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1. Introduction 

The aim of the SAREMAN project is to develop good practices for requirements definition 
and management in nuclear power plants. Its focus is on the safety of Instrumentation and 
Control (I&C) systems. However, due to the multi-disciplinary character of Requirements 
Engineering (RE), also other plant systems and engineering disciplines are concerned in the 
project. 

In order to correctly communicate the needs of various stakeholders, requirements should be 
unambiguous and easily understandable. Moreover, to cope with the frequent changes and, 
in particular, to be able to demonstrate the safety of an I&C system to the regulating 
authority, the project organisation should maintain the traceability among requirements, their 
sources and the solutions satisfying the requirements. 

Even if various diagrams and tabular presentations can be used to express requirements, a 
big part of requirements are today communicated in written form using natural language. One 
of the main problems here is that engineers tend use inconsistent terminology, vague words 
and too complex sentences. Requirements are not verifiable, and they are hard to 
understand and have several interpretations. Consequently, requirements often fail to do 
their job in communicating the safety concerns of the regulator and the customer in the 
supply chain. 

These challenges are not limited to requirements. The demand for clarity and traceability 
concerns all information created in an investment project. The complexity and amount of 
information emphasises the role of computer tools and electronic information exchange 
between project participants. Software tools are needed to automate and enhance design 
activities and to analyse the quality of their results. Even more than in human-human 
communication, the structure and meaning of the information must be agreed among all 
participants. 

The use of a Controlled Natural Language (CNL) is an old and common approach to tackle 
the challenges of poor written requirements. Standards and textbooks list features of good 
requirements and give recommendations for well-structured sentences. There are collections 
of “standardised” requirement statements, i.e. natural language templates where terms of the 

particular application can be filled-in. Some of these templates are also supported by 
commercial requirements management tools. However, for more advanced software tools of 
design synthesis and analysis, standardised sentence structures are not enough. The terms 
inserted into them must come from a limited vocabulary of the domain and the particular 
application. In other words, the tool must make use of a domain ontology and a model of the 

individual I&C system. 

This research report studies the possibilities of requirement templates combined with a 
restricted vocabulary in designing and analysing safety critical I&C systems in nuclear power 
plants. The goals are two-fold. The first research question concerns the terminology and 
types of templates needed in I&C applications in general irrespective of computer tools. As 
already seen in other domains, simple and practical guidance to engineers can rapidly 
improve the quality of requirements. The lessons learned will be incorporated into the RE 
guide being developed in the SAREMAN project. The second and primary research question 
in this report is how templates and ontologies can be used to produce requirements that are 
sufficiently formal to be processed by computer tools. One issue here is how the I&C-
oriented templates could be applied in existing requirements management tools. Our 
particular interest is, however, in model checking. In this methodology, a formal model of 
both the system and the requirements is needed to exhaustively check whether the 
requirements are satisfied by the suggested I&C functions. We expect that templates help us 
formalise human-readable requirements to the temporal logic presentation used in model 
checker tools. The results of this study can hopefully be integrated to the model checking 
tools studied in related research activities, especially in the SARANA project. 
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The rest of this report is organised as follows. Chapter 2 discusses the theoretical 
foundations of the domain ontology and natural language statements. This discussion makes 
use of our previous work on conceptual modelling and role of requirements in systems 
engineering (SAREMAN 2013a). Recognising that templates are already widely used in 
engineering design, chapter 3 presents some examples of recommendations and tools 
particularly relevant to us. As a combination of these ingredients, we suggest in chapter 4 a 
first set of templates particularly intended for model checking function block based control 
applications. More detailed descriptions of the templates are given in appendix A. Next, we 
discuss in chapter 5 the desired features of a requirement editor tool in the context of model 
checking. Finally, chapter 6 summarises the findings of the study and gives some 
suggestions for next steps. 

2. The conceptual basis 

In SAREMAN, we speak about model-based engineering (SAREMAN 2013a). The system 
model describes a future world in terms of various model elements. The main purpose of the 

model is to communicate ideas. Therefore, model elements can be understood as 
statements of stakeholders and designers. Adapted from human communication and the 
speech-act theory, statements have a communicative role indicating whether they should be 

interpreted as facts, requirements, intentions, etc. Some of the model elements represent 
entities that will eventually exist in the real world (e.g. devices and software). Some others 
are abstractions that rather describe what will happen (occur) during system operation 
(function, event). Some model elements are statements about properties (e.g. accuracy) and 
relationships (location of a device) between entities. In model checking the focus is on 
functional requirements but in the wider context of systems engineering all kinds of 
statements should be considered. Below we discuss informally a few obvious ingredients of 
our natural language templates. 

2.1 Propositions about states of affairs 

We adopt here the term “state of affairs” from philosophy. A state of affairs more or less 
corresponds to a “situation”. It is the way the actual world must be in order to make a given 
proposition (statement) about the actual world true. Propositions can describe also attitudes 

like beliefs and desires. For example, the statement “Socrates is wise” is said to express the 
opinion that Socrates is wise and also to describe the actual state of affairs of Socrates being 
wise (http://plato.stanford.edu/entries/states-of-affairs/). The communicative role of a 

statement just above indicates the correct interpretation. Moreover, a state of affairs is a 
possible situation in the world. So, a situation can have an associated probability. A 
proposition about that situation can be true or false or perhaps have a confidence level 
between 0 and 1.  

We are speaking about dynamic systems where situations change over time. Accordingly, 
state of affairs refers to a past, current or future situation out there in the real world. Of 
course, we need also logical combinations of these basic propositions, as well as the events 
of propositions turning from false to true and vice versa.  So, a state of affairs can consist of 
a set of consecutive and simultaneous (past, current and future) situations and events 
(Figure 1). Given that our systems are complex, it makes sense to think of complex states of 
affairs consisting of simpler ones, both in terms of time and decomposition of the world to 
subsystems. For example, “system A is in state X and then in state Y” or “system A is in state 
X and system B in state Y”. 

http://plato.stanford.edu/entries/states-of-affairs/
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Figure 1. Evolution of states of affairs. 

In engineering design, a statement is a (simple or complex) proposition about a future state 
of affairs.  In our case, the communicative role is usually “requirement” but, as claimed in the 

SAREMAN conceptual model, it should not be embedded into the proposition but presented 
as a separate attribute. In other words, we are looking for templates that are applicable not 
only to requirements but also to facts, assumptions, etc. Moreover, we are speaking about 
statements that can be expressed textually in a controlled natural language as one sentence. 
For more complex chains and combinations of states of affairs we would need longer stories 
or graphical presentations like sequence diagrams. Such techniques are out of our scope at 
this point. 

2.2 Elements of the world 

So, we are trying to collect templates for propositions about a future world (when speaking 
about design) or an existing one (when testing is considered). To do this, it is necessary to 
first imagine what kind of entities and phenomena we might encounter in that world. These 
entities are discussed in the SAREMAN conceptual model (SAREMAN 2013a). Figure 2 
illustrates the main concepts. A nuclear power plant is a physical, real-world system that can 
be hierarchically decomposed into parts here called NPP elements. The human organisation, 
various technical systems and the operational environment are the main components. 
People and devices are located in spaces (e.g. rooms) that are bounded by structures like 

walls. Technical systems (process systems and I&C systems) consist of devices, software 
and structural elements (e.g. cabinets). NPP elements can be in various operational states 
(e.g. idle or running) and, depending on their state, carry out certain functions. For example, 

a control system can have the capability of controlling the feed water flow to the reactor. As 
suggested in (SAREMAN 2013a), we reserve the term system function for model elements 
used to by designer to specify the intended capabilities of the system. Purpose in turn links 

the system and its function to the activity it is used for, either as intended by the designer or 
actually by the user in a specific situation. 

The functions provided by NPP elements are combined to carry out intended activities, such 
as energy production. Activities can be decomposed into subactivities, concrete tasks (e.g. 
plant shutdown) and finally to atomic actions. When actually carried out, activities are 
allocated to suitable NPP elements. NPP elements perform actions on some other NPP 
elements by using operations (actions) provided by their functions. For example, to start 
controlling the feed water flow the operator turns the flow controller into the auto mode. Note 
that atomic actions can be considered as a subtype of event. Physical system elements and 

their functions represent a static view to the system but are, in principle, capable of 
generating all possible behaviours of the system, i.e. occurrences that might be observed in 

the real world. 
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Figure 2. Main entities in a power plant model. 

All entities can have a (possibly large) set of properties of various types. Some of them are 
fixed (e.g. size), some configurable (tuning parameters of a PID controller) and variable 
(reactor pressure). Moreover, entities are related to each other in many ways. Also these 
relationships can have properties. 

During design time, the real NPP elements may not yet have been specified. For example, 
we know that there will be an I&C system that has a function, but have no idea of the 
subsystem or piece of software that will implement that function. So, when speaking about 
the system we must make statements about abstract functions that exist in the system model 
but never in the real world. It should be also remembered that the design organisation can be 
considered as a system of its own. Therefore, states of affairs and propositions can refer to 
situations in the development project of a technical system. 

With these concepts we can now return to propositions about possible states of affairs and 
try to outline a classification of the types of propositions needed to describe a nuclear power 
plant and its I&C systems. Here are some examples: 

 NPP element exists (as part of a larger entity) 

 NPP element has a function 

 property of an entity (or all entities in a set) has a value  

 property value of an entity is higher than the property of another entity 

 NPP element is in an operational state 

 NPP element is located in a space 

 NPP element performs an action 

 NPP element performs and activity or participates in an activity 

2.3 Artefact functions and actions of goal-oriented agents 

An important group of requirements, i.e. functional requirements, describe, in writing or 

graphical means, the behaviour of a system, for example as its reactions to external stimuli 
or its ability to perform certain activities. We claim that a consistent taxonomy of activities, 
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actions and functions would guide designers in writing meaningful and unambiguous 
requirement statements. Moreover, such a taxonomy would be needed as a basis of 
computer tools. 

In his extensive review, Crilly (2010) states that despite the importance of function to design 
and use, there is no stable or generally accepted definition of function. Outside the design 
literature, many definitions and classifications can be found, e.g., in philosophy, sociology 
and art theory. In engineering design, the focus has been on transforming inputs to outputs. 

However, this leaves out many non‐transformative functions, such as guiding and supporting. 
It should be also noted that some functions are non-technical, i.e. serving aesthetic and 
social purposes. Finally, a distinction can be made between system functions as intended by 
the designer and those experienced by the user. In essence, an artefact is assigned a 
function if it is taken to have the capacity to play some role for an agent using the artefact in 
some context. (Crilly 2010) 

It is clear that a complete taxonomy of activities, actions and functions is beyond our 
resources and our focus on control systems and model checking. However, because of our 
more general interest in controlled natural languages and systems engineering we 
summarise below a few sources that might be used as a starting point. 

We observe that the real world consists of various man-made artefacts. They have a 
purpose, either defined by the designer in advance (intended) or by the user in a specific 

situation (actual). Some artefacts are passive (e.g. structures) and some reactive (protection 
system) while some others can be considered as proactive and goal-oriented agents (people 
and some computer-based systems). In addition to designed behaviours, natural phenomena 
need to be considered in system models.  

A theoretical framework of acting based on the work of von Wright is discussed by Morten 
Lind (2005). Goal-oriented agents can oppose or promote certain states of affairs, either by 
active interventions or by doing nothing and letting things happen. This leads to a set of 
elementary types of action as illustrated in Figure 3. 

 

Figure 3. Interpretations of the elementary types of acting (Lind 2005). 

Interestingly, similar types of functions can be found in I&C systems. For example, the 
purpose of regulatory control functions (PID loops) is typically to maintain a stable state while 
interlocks prevent unwanted situations from occurring. Protection functions in turn actively 
produce a safe state thereby destroying the hazardous situation. Omissions remind us of 
“negative requirements”. I&C systems shall not perform spurious activations or interfere with 
the functions of other systems or the user. 
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So, the elementary types above might be useful as a top-level classification. Additional and 
more practical taxonomies can be found from publications and standards in the engineering 
domain. While criticised for ontological inconsistencies and focus on flows only (Garbacz 
2006), the classifications by Hirtz et al. (2002) represent a synthesis of a long research 
tradition in engineering design. Verbs like connect, convert, support, signal and control 
magnitude are examples from the function taxonomy. Similar terms can be found in IEC 
81346-2 (2009) concerning structuring principles and reference designations of industrial 
systems (Figure 4). These kinds of guidelines and standards could be used as basis of a 
controlled vocabulary and taxonomy of verbs needed for describing I&C functions. 

 

Figure 4. Classes of activities according to intended purpose or task (IEC 81346-2 2009) 

2.4 Temporal and set relationships 

Thinking about dynamic systems also leads us to complex states of affairs consisting of 
several sequential and concurrent situations. Therefore, we need to classify relationships 
between temporal intervals and actions/events. Events can be understood as points of time 
or very small intervals that start or end a state of affairs, i.e. when the corresponding 
proposition is made or otherwise becomes true or false. Here is one list suggested by Allen 
(1984): 
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 DURING (t1, t2): Time interval t1 is fully contained within t2; 

 STARTS(t1, t2): Time interval t1 shares the same beginning as t2, but ends before t2 
ends; 

 FINISHES(t1, t2): Time interval t1 shares the same end as t2, but begins after t2 begins: 

 BEFORE(t1, t2): Time interval t1 is before interval t2, and they do not overlap in any way; 

 OVERLAP(t1, t2): Interval t1 starts before t2, and they overlap; 

 MEETS(t1, t2): Interval t1 is before interval t2, but there is no interval between them, i.e., 
t1 ends where t2 starts; 

 EQUAL(t1, t2): t1 and t2 are the same interval. 

Including the time dimension to states of affairs leads to two types of complex propositions: 
1) states of affairs and events occur in a defined order determined by the temporal 
relationships above; and 2) specific propositions hold during a temporal interval. Note that 
many kinds of natural language expressions can be constructed by using everyday terms 
and changing the order of intervals. Note also that the relationships do not necessarily imply 
causal dependencies between the intervals. However, it would be meaningless to speak 
about random coincidences in the context of design and testing. Letting E be an event and P 
and Q propositions corresponding to two time periods might leads us to the following 
examples: 

 DURING(E, P): E occurs while P holds. (Requirement or design intent, P enables E) 

 STARTS(E, P): When E happens, P becomes immediately true. (Expected behaviour of a 
system) 

 FINISHES(E, P): When E happens, P becomes immediately false. (Expected behaviour 
of a system) 

 BEFORE(E, P): When E happens, P becomes true after x time units.  

 BEFORE(P, E): E occurs after P has turned to false.  

 BEFORE(P, Q) OR BEFORE(Q, P): P and Q shall not be true simultaneously (Expected 
behaviour of a system) 

 OVERLAP(P, Q): Q becomes true before P turns to false. (Expected behaviour of a 
system) 

 MEETS(P, Q): When P turns to false, Q becomes immediately true. (Expected behaviour 
of a system) 

 EQUAL(P, Q): P and Q shall be simultaneously true. (Requirement) 

We can also think of time periods as sets of time points. So, some of the temporal 
relationships correspond to relationships between sets, for example: 

 EQUAL(A, B): A and B have exactly the same elements (corresponds EQUAL time 
periods) 

 SUBSET(A, B): Every element of A is in B (DURING) 
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 PROPER SUBSET(A, B): Every element of A is in B except for at least one (STARTS, 
FINISHES) 

 DISJOINT(A, B): A and B have no elements in common (no OVERLAP) 

 COMPLETE(A1 … An, B): The union of A1 … An is EQUAL to B. 

When expressed in a suitable way, these relationships can be useful in natural language 
statements. For example, a requirement might hold for every field instrument of a given type. 
Or, the measurement ranges of two instruments cover the whole range of a process variable, 
including also abnormal and accident conditions. 

2.5 On the English grammar 

As discussed in section 2.1, natural language sentences are statements about simple or 
complex states of affairs. So, the structure of a natural language, in this case English, should 
be considered as one starting point. In written English sentences consist of one (simple 
sentence) or more (compound sentence) clauses. The clauses in a compound sentence are 
joined by co-ordinating conjunctions (and, but, so). A complex sentence has a main clause 
and one or more subordinate clauses. Clauses are made of phrases, i.e. groups of one or 

more grammatically linked words that do not have subject and predicate. Clauses in English 
have at least two parts: a noun phrase and a verb phrase. Types of phrases include 
(http://grammar.about.com, http://learnenglish.britishcouncil.org/english-grammar/clause-
phrase-and-sentence): 

 Adjective phrase modifies a noun. It may appear before the noun (sweet coconut) or after 
a linking verb (shampoo tastes funny). Adjectives (big) can be comparative (bigger) and 
superlative adjectives, intensifiers (very) and mitigators (fairly), and noun modifiers (metal 
box). A lot of adjectives are made from verbs by adding -ing or –ed (amusing).   

 Adverb phrase modifies a verb, an adjective, or another adverb. Adverbials are used to 
say how, where, when or how certainly something is done. There are several types 
adverbs and adverbial phrases: contrast, reason, place (near the wall, everywhere), 
purpose, result, time (frequently), condition, manner (slowly). 

 Noun phrase usually functions as a subject or object in a clause. The simplest noun 
phrase consists of a single noun possibly accompanied by modifiers or determiners (such 
as the, a, her) or a pronoun. Sometimes the noun phrase begins with a quantifier (all, 
some). 

 Prepositional phrase is a combination of a preposition (above, before, within) and a noun 
phrase. Prepositions convey the various relationships: agency (by); comparison (like, as); 
direction (to, toward, through); place (at, by, on); possession (of); purpose (for); source 
(from, out of); and time (at, before, on) 

 Verb phrase includes a main verb and its auxiliaries (such as have, do, or will) that 
determine the mood (attitude), modality (necessity, uncertainty, ability, or permission, e.g. 
can, could, may, might, must, ought, shall, should), tense (past, present, future), or 
aspect (completion, duration, or repetition) of another verb. The structure of the verb 
clause depends on the type of the verb (transitive, intransitive, etc.) 

Even if a natural language is rich in forms and nuances, it can also express the fundamental 
logical aspects that we need. We should just carefully select a subset of words and sentence 
structures that are correctly understood by most readers. Remembering the 
recommendations for well-formed requirements (SAREMAN 2013b), it is clear that all 
common words and phrases, e.g. vague words and ambiguous pronoun references, can 
NOT be used in our templates. 

http://grammar.about.com/
http://learnenglish.britishcouncil.org/english-grammar/clause-phrase-and-sentence
http://learnenglish.britishcouncil.org/english-grammar/clause-phrase-and-sentence
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2.6 Towards the anatomy of a natural language proposition 

To summarise the philosophical considerations above, we try to identify a small set of 
features that could be used to structure practical statements and to define potential 
templates.  

General guidelines for well-formed requirements can be found in standards and textbooks. A 
summary is given in the SAREMAN RE guide (SAREMAN 2013b). For example, passive 
voice, weak words and error-prone sentence structures should be avoided since they lead to 
difficulties in design verification and human communication. The decision depends, however, 
on the domain and expected users. Sometimes we might want to express soft goals in 
addition to strict requirements. In particular, the exact interpretation of repeatedly used 
keywords, such as when, while, then, if, after, all, etc., needs to be defined. The table below 
gives some suggestions. 

Table 1. Interpretation of repeatedly used keywords. 

Keyword Recommended usage 

While Period of time, e.g. “While the plant is in the shut-down state, …”, or “While 

the field operator is working inside the containment, …..”. 

When Event or action, e.g. “When the operator pushes a button, …”. 

Whenever Same as “when” with the idea that there may be many occurrences or the 
event? 

Where Conditional set of entities irrespective of time, e.g. “Where a motor-operated 
valve is installed inside the containment, it shall ….” (see Mavin et al. 2009, 
2010).  

If a) Statement of a logical implication (causality) irrespective of time, e.g. “If 

the pressure is higher than x, the vessel may burst”. 

b) Decision making in the course of an action, e.g. “While performing a 
periodic check, if the filter is dirty, the technician shall replace it”. 

Then a) Consequence of a logical implication, e.g. “If ….., then ….”. 

b) Temporal order of events and states, e.g. “….and then …”. 

 

As suggested in ISO 29148 (2011), a statement can be divided into three main parts: 
condition, main body and constraint. The main body contains the key proposition, simple or 
complex. The condition (scope) says under what circumstances the main body holds, and 
the constraint refines the body, for example in terms of performance and time. Table 2 below 
gives some examples. 

Table 2. Requirement statements divided into condition, main body, and constraint. 

Condition  Main body Constraint Comments 

- System has two 
redundant temperature 
sensors. 

- Existence of the sensors. 

- The maximum operating 
pressure of the reactor 
vessel is 0.5 MPa. 

- Property of a device. 

- The process controller is 
located in the cross 
connection room. 

 Relationship in system 
structure 
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Condition  Main body Constraint Comments 

- The two redundant 
temperature sensors are 
powered by different 
power supplies.  

- Complex relationship. 

While system is 
in AUTO mode, 

when temperature rises 
above 100 C, system 
opens the relief valve 

within 10 seconds to 
prevent over pressure. 

State and event triggered 
behaviour with a time limit. 
System as the actor, open 
as type of acting. 
Rationale included. 

Where a sensor 
is used for a 
safety-relate 
function,  

the sensor must have a 
redundant power supply. 

  

 

Table 3 below lists types of clauses with some examples. The terms in angle brackets, e.g. 
<entity>, depend on the application domain and can’t be combined in arbitrary ways. For 
example, it is obviously nonsense to say that “a <function> is located in a <room>”. In 
addition to domain entities and properties, we need many common words like verbs and 
adverbs in the recommended sentence structures. They should provide some freedom to the 
author but still convey a unique meaning.  

Complete sentences can be built by combining standard clauses with logical (and, or…) and 
temporal (after, then…) conjunctions. In the general case, the number of terms and sentence 
structures needed in systems engineering is, of course, enormous. Therefore, we will focus 
on a very limited domain in chapter 4. 

Table 3. Examples of requirement clause structures. 

Clause type Examples of sentence structures 

System structure (usually static) 

Composition <entity> has <entity | entity list> [as its part] 

<entity> is part of <entity> 

Arrangement <entity> is located in <entity> 

<entity> is located near to <entity> 

distance between <entity> and <entity> is [<comparison>] <value> 

System state 

Property <property> of <entity> is <value | range> <unit of measurement> 

<property> of <entity> is [<comparison>] <value> <unit of 
measurement> 

<property> of <entity> is [<comparison>] <property> of <entity> 

Variable value <variable> is <value | range> 

<variable> is <comparison> <value> 

<variable> is <comparison> <variable> 

Operational 
state 

<entity> is in <operational state> state 

Operating mode <entity> is in <operating mode> mode 

Event (duration = 0) 
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Clause type Examples of sentence structures 

Composition 
change 

<entity> is added to <entity> 

<entity> is removed <entity> 

Arrangement 
change 

<entity> enters into <entity> 

<entity> comes near to <entity> 

distance between <entity> and <entity> becomes [<comparison>] 
<value> 

<work item> is received 

Property change <property> of <entity> becomes <comparison> <value> 

<property> of <entity> becomes <comparison> <property> of <entity> 

Variable value 
change 

<variable> becomes <comparison> <value> 

<variable> becomes <comparison> <variable> 

Operational 
state change 

<entity> enters <operational state> state 

Operating mode 
change 

<entity> enters <operating mode> mode 

Action <entity> performs <action> 

<entity> starts <activity> 

<entity> <verb> <entity> 

<entity> sets <property> of <entity> 

<entity> sets <variable> to a value that is <comparison> <value> 

<entity> sets <entity> to <operational state> state 

Activity (duration > 0) 

Maintaining  <entity> keeps <property> of <entity> in the range <range> 

Producing <entity> brings <entity> into <operational state> state by … 

<entity> makes <entity> perform <action> 

Preventing <entity> prevents the value of <variable> from becoming <comparison> 
<value> 

<entity> prevents <entity> from performing <action> 

Allowing (i.e. not 
preventing) 

<entity> allows the <property> of <entity> to become <comparison> 
<value> 

<entity> allows <entity> to <verb> <entity> 

<entity> allows the <property> of <entity> remain in <value> 

Supporting <entity> helps <entity> to <verb> <entity> 

Performing <entity> performs <activity> 

Timing & performance 

While while <system state | activity> 

Within <entity> performs <action> within <duration> 

Period <entity> performs <activity> for a period of <duration> 

Before <entity> enters <operational state> state before <event> 

<entity> enters <operational state> state within <duration> 

After <entity> performs <action> after <event | duration> 
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Clause type Examples of sentence structures 

Until <entity> performs <activity> until <event | state> 

Always <property> of <entity> is always <value> 

Never <entity> never performs <action> 

When when <event> occurs, <entity> performs <action> 

Order/Then when <event_1> occurs and then <event_2> occurs, <entity> performs 
<action> 

Performance <entity> performs <action> with the rate of <value> per <time unit> 

<entity> never performs <action> with the accuracy of <value> <unit of 
measurement> 

Sets 

Where where <property> of <entity type> is [<comparison>] <value>, … 

where <entity type> has <entity type> as its part, … 

Misc. 

Possibility it is [not] possible that …. 

Probability <event> occurs with probability of <value> 

Decision if <property> of <entity type> is [<comparison>] <value>, … 

3. Related research 

The idea of using predefined templates for requirements authoring is not new but can be 
found in textbooks, standards and many design tools, in particular in the areas of systems 
engineering and software development. Consequently, there are lessons to be learned for 
control system design and model checking. This chapter describes some of the most 
relevant approaches. 

3.1 Controlled natural languages 

Natural Language Processing (NLP) is a field of computer science, artificial intelligence and 

linguistics concerned with the interactions between computers and human languages in the 
form of text or speech. NLP includes many areas from semantic analysis and machine 
translation to word stemming. Examples of tasks needed in NLP are Part-Of-Speech (POS) 
tagging, stemming and parsing. POS tagging determines the linguistic category of the words, 
e.g. nouns and verbs. Stemming finds the root (stem) of a word for inflected forms, e.g., the 
singular for a plural word. Parsing performs the grammatical analysis of a sentence resulting 
in a syntax tree. NLP relies on formal models of language at the levels of phonology and 
phonetics, morphology, syntax, semantics and discourse. These formal models include, for 
example, state machines, rule systems, logic and probabilistic models. There are many 
natural language processing toolkits available for NLP. Also the technical committee TC 37 
within the International Organization for Standardization (ISO) prepares standards 
concerning methodology and principles for terminology and language resources. (Several 
sources, e.g. Farfeleder et al. 2011, http://www.cs.colorado.edu/~martin/SLP/Updates/1.pdf, 
Wikipedia) 

In this report, we are most interested in a specific area of NLP, namely Controlled Natural 
Languages (CNL). As defined by Kuhn (2013), a controlled natural language is a constructed 

(written) language that is based on a natural language, being more restrictive concerning 
lexicon, syntax and/or semantics while preserving most of its natural properties. Especially 

http://www.cs.colorado.edu/~martin/SLP/Updates/1.pdf
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during the last four decades, a wide variety of such languages have been designed, most of 
them based on English. Usually, controlled natural languages fall into two major types (both 
relevant to us): those that improve readability for human readers, and those that enable 
automatic semantic analysis. The first type is used in the industry to increase the quality of 
technical documentation. The second type has a formal logical basis. (Kuhn 2013, Fuchs 
2008, https://sites.google.com/site/controllednaturallanguage/) 

Kuhn (2013) has reviewed a large number of controlled natural languages, and we pick some 
examples from his report. ASD-STE and SLANG are examples of industrial applications of 
CNL. The ASD Simplified Technical English has been developed for the aerospace industry 
to make texts easier to understand, especially for non-native speakers. The Standard 
Language (SLANG) is a language developed at Ford Motor Company for writing instructions 

for component and vehicle assembly. Based on these instructions, the system can 
automatically generate a list of required elements and calculate labour times.  

A third example of industrial CNL is the Gellish English designed to be a common data 

language for industry. Basically, its underlying data model consists of simple subject–
predicate–object triplets in the form of fixed phrases such as “A is a specialization of B”. 
Gellish builds upon a fixed upper ontology with a large number of predefined concepts and 
relation types. Texts in Gellish can be transformed into a formal tabular representation. The 
semantics of the language is not fully formalized. (Kuhn 2013) 

The Gellish data model and Gellish English (van Renssen 2005, http://www.gellish.net) are 
based on various international standards, such as ISO 10303 (STEP), ISO 15926, as well as 
terminology sources like ISO 16354 and IEC 60050. Its dictionary contains several domain 
taxonomies, for example an upper ontology of concepts and relation types, units of measure, 
activities, events and functions, as well as physical objects, such as process units, buildings, 
electrical and instrumentation equipment, materials of constructions and organizations. The 
triple structures can be extended with auxiliary facts, e.g. with a textual requirement or an 
indication of the interpretation of the expression as a statement, a question, an answer, a 
denial, etc1. In fact, the Gellish data model can also be used to express requirements in an 
unambiguous and computer interpretable way (Figure 5). 

As a further example, Attempto Controlled English (ACE) is a CNL with an automatic and 
unambiguous translation into first-order logic. The most notable features of ACE include 
complex noun phrases, plurals, anaphoric references, subordinated clauses, modality, and 
questions. ACE will be described in more detail in section 3.3.5. 

Finally, the Common Logic Controlled English (CLCE) is a language that can be translated 
into first-order logic. It is related to the ISO standard 24707 for Common Logic that is a 
semantic foundation for an open-ended family of languages, such as predicate calculus, 
conceptual graphs, and CLCE. Some of the most important syntax restrictions are: no plural 
nouns, only present tense, and variables instead of pronouns. The wish list of Sowa (2011) 
includes a way to write statements about propositions, e.g. to express uncertainty and 
various types of modality (necessity and possibility; knowledge and belief; obligation and 
permission. 

 

                                                
1
  Derived from the Speech Act theory that has also influenced the SAREMAN conceptual model. 

https://sites.google.com/site/controllednaturallanguage/
http://www.gellish.net/
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Figure 5.  Model of the requirement “C.3.3.3 Rotor systems that have low inertia and are 
subject to accidental unloading should be equipped with a quick-acting brake to prevent 
damage from overspeed.” (van Renssen, From multiple standards documents to a single 

requirements model, slides) 

3.2 Requirement templates 

We use often the term “template”. So, it must be defined in some way. Basically a template is 

understood here as a standardized and pre-formatted partial solution that, when combined 
with case-specific data, can be used to produce new artefacts, for example documents or 
source code in the Java language. Usually the application-specific data is just added to the 
variation points, placeholders, of the template. A template processor is a more complex 

software tool designed to combine one or more templates with the data (e.g. parameters) to 
produce new artefacts. It typically includes features of programming languages, such as 
variables, functions, conditional evaluation and loops. (see en.wikipedia.org/wiki/-
Template_processor) 

Templates are one form of reusable design knowledge. For example, software components 
and design patterns have the same purpose but a different meaning. Components, such as 

function blocks (types) in a PLC application programming environment, can be instantiated, 
parameterised and “wired” together to form a control application. Patterns are usually applied 
and combined in more creative ways. Patterns were first applied in architecture, but became 
popular also in software engineering, when the "Gang of Four" published their book on 
reusable design patterns (Gamma et al. 1994).  A pattern describes a recurring problem in a 
design context and presents a well-proven solution for the problem (Buschmann, Henney & 
Schmidt 2007). A pattern also tells when it is applicable and describes the main issues to be 
considered when it is used. An organised collection of patterns with an associated 
development process is called a pattern language. Note that in model checking literature 

(section 3.5) the term “pattern” is also used for reusable property specifications. Design 
pattern is, however, a different concept. To avoid confusion, we try here to always speak 
about templates rather than patterns. 
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Numerous templates for natural language requirements have been proposed over the years 
(Arora et al. 2013a). Below we describe some of them. 

3.2.1 Requirement Boilerplates  

The term related to template, “boilerplate” was originally used to identify the builder of a 
steam boiler. Today it often refers to text that can be reused without being changed much 
from the original. Many computer programmers often use the term boilerplate code. In 
contractual law, the term "boilerplate language" describes the parts of a contract that are 
considered standard. (from http://en.wikipedia.org/wiki/Boilerplate) 

Table 4. Examples of Boilerplate clauses (www.requirementsengineering.info).  

 

 

Hull, Jackson and Dick (2002) first used the term boilerplate to refer to a textual requirement 
template. A boilerplate like “<system>shall<action>” consists of a sequence of attributes and 
fixed syntax elements. During instantiation, textual values are assigned to the attributes of 
the boilerplates. The basic building block of a boilerplate is a boilerplate clause classified, 
e.g., as capability, function, timeliness, etc. In addition, each clause may have a goal type 
indicating the general objective being articulated, e.g. minimise something, maximise 
something, exceed some value, etc. These keywords can help considerably in processing 
and organising the requirements. Complex requirements can be expressed in multiple ways 
by placing the clauses in different orders by means of concatenation. This allows keeping the 
number of required boilerplates low while at the same time having a high flexibility. 
(www.requirementsengineering.info, Farfeleder et al. 2011) 

http://en.wikipedia.org/wiki/Boilerplate
http://www.requirementsengineering.info/
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The boilerplate repository is available at www.requirementsengineering.info/. Some 
examples are given in Table 4. For DOORS users, there is a set of scripts that provide 
support for boilerplates, see section 3.3.1.  

 

3.2.2 CESAR Requirement Specification Languages 

CESAR stands for “Cost-efficient methods and processes for safety-relevant embedded 
systems” and was a European funded project from ARTEMIS joint undertaking 
(http://www.cesarproject.eu/). The project started in March 2009 and was finished in June 
2012. CESAR has extended and applied the boilerplate idea above to a number of safety-
critical domains, with the intention to formalise the approach using domain ontologies (Dick & 
Llorens 2012). 

The purpose of the CESAR Requirements Specification Languages (RSL) is to capture and 
formalise requirements throughout the development process. CESAR provides multiple 
languages instead of a single one (Figure 6). Boilerplate and the pattern-based RSL are 
textual semi-formal languages, providing templates to engineers that constrain the writing of 
requirements. (CESAR 2010) 

Guided Natural language RSL retains the benefit of free text since it does not introduce 
additional constraints on requirement statements or require additional training. It can be 
achieved with a dictionary. Domain-specific and requirements-related terms can be 
highlighted and the elicitation process enhanced with a content assistant that provides the 
analyst with related and specific choices of domain terms from a dictionary. (CESAR 2010) 

Boilerplates are semi-complete requirements that are parameterized to suit a particular 
context in a way similar to (Hull et al. 2002). Boilerplates can be linked with domain 
ontologies that contain commonly agreed domain or company-specific terms. The second 
boilerplate enforcement mechanism is a set of predefined structures. The pattern-based RSL 
uses an even stronger formalism with fixed semantics. As a result, patterns constrain users 
in a stronger way in writing requirements, but allow numerous automatic analysis techniques 
to be used. (CESAR 2010) 

 

Figure 6. Overview of CESAR Requirements Specification Languages (CESAR 2010). 

CESAR uses about 35 boilerplates for expressing user capabilities, functional system 
requirements and constraints. For example, a combination of BP2 and BP35 leads to  

The <system> shall be able to <action> <entity> at least <number> 

times per <unit> 

http://www.requirementsengineering.info/
http://www.cesarproject.eu/
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The original set of boilerplates by Jeremy Dick et al. has been slightly changed. 
Enhancements allow several entities to be grouped and temporal relationships to be 
expressed.  Interestingly, a temporal state can be achieved, maintained, ceased, avoided, 
minimized, maximized, increased, decreased and improved. Boilerplates are provided also 
for optional behaviour (the system may…), goals (in order to…) and negative requirements 
(example in Figure 7). (CESAR 2010, 2011) 

 

Figure 7.  A boilerplate expressing a negative functional requirement (CESAR 2011). 

The CESAR boilerplates (CESAR 2011) are divided into three types; main, prefix and suffix 
boilerplates. Main boilerplates can stand alone, whereas prefix and suffix boilerplates must 
be prepended or appended, respectively. Boilerplates can be classified according to the 
categories Capability, Capacity (Maximise, Exceed), Rapidity (Minimise, do not exceed), 
Mode (while, if, for ...), Sustainability, Timelines, Operational Constraints and Exception. This 
helps ordering the requirements. (CESAR 2011, Johannessen 2012) 

In pattern-based RSL, patterns consist of static text elements and attributes being filled in by 
the requirements engineer. Each pattern has a well-defined semantic in order to ensure a 
consistent interpretation. Patterns allow the writing of natural sounding requirements while 
being expressive enough to formalize complex requirements. CESAR defines 25 patterns 
organized into categories concerning functions, probability, operating mode, safety (Figure 
8), timing and architecture. A functional pattern describing the causality between two events 
does look like this:  

[whenever Event1 from subject1 is received] subject2 [does not] 

emit[s] Event2 [within Interval] 

Phrases in square brackets are considered optional, and italic printed elements represent 
attributes that have to be filled in. (CESAR 2010, 2011) 

 

Figure 8. Description of a safety pattern (CESAR 2010). 



 

RESEARCH REPORT VTT-R-01067-14 

21 (64) 

 
 

 

 

Figure 9. Example of a contract assertion pattern (SPEEDS 2008) 

Moreover, CESAR has considered the contract-based approach in requirements 
engineering, in particular the ideas developed in the SPEEDS project for embedded system 
design (http://www.speeds.eu.com/). Different from the legal binding, the term “contract” 
refers in software engineer's literature to the set of specifications that describe what a system 
should guarantee under some assumptions (CESAR 2010). In other words, a contract-based 
requirement has two parts: 1) an assumption about the operating environment not 
controllable by the system and 2) a promise saying what the system will realize given that the 
assumption is satisfied (CESAR 2011). Also SPEEDS (2008) defines a set of most frequent 
patterns that are used in contracts specification. Figure 9 gives an example. They might be 
used as requirement templates also.  

In addition to the issues described above, the CESAR (2011) project has studied several 
topics relevant to the SAREMAN project. In particular, it has considered generic failure 
modes, preliminary hazard analysis on the basis of system requirements, model-based 
requirements modelling, semi-automatic formalisation of requirements and use of 
behavioural patterns (Figure 10) for model checking (see section 3.5). Moreover, CESAR 
has developed tools for requirements modelling and analysis. One of them, DODT, is 
introduced below in section 3.3.4. 

http://www.speeds.eu.com/
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Figure 10. Classification of behavioural patterns (CESAR 2011). 

 

3.2.3 Easy Approach to Requirements Syntax (EARS) 

EARS was developed by Mavin et al. (2009, 2010) at Rolls-Royce Control Systems. In 
EARS, the requirements are based on five sentence templates: ubiquitous requirements, 
event-driven requirements, state-driven requirements, unwanted behaviour requirements and 
optional requirements (Figure 11). Template types are identified by keywords ‘when’, ‘while’, 
‘if-then’ and ‘where’. EARS does not impose a strict structure to the elements that are filled 
in. Basic templates can be combined to create compound statements.  

EARS has been successfully applied to a variety of complex, safety-critical systems, e.g. 
aero-engine control systems. The method has been developed primarily for stakeholder 
requirements, as opposed to technical system requirements. The hypothesis of EARS is that 
a small set of simple requirement structures is an efficient and practical way to enhance the 
writing of high-level stakeholder requirements.  
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Figure 11. Sentence types of EARS (Easy Approach to Requirements Syntax)(SAREMAN 
2013b). 

3.3 Tools for requirements definition and analysis 

This section describes some examples of commercial and experimental software tools. 

3.3.1 DOORS 

Rational DOORS, a product of IBM, is one of the most well recognised requirements 
management tools available (Beatty et al. 2011). Like other common requirement authoring 
tools, DOORS (Figure 12) basically emulates a word processor but offers additional features 
(OMG 2013). In a 2011 evaluation of requirement management tools (Beatty et al. 2011), the 
consulting company Seilevel noted that DOORS is “an excellent all-around tool”, and ideal 
for large system projects that need to handle a large volume of data. Traceability, queries, 
reporting, and access control features provide flexibility for many types of work. The 
limitations include a somewhat out-of-date user interface, with some functionality buried deep 
within menus. Also, emphasis is on requirements traceability and versioning rather than 
requirement modelling, making DOORS a tool more suitable for software projects than 

systems engineering. 

For exchanging and processing requirements, DOORS provides several mechanisms, for 
example:  

 The Rational DOORS eXtension Language (DXL) is a C or C++ like scripting language 
that allows users to create plugins that control and extend the functions of DOORS. 

 Rhapsody Gateway add-on can be used to export requirements from DOORS (as well as 
various other sources) to Rhapsody as SysML artifacts, or upload Rhapsody model 
elements to DOORS.  
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Figure 12. DOORS documents have a tree-like data structure (Image source: www.ibm.com). 

As a data format for exchanging requirements, DOORS supports the Requirements 
Interchange Format (RIF), an OMG standard intended to facilitate the exchange of 
requirement information between various tools and companies. RIF is an XML extension 
supporting, e.g., hierarchical document structure, unique identifiers, XHTML based text 
formatting, and access restrictions (OMG 2013). The requirement attributes can also refer to 
external objects with binary content (e.g., image files). 

Basically DOORS requirements, as well as the requirement clauses in RIF documents, are 
free text. However, there are DXL scripts available at www.requirementsengineering.info that 
support for the boilerplates by Hull, Jackson and Dick (2002) introduced in section 3.2.1. 
These scripts, dating back to 2002, should allow requirements to be constructed from 
boilerplates (Figure 13). This tool shows the complete requirement text with attributes 
highlighted in blue. The user can edit the attributes by double-clicking them and then either 
entering a new value or selecting a value from those used in other requirements. 
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Figure 13. Requirement Boilerplates in DOORS (adapted from slides by Jeremy Dick, 
www.requirementsengineering.info) 

3.3.2 Requirements Authoring Tool (RAT) 

The Reuse Company (http://www.reusecompany.com/) is a European IT company with the 
mission to promote information reuse by offering processes, methods, tools and services. Its 
main product, the Requirements Quality Suite (RQS) consist of several tools, in particular:  

 Requirement Authoring Tool (RAT2) to assist authors in creating or editing requirements. 

 Requirements Quality Analyzer (RQA) to setup, check and manage the quality of a 
requirements specification. 

 knowledgeMANAGER to manage the knowledge around a requirements specification, 
e.g. the ontology it is based on, the structure of requirements (boilerplates) and the 
communication between authors and domain architects. 

The Requirements Quality Analyzer (RQA) for DOORS enables managing the quality of 
requirements specifications in projects using DOORS. It assesses the quality of a DOORS 
repository by Natural Language Processing (NLP) techniques to extract quality metrics for 
readability, ambiguity, incompleteness, domain terms and boilerplates matching with the 
written text. The ontology defined with the knowledgeMANAGER stores the information 
needed for requirements authoring and quality analysis (Figure 14). (Reuse 2013) 

                                                
2
 Note that there has been also another tool development called RAT - Requirements Analysis Tool 

(http://rat.fbk.eu/) originally developed in the PROSYD project funded by the European Commission. 
Since then, an upgraded version named RATSY (Requirements Analysis Tool with Synthesis) has 
been released (http://rat.fbk.eu/ratsy/). 

http://www.reusecompany.com/
http://rat.fbk.eu/
http://rat.fbk.eu/ratsy/
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Figure 14. RQA ontology (Reuse 2013). 

The Requirement Authoring Tool (RAT) uses a set of boilerplates but allows the user to type 
free requirement text (Figure 15). The quality frame on the right side shows the quality of the 
written requirement. Based on the dictionary and the quality assessment results the text box 
shows spelling errors and terms that should be considered for re-authoring. 

 

Figure 15. Typing free text in RAT (Reuse 2013). 

While allowing the author to write free text, it is also possible to first select a specific 
boilerplate (Figure 16). RAT shows its structure and an example of use. The author then 
selects the right terms from the suggestions. RAT shows the feasible boilerplates matching 
with the written text. Furthermore, users can suggest new boilerplates, or changes to the 
existing ones. 
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Figure 16. Editing requirements with boilerplates (RAT flyer). 

RAT uses the same metrics as RQA but focuses on individual requirements and has been 
designed as an authoring assistant. It provides quality feedback on the fly and detects 
inconsistences, coupling requirements, ambiguous requirements, non-atomic requirements, 
use of the wrong verb tense, mode or voice, and inconsistent use of measurement units. 
RAT is connected to the Requirements Management tools, e.g. IBM Rational DOORS, 
Microsoft Excel. (Reuse 2013) 

RAT allows the user to start typing a requirement, and simultaneously determines which of a 
palette of templates are applicable, guiding the user on permissible terminology. The 
combination of these properties allows the requirements author to write requirements in an 
assisted way, as a counterpart to the “fill the gap” approach to placeholders. The possibility 
of not selecting a boilerplate before typing a requirement leads to the tool being considered 
as an assistant, and users may feel their creativity being less constrained. At present, the 
tool comes equipped with about 70 templates that can be combined in various ways. (from 
Dick & Llorens 2012) 

3.3.3 Context RDS 

Context RDS from the developers at Rolls-Royce is an experimental toolkit that develops the 
concept of statement templates towards the use of domain-specific ontologies. The tool 
constrains how authors are able to instantiate the templates. This ensures, for instance, the 
consistent use of terms and units, and prevents the creation of nonsense requirements (Dick 
& Llorens 2012). The RDS template structure shown in Figure 17 is close to what we are 
thinking about in SAREMAN. However, it is unclear whether Rolls-Royce intends to develop 
this prototype further and how it would be related to the EARS guidelines described above in 
section 3.2.3. 
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Figure 17. Context RDS template structure (Dick & Llorens 2012). 

3.3.4 CESAR DODT 

DODT is a tool developed in the ARTEMIS project CESAR (http://www.cesarproject.eu/, see 
section 3.2.2 above) to write and manage boilerplate requirements. The tool allows the 
creation and customization of ontologies, boilerplate database and a requirements 
specification. The requirements editor is shown in Figure 18. The tool monitors whether the 
attributes are in accordance with the ontology, indicates errors and allows the requirements 
engineer to create a concept. It is also possible to create or import ontologies. Moreover, 
DODT enables the user to create and edit boilerplates. (Farfedler et al. 2011, Johannessen 
2012) 

One purpose of the domain concepts and generic failure modes in DODT is to support 
hazards analysis at an early stage of design. For example, let’s consider the requirement: 

R4: The control system shall control water level using feeding pump. 

By identifying the participating elements (control system and feeding pump), DODT is able to 
automatically generate a table of elements and their failure modes. The failure effects, their 
causes and corrective actions need to be filled-in by a safety expert. KROSA is prototype tool 
developed in CESAR for the safety analysis (FMEA). It is based on natural language 
processing (NLP, see section 3.1), hazard analysis ontologies and Case Based Reasoning 
(CBR) on a library of previous (similar) hazard analysis results. (CESAR 2011) 

 

http://www.cesarproject.eu/
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Figure 18. DODT Requirements editor (Johannessen 2012). 

An example of using CESAR tools in developing automotive systems is described by 
Armengaud et al. (2012). In the requirements engineering phase requirements are formalized 
from natural language text to semi-formal boilerplates using DODT und finally to formal 
patterns using the PatternEditor (Figure 19). The requirements are stored in the RequisitePro 
tool. The CESAR Meta-Model (CMM) API would allow integration to other RM tools like 
DOORS without changes to the application. Mistakes can be detected early by running the 
ontology based analyses or formal requirement checks. In system design and safety 
analysis, the EAST-ADL2 architecture description language is used for modelling automotive 
embedded systems with the Papyrus tool. Requirements are linked to system elements. 
Hierarchically Performed Hazard Origin and Propagation Studies (HiP-HOPS) support safety 
design by automating FTA and FMEA. Test cases are derived from requirements and 
executed automatically. Traceability is maintained between requirements, system elements, 
test cases and test results. This example illustrates nicely the fact that many kinds of tools 
need to be integrated today in order to cover the whole design process. For instance, 
requirements management tools don’t support modelling of system architecture. On the other 
hand, current design tools have no support for requirements. Therefore, tailored solutions are 
needed to exchange information between them. 
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Figure 19. Proposed tool-chain for embedded automotive systems (Armengaud et al. 2012). 

3.3.5 Attempto Controlled English (ACE) 

Attempto is a research project of the University of Zurich with the objective to develop 
Attempto Controlled English (ACE) and its tools (see http://attempto.ifi.uzh.ch/site/). The 
intention is to help professionals who want to use formal methods but may not be familiar 
with them. While originally designed for software specifications, ACE has in the recent years 
been extended with languages and applications of the Semantic Web (Kaljurand & Kuhn 
2013).  

ACE allows users to express texts precisely with the terms of their application domain. The 
ACE Editor helps users to construct correct ACE texts, i.e. one or more sentences that can 
refer to each other. ACE is a Controlled Natural Language (CNL, see section 3.1) with a 

precisely defined subset of English that can automatically and unambiguously be translated 
into various forms of first-order logic. ACE uses a built-in lexicon with approximately 100 000 
entries, but users can import additional, domain-specific lexicons. ACE’s grammar and 
meaning are defined in a set of construction and interpretation rules. To avoid ambiguity, 
certain constructs are not part of the language, and all others are interpreted 
deterministically. Attempto uses Kamp's rules of discourse representation 
(http://plato.stanford.edu/entries/discourse-representation-theory) to resolve the referents of 
pronouns and definite noun phrases. This is different from, e.g., CLCE that uses temporary 
names to avoid ambiguity (http://attempto.ifi.uzh.ch/site, Fuchs et al. 2008, Kaljurand & Kuhn 
2013) 

ACE is supported by a number of tools, for example a parser and reasoner. The former takes 
an ACE text and optionally a user lexicon as input, and generates a large number of various 
outputs, for example parse trees and formal “discourse representation structures” (DRS). 
The Attempto Reasoner RACE offers three operating modes: consistency checking, proving 
and query answering. Applications of ACE include software and hardware specifications, 

http://plato.stanford.edu/entries/discourse-representation-theory
http://attempto.ifi.uzh.ch/site
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data bases, agent control, medical regulations and ontologies. Furthermore, ACE can serve 
as a natural language interface to semantic web applications. (Fuchs et al. 2008) 

As a recent extension, Kaljurand and Kuhn (2013) describe a version of the AceWiki, a CNL-
based semantic wiki engine that uses ACE as the content language and OWL as its 
underlying semantic framework. The natural language grammar is implemented on top of the 
Grammatical Framework (GF), a functional programming language for building multilingual 
applications (see http://www.grammaticalframework.org/). GF facilitates semantic reasoning 
and bidirectional automatic translation between ACE and a number of 15 European natural 
languages. Additionally, the approach allows for automatic translation, e.g., into the Web 
Ontology Language (OWL). The grammar describes mapping between abstract logical 
expressions and the corresponding sentences in various languages. This mapping is 
bidirectional — strings can be parsed to abstract trees, and trees linearized to strings (Figure 
20).  

 

Figure 20. Bidirectional mapping between a formal language like OWL or TPTP (related to 
automated theorem proving) and a natural language like Finnish (Kaljurand & Kuhn 2013). 

Attempto seems to be a good example of advanced natural language processing 
environments indicating that NLP tools might be practical in engineering tasks. Some of its 
features may even be too sophisticated for our purposes, i.e. for writing well-formed 
requirements and other statements needed in control system design. In particular, 
bidirectional transformations and support for several languages could be desired features of 
our solutions too. For example in model checking, there might be several alternative output 
formats corresponding to a natural language statement. In the other direction, there is an 
obvious need to explain/verbalise complex formal presentations like temporal logic.  

3.3.6 ReqUirements BoileRplate sanIty Checker (RUBRIC) 

When boilerplates are used as guidance to the requirement author, there is a need to verify 
that the requirements conform to the boilerplates. Doing this manually is laborious. A 
prototype tool RUBRIK by Arora et al. (2013a, b) uses natural language processing and 
common vocabularies in a way that doesn’t require exact matches to a boilerplate and terms 
in a glossary. 

Support for boilerplates already exists in commercial RE tools. Many of them assume that all 
terms (a domain ontology) have been defined in a glossary. However, building a glossary 
often concludes only after requirements have been written and may even remain incomplete 
throughout the whole project. The typical approach does not work when the glossary terms 
are unknown.  

RUBRIC (ReqUirements BoileRplate sanIty Checker) provides automation for checking 
conformance to boilerplates using a Natural Language Processing (NLP) technique called 

Text Chunking. Noun and verb phrases (see section 2.6) provide a suitable level of 
abstraction for checking conformance. RUBRIC further provides diagnostics to highlight 
potentially problematic syntactic constructs in the requirement statements (Figure 21, Figure 
23). A text chunker is a pipeline of NLP software modules decomposing a sentence into non-
overlapping segments, e.g. to noun and verb phrases (Figure 22). Its effectiveness is not 
compromised even when the requirements glossary terms are unknown. RUBRIC was 

http://www.grammaticalframework.org/
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publicly released in June 2013 and is available at: http://sites.google.com/site/rubricnlp/. It 
uses an open-source natural language processing framework called GATE, see gate.ac.uk/. 

 

Figure 21. Overview of RUBRIK (Arora et al. 2013b). 

 

 

 

 

Figure 22. Text chunking steps and the resulting list of phrases (Arora et al. 2013a). 

 

http://sites.google.com/site/rubricnlp/
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Figure 23. Markup generated by RUBRIC (Arora et al. 2013a). 

As claimed by Arora et al., a key advantage of RUBRIC is that it yields good results even in 
early stages of requirements writing, where a glossary may be unavailable. Their approach 
doesn’t apply to model checking but might be valuable for writing stakeholder and system 
requirements. In addition to missing terms, the types of requirement statements at this level 
are diverse and therefore can’t be forced into a fixed format. Detecting common language 
terms (e.g. Princeton WordNet) and phrases and guiding the author to combine them in 
recommended ways might be a practical solution for our purposes. 

3.4 Testing automation 

Testing is a critical and expensive task in industrial automation. Parts of the control 
application are first tested separately in module tests. In addition to individual control loops, 

safety critical and widely re-used library functions (function blocks) should be verified as early 
as possible. The Factory Acceptance Test (FAT) then demonstrates that the integrated 

control system is in accordance with the specifications (IEC 62381 2011). Items to be 
checked include, for example, documentation and system configuration, system IO and 
communication, basic control and protection functions, visualization, operation and complex 
functionality (for example sequence control) as far as possible without the actual process 
system being present. FAT is performed by the vendor before delivery to the site of 
installation. The customer should witness the test activities and in some cases carry out 
some parts of the FAT itself.  

Requirements are closely related to system and software testing during various life-cycle 
phases. The purpose of test cases is to verify that the implementation satisfies the 

requirements, regulations or specifications. Therefore, test cases should be derived from and 
traced back to requirements and design specifications. In some cases, the transformation is 
relatively straightforward but sometimes several complex test scenarios are needed to verify 
one requirement. Moreover, one test case can be designed to verify several requirements. 
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One problem is that tests are defined in terms of elements in the implementation, e.g. 
variables and IO channels, while requirements describe the system on a more abstract level. 

Testing is a major issue in several software development approaches. Test-driven 
development (TDD) is a variant of agile software development that relies on a short 

development cycle. First the developer writes an automated test case that defines a desired 
improvement or a new function and then produces the minimum amount of code to pass that 
test (adapted from http://en.wikipedia.org/wiki/Test-driven_development). 

Behaviour-driven development (BDD) was developed on the basis of TDD by Dan North 

(http://dannorth.net/introducing-bdd/) as a response to certain issues encountered teaching 
test-driven development. BDD uses natural language as a ubiquitous communication mean 
to describe the acceptance tests by means of scenarios. In fact, the natural language 
ensures a common understanding of the system to be developed between all members of 
the project – particularly between the designers and the stakeholders. Currently, the BDD 
approach is still under development. However, there are various toolkits supporting BDD, 
such as JBehave, Cucumber and RSpec. 

In BDD plain text descriptions of features, user stories and scenarios make use of pre-
defined templates. Typically user stories are specified using the following template: 

[StoryTitle] (One line describing the story) 

As a [Role] 

I want a [Feature] 

So that I can get [Benefit] 

A user story is refined as a set of scenarios each describing how the system that implements 

a feature should behave when it is in a specific state and an event happens (Solis & Wang 
2011). The template for writing scenarios consists basically of the triplet Given-When-Then: 

Scenario 1: [Scenario Title] 

Given 

[Context] 

And [Some more contexts].... 

When 

[Event] 

Then 

[Outcome] 

And [Some more outcomes].... 

Both defining the tests and executing them manually is expensive in terms of money and 
time. So, they should be automated. In Model-Based Testing (MBT) test cases are typically 

generated from system specifications represented in a (semi-)formal model, such as UML. 
Many approaches, some of them shortly reviewed by Carvalho et al. (2013), start from 
requirements written in a Controlled Natural Language (CNL) by transforming them into an 
internal, more formal form (e.g. Object Constraint Language, temporal logic or business 
rules) and then further to test case definitions. The idea is to provide a specification that is 
close to natural language but also formal enough to be processed by computers. The final 
result of this process can be, for example, directly executable test code or a higher-level test 
script that can be processed by a test automation environment.  

For instance, keyword-driven testing can be used to automate the testing effort. It is based 
on pre-programmed actions (keywords) that read and write the variables of the System 
Under Test (SUT). A command sent to the SUT consists of a keyword and optional 
parameters. For example, Hametner et al. (2012) have used keyword-driven testing to PLC-
based industrial automation. Their keywords include, for example: 

http://en.wikipedia.org/wiki/Test-driven_development
http://dannorth.net/introducing-bdd/
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 startConn: establishes a connection to the SUT 

 set: sets a new value to the variable in the SUT 

 sleep: pauses the test for a specified time 

 get value: reads the value from a SUT variable 

 check: compare the value with the expected 

Robot Framework (http://robotframework.org/) is one of the available tools for automated 
testing. As an example, let’s look at the following statement requiring that the level in a tank 
rises soon after a pump is started: 

Given that ( T300_Empty == TRUE ),  

when ( P201_CtrlOut is set to TRUE ),  

condition ( T300_Level > 10 ) becomes TRUE within 5 minutes. 

When transformed into a keyword-driven test script in Robot Framework style, the test case 
might look like this: 

| Read All Variables |  

| Should Be True | B300_Empty == True) |  

| Should Not Be True | (T300_Level} > 10) | 

| Write Variable | P201_CtrlOut | True | 

| Sleep | (5 * 60) - 1 | 

| Read All Variables |  

| Should Be True | T300_Level} > 10 | 

In software engineering, we can find several attempts to derive executable test cases from 
semiformal requirements written in a CNL (e.g. Bacherler et al. 2012, Carvalho et al. 2013). 
As an example from the control engineering domain, the Template Based Natural Language 
Specification (TBNLS) (Esser & Struss 2007) was a (preliminary) CNL approach for 
functional tests of control software for passenger vehicles. The aim was to build a tool that 
supports an existing work process without major revisions. Their proposed solution offers a 
natural-language-template-based interface for acquiring software requirements. The 
language is defined by 15 templates that provide a mapping to propositional logic with 
temporal relations. The approach was based on trying to confirm that faulty behaviours are 
not possible. Potential faulty behaviours are generated from formalized versions of the 
requirements by a number of (transformations. The fault types are defined mainly to match 
the intuition of “what may go wrong” behind manually generated test cases. Two of the most 
obvious fault types are: 1) The start conditions are satisfied, but the consequence does not 
occur; and 2) the condition is not satisfied, but the consequence occurs, anyway. Also 
Schnelte (2009) represents a related experiment based on natural language templates. In 
addition, he used a planning algorithm to create test sequences for positive and negative 
failures. 

3.5 Model checking and property specification patterns 

Model checking (Clarke et al. 1999) is a computer-assisted method for verifying the 
behaviour of a (hardware or software) system model against a set of requirements. Both the 
system and its requirements are modelled with a formal language. A software tool called a 
“model checker” can then examine, whether all possible behaviours of the model fulfil the 
specified requirements. If a behaviour is found that is contrary to a requirement, a counter-
example demonstrates the unwanted scenario. By reviewing the counter-example, solid 
evidence of a design error can be found. The computational power of the algorithms involved 
makes model checking an effective tool in real-world applications. The key benefit over other 
V&V methods (such as simulation or testing) is that the analysis is exhaustive – all the 
possible states and executions of the system model are taken into account. Exhaustive 

http://robotframework.org/
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analysis is possible because model checking is not a brute force method. Only those model 
behaviours that are relevant for the stated requirement are processed. 

 

Figure 24. The overall model checking process involves several steps where manual work 
and specific expertise are required. In this paper, we focus on requirement formalisation. 

The overall process of performing model checking is illustrated in Figure 24. While the actual 
analysis is performed automatically by the model checker, there are several tasks that 
require manual work and specific expertise. In particular, the functional requirements need to 
be formalised using temporal logic for expressing the correct model behaviour. This step can 
be difficult because the original natural language requirements can be vague, ambiguous or 
incomplete, and because of the complexity of temporal logic languages (Tommila, Pakonen 
& Valkonen 2013). Property specification patterns have been proposed as a link between 
natural language requirements and formal representations, to support the use of finite-state 
verification tools such as model checkers.  An influential collection of such patterns was first 
proposed in (Dwyer et al. 1998) and (Dwyer et al. 1999). According to the authors, a 
specification pattern is a ”generalised description of a commonly occurring requirement on 
the permissible state/event sequences in a finite-state model of a system”. The patterns 
describe some aspect of a system’s desired behaviour and provide suitable expressions for 
the behaviour in a set of formalisms. 

Following the example of the “Gang of Four” design patterns (Gamma et al. 1994), each 
pattern consists of a name, a statement of the pattern’s intent, mappings into different 
specification formalisms, examples of pattern use, and relationships to other patterns (See 
Figure 25). The patterns are divided into those that require states or events to occur or not to 
occur, and to those that constrain the order of states or events. 
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Figure 25. The “Response” specification pattern provides formal expressions for the 
statement “P leads to S”. For simplicity, only the Linear Temporal Logic formulas are listed 

here. (Modified from (Dwyer et al. 1998)).  

As seen in Figure 25, each pattern has a scope that specifies the extent of model execution 
over which the pattern must hold, in terms of system states – for example “Globally”, in all 
system states. There are five basic scopes: global, before, after, between, and after-until. 
The portions of execution designated by each scope are illustrated in Figure 26, with Q and 
R being placeholders for propositions that describe some state or event. 

 

 

Figure 26. The scope specifies the extent of the model execution over which the pattern must 
hold. The dotted vertical lines mark the state where the associated proposition Q or R 

becomes true. (Modified from (Dwyer et al. 1998)) 

 
In (Dwyer et al. 1999), the authors claim that according to their experience, 92% of collected 
requirements matched one of their patterns, the most popular ones being Response (“P 
leads to S”), Universality (“P is true”) and Absence (“P is false”) . 
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3.6 Property Specification Language (PSL) 

Property Specification Language (PSL) (IEC/IEEE 2012) is a standard language for the 
formal specification of properties or assertions about hardware designs. Although compatible 
with hardware design languages such as VHDL, Verilog, and SystemC, it can just as well be 
used to formalise requirements for I&C software. 

Formally, PSL is an extension of standard temporal logic languages Linear Temporal Logic 
(LTL), and Computation Tree Logic (CTL). PSL is designed to be easier to learn, write and 
read, with the aim that a PSL specification is “human readable” (Eisner & Fisman 2006). In 
addition to syntactic sugaring, PSL offers very simple and convenient expressions for, e.g., 
assertions on sequences of system behaviour. Expressed with LTL, such sequences easily 
lead to convoluted and incomprehensible formulas. 

PSL consists of four layers: 

 The Boolean layer, consisting of propositions whose value is either true or false.  

 The temporal layer consists of properties that describe relationships between 

Boolean expressions over time. 

 The verification layer is used to tell verification tools what to do with the properties 

described by the temporal layer. assert is a directive to verify that a property holds. 

As a property merely describes behaviour, it does not specify whether it is a “good” 
(or a “bad”) thing that the property holds, but an assertion sets a requirement. 
assume and restrict instruct the verification tool to constrain the verification so 

that the given property holds. cover directs the verification tool to check if a certain 

execution path was covered by the verification. 

 The modelling layer is used to model behaviour of inputs (that is, to specify a sort of 

“environment model” that is not part of the system model being verified, but limits the 
values that the system model inputs can have to “realistic” combinations and 
sequences), and to model auxiliary signals that are not a part of the system but 
needed for verification. 

The following PSL syntax examples are from (Eisner & Fisman 2006): The property “signal a 

leads to signal b in the next processing cycle” is stated as: 

assert always (a -> next b); 

This is an LTL style expression, with syntactic sugar (always for G, next for X). Also 

included is the assert keyword. Furthermore, a PSL variant of the next operator allows us 

to conveniently state the property “signal a leads to signal b from 3rd to 5th following cycle” as: 

assert always (a -> next a[3:5] (b)); 

The same expression could be stated through nested use of the X operator of LTL as well, 

but the result would be nowhere near as readable. 

In addition to the LTL style, properties can be built using SEREs, or Sequential Extended 
Regular Expressions. SEREs describe single- or multi-cycle behaviour as a series of 
Boolean expressions. A simple example: The SERE 

{(req out && !ack) ; (busy && !ack)[*] ; ack} 

describes a sequence where (req out && !ack) holds in the first cycle, (busy && 

!ack) is then asserted for zero or more cycles, and finally ack is asserted. Several different 
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operators (like[*]for “zero or more”) are provided for controlling repetition. SEREs can 

consist of other SEREs, and used as operands of temporal operators. 

It can be argued whether PSL is sufficiently “human readable”, but it is certainly more 
expressive than languages such as LTL or CTL. It is also “the industry’s first and foremost 
standard property specification language”, and widely used in assertion-based verification 
(Eisner & Fisman 2006). As specifications in PSL Foundation Language (which excludes, 
e.g., PSL macros and built-in functions) can be complied down to formulas in pure LTL/CTL, 
tools for model checking are available. 

4. Requirement templates for safety-related I&C systems 

On the basis of the previous chapters, we outline here a template collection intended for 
safety-critical I&C systems and limit ourselves to function block oriented control functions and 
the needs of formal model checking. The solution needs two parts, firstly a set of concepts 
and their taxonomies and secondly the actual templates in the form of natural language 
sentences and other information. These are discussed in the sections below. More details 
can be found in appendix A. 

The most visible part of a template is a natural language statement containing placeholders 
where application-specific terms or more complex logical/arithmetic expressions can be 
inserted. However, this is not all. The template may need, for example, an explanation and a 
formal interpretation. So, a template should contain the following information: 

 short but descriptive identifier 

 long title 

 natural language sentence (possibly several alternatives) 

 explanation and guidance for use (in text and/or graphics) 

 a formal and unambiguous interpretation (possibly several alternative formats) 

 links to related templates 

In the following, our examples are based on the popular open source model checker NuSMV 
(http://nusmv.fbk.eu/). 

4.1 Vocabulary 

To be useful, the templates should limit the vocabulary to terms that have a unique and 
agreed meaning. This vocabulary contains both entity classes (e.g. “temperature 
transmitter”) and their concrete individuals (e.g. “transmitter TT-101”). Classes have 
associated properties (“accuracy”) and are linked by various relationships, such as “is-
subclass-of” and “is-part-of”. We call the set of entity classes (concepts) and their associated 
properties and relationships a domain ontology. Combined with the actual individuals of the 
application we have something called a knowledge base. 

The idea here is that the entity classes, properties and relationships are used to define the 
templates. This is one way to limit the terms that can be used when applying template. The 
actual requirement statement typically refers to an individual in the knowledge base. 
Additional constraints can be defined in terms of rules. 

We described the overall landscape in chapter 2. A more extensive discussion can be found 
in the SAREMAN conceptual model (SAREMAN 2013a). In general, the templates needed to 
describe a complex system, such as a nuclear power plant or an I&C system, would require 

http://nusmv.fbk.eu/
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a large number of concepts and their relationships. Therefore, we limit ourselves here to the 
needs encountered in model checking I&C systems, especially their functions. 

For simplicity, we consider here only control system applications based on the function block 
paradigm (Figure 27). A control application consists of function blocks that are instances of 
function block types stored in a function block library. Each function block has an external 

interface of a number of ports. Ports accept (input) or produce (output) signals of various 
data types, such as Booleans, integers, real numbers or strings. Moreover, function blocks 
can have internal variables that store their states and configuration parameters. Complex 
function block types can be defined by aggregating simple ones. In addition, it is useful to 
define global variables outside the function blocks. 

 

Figure 27. A control application consists of function blocks that are “wired” to each other 
through their ports. The configuration can be presented graphically on a function block 

diagram. 

The concepts are summarised in Figure 28. A control application is defined by instantiating 
function blocks from the library, setting suitable values for their configuration parameters and 
connecting the blocks together through their ports. The application can be presented 
graphically as function block diagrams. For practical reasons, complex applications must be 

decomposed hierarchically and divided into several diagrams that refer to external variables 
shown on other diagrams. We expect here that each function block is allocated to controller 
of the I&C system, e.g. to a Programmable Logic Controller (PLC). Blocks are executed in a 
cyclic manner by a task first reading external inputs, then performing the algorithms of each 

function block in the specified order and finally updating the external outputs. 
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Figure 28. Main elements of a control application. 

Note that this abstract domain model applies both to application programs implemented for 
PLC and distributed control system (DCS) platforms and to their platform-independent 
functional specifications. Concerning implementations, the programming languages specified 
by the IEC standard 61131-3 can be used as a point of reference. On the level of functional 
specifications, function block diagrams can be seen as graphical presentations of I&C 
functions. There is unfortunately no single, widely accepted specification language. 

Examples of domain-specific suggestions into this direction can be found in (VGB-R 170 C 
2004 and NORSOK I-005 2005). 

Having now defined the basic elements of a control application, and to make things even 
simpler, we observe that only variables and ports of function blocks are needed to express 
the requirements encountered in model checking. It is possible to refer to a variable with its 
global name or by combining the name of the function block and its port, e.g. 
“INSTANCE2.IN1” in Figure 27.  

For a model checker (section 3.5), both I&C functions and requirements must be transformed 
into a suitable formal presentation. The same holds also for other computer tools, for 
example for testing automation (section 3.4). Basically, it would be preferable to express the 
models and requirements in the terminology used by the designer in the source documents. 
However, the model checker may have limitations that need to be considered. For instance, 
data types, timed execution and variable names of function blocks may require attention. The 
NuSMV input language, for example, has several reserved keywords (e.g., MODULE, 
DEFINE, VAR, process, array, F, G, EX, AX…) that cannot be used in identifiers of function 
block types of instances, variables etc. The only special characters allowed in an identifier 
are underscore, dollar sign, hash and dash (_$#-), out of which only the underscore can 
begin an identifier. An exemplar mapping of designer-oriented concepts to the terms of 
NuSMV is shown in Table 5. Other mappings are possible, but the presentation here follows 
the modelling practices found useful at VTT. 
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Table 5. Mapping of control application concepts to the input language of the NuSMV model 
checker. 

Concept Presented in NuSMV as 

Function block type MODULE declaration 

Function block instance VAR declaration 

Port of a function block An input variable is introduced as a module parameter, when a 
MODULE representing the function block is declared. These variables 
are not explicitly typed, and can be assigned any value in the MODULE 
code. 

An output variable is specified with a DEFINE of ASSIGN declaration 
within the MODULE code. 

References to these variables are of the type: 
BLOCK_NAME.VARIABLE_NAME 

Boolean boolean 

Integer An enumeration of integer values. A shorthand can be used to define 
an integer range (e.g., 4..20 for the 4-20 mA signal range). If 

feasible, the analyst should only allow a minimum number of possible 
values (that still enables all relevant model behaviours) to limit model 
state space.  

Real An enumeration of integer values (see above). For sufficient accuracy, 
the analyst may resort to scaling (e.g., 4203 for 42,03). 

Enumeration enumeration 

String enumeration of string values 

 

4.2 Sentences 

Alongside with the restricted vocabulary above, the set of allowed sentence structures, i.e. 
the CNL grammar, is the second cornerstone of our approach. It was already discussed on a 
general level in section 2.6. Here we focus on statements encountered in model checking 
and therefore limit ourselves to a subset of functional requirements.  

In model checking, temporal logic is used to describe the required behaviour of a system in 
terms of states and events occurring during a system’s execution. States and events can be 
expressed as propositions that refer to variables of the control application. 

Model checkers use special keywords that in some cases have less obvious interpretations 
of common words. Our goal is, however, that requirements can be expressed in a way 
understandable to a control engineer not familiar with temporal logic. Therefore, we need to 
collect suitable sentence structures and then map them to corresponding expressions in 
temporal logic. The mappings are described in detail in appendix A. Below we outline the 
basic elements of natural language sentences typically needed in model checking. 

4.2.1 Propositions of states and events 

Basic elements of expressions include literals, enumerations, variables and function block 
ports. A port reference can be optionally written in the form “port <port name> of block <block 
id>”. Simple propositions are formed by comparing an expression to another expression. 
More complex expressions include simple mathematics and logical combinations.  

Let’s consider the following example: Figure 29 shows an I&C function with three function 
blocks: a greater-than comparison block (GT), a set-reset flip-flop (SR), and an on-delay 
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timer (TON). The idea is that if the level measurement exceeds the value 85, the “flush” 
command is given after a 10 second delay. Only after the level measurement is below 85, 
the stored flush command can be manually reset. 

 

Figure 29. An exemplar I&C function with three function blocks. 

The examples below illustrate the basic model elements needed in model checking: 

 References for diagram inputs and outputs (LEVEL_T10, MAN_RESET, FLUSH) 

 Information on variable data types. Type errors (e.g., LEVEL_T10 = TRUE) can then be 

avoided. 

 Information on input ranges. For example, the LEVEL_T10 input can be modelled as an 

integer range {84..86}, which in this case is sufficient for capturing all relevant model 

behaviours.3 

 References for function block ports. For example, SR_001.Q1 for the flip-flop block 

output. 

These building blocks are then used to construct propositions that specify states and events 
of interest. The propositions compute to a Boolean value that can change over the execution 
of the (system) model. The propositions consist of: 

 At the simplest, Boolean variables (for example, MAN_RESET is a proposition; “= true” 

can be omitted). 

 Nested logical (not, and, or, xor, implies, iff), relational (>, <, >=, >=), and arithmetic (+, -, 
*, /) operators, that at the lowest level refer to variables and constants. For example: 

((LEVEL_T10 <= 85) & MAN_RESET). 

4.2.2 Reserved words and requirement scopes 

We suggested some reserved keywords in section 2.6. Table 6 below tells how we use them 
in model checking. Discussion on terms used for defining the scopes of requirements can be 
found in appendix A. 

The term “cycle” refers to a time-step in the model. Although real-time tools also exist, model 
checkers such as NuSMV divide the time line into discrete steps or “states”, on which the 

                                                
3
 The range is relevant for requirement formalisation, because if the analyst is not aware of the 

possible input values, she/he might formulate a requirement stating, e.g.: “While (LEVEL_T10 = 90) is 
true, FLUSH will eventually be true”. The result will be a false positive, since the proposition 
(LEVEL_T10 = 90) will always be false. 
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model variables are updated, analogous to the way function blocks are processed within a 
PLC. It is up to the modeller to decide what a time-step means in terms of the modelled 
application.4 

Table 6. The interpretation of reserved keywords in CNL. 

CNL expression Interpretation 

Always Entire system execution (globally) 

Never “P is never true” is equivalent with “P is always false”. 

Eventually At the same cycle or at some later cycle 

Before P Cycles up to but not including the cycle where P is true, “Before P 
becomes true” 

After P Cycles beginning with the first cycle where P is true, “After P first 
becomes true” 

Between P and Q Cycles beginning with a cycle where P is true, and up to but not including 
a cycle where Q is true.  

After P until Q Cycles beginning with a cycle where P is true, and 1) up to but not 
including a cycle where Q is true, or 2) continuing infinitely. 

While P Cycles where P is true 

When P, Q A Boolean implication. False if P & !Q, otherwise true. Same as “P leads 
to Q”. 

P leads to Q A Boolean implication. False if P & !Q, otherwise true. Same as “When 
P, Q”. 

P changes to true Any cycle where P is true, and P was false at the previous cycle. 

 

4.2.3 Types of complete sentences 

By combining the terms and phrases above it is possible to write complete requirements. The 
sentences often needed in model checking can be divided in two main types (Lamport 1977):  

 Safety properties state that “something bad never happens”. 

 Liveness properties state that “something good keeps happening”. 

Informal, written requirement specifications tend to focus on liveness properties. Safety 
properties are often omitted by designers because they are considered self-evident, and 
traditionally, their verification has been difficult. In formal verification they must, however, be 
carefully considered. 

At the heart, the sentences specify how the truth values of different propositions change over 
time. The timing aspect is captured using temporal operators that specify rather the order 
than the exact timing of states and events. 

While temporal logic languages allow for the formulation of complex sequences of states and 
events, such sequences are difficult to capture using a template-based approach. The 
reason is that slight alterations in the sequence may lead to a noticeably different temporal 
logic expression. If the idea is to hide the syntax of temporal logic entirely from the user, we 

                                                
4
 A natural selection is to assign one cycle to correspond with the scan cycle of the underlying PLC 

platform. However, it is often necessary to scale down the time windows allocated to delay blocks (for 
example, if the PLC scan cycle is 50ms, and there is a function block used to set a 60s delay, it would 
be grossly inefficient to use 1200 cycles to process the delay). 
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would need a practically infinite amount of different templates and sentence structures to 
deal with all possible sequence types (not only varying order but also varying degree of 
overlap between states). The template examples in Appendix A therefore focus on oft-
occurring constructs, and sequence representation is a topic for further study. 

Combining the elements listed above, and using the templates listed in Appendix A, Table 7 
below gives some examples of typical requirements verified with model checking. The CNL 
representation may appear greatly altered from the original requirement, as the analyst has 
to rephrase the idea using the set of templates available (see section 5.1). 

Table 7. Exemplar CNL requirements for model checking. 

Informal requirement CNL expression 

Liveness 

When the tank level exceeds 85 cm, the flush 
command is given after a 10 s delay. 

While condition (MAN_RESET) is false, condition 
(LEVEL_T10 > 85) is true leads eventually to 
condition (FLUSH). 

The flush command is memorised. Condition (SR_001.Q1) is true after condition 
(LEVEL_T10 > 85) is true until condition 
((LEVEL_T10 <= 85) & MAN_RESET) is true.  

After the tank level returns to allowed limit, the 
operator is able to manually reset the flush 
command. 

While condition (LEVEL_T10 > 85) is false, 
condition (MAN_RESET) leads to condition (NOT 
FLUSH). 

Safety 

The flush command is never given without the 
tank level having exceeded the allowed limit. 

Condition (FLUSH) is false before condition 
(LEVEL_T10 > 85). 

5. Working practices and tool support 

The previous chapters outlined the principles of a template collection intended for use in the 
design of I&C systems. Here we discuss what kind of implications the existence of such a 
collection would have on the designers work and what sort of tool support would be needed. 
Due to the limited resources, we focus on model checking safety-critical PLC/DCS 
applications based on the function block paradigm. However, the needs of systems engineer 
writing more abstract requirements are also considered to some extent. 

5.1 Requirements definition in model checking – a task description 

When formalising requirements for a model checker, it is reasonable to presume that the task 
can only begin after the system model (or, at least, the first draft) has been specified. Since 
the temporal logic constructs must refer to exact and unique model variables, it is necessary 
– when analysing function block diagrams, in particular – to first select (invoke a type) and 
name each diagram input, output, or function block object, before any reference to that object 
can be stated in terms of a formal requirement. 

So, we will begin by assuming that a system design has been specified, and the 
corresponding system model produced by either direct transformation, modelling by hand, or 
some intermediate form of the two (Pakonen et al. 2013). 

Requirement formalisation can begin on the basis of existing requirement documentation, or 
functional description. There may be an (informal) natural language document containing 
elements of suitable requirements. Discussions with designers or other system experts may 
be needed to clarify stated requirements – fill in missing information, and state each 
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requirement explicitly in terms of system I/O signals or other model variables (examples of 
such clarifications in the context of writing CNL requirements can be found in Table 7 above). 

When using templates for requirement specification, the first task is to find a suitable 
template. The analyst may already be well aware of which template to select, or some work 
may be required to find one. Search can be based on template categories, or looking for 
suitable keywords in template descriptions and metadata. 

When a suitable template is found, it is invoked by specifying suitable propositions in terms 
of model variables. 

As a simple example (using the templates from (Dwyer et al. 1998)): The analyst will 
formalise a requirement that states: 

After the temperature in furnace BF-102 exceeds 1300 °C, a horn shall sound in the control 
room until an operator presses the acknowledge button. 

Browsing different template categories, the analyst selects the class “Occurrence”, under 
which the template “Universality” (a.k.a. “Always”, or “P is true”) seems to fit the general idea. 
For this template, a scope must be selected. From the requirement, it is quite clear that “After 
Q until R” is the choice. 

The analyst will then specify the propositions P, Q, and R. P stands for “horn sounds”, for 
which a suitable control output (model variable) is found. 

P = CR001.Alarms.Horn1.BO1 

Q stands for “temperature in furnace BF-102 exceeds 1300 °C”, while R stands for “operator 
presses the acknowledge button”. Again, the analyst specifies the propositions in terms of 
exact model variables. 

Q = (DCS002.BF102.Temp200 > 1300) 

R = CR001.C_Desk2.ACK_BFTemp 

The corresponding temporal logic clause for verification will then read: 

G((DCS002.BF102.Temp200 > 1300) & 

!CR001.C_Desk2.ACK_BFTemp -> (G(CR001.Alarms.Horn1.BO1) | 

(CR001.Alarms.Horn1.BO1 U CR001.C_Desk2.ACK_BFTemp))); 

Sometimes, in order to easily state a requirement, it may be necessary to modify the systems 
model to introduce auxiliary model variables and code. In the PSL standard (IEC/IEEE 2012), 
the term “satellite” is used of such additions. Alternatively, such modifications may not be 
strictly necessary, but more convenient and easily readable than the corresponding 
temporal-logic-only option. 

Let us consider two examples. First, if it is necessary to state a requirement that deals with a 
specific time interval, for example: 

After the REQUEST command has been set for 25 cycles, the RESPOND output shall be 
set. 

If PSL is supported by the model checker, we can easily specify: 

assert always (REQUEST -> next[25] (RESPONSE)); 

Were PSL not supported, the modeller will either have to resort to a very convoluted LTL 
formula, or define a satellite. In this case, it is quite straightforward to specify a simple and 
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reusable timer module that counts the cycles over which an input has been set (using the 
NuSMV input language): 

VAR 

    REQUEST_SET : counter(REQUEST); 

 

MODULE counter(enable) 

VAR 

    clock : 0..200; 

ASSIGN 

    init(clock) := 0; 

    next(clock) := 

    case 

        !enable: 0; 

        clock > 199 : 200; 

        enable: clock + 1; 

        TRUE: 0; 

esac; 

Now the requirement can easily be stated using LTL: 

G(( REQUEST & (REQUEST_SET.clock = 24) ) -> RESPONSE); 

Another example has to with voting between many criteria. Let us say that there are five 
different alarm criteria (P1 to P5), each specified with rather complex propositions. If we now 
want to state a requirement of the type: 

If more than 2 of the alarm criteria P1 to P5 are true, the ALARM signal shall be set. 

The input language of the NuSMV model checker allows us to formulate the requirement 
rather straightforwardly using LTL alone, although the resulting formulation might become 
quite repetitive and complicated (see the “When more than n” pattern in appendix A). If this is 
not convenient, additional model variables can be introduced to count the number of criteria: 

DEFINE 

    P1_i := [logic that specifies value of P1] ? 0 : 1;  

    P2_i := [logic that specifies value of P2] ? 0 : 1; 

    P3_i := [logic that specifies value of P3] ? 0 : 1; 

    P4_i := [logic that specifies value of P4] ? 0 : 1; 

    P5_i := [logic that specifies value of P5] ? 0 : 1; 
    ALARM_CRITERIA := P1_i + P2_i + P3_i + P4_i + P5_i; 

Now the appropriate LTL formulation is very intuitive: 

G(( ALARM_CRITERIA > 2) -> ALARM); 

Especially if different requirements are based on the same criteria, the analyst may find the 
use of satellite code more convenient, even if the corresponding logic were possible to state 
resorting only to temporal logic.  

When a model checker returns a counter-example demonstrating a system model behaviour 
that is contrary to a specified requirement, the first task for the analyst is to investigate if the 
counter-example is due to either an error in the way the requirement is formalised, or an 
error in the way the system model represents the actual design. It is often the case that the 
requirement formalisation for example fails to take into account some exception (for example, 
the requirement not holding due to an active safety or interlock signal, or a manual operator 
or maintenance action). To fix the error the analyst will then review the formalisation, and 
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either make small adjustments to the propositions, or select and altogether different template 
and start from scratch. 

It may even be the case that analyst did not take the exception into account when first 
formalising the requirement because the fact was omitted from the source documentation 
(requirement document or functional description). It may become necessary to refine earlier 
documents. 

5.2 Requirements of a template-based requirement editor 

We assume that the analyst (who can also be the same person as the designer) works with a 

toolset that integrates the following main elements (Figure 30): 

 Domain ontology: Terms, concepts and their relationships in the application domain, in 
this case nuclear power plant I&C systems. The ontology may consist of several parts 
(e.g. upper-level concepts and sub-ontologies for various system types) that are 
combined according to the needs of the application. 

 Type library: Definitions of reusable components, such as function blocks and device 

types. It may actually consist of several parts all referring to the domain ontology. 

 Model editor: Dedicated tool used by the analyst to build a formalized system model 
needed by the model checker (Pakonen et al. 2013). 

 Design database: Requirements, functions and physical system elements of the 

particular application. Objects in the system model are instances of the classes defined in 
the domain ontology and the types in the type library. 

 Design tool: Tool(s) normally used for specifying the I&C system, e.g. a function block 

editor.  

 Template collection: Defines the allowed terms and sentence structures with their 

corresponding formalized counterparts. The template collection uses the vocabulary 
defined in the domain ontology. 

 Requirement editor: This is the tool that the analyst uses to write natural language 

requirements and to generate their formalized versions for the model checker. 

 Model checker: Software tool used for model checking on the basis of the formalized 
system model and requirements. 

 Analyst: Person using the requirements editor and the model checker. 

 Designer: Person carrying out normal design tasks and using the design tools for that. 
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Figure 30. Elements of the design and analysis toolset. 

With this abstract “system concept” and the task description above we are able to describe 
the desired features of a requirements editor. At this stage, we are looking for a tool concept 
rather than a practical implementation. Therefore, the requirements below are presented 
informally. We also focus on model checking and written requirements with the length of one 
sentence. More complex requirements would need other presentation methods, such as 
diagrams and structured use cases.  

Information content 

 The kinds of terms that can be inserted into the sentence include 

o fixed terms defined by the template, e.g. keywords like “while”, “when”, etc. 

o literal truth values (true, false), numbers (5, -10.9), enumerations and strings 

o verbs and property names defined in the domain ontology 

o names of individual elements in the system model, e.g. variables and functions 

 A (model checking) project in the requirements editor is configured to use certain 
ontologies and template collections. It is possible to add project-specific concepts to the 
ontology. 

 Propositions can include basic Boolean (and, or), numeric (comparison, addition, 
multiplication) and string operations (comparison, concatenation, enumeration). In 
addition, it should be possible to use functions (e.g. abs, sqrt) if supported by the model 
checker (or some other tool). 

 The template collection and the requirement editor are not tied to any particular domain 
or formalism, such as temporal logic, but can be easily configured for other purposes, for 
example to be used in automated testing of I&C systems. 

 There should be a possibility to select between more than one output formats, for 
example LTL, CTL or PSL. 
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 In addition to the requirement text, a structured requirement has attributes like status, 
date and comment. Some of the metadata, e.g. the type of requirement, can be derived 
automatically from the templates. 

 Template collections are subject to version control and tracking. Once tested and 
accepted, template collections can be frozen so that they can’t be modified accidentally. 

 However, if templates (or ontology) must be modified, the way requirements are 
expressed can be done by changing, e.g. a term, in just one place (from Dick & Llorens 
2012) 

 Since the editor is used in safety-critical domains, it doesn’t allow errors or ambiguities in 
the templates or in the written requirements. For example, a requirement typed by the 
analyst must match with exactly one template to be accepted and formalised. However, 
uncompleted requirements can be saved and corrected later. Error messages and 
warnings are logged so that the final, error-free log can be used as evidence. 

 In general, it should be possible to specify that a part of a sentence, e.g. a property value, 
is not yet decided so that it can be defined later. This option can also be used in cases 
where the values are confidential (from Johannessen 2012).  

User interface 

 The analyst is able to browse the domain ontology, type library and the system model 
and view all relevant information in it, for example definitions of terms and function blocks 
and the decomposition of system elements and functions. The user interface is similar to 
the one normally used in engineering tasks. 

 The analyst is able to search and browse the template collection(s) configured to the 
current project, for example in order to identify the templates suitable for re-formulating a 
particular unstructured requirement. To make this possible, the templates should have 
descriptive names and associated keywords. The contents of the templates can be 
viewed easily. 

 Templates are presented in a form that is easily understandable. For better readability, 
the templates should allow optional clarifying words. For example, when a state is meant, 
the word “condition” can be added for clarity. The collection provides explanations and 
guidance for each template. 

 The analyst has two options in writing a requirement. She/he can first select a template 
and fill-in missing parts, or just start typing guided by the editor. In both modes the editor 
should, for example, suggest suitable next terms and inform about matching templates 
and kinds of propositions. 

 Once the analyst has selected the template she/he wants to use, the editor provides 
guidance and automation for filling-in the missing parts of the structured sentence. Terms 
can be typed or dragged and dropped from the system model or a list of possible next 
terms in the ontology.  

 The requirement editor clearly indicates the terms that can be inserted but at the same 
time prevents the analyst from writing nonsense requirements that violate the rules of the 
domain ontology, the type library or the system model. Errors are indicated and 
explained. 

 If the analyst notices that a wrong template was selected, she/he is able to transfer the 
sentence or parts of it (e.g. propositions) to another template. 
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 It should be possible to write a sentence that doesn’t match to any template. For systems 
engineering in general, the necessity of conforming exactly to a template and domain 
ontology should be relaxed, e.g., by using NLP techniques (from Arora et al. 2013). 
Especially in model checking, there shall be a way to write a formalized requirement (e.g. 
in temporal logic) “manually” in cases for which no template is available in the template 
collection.  

 The user can search the requirements that use a template or an ontology term (from Dick 
& Llorens 2012) 

 The requirement editor should maintain the status of each requirement, that is, whether 
the model checker proved the requirement true or false the last time it was run. The 
editor should also state if the status is up to date, that is, have there been any changes to 
the requirement or the system model after the last time the model checker was run. 

 The structured natural language requirements created with the editor can be printed to a 
human-readable document. 

External interfaces 

 Requirement information can be imported from and exported to other tools like normal 
office tools and Requirements Management systems. 

 It is possible to trace a structured requirement to the unstructured requirements and other 
engineering data (or standards) behind it. 

 The design database created by the design tools can be used as the system model, for 
example by importing relevant data or by providing a direct interface to the database. 

 It is possible to use existing vocabularies and ontologies as a basis for the domain 
ontology. 

 The formalized requirements (in temporal logic) generated by the tool can be saved (to a 
file) and exported to other tools, in particular to the model checker. 

We can use the experimental CNL editor developed earlier by VTT to illustrate some features 
of ontology and template based requirements authoring (Tommila, Pakonen & Valkonen 
2013). Figure 31 shows the exemplar control application and requirements in section 4.2. 
The tree in the leftmost frame contains the classes of the domain ontology and the individual 
function blocks and variables of the flush application. The frame in the middle shows a list of 
the requirements already inserted to the database. To add a new requirement, the analyst 
can build a sentence by dragging and dropping allowed next terms from the frame in the 
lower right corner. If she/he decides to use the keyboard, the editor provides for 
autocompleting unfinished words. So, this prototype doesn’t force the user to first select a 
template, but is rather intended to be a writing assistant. Therefore, it guides the user by 
showing a list of allowed next terms and their types, as well the templates matching the text 
typed in so far. In addition to the natural language templates, there are templates that help in 
writing temporal logic expressions directly. When the requirement is completed and matches 
to exactly one template, the editor is able to generate its formal presentation in temporal 
logic. For example, the sentence “Condition ( FLUSH ) is false before condition ( LEVEL_T10 
> 85 )” matches to the Absence before template in Appendix A and is transformed into the 

temporal logic formula LTLSPEC F(LEVEL_T10 > 85) -> (!(FLUSH) U (LEVEL_T10 
> 85)). 
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Figure 31. An experimental tool guides the user in writing correct requirements on the basis 
of a domain ontology, elements of the particular application and a collection of 52 templates. 

6. Summary and conclusions 

In this research report we have studied the possibilities of Controlled Natural Languages 
(CNL) in improving the quality of control system requirements. Their limited vocabularies and 
sentence structures guide designers in writing well-formed requirements that can also be 
analysed and formalized with computer tools. 

Our particular application area is safety-critical I&C systems in nuclear power plants. The 
wider context is requirements definition in systems engineering in general. Within this area, 
we have focused on verification of I&C functions with formal model checking where practical 
solutions and software tools can be foreseen.  

On the basis of the literature and our own experiences in model checking, we have collected 
a first set of functional requirement templates for function block based control applications. In 
this approach, templates define pairs of allowed sentence structures and corresponding 
formal interpretations in temporal logic. In our tool concept, actual requirements stated in 
terms of the variables of the control system can be automatically transformed into a temporal 
logic presentation and imported to a model checker for verification. 

As is widely known, requirements definition and management continue to be a challenge in 
systems engineering. Also in model checking, there is a real need to make the modelling of 
the control system and its requirements easier. Our literature review shows that this problem 
has been recognised by many others, as well. There exists a multitude of techniques and 
software tools for natural language processing and system modelling. Even quite similar 
template-based tools have been suggested. In other words, we seem to have a need and 
ingredients for its solution.  

However, this research report represents a first step only. A question to be answered is, how 
the available ingredients should be combined and adapted to the needs of safety-critical I&C. 
Concerning systems engineering in general, we believe that guided requirements authoring 
combined with model-based design and standards-based tool integration is a promising 
direction in spite of the challenges.  
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In our particular interest area, model checking, the template-based approach seems to be 
implementable and solve many practical problems. However, there are also several issues to 
be resolved. Firstly, single natural language sentences work well only in simple cases. 
Complex chains of events pose a challenge in the domain of I&C systems. Due to the 
dynamic behaviour of the physical processes being controlled, system requirements often 
have to be specified in terms of sequences of varying complexity. Writing down such 
sequences in CNL results in convoluted sentences. It would be more effective and user-
friendly to use structured scenarios or graphical representations, such as sequence 
diagrams. Furthermore, if the idea is that templates hide the formal syntax of temporal logic 
languages, such as LTL or CTL, we would need a practically infinite amount of templates to 
represent all possible sequences. 

Secondly, the need for exact and explicit formalisation means that the semantics of reserved 
keywords in our CNL should be defined in great detail but in way that is familiar to control 
engineers. Properly understanding the specific meaning of terms like “while”, “when”, “after”, 
and “before” may require some study from the user. What “after”, for example, actually 
means in terms of model states and time cycles may be different from the common sense 
“feel” for the word. The domain ontology, keywords and sentence structures proposed in this 
report represent a first draft, and practical experimentation and refinements are still needed. 

For help with complex sequences, Property Specification Language seems to hold promise. 
Syntactic sugar helps in understanding the temporal operators, but the real power is in the 
Sequential Extended Regular Expressions, or SEREs. Similar in spirit to standard regular 
expressions, SEREs provide a way to describe multi-cycle behaviour that is much more user-
friendly than anything that can be expressed with LTL or CTL. Potential new topics for future 
research include visualisation of SERE constructs, and templates based on SEREs. 
Furthermore, requirements authoring tools need to be integrated to other tools used in model 
checking.  

Even if further research is needed, practical work at VTT has already shown that requirement 
templates are very useful in model checking. The majority of functional I&C requirements 
(especially in safety-critical systems) can be expressed with three types of statements: 1) 
State A is always true;  2) State B is never true; and 3) State C leads eventually to state D. In 
addition, a fairly limited collection of domain-specific templates will go a long way further. 
Although there remains a need to work with temporal logic operators to capture some event 
chains, it is evident that a requirement specification tool would certainly benefit from 
templates. 

From the systems engineering point of view, the requirement authoring tool concept should 
be based on a system model that is shared with other modelling, development, analysis, and 
requirement management tools. The problem with popular requirement management tools is 
that they are basically word processors handling free text with little or no built-in support for 
system models and good sentence structures. Fortunately, different extension mechanisms 
can be used. Also relevant is the integration with modelling and development tools, as the 
requirements must be anchored to system model elements. Various integration techniques 
exist but domain-specific classifications should also be agreed to be able to attach 
meaningful metadata attributes to the requirements.  
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Appendix A: Model checking templates for safety critical I&C 

Common templates from Dwyer et al. 

Discussion on scopes 

Dwyer et al. use scopes to designate the extent of model execution over which a property 
must hold. To illustrate the scopes, a figure is used (the dashed lines have been added for 
clarity): 

 

The scopes illustrated (Modified from (Dwyer et al. 1998)) 

To further clarify the scopes, we will list examples of traces for each scope. 

“Before Q” means all cycles up to but not including the first cycle where Q is true. Later 
values of Q are irrelevant: 

 

“After Q” means all cycles beginning with the first cycle where Q is true. Note that the 
“beginning with” –aspect is by no means assumed in the common language use of the 
preposition “after”. Later values of Q are irrelevant: 

 

“Between Q and R” means all sequences of cycles beginning with the cycle where Q is true, 
and up to but not including the cycle where R is true. Note that the eventual occurrence of R 
is needed to initiate the sequence on Q: 
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“After Q until R” means all sequences of cycles beginning with the cycle where Q is true, and 
either 1) up to but not including the cycle where R is true, or 2) continuing infinitely in the 
absence of an occurrence of R. This scope differs from the previous scope in that an 
eventual occurrence of R is not needed to initiate the sequence on Q. A suitable analogy 
would be a machine with “start” (Q) and “stop” (R) buttons: 

 

Note that in the “Between Q and R” and “After Q until R” scopes, R has “priority” over Q – the 
occurrence of Q has no effect while R is true. This is not addressed in the scopes illustration 
used by Dwyer et al., but it can be deduced from the formulas. 

Selected templates 

We list here the most common “specification patterns” by Dwyer et al. The rest of the 
patterns can be found at http://patterns.projects.cis.ksu.edu/. 

Title: Universality 

Sentence: P is true 

Formulas: LTL Globally G(P) 

Before R F(R) -> (P U R) 

After Q G(Q -> G(P)) 

Between Q and R G((Q & !R & F(R)) -> (P U R)) 

After Q until R G(Q & !R -> (G(P) | (P U R))) 

CTL Globally AG(P) 

Before R !E[!R U (!(P | AG(!R)) & !R)] 

After Q AG(Q -> AG(P)) 

Between Q and R AG(Q & !R -> !E[!R U (!(P | 

AG(!R)) & !R)]) 

After Q until R AG(Q & !R -> !E[!R U (!P & ! 

R)]) 

PSL always (P) 

Guidance: The template specifies that a proposition P must hold. 

 

http://patterns.projects.cis.ksu.edu/
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Title: Universality 

Note the symmetry with the “Absence” pattern. Stating “always !P” 
is equivalent to stating “never P”. 

Keywords: Always, Henceforth 

Related 
templates: 

Absence 

Status: Well-known, published in collections of Dwyer et al. 

References: (Dwyer et al. 1998) (Dwyer et al. 1999) 

 

Title: Absence 

Sentence: P is false 

Formulas: LTL Globally G(!P) 

Before R FR -> (!P U R) 

After Q G(Q -> G(!P)) 

Between Q and R G((Q & !R & F(R)) -> (!P U R)) 

After Q until R G(Q & !R -> (G(!P) | (!P U 

R))) 

CTL Globally AG(!P) 

Before R !E[!R U (!(!P | AG(!R)) & ! 

R)] 

After Q AG(Q -> AG(!P)) 

Between Q and R AG(Q & !R -> !E[!R U (!(!P | 

AG(!R)) & !R)]) 

After Q until R AG(Q & !R -> !E[!R U (P & ! 

R)]) 

PSL never (P) 

Guidance: The template specifies that a proposition P must not hold. 

 

Typically used to state that something “bad” should never happen 
(safety property). A common example is mutual exclusion (never A 
& B). 

 

Note the symmetry with the “Universality” pattern. Stating 
“never !P” is equivalent to stating “always P”. 

Keywords: Never 

Related 
templates: 

Universality 

Status: Well-known, published in collections of Dwyer et al. 

References: (Dwyer et al. 1998) (Dwyer et al. 1999) 
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Title: Response 

Sentence: P leads eventually to S 

Formulas: LTL Globally G(P -> F(S)) 

Before R F(R) -> (P -> (!R U (S & !R))) 

U R 

After Q G(Q -> G(P -> F(S))) 

Between Q and R G((Q & !R & F(R)) -> (P -> (!R 

U (S & !R))) U R) 

After Q until R G(Q -> ((P -> (!R U (S & !R))) 

U R) | G(P -> (!R U (S 

& !R)))) 

CTL Globally AG(P -> AF(S)) 

Before R !E[!R U (!((P -> A[!R U (S 

& !R)]) | AG(!R)) & !R)] 

After Q A[!Q W (Q & AG(P -> AF(S))] 

Between Q and R AG(Q & !R -> A[((P -> !E[!R U 

(!(!R U (S & !R)]) | AG(!R))) 

& !R)]) 

After Q until R AG(Q &!R->!E[!R U(!(P -> 

A[!R U (S & !R)]) & !R)]) 

PSL always (P -> eventually! (S)) 

Guidance: The template specifies that an occurrence of an event/state P must 
be followed by an occurrence of event/state S. It is typically used to 
state that a request must lead to a response.  

 

Note that: 

 A single occurrence of S will satisfy the condition even 
when there are multiple past occurrences of P. 

 P and S may occur at the same cycle. 

 

 

Examples of traces where the requirement holds 

Keywords: Follows, Leads to 
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Title: Response 

Related 
templates: 

Conditional response 

Status: Well-known, published in collections of Dwyer et al. 

References: (Dwyer et al. 1998) (Dwyer et al. 1999) 

 

Title: Existence 

Sentence: P is eventually true 

Formulas: LTL Globally F(P) 

Before R G(!R) | ((P & !R) U !R) 

After Q G(!Q) | F(Q & F(P))) 

Between Q and R G(Q & !R -> (G(!R) | (!R U (P 

& !R)))) 

After Q until R G(Q & !R -> (!R U (P & !R))) 

CTL Globally AF(P) 

Before R !E[!(P & !R) U (R & !(P 

& !R))] 

After Q !E[!(Q & AF(P)) U (Q & !(Q & 

AF(P)))] 

Between Q and R AG(Q & !R -> !E[!(P & !R) U (R 

& !(P & !R))]) 

After Q until R AG(Q & !R -> A[!R U (P & !R)]) 

PSL eventually! (P) 

Guidance: The template specifies that a proposition P must not hold at some 
point. 

Keywords: Eventually 

Related 
templates: 

 

Status: Well-known, published in collections of Dwyer et al. 

References: (Dwyer et al. 1998) (Dwyer et al. 1999) 

 

Original pattern candidates found useful in VTT customer projects 

The templates that follow are based on oft-used requirement constructs that have proven 
useful in practical work at VTT. The templates serve as examples, and represent work in 
progress. The collection is by no means considered conclusive. 

Title: Conditional leads to 

Sentence: While R is not true, P leads to Q 

Formulas: LTL G (!R -> G (P -> Q)); 
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Title: Conditional leads to 

PSL always (!R -> always (P -> Q)); 

Guidance: A cause-and-effect relationship of certain model states or signals 
might not be true at all cycles due to, e.g., an overriding signal with 
higher priority, or a periodic test sequence or a manual user action 
temporarily inhibiting normal signal flow. 

 

This template allows for the specification of a state or signal R 
which will (temporarily) break the cause-and-effect relationship 
between P and Q. That is, if R is not true, P will lead to Q at all 
cycles. 

 

Note that “P leads to Q” (or Q) may still be true regardless of the 
value of R, it is just that “P leads to Q” has to be true only when R 

is false. 

 

 

 

Examples of traces where the requirement holds 

 

Notes on formulas: 

 The Boolean proposition (P -> Q) can be replaced with 
other logic to achieve other “Conditional” formulas. 

 The LTL formula G !R -> G (P ->Q); without the surrounding 
parenthesis means that scenarios where R has been active 
at some point will not be considered in verification. That is, 
the verification tool will assume that R can never be true. 

Keywords: conditional, protection, interlock, leads to 

Related 
templates: 

Conditional response 

Status: Verified using both a model that is known to fulfil the requirement, 
and a model that is known not to fulfil the requirement. 

References:  
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Title: Conditional response 

Sentence: While R is not true, P leads eventually to Q 

Formulas: LTL G (!R -> G (P -> F Q)); 

PSL always (!R -> always (P -> eventually! Q)); 

Guidance: A cause-and-effect relationship of certain model states or signals 
might not be true at all cycles due to, e.g., an overriding signal with 
higher priority, or a periodic test sequence or a manual user action 
temporarily inhibiting normal signal flow. 

 

This template allows for the specification of a state or signal R 
which will (temporarily) break the cause-and-effect relationship 
between P and Q. That is, if R is not true, an occurance of P must 
be followed by an occurance of Q. 

 

Note that: 

 “P leads eventually to Q” (or Q) may still be true regardless 
of the value of R, it is just that “P leads eventually to Q” has 
to be true only when R is false. 

 A single occurrence of Q will satisfy the condition even 
when there are multiple past occurrences of P. 

 P and Q may occur at the same cycle. 

Keywords: conditional, protection, interlock, leads to 

Related 
templates: 

Conditional leads to, Response 

Status: Verified using both a model that is known to fulfil the requirement, 
and a model that is known not to fulfil the requirement. 

References:  

 

Title: When more than n 

Sentence: When more than n of the P1, P2, P3, and P4 are true, Q is true 

Formulas: LTL (smv) G (((( P1 ? 1 : 0) + ( P2 ? 1 : 0) + ( P3 ? 1 : 0) 

+ ( P4 ? 1 : 0)) > n) -> Q); 

Guidance: Voting logic: if more than n (where 0 ≤ n ≤ 3) propositions out of the 
set { P1, P2, P3, P4 } are true, then Q must also be true. 

 

Notes on formulas: 

 If less than four of the propositions Pn are needed, simply 
insert “true” to other places to use the same formula. 

Keywords: more than, vote, redundancy 

Related 
templates: 

If less than n 

Status: Verified using both a model that is known to fulfil the requirement, 

and a model that is known not to fulfil the requirement. 

References:  
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Title: Trigger 

Sentence: When P changes to true, Q is true. 

Formulas: LTL G ((!P & X P) -> X Q); 

PSL always ((!P && next P) -> next Q); 

Guidance: The template states that whenever P changes from false to true 
(i.e., on a rising edge of P), Q must also be true at the same cycle. 

Keywords:  

Related 
templates: 

Delayed trigger 

Status: Proposed 

References:  

 

Title: Delayed trigger 

Sentence: When P changes to true, Q is eventually true. 

Formulas: LTL G ((!P & X P) -> X (F Q)); 

PSL always ((!P && next P) -> next (eventually! 

Q)); 

Guidance: The template states that whenever P changes from false to true 
(i.e., on a rising edge of P), an occurrence of Q must follow. 

Note that a single occurrence of Q will satisfy the condition even 
when there are multiple past occurrences of a rising edge of P. 

 

Keywords:  

Related 
templates: 

Trigger 

Status: Proposed 

References:  
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