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Abstract 
Generalized predictive control (GPC) is applied to control the maximum temperature in a solid oxide fuel 

cell (SOFC) stack and the temperature difference over the stack. GPC is a model predictive control method 

and the models utilized in this work are ARX-type (autoregressive with extra input), multiple input-multiple 

output, polynomial models that were identified from experimental data obtained from experiments with a 

complete SOFC system. The proposed control is evaluated by simulation with various input-output 

combinations, with and without constraints. A comparison with conventional proportional-integral-derivative 

(PID) control is also made. It is shown that if only the stack maximum temperature is controlled, a standard 

PID controller can be used to obtain output performance comparable to that obtained with the significantly 

more complex model predictive controller. However, in order to control the temperature difference over the 

stack, both the stack minimum and the maximum temperature need to be controlled and this cannot be done 

with a single PID controller. In such a case the model predictive controller provides a feasible and effective 

solution. 
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1 Introduction 
The solid oxide fuel cell (SOFC) technology enables the combined production of heat and power with a high 

electric efficiency and from a wide range of hydrocarbon fuels. The main obstacle for wide-spread utilization 

SOFC power systems is their high lifecycle cost, which in turn, is due to the high investment cost related to 

SOFC systems and the relatively short lifetime of the SOFC stack. The lifetime of a SOFC stack is 

effectively determined by the rate of the stack performance degradation which depends partly on to the 

inherent properties of the stack, such as structure and materials, but also on the conditions that stack is 

operated in. Automatic control can be used to optimize the operating conditions so that the part of stack 

performance degradation which depends on the operating conditions is minimized. 

One significant factor affecting the SOFC stack performance and performance degradation rate is the 

temperature in which the stack is operated [1]. In particular, a too high operating temperature increases the 

stack degradation rate unnecessarily, and a too low operating temperature will decrease the stack voltage and 

its efficiency, especially when operated with hydrocarbon fuels instead of pure hydrogen. Also the spatial 

temperature variations inside the SOFC stack can be a cause for stack degradation [2, 3]. The larger the 

temperature variations are, the bigger are the mechanical stresses posed on the stack structure due to 

mismatch of the stack materials’ thermal expansion coefficients. Hence, both the absolute temperature as 

well as the temperature distribution inside a SOFC stack should be kept within desired boundaries during 

both steady-state and transient operation, and model predictive control, which incorporates operating 

constraints can be used to achieve this target.  

Physical modeling of SOFCs and SOFC systems is today at a very advanced level. Good overviews of 

dynamic SOFC modeling and its status-quo are found in e.g. [4, 5]. One typical application for dynamic 

models is using them to develop control for the modeled processes, and several efforts on SOFC system 

control have also been reported. These works can be roughly divided into two categories: (i) control aiming 

primarily for SOFC load following, e.g. [6-13] and (ii) SOFC temperature control, e.g. [14-18]. Avoiding 

fuel starvation is typically a part of the load-following control, but in [19] the control focus is also on 

avoiding carbon formation in the SOFC. Both the fuel starvation limit and the chance of forming solid 

carbon in the system pose relevant operating constraints on SOFCs and thus on their control. 

The temperature control developments found in the literature include both simple decentralized, as well as 

complex advanced control approaches. In [14, 17] the control is based on decentralized PI and PID 

controllers (proportional-integral-derivative), which are tuned by utilizing the model so to provide a desired 

SOFC stack temperature response. In both cases the air flow is used as the manipulated variable. Advanced 

control is used in [15] and [16, 18] where the control is based on a variable structure control and H∞ control, 

respectively. In [15] the air and fuel flow are considered as manipulated inputs, while in [16], the air flow 

and air temperature before the stack are the manipulated variables. In all the said cases the control 

development is based on a 0-, 1- or 2-dimensional physical SOFC model. For the purpose of advanced 

control development, such models need to be simplified somehow and the mathematical treatment of the 

control derivation becomes easily rather involved, which always raises the threshold for SOFC practitioners 

to apply these results in their work.  

This paper aims to present a simple means for SOFC stack temperature regulation and control by applying 

the generalized predictive control (GPC) method [20], which is a variant of model predictive control (MPC). 

In contrast to other works, the model utilized in this work is a linear polynomial input-output model and is 

identified directly from experimental data [21], whereby an extensive part of physical modeling and/or 

model simplification is avoided. As first result, the obtained control algorithm is tested by simulation and 

various input-output combinations are examined in closed-loop. The behavior of the system controlled by 

GPC with and without typical practical constraints is analyzed and a comparison with PID control is made to 

clarify when the development of an advanced control algorithm is worthwhile. Attention is given to how the 

control handles the continuous rise of the SOFC stack temperature, induced by stack performance 

degradation. 

The control problem tackled here is deliberately limited to stack temperature control for several reasons. The 

thermal inertia of the stack and the system effectively dominates the transient behavior of both the system 

temperatures and the stack voltage, assuming that fuel and air starvation are avoided. The stack temperature 



is a property that must and can be controlled actively by the adjustable system inputs, whereas the values of 

such properties as the fuel flow rate and anode off-gas recycle flow rate are often dictated by their feasible 

operating bounds and the maximal efficiency criterion together. Similarly, it is considered reasonable to 

assume that the system load current is a non-controllable input to the system as its value is dictated rather by 

the desired load output than by the control system. Finally, as there are several means to affect the stack 

temperature, it is considered essential to find that combination of these means which has least adverse effects 

to system operation in terms of e.g. efficiency. To summarize, the load current is assumed to be an external 

input and its value together with the maximal efficiency requirement and system specifications essentially 

dictate the minimal air and fuel flow rates. Therefore the control effort is focused on providing the SOFC 

stack with the best possible operating conditions in terms of stack temperature and stack temperature 

distribution.  

There are several similarities between this and earlier works. In particular, the approach to the modeling and 

control development is analogous to that in [10, 19], where also system identification, Kalman filtering and 

model predictive control were used. The control aim, however, was not temperature control and the control 

model was a set of linear parameter-varying models instead of a linear time-invariant (LTI) model which is 

used here. Model predictive control and system identification to obtain an LTI model for control purposes 

was also applied in [8, 12], primarily for load-following control development, however. In all these works [8, 

10, 12, 19] the control model was identified from simulated data, whereas in this paper, models identified 

directly from experimental data are used. 

Section 2 contains a brief overview of the experiments and the data treatment related to this work, but for a 

more detailed description of this part as well as hardware-related details, the reader is directed to [21] and the 

references therein. Model identification for control development purposes and the process of developing a 

generalized predictive control algorithm are described briefly in Section 3. GPC is then applied to the case 

problem in Section 4. Simulation results, with a brief discussion are given in Section 5. Together with [21] 

these papers describe a complete process from experiment design to model identification and model 

predictive control development for a full solid oxide fuel cell system.  



2 Experimental and model identification work 
The experiments, the model identification process and the development of a Kalman filter -based estimator 

for the stack temperatures are described fully in [21]. Therefore only a brief overview is given here. 

2.1 Experiments and data pre-treatment 
The case-system in this work is a complete 10kW SOFC system with a single planar SOFC stack [22, 23]. 

The data was obtained from designed experiments in which the system was operated in varying operating 

conditions, reached by manipulating four selected input variables: load current, air flow, air inlet temperature 

and natural gas feed (see Table 1). To collect relevant data over the full system operating range, a so-called 

fractional factorial experiment design was carried out twice, around two different central operating points, 

one at the system nominal point and the other at a part-load operating point [21]. 

The stack maximum and minimum temperatures as well as the stack cathode outlet temperature were 

recorded as response. The internal stack temperatures were measured with thermocouples placed on a single, 

representative cell at the middle of an 80-cell SOFC stack. The response values considered in this work were 

obtained by taking the maximum and minimum values of the internal temperature measurements.  

Data sets for model identification and control development were produced by pre-treating the measurement 

data in two and three steps: 

1) The data was down-sampled from 1 sample per second to 1 sample per 5 minutes.  

2) Data offset removal was carried out by subtracting the nominal operating condition (NOC) values 

from the data. The I/O data series obtained after steps 1) and 2) are denoted 𝑢1…4 and 𝑦1...3 for the 

inputs and outputs, respectively. These data series effectively describe the system behavior as a 

deviation from its nominal operating point. 

3) The degradation effects were removed from the output data by removing a linear trend from the data 

(“de-trending”). The output data series obtained after steps 1)-3) are denoted by 𝑦1...3,𝐷𝑇. 

The utilization of the various data series is clarified in Section 2.2. 

Finally, the full input-output data series was divided into two parts, one for model identification and one for 

validation. The input/outputs variables’ descriptions, symbols and nominal operating condition values are 

collected into Table 1. Figure 1 illustrates the effects of de-trending for the first response variable, stack 

maximum temperature. Also the full data series as well as the periods of the identification and validation 

data segments are indicated in the figure. 

 

Table 1 - Considered system inputs and outputs. 

 
Symbol for 

physical variable 
Unit Nominal value 

Symbol for 

variable after pre-

treatment  

Inputs     

Load current 𝐼 A 160 𝑢1 

Air flow 𝑉̇𝑎𝑖𝑟 dm
3
 min

-1
 1062 𝑢2 

Air inlet temperature 𝑇𝑎𝑖𝑟,𝑖𝑛 °C 735 𝑢3 

Fuel flow 𝑉̇𝑁𝐺 dm
3
 min

-1
 27.90 𝑢4 

Outputs     

Maximum temperature 𝑇𝑚𝑎𝑥 °C 773.3 𝑦1, 𝑦1,𝐷𝑇 

Minimum temperature 𝑇𝑚𝑖𝑛 °C 692.9 𝑦2, 𝑦3,𝐷𝑇 

Cathode outlet temperature 𝑇𝑐𝑎𝑡ℎ,𝑜𝑢𝑡 °C 737.3 𝑦3, 𝑦3,𝐷𝑇 

 

 



 

 

Figure 1– The stack maximum temperature (i.e. first output) with and without de-trending. The periods of the full data 

segment as well as the identification and validation data are also indicated. 

 

 

2.2 Model identification for control development 
For the purpose of simulation-based control development, a total of three models are necessary: 

1) The process model, denoted 𝑀1, which is used to simulate the process when testing and evaluating 

the control algorithm.  

2) The control model (𝑀2) which is used to implement the control algorithm. That is, this model is used 

to calculate the control algorithm parameters.  

3) The estimation model (𝑀3) which is used to implement the estimation of non-measureable properties 

of the process. 

All models, especially the process model (𝑀1) should represent the physical process as accurately as 

possible. However, for control development, the dynamic characteristics of the physical process are of higher 

importance than absolute steady-state accuracy. Steady-state modeling errors may be compensated for by 

feedback and integral action in the control. It is entirely possible to use the same model as all 𝑀1…3 but this 

does not enable reliable examination of the control algorithm characteristics as there would be no modeling 

error. Therefore, in this work the following modeling approach is adopted: 

1) The process model, 𝑀1, is identified from all the available data and its accuracy is optimized by 

allowing high parameter dimensions. A degradation trend, identified from the data, is also added to 

the output of 𝑀1 (clarified below). 

2) The control model, 𝑀2, is identified from the de-trended identification data (a subset of the available 

data). The 𝑀2 outputs include only those outputs which are controlled, i.e. the stack minimum and 

maximum temperature. The parameter dimensions for 𝑀2 are lower than for 𝑀1, the process model, 

and equal to the dimensions of the estimation model 𝑀3. 

3) The estimation model, 𝑀3, and the estimator are taken directly from [21]. 𝑀3 and 𝑀2 have the same 

parameter dimensions but the identification data used to calculate their parameters is pre-treated 

differently. Specifically, no data de-trending is applied when identifying 𝑀3, as clarified in [21]. 

 

Remarks – In this work, the estimator is applied only in one of the test cases (Case 4). In the rest of the cases, 

it is assumed that the estimator is accurate enough so that the output of 𝑀1 can be directly fed back to the 



control system. This simplification is done only to make the control development process more illustrative 

and it is justified by the results of [21], where an accurate estimator for the case process was developed. It 

must be recognized, however, that in practice, when an estimator is used, the accuracy of the controlled 

output depends directly also on the estimator accuracy. For control development purposes, however, it 

simplifies the analysis to not have the estimation inaccuracy included. Furthermore, it should be noted that, 

contrary to common practice, the estimation model is not identified here based on the process model output, 

but based on the original measurement data. Doing so increases the estimation error but again simplifies the 

process. 

All models 𝑀1…3 are multiple-input-multiple-output (MIMO), discrete-time models and all models were 

identified by using the processes described above and detailed in [21]. All models are of the ARX-type 

(autoregressive model with extra inputs) given by (1).  

 𝐴(𝑞)𝑦(𝑡) = 𝐵𝑖𝑑(𝑞)𝑢𝑖𝑑(𝑡)+ 𝑒(𝑡) (1) 

 

In (1) 𝐴 and 𝐵𝑖𝑑 are matrix valued polynomials in 𝑞 with orders 𝑛𝑎 and 𝑛𝑏, respectively, and they contain the 

identified model parameters. 𝑞 is the forward shift operator.  𝑢𝑖𝑑 (𝑚𝑖𝑑 × 1) and 𝑦 (𝑛 × 1) denote the pre-

treated input and output signals, respectively, used for model identification. The model includes a process 

dead-time of 𝑛𝑘 time-steps.  

For process simulation purposes, a linear degradation trend with slope 𝑑0 (𝑛 × 1, °C/[t]) and intercept 𝑑1 

(𝑛 × 1, °C) is added to 𝑀1. For 𝑀2 and 𝑀3 only the nominal condition output, removed from the data during 

model identification, is added to the output (i.e. 𝑑0 can be assumed zero for 𝑀2 and 𝑀3). Noting that the first 

parameter matrix 𝐴1 in 𝐴 is the identity matrix (𝐴1 = 𝐼𝑛×𝑛), the output of 𝑀1…3 is obtained as given in (2). 

 𝑦(𝑡) = −∑𝐴𝑖

𝑛𝑎

𝑖=1

𝑦(𝑡 − 𝑖) + ∑𝐵𝑖𝑑,𝑖

𝑛𝑏

𝑖=0

𝑢𝑖𝑑(𝑡 − 𝑖) + 𝑑0𝑡 + 𝑑1 (2) 

 

The user-defined model parameters and the input/output structure as well as the output trend parameters of 

all models are given in Table 2.  

 

Table 2 - Fixed model parameters and input-output configuration for process model and control model. 

 Process model (𝑀1) Control model (𝑀2) Estimation model (𝑀3) 

𝑚𝑖𝑑 4 4 4 

𝑛 3 2 3 

𝑛𝑎 5 3 3 

𝑛𝑏 5 3 3 

𝑛𝑘 0 1 1 

Inputs 𝑢𝑖𝑑 = [𝑢1 𝑢2 𝑢3 𝑢4]𝑇 

Outputs 𝑦 = [𝑦1,𝐷𝑇 𝑦2,𝐷𝑇 𝑦3,𝐷𝑇]𝑇 𝑦 = [𝑦1,𝐷𝑇 𝑦2,𝐷𝑇]𝑇 𝑦 = [𝑦1 𝑦2 𝑦3]𝑇 

𝑑0 [0.59 0.52 0.47]𝑇 ∙ 10−3 [0 0]𝑇 [0 0 0]𝑇 

𝑑1 [768.0 688.1 733.1]𝑇 [773.2 692.9]𝑇 [773.2 692.9 737.3]𝑇 

 
 
Figure 2 displays the models’ first output (maximum temperature) compared to the measured output data. 

The figure highlights the modeling result appropriately; 𝑀1 captures the process output dynamics as well as 



the absolute level of the measurement accurately. 𝑀2 and 𝑀3 are not as accurate as 𝑀1 and do not replicate 

the degradation trend, but they are sufficiently accurate for control and estimator development purposes, 

respectively.  

 

 

Figure 2 - Measured data compared with the output of 𝑴𝟏…𝟑 . 

 
 

 

  



3 Control  
In this section, the generalized predictive control (GPC) method, devised by Clarke et al. [20] is applied to 

develop model predictive temperature control of the SOFC stack. The MIMO-formulation for the GPC 

algorithm can be found e.g. in [24].  

3.1 Model formulation 
In [24] the GPC algorithm is given starting from the CARIMA type model (controlled, autoregressive with 

integrated moving average) with manipulated inputs 𝑢, controlled outputs 𝑦, measured disturbances 𝑣 and a 

noise signal 𝑒 as shown in (3). 

 𝐴(𝑞)𝑦(𝑡) = 𝐵(𝑞)𝑢(𝑡 − 1) + 𝐷(𝑞)𝑣(𝑡) +
1

1 − 𝑞−1
𝑒(𝑡) (3) 

 

In [25] it is shown, however, that the GPC algorithm is as such applicable also to the ARX model structure 

(1), provided that the algorithm parameters are obtained accordingly. Therefore, the ARX model structure is 

maintained throughout this work. Note also that a model with the CARIMA structure could also be identified 

from the available data directly, e.g. by differencing the data as shown in [26]. 

For control purposes, the models obtained by identification in the ARX form (1) are re-grouped so that the 

controlled inputs 𝑢 and the not-controlled, but measured, inputs 𝑣 (i.e. the measured disturbances) are 

separated. The so obtained ARX model with measured disturbances can be expressed as (4).  

 𝐴(𝑞)𝑦(𝑡) = 𝐵(𝑞)𝑢(𝑡) + 𝐷(𝑞)𝑣(𝑡) + 𝑒(𝑡) (4) 

 

In (4) those 𝑚 inputs of 𝑢𝑖𝑑 in (1) which are considered controlled are included in 𝑢, and those 𝑚𝑖𝑑 − 𝑚 

inputs which are considered measured but not controlled are included in 𝑣. Similarly, the values for the 

matrix polynomials 𝐵 and 𝐷 are extracted from the identified 𝐵𝑖𝑑 in (1) so that those coefficients of 𝐵𝑖𝑑 

corresponding to the measured but not-controlled inputs are grouped into 𝐷 and the remaining coefficients 

are left in 𝐵.  

3.2 Calculating the control parameters for GPC 
The GPC method aims to minimize the quadratic cost criterion 𝐽, given in (5), over a finite operating horizon 

given by 𝑁1 and 𝑁2, the minimum and maximum prediction horizon, respectively, and 𝑁3, the control 

horizon.  

 𝐽(𝑁1, 𝑁2, 𝑁3) = ∑ ‖𝑦̂(𝑡 + 𝑗|𝑡) − 𝑤(𝑡 + 𝑗)‖𝑅
2

𝑁2

𝑗=𝑁1

+ ∑‖𝑢(𝑡 + 𝑗 − 1) − 𝑢(𝑡 + 𝑗 − 2)‖𝑄
2

𝑁3

𝑗=1

 (5) 

 

In (5), 𝑦̂(𝑡 + 𝑗|𝑡) is the optimum 𝑗-step-ahead prediction of the output 𝑦, given the measurement data up to 

time 𝑡. 𝑤(𝑡 + 𝑗) is the set point trajectory and 𝑅 and 𝑄 are positive definite weight matrices that determine 

the proportional cost effect of the target error and control effort, respectively. 

Following the procedure given in [20, 24] for obtaining the GPC parameters, the past (including present) and 

future terms of the controlled process are separated. By doing so and by adopting matrix notation the cost 

function (5) can be re-formulated as (6), 



 𝐽 = (𝐺∆𝑢 + 𝑓 + 𝐻∆𝑣 − 𝑤)𝑇𝑅̅(𝐺∆𝑢 + 𝑓 + 𝐻∆𝑣 − 𝑤) + ∆𝑢𝑇𝑄̅∆𝑢 (6) 

from which the unconstrained optimal control ∆𝑢 is obtained by differentiating and solving the equation with 

respect to ∆𝑢, resulting in (7).  

 ∆𝑢 =  (𝐺𝑅̅𝐺 + 𝑄̅)−1𝐺𝑅̅(𝑤 − 𝑓 − 𝐻∆𝑣) (7) 

 

Here the matrix ∆𝑢 = [(𝑢(𝑡) − 𝑢(𝑡 − 1))
𝑇

⋯ (𝑢(𝑡 + 𝑁 − 1) − 𝑢(𝑡 + 𝑁 − 2))
𝑇
]
𝑇
 contains the control 

increments, ∆𝑣 = [(𝑣(𝑡) − 𝑣(𝑡 − 1))
𝑇

⋯ (𝑣(𝑡 + 𝑁 − 1) − 𝑣(𝑡 + 𝑁 − 2))
𝑇
]
𝑇
, the disturbance changes 

and 𝑤 = [𝑤(𝑡)𝑇 ⋯ 𝑤(𝑡 + 𝑁 − 1)𝑇]𝑇 the reference signal over the operating horizon 𝑁. 𝑄̅ and 𝑅̅ are 

matrix forms of the weight factors 𝑄 and 𝑅, i.e. 𝑄̅ = 𝑑𝑖𝑎𝑔(𝑄,… , 𝑄) and 𝑅̅ = 𝑑𝑖𝑎𝑔(𝑅,… , 𝑅). The operating 

horizon 𝑁 is chosen by the operator and typically in practice 𝑁 = 𝑁3 = 𝑁2 − 𝑁1 + 1. 

The matrices 𝐺, 𝑓  and 𝐻 are the control gain matrix, the uncontrolled system response signal and the 

disturbance gain matrix, respectively, over the operating horizon. These signals are considered to form the 

system response and therefore, the optimal process output prediction over the operating horizon can be given 

as (8). This equation must also be considered a basic assumption underlying the control strategy. 

 𝑦̂ = 𝐺∆𝑢 + 𝑓 + 𝐻∆𝑣 (8) 

 

𝐺, 𝑓  and 𝐻 are obtained after reorganizing the problem into a part dependent only on current and future 

controls, and a part dependent on the past. Then, the Diophantine equation 𝐼𝑛×𝑛 = 𝐸𝑗(𝑞)(𝐴(𝑞) −

𝑞−1𝐴(𝑞)) + 𝑞−𝑗𝐹𝑗(𝑞) is solved for 𝑗 = 1…𝑁 to obtain the intermediate polynomials 𝐸𝑗 and 𝐹𝑗 of orders 

𝑗 − 1 and 𝑛𝑎, respectively.  

The control gain and disturbance gain matrices, 𝐺 and 𝐻, are obtained by multiplying 𝐵 and 𝐷, respectively, 

with 𝐸𝑗 and then re-grouping the obtained matrix polynomials, as given in (9)-(11). 

 𝐸𝑗(𝑞)𝐵(𝑞) = ∑𝐺𝑖𝑞
−𝑖

𝑗−1

𝑖=0

+ 𝑞−𝑗𝑓𝑗,𝑢(𝑞) (9) 

 

 𝐸𝑗(𝑞)𝐷(𝑞) = ∑𝐻𝑖𝑞
−𝑖

𝑗−1

𝑖=0

+ 𝑞−𝑗𝑓𝑗,𝑣(𝑞) (10) 

 

 𝐺 = [

𝐺0 0 ⋯ 0
𝐺1 𝐺0 ⋯ 0
⋮ ⋮ ⋱ ⋮

𝐺𝑁−1 𝐺𝑁−2 ⋯ 𝐺0

],       𝐻 = [

𝐻0 0 ⋯ 0
𝐻1 𝐻0 ⋯ 0
⋮ ⋮ ⋱ ⋮

𝐻𝑁−1 𝐻𝑁−2 ⋯ 𝐻0

] (11) 

 

The elements 𝐺𝑖 (all matrices) can be interpreted as step gains of the system with respect to the control 

signal. More specifically, (𝐺𝑖)𝑘,𝑗 is the value of the response measured from output 𝑘 when a unit step 

excitation was fed to controlled input 𝑗 of the system at instant 𝑡 − 𝑘. A similar interpretation, but for the 

measured disturbances, is valid for 𝐻. 



The uncontrolled response 𝑓 is obtained by calculating (12)  

 𝑓𝑗 = 𝑓𝑗,𝑢(𝑞)(𝑢(𝑡 − 𝑗) − 𝑢(𝑡 − 𝑗 − 1))

+ 𝑓𝑗,𝑣(𝑞)(𝑣(𝑡 − 𝑗) − 𝑣(𝑡 − 𝑗 − 1))

+ 𝐹𝑗(𝑞)𝑦(𝑡)  

(12) 

 

and collecting the 𝑓𝑗 into 𝑓 = [𝑓1 ⋯ 𝑓𝑁]𝑇.  

The calculation procedure is reflected by the result, (8), where it is seen that 𝐺 and 𝐻 operate on future, 

predicted or otherwise known, inputs and disturbances, and 𝑓 contains the past effects. More specifically, 𝑓 

can be interpreted as the behavior of the system onward from time 𝑡 if all controls and external disturbances 

were constant after the instant 𝑡.  

The procedure is computationally efficient as it can be implemented recursively. A detailed description of 

the recursive computation algorithm is given in [24, Ch. 4, 6] and [20, Appendix B]. Furthermore, a means to 

obtain the parameters 𝐺 and 𝑓 directly from the model parameters 𝐴 and 𝐵 is given in [25]. 

 

3.3 Control constraints 
One asset, if not the most important one, of model predictive control is the simplicity of introducing both 

input and output constraints on the control computation. On one hand, such constraints may be dictated by 

the actuator equipment, their operating range and operating speed, and on the other hand by the operator, 

who may wish to limit the system operation within pre-defined safety boundaries.  

Absolute limits and slew rate limits for the manipulated variables are formulated simply as (13) and (14), 

respectively. 

 𝑢 ≤ 𝑢(𝑡) ≤ 𝑢 ,     ∀𝑡 (13) 

 

 ∆𝑢 ≤ 𝑢(𝑡) − 𝑢(𝑡 − 1) ≤ ∆𝑢 ,     ∀𝑡 (14) 

Here 𝑢 and 𝑢 are the lower and upper limits for the inputs, and ∆𝑢 and ∆𝑢 the limits for the input change 

rate, respectively.  Limits for the process output are given similarly as (15), where 𝑦 and 𝑦 denote the output 

lower and upper boundaries, respectively.  

 𝑦 ≤ 𝑦(𝑡) ≤ 𝑦 ,     ∀𝑡 (15) 

 

In order to bring the constraints (13)-(15) into a form that can be implemented numerically, the output 

constraints are multiplied by suitable block unit matrices and the system output is estimated by the model 

output over the operating horizon, i.e., 𝑦(𝑡) ≈ 𝑦̂ = 𝐺∆𝑢 + 𝑓, over 𝑡 … 𝑡 + 𝑁. Furthermore, the two-sided 

constraints are all divided into two single-sided constraints. With these reformulations, all the constraints can 

be compactly given as a function of the control increments ∆𝑢 as in (16) 

 𝑆∆𝑢 ≤ 𝑐, (16) 

where  



 𝑆 =

[
 
 
 
 
 

𝑇
−𝑇
𝐼𝑁×𝑁

−𝐼𝑁×𝑁

𝐺
−𝐺 ]

 
 
 
 
 

,    𝑐 =

[
 
 
 
 
 
 
 

1𝑚(𝑢 − 𝑢(𝑡 − 1))

−1𝑚 (𝑢 + 𝑢(𝑡 − 1))

1𝑚∆𝑢
−1𝑚∆𝑢

1𝑛𝑦 − f
−1𝑛𝑦 + f ]

 
 
 
 
 
 
 

. (17) 

 

In (17), 𝑇 is a lower triangular block matrix of 𝑁 × 𝑁 blocks with 𝐼𝑚×𝑚 matrices in the non-null entries and 

𝐼𝑁×𝑁 is an 𝑁 × 𝑁 unit matrix (identity matrix). 1𝑚 and 1𝑛 are 𝑁𝑚 × 𝑚 and 𝑁𝑛 × 𝑛 matrices formed by 𝑁 

𝑚 × 𝑚 or 𝑛 × 𝑛 unit matrices, respectively (placed on top of each other). This formulation of the constraints 

yields the optimal control finding problem as a constrained convex optimization problem, which can be 

solved with very efficient routines.  

 

3.4 Case-specific implementation 
In our case, the system is considered time-invariant and a non-adaptive control can therefore be applied. 

Therefore, the process of solving 𝐸 and 𝐹, and calculating 𝐺 and 𝐻, is carried out only once and is done off-

line and not at every time-step during the simulation. In practice this means that programming the algorithm 

into a process controller is simplified since none of the GPC parameter computation, (9)-(12), needs to be 

implemented there but the parameters can be imported from an external device. 

The external disturbances 𝑣 are considered measureable but not predictable or known in the future. Therefore 

they are considered constant over the prediction horizon, whereby the future disturbance increments ∆𝑣 = 0. 

Therefore this assumption allows removing the 𝐻∆𝑣 term from the control calculation (7). Note, however, 

that despite 𝐻 is not used in the control calculation, it is calculated to obtain the past disturbance effects 

included in 𝑓. 

An elementary part of the model predictive control scheme is the receding horizon approach. This means that 

only the first 𝑚 rows of the matrix (𝐺𝑅̅𝐺 + 𝑄̅)−1𝐺𝑅̅ are needed to obtain the unconstrained control signal. 

By denoting these rows with 𝐾 and substituting in (7) with the 𝐻∆𝑣 term removed, the unconstrained control 

at time instant 𝑡 obtains the form of an integrating control, guaranteeing zero steady-state error (18). 

 𝑢(𝑡) =  𝐾(𝑤 − 𝑓) + 𝑢(𝑡 − 1) (18) 

Calculating 𝑢(𝑡) according to (18) is a simple matrix multiplication and requires no use of an iterative, 

numerical solver. Therefore, the approach taken in our implementation is that 𝑢(𝑡) is always calculated first 

by (18), then a constraint violation check is carried out with (16) and the constrained numerical optimization 

procedure is started only if the unconstrained control violates the constraints. 

 

  



4 Results and discussion 
 

4.1 Control simulation 
In Sections 4.2-4.5, the behavior of the predictive control strategy based on GPC is evaluated by simulating 

the following four cases.  

1) Control of a single output variable (𝑇𝑚𝑎𝑥) with a single manipulated variable (𝑇𝑎𝑖𝑟,𝑖𝑛) when input 

constraints are present. GPC is compared with standard PID control with integrator anti-windup, and 

with and without feed-forward compensation. The purpose of this case is to illustrate how GPC 

handles constraints and that implementing GPC does not significantly improve the control result 

compared to a well-tuned PID controller in a simple, single-variable control case. 

2) Control of a single output variable (𝑇𝑚𝑎𝑥) with two manipulated variables (𝑇𝑎𝑖𝑟,𝑖𝑛, 𝑉̇𝑎𝑖𝑟) when input 

constraints are present. The purpose of this case is to illustrate the practical effects of the control 

action cost parameters. Furthermore, the results are compared with Case 1 results to further analyze 

the practical aspects of multi-input control with respect to single-input control.  

3) Control of two temperature variables (𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛) with the aim to reduce the temperature 

difference (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛). No input constraints are used. The purpose is to analyze the feasibility of 

the control and to discuss implications of the control on system efficiency. In this case, two control 

approaches are studied:  

3.1)  Using two manipulated variables (𝑇𝑎𝑖𝑟,𝑖𝑛 and 𝑉̇𝑎𝑖𝑟). 

3.2)  Using three manipulated variables (𝑇𝑎𝑖𝑟,𝑖𝑛, 𝑉̇𝑎𝑖𝑟 and  𝑉̇𝑁𝐺). 

4) Same as case 3.1, but now with the Kalman filter –based estimator, adopted from [21], used to 

estimate the stack temperature, while the cathode outlet temperature measurement is corrupted with 

noise. The purpose of this case is to demonstrate to functioning of the complete control 

implementation.  

Tuning the model predictive controller is done by adjusting the cost function weights 𝑅 and 𝑄 and the 

operating horizon parameters 𝑁1…3.  

The operating horizon is set to three hours (i.e. 𝑁 = 36) with  𝑁2 = 𝑁3 = 36 and 𝑁1 = 1  for all the 

simulation cases. The minimum prediction horizon (𝑁1 = 1) is determined based on the model dead-time 

(𝑛𝑘), which for model 2 is 1 time step. The maximum prediction horizon is chosen by trial and error so that 

the prediction is considered sufficiently accurate over the whole horizon. The control horizon is set equal to 

the prediction horizon. 

The cost function weights for input manipulation, 𝑄, are set based on the system input-to-output 

characteristics which can be illustrated with the step response of each output to each input. These are shown 

for model 1 in Figure 3. 

 

 

Figure 3 - Response of each output to a unit step change in each input. 

 



Figure 3 enables determining two important system characteristics, namely, (i) what is the steady-state gain 

and (ii) what is the “response time” of each output to the change in each input. For example, it is seen that a 

unit change in input 𝑢3 (corresponding to 𝑇𝑎𝑖𝑟,𝑖𝑛) has a positive effect of ca. 0.75 units on output 𝑦1 

(corresponding to 𝑇𝑚𝑎𝑥) in steady-state. For 𝑢2 (𝑉̇𝑎𝑖𝑟), this is ca. 0.025 units but in the opposite direction. 

Therefore, the figure enables determining whether or not, and to what extent the outputs can be individually 

controlled with the given input variables. It is also seen that although both outputs 𝑦1 and 𝑦2 respond 

towards the same direction for a change in a certain input, there are differences in the response magnitudes. 

These differences enable, to some extent, decoupled control of the individual outputs. 

Based on the shape of the step response it is possible to estimate which inputs affect the outputs faster than 

others. For instance, it appears that a change in the air flow (𝑢2) alters the stack temperatures faster than a 

change in the inlet air temperature (𝑢3).  

With this background, the cost function weights 𝑄 for the control effort are determined by the input 

variables’ (average) proportional effect on the output variables, and the desired speed of the controlled 

response.  

The target error costs, 𝑅, are determined based on the control aim and also the desired speed of the controlled 

response. In cases 1-2, only the first of the two output temperatures is controlled and thus all other elements 

of 𝑅 except 𝑅1,1 are zero. In case 3 both output temperatures are controlled with equal importance.  

All simulation parameters are compiled into Table 3.  

Table 3 - System set-up and the GPC algorithm parameters for the simulated test cases. 

 Case 1 Case 2 Case 3.1 & Case 4 Case 3.2 

Controlled 

outputs 
𝑇𝑚𝑎𝑥 𝑇𝑚𝑎𝑥 𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛 𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛 

Manipulated 

inputs 
𝑇𝑎𝑖𝑟,𝑖𝑛 𝑉̇𝑎𝑖𝑟 and 𝑇𝑎𝑖𝑟,𝑖𝑛 𝑉̇𝑎𝑖𝑟 and 𝑇𝑎𝑖𝑟,𝑖𝑛 𝑉̇𝑎𝑖𝑟, 𝑇𝑎𝑖𝑟,𝑖𝑛 and 𝑉̇𝑁𝐺 

Measured 

disturbances 
𝐼 

𝑁1 1 

𝑁2 36 

𝑁3 36 

𝑢 𝑢3 [𝑢2 𝑢3]𝑇 [𝑢2 𝑢3]𝑇 [𝑢2 𝑢3 𝑢4]𝑇 

𝑢 −5 [−50 −5]𝑇 – – 

𝑢 5 [50 5]𝑇 – – 

𝑅 [
1 0
0 0

] [
1 0
0 0

] [
1 0
0 1

] [
0.1 0
0 0.1

] 

𝑄 [0.5] [
0.03…0.3 0

0 0.7…0.97
] [

0.015 0
0 0.985

] [
0.002 0 0

0 0.096 0
0 0 0.902

] 

 

All simulations and the control parameter calculation were implemented in the Matlab® and Simulink® 

environment. Constrained optimization was done with the Matlab® fmincon function. On a regular laptop 

computer the control parameter calculation (obtaining 𝐺, 𝑓  and 𝐻) as well as simulation of the 



unconstrained control case occur instantaneously. The simulation of the constrained control case runs with a 

speed of ca. 3000 faster than real-time, which allows assuming that the algorithms are as such suited for 

online implementation in an embedded computation system.  

4.2 Case 1: Single-variable GPC comparison with PID control 
In the first case, the stack maximum temperature 𝑇𝑚𝑎𝑥 is controlled by manipulating the stack module inlet 

air temperature 𝑇𝑎𝑖𝑟,𝑖𝑛 (corresponding to the output and input variables 𝑦1 and  𝑢3, respectively). In Figure 3 

it is seen that the relationship between this I/O pair is very close to a first-order process without significant 

dead-time and the process is easily controlled by a well-tuned PID controller.  

Typically the inputs of a SOFC system are constrained to some pre-defined range which can have significant 

effects on the practical control behavior. The model predictive controller handles the input constraints as part 

of the control calculation, and an integrator anti-windup scheme is typically used in PID controllers to avoid 

problems resulting from limited actuation. 

In the simulation case, the GPC response is compared with the response obtained by PID control with 

integrator anti-windup, with and without a first-order feedforward compensation for the measureable load 

disturbance. The PID and FF control algorithms as well as the parameters are given in Appendix A. 

The system is excited first by a positive unit step disturbance in stack load current, posed on the system at 𝑡 = 

2 hours (𝐼 changes from 160A to 161A, Figure 4 (a)). Then at 𝑡 = 10 hours a negative unit step change in the 

𝑇𝑚𝑎𝑥 setpoint is carried out (i.e. the 𝑇𝑚𝑎𝑥 setpoint changes from 773.3 °C to 772.3 °C, Figure 4 (c)). 

Throughout the simulation, the manipulated variable is constrained between ±5°C from the nominal value 

(i.e. 𝑇𝑎𝑖𝑟,𝑖𝑛 ∈ [730, 740] °C) and the two unused inputs, 𝑉̇𝑎𝑖𝑟 and 𝑉̇𝑁𝐺 are kept at their nominal values (Table 

1).  

 

Figure 4 – Case 1, illustration of the GPC algorithm performance compared to a PID controller with and without 

feedforward (FF) compensation for measured disturbances. The figures show (a) the disturbance signal, (b) the manipulated 

input and (c) the controlled output and its setpoint.  



Figure 4 (c) shows the controlled responses. Both for the disturbance and the setpoint change, the speed of 

the controlled response is clearly limited by the input constraint. Although the GPC output appears slightly 

better performing than the PID outputs, the difference is not significant enough to justify the extra 

complexity of the GPC algorithm. The result illustrates, however, how GPC inherently contains the features 

which are brought to the PID controller by adding feedforward compensation and integrator anti-windup. 

 

4.3 Case 2: Multivariable control of cell maximum temperature 
Using multiple manipulated input variables, instead of only one, to control the output enables improving the 

control and response characteristics. In particular, as the system response to some manipulated inputs is 

faster than to others (Figure 3), the settling time of the controlled system response can be affected by 

selection of the cost function parameters. Similarly, the differences between the input-output pairs’ steady 

state gain can be utilized to adjust the steady-state cost of the control effort. In the following simulations, 

𝑇𝑚𝑎𝑥 is controlled by manipulating 𝑇𝑎𝑖𝑟,𝑖𝑛 and 𝑉̇𝑎𝑖𝑟 with two different values of 𝑄, i.e. the control effort cost 

weighting coefficients.  

Based on Figure 3 it may be expected that if 𝑉̇𝑎𝑖𝑟 is used to control the stack temperature, the controlled 

response is faster than if 𝑇𝑎𝑖𝑟,𝑖𝑛 is used. The effect can be examined by varying the proportional cost of these 

two manipulated variables. The control effort weights used in the following simulations are 𝑄1 =

 [
0.03 0
0 0.97

] , 𝑄2 = [
0.3 0
0 0.7

]. The sum of the weighting factors in both 𝑄1 and 𝑄2 is 1, and in 𝑄1, the 

weight coefficients for 𝑇𝑎𝑖𝑟,𝑖𝑛 and 𝑉̇𝑎𝑖𝑟 correspond to the steady-state gain of their unit step responses (seen 

in Figure 3). If using 𝑄2 the proportional cost of manipulating 𝑉̇𝑎𝑖𝑟 is ten-fold compared to using 𝑄1. 

The disturbance and setpoint signals as well as the uncontrolled inputs are identical to those in case 1 

(Section 5.2). The constraints for 𝑇𝑎𝑖𝑟,𝑖𝑛 are the same as in case 1 (i.e. 𝑇𝑎𝑖𝑟,𝑖𝑛 ∈ [730, 740] °C) and for 𝑉̇𝑎𝑖𝑟 a 

maximum variation of 50 dm
3
 min

-1
 from the nominal value is set (i.e. 𝑉̇𝑎𝑖𝑟 ∈ [1012, 1112] dm

3
 min

-1
). 

Furthermore, a linear trend of 1°C / 30 hours (33 °C / 1000 h) is added to the process output to simulate the 

control behavior under degradation effects. The trend is heavily exaggerated for illustrative purposes when 

comparing to the trend of ca. 5-7 °C / 1000 hours observed in the experiments [21]. 

The simulation case manipulated inputs and the controlled output are shown in Figure 5. The manipulated 

inputs and controlled output of the GPC control in case 1 are shown for comparison. Note though, that no 

degradation trend was present in case 1. 

 



 

Figure 5 – Case 2, illustration of the GPC algorithm performance when the stack maximum temperature is controlled by 

manipulating both air flow and air inlet temperature. A linear trend is added to the process output to simulate effects of stack 

performance degradation. Also the single-input control result (case 1) is shown for comparison. 

 

The primary observation of Figure 5 (c) is that the controlled response is slightly faster with 𝑄2, when the 

cost for manipulating 𝑉̇𝑎𝑖𝑟 is reduced, compared to 𝑄1. It is also seen in Figure 5 (c) that the controlled 

response settles slightly faster and deviates less from the desired value in case 2 than in case 1.  

The trend added to the process model output results in a continuously changing control signal – the control 

adjusts the manipulated variables continuously in order to maintain the controlled variable at its desired 

value.  

The effects of modifying the weights in 𝑄 become evident by observing the manipulated variables in Figure 

5 (a)-(b). If the cost of manipulating 𝑉̇𝑎𝑖𝑟 is high, its magnitude is smaller and 𝑇𝑎𝑖𝑟,𝑖𝑛 is used proportionally 

more to obtain the desired output, and vice-versa. Therefore, with 𝑄1 it is observed that 𝑇𝑎𝑖𝑟,𝑖𝑛 becomes 

limited by the input constraint and the same happens for 𝑉̇𝑎𝑖𝑟 with 𝑄2.  

Remark – It is clear that modifying 𝑉̇𝑎𝑖𝑟 will also affect the parasitic power consumption of the air blower 

and so the system efficiency. Modifying 𝑇𝑎𝑖𝑟,𝑖𝑛, however, takes place by changing the opening of an air heat-

exchanger by-pass valve which has little or no effects on the system efficiency. With the formulation of the 

cost function in (5) only the control increments affect the cost and so it is not possible to directly optimize 

the control with respect to the absolute magnitude of the control effort. For such optimization, (5) should be 

modified, e.g., to include a cumulative sum of the control actions which cause for system efficiency to 

decrease, in this case 𝑉̇𝑎𝑖𝑟.  

 



4.4 Case 3: Control of cell maximum and minimum temperature  
Reducing, the temperature difference over the cells in the stack could be beneficial considering attenuation 

of thermal stresses in the stack and on the ceramic cell structure. Next, two approaches to control both 𝑇𝑚𝑎𝑥 

and 𝑇𝑚𝑖𝑛 and thereby the difference 𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛 are simulated in the following cases: 

3.1) By using two manipulated variables: 𝑇𝑎𝑖𝑟,𝑖𝑛 and 𝑉̇𝑎𝑖𝑟. 

3.2) By using three manipulated variables: 𝑇𝑎𝑖𝑟,𝑖𝑛 𝑉̇𝑎𝑖𝑟 and 𝑉̇𝑁𝐺. 

It is clear that since essentially two variables are controlled, at least two manipulated variables are necessary. 

Furthermore, when 𝑉̇𝑁𝐺 and 𝑉̇𝑎𝑖𝑟 are manipulated to control the stack temperature, also the electrical 

efficiency of the system is affected; 𝑉̇𝑁𝐺 relates to the efficiency directly and 𝑉̇𝑎𝑖𝑟 affects the parasitic power 

consumption of the air blower. However, if a longer system lifetime is obtained by a moderate reduction in 

efficiency, then it may be worthwhile.  

The disturbance signal and the uncontrolled inputs are identical to cases 1-2. Also the trend is included in the 

system output (as in case 2). The setpoint signal for 𝑇𝑚𝑎𝑥 is also identical to cases 1-2 but the setpoint for 

𝑇𝑚𝑖𝑛 is kept constantly at its nominal value (692.9 °C) in order to simulate reduction of the temperature 

difference. The cost function weights are given in Table 3 and the input constraints are removed to allow for 

larger control actions. 

Figure 7Figure 6 (a)-(c) shows the behavior of the manipulated variables obtained with the two different 

control approaches. The resulting outputs are shown in Figure 7 (a)-(b). 

 

Figure 6 – Cases 3.1-3.2, the manipulated input variables. 



 

Figure 7 – Cases 3.1-3.2, the controlled response. 

 

The primary observation on Figure 6 and Figure 7 is that it appears to be possible to regulate and to reduce 

the temperature difference over a cell in the SOFC stack by using multivariable control. If comparing the 

results with cases 1-2, it is also seen that enforcing both temperature variables to be controlled requires in 

general for larger control actions to be carried out. However, due to the large gain from the NG feed input to 

the stack temperature (Figure 3) only a rather modest manipulation of the NG feed is necessary to affect the 

stack temperature.  

An interesting observation is that in case 3.2, a reduction of the temperature difference is obtained with a 

control action where the NG flow is decreased and, furthermore, so that also the air flow ends at a lower 

level than in case 3.1, where the NG flow is kept constant. Therefore, if fuel and/or air starvation do not pose 

practical constraints, the three-input control enables both reducing the temperature differences in the stack 

and improving the system efficiency at the same time. To interpret this in another way, in order to obtain the 

desired stack operating temperature and temperature distribution, it is best to operate the system at minimal 

feasible air and fuel flow and manipulate only the air inlet temperature (instead of manipulating also the air 

flow).  

 

4.5 Case 4: Simulation with estimator included 
To illustrate the functioning of the complete control system, the Kalman filter –based estimator for the stack 

temperatures was added to the simulation case 3.1. Band-limited white noise with a standard deviation of 0.5 

°C and a random drift with a drift velocity of ca. 2 °C/h were added to the cathode outlet temperature 

measurement. Both noise properties are exaggerated for illustrational purposes. Values observed in the raw 

data for the temperature measurement are below 0.3 °C for the standard deviation and below 0.1 °C/h for the 

drift velocity. Also the linear degradation trend of 1°C / 30 h, used in cases 2-3, is applied to simulate 

exaggerated degradation of the stack performance. 

 

In Figure 8 it is seen that the control is similar to that obtained in case 3.1. Also the controlled outputs shown 

in Figure 9 are otherwise the same in case 4 as in case 3.1, but effects of the measurement noise are carried 

along to the control also, although the Kalman filter removes much of the noise (as seen in Figure 10). 

Although the noise properties were heavily exaggerated in the simulation case, it is apparent that if the 

application case is significantly noisy, filtering both the measurement and output signals may be necessary. 



 

Figure 8 – Cases 4 and 3.1, the manipulated input variables. 

 

 

Figure 9 – Cases 4 and 3.1, the controlled output. Note that in case 4 the plotted variable is the estimator output whereas in 

case 3.1 it is the model output. 

 

 

Figure 10 – Case 4, the cathode outlet temperature measurement before and after filtering. 



4.6 Discussion 
In this work the GPC parameters were not tuned in any particular manner as long as a stable output was 

obtained. Tuning of model predictive controllers, i.e. setting the operating horizon 𝑁 and the cost function 

weights 𝑅 and 𝑄, is in general not straightforward and may require several iterations by trial and error. An 

analysis of the process input/output relations and the corresponding steady-state gains, as given with Figure 

3, can be a useful starting point as this way, proportionally equal weights for the control cost function are 

obtained easily. From this starting point, the practical implications of each input and output on the real 

system operating cost, such as its efficiency or lifetime, can be used to further tune the cost weights. Once 

suitable parameters for some reference case are found, it should be confirmed that the system is stable with 

these parameters over the full desired operating range. To this end, a theoretical analysis of the model 

predictive controller, in addition to extensive simulation, should be carried out. After such an analysis, MPC 

tuning rules reported in the literature may be applicable [27].  

Setpoint prediction or prediction of measureable disturbances in the GPC algorithm was also left unutilized 

in this work. Although it is unrealistic to assume prediction of disturbances, however measureable, the 

setpoints may well be made predictable by introducing a lag to setpoint changes.  Furthermore, considering 

e.g. residential SOFC-based CHP systems, where system operation is not ultimately time-critical or can be 

configured to follow a pre-determined daily operating cycle, setpoint prediction as well as prediction (or 

scheduling) of the measureable disturbances could be reasonably implemented. 

Considering the multivariable control in cases 2-4, system efficiency should be taken into account when 

designing the control so that the desired tradeoff between system efficiency and output controllability is 

obtained. Clearly, the cost function weights for the control parameters and plain input constraints provide a 

tool for obtaining such a control which is both technically applicable and economically viable. Additionally, 

in case 2, when only 𝑇𝑚𝑎𝑥 is controlled, and in case 3, when approach 2 is applied, there are more 

manipulated variables than controlled variables and the system is overdefined. In these cases it should be 

examined by input-output pairing whether or not it is really worthwhile to utilize all the available 

manipulated variables for control. 

The simulations in this work were based on a model identified from experimental data from a real SOFC 

system which allows assuming that GPC can also be utilized for SOFC control in practice. Although this 

work focused on a single-stack system, the need for a centralized control method, such as GPC, increases 

especially when large SOFC systems containing several stacks are built. In such multi-stack systems the 

differences in performance between the stacks have to be compensated for somehow in order to maximize 

system lifetime and/or efficiency [28]. Managing the temperature of the stacks becomes especially important 

even during steady state operation as the stacks’ temperature affects also the fuel and air distribution between 

the stacks when they share common gas flow manifolds. Considering e.g. a compensation strategy by stack-

wise load modulation or flow adjustment, it is practically impossible to implement an optimal compensation 

by giving setpoints to individual stack load controllers, while a centralized control does this automatically. 

  



5 Conclusions 
A simple example of model predictive control, based on the generalized predictive control algorithm for the 

temperature control of a SOFC stack was presented. The models utilized for control development were 

identified from data obtained with a series of experiments carried out on a complete 10 kW SOFC system.  

The simulations illustrate that with the MIMO GPC algorithm it is possible to regulate and to control the 

temperature difference over a cell in a SOFC stack. This enables the reduction of thermal stresses over the 

cell which may be expected to have a positive effect on stack lifetime.  

The GPC algorithm was compared with a standard PID controller for controlling a single stack temperature 

variable (the stack maximum temperature) with one and two manipulated input variables. Although the 

controlled response can be made slightly faster by using GPC and multiple manipulated inputs, the PID 

controller generally provides a comparable performance to the GPC algorithm when only a single 

temperature is controlled. Therefore, despite its flexibility regarding constraint handling, the justification for 

using GPC which is significantly more complex than PID control is questionable in a simple control case. 

The operation of a complete MIMO GPC control algorithm with a Kalman filter –based estimator for the 

controlled, non-measureable variable was studied under noise effects. The computational performance of the 

algorithm was found viable for embedded online implementation.  

Future work includes validating the approach in a complete SOFC system and including temperature control 

for startup and shutdown procedures, occurring outside the nominal operating envelope. 
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Glossary 
ARX Autoregressive (model) with extra input 

CARIMA Controlled and autoregressive (model) with integrated moving average (noise term) 

FF Feedforward (compensation) 

GPC Generalized predictive control 

I/O Input-output 

LTI Linear and time-invariant 

MIMO Multiple-input-multiple-output 

MPC Model predictive control 

NG Natural gas 

NOC Nominal operating conditions 

PID Proportional-integral-derivative 

SOFC Solid oxide fuel cell 
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Appendix A – The discrete PID controller and FF compensator algorithms 
The discrete-time PID controller algorithm used in the Section 3 simulations is given below. The algorithm is 

the common discrete-time PID approximation obtained with backward differencing and the integrator anti-

windup is implemented with the back-calculation method, both found e.g. in [29].  In (A.1)-(A.4), 𝑒(𝑡) is the 

error signal (𝑤(𝑡) − 𝑦(𝑡)), 𝐾𝑃, 𝐾𝐼 and 𝐾𝐷 are the control parameters, i.e. the gains for the proportional, 

integral and derivative parts of the control signal, respectively. 𝑁𝑓 is a filtering coefficient (integer) for the 

derivative part. The given notation assumes a discretization time-step of 1. 

In all simulations the parameters have the following values: 𝐾𝑃 = 2.5, 𝐾𝐼 = 0.25, 𝐾𝐷 = 1000 and 𝑁𝑓 =1. The 

parameter values were found by trial and error. 

 

 
𝑢𝑃𝐼𝐷(𝑡) = 𝑢𝑃(𝑡) + 𝑢𝐼(𝑡) + 𝑢𝐷(𝑡) 

(A.1) 

 

 𝑢𝑃(𝑡) = 𝐾𝑃𝑒(𝑡) (A.2) 

 

 𝑢𝐼(𝑡) = 𝑢𝐼(𝑡 − 1) + 𝐾𝐼𝑒(𝑡) + (max (𝑢,min (𝑢, 𝑢𝑃𝐼𝐷(𝑡 − 1))) − 𝑢𝑃𝐼𝐷(𝑡 − 1)) (A.3) 

 

 𝑢𝐷(𝑡) =
𝐾𝐷

𝐾𝐷 + 𝐾𝑃𝑁𝑓
𝑢𝐷(𝑡 − 1) +

𝐾𝐷𝐾𝑃𝑁𝑓

𝐾𝐷 + 𝐾𝑃𝑁𝑓
(𝑒(𝑡) − 𝑒(𝑡 − 1)) (A.4) 

 

The feedforward compensation for load disturbance is implemented using a first-order compensator (A.5) 

whose parameters are identified from the measurement data. It is seen from the compensator parameters that 

not much disturbance rejection can be obtained by adding the compensator which is apparent also based on 

the simulation results. 

 𝑢𝐹𝐹(𝑡) = 0.9973𝑢𝐹𝐹(𝑡 − 1) + 𝑢1(𝑡) − 0.9981𝑢1(𝑡 − 1) (A.5) 

  

 


