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Abstract 

Data-based modeling is utilized for the dynamic estimation of the temperature inside a solid oxide fuel cell 

(SOFC) stack. Experiment design and implementation, data pre-treatment, model parameter identification and 

application of the obtained model for the estimation and prediction of the SOFC stack maximum and minimum 

temperatures are covered. Experiments are carried out on a complete 10 kW SOFC system to obtain data for 

model development. An ARX-type (autoregressive with extra input) polynomial input-output model is identified 

from the data and Kalman filtering is utilized to obtain an accurate estimator for the internal stack temperatures. 

Prediction capabilities of the model are demonstrated and using the modeling approach for SOFC system 

monitoring is discussed. 
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1 Introduction 

Thermal management of solid oxide fuel cell (SOFC) stacks is essential for the successful deployment of SOFC 

based power systems. The general temperature level as well as the temperature distribution inside the SOFC 

stack affect both the stack performance and the rate of stack performance degradation [1, 2]. Therefore, it is 

fundamentally important to keep the stack temperature within a given range. To this end, it is necessary to have 

means for either measuring or estimating the temperature at various locations inside a SOFC stack. Installing 

temperature measurement devices directly in the stack is possible but adds to the system’s complexity, thus 

increasing its price and decreasing its reliability. Estimating the stack temperature by using computational 

models leaves the system hardware intact but requires the effort of model development and deployment into 

system environment.  

SOFC stack models based on physical first principles have proven very useful during the system design phase 

when an actual apparatus does not yet exist and the system operation must be studied over a wide, undefined 

operating envelope. However, as soon as the system is up and running it is often more efficient to create system-

specific models based on measured system data. Data-based models, such as the polynomial input-output (I/O) 

models utilized in this work, are simple to identify and run, and their application-specific accuracy can surpass 

that of physics-based models. The main challenge in creating data-based models is in collecting representative 

data of the modelled process. The design of experiments methodology is useful in solving the conflict between 

data information content and cost of experimental effort. This paper documents the process of designing 

experiments for gathering data from a complete 10 kW SOFC system and using that data for model parameter 

identification and model validation. Finally, the identified model is utilized to estimate and predict the 

temperature inside the SOFC stack. 

 

1.1 State of the art  

The SOFC power system technology is still relatively young and presumably therefore the vast majority of 

SOFC models found in the literature are based on physical first principles. Numerous very advanced models 

have been published and extensive reviews of the SOFC modeling work based on 1
st
 principles are found e.g. in 

[3-6]. The model outputs typically cover both the electrical variables (voltage, current, power) as well as the 

temperature (and the temperature distribution) within the SOFC. Fluid dynamics are also commonplace in 

physical SOFC models, which enables the analysis of flow and pressure fields in the modelled device. Often the 

computational requirement for solving 1
st
 principle SOFC models is high, restricting the level of model detail. 

Therefore, the models often focus on, e.g., a single repeating unit within the SOFC stack instead the whole stack, 

or are reduced in physical dimensions (from three to 0-2 dimensions).  

Purely data-based models (a.k.a. black box models) of SOFCs have also been developed [6, Sec. 5]. Most black 

box SOFC models published so far are based on some variant of so-called neural networks. Some recent 

developments also include Bayesian networks and statistical data analysis based on linear regression models [7-

9]. An ARX-type (autoregressive with extra input) input/output polynomial model was used in [10] to implement 

the linear dynamic part in a Hammerstein-type SOFC model.  

Black box models only simulate the outputs that were selected for modeling before data collection and the main 

restriction for black box model utilization stems from challenges with collecting proper data. Considering SOFC 

applications these challenges are mostly related to their very high operating temperature of ca. 600-900°C. 

Typical applications of reported black box SOFC models include the simulation of the electrical output of the 

SOFC stack and the temperature, and sometimes pressure, at the stack outlets which are easier to measure than 

e.g. stack outlet gas composition or internal stack temperature values. In some cases the data for model 

development is measured from a single cell or a short stack in a dedicated test rig, or even produced by a 

physical model, in order to reduce the required experimental effort [6]. While these special arrangements for data 



acquisition are useful for the model development work, the so-obtained models are not directly applicable to 

complete SOFC stacks and systems. 

The practical challenges related to the experimental work with SOFCs underline the importance of proper 

planning and execution of the data collection phase when developing black box SOFC models. The design of 

experiments methodology (DoE), covered in several textbooks such as [11], provides the analytical tools to 

optimize the amount of information that is obtained from the examined object with a given experimental effort. 

Within the field of fuel cell research, DoE has mainly been used for system behavior studies, especially in proton 

exchange membrane fuel cell (PEMFC) research [12-15]. In [9, 16, 17] DoE is utilized in particular for the 

analysis and the development of linear regression models of SOFCs.  

 

1.2 Background and overview of this work 

This work focuses on developing estimates of the stack temperature values inside a SOFC stack, by using linear 

dynamic, input/output (I/O) polynomial models whose parameters are identified from data. The aim of the work 

is to find such solutions that are practically feasible considering their implementation in embedded process 

control systems and their utilization for SOFC power system control. 

The dependencies between internal SOFC stack temperatures and three system inputs, namely, load current, air 

flow and air temperature at stack module inlet, were experimentally evaluated in a preceding work [9, 18]. The 

experiments were carried out around a single specified nominal operating point and the models were created for 

the steady state estimation of the stack temperature by utilizing multivariable linear regression (MLR). All the 

evaluated inputs were found to have a significant effect on the stack temperature, and the stack cathode outlet 

temperature was found vitally important for accurate stack temperature estimation. Also, an MLR model was 

utilized for stack temperature regulation, and a preliminary study on I/O model identification was carried out in 

[19, 20].  

In the current work, four system inputs are used in the experiments. These include the load current, air flow and 

air temperature at stack module inlet, as before, but also the system natural gas (NG) flow. The experiments 

were carried out in order to obtain such a series of data which enables creating models for the estimation of the 

stack temperature in both steady states as well as during transient operation over the whole relevant operating 

range (i.e. excluding start-up and shutdown). To meet these aims, the experiments were designed to fit within a 

pre-defined system operating space, and in particular, around two representative “central” operating conditions 

(Sec. 2). Thus, in comparison to the previous work [9, 18], the data series collected and used in this study is 

larger in terms of the number of inputs as well as their range of variation. In addition, the number of data points 

collected is larger than before, which enables splitting the data set to a part used for model development and 

another part used solely for model validation. 

The gathered data is utilized to identify a polynomial I/O model with the ARX structure. This model structure 

has the advantages that (i) the parameters’ relationship to each input-to-output pair remains clear and (ii) the 

identification algorithm is very simple (Sec. 3.2). The obtained ARX model is re-cast to the state space format to 

enable simple utilization of the so-called Kalman filter [21] for the dynamic estimation of the temperatures (Sec. 

3.4, 4.1). Finally, an optimal predictor for the stack temperature variables is built by utilizing the obtained 

estimate (Sec. 3.5, 4.2) and applying the modeling approach to SOFC degradation monitoring purposes is briefly 

discussed (Sec. 4.3). 

 

  



2 Experimental 

The experiments were carried out with a complete 10 kW SOFC system [22]. The system utilizes a single, 

planar, 80-cell SOFC stack produced by Versa Power Systems [23]. The stack is equipped with internal 

temperature measurement sensors. The system layout is illustrated in Figure 1. 

 

Figure 1 - Layout of the 10 kW SOFC system used in the experiments. 

 

Load current (𝐼, A), air flow (𝑉̇𝑎𝑖𝑟, dm
3
 min

-1
), air temperature at stack module inlet (𝑇𝑎𝑖𝑟,𝑖𝑛, °C) and system NG 

flow (𝑉̇𝑁𝐺, dm
3
 min

-1
) were considered as independent system inputs in the experiment design (the volumetric 

flow being measured in 101325 Pa and 0°C). Stack maximum and minimum temperature (𝑇𝑚𝑎𝑥, 𝑇𝑚𝑖𝑛, °C) and 

the cathode outlet temperature (𝑇𝑐𝑎𝑡ℎ,𝑜𝑢𝑡, °C) were recorded as response. The stack maximum and minimum 

temperatures were determined by taking the maximum and minimum, respectively, of the values measured with 

13 temperature measurement sensors installed inside the SOFC stack and distributed over one representative 

cell, located in the middle of the stack. Thus, in fact, they are the cell maximum and minimum temperature and 

together provide a representative value of the temperature difference over the cell. An additional 10 temperature 

measurement sensors were distributed over the stack to be certain that the temperature distribution in the 

direction of the stack height is sufficiently uniform. The cathode outlet temperature was measured from the 

cathode outlet flow, directly at the stack outlet. 

No other control actions than those detailed in Sec. 2.1 were taken during the experiment run. The anode off-gas 

recycle flow rate was kept constant at 175 dm
3
 min

-1
 throughout the experiment run and no particular action was 

taken to actively regulate the degree of pre-reforming or direct internal reforming of the fuel gas.  



 

2.1 Experiment design 

The experiment design used here extends that of the previous work [9], where it was found that while the three 

first inputs (𝐼, 𝑉̇𝑎𝑖𝑟 and 𝑇𝑎𝑖𝑟,𝑖𝑛) as such have a statistically significant effect on the stack temperature, their 

interactions do not. This enabled omitting the interaction effects of these inputs from the current experimental 

design. Consequently, a so-called fractional factorial design (FFD) was obtained, and the assumption that the 

effect of the interactions between 𝐼, 𝑉̇𝑎𝑖𝑟 and 𝑇𝑎𝑖𝑟,𝑖𝑛 to the output is zero was utilized to reduce the number of 

experimental conditions in the design. Further details on experiment design and fractional factorial designs are 

found in [11].  

The experimental domain is constrained by the limits of the feasible and safe operating range of the SOFC 

system. For instance, the load current and the air and NG flow must remain within a certain range in order to not 

deplete the cathode or anode of oxygen or fuel, respectively. Such constraints make it infeasible to fully 

randomize each independent input individually, as the resulting combination of inputs might be outside the 

operating boundaries. Therefore, the experiments were carried out in two parts, so that the relevant system 

operating space was sufficiently covered. In particular, the same fractional factorial design was carried out 

around two different central operating points. In both cases the variation of the inputs is the same and only the 

center point of the experiment domain changes. The complete experiment design is visually illustrated in Figure 

2, and the input variables’ variations as well as the two center points are given in 

.  

 

 

 

Table 1 - Experiment domain center points and inputs' variation. 

Input Unit FFD1 center point FFD2 center point Variation 

𝐼 A 160 145 ±5 

𝑉̇𝑎𝑖𝑟 dm
3
 min

-1
 1062 1023 ±50 

𝑇𝑎𝑖𝑟,𝑖𝑛 °C 735 745 ±10 

𝑉̇𝑁𝐺 dm
3
 min

-1
 27.90 25.77 ±0.5 

 

 



 

Figure 2 - Illustration of the experiment design and the covered system operating space. The two FFDs (and their center-of-

domain points) are denoted by blue triangles and red circles. The measured extra data points are denoted by black dots. The 

natural gas flow per FFD point is indicated by the + and – signs. 

 

In Figure 2, the cubes represent the fractional factorial experiments (FFD1 and FFD2) consisting of 8 

experimental points around the experiment domain center points. The dots in Figure 2 are additional 

experimental points recorded to better cover the operating space and for model validation purposes. The + and – 

signs denote the value of 𝑉̇𝑁𝐺 at the FFD points. Note also that the central operating point of FFD1 is also the 

system design point (“nominal operating condition” or NOC). 

The FFD structure was decided upon earlier experimental results [9]. Both FFDs are 2
4-1 

fractional factorial 

designs obtained with the design generator 𝑉̇𝑁𝐺 = 𝐼 ∙ 𝑉̇𝑖𝑟 ∙ 𝑇𝑎𝑖𝑟,𝑖𝑛 (with the defining relation 1 = 𝐼 ∙ 𝑉̇𝑎𝑖𝑟 ∙ 𝑇𝑎𝑖𝑟,𝑖𝑛 ∙

𝑉̇𝑁𝐺). Therefore, the interactions between the inputs 𝐼, 𝑉̇𝑎𝑖𝑟 and 𝑇𝑎𝑖𝑟,𝑖𝑛 are aliased with (i.e. cannot be 

distinguished from) the interactions between these inputs and the fourth input 𝑉̇𝑁𝐺. (Specifically, the 

undistinguishable interaction pairs are (i) 𝐼 ∙ 𝑉̇𝑎𝑖𝑟  and 𝑇𝑎𝑖𝑟,𝑖𝑛 ∙ 𝑉̇𝑁𝐺, (ii) 𝐼 ∙ 𝑇𝑎𝑖𝑟,𝑖𝑛 and 𝑉̇𝑎𝑖𝑟 ∙ 𝑉̇𝑁𝐺 and (iii) 𝑉̇𝑎𝑖𝑟 ∙

𝑇𝑎𝑖𝑟,𝑖𝑛 and 𝐼 ∙ 𝑉̇𝑁𝐺.) Additionally, all three-input interactions are aliased with the remaining single input (e.g. the 

effect of 𝐼 is aliased with the interaction effect of 𝑉̇𝑎𝑖𝑟 ∙ 𝑇𝑎𝑖𝑟,𝑖𝑛 ∙ 𝑉̇𝑁𝐺) and so also the three-input interactions are 

all assumed zero. However, the chosen FFD does enable identifying the effects of the two-input interactions, 



where 𝑉̇𝑁𝐺 is one factor (presuming the effect of the other two-input interactions is negligible). Therefore, 

compared to earlier experiments, the potentially interesting new interaction effects are covered by the 

experiment design. 

The input data time-series are shown in Figure 3. The experimental points of each FFD were completed in a 

randomized order and each operating condition was held constant for ca. 24 hours so that the system had time to 

stabilize. The system was set to its nominal condition for the weekends in order to record reference data for 

monitoring any changes that might occur in system performance, such as stack voltage degradation. The 

system’s response (𝑇𝑚𝑎𝑥, 𝑇𝑚𝑖𝑛 and 𝑇𝑐𝑎𝑡ℎ,𝑜𝑢𝑡) corresponding to the input data is shown in Figure 4. 

For modeling purposes, the collected full data set is divided into one part that is utilized for model parameter 

identification (”identification data”) and another part which is used for model validation and performance 

evaluation (”validation data”). The data segments used for model identification and validation are also denoted 

in Figure 3 and Figure 4. (Some data is left unused in this work to enable a better resolution in the result figures. 

This does not essentially affect the results.)  

Two criteria were considered important when dividing the data set; (i) the identification data should sufficiently 

well span the whole operating domain of the system and (ii) the validation data should include several such 

operating conditions which are not exactly included in the identification data. To fulfill the first criterion, the 

identification data set is extended to cover also early parts of FFD2 and so the large variations in the load 

current, taking place during the FFD2 experiments, are included in the identification data. Secondly, although 

the FFD2 conditions are all different to the FFD1 conditions, several extra data points, where the operating 

conditions were determined randomly, within the given operating domain, were measured and included in the 

validation data.  

 

 



 

Figure 3 - System inputs during the experiment. 

 

 

Figure 4 - System response during the experiment. 

  



3 Modeling and estimation 

The modeling process consists of data pretreatment and model identification, i.e. the selection of a suitable 

model structure and the calculation of its parameters based on the pretreated data.  

 

3.1 Data pretreatment 

The measured input/output (I/O) data was pretreated by down-sampling and by removing the nominal operating 

condition from the data. The pretreated I/O data variables are denoted by 𝑢1…4 and 𝑦1…3, corresponding to the 

inputs 𝐼, 𝑉̇𝑎𝑖𝑟, 𝑇𝑎𝑖𝑟,𝑖𝑛 and 𝑉̇𝑁𝐺, and the outputs 𝑇𝑚𝑎𝑥, 𝑇𝑚𝑖𝑛 and 𝑇𝑐𝑎𝑡ℎ,𝑜𝑢𝑡, respectively. Figure 5 displays the 

pretreated output data 𝑦1…3 during the test run. 

Down-sampling of the data was done as the measurement data was originally recorded with a sampling rate of 

one sample per second (1 Hz). The original sampling rate is excessively high for model parameter identification 

in the case at hand since the time constants of the thermal phenomena in the system are in the order of hours. 

Therefore, the measurement data was down-sampled to a sample rate of one sample per five minutes (1/300 Hz). 

In order to maintain consistency between the dynamic and static behavior of the identified model, the nominal 

operating condition (NOC) value is removed from the data (“offset removal”, [24, Ch. 14]). The NOC value for 

the outputs was that obtained at200 hours from the start of the experiments. The values for the NOC are given in 

Table 2. Removing the NOC value effectively transforms the measurement data into data which describes the 

system deviation from the said nominal operating condition. Figure 5 illustrates that the outputs’ deviation is 

between ±30°C from the NOC during the experiment. The removed nominal values, listed in Table 2, are stored 

for eventually returning the estimated output values to the actual operating output value.  

 

 

 

Figure 5 - The pretreated output data. 

 

 

 



Table 2 - Nominal operating conditions removed from measurement data during data pre-treatment. 

 NOC value Unit Symbol 

Inputs    

𝐼 160.0 A 𝑢1 

𝑉̇𝑎𝑖𝑟 1062 dm
3
 min

-1
 𝑢2 

𝑇𝑎𝑖𝑟,𝑖𝑛 735.0 °C 𝑢3 

𝑉̇𝑁𝐺 27.90 dm
3
 min

-1
 𝑢4 

Outputs    

𝑇𝑚𝑎𝑥 773.3 °C 𝑦1 

𝑇𝑚𝑖𝑛 692.9 °C 𝑦2 

𝑇𝑐𝑎𝑡ℎ,𝑜𝑢𝑡 737.3 °C 𝑦3 

 

3.2 Model identification 

The pretreated data was used to identify a discrete-time, multiple-input, multiple-output (MIMO) model with the 

ARX structure (1). 

 
𝑦(𝑡) + 𝐴1𝑦(𝑡 − 1) + ⋯+ 𝐴𝑛𝑎

𝑦(𝑡 − 𝑛𝑎)

= 𝐵0𝑢(𝑡 − 𝑛𝑘) + 𝐵1𝑢(𝑡 − 𝑛𝑘 − 1) + ⋯+ 𝐵𝑛𝑏
𝑢(𝑡 − 𝑛𝑘 − 𝑛𝑏) + 𝑒(𝑡) (1) 

 

Equation (1) is more compactly expressed as (2). 

 ∑𝐴𝑖

𝑛𝑎

𝑖=0

𝑦(𝑡 − 𝑖) = ∑𝐵𝑖

𝑛𝑏

𝑖=0

𝑢(𝑡 − 𝑛𝑘 − 𝑖) + 𝑒(𝑡) (2) 

 

In (1)-(2), 𝑡 = 0,1,2… denotes the discrete time index of the data rather than the continuous time value. 𝐴𝑖 and 

𝐵𝑖 are the model parameter matrices with dimensions 𝑛 × 𝑛 and 𝑛 × 𝑚,  where 𝑛 > 1 and 𝑚 > 1 correspond to 

the number of outputs and inputs, respectively. 𝐴0 = 𝐼𝑛×𝑛 and if there is a dead time of 𝑛𝑘 samples in the 

process during which the response does not change after an input variation, then 𝐵0…𝑛𝑘−1 = 0𝑛×𝑚. (This 

corresponds to shifting the input data forward by 𝑛𝑘 samples.)  

The data vectors 𝑦(𝑡) and 𝑢(𝑡) contain the individual (pretreated) outputs and inputs, i.e., 

𝑦(𝑡) =  [𝑦1(𝑡) ⋯ 𝑦𝑛(𝑡)]𝑇 and 𝑢(𝑡) =  [𝑢1(𝑡) ⋯ 𝑢𝑚(𝑡)]𝑇. 𝑒(𝑡) is a vector of model errors (𝑛 × 𝑛).  

The parameters 𝑛𝑎 and 𝑛𝑏 denote the model order and define how many lagged outputs and inputs, respectively, 

are considered in the model. 



For parameter calculation purposes, the parameters are collected into the 𝑛 ∙ 𝑛𝑎 + 𝑚 ∙ 𝑛𝑏 × 𝑛 matrix 𝜃 =
 [𝐴1 … 𝐴𝑛𝑎

𝐵1 … 𝐵𝑛𝑏
 ]𝑇.  

Correspondingly, the data for parameter calculation is collected to the 𝑛 ∙ 𝑛𝑎 + 𝑚 ∙ 𝑛𝑏 –dimensional column 

vector 𝜑(𝑡) = [−𝑦𝑇(𝑡 − 1) … −𝑦𝑇(𝑡 − 𝑛𝑎) 𝑢𝑇(𝑡 − 1) … 𝑢𝑇(𝑡 − 𝑛𝑏)]
𝑇. By this arrangement, the 

optimal estimate for the parameters is found with (3), which implements the well-known least squared errors 

parameter identification strategy. 

 𝜃 = [
1

𝑁
∑𝜑𝑇(𝑡)𝜑(𝑡)

𝑁

𝑡=1

]

−1

1

𝑁
∑𝜑(𝑡)𝑦𝑇(𝑡)

𝑁

𝑡=1

 (3) 

 

In (3) 𝑁 denotes the number of samples used for parameter estimation.  

For derivation, proofs and further details on the parameter calculation procedure and system identification in 

general see e.g. [24]. 

 

3.3 Simulation 

The simulated output 𝑦̂𝑠𝑖𝑚of the identified model is obtained simply as (4).  

 𝑦̂𝑠𝑖𝑚(𝑡) = −∑𝐴𝑖

𝑛𝑎

𝑖=1

𝑦̂𝑠𝑖𝑚(𝑡 − 𝑖) + ∑𝐵𝑖

𝑛𝑏

𝑖=0

𝑢(𝑡 − 𝑖) (4) 

 

In (4), the measured outputs 𝑦 are simply replaced by the corresponding simulated values. As the first parameter 

matrix in 𝐴 is the identity matrix (𝐴0 = 𝐼𝑛×𝑛) the present value of the simulated output 𝑦̂𝑠𝑖𝑚(𝑡) is obtained 

simply by subtracting the lagged simulated outputs (𝑦̂𝑠𝑖𝑚(𝑡 − 𝑘), 𝑘 > 0) weighted by 𝐴𝑖 from the right-hand-

side of (2). The system input 𝑢(𝑡), which is defined by the operator, is the only input to the model. 

3.4 Output estimation with Kalman filtering  

The simulated output obtained with (4) is often inaccurate, especially when operating far from the nominal 

operating point (or the center point of the identification data in general). The accuracy of the calculated output 

can, however, be improved by utilizing the available measurements. In the case at hand, the internal stack 

temperatures (𝑻𝒎𝒂𝒙, 𝑻𝒎𝒊𝒏) are presumed to be non-measureable in a real SOFC power system, but with the data 

measured at the lab, we have identified a model, (1), that produces estimates of both the internal stack 

temperatures as well as the stack cathode outlet temperature (𝑻𝒄𝒂𝒕𝒉,𝒐𝒖𝒕), which is considered always 



measureable. Based on previous work [9, 18] and by observing the output plots in 

 

Figure 4-Figure 5, it is clear that all three output temperatures are significantly correlated, which is natural, 

considering that they are all measured from the same physical object. This correlation can be utilized to obtain 

information of the non-measureable variables through the measureable ones by using the identified model and 

the Kalman filter [24, 25]. 

The Kalman filter is a series of equations which provide an optimal (in the sense of minimal estimation error 

variance) way to combine measurement information with the information provided by a model. In our case, the 

filter is applied to improve the accuracy of the modelled output for 𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛 by utilizing the information 

obtained from the 𝑇𝑐𝑎𝑡ℎ,𝑜𝑢𝑡 measurement. The so obtained filtered output is here denoted the estimate of 𝑇𝑚𝑎𝑥 

and 𝑇𝑚𝑖𝑛. 

Applying the filter is straightforward when a model that is in the state-space form can be used. The ARX-type, 

MIMO, polynomial model (1) is transformed into the discrete-time state-space format (5) by re-arranging the 

parameter matrices as shown in (6).  

 
𝑥(𝑡) = 𝐹𝑥(𝑡 − 1) + 𝐺𝑢(𝑡 − 1) + 𝑤(𝑡 − 1) 
 
𝑦(𝑡) = 𝐻𝑥(𝑡) + 𝑣(𝑡) 

(5) 

The model inputs and outputs remain the same, 𝑢 and 𝑦, respectively, and 𝑥 is the state vector with dimension 

𝑝 = 𝑛𝑎 ∙ 𝑛 + (𝑛𝑏 + 𝑛𝑘 − 1) ∙ 𝑚. The 𝐹, 𝐺 and 𝐻 matrices (with dimensions 𝑝 × 𝑝, 𝑝 × 𝑚 and 𝑛 × 𝑝, 

respectively) are the state-space model parameter matrices, obtained from 𝐴 and 𝐵 as given in (6).  

 

𝐹 =  

[
 
 
 
 
 

−𝐴1 ⋯−𝐴𝑛𝑎
𝐵1 ⋯ 𝐵𝑛𝑏

 

− − − − − − − − − − − − − − − − − − − − − − − − − − −
𝐼(𝑛𝑎−1)∙𝑛×(𝑛𝑎−1)∙𝑛 0(𝑛𝑎−1)∙𝑛×𝑛 0(𝑛𝑎−1)∙𝑛×(𝑛𝑏+𝑛𝑘−1)∙𝑚

− − − − − − − − − − − − − − − − − − − − − − − − − − −

0(𝑛𝑏+𝑛𝑘−1)∙𝑚×𝑛𝑎∙𝑛

0𝑚×(𝑛𝑏+𝑛𝑘−2)∙𝑚 0𝑚×𝑚

𝐼(𝑛𝑏+𝑛𝑘−2)∙𝑚×(𝑛𝑏+𝑛𝑘−2)∙𝑚 0(𝑛𝑏+𝑛𝑘−2)∙𝑚×𝑚]
 
 
 
 
 

 

 

𝐺 = [

0𝑛𝑎∙𝑛×𝑚

𝐼𝑚×𝑚

0(𝑛𝑏+𝑛𝑘−2)∙𝑚×𝑚

]              𝐻 = [−𝐴1 ⋯ −𝐴𝑛𝑎
𝐵1 ⋯ 𝐵𝑛𝑏] 

(6) 

 



As the state-space representation is obtained from the identified ARX-model, the states 𝑥1…𝑝 correspond to the 

lagged system outputs and inputs included in the ARX-structure. The ones and zeros in the 𝐹 matrix are filled-in 

to appropriately shift back in time the terms stored in the state vector.  

The terms 𝑤 and 𝑣 in (5) denote modeling and measurement error, respectively, which are assumed white, zero-

mean, uncorrelated noise signals with known covariance matrices, 𝑄 and 𝑅, respectively. Often values for both 

of these have to be assumed by the user. However, the measurement error variance can also be obtained directly 

from the equipment specifications and if the states are known, or can be uniquely computed from data, then the 

modeling error covariance can also be estimated from data. 

The state-space formulation given in (5) assumes that the process dead time is at least one sample time (i.e. in 

the ARX model 𝑛𝑘 ≥ 1). In case no dead time exists (𝑛𝑘 = 0), then the corresponding direct effect term is added 

on the second line of (5). 

Remark – There are also well-established algorithms for identifying models with the state-space structure 

directly from data, but these are considerably more complicated than the least squared errors algorithm used for 

the ARX parameter calculation. Furthermore, when a state-space system is identified directly from data, the 

physical content of the states is easily left unexplained. 

 

3.4.1 Obtaining the Kalman filter and the filtered output 

For simplicity, the Kalman filter considered in our case is the steady-state discrete-time form of the filter 

(without extensions to cover system nonlinearities or time-variance). The filtered system output estimate 𝑦̂+ at 

each time instant is computed as 

 𝑦̂+(𝑡) = 𝐻𝑥+(𝑡) (7) 

 

where the filtered state estimate 𝑥+ is obtained as shown in (8).   

 

𝑥−(𝑡) = 𝐹𝑥+(𝑡 − 1) + 𝐺𝑢(𝑡 − 1) 
 
𝑥+(𝑡) = 𝑥−(𝑡) +  𝐾(𝑦(𝑡) − 𝐻𝑥−(𝑡)) 

(8) 

 

It is seen that the filtered state estimate 𝑥+ (a.k.a. updated state estimate) is a weighed sum of the unfiltered 

state-estimate 𝑥− (obtained with the model and based on previous data) and the unfiltered estimate error 

𝑦(𝑡) − 𝐻𝑥−(𝑡) (obtained based on the available measurements 𝑦). 

The weighting factor 𝐾, called the Kalman gain, is obtained in our case by iterating the equation system (9) until 

stable values for 𝐾 and 𝑃 are obtained. 𝑃 is the covariance of the estimation error and 𝑖 is the iteration index. 

 

𝑃−(𝑖) = 𝐹𝑃+(𝑖 − 1)𝐹𝑇 + 𝑄 
 
𝐾(𝑖) = 𝑃−(𝑖)𝐻𝑇(𝐻𝑃−(𝑖)𝐻𝑇 + 𝑅)−1 

 
𝑃+(𝑖) = (𝐼 − 𝐾(𝑖)𝐻)𝑃−(𝑖)(𝐼 − 𝐾(𝑖)𝐻)𝑇 + 𝐾(𝑖)𝑅𝐾𝑇(𝑖) 

(9) 



 

Remark – As is seen in (9), 𝐾 and 𝑃 do not depend on the measured data, but only on the system model (𝐹 and 

𝐻), the model error covariance (𝑄) and the measurement noise covariance (𝑅). As our model and the errors are 

assumed time-invariant, the Kalman filter gain 𝐾 can be computed offline, prior to implementation. 

Finally, it is necessary to clarify that not all of the measurements, which were available during model 

identification, are considered to be available when the Kalman filter is actually operated. Therefore, when 

computing the filtered state estimate 𝑥+, the measurement vector 𝑦 is completed with zeros on behalf of the not-

measured outputs during operation. In our case, only the cathode outlet temperature is directly measured and so 

𝑦(𝑡) = [0 0 𝑦3(𝑡)]
𝑇. The state-space representation and the Kalman filter structure take care of distributing 

the real measurement information between the filtered (or updated) estimates appropriately. 



3.5 Output prediction 

The simulated output, obtained with (4), is based only on the system inputs 𝑢 set by the operator. Such an output 

may be computed as far to the future as the system inputs are known. The filtered estimate, obtained with (1) and 

(5)-(9), on the other hand, relies on the up-to-date value of the cathode outlet temperature measurement and can 

thus be obtained only at the present time instant, even if the operator inputs in the future were known. Compared 

to the simulation, however, the estimate is significantly more accurate. In order to improve the accuracy of the 

predicted system output, these two mechanisms can be combined, so to utilize all the available measurement data 

and the known operator inputs in parallel. Such a 𝑘-step-ahead prediction of the system output is obtained with 

(10). 

 𝑦̂(𝑡|𝑡 − 𝑘) = 𝐴̅𝑘(𝑞)𝐵(𝑞)𝑢(𝑡) + [1 − 𝐴̅𝑘(𝑞)𝐴(𝑞)]𝑦(𝑡) (10) 

 

In (10), 𝑘 is the number of sample times for which the system output is predicted. The notation 𝑦̂(𝑡|𝑡 − 𝑘) 

underlines that in order to obtain 𝑦̂ (i.e. the output estimate) at time index 𝑡, only the information of 𝑦 up to time 

index 𝑡 − 𝑘 is utilized.  

𝐴(𝑞) = 1 + 𝐴1𝑞
−1 + ⋯+ 𝐴𝑛𝑎

𝑞−𝑛𝑎, 𝐵(𝑞) = 𝐵0 + 𝐵1𝑞
−1 + ⋯+ 𝐵𝑛𝑏

𝑞−𝑛𝑏 and 𝐴̅𝑘(𝑞) are polynomials in 𝑞, 

which is the forward shift operator (i.e. 𝑞𝑢(𝑡) = 𝑢(𝑡 + 1) and 𝑞−𝑖𝑢(𝑡) = 𝑢(𝑡 − 𝑖)). The coefficients for 

𝐴̅𝑘(𝑞)are given by (11) 

 𝐴̅𝑘(𝑞) = ∑ 𝐴̃𝑖

𝑘−1

𝑖=0

𝑞−𝑖 (11) 

where  𝐴̃𝑖 are the coefficients of 𝐴−1(𝑞) (the inverse of 𝐴(𝑞)). Only the 𝑘 first elements 𝐴̃0…𝑘 are required for 

the 𝑘-step-ahead prediction and these are found recursively by using the condition (12). 

 ∑𝐴̃𝑖𝐴𝑙−𝑖

𝑙

𝑖=0

= {
𝐼,    if 𝑙 = 0
0,    if 𝑙 ≠ 0

, 𝑙 = 0,1, … , 𝑘 (12) 

 

To summarize, in (10), the input 𝑢, the model (𝐴 and 𝐵) as well as the available measurements 𝑦 are utilized to 

obtain a prediction of the system output. In our case, however, the system output is not fully available as 𝑇𝑚𝑎𝑥 

and 𝑇𝑚𝑖𝑛 cannot be directly measured, and therefore the estimated output 𝑦̂+ is used instead. The coefficients 

𝐴̅𝑘(𝑞) can be calculated offline and only the explicit output prediction calculation needs to be carried out online 

at each time step, as new measurement data from the system is obtained. 

 

  



4 Results and discussion 

4.1 Simulation and estimation 

By using the identification data, an ARX model (1) with four inputs (𝑢1…4, 𝑚 = 4) and three outputs (𝑦1…3, 

𝑛 = 3) was identified with the model orders 𝑛𝑎 = 𝑛𝑏 = 3 and dead time 𝑛𝑘 = 1. These model parameter values 

were selected as a compromise between model accuracy and complexity, and are based on trial and error over 

the range 0…6 for  𝑛𝑎 and 𝑛𝑏 and 0…6 for 𝑛𝑘. Different orders for the different inputs or outputs were not 

considered. 

The simulated model output, obtained with (4), for the stack 𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛 over the validation data is shown in 

Figure 6(a)-(b) by the green dashed lines. The corresponding estimate errors are shown in Figure 6(c)-(d). (The 

cathode outlet temperature data is not shown for brevity.)  

The output estimate of the stack 𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛 obtained by using the identified model, (1), and a Kalman filter 

calculated based on the model, (5)-(9), is shown in Figure 6(a)-(b) by the red dash-dot line. The corresponding 

estimate errors are also shown in Figure 6(c)-(d).  

The noise covariance parameters 𝑅 = 𝐼𝑛×𝑛 and 𝑄 = 𝐼𝑝×𝑝 were used for computing the gain 𝐾. (Here 𝑝 = 21, is 

the number of states in the state-space representation (5) of the model.) Furthermore, as two of the outputs (𝑦1(𝑡) 

and 𝑦2(𝑡)) are considered not measured, the two first rows of 𝐻 were set equal to zero for calculating 𝐾 (i.e. 

when iterating (9)). For the estimate calculation purposes, 𝐻 is returned to its identified value.  

  

Figure 6 - The measured, simulated and estimated stack maximum and minimum temperature (a)-(b) and the corresponding 

errors (c)-(d) over the validation data set. 

 



In Figure 6 the estimate for 𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛 obtained by using the Kalman filter is significantly more accurate 

than the simulated output. In particular, the simulated output is consistently smaller than the measured output 

value, indicating that the rising trend in the temperatures due to stack degradation is not fully captured.  The 

error of the filtered estimate is within 1°C in the validation data for most of the time, also during transients and 

despite the degradation trend present in the data. Therefore, the estimate may be considered reliable and its 

utilization for output prediction purposes may be considered.  

 

4.2 Prediction  

A 𝑘-step-ahead prediction for 𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛 is calculated by using the model, (1), and the predictor obtained 

with (10)-(12) . 

Figure 7 (a)-(b) displays the stack maximum and minimum temperatures predicted over a fixed six-hour interval 

(𝑘 = 72) over the validation data set. The corresponding simulated output temperatures and the measurements are 

also shown for comparison. The prediction is notably more accurate than the pure simulation, as can be seen also 

by comparing the error signals in Figure 7 (c)-(d). The error remains mostly within 2°C for the six-hour 

prediction, which is more than sufficient for, for example, model predictive control purposes.  

  

Figure 7 - The stack maximum and minimum temperature predicted six hours forward and compared with the measured value 

and the simulation (a)-(b) over the validation data set. The corresponding errors are shown in subfigures (c)-(d). 

 

To further evaluate the prediction accuracy and the prediction behaviour in time, the predicted maximum stack 

temperature over fixed time intervals of 1, 6, 12 and 24 hours are shown in Figure 8. It is seen that the prediction 

accuracy improves as the prediction interval becomes shorter (and the prediction approaches the measured 



value). Correspondingly, when the prediction interval is long, the prediction approaches the simulated value. 

This highlights the main difference between the predicted output and the simulated output – the prediction 

corrects itself as more information of the system is obtained with time.  

 

Figure 8 - The stack maximum temperature predicted over the fixed prediction intervals of 1, 6, 12 and 24 hours, compared with 

the measured and simulated temperature. 

 

4.3 Considerations on model identification for system diagnosis, control and 
estimation purposes 

For system diagnostics it would be useful to have a means to distinguish which changes in the system are due to 

normal wear and aging, and which might be caused by an incipient or evolving fault. For fuel cell systems in 

particular, the stack performance degradation is a phenomenon, which affects the whole system and should be 

monitored somehow. The performance degradation of the stack can be observed in the system outputs, in 

particular, in the stack temperature as well as the stack voltage (not shown here). In our case, the raising trend of 

ca. 5-7 °C / 1000 hours of operation in the stack temperature is due to performance degradation. However, to 

quantify what part of the stack temperature change is due to degradation and what is due to the operating 

conditions, the system must always be brought to a chosen reference state (in our case, the nominal operating 

conditions). By doing so, the stack temperature now and in the beginning of stack life can be clearly compared.  

It is proposed, that with the data available from a system it is possible to identify a model which can be used to 

estimate the nominal behavior of the system – as if no degradation was present. If there is no degradation present 

in the original measurement data, then a model whose parameters are obtained by direct identification from the 

data, as done in Section 4.1, is automatically such a model. However, if the degradation effects are already 

present in the identification data, then the identification data should be further pre-treated simply by removing 

the degradation effects from the measured data, i.e. by removing the rising trend in the output data used for 

model identification. The obtained model, denoted the nominal system model, can then be used to evaluate how 

strong the degradation is, also in other operating conditions than the reference state.  

Figure 9 displays the simulated stack maximum temperature obtained by simulating the nominal system model 

(which is obtained after de-trending the identification data) over the validation data period. The same procedure 

and the same model orders were used for identifying the nominal model as were used in Sections 3.2 and 4.1, 

respectively. The measurement and the estimate simulated output obtained in Section 4.1, and the de-trended 

output data, are shown for comparison. It is seen, that neither the nominal model nor the simulated output from 

Section 4.1 does not follow the rising trend in the temperature value, but instead, underestimates the stack 

maximum temperature continuously. The nominal model output is, however, on average closer to the de-trended 



output than the original system model, the mean absolute errors being 1.3 °C and 1.7 °C, respectively (ca. 25% 

in favor to the nominal model). Both models are, however, inaccurate at some operating states, whereby the 

problem reverts back to the experiment design step. The difference between the simulated nominal temperature 

and the estimated temperature value may be considered as a quantitative measure for stack degradation during 

system operation.  

 

 

Figure 9 - Simulated stack maximum temperature obtained with the nominal system model. 

 

The de-trending of output data is also useful when the model is identified for system control development 

purposes. In this case, however, data de-trending has a different function than above – now de-trending is carried 

out to highlight the process “short-term dynamics” (e.g. thermal transients) in the measurement data by 

removing the effects of “long-term dynamics” (i.e. degradation) before model identification. The increase in 

model transient operation accuracy may come at the expense of model steady-state accuracy, but steady-state 

accuracy can in the end be compensated for by feedback and an integrating action in the control. 

Considering estimation, which is the original application presented here for the identified models, removing the 

degradation trend from the measured output data was found harmful. This pre-treatment not only decreases the 

model accuracy (with respect to the degrading process) but also removes all useful correlation between the 

measured cathode outlet temperature and the not-measured stack internal temperatures, thus deteriorating the 

estimation accuracy even after application of the Kalman filter. 

 

4.4 A note on data-based models 

It should be emphasized that the approach presented here is entirely reliant on the underlying measurement data. 

While the approach has several merits such as simplicity and case-wise accuracy, the downside with a data-

based approach is that the computational system can replicate only those phenomena that are present in the 

identification data. Therefore the effects of, for example, local fractures in the SOFC stack seals or the SOFC 

ceramic layer, which cause leakages and subsequent local hot-spots much hotter than the measured maximum 

temperature, cannot be estimated or predicted by the models presented here. The same applies to changes – 

intentional or unexpected – in such system inputs which were kept constant during collection of the 

identification data. These are features common to all data-based approaches and must be born in mind when 



designing the experimental arrangement intended for data collection. With physics-based models, the case is 

analogous regarding phenomena whose equations are not included in the model. 

 

5 Conclusions 

This paper documents a complete process carried out to create and utilize dynamic models for SOFC stack 

temperature estimation. The work starts from data acquisition with designed experiments then proceeding to 

model identification and validation, as well as application of the model for system output estimation and 

prediction. 

An extended series of designed experiments was carried out on a complete 10 kW SOFC system. The 

experiment design consisted of two 2
4-1

 fractional factorial experiments, carried out around two different 

experiment domain center points. Four independent inputs (current, air flow, air temperature at stack module 

inlet and natural gas flow) were adjusted and the stack minimum, stack maximum and cathode outlet 

temperatures were measured as response.  

Parameter identification of an ARX-type MIMO model for the said temperatures was carried out and the 

obtained model was applied with Kalman filtering to obtain highly accurate estimates of the stack temperature 

variables. Good prediction capabilities of the obtained model were demonstrated over prediction intervals of 1-

24 hours. 

All the developed models and filters are linear and time-invariant, discrete-time systems, meaning that their 

utilization in an embedded system environment can be done with standard equipment and no iterative solver 

algorithms are necessary.  
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Glossary 

ARX  Autoregressive (model) with extra input 

DoE  Design of experiments (methodology) 

FFD  Fractional factorial (experiment) design 

I/O  Input-output 

MIMO  Multiple-input-multiple-output 

NG  Natural gas 

NOC  Nominal operating conditions 



PEMFC Proton exchange membrane fuel cell 

SOFC  Solid oxide fuel cell 
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