on their state, carry out certain functions. For example,

a control system can have the capability of controlling the feed water flow to the reactor. As
suggested in (SAREMAN 2013a), we reserve the term system function for model elements
used to by designer to specify the intended capabilities of the system. Purpose in turn links

the system and its function to the activity it is used for, either as intended by the designer or
actually by the user in a specific situation.

The functions provided by NPP elements are combined to carry out intended activities, such
as energy production. Activities can be decomposed into subactivities, concrete tasks (e.g.
plant shutdown) and finally to atomic actions. When actually carried out, activities are
allocated to suitable NPP elements. NPP elements perform actions on some other NPP
elements by using operations (actions) provided by their functions. For example, to start
controlling the feed water flow the operator turns the flow controller into the auto mode. Note
that atomic actions can be considered as a subtype of event. Physical system elements and

their functions represent a static view to the system but are, in principle, capable of
generating all possible behaviours of the system, i.e. occurrences that might be observed in

the real world.

RESEARCH REPORT VTT-R-01067-14

7 (64)

Figure 2. Main entities in a power plant model.

All entities can have a (possibly large) set of properties of various types. Some of them are
fixed (e.g. size), some configurable (tuning parameters of a PID controller) and variable
(reactor pressure). Moreover, entities are related to each other in many ways. Also these
relationships can have properties.

During design time, the real NPP elements may not yet have been specified. For example,
we know that there will be an I&C system that has a function, but have no idea of the
subsystem or piece of software that will implement that function. So, when speaking about
the system we must make statements about abstract functions that exist in the system model
but never in the real world. It should be also remembered that the design organisation can be
considered as a system of its own. Therefore, states of affairs and propositions can refer to
situations in the development project of a technical system.

With these concepts we can now return to propositions about possible states of affairs and
try to outline a classification of the types of propositions needed to describe a nuclear power
plant and its I&C systems. Here are some examples:

 NPP element exists (as part of a larger entity)

 NPP element has a function

 property of an entity (or all entities in a set) has a value

 property value of an entity is higher than the property of another entity

 NPP element is in an operational state

 NPP element is located in a space

 NPP element performs an action

 NPP element performs and activity or participates in an activity

2.3 Artefact functions and actions of goal-oriented agents

An important group of requirements, i.e. functional requirements, describe, in writing or

graphical means, the behaviour of a system, for example as its reactions to external stimuli
or its ability to perform certain activities. We claim that a consistent taxonomy of activities,

RESEARCH REPORT VTT-R-01067-14

8 (64)

actions and functions would guide designers in writing meaningful and unambiguous
requirement statements. Moreover, such a taxonomy would be needed as a basis of
computer tools.

In his extensive review, Crilly (2010) states that despite the importance of function to design
and use, there is no stable or generally accepted definition of function. Outside the design
literature, many definitions and classifications can be found, e.g., in philosophy, sociology
and art theory. In engineering design, the focus has been on transforming inputs to outputs.

However, this leaves out many non‐transformative functions, such as guiding and supporting.
It should be also noted that some functions are non-technical, i.e. serving aesthetic and
social purposes. Finally, a distinction can be made between system functions as intended by
the designer and those experienced by the user. In essence, an artefact is assigned a
function if it is taken to have the capacity to play some role for an agent using the artefact in
some context. (Crilly 2010)

It is clear that a complete taxonomy of activities, actions and functions is beyond our
resources and our focus on control systems and model checking. However, because of our
more general interest in controlled natural languages and systems engineering we
summarise below a few sources that might be used as a starting point.

We observe that the real world consists of various man-made artefacts. They have a
purpose, either defined by the designer in advance (intended) or by the user in a specific

situation (actual). Some artefacts are passive (e.g. structures) and some reactive (protection
system) while some others can be considered as proactive and goal-oriented agents (people
and some computer-based systems). In addition to designed behaviours, natural phenomena
need to be considered in system models.

A theoretical framework of acting based on the work of von Wright is discussed by Morten
Lind (2005). Goal-oriented agents can oppose or promote certain states of affairs, either by
active interventions or by doing nothing and letting things happen. This leads to a set of
elementary types of action as illustrated in Figure 3.

Figure 3. Interpretations of the elementary types of acting (Lind 2005).

Interestingly, similar types of functions can be found in I&C systems. For example, the
purpose of regulatory control functions (PID loops) is typically to maintain a stable state while
interlocks prevent unwanted situations from occurring. Protection functions in turn actively
produce a safe state thereby destroying the hazardous situation. Omissions remind us of
“negative requirements”. I&C systems shall not perform spurious activations or interfere with
the functions of other systems or the user.

RESEARCH REPORT VTT-R-01067-14

9 (64)

So, the elementary types above might be useful as a top-level classification. Additional and
more practical taxonomies can be found from publications and standards in the engineering
domain. While criticised for ontological inconsistencies and focus on flows only (Garbacz
2006), the classifications by Hirtz et al. (2002) represent a synthesis of a long research
tradition in engineering design. Verbs like connect, convert, support, signal and control
magnitude are examples from the function taxonomy. Similar terms can be found in IEC
81346-2 (2009) concerning structuring principles and reference designations of industrial
systems (Figure 4). These kinds of guidelines and standards could be used as basis of a
controlled vocabulary and taxonomy of verbs needed for describing I&C functions.

Figure 4. Classes of activities according to intended purpose or task (IEC 81346-2 2009)

2.4 Temporal and set relationships

Thinking about dynamic systems also leads us to complex states of affairs consisting of
several sequential and concurrent situations. Therefore, we need to classify relationships
between temporal intervals and actions/events. Events can be understood as points of time
or very small intervals that start or end a state of affairs, i.e. when the corresponding
proposition is made or otherwise becomes true or false. Here is one list suggested by Allen
(1984):

RESEARCH REPORT VTT-R-01067-14

10 (64)

 DURING (t1, t2): Time interval t1 is fully contained within t2;

 STARTS(t1, t2): Time interval t1 shares the same beginning as t2, but ends before t2
ends;

 FINISHES(t1, t2): Time interval t1 shares the same end as t2, but begins after t2 begins:

 BEFORE(t1, t2): Time interval t1 is before interval t2, and they do not overlap in any way;

 OVERLAP(t1, t2): Interval t1 starts before t2, and they overlap;

 MEETS(t1, t2): Interval t1 is before interval t2, but there is no interval between them, i.e.,
t1 ends where t2 starts;

 EQUAL(t1, t2): t1 and t2 are the same interval.

Including the time dimension to states of affairs leads to two types of complex propositions:
1) states of affairs and events occur in a defined order determined by the temporal
relationships above; and 2) specific propositions hold during a temporal interval. Note that
many kinds of natural language expressions can be constructed by using everyday terms
and changing the order of intervals. Note also that the relationships do not necessarily imply
causal dependencies between the intervals. However, it would be meaningless to speak
about random coincidences in the context of design and testing. Letting E be an event and P
and Q propositions corresponding to two time periods might leads us to the following
examples:

 DURING(E, P): E occurs while P holds. (Requirement or design intent, P enables E)

 STARTS(E, P): When E happens, P becomes immediately true. (Expected behaviour of a
system)

 FINISHES(E, P): When E happens, P becomes immediately false. (Expected behaviour
of a system)

 BEFORE(E, P): When E happens, P becomes true after x time units.

 BEFORE(P, E): E occurs after P has turned to false.

 BEFORE(P, Q) OR BEFORE(Q, P): P and Q shall not be true simultaneously (Expected
behaviour of a system)

 OVERLAP(P, Q): Q becomes true before P turns to false. (Expected behaviour of a
system)

 MEETS(P, Q): When P turns to false, Q becomes immediately true. (Expected behaviour
of a system)

 EQUAL(P, Q): P and Q shall be simultaneously true. (Requirement)

We can also think of time periods as sets of time points. So, some of the temporal
relationships correspond to relationships between sets, for example:

 EQUAL(A, B): A and B have exactly the same elements (corresponds EQUAL time
periods)

 SUBSET(A, B): Every element of A is in B (DURING)

RESEARCH REPORT VTT-R-01067-14

11 (64)

 PROPER SUBSET(A, B): Every element of A is in B except for at least one (STARTS,
FINISHES)

 DISJOINT(A, B): A and B have no elements in common (no OVERLAP)

 COMPLETE(A1 … An, B): The union of A1 … An is EQUAL to B.

When expressed in a suitable way, these relationships can be useful in natural language
statements. For example, a requirement might hold for every field instrument of a given type.
Or, the measurement ranges of two instruments cover the whole range of a process variable,
including also abnormal and accident conditions.

2.5 On the English grammar

As discussed in section 2.1, natural language sentences are statements about simple or
complex states of affairs. So, the structure of a natural language, in this case English, should
be considered as one starting point. In written English sentences consist of one (simple
sentence) or more (compound sentence) clauses. The clauses in a compound sentence are
joined by co-ordinating conjunctions (and, but, so). A complex sentence has a main clause
and one or more subordinate clauses. Clauses are made of phrases, i.e. groups of one or

more grammatically linked words that do not have subject and predicate. Clauses in English
have at least two parts: a noun phrase and a verb phrase. Types of phrases include
(http://grammar.about.com, http://learnenglish.britishcouncil.org/english-grammar/clause-
phrase-and-sentence):

 Adjective phrase modifies a noun. It may appear before the noun (sweet coconut) or after
a linking verb (shampoo tastes funny). Adjectives (big) can be comparative (bigger) and
superlative adjectives, intensifiers (very) and mitigators (fairly), and noun modifiers (metal
box). A lot of adjectives are made from verbs by adding -ing or –ed (amusing).

 Adverb phrase modifies a verb, an adjective, or another adverb. Adverbials are used to
say how, where, when or how certainly something is done. There are several types
adverbs and adverbial phrases: contrast, reason, place (near the wall, everywhere),
purpose, result, time (frequently), condition, manner (slowly).

 Noun phrase usually functions as a subject or object in a clause. The simplest noun
phrase consists of a single noun possibly accompanied by modifiers or determiners (such
as the, a, her) or a pronoun. Sometimes the noun phrase begins with a quantifier (all,
some).

 Prepositional phrase is a combination of a preposition (above, before, within) and a noun
phrase. Prepositions convey the various relationships: agency (by); comparison (like, as);
direction (to, toward, through); place (at, by, on); possession (of); purpose (for); source
(from, out of); and time (at, before, on)

 Verb phrase includes a main verb and its auxiliaries (such as have, do, or will) that
determine the mood (attitude), modality (necessity, uncertainty, ability, or permission, e.g.
can, could, may, might, must, ought, shall, should), tense (past, present, future), or
aspect (completion, duration, or repetition) of another verb. The structure of the verb
clause depends on the type of the verb (transitive, intransitive, etc.)

Even if a natural language is rich in forms and nuances, it can also express the fundamental
logical aspects that we need. We should just carefully select a subset of words and sentence
structures that are correctly understood by most readers. Remembering the
recommendations for well-formed requirements (SAREMAN 2013b), it is clear that all
common words and phrases, e.g. vague words and ambiguous pronoun references, can
NOT be used in our templates.

http://grammar.about.com/
http://learnenglish.britishcouncil.org/english-grammar/clause-phrase-and-sentence
http://learnenglish.britishcouncil.org/english-grammar/clause-phrase-and-sentence

RESEARCH REPORT VTT-R-01067-14

12 (64)

2.6 Towards the anatomy of a natural language proposition

To summarise the philosophical considerations above, we try to identify a small set of
features that could be used to structure practical statements and to define potential
templates.

General guidelines for well-formed requirements can be found in standards and textbooks. A
summary is given in the SAREMAN RE guide (SAREMAN 2013b). For example, passive
voice, weak words and error-prone sentence structures should be avoided since they lead to
difficulties in design verification and human communication. The decision depends, however,
on the domain and expected users. Sometimes we might want to express soft goals in
addition to strict requirements. In particular, the exact interpretation of repeatedly used
keywords, such as when, while, then, if, after, all, etc., needs to be defined. The table below
gives some suggestions.

Table 1. Interpretation of repeatedly used keywords.

Keyword Recommended usage

While Period of time, e.g. “While the plant is in the shut-down state, …”, or “While

the field operator is working inside the containment, …..”.

When Event or action, e.g. “When the operator pushes a button, …”.

Whenever Same as “when” with the idea that there may be many occurrences or the
event?

Where Conditional set of entities irrespective of time, e.g. “Where a motor-operated
valve is installed inside the containment, it shall ….” (see Mavin et al. 2009,
2010).

If a) Statement of a logical implication (causality) irrespective of time, e.g. “If

the pressure is higher than x, the vessel may burst”.

b) Decision making in the course of an action, e.g. “While performing a
periodic check, if the filter is dirty, the technician shall replace it”.

Then a) Consequence of a logical implication, e.g. “If ….., then ….”.

b) Temporal order of events and states, e.g. “….and then …”.

As suggested in ISO 29148 (2011), a statement can be divided into three main parts:
condition, main body and constraint. The main body contains the key proposition, simple or
complex. The condition (scope) says under what circumstances the main body holds, and
the constraint refines the body, for example in terms of performance and time. Table 2 below
gives some examples.

Table 2. Requirement statements divided into condition, main body, and constraint.

Condition Main body Constraint Comments

- System has two
redundant temperature
sensors.

- Existence of the sensors.

- The maximum operating
pressure of the reactor
vessel is 0.5 MPa.

- Property of a device.

- The process controller is
located in the cross
connection room.

 Relationship in system
structure

RESEARCH REPORT VTT-R-01067-14

13 (64)

Condition Main body Constraint Comments

- The two redundant
temperature sensors are
powered by different
power supplies.

- Complex relationship.

While system is
in AUTO mode,

when temperature rises
above 100 C, system
opens the relief valve

within 10 seconds to
prevent over pressure.

State and event triggered
behaviour with a time limit.
System as the actor, open
as type of acting.
Rationale included.

Where a sensor
is used for a
safety-relate
function,

the sensor must have a
redundant power supply.

Table 3 below lists types of clauses with some examples. The terms in angle brackets, e.g.
<entity>, depend on the application domain and can’t be combined in arbitrary ways. For
example, it is obviously nonsense to say that “a <function> is located in a <room>”. In
addition to domain entities and properties, we need many common words like verbs and
adverbs in the recommended sentence structures. They should provide some freedom to the
author but still convey a unique meaning.

Complete sentences can be built by combining standard clauses with logical (and, or…) and
temporal (after, then…) conjunctions. In the general case, the number of terms and sentence
structures needed in systems engineering is, of course, enormous. Therefore, we will focus
on a very limited domain in chapter 4.

Table 3. Examples of requirement clause structures.

Clause type Examples of sentence structures

System structure (usually static)

Composition <entity> has <entity | entity list> [as its part]

<entity> is part of <entity>

Arrangement <entity> is located in <entity>

<entity> is located near to <entity>

distance between <entity> and <entity> is [<comparison>] <value>

System state

Property <property> of <entity> is <value | range> <unit of measurement>

<property> of <entity> is [<comparison>] <value> <unit of
measurement>

<property> of <entity> is [<comparison>] <property> of <entity>

Variable value <variable> is <value | range>

<variable> is <comparison> <value>

<variable> is <comparison> <variable>

Operational
state

<entity> is in <operational state> state

Operating mode <entity> is in <operating mode> mode

Event (duration = 0)

RESEARCH REPORT VTT-R-01067-14

14 (64)

Clause type Examples of sentence structures

Composition
change

<entity> is added to <entity>

<entity> is removed <entity>

Arrangement
change

<entity> enters into <entity>

<entity> comes near to <entity>

distance between <entity> and <entity> becomes [<comparison>]
<value>

<work item> is received

Property change <property> of <entity> becomes <comparison> <value>

<property> of <entity> becomes <comparison> <property> of <entity>

Variable value
change

<variable> becomes <comparison> <value>

<variable> becomes <comparison> <variable>

Operational
state change

<entity> enters <operational state> state

Operating mode
change

<entity> enters <operating mode> mode

Action <entity> performs <action>

<entity> starts <activity>

<entity> <verb> <entity>

<entity> sets <property> of <entity>

<entity> sets <variable> to a value that is <comparison> <value>

<entity> sets <entity> to <operational state> state

Activity (duration > 0)

Maintaining <entity> keeps <property> of <entity> in the range <range>

Producing <entity> brings <entity> into <operational state> state by …

<entity> makes <entity> perform <action>

Preventing <entity> prevents the value of <variable> from becoming <comparison>
<value>

<entity> prevents <entity> from performing <action>

Allowing (i.e. not
preventing)

<entity> allows the <property> of <entity> to become <comparison>
<value>

<entity> allows <entity> to <verb> <entity>

<entity> allows the <property> of <entity> remain in <value>

Supporting <entity> helps <entity> to <verb> <entity>

Performing <entity> performs <activity>

Timing & performance

While while <system state | activity>

Within <entity> performs <action> within <duration>

Period <entity> performs <activity> for a period of <duration>

Before <entity> enters <operational state> state before <event>

<entity> enters <operational state> state within <duration>

After <entity> performs <action> after <event | duration>

RESEARCH REPORT VTT-R-01067-14

15 (64)

Clause type Examples of sentence structures

Until <entity> performs <activity> until <event | state>

Always <property> of <entity> is always <value>

Never <entity> never performs <action>

When when <event> occurs, <entity> performs <action>

Order/Then when <event_1> occurs and then <event_2> occurs, <entity> performs
<action>

Performance <entity> performs <action> with the rate of <value> per <time unit>

<entity> never performs <action> with the accuracy of <value> <unit of
measurement>

Sets

Where where <property> of <entity type> is [<comparison>] <value>, …

where <entity type> has <entity type> as its part, …

Misc.

Possibility it is [not] possible that ….

Probability <event> occurs with probability of <value>

Decision if <property> of <entity type> is [<comparison>] <value>, …

3. Related research

The idea of using predefined templates for requirements authoring is not new but can be
found in textbooks, standards and many design tools, in particular in the areas of systems
engineering and software development. Consequently, there are lessons to be learned for
control system design and model checking. This chapter describes some of the most
relevant approaches.

3.1 Controlled natural languages

Natural Language Processing (NLP) is a field of computer science, artificial intelligence and

linguistics concerned with the interactions between computers and human languages in the
form of text or speech. NLP includes many areas from semantic analysis and machine
translation to word stemming. Examples of tasks needed in NLP are Part-Of-Speech (POS)
tagging, stemming and parsing. POS tagging determines the linguistic category of the words,
e.g. nouns and verbs. Stemming finds the root (stem) of a word for inflected forms, e.g., the
singular for a plural word. Parsing performs the grammatical analysis of a sentence resulting
in a syntax tree. NLP relies on formal models of language at the levels of phonology and
phonetics, morphology, syntax, semantics and discourse. These formal models include, for
example, state machines, rule systems, logic and probabilistic models. There are many
natural language processing toolkits available for NLP. Also the technical committee TC 37
within the International Organization for Standardization (ISO) prepares standards
concerning methodology and principles for terminology and language resources. (Several
sources, e.g. Farfeleder et al. 2011, http://www.cs.colorado.edu/~martin/SLP/Updates/1.pdf,
Wikipedia)

In this report, we are most interested in a specific area of NLP, namely Controlled Natural
Languages (CNL). As defined by Kuhn (2013), a controlled natural language is a constructed

(written) language that is based on a natural language, being more restrictive concerning
lexicon, syntax and/or semantics while preserving most of its natural properties. Especially

http://www.cs.colorado.edu/~martin/SLP/Updates/1.pdf

RESEARCH REPORT VTT-R-01067-14

16 (64)

during the last four decades, a wide variety of such languages have been designed, most of
them based on English. Usually, controlled natural languages fall into two major types (both
relevant to us): those that improve readability for human readers, and those that enable
automatic semantic analysis. The first type is used in the industry to increase the quality of
technical documentation. The second type has a formal logical basis. (Kuhn 2013, Fuchs
2008, https://sites.google.com/site/controllednaturallanguage/)

Kuhn (2013) has reviewed a large number of controlled natural languages, and we pick some
examples from his report. ASD-STE and SLANG are examples of industrial applications of
CNL. The ASD Simplified Technical English has been developed for the aerospace industry
to make texts easier to understand, especially for non-native speakers. The Standard
Language (SLANG) is a language developed at Ford Motor Company for writing instructions

for component and vehicle assembly. Based on these instructions, the system can
automatically generate a list of required elements and calculate labour times.

A third example of industrial CNL is the Gellish English designed to be a common data

language for industry. Basically, its underlying data model consists of simple subject–
predicate–object triplets in the form of fixed phrases such as “A is a specialization of B”.
Gellish builds upon a fixed upper ontology with a large number of predefined concepts and
relation types. Texts in Gellish can be transformed into a formal tabular representation. The
semantics of the language is not fully formalized. (Kuhn 2013)

The Gellish data model and Gellish English (van Renssen 2005, http://www.gellish.net) are
based on various international standards, such as ISO 10303 (STEP), ISO 15926, as well as
terminology sources like ISO 16354 and IEC 60050. Its dictionary contains several domain
taxonomies, for example an upper ontology of concepts and relation types, units of measure,
activities, events and functions, as well as physical objects, such as process units, buildings,
electrical and instrumentation equipment, materials of constructions and organizations. The
triple structures can be extended with auxiliary facts, e.g. with a textual requirement or an
indication of the interpretation of the expression as a statement, a question, an answer, a
denial, etc1. In fact, the Gellish data model can also be used to express requirements in an
unambiguous and computer interpretable way (Figure 5).

As a further example, Attempto Controlled English (ACE) is a CNL with an automatic and
unambiguous translation into first-order logic. The most notable features of ACE include
complex noun phrases, plurals, anaphoric references, subordinated clauses, modality, and
questions. ACE will be described in more detail in section 3.3.5.

Finally, the Common Logic Controlled English (CLCE) is a language that can be translated
into first-order logic. It is related to the ISO standard 24707 for Common Logic that is a
semantic foundation for an open-ended family of languages, such as predicate calculus,
conceptual graphs, and CLCE. Some of the most important syntax restrictions are: no plural
nouns, only present tense, and variables instead of pronouns. The wish list of Sowa (2011)
includes a way to write statements about propositions, e.g. to express uncertainty and
various types of modality (necessity and possibility; knowledge and belief; obligation and
permission.

1
 Derived from the Speech Act theory that has also influenced the SAREMAN conceptual model.

https://sites.google.com/site/controllednaturallanguage/
http://www.gellish.net/

RESEARCH REPORT VTT-R-01067-14

17 (64)

Figure 5. Model of the requirement “C.3.3.3 Rotor systems that have low inertia and are
subject to accidental unloading should be equipped with a quick-acting brake to prevent
damage from overspeed.” (van Renssen, From multiple standards documents to a single

requirements model, slides)

3.2 Requirement templates

We use often the term “template”. So, it must be defined in some way. Basically a template is

understood here as a standardized and pre-formatted partial solution that, when combined
with case-specific data, can be used to produce new artefacts, for example documents or
source code in the Java language. Usually the application-specific data is just added to the
variation points, placeholders, of the template. A template processor is a more complex

software tool designed to combine one or more templates with the data (e.g. parameters) to
produce new artefacts. It typically includes features of programming languages, such as
variables, functions, conditional evaluation and loops. (see en.wikipedia.org/wiki/-
Template_processor)

Templates are one form of reusable design knowledge. For example, software components
and design patterns have the same purpose but a different meaning. Components, such as

function blocks (types) in a PLC application programming environment, can be instantiated,
parameterised and “wired” together to form a control application. Patterns are usually applied
and combined in more creative ways. Patterns were first applied in architecture, but became
popular also in software engineering, when the "Gang of Four" published their book on
reusable design patterns (Gamma et al. 1994). A pattern describes a recurring problem in a
design context and presents a well-proven solution for the problem (Buschmann, Henney &
Schmidt 2007). A pattern also tells when it is applicable and describes the main issues to be
considered when it is used. An organised collection of patterns with an associated
development process is called a pattern language. Note that in model checking literature

(section 3.5) the term “pattern” is also used for reusable property specifications. Design
pattern is, however, a different concept. To avoid confusion, we try here to always speak
about templates rather than patterns.

RESEARCH REPORT VTT-R-01067-14

18 (64)

Numerous templates for natural language requirements have been proposed over the years
(Arora et al. 2013a). Below we describe some of them.

3.2.1 Requirement Boilerplates

The term related to template, “boilerplate” was originally used to identify the builder of a
steam boiler. Today it often refers to text that can be reused without being changed much
from the original. Many computer programmers often use the term boilerplate code. In
contractual law, the term "boilerplate language" describes the parts of a contract that are
considered standard. (from http://en.wikipedia.org/wiki/Boilerplate)

Table 4. Examples of Boilerplate clauses (www.requirementsengineering.info).

Hull, Jackson and Dick (2002) first used the term boilerplate to refer to a textual requirement
template. A boilerplate like “<system>shall<action>” consists of a sequence of attributes and
fixed syntax elements. During instantiation, textual values are assigned to the attributes of
the boilerplates. The basic building block of a boilerplate is a boilerplate clause classified,
e.g., as capability, function, timeliness, etc. In addition, each clause may have a goal type
indicating the general objective being articulated, e.g. minimise something, maximise
something, exceed some value, etc. These keywords can help considerably in processing
and organising the requirements. Complex requirements can be expressed in multiple ways
by placing the clauses in different orders by means of concatenation. This allows keeping the
number of required boilerplates low while at the same time having a high flexibility.
(www.requirementsengineering.info, Farfeleder et al. 2011)

http://en.wikipedia.org/wiki/Boilerplate
http://www.requirementsengineering.info/

RESEARCH REPORT VTT-R-01067-14

19 (64)

The boilerplate repository is available at www.requirementsengineering.info/. Some
examples are given in Table 4. For DOORS users, there is a set of scripts that provide
support for boilerplates, see section 3.3.1.

3.2.2 CESAR Requirement Specification Languages

CESAR stands for “Cost-efficient methods and processes for safety-relevant embedded
systems” and was a European funded project from ARTEMIS joint undertaking
(http://www.cesarproject.eu/). The project started in March 2009 and was finished in June
2012. CESAR has extended and applied the boilerplate idea above to a number of safety-
critical domains, with the intention to formalise the approach using domain ontologies (Dick &
Llorens 2012).

The purpose of the CESAR Requirements Specification Languages (RSL) is to capture and
formalise requirements throughout the development process. CESAR provides multiple
languages instead of a single one (Figure 6). Boilerplate and the pattern-based RSL are
textual semi-formal languages, providing templates to engineers that constrain the writing of
requirements. (CESAR 2010)

Guided Natural language RSL retains the benefit of free text since it does not introduce
additional constraints on requirement statements or require additional training. It can be
achieved with a dictionary. Domain-specific and requirements-related terms can be
highlighted and the elicitation process enhanced with a content assistant that provides the
analyst with related and specific choices of domain terms from a dictionary. (CESAR 2010)

Boilerplates are semi-complete requirements that are parameterized to suit a particular
context in a way similar to (Hull et al. 2002). Boilerplates can be linked with domain
ontologies that contain commonly agreed domain or company-specific terms. The second
boilerplate enforcement mechanism is a set of predefined structures. The pattern-based RSL
uses an even stronger formalism with fixed semantics. As a result, patterns constrain users
in a stronger way in writing requirements, but allow numerous automatic analysis techniques
to be used. (CESAR 2010)

Figure 6. Overview of CESAR Requirements Specification Languages (CESAR 2010).

CESAR uses about 35 boilerplates for expressing user capabilities, functional system
requirements and constraints. For example, a combination of BP2 and BP35 leads to

The <system> shall be able to <action> <entity> at least <number>

times per <unit>

http://www.requirementsengineering.info/
http://www.cesarproject.eu/

RESEARCH REPORT VTT-R-01067-14

20 (64)

The original set of boilerplates by Jeremy Dick et al. has been slightly changed.
Enhancements allow several entities to be grouped and temporal relationships to be
expressed. Interestingly, a temporal state can be achieved, maintained, ceased, avoided,
minimized, maximized, increased, decreased and improved. Boilerplates are provided also
for optional behaviour (the system may…), goals (in order to…) and negative requirements
(example in Figure 7). (CESAR 2010, 2011)

Figure 7. A boilerplate expressing a negative functional requirement (CESAR 2011).

The CESAR boilerplates (CESAR 2011) are divided into three types; main, prefix and suffix
boilerplates. Main boilerplates can stand alone, whereas prefix and suffix boilerplates must
be prepended or appended, respectively. Boilerplates can be classified according to the
categories Capability, Capacity (Maximise, Exceed), Rapidity (Minimise, do not exceed),
Mode (while, if, for ...), Sustainability, Timelines, Operational Constraints and Exception. This
helps ordering the requirements. (CESAR 2011, Johannessen 2012)

In pattern-based RSL, patterns consist of static text elements and attributes being filled in by
the requirements engineer. Each pattern has a well-defined semantic in order to ensure a
consistent interpretation. Patterns allow the writing of natural sounding requirements while
being expressive enough to formalize complex requirements. CESAR defines 25 patterns
organized into categories concerning functions, probability, operating mode, safety (Figure
8), timing and architecture. A functional pattern describing the causality between two events
does look like this:

[whenever Event1 from subject1 is received] subject2 [does not]

emit[s] Event2 [within Interval]

Phrases in square brackets are considered optional, and italic printed elements represent
attributes that have to be filled in. (CESAR 2010, 2011)

Figure 8. Description of a safety pattern (CESAR 2010).

RESEARCH REPORT VTT-R-01067-14

21 (64)

Figure 9. Example of a contract assertion pattern (SPEEDS 2008)

Moreover, CESAR has considered the contract-based approach in requirements
engineering, in particular the ideas developed in the SPEEDS project for embedded system
design (http://www.speeds.eu.com/). Different from the legal binding, the term “contract”
refers in software engineer's literature to the set of specifications that describe what a system
should guarantee under some assumptions (CESAR 2010). In other words, a contract-based
requirement has two parts: 1) an assumption about the operating environment not
controllable by the system and 2) a promise saying what the system will realize given that the
assumption is satisfied (CESAR 2011). Also SPEEDS (2008) defines a set of most frequent
patterns that are used in contracts specification. Figure 9 gives an example. They might be
used as requirement templates also.

In addition to the issues described above, the CESAR (2011) project has studied several
topics relevant to the SAREMAN project. In particular, it has considered generic failure
modes, preliminary hazard analysis on the basis of system requirements, model-based
requirements modelling, semi-automatic formalisation of requirements and use of
behavioural patterns (Figure 10) for model checking (see section 3.5). Moreover, CESAR
has developed tools for requirements modelling and analysis. One of them, DODT, is
introduced below in section 3.3.4.

http://www.speeds.eu.com/

RESEARCH REPORT VTT-R-01067-14

22 (64)

Figure 10. Classification of behavioural patterns (CESAR 2011).

3.2.3 Easy Approach to Requirements Syntax (EARS)

EARS was developed by Mavin et al. (2009, 2010) at Rolls-Royce Control Systems. In
EARS, the requirements are based on five sentence templates: ubiquitous requirements,
event-driven requirements, state-driven requirements, unwanted behaviour requirements and
optional requirements (Figure 11). Template types are identified by keywords ‘when’, ‘while’,
‘if-then’ and ‘where’. EARS does not impose a strict structure to the elements that are filled
in. Basic templates can be combined to create compound statements.

EARS has been successfully applied to a variety of complex, safety-critical systems, e.g.
aero-engine control systems. The method has been developed primarily for stakeholder
requirements, as opposed to technical system requirements. The hypothesis of EARS is that
a small set of simple requirement structures is an efficient and practical way to enhance the
writing of high-level stakeholder requirements.

RESEARCH REPORT VTT-R-01067-14

23 (64)

Figure 11. Sentence types of EARS (Easy Approach to Requirements Syntax)(SAREMAN
2013b).

3.3 Tools for requirements definition and analysis

This section describes some examples of commercial and experimental software tools.

3.3.1 DOORS

Rational DOORS, a product of IBM, is one of the most well recognised requirements
management tools available (Beatty et al. 2011). Like other common requirement authoring
tools, DOORS (Figure 12) basically emulates a word processor but offers additional features
(OMG 2013). In a 2011 evaluation of requirement management tools (Beatty et al. 2011), the
consulting company Seilevel noted that DOORS is “an excellent all-around tool”, and ideal
for large system projects that need to handle a large volume of data. Traceability, queries,
reporting, and access control features provide flexibility for many types of work. The
limitations include a somewhat out-of-date user interface, with some functionality buried deep
within menus. Also, emphasis is on requirements traceability and versioning rather than
requirement modelling, making DOORS a tool more suitable for software projects than

systems engineering.

For exchanging and processing requirements, DOORS provides several mechanisms, for
example:

 The Rational DOORS eXtension Language (DXL) is a C or C++ like scripting language
that allows users to create plugins that control and extend the functions of DOORS.

 Rhapsody Gateway add-on can be used to export requirements from DOORS (as well as
various other sources) to Rhapsody as SysML artifacts, or upload Rhapsody model
elements to DOORS.

RESEARCH REPORT VTT-R-01067-14

24 (64)

Figure 12. DOORS documents have a tree-like data structure (Image source: www.ibm.com).

As a data format for exchanging requirements, DOORS supports the Requirements
Interchange Format (RIF), an OMG standard intended to facilitate the exchange of
requirement information between various tools and companies. RIF is an XML extension
supporting, e.g., hierarchical document structure, unique identifiers, XHTML based text
formatting, and access restrictions (OMG 2013). The requirement attributes can also refer to
external objects with binary content (e.g., image files).

Basically DOORS requirements, as well as the requirement clauses in RIF documents, are
free text. However, there are DXL scripts available at www.requirementsengineering.info that
support for the boilerplates by Hull, Jackson and Dick (2002) introduced in section 3.2.1.
These scripts, dating back to 2002, should allow requirements to be constructed from
boilerplates (Figure 13). This tool shows the complete requirement text with attributes
highlighted in blue. The user can edit the attributes by double-clicking them and then either
entering a new value or selecting a value from those used in other requirements.

RESEARCH REPORT VTT-R-01067-14

25 (64)

Figure 13. Requirement Boilerplates in DOORS (adapted from slides by Jeremy Dick,
www.requirementsengineering.info)

3.3.2 Requirements Authoring Tool (RAT)

The Reuse Company (http://www.reusecompany.com/) is a European IT company with the
mission to promote information reuse by offering processes, methods, tools and services. Its
main product, the Requirements Quality Suite (RQS) consist of several tools, in particular:

 Requirement Authoring Tool (RAT2) to assist authors in creating or editing requirements.

 Requirements Quality Analyzer (RQA) to setup, check and manage the quality of a
requirements specification.

 knowledgeMANAGER to manage the knowledge around a requirements specification,
e.g. the ontology it is based on, the structure of requirements (boilerplates) and the
communication between authors and domain architects.

The Requirements Quality Analyzer (RQA) for DOORS enables managing the quality of
requirements specifications in projects using DOORS. It assesses the quality of a DOORS
repository by Natural Language Processing (NLP) techniques to extract quality metrics for
readability, ambiguity, incompleteness, domain terms and boilerplates matching with the
written text. The ontology defined with the knowledgeMANAGER stores the information
needed for requirements authoring and quality analysis (Figure 14). (Reuse 2013)

2
 Note that there has been also another tool development called RAT - Requirements Analysis Tool

(http://rat.fbk.eu/) originally developed in the PROSYD project funded by the European Commission.
Since then, an upgraded version named RATSY (Requirements Analysis Tool with Synthesis) has
been released (http://rat.fbk.eu/ratsy/).

http://www.reusecompany.com/
http://rat.fbk.eu/
http://rat.fbk.eu/ratsy/

RESEARCH REPORT VTT-R-01067-14

26 (64)

Figure 14. RQA ontology (Reuse 2013).

The Requirement Authoring Tool (RAT) uses a set of boilerplates but allows the user to type
free requirement text (Figure 15). The quality frame on the right side shows the quality of the
written requirement. Based on the dictionary and the quality assessment results the text box
shows spelling errors and terms that should be considered for re-authoring.

Figure 15. Typing free text in RAT (Reuse 2013).

While allowing the author to write free text, it is also possible to first select a specific
boilerplate (Figure 16). RAT shows its structure and an example of use. The author then
selects the right terms from the suggestions. RAT shows the feasible boilerplates matching
with the written text. Furthermore, users can suggest new boilerplates, or changes to the
existing ones.

RESEARCH REPORT VTT-R-01067-14

27 (64)

Figure 16. Editing requirements with boilerplates (RAT flyer).

RAT uses the same metrics as RQA but focuses on individual requirements and has been
designed as an authoring assistant. It provides quality feedback on the fly and detects
inconsistences, coupling requirements, ambiguous requirements, non-atomic requirements,
use of the wrong verb tense, mode or voice, and inconsistent use of measurement units.
RAT is connected to the Requirements Management tools, e.g. IBM Rational DOORS,
Microsoft Excel. (Reuse 2013)

RAT allows the user to start typing a requirement, and simultaneously determines which of a
palette of templates are applicable, guiding the user on permissible terminology. The
combination of these properties allows the requirements author to write requirements in an
assisted way, as a counterpart to the “fill the gap” approach to placeholders. The possibility
of not selecting a boilerplate before typing a requirement leads to the tool being considered
as an assistant, and users may feel their creativity being less constrained. At present, the
tool comes equipped with about 70 templates that can be combined in various ways. (from
Dick & Llorens 2012)

3.3.3 Context RDS

Context RDS from the developers at Rolls-Royce is an experimental toolkit that develops the
concept of statement templates towards the use of domain-specific ontologies. The tool
constrains how authors are able to instantiate the templates. This ensures, for instance, the
consistent use of terms and units, and prevents the creation of nonsense requirements (Dick
& Llorens 2012). The RDS template structure shown in Figure 17 is close to what we are
thinking about in SAREMAN. However, it is unclear whether Rolls-Royce intends to develop
this prototype further and how it would be related to the EARS guidelines described above in
section 3.2.3.

RESEARCH REPORT VTT-R-01067-14

28 (64)

Figure 17. Context RDS template structure (Dick & Llorens 2012).

3.3.4 CESAR DODT

DODT is a tool developed in the ARTEMIS project CESAR (http://www.cesarproject.eu/, see
section 3.2.2 above) to write and manage boilerplate requirements. The tool allows the
creation and customization of ontologies, boilerplate database and a requirements
specification. The requirements editor is shown in Figure 18. The tool monitors whether the
attributes are in accordance with the ontology, indicates errors and allows the requirements
engineer to create a concept. It is also possible to create or import ontologies. Moreover,
DODT enables the user to create and edit boilerplates. (Farfedler et al. 2011, Johannessen
2012)

One purpose of the domain concepts and generic failure modes in DODT is to support
hazards analysis at an early stage of design. For example, let’s consider the requirement:

R4: The control system shall control water level using feeding pump.

By identifying the participating elements (control system and feeding pump), DODT is able to
automatically generate a table of elements and their failure modes. The failure effects, their
causes and corrective actions need to be filled-in by a safety expert. KROSA is prototype tool
developed in CESAR for the safety analysis (FMEA). It is based on natural language
processing (NLP, see section 3.1), hazard analysis ontologies and Case Based Reasoning
(CBR) on a library of previous (similar) hazard analysis results. (CESAR 2011)

http://www.cesarproject.eu/

RESEARCH REPORT VTT-R-01067-14

29 (64)

Figure 18. DODT Requirements editor (Johannessen 2012).

An example of using CESAR tools in developing automotive systems is described by
Armengaud et al. (2012). In the requirements engineering phase requirements are formalized
from natural language text to semi-formal boilerplates using DODT und finally to formal
patterns using the PatternEditor (Figure 19). The requirements are stored in the RequisitePro
tool. The CESAR Meta-Model (CMM) API would allow integration to other RM tools like
DOORS without changes to the application. Mistakes can be detected early by running the
ontology based analyses or formal requirement checks. In system design and safety
analysis, the EAST-ADL2 architecture description language is used for modelling automotive
embedded systems with the Papyrus tool. Requirements are linked to system elements.
Hierarchically Performed Hazard Origin and Propagation Studies (HiP-HOPS) support safety
design by automating FTA and FMEA. Test cases are derived from requirements and
executed automatically. Traceability is maintained between requirements, system elements,
test cases and test results. This example illustrates nicely the fact that many kinds of tools
need to be integrated today in order to cover the whole design process. For instance,
requirements management tools don’t support modelling of system architecture. On the other
hand, current design tools have no support for requirements. Therefore, tailored solutions are
needed to exchange information between them.

RESEARCH REPORT VTT-R-01067-14

30 (64)

Figure 19. Proposed tool-chain for embedded automotive systems (Armengaud et al. 2012).

3.3.5 Attempto Controlled English (ACE)

Attempto is a research project of the University of Zurich with the objective to develop
Attempto Controlled English (ACE) and its tools (see http://attempto.ifi.uzh.ch/site/). The
intention is to help professionals who want to use formal methods but may not be familiar
with them. While originally designed for software specifications, ACE has in the recent years
been extended with languages and applications of the Semantic Web (Kaljurand & Kuhn
2013).

ACE allows users to express texts precisely with the terms of their application domain. The
ACE Editor helps users to construct correct ACE texts, i.e. one or more sentences that can
refer to each other. ACE is a Controlled Natural Language (CNL, see section 3.1) with a

precisely defined subset of English that can automatically and unambiguously be translated
into various forms of first-order logic. ACE uses a built-in lexicon with approximately 100 000
entries, but users can import additional, domain-specific lexicons. ACE’s grammar and
meaning are defined in a set of construction and interpretation rules. To avoid ambiguity,
certain constructs are not part of the language, and all others are interpreted
deterministically. Attempto uses Kamp's rules of discourse representation
(http://plato.stanford.edu/entries/discourse-representation-theory) to resolve the referents of
pronouns and definite noun phrases. This is different from, e.g., CLCE that uses temporary
names to avoid ambiguity (http://attempto.ifi.uzh.ch/site, Fuchs et al. 2008, Kaljurand & Kuhn
2013)

ACE is supported by a number of tools, for example a parser and reasoner. The former takes
an ACE text and optionally a user lexicon as input, and generates a large number of various
outputs, for example parse trees and formal “discourse representation structures” (DRS).
The Attempto Reasoner RACE offers three operating modes: consistency checking, proving
and query answering. Applications of ACE include software and hardware specifications,

http://plato.stanford.edu/entries/discourse-representation-theory
http://attempto.ifi.uzh.ch/site

RESEARCH REPORT VTT-R-01067-14

31 (64)

data bases, agent control, medical regulations and ontologies. Furthermore, ACE can serve
as a natural language interface to semantic web applications. (Fuchs et al. 2008)

As a recent extension, Kaljurand and Kuhn (2013) describe a version of the AceWiki, a CNL-
based semantic wiki engine that uses ACE as the content language and OWL as its
underlying semantic framework. The natural language grammar is implemented on top of the
Grammatical Framework (GF), a functional programming language for building multilingual
applications (see http://www.grammaticalframework.org/). GF facilitates semantic reasoning
and bidirectional automatic translation between ACE and a number of 15 European natural
languages. Additionally, the approach allows for automatic translation, e.g., into the Web
Ontology Language (OWL). The grammar describes mapping between abstract logical
expressions and the corresponding sentences in various languages. This mapping is
bidirectional — strings can be parsed to abstract trees, and trees linearized to strings (Figure
20).

Figure 20. Bidirectional mapping between a formal language like OWL or TPTP (related to
automated theorem proving) and a natural language like Finnish (Kaljurand & Kuhn 2013).

Attempto seems to be a good example of advanced natural language processing
environments indicating that NLP tools might be practical in engineering tasks. Some of its
features may even be too sophisticated for our purposes, i.e. for writing well-formed
requirements and other statements needed in control system design. In particular,
bidirectional transformations and support for several languages could be desired features of
our solutions too. For example in model checking, there might be several alternative output
formats corresponding to a natural language statement. In the other direction, there is an
obvious need to explain/verbalise complex formal presentations like temporal logic.

3.3.6 ReqUirements BoileRplate sanIty Checker (RUBRIC)

When boilerplates are used as guidance to the requirement author, there is a need to verify
that the requirements conform to the boilerplates. Doing this manually is laborious. A
prototype tool RUBRIK by Arora et al. (2013a, b) uses natural language processing and
common vocabularies in a way that doesn’t require exact matches to a boilerplate and terms
in a glossary.

Support for boilerplates already exists in commercial RE tools. Many of them assume that all
terms (a domain ontology) have been defined in a glossary. However, building a glossary
often concludes only after requirements have been written and may even remain incomplete
throughout the whole project. The typical approach does not work when the glossary terms
are unknown.

RUBRIC (ReqUirements BoileRplate sanIty Checker) provides automation for checking
conformance to boilerplates using a Natural Language Processing (NLP) technique called

Text Chunking. Noun and verb phrases (see section 2.6) provide a suitable level of
abstraction for checking conformance. RUBRIC further provides diagnostics to highlight
potentially problematic syntactic constructs in the requirement statements (Figure 21, Figure
23). A text chunker is a pipeline of NLP software modules decomposing a sentence into non-
overlapping segments, e.g. to noun and verb phrases (Figure 22). Its effectiveness is not
compromised even when the requirements glossary terms are unknown. RUBRIC was

http://www.grammaticalframework.org/

RESEARCH REPORT VTT-R-01067-14

32 (64)

publicly released in June 2013 and is available at: http://sites.google.com/site/rubricnlp/. It
uses an open-source natural language processing framework called GATE, see gate.ac.uk/.

Figure 21. Overview of RUBRIK (Arora et al. 2013b).

Figure 22. Text chunking steps and the resulting list of phrases (Arora et al. 2013a).

http://sites.google.com/site/rubricnlp/

RESEARCH REPORT VTT-R-01067-14

33 (64)

Figure 23. Markup generated by RUBRIC (Arora et al. 2013a).

As claimed by Arora et al., a key advantage of RUBRIC is that it yields good results even in
early stages of requirements writing, where a glossary may be unavailable. Their approach
doesn’t apply to model checking but might be valuable for writing stakeholder and system
requirements. In addition to missing terms, the types of requirement statements at this level
are diverse and therefore can’t be forced into a fixed format. Detecting common language
terms (e.g. Princeton WordNet) and phrases and guiding the author to combine them in
recommended ways might be a practical solution for our purposes.

3.4 Testing automation

Testing is a critical and expensive task in industrial automation. Parts of the control
application are first tested separately in module tests. In addition to individual control loops,

safety critical and widely re-used library functions (function blocks) should be verified as early
as possible. The Factory Acceptance Test (FAT) then demonstrates that the integrated

control system is in accordance with the specifications (IEC 62381 2011). Items to be
checked include, for example, documentation and system configuration, system IO and
communication, basic control and protection functions, visualization, operation and complex
functionality (for example sequence control) as far as possible without the actual process
system being present. FAT is performed by the vendor before delivery to the site of
installation. The customer should witness the test activities and in some cases carry out
some parts of the FAT itself.

Requirements are closely related to system and software testing during various life-cycle
phases. The purpose of test cases is to verify that the implementation satisfies the

requirements, regulations or specifications. Therefore, test cases should be derived from and
traced back to requirements and design specifications. In some cases, the transformation is
relatively straightforward but sometimes several complex test scenarios are needed to verify
one requirement. Moreover, one test case can be designed to verify several requirements.

RESEARCH REPORT VTT-R-01067-14

34 (64)

One problem is that tests are defined in terms of elements in the implementation, e.g.
variables and IO channels, while requirements describe the system on a more abstract level.

Testing is a major issue in several software development approaches. Test-driven
development (TDD) is a variant of agile software development that relies on a short

development cycle. First the developer writes an automated test case that defines a desired
improvement or a new function and then produces the minimum amount of code to pass that
test (adapted from http://en.wikipedia.org/wiki/Test-driven_development).

Behaviour-driven development (BDD) was developed on the basis of TDD by Dan North

(http://dannorth.net/introducing-bdd/) as a response to certain issues encountered teaching
test-driven development. BDD uses natural language as a ubiquitous communication mean
to describe the acceptance tests by means of scenarios. In fact, the natural language
ensures a common understanding of the system to be developed between all members of
the project – particularly between the designers and the stakeholders. Currently, the BDD
approach is still under development. However, there are various toolkits supporting BDD,
such as JBehave, Cucumber and RSpec.

In BDD plain text descriptions of features, user stories and scenarios make use of pre-
defined templates. Typically user stories are specified using the following template:

[StoryTitle] (One line describing the story)

As a [Role]

I want a [Feature]

So that I can get [Benefit]

A user story is refined as a set of scenarios each describing how the system that implements

a feature should behave when it is in a specific state and an event happens (Solis & Wang
2011). The template for writing scenarios consists basically of the triplet Given-When-Then:

Scenario 1: [Scenario Title]

Given

[Context]

And [Some more contexts]....

When

[Event]

Then

[Outcome]

And [Some more outcomes]....

Both defining the tests and executing them manually is expensive in terms of money and
time. So, they should be automated. In Model-Based Testing (MBT) test cases are typically

generated from system specifications represented in a (semi-)formal model, such as UML.
Many approaches, some of them shortly reviewed by Carvalho et al. (2013), start from
requirements written in a Controlled Natural Language (CNL) by transforming them into an
internal, more formal form (e.g. Object Constraint Language, temporal logic or business
rules) and then further to test case definitions. The idea is to provide a specification that is
close to natural language but also formal enough to be processed by computers. The final
result of this process can be, for example, directly executable test code or a higher-level test
script that can be processed by a test automation environment.

For instance, keyword-driven testing can be used to automate the testing effort. It is based
on pre-programmed actions (keywords) that read and write the variables of the System
Under Test (SUT). A command sent to the SUT consists of a keyword and optional
parameters. For example, Hametner et al. (2012) have used keyword-driven testing to PLC-
based industrial automation. Their keywords include, for example:

http://en.wikipedia.org/wiki/Test-driven_development
http://dannorth.net/introducing-bdd/

RESEARCH REPORT VTT-R-01067-14

35 (64)

 startConn: establishes a connection to the SUT

 set: sets a new value to the variable in the SUT

 sleep: pauses the test for a specified time

 get value: reads the value from a SUT variable

 check: compare the value with the expected

Robot Framework (http://robotframework.org/) is one of the available tools for automated
testing. As an example, let’s look at the following statement requiring that the level in a tank
rises soon after a pump is started:

Given that (T300_Empty == TRUE),

when (P201_CtrlOut is set to TRUE),

condition (T300_Level > 10) becomes TRUE within 5 minutes.

When transformed into a keyword-driven test script in Robot Framework style, the test case
might look like this:

| Read All Variables |

| Should Be True | B300_Empty == True) |

| Should Not Be True | (T300_Level} > 10) |

| Write Variable | P201_CtrlOut | True |

| Sleep | (5 * 60) - 1 |

| Read All Variables |

| Should Be True | T300_Level} > 10 |

In software engineering, we can find several attempts to derive executable test cases from
semiformal requirements written in a CNL (e.g. Bacherler et al. 2012, Carvalho et al. 2013).
As an example from the control engineering domain, the Template Based Natural Language
Specification (TBNLS) (Esser & Struss 2007) was a (preliminary) CNL approach for
functional tests of control software for passenger vehicles. The aim was to build a tool that
supports an existing work process without major revisions. Their proposed solution offers a
natural-language-template-based interface for acquiring software requirements. The
language is defined by 15 templates that provide a mapping to propositional logic with
temporal relations. The approach was based on trying to confirm that faulty behaviours are
not possible. Potential faulty behaviours are generated from formalized versions of the
requirements by a number of (transformations. The fault types are defined mainly to match
the intuition of “what may go wrong” behind manually generated test cases. Two of the most
obvious fault types are: 1) The start conditions are satisfied, but the consequence does not
occur; and 2) the condition is not satisfied, but the consequence occurs, anyway. Also
Schnelte (2009) represents a related experiment based on natural language templates. In
addition, he used a planning algorithm to create test sequences for positive and negative
failures.

3.5 Model checking and property specification patterns

Model checking (Clarke et al. 1999) is a computer-assisted method for verifying the
behaviour of a (hardware or software) system model against a set of requirements. Both the
system and its requirements are modelled with a formal language. A software tool called a
“model checker” can then examine, whether all possible behaviours of the model fulfil the
specified requirements. If a behaviour is found that is contrary to a requirement, a counter-
example demonstrates the unwanted scenario. By reviewing the counter-example, solid
evidence of a design error can be found. The computational power of the algorithms involved
makes model checking an effective tool in real-world applications. The key benefit over other
V&V methods (such as simulation or testing) is that the analysis is exhaustive – all the
possible states and executions of the system model are taken into account. Exhaustive

http://robotframework.org/

RESEARCH REPORT VTT-R-01067-14

36 (64)

analysis is possible because model checking is not a brute force method. Only those model
behaviours that are relevant for the stated requirement are processed.

Figure 24. The overall model checking process involves several steps where manual work
and specific expertise are required. In this paper, we focus on requirement formalisation.

The overall process of performing model checking is illustrated in Figure 24. While the actual
analysis is performed automatically by the model checker, there are several tasks that
require manual work and specific expertise. In particular, the functional requirements need to
be formalised using temporal logic for expressing the correct model behaviour. This step can
be difficult because the original natural language requirements can be vague, ambiguous or
incomplete, and because of the complexity of temporal logic languages (Tommila, Pakonen
& Valkonen 2013). Property specification patterns have been proposed as a link between
natural language requirements and formal representations, to support the use of finite-state
verification tools such as model checkers. An influential collection of such patterns was first
proposed in (Dwyer et al. 1998) and (Dwyer et al. 1999). According to the authors, a
specification pattern is a ”generalised description of a commonly occurring requirement on
the permissible state/event sequences in a finite-state model of a system”. The patterns
describe some aspect of a system’s desired behaviour and provide suitable expressions for
the behaviour in a set of formalisms.

Following the example of the “Gang of Four” design patterns (Gamma et al. 1994), each
pattern consists of a name, a statement of the pattern’s intent, mappings into different
specification formalisms, examples of pattern use, and relationships to other patterns (See
Figure 25). The patterns are divided into those that require states or events to occur or not to
occur, and to those that constrain the order of states or events.

RESEARCH REPORT VTT-R-01067-14

37 (64)

Figure 25. The “Response” specification pattern provides formal expressions for the
statement “P leads to S”. For simplicity, only the Linear Temporal Logic formulas are listed

here. (Modified from (Dwyer et al. 1998)).

As seen in Figure 25, each pattern has a scope that specifies the extent of model execution
over which the pattern must hold, in terms of system states – for example “Globally”, in all
system states. There are five basic scopes: global, before, after, between, and after-until.
The portions of execution designated by each scope are illustrated in Figure 26, with Q and
R being placeholders for propositions that describe some state or event.

Figure 26. The scope specifies the extent of the model execution over which the pattern must
hold. The dotted vertical lines mark the state where the associated proposition Q or R

becomes true. (Modified from (Dwyer et al. 1998))

In (Dwyer et al. 1999), the authors claim that according to their experience, 92% of collected
requirements matched one of their patterns, the most popular ones being Response (“P
leads to S”), Universality (“P is true”) and Absence (“P is false”) .

RESEARCH REPORT VTT-R-01067-14

38 (64)

3.6 Property Specification Language (PSL)

Property Specification Language (PSL) (IEC/IEEE 2012) is a standard language for the
formal specification of properties or assertions about hardware designs. Although compatible
with hardware design languages such as VHDL, Verilog, and SystemC, it can just as well be
used to formalise requirements for I&C software.

Formally, PSL is an extension of standard temporal logic languages Linear Temporal Logic
(LTL), and Computation Tree Logic (CTL). PSL is designed to be easier to learn, write and
read, with the aim that a PSL specification is “human readable” (Eisner & Fisman 2006). In
addition to syntactic sugaring, PSL offers very simple and convenient expressions for, e.g.,
assertions on sequences of system behaviour. Expressed with LTL, such sequences easily
lead to convoluted and incomprehensible formulas.

PSL consists of four layers:

 The Boolean layer, consisting of propositions whose value is either true or false.

 The temporal layer consists of properties that describe relationships between

Boolean expressions over time.

 The verification layer is used to tell verification tools what to do with the properties

described by the temporal layer. assert is a directive to verify that a property holds.

As a property merely describes behaviour, it does not specify whether it is a “good”
(or a “bad”) thing that the property holds, but an assertion sets a requirement.
assume and restrict instruct the verification tool to constrain the verification so

that the given property holds. cover directs the verification tool to check if a certain

execution path was covered by the verification.

 The modelling layer is used to model behaviour of inputs (that is, to specify a sort of

“environment model” that is not part of the system model being verified, but limits the
values that the system model inputs can have to “realistic” combinations and
sequences), and to model auxiliary signals that are not a part of the system but
needed for verification.

The following PSL syntax examples are from (Eisner & Fisman 2006): The property “signal a

leads to signal b in the next processing cycle” is stated as:

assert always (a -> next b);

This is an LTL style expression, with syntactic sugar (always for G, next for X). Also

included is the assert keyword. Furthermore, a PSL variant of the next operator allows us

to conveniently state the property “signal a leads to signal b from 3rd to 5th following cycle” as:

assert always (a -> next a[3:5] (b));

The same expression could be stated through nested use of the X operator of LTL as well,

but the result would be nowhere near as readable.

In addition to the LTL style, properties can be built using SEREs, or Sequential Extended
Regular Expressions. SEREs describe single- or multi-cycle behaviour as a series of
Boolean expressions. A simple example: The SERE

{(req out && !ack) ; (busy && !ack)[*] ; ack}

describes a sequence where (req out && !ack) holds in the first cycle, (busy &&

!ack) is then asserted for zero or more cycles, and finally ack is asserted. Several different

RESEARCH REPORT VTT-R-01067-14

39 (64)

operators (like[*]for “zero or more”) are provided for controlling repetition. SEREs can

consist of other SEREs, and used as operands of temporal operators.

It can be argued whether PSL is sufficiently “human readable”, but it is certainly more
expressive than languages such as LTL or CTL. It is also “the industry’s first and foremost
standard property specification language”, and widely used in assertion-based verification
(Eisner & Fisman 2006). As specifications in PSL Foundation Language (which excludes,
e.g., PSL macros and built-in functions) can be complied down to formulas in pure LTL/CTL,
tools for model checking are available.

4. Requirement templates for safety-related I&C systems

On the basis of the previous chapters, we outline here a template collection intended for
safety-critical I&C systems and limit ourselves to function block oriented control functions and
the needs of formal model checking. The solution needs two parts, firstly a set of concepts
and their taxonomies and secondly the actual templates in the form of natural language
sentences and other information. These are discussed in the sections below. More details
can be found in appendix A.

The most visible part of a template is a natural language statement containing placeholders
where application-specific terms or more complex logical/arithmetic expressions can be
inserted. However, this is not all. The template may need, for example, an explanation and a
formal interpretation. So, a template should contain the following information:

 short but descriptive identifier

 long title

 natural language sentence (possibly several alternatives)

 explanation and guidance for use (in text and/or graphics)

 a formal and unambiguous interpretation (possibly several alternative formats)

 links to related templates

In the following, our examples are based on the popular open source model checker NuSMV
(http://nusmv.fbk.eu/).

4.1 Vocabulary

To be useful, the templates should limit the vocabulary to terms that have a unique and
agreed meaning. This vocabulary contains both entity classes (e.g. “temperature
transmitter”) and their concrete individuals (e.g. “transmitter TT-101”). Classes have
associated properties (“accuracy”) and are linked by various relationships, such as “is-
subclass-of” and “is-part-of”. We call the set of entity classes (concepts) and their associated
properties and relationships a domain ontology. Combined with the actual individuals of the
application we have something called a knowledge base.

The idea here is that the entity classes, properties and relationships are used to define the
templates. This is one way to limit the terms that can be used when applying template. The
actual requirement statement typically refers to an individual in the knowledge base.
Additional constraints can be defined in terms of rules.

We described the overall landscape in chapter 2. A more extensive discussion can be found
in the SAREMAN conceptual model (SAREMAN 2013a). In general, the templates needed to
describe a complex system, such as a nuclear power plant or an I&C system, would require

http://nusmv.fbk.eu/

RESEARCH REPORT VTT-R-01067-14

40 (64)

a large number of concepts and their relationships. Therefore, we limit ourselves here to the
needs encountered in model checking I&C systems, especially their functions.

For simplicity, we consider here only control system applications based on the function block
paradigm (Figure 27). A control application consists of function blocks that are instances of
function block types stored in a function block library. Each function block has an external

interface of a number of ports. Ports accept (input) or produce (output) signals of various
data types, such as Booleans, integers, real numbers or strings. Moreover, function blocks
can have internal variables that store their states and configuration parameters. Complex
function block types can be defined by aggregating simple ones. In addition, it is useful to
define global variables outside the function blocks.

Figure 27. A control application consists of function blocks that are “wired” to each other
through their ports. The configuration can be presented graphically on a function block

diagram.

The concepts are summarised in Figure 28. A control application is defined by instantiating
function blocks from the library, setting suitable values for their configuration parameters and
connecting the blocks together through their ports. The application can be presented
graphically as function block diagrams. For practical reasons, complex applications must be

decomposed hierarchically and divided into several diagrams that refer to external variables
shown on other diagrams. We expect here that each function block is allocated to controller
of the I&C system, e.g. to a Programmable Logic Controller (PLC). Blocks are executed in a
cyclic manner by a task first reading external inputs, then performing the algorithms of each

function block in the specified order and finally updating the external outputs.

RESEARCH REPORT VTT-R-01067-14

41 (64)

Figure 28. Main elements of a control application.

Note that this abstract domain model applies both to application programs implemented for
PLC and distributed control system (DCS) platforms and to their platform-independent
functional specifications. Concerning implementations, the programming languages specified
by the IEC standard 61131-3 can be used as a point of reference. On the level of functional
specifications, function block diagrams can be seen as graphical presentations of I&C
functions. There is unfortunately no single, widely accepted specification language.

Examples of domain-specific suggestions into this direction can be found in (VGB-R 170 C
2004 and NORSOK I-005 2005).

Having now defined the basic elements of a control application, and to make things even
simpler, we observe that only variables and ports of function blocks are needed to express
the requirements encountered in model checking. It is possible to refer to a variable with its
global name or by combining the name of the function block and its port, e.g.
“INSTANCE2.IN1” in Figure 27.

For a model checker (section 3.5), both I&C functions and requirements must be transformed
into a suitable formal presentation. The same holds also for other computer tools, for
example for testing automation (section 3.4). Basically, it would be preferable to express the
models and requirements in the terminology used by the designer in the source documents.
However, the model checker may have limitations that need to be considered. For instance,
data types, timed execution and variable names of function blocks may require attention. The
NuSMV input language, for example, has several reserved keywords (e.g., MODULE,
DEFINE, VAR, process, array, F, G, EX, AX…) that cannot be used in identifiers of function
block types of instances, variables etc. The only special characters allowed in an identifier
are underscore, dollar sign, hash and dash (_$#-), out of which only the underscore can
begin an identifier. An exemplar mapping of designer-oriented concepts to the terms of
NuSMV is shown in Table 5. Other mappings are possible, but the presentation here follows
the modelling practices found useful at VTT.

RESEARCH REPORT VTT-R-01067-14

42 (64)

Table 5. Mapping of control application concepts to the input language of the NuSMV model
checker.

Concept Presented in NuSMV as

Function block type MODULE declaration

Function block instance VAR declaration

Port of a function block An input variable is introduced as a module parameter, when a
MODULE representing the function block is declared. These variables
are not explicitly typed, and can be assigned any value in the MODULE
code.

An output variable is specified with a DEFINE of ASSIGN declaration
within the MODULE code.

References to these variables are of the type:
BLOCK_NAME.VARIABLE_NAME

Boolean boolean

Integer An enumeration of integer values. A shorthand can be used to define
an integer range (e.g., 4..20 for the 4-20 mA signal range). If

feasible, the analyst should only allow a minimum number of possible
values (that still enables all relevant model behaviours) to limit model
state space.

Real An enumeration of integer values (see above). For sufficient accuracy,
the analyst may resort to scaling (e.g., 4203 for 42,03).

Enumeration enumeration

String enumeration of string values

4.2 Sentences

Alongside with the restricted vocabulary above, the set of allowed sentence structures, i.e.
the CNL grammar, is the second cornerstone of our approach. It was already discussed on a
general level in section 2.6. Here we focus on statements encountered in model checking
and therefore limit ourselves to a subset of functional requirements.

In model checking, temporal logic is used to describe the required behaviour of a system in
terms of states and events occurring during a system’s execution. States and events can be
expressed as propositions that refer to variables of the control application.

Model checkers use special keywords that in some cases have less obvious interpretations
of common words. Our goal is, however, that requirements can be expressed in a way
understandable to a control engineer not familiar with temporal logic. Therefore, we need to
collect suitable sentence structures and then map them to corresponding expressions in
temporal logic. The mappings are described in detail in appendix A. Below we outline the
basic elements of natural language sentences typically needed in model checking.

4.2.1 Propositions of states and events

Basic elements of expressions include literals, enumerations, variables and function block
ports. A port reference can be optionally written in the form “port <port name> of block <block
id>”. Simple propositions are formed by comparing an expression to another expression.
More complex expressions include simple mathematics and logical combinations.

Let’s consider the following example: Figure 29 shows an I&C function with three function
blocks: a greater-than comparison block (GT), a set-reset flip-flop (SR), and an on-delay

RESEARCH REPORT VTT-R-01067-14

43 (64)

timer (TON). The idea is that if the level measurement exceeds the value 85, the “flush”
command is given after a 10 second delay. Only after the level measurement is below 85,
the stored flush command can be manually reset.

Figure 29. An exemplar I&C function with three function blocks.

The examples below illustrate the basic model elements needed in model checking:

 References for diagram inputs and outputs (LEVEL_T10, MAN_RESET, FLUSH)

 Information on variable data types. Type errors (e.g., LEVEL_T10 = TRUE) can then be

avoided.

 Information on input ranges. For example, the LEVEL_T10 input can be modelled as an

integer range {84..86}, which in this case is sufficient for capturing all relevant model

behaviours.3

 References for function block ports. For example, SR_001.Q1 for the flip-flop block

output.

These building blocks are then used to construct propositions that specify states and events
of interest. The propositions compute to a Boolean value that can change over the execution
of the (system) model. The propositions consist of:

 At the simplest, Boolean variables (for example, MAN_RESET is a proposition; “= true”

can be omitted).

 Nested logical (not, and, or, xor, implies, iff), relational (>, <, >=, >=), and arithmetic (+, -,
*, /) operators, that at the lowest level refer to variables and constants. For example:

((LEVEL_T10 <= 85) & MAN_RESET).

4.2.2 Reserved words and requirement scopes

We suggested some reserved keywords in section 2.6. Table 6 below tells how we use them
in model checking. Discussion on terms used for defining the scopes of requirements can be
found in appendix A.

The term “cycle” refers to a time-step in the model. Although real-time tools also exist, model
checkers such as NuSMV divide the time line into discrete steps or “states”, on which the

3
 The range is relevant for requirement formalisation, because if the analyst is not aware of the

possible input values, she/he might formulate a requirement stating, e.g.: “While (LEVEL_T10 = 90) is
true, FLUSH will eventually be true”. The result will be a false positive, since the proposition
(LEVEL_T10 = 90) will always be false.

RESEARCH REPORT VTT-R-01067-14

44 (64)

model variables are updated, analogous to the way function blocks are processed within a
PLC. It is up to the modeller to decide what a time-step means in terms of the modelled
application.4

Table 6. The interpretation of reserved keywords in CNL.

CNL expression Interpretation

Always Entire system execution (globally)

Never “P is never true” is equivalent with “P is always false”.

Eventually At the same cycle or at some later cycle

Before P Cycles up to but not including the cycle where P is true, “Before P
becomes true”

After P Cycles beginning with the first cycle where P is true, “After P first
becomes true”

Between P and Q Cycles beginning with a cycle where P is true, and up to but not including
a cycle where Q is true.

After P until Q Cycles beginning with a cycle where P is true, and 1) up to but not
including a cycle where Q is true, or 2) continuing infinitely.

While P Cycles where P is true

When P, Q A Boolean implication. False if P & !Q, otherwise true. Same as “P leads
to Q”.

P leads to Q A Boolean implication. False if P & !Q, otherwise true. Same as “When
P, Q”.

P changes to true Any cycle where P is true, and P was false at the previous cycle.

4.2.3 Types of complete sentences

By combining the terms and phrases above it is possible to write complete requirements. The
sentences often needed in model checking can be divided in two main types (Lamport 1977):

 Safety properties state that “something bad never happens”.

 Liveness properties state that “something good keeps happening”.

Informal, written requirement specifications tend to focus on liveness properties. Safety
properties are often omitted by designers because they are considered self-evident, and
traditionally, their verification has been difficult. In formal verification they must, however, be
carefully considered.

At the heart, the sentences specify how the truth values of different propositions change over
time. The timing aspect is captured using temporal operators that specify rather the order
than the exact timing of states and events.

While temporal logic languages allow for the formulation of complex sequences of states and
events, such sequences are difficult to capture using a template-based approach. The
reason is that slight alterations in the sequence may lead to a noticeably different temporal
logic expression. If the idea is to hide the syntax of temporal logic entirely from the user, we

4
 A natural selection is to assign one cycle to correspond with the scan cycle of the underlying PLC

platform. However, it is often necessary to scale down the time windows allocated to delay blocks (for
example, if the PLC scan cycle is 50ms, and there is a function block used to set a 60s delay, it would
be grossly inefficient to use 1200 cycles to process the delay).

RESEARCH REPORT VTT-R-01067-14

45 (64)

would need a practically infinite amount of different templates and sentence structures to
deal with all possible sequence types (not only varying order but also varying degree of
overlap between states). The template examples in Appendix A therefore focus on oft-
occurring constructs, and sequence representation is a topic for further study.

Combining the elements listed above, and using the templates listed in Appendix A, Table 7
below gives some examples of typical requirements verified with model checking. The CNL
representation may appear greatly altered from the original requirement, as the analyst has
to rephrase the idea using the set of templates available (see section 5.1).

Table 7. Exemplar CNL requirements for model checking.

Informal requirement CNL expression

Liveness

When the tank level exceeds 85 cm, the flush
command is given after a 10 s delay.

While condition (MAN_RESET) is false, condition
(LEVEL_T10 > 85) is true leads eventually to
condition (FLUSH).

The flush command is memorised. Condition (SR_001.Q1) is true after condition
(LEVEL_T10 > 85) is true until condition
((LEVEL_T10 <= 85) & MAN_RESET) is true.

After the tank level returns to allowed limit, the
operator is able to manually reset the flush
command.

While condition (LEVEL_T10 > 85) is false,
condition (MAN_RESET) leads to condition (NOT
FLUSH).

Safety

The flush command is never given without the
tank level having exceeded the allowed limit.

Condition (FLUSH) is false before condition
(LEVEL_T10 > 85).

5. Working practices and tool support

The previous chapters outlined the principles of a template collection intended for use in the
design of I&C systems. Here we discuss what kind of implications the existence of such a
collection would have on the designers work and what sort of tool support would be needed.
Due to the limited resources, we focus on model checking safety-critical PLC/DCS
applications based on the function block paradigm. However, the needs of systems engineer
writing more abstract requirements are also considered to some extent.

5.1 Requirements definition in model checking – a task description

When formalising requirements for a model checker, it is reasonable to presume that the task
can only begin after the system model (or, at least, the first draft) has been specified. Since
the temporal logic constructs must refer to exact and unique model variables, it is necessary
– when analysing function block diagrams, in particular – to first select (invoke a type) and
name each diagram input, output, or function block object, before any reference to that object
can be stated in terms of a formal requirement.

So, we will begin by assuming that a system design has been specified, and the
corresponding system model produced by either direct transformation, modelling by hand, or
some intermediate form of the two (Pakonen et al. 2013).

Requirement formalisation can begin on the basis of existing requirement documentation, or
functional description. There may be an (informal) natural language document containing
elements of suitable requirements. Discussions with designers or other system experts may
be needed to clarify stated requirements – fill in missing information, and state each

RESEARCH REPORT VTT-R-01067-14

46 (64)

requirement explicitly in terms of system I/O signals or other model variables (examples of
such clarifications in the context of writing CNL requirements can be found in Table 7 above).

When using templates for requirement specification, the first task is to find a suitable
template. The analyst may already be well aware of which template to select, or some work
may be required to find one. Search can be based on template categories, or looking for
suitable keywords in template descriptions and metadata.

When a suitable template is found, it is invoked by specifying suitable propositions in terms
of model variables.

As a simple example (using the templates from (Dwyer et al. 1998)): The analyst will
formalise a requirement that states:

After the temperature in furnace BF-102 exceeds 1300 °C, a horn shall sound in the control
room until an operator presses the acknowledge button.

Browsing different template categories, the analyst selects the class “Occurrence”, under
which the template “Universality” (a.k.a. “Always”, or “P is true”) seems to fit the general idea.
For this template, a scope must be selected. From the requirement, it is quite clear that “After
Q until R” is the choice.

The analyst will then specify the propositions P, Q, and R. P stands for “horn sounds”, for
which a suitable control output (model variable) is found.

P = CR001.Alarms.Horn1.BO1

Q stands for “temperature in furnace BF-102 exceeds 1300 °C”, while R stands for “operator
presses the acknowledge button”. Again, the analyst specifies the propositions in terms of
exact model variables.

Q = (DCS002.BF102.Temp200 > 1300)

R = CR001.C_Desk2.ACK_BFTemp

The corresponding temporal logic clause for verification will then read:

G((DCS002.BF102.Temp200 > 1300) &

!CR001.C_Desk2.ACK_BFTemp -> (G(CR001.Alarms.Horn1.BO1) |

(CR001.Alarms.Horn1.BO1 U CR001.C_Desk2.ACK_BFTemp)));

Sometimes, in order to easily state a requirement, it may be necessary to modify the systems
model to introduce auxiliary model variables and code. In the PSL standard (IEC/IEEE 2012),
the term “satellite” is used of such additions. Alternatively, such modifications may not be
strictly necessary, but more convenient and easily readable than the corresponding
temporal-logic-only option.

Let us consider two examples. First, if it is necessary to state a requirement that deals with a
specific time interval, for example:

After the REQUEST command has been set for 25 cycles, the RESPOND output shall be
set.

If PSL is supported by the model checker, we can easily specify:

assert always (REQUEST -> next[25] (RESPONSE));

Were PSL not supported, the modeller will either have to resort to a very convoluted LTL
formula, or define a satellite. In this case, it is quite straightforward to specify a simple and

RESEARCH REPORT VTT-R-01067-14

47 (64)

reusable timer module that counts the cycles over which an input has been set (using the
NuSMV input language):

VAR

 REQUEST_SET : counter(REQUEST);

MODULE counter(enable)

VAR

 clock : 0..200;

ASSIGN

 init(clock) := 0;

 next(clock) :=

 case

 !enable: 0;

 clock > 199 : 200;

 enable: clock + 1;

 TRUE: 0;

esac;

Now the requirement can easily be stated using LTL:

G((REQUEST & (REQUEST_SET.clock = 24)) -> RESPONSE);

Another example has to with voting between many criteria. Let us say that there are five
different alarm criteria (P1 to P5), each specified with rather complex propositions. If we now
want to state a requirement of the type:

If more than 2 of the alarm criteria P1 to P5 are true, the ALARM signal shall be set.

The input language of the NuSMV model checker allows us to formulate the requirement
rather straightforwardly using LTL alone, although the resulting formulation might become
quite repetitive and complicated (see the “When more than n” pattern in appendix A). If this is
not convenient, additional model variables can be introduced to count the number of criteria:

DEFINE

 P1_i := [logic that specifies value of P1] ? 0 : 1;

 P2_i := [logic that specifies value of P2] ? 0 : 1;

 P3_i := [logic that specifies value of P3] ? 0 : 1;

 P4_i := [logic that specifies value of P4] ? 0 : 1;

 P5_i := [logic that specifies value of P5] ? 0 : 1;
 ALARM_CRITERIA := P1_i + P2_i + P3_i + P4_i + P5_i;

Now the appropriate LTL formulation is very intuitive:

G((ALARM_CRITERIA > 2) -> ALARM);

Especially if different requirements are based on the same criteria, the analyst may find the
use of satellite code more convenient, even if the corresponding logic were possible to state
resorting only to temporal logic.

When a model checker returns a counter-example demonstrating a system model behaviour
that is contrary to a specified requirement, the first task for the analyst is to investigate if the
counter-example is due to either an error in the way the requirement is formalised, or an
error in the way the system model represents the actual design. It is often the case that the
requirement formalisation for example fails to take into account some exception (for example,
the requirement not holding due to an active safety or interlock signal, or a manual operator
or maintenance action). To fix the error the analyst will then review the formalisation, and

RESEARCH REPORT VTT-R-01067-14

48 (64)

either make small adjustments to the propositions, or select and altogether different template
and start from scratch.

It may even be the case that analyst did not take the exception into account when first
formalising the requirement because the fact was omitted from the source documentation
(requirement document or functional description). It may become necessary to refine earlier
documents.

5.2 Requirements of a template-based requirement editor

We assume that the analyst (who can also be the same person as the designer) works with a

toolset that integrates the following main elements (Figure 30):

 Domain ontology: Terms, concepts and their relationships in the application domain, in
this case nuclear power plant I&C systems. The ontology may consist of several parts
(e.g. upper-level concepts and sub-ontologies for various system types) that are
combined according to the needs of the application.

 Type library: Definitions of reusable components, such as function blocks and device

types. It may actually consist of several parts all referring to the domain ontology.

 Model editor: Dedicated tool used by the analyst to build a formalized system model
needed by the model checker (Pakonen et al. 2013).

 Design database: Requirements, functions and physical system elements of the

particular application. Objects in the system model are instances of the classes defined in
the domain ontology and the types in the type library.

 Design tool: Tool(s) normally used for specifying the I&C system, e.g. a function block

editor.

 Template collection: Defines the allowed terms and sentence structures with their

corresponding formalized counterparts. The template collection uses the vocabulary
defined in the domain ontology.

 Requirement editor: This is the tool that the analyst uses to write natural language

requirements and to generate their formalized versions for the model checker.

 Model checker: Software tool used for model checking on the basis of the formalized
system model and requirements.

 Analyst: Person using the requirements editor and the model checker.

 Designer: Person carrying out normal design tasks and using the design tools for that.

RESEARCH REPORT VTT-R-01067-14

49 (64)

Figure 30. Elements of the design and analysis toolset.

With this abstract “system concept” and the task description above we are able to describe
the desired features of a requirements editor. At this stage, we are looking for a tool concept
rather than a practical implementation. Therefore, the requirements below are presented
informally. We also focus on model checking and written requirements with the length of one
sentence. More complex requirements would need other presentation methods, such as
diagrams and structured use cases.

Information content

 The kinds of terms that can be inserted into the sentence include

o fixed terms defined by the template, e.g. keywords like “while”, “when”, etc.

o literal truth values (true, false), numbers (5, -10.9), enumerations and strings

o verbs and property names defined in the domain ontology

o names of individual elements in the system model, e.g. variables and functions

 A (model checking) project in the requirements editor is configured to use certain
ontologies and template collections. It is possible to add project-specific concepts to the
ontology.

 Propositions can include basic Boolean (and, or), numeric (comparison, addition,
multiplication) and string operations (comparison, concatenation, enumeration). In
addition, it should be possible to use functions (e.g. abs, sqrt) if supported by the model
checker (or some other tool).

 The template collection and the requirement editor are not tied to any particular domain
or formalism, such as temporal logic, but can be easily configured for other purposes, for
example to be used in automated testing of I&C systems.

 There should be a possibility to select between more than one output formats, for
example LTL, CTL or PSL.

RESEARCH REPORT VTT-R-01067-14

50 (64)

 In addition to the requirement text, a structured requirement has attributes like status,
date and comment. Some of the metadata, e.g. the type of requirement, can be derived
automatically from the templates.

 Template collections are subject to version control and tracking. Once tested and
accepted, template collections can be frozen so that they can’t be modified accidentally.

 However, if templates (or ontology) must be modified, the way requirements are
expressed can be done by changing, e.g. a term, in just one place (from Dick & Llorens
2012)

 Since the editor is used in safety-critical domains, it doesn’t allow errors or ambiguities in
the templates or in the written requirements. For example, a requirement typed by the
analyst must match with exactly one template to be accepted and formalised. However,
uncompleted requirements can be saved and corrected later. Error messages and
warnings are logged so that the final, error-free log can be used as evidence.

 In general, it should be possible to specify that a part of a sentence, e.g. a property value,
is not yet decided so that it can be defined later. This option can also be used in cases
where the values are confidential (from Johannessen 2012).

User interface

 The analyst is able to browse the domain ontology, type library and the system model
and view all relevant information in it, for example definitions of terms and function blocks
and the decomposition of system elements and functions. The user interface is similar to
the one normally used in engineering tasks.

 The analyst is able to search and browse the template collection(s) configured to the
current project, for example in order to identify the templates suitable for re-formulating a
particular unstructured requirement. To make this possible, the templates should have
descriptive names and associated keywords. The contents of the templates can be
viewed easily.

 Templates are presented in a form that is easily understandable. For better readability,
the templates should allow optional clarifying words. For example, when a state is meant,
the word “condition” can be added for clarity. The collection provides explanations and
guidance for each template.

 The analyst has two options in writing a requirement. She/he can first select a template
and fill-in missing parts, or just start typing guided by the editor. In both modes the editor
should, for example, suggest suitable next terms and inform about matching templates
and kinds of propositions.

 Once the analyst has selected the template she/he wants to use, the editor provides
guidance and automation for filling-in the missing parts of the structured sentence. Terms
can be typed or dragged and dropped from the system model or a list of possible next
terms in the ontology.

 The requirement editor clearly indicates the terms that can be inserted but at the same
time prevents the analyst from writing nonsense requirements that violate the rules of the
domain ontology, the type library or the system model. Errors are indicated and
explained.

 If the analyst notices that a wrong template was selected, she/he is able to transfer the
sentence or parts of it (e.g. propositions) to another template.

RESEARCH REPORT VTT-R-01067-14

51 (64)

 It should be possible to write a sentence that doesn’t match to any template. For systems
engineering in general, the necessity of conforming exactly to a template and domain
ontology should be relaxed, e.g., by using NLP techniques (from Arora et al. 2013).
Especially in model checking, there shall be a way to write a formalized requirement (e.g.
in temporal logic) “manually” in cases for which no template is available in the template
collection.

 The user can search the requirements that use a template or an ontology term (from Dick
& Llorens 2012)

 The requirement editor should maintain the status of each requirement, that is, whether
the model checker proved the requirement true or false the last time it was run. The
editor should also state if the status is up to date, that is, have there been any changes to
the requirement or the system model after the last time the model checker was run.

 The structured natural language requirements created with the editor can be printed to a
human-readable document.

External interfaces

 Requirement information can be imported from and exported to other tools like normal
office tools and Requirements Management systems.

 It is possible to trace a structured requirement to the unstructured requirements and other
engineering data (or standards) behind it.

 The design database created by the design tools can be used as the system model, for
example by importing relevant data or by providing a direct interface to the database.

 It is possible to use existing vocabularies and ontologies as a basis for the domain
ontology.

 The formalized requirements (in temporal logic) generated by the tool can be saved (to a
file) and exported to other tools, in particular to the model checker.

We can use the experimental CNL editor developed earlier by VTT to illustrate some features
of ontology and template based requirements authoring (Tommila, Pakonen & Valkonen
2013). Figure 31 shows the exemplar control application and requirements in section 4.2.
The tree in the leftmost frame contains the classes of the domain ontology and the individual
function blocks and variables of the flush application. The frame in the middle shows a list of
the requirements already inserted to the database. To add a new requirement, the analyst
can build a sentence by dragging and dropping allowed next terms from the frame in the
lower right corner. If she/he decides to use the keyboard, the editor provides for
autocompleting unfinished words. So, this prototype doesn’t force the user to first select a
template, but is rather intended to be a writing assistant. Therefore, it guides the user by
showing a list of allowed next terms and their types, as well the templates matching the text
typed in so far. In addition to the natural language templates, there are templates that help in
writing temporal logic expressions directly. When the requirement is completed and matches
to exactly one template, the editor is able to generate its formal presentation in temporal
logic. For example, the sentence “Condition (FLUSH) is false before condition (LEVEL_T10
> 85)” matches to the Absence before template in Appendix A and is transformed into the

temporal logic formula LTLSPEC F(LEVEL_T10 > 85) -> (!(FLUSH) U (LEVEL_T10
> 85)).

RESEARCH REPORT VTT-R-01067-14

52 (64)

Type or
drag & drop terms

Figure 31. An experimental tool guides the user in writing correct requirements on the basis
of a domain ontology, elements of the particular application and a collection of 52 templates.

6. Summary and conclusions

In this research report we have studied the possibilities of Controlled Natural Languages
(CNL) in improving the quality of control system requirements. Their limited vocabularies and
sentence structures guide designers in writing well-formed requirements that can also be
analysed and formalized with computer tools.

Our particular application area is safety-critical I&C systems in nuclear power plants. The
wider context is requirements definition in systems engineering in general. Within this area,
we have focused on verification of I&C functions with formal model checking where practical
solutions and software tools can be foreseen.

On the basis of the literature and our own experiences in model checking, we have collected
a first set of functional requirement templates for function block based control applications. In
this approach, templates define pairs of allowed sentence structures and corresponding
formal interpretations in temporal logic. In our tool concept, actual requirements stated in
terms of the variables of the control system can be automatically transformed into a temporal
logic presentation and imported to a model checker for verification.

As is widely known, requirements definition and management continue to be a challenge in
systems engineering. Also in model checking, there is a real need to make the modelling of
the control system and its requirements easier. Our literature review shows that this problem
has been recognised by many others, as well. There exists a multitude of techniques and
software tools for natural language processing and system modelling. Even quite similar
template-based tools have been suggested. In other words, we seem to have a need and
ingredients for its solution.

However, this research report represents a first step only. A question to be answered is, how
the available ingredients should be combined and adapted to the needs of safety-critical I&C.
Concerning systems engineering in general, we believe that guided requirements authoring
combined with model-based design and standards-based tool integration is a promising
direction in spite of the challenges.

RESEARCH REPORT VTT-R-01067-14

53 (64)

In our particular interest area, model checking, the template-based approach seems to be
implementable and solve many practical problems. However, there are also several issues to
be resolved. Firstly, single natural language sentences work well only in simple cases.
Complex chains of events pose a challenge in the domain of I&C systems. Due to the
dynamic behaviour of the physical processes being controlled, system requirements often
have to be specified in terms of sequences of varying complexity. Writing down such
sequences in CNL results in convoluted sentences. It would be more effective and user-
friendly to use structured scenarios or graphical representations, such as sequence
diagrams. Furthermore, if the idea is that templates hide the formal syntax of temporal logic
languages, such as LTL or CTL, we would need a practically infinite amount of templates to
represent all possible sequences.

Secondly, the need for exact and explicit formalisation means that the semantics of reserved
keywords in our CNL should be defined in great detail but in way that is familiar to control
engineers. Properly understanding the specific meaning of terms like “while”, “when”, “after”,
and “before” may require some study from the user. What “after”, for example, actually
means in terms of model states and time cycles may be different from the common sense
“feel” for the word. The domain ontology, keywords and sentence structures proposed in this
report represent a first draft, and practical experimentation and refinements are still needed.

For help with complex sequences, Property Specification Language seems to hold promise.
Syntactic sugar helps in understanding the temporal operators, but the real power is in the
Sequential Extended Regular Expressions, or SEREs. Similar in spirit to standard regular
expressions, SEREs provide a way to describe multi-cycle behaviour that is much more user-
friendly than anything that can be expressed with LTL or CTL. Potential new topics for future
research include visualisation of SERE constructs, and templates based on SEREs.
Furthermore, requirements authoring tools need to be integrated to other tools used in model
checking.

Even if further research is needed, practical work at VTT has already shown that requirement
templates are very useful in model checking. The majority of functional I&C requirements
(especially in safety-critical systems) can be expressed with three types of statements: 1)
State A is always true; 2) State B is never true; and 3) State C leads eventually to state D. In
addition, a fairly limited collection of domain-specific templates will go a long way further.
Although there remains a need to work with temporal logic operators to capture some event
chains, it is evident that a requirement specification tool would certainly benefit from
templates.

From the systems engineering point of view, the requirement authoring tool concept should
be based on a system model that is shared with other modelling, development, analysis, and
requirement management tools. The problem with popular requirement management tools is
that they are basically word processors handling free text with little or no built-in support for
system models and good sentence structures. Fortunately, different extension mechanisms
can be used. Also relevant is the integration with modelling and development tools, as the
requirements must be anchored to system model elements. Various integration techniques
exist but domain-specific classifications should also be agreed to be able to attach
meaningful metadata attributes to the requirements.

RESEARCH REPORT VTT-R-01067-14

54 (64)

References

Allen, J. 1984. Towards a General Theory of Action and Time. Artificial Intelligence 23
(1984): 123–54.

Armengaud et al. 2012. Integrated tool-chain for improving traceability during the

development of automotive systems. ERTS 2012 – Embedded Real Time Software

and Systems, 10 p.

Arora, C. et al. 2013a. Automatic Checking of Conformance to Requirement Boilerplates via

Text Chunking: An Industrial Case Study. ESEM'13, 2013,10 p.

Arora, C. et al. 2013b. RUBRIC: A Flexible Tool for Automated Checking of Conformance to

Requirement Boilerplates. ESEC/FSE’13, August 18–26, 2013, Saint Petersburg, 4 p.

Bacherler, B, Moszkowski, B., Facchi, C. & Huebner, A. 2012. Automated Test Code

Generation Based on Formalized Natural Language Business Rules. The Seventh
International Conference on Software Engineering Advances (ICSEA 2012), 7 p.

Beatty, J., Ferrari, R., Vijayan, B., Godugula, S. 2011. Seilevel’s Evaluations of

Requirements Management Tools: Summaries and Scores. Seilevel White Paper,
2011, 12p.

Buschmann, F., Henney, K. & Schmidt D. 2007. Pattern-oriented software architecture – On
patterns and pattern languages. Chichester, John Wiley & Sons Ltd, 450 p.

Carvalho, G. et al. 2013. Test Case Generation from Natural Language Requirements based
on SCR Specifications. SAC’13 March 18-22, 2013, Coimbra, Portugal, 6 p.

CESAR 2010. Definition and exemplification of RSL and RMM. Publication D_SP2_R2.1_M1
of the CESAR project, http://www.cesarproject.eu/, 188 p.

CESAR 2011. Revised Definitions of Improved RE Methods. Publication D SP2 R3.3 M3 of
the CESAR project, http://www.cesarproject.eu/, 148 p.

Clark, E. M., Grumberg, O., Peled, D. 1999. Model Checking. The MIT Press, 1999.

Crilly, N. 2010. The roles that artefacts play: technical, social and aesthetic functions. Design
Studies, 31(4), 311–344.

Dick, J. & Llorens, J. 2012. Using statement-level templates to improve the quality of

requirements. Integrate systems engineering ltd, available at
http://www.integrate.biz/downloads/White_Paper-templating.pdf.

Dwyer, M. B., Avrunin, G. S., Corbett, J. C. 1998. Property specification patterns for finite-

state verification, Proceedings of the second workshop on Formal methods in
software practice (FMSP '98). ACM New York, NY, USA, 1998.

Dwyer, M. B., Avrunin, G. S., Corbett, J. C. 1999. Patterns in Property Specifications for

Finite-State Verification. Proceedings of the 21st International Conference on
Software engineering (ICSE ’99), ACM, New York, 1999.

Eisner, C., & Fisman, D. 2006. A Practical Introduction to PSL. Springer Science. 240 p.

http://www.cesarproject.eu/
http://www.cesarproject.eu/
http://www.integrate.biz/downloads/White_Paper-templating.pdf

RESEARCH REPORT VTT-R-01067-14

55 (64)

Esser, M. & Struss, P. 2007. Automated Test Generation from Models Based on Functional

Software Specifications. In: Proc. 3rd Indian International Conference on Artificial

Intelligence (IICAI‐07), December 17‐19 2007, 14 p.

Farfeleder et al. 2011. DODT: Increasing Requirements Formalism using Domain Ontologies

for Improved Embedded Systems Development.

Fuchs, N., Kaljurand, K. & Kuhn, T. 2008. Attempto Controlled English for Knowledge

Representation. In: Baroglio, C. et al. (Eds.): Reasoning Web 2008, LNCS 5224, pp.
104–124, 2008. Springer-Verlag Berlin, Heidelberg 2008.

Gamma, E., Helm, R., Johnson, R., Vlissides, J. 1994. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 395 p.

Garbacz, P. 2006, Towards a standard taxonomy of artifact functions. Applied Ontology, 1
(3‐4): 221‐236.

Hull, E., Jackson, K. & Dick, J. 2002. Requirements engineering. London, Springer-Verlag,
213 p.

Hametner, R., Winkler, D. & Zoitl, A. 2012. Agile Testing Concepts Based on Keyword-driven

Testing for Industrial Automation Systems. IECON 2012 - 38th Annual Conference on
IEEE Industrial Electronics Society, 6 p.

Hirtz, J., Stone, R., McAdams, D., Szykman, S. & Wood, K. 2002. A Functional Basis for

Engineering Design: Reconciling and Evolving Previous Efforts. Research in
Engineering Design 13 (2002) 65–82.

IEC 62381 2011. Automation systems in the process industry - Factory acceptance test

(FAT), site acceptance test (SAT), and site integration test (SIT). International
Electrotechnical Commission, 40 p.

IEC/IEEE 2012. IEC 62531:2012, IEEE Std. 1850-2010, Property Specification Language
(PSL). International standard, June 2012, 177p.

IEC 81346-2 Ed.1: Industrial systems, installations and equipment and industrial products –

Structuring principles and reference designations – Part 2: Classification of objects
and codes for classes. Final draft international standard, 43 p.

ISO/IEC 29148 2011. Systems and software engineering — Life cycle processes —
Requirements engineering. Final draft international standard, March 2011, 94 p.

Johannessen, V. 2012. CESAR - text vs. boilerplates - What is more effcient - requirements

written as free text or using boilerplates (templates)? Norwegian University of

Science and Technology, Master’s thesis in Computer Science, 88 p.

Kaljurand, K. & Kuhn, T. 2013. A Multilingual SemanticWiki Based on Attempto Controlled

English and Grammatical Framework. In Proceedings of the 10th Extended Semantic

Web Conference (ESWC 2013), Springer, 2013. Available at:
http://attempto.ifi.uzh.ch/site/pubs/.

Kuhn, T. 2013. A Survey and Classification of Controlled Natural Languages. To appear in
Computational Linguistics, 50 p. Available at: http://attempto.ifi.uzh.ch/site/pubs/.

Lamport, L. 1977. “Proving the correctness of multiprocess programs”, IEEE Transactions on
Software Engineering. Vol 3, Issue 2, pp. 125-143, 1977.

http://attempto.ifi.uzh.ch/site/pubs/
http://attempto.ifi.uzh.ch/site/pubs/

RESEARCH REPORT VTT-R-01067-14

56 (64)

Lind, M. 2005. Modeling Goals and Functions of Control and Safety Systems - theoretical
foundations and extensions of MFM. Electronic report NKS-114, 45 p.

Mavin, A., Wilkinson, P., Harwood, A. and Novak, M. 2009. Easy approach to requirements

syntax (EARS). In: Proceedings of 17th IEEE International Requirements Engineering

Conference (RE'09), pp. 317-322, 2009.

Mavin, A. and Wilkinson, P. 2010. Big ears (the return of easy approach to requirements

engineering). In: Proceedings of the 18th IEEE International Requirements
Engineering Conference (RE’10), pp. 277-282, 2010.

NORSOK I-005 2005. System control diagram. Standards Norway, NORSOK standard I-005,
rev. 2, April 2005.

OMG 2013. Requirements Interchange Format (ReqIF). Version 1.1. Object Management
Group 2013. http://www.omg.org/spec/ReqIF/1.1.

Pakonen, A., Mätäsniemi, T., Lahtinen, J., Karhela, T. 2013. A Toolset for Model Checking of

PLC Software, 18th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA2013), Cagliari, Italy, 10th-13th September, 2013, 6p.

Reuse 2013. Requirements Quality Analyzer for DOORS, Requirements Authoring Tool,

User Guide. The Reuse company, www.reusecompany.com/technical-
documentation-rat.

SAREMAN 2013a. Conceptual model for safety requirements specification and management
in nuclear power plants. Working report of the SAREMAN project, version 2, 91 p.

SAREMAN 2013b. A control engineer’s introduction to requirements engineering. Working
report of the SAREMAN project, 37 p.

Schnelte, M. 2009. Generating Test Cases for Timed Systems from Controlled Natural

Language Specifications. Third IEEE International Conference on Secure Software
Integration and Reliability Improvement, 6 p.

Solís, C. & Wang, X. 2011. A Study of the Characteristics of Behaviour Driven Development.

2011 37th EUROMICRO Conference on Software Engineering and Advanced
Applications, 5 p.

Sowa, J. F. 2011. Introduction to Common Logic. Presentations slides, 38 p,
www.jfsowa.com/talks/clintro.pdf.

SPEEDS 2008. Contract Specification Language (CSL). SPEEDS Deliverable: D.2.5.4, 22 p.,
available: http://www.speeds.eu.com/.

Tommila, T., Pakonen, A. & Valkonen, J. 2013. Ontology-Driven Natural Language

Requirement Templates for Model Checking I&C Functions. Enlarged Halden

programme group meeting, EHPG-2013, Storefjell, Norway, 10th – 15th March, 2013,
9 p.

van Renssen, A.S.H.P. 2005. Gellish - A Generic Extensible Ontological Language - Design
and Application of a Universal Data Structure. Delft University Press, 268 p.

VGB-R 170 C 2004. Function-related documentation of power plant instrumentation and
control in line with operating requirements.

http://www.omg.org/spec/ReqIF/1.1
http://www.reusecompany.com/technical-documentation-rat
http://www.reusecompany.com/technical-documentation-rat
http://www.jfsowa.com/talks/clintro.pdf
http://www.speeds.eu.com/

RESEARCH REPORT VTT-R-01067-14

57 (64)

Appendix A: Model checking templates for safety critical I&C

Common templates from Dwyer et al.

Discussion on scopes

Dwyer et al. use scopes to designate the extent of model execution over which a property
must hold. To illustrate the scopes, a figure is used (the dashed lines have been added for
clarity):

The scopes illustrated (Modified from (Dwyer et al. 1998))

To further clarify the scopes, we will list examples of traces for each scope.

“Before Q” means all cycles up to but not including the first cycle where Q is true. Later
values of Q are irrelevant:

“After Q” means all cycles beginning with the first cycle where Q is true. Note that the
“beginning with” –aspect is by no means assumed in the common language use of the
preposition “after”. Later values of Q are irrelevant:

“Between Q and R” means all sequences of cycles beginning with the cycle where Q is true,
and up to but not including the cycle where R is true. Note that the eventual occurrence of R
is needed to initiate the sequence on Q:

RESEARCH REPORT VTT-R-01067-14

58 (64)

“After Q until R” means all sequences of cycles beginning with the cycle where Q is true, and
either 1) up to but not including the cycle where R is true, or 2) continuing infinitely in the
absence of an occurrence of R. This scope differs from the previous scope in that an
eventual occurrence of R is not needed to initiate the sequence on Q. A suitable analogy
would be a machine with “start” (Q) and “stop” (R) buttons:

Note that in the “Between Q and R” and “After Q until R” scopes, R has “priority” over Q – the
occurrence of Q has no effect while R is true. This is not addressed in the scopes illustration
used by Dwyer et al., but it can be deduced from the formulas.

Selected templates

We list here the most common “specification patterns” by Dwyer et al. The rest of the
patterns can be found at http://patterns.projects.cis.ksu.edu/.

Title: Universality

Sentence: P is true

Formulas: LTL Globally G(P)

Before R F(R) -> (P U R)

After Q G(Q -> G(P))

Between Q and R G((Q & !R & F(R)) -> (P U R))

After Q until R G(Q & !R -> (G(P) | (P U R)))

CTL Globally AG(P)

Before R !E[!R U (!(P | AG(!R)) & !R)]

After Q AG(Q -> AG(P))

Between Q and R AG(Q & !R -> !E[!R U (!(P |

AG(!R)) & !R)])

After Q until R AG(Q & !R -> !E[!R U (!P & !

R)])

PSL always (P)

Guidance: The template specifies that a proposition P must hold.

http://patterns.projects.cis.ksu.edu/

RESEARCH REPORT VTT-R-01067-14

59 (64)

Title: Universality

Note the symmetry with the “Absence” pattern. Stating “always !P”
is equivalent to stating “never P”.

Keywords: Always, Henceforth

Related
templates:

Absence

Status: Well-known, published in collections of Dwyer et al.

References: (Dwyer et al. 1998) (Dwyer et al. 1999)

Title: Absence

Sentence: P is false

Formulas: LTL Globally G(!P)

Before R FR -> (!P U R)

After Q G(Q -> G(!P))

Between Q and R G((Q & !R & F(R)) -> (!P U R))

After Q until R G(Q & !R -> (G(!P) | (!P U

R)))

CTL Globally AG(!P)

Before R !E[!R U (!(!P | AG(!R)) & !

R)]

After Q AG(Q -> AG(!P))

Between Q and R AG(Q & !R -> !E[!R U (!(!P |

AG(!R)) & !R)])

After Q until R AG(Q & !R -> !E[!R U (P & !

R)])

PSL never (P)

Guidance: The template specifies that a proposition P must not hold.

Typically used to state that something “bad” should never happen
(safety property). A common example is mutual exclusion (never A
& B).

Note the symmetry with the “Universality” pattern. Stating
“never !P” is equivalent to stating “always P”.

Keywords: Never

Related
templates:

Universality

Status: Well-known, published in collections of Dwyer et al.

References: (Dwyer et al. 1998) (Dwyer et al. 1999)

RESEARCH REPORT VTT-R-01067-14

60 (64)

Title: Response

Sentence: P leads eventually to S

Formulas: LTL Globally G(P -> F(S))

Before R F(R) -> (P -> (!R U (S & !R)))

U R

After Q G(Q -> G(P -> F(S)))

Between Q and R G((Q & !R & F(R)) -> (P -> (!R

U (S & !R))) U R)

After Q until R G(Q -> ((P -> (!R U (S & !R)))

U R) | G(P -> (!R U (S

& !R))))

CTL Globally AG(P -> AF(S))

Before R !E[!R U (!((P -> A[!R U (S

& !R)]) | AG(!R)) & !R)]

After Q A[!Q W (Q & AG(P -> AF(S))]

Between Q and R AG(Q & !R -> A[((P -> !E[!R U

(!(!R U (S & !R)]) | AG(!R)))

& !R)])

After Q until R AG(Q &!R->!E[!R U(!(P ->

A[!R U (S & !R)]) & !R)])

PSL always (P -> eventually! (S))

Guidance: The template specifies that an occurrence of an event/state P must
be followed by an occurrence of event/state S. It is typically used to
state that a request must lead to a response.

Note that:

 A single occurrence of S will satisfy the condition even
when there are multiple past occurrences of P.

 P and S may occur at the same cycle.

Examples of traces where the requirement holds

Keywords: Follows, Leads to

RESEARCH REPORT VTT-R-01067-14

61 (64)

Title: Response

Related
templates:

Conditional response

Status: Well-known, published in collections of Dwyer et al.

References: (Dwyer et al. 1998) (Dwyer et al. 1999)

Title: Existence

Sentence: P is eventually true

Formulas: LTL Globally F(P)

Before R G(!R) | ((P & !R) U !R)

After Q G(!Q) | F(Q & F(P)))

Between Q and R G(Q & !R -> (G(!R) | (!R U (P

& !R))))

After Q until R G(Q & !R -> (!R U (P & !R)))

CTL Globally AF(P)

Before R !E[!(P & !R) U (R & !(P

& !R))]

After Q !E[!(Q & AF(P)) U (Q & !(Q &

AF(P)))]

Between Q and R AG(Q & !R -> !E[!(P & !R) U (R

& !(P & !R))])

After Q until R AG(Q & !R -> A[!R U (P & !R)])

PSL eventually! (P)

Guidance: The template specifies that a proposition P must not hold at some
point.

Keywords: Eventually

Related
templates:

Status: Well-known, published in collections of Dwyer et al.

References: (Dwyer et al. 1998) (Dwyer et al. 1999)

Original pattern candidates found useful in VTT customer projects

The templates that follow are based on oft-used requirement constructs that have proven
useful in practical work at VTT. The templates serve as examples, and represent work in
progress. The collection is by no means considered conclusive.

Title: Conditional leads to

Sentence: While R is not true, P leads to Q

Formulas: LTL G (!R -> G (P -> Q));

RESEARCH REPORT VTT-R-01067-14

62 (64)

Title: Conditional leads to

PSL always (!R -> always (P -> Q));

Guidance: A cause-and-effect relationship of certain model states or signals
might not be true at all cycles due to, e.g., an overriding signal with
higher priority, or a periodic test sequence or a manual user action
temporarily inhibiting normal signal flow.

This template allows for the specification of a state or signal R
which will (temporarily) break the cause-and-effect relationship
between P and Q. That is, if R is not true, P will lead to Q at all
cycles.

Note that “P leads to Q” (or Q) may still be true regardless of the
value of R, it is just that “P leads to Q” has to be true only when R

is false.

Examples of traces where the requirement holds

Notes on formulas:

 The Boolean proposition (P -> Q) can be replaced with
other logic to achieve other “Conditional” formulas.

 The LTL formula G !R -> G (P ->Q); without the surrounding
parenthesis means that scenarios where R has been active
at some point will not be considered in verification. That is,
the verification tool will assume that R can never be true.

Keywords: conditional, protection, interlock, leads to

Related
templates:

Conditional response

Status: Verified using both a model that is known to fulfil the requirement,
and a model that is known not to fulfil the requirement.

References:

RESEARCH REPORT VTT-R-01067-14

63 (64)

Title: Conditional response

Sentence: While R is not true, P leads eventually to Q

Formulas: LTL G (!R -> G (P -> F Q));

PSL always (!R -> always (P -> eventually! Q));

Guidance: A cause-and-effect relationship of certain model states or signals
might not be true at all cycles due to, e.g., an overriding signal with
higher priority, or a periodic test sequence or a manual user action
temporarily inhibiting normal signal flow.

This template allows for the specification of a state or signal R
which will (temporarily) break the cause-and-effect relationship
between P and Q. That is, if R is not true, an occurance of P must
be followed by an occurance of Q.

Note that:

 “P leads eventually to Q” (or Q) may still be true regardless
of the value of R, it is just that “P leads eventually to Q” has
to be true only when R is false.

 A single occurrence of Q will satisfy the condition even
when there are multiple past occurrences of P.

 P and Q may occur at the same cycle.

Keywords: conditional, protection, interlock, leads to

Related
templates:

Conditional leads to, Response

Status: Verified using both a model that is known to fulfil the requirement,
and a model that is known not to fulfil the requirement.

References:

Title: When more than n

Sentence: When more than n of the P1, P2, P3, and P4 are true, Q is true

Formulas: LTL (smv) G ((((P1 ? 1 : 0) + (P2 ? 1 : 0) + (P3 ? 1 : 0)

+ (P4 ? 1 : 0)) > n) -> Q);

Guidance: Voting logic: if more than n (where 0 ≤ n ≤ 3) propositions out of the
set { P1, P2, P3, P4 } are true, then Q must also be true.

Notes on formulas:

 If less than four of the propositions Pn are needed, simply
insert “true” to other places to use the same formula.

Keywords: more than, vote, redundancy

Related
templates:

If less than n

Status: Verified using both a model that is known to fulfil the requirement,

and a model that is known not to fulfil the requirement.

References:

RESEARCH REPORT VTT-R-01067-14

64 (64)

Title: Trigger

Sentence: When P changes to true, Q is true.

Formulas: LTL G ((!P & X P) -> X Q);

PSL always ((!P && next P) -> next Q);

Guidance: The template states that whenever P changes from false to true
(i.e., on a rising edge of P), Q must also be true at the same cycle.

Keywords:

Related
templates:

Delayed trigger

Status: Proposed

References:

Title: Delayed trigger

Sentence: When P changes to true, Q is eventually true.

Formulas: LTL G ((!P & X P) -> X (F Q));

PSL always ((!P && next P) -> next (eventually!

Q));

Guidance: The template states that whenever P changes from false to true
(i.e., on a rising edge of P), an occurrence of Q must follow.

Note that a single occurrence of Q will satisfy the condition even
when there are multiple past occurrences of a rising edge of P.

Keywords:

Related
templates:

Trigger

Status: Proposed

References:

	Preface
	Espoo 31.1.2014
	Authors
	Contents
	1. Introduction
	2. The conceptual basis
	2.1 Propositions about states of affairs
	2.2 Elements of the world
	2.3 Artefact functions and actions of goal-oriented agents
	2.4 Temporal and set relationships
	2.5 On the English grammar
	2.6 Towards the anatomy of a natural language proposition

	3. Related research
	3.1 Controlled natural languages
	3.2 Requirement templates
	3.2.1 Requirement Boilerplates
	3.2.2 CESAR Requirement Specification Languages
	3.2.3 Easy Approach to Requirements Syntax (EARS)

	3.3 Tools for requirements definition and analysis
	3.3.1 DOORS
	3.3.2 Requirements Authoring Tool (RAT)
	3.3.3 Context RDS
	3.3.4 CESAR DODT
	3.3.5 Attempto Controlled English (ACE)
	3.3.6 ReqUirements BoileRplate sanIty Checker (RUBRIC)

	3.4 Testing automation
	3.5 Model checking and property specification patterns
	3.6 Property Specification Language (PSL)

	4. Requirement templates for safety-related I&C systems
	4.1 Vocabulary
	4.2 Sentences
	4.2.1 Propositions of states and events
	4.2.2 Reserved words and requirement scopes
	4.2.3 Types of complete sentences

	5. Working practices and tool support
	5.1 Requirements definition in model checking – a task description
	5.2 Requirements of a template-based requirement editor

	6. Summary and conclusions
	References
	Appendix A: Model checking templates for safety critical I&C

