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1 Pre-study of computational management systems 

1.1 Introduction 

The use of computational methods, e.g. computer-based modelling and simulations, has be-
come a standard approach in engineering. The design of complex products, such as passenger 
cars, heavy-duty vehicles, or aeroplanes, is practically impossible without the use of computa-
tional tools. In research, computational science has turned into the third pillar of scientific 
inquiry, together with theory and experimentation [1-3]. Successful application of computa-
tional methods requires mastering the physics that is involved in the case, understanding the 
mathematics behind the models of the physics, and understanding the numerical and software 
implementation of the mathematical model. All these steps affect the end results and success 
of the computation. 

When computational methods and tools are applied in an engineering process, the efficiency 
of the process becomes crucial. Being able to perform the computation is not enough, but the 
results have to be produced at the right time and they have to be in the right form. Managing 
computationally heavy methods, such as structural analysis and multi-physics using Finite 
Element Methods (FEM) or Computational Fluid Dynamics (CFD), in industrial processes 
requires sufficient computational resources and high availability of these resources. For that, 
application of right tools and practices is important. The step to utilise computational tools 
often begin as running single analyses manually in the local computing environment, such as 
a workstation. While the requirements for the results of the computational studies increase, 
the level of automation in the process also increases. The tools for the automation are script-
ing and utilising design analyses and optimisation. This, on the other hand, increases the need 
for computational resources. As a result, the local computing facilities, such as the user’s own 
workstation, are not enough anymore. 

The traditional alternative for more computational resources has been to use computational 
servers or supercomputers. The uniting factor in them is that they both are shared memory 
systems, i.e. the memory of the system is shared by all CPU resources.1 Presently, the price of 
PC hardware have dropped such a way that all the modern computation resources are built on 
multitude of PC-type hardware connected via fast communication channel, such as local net-
work. Thus, the CPU’s do not share the same memory or, in other words, the systems have 
distributed memory. If dedicated hardware for computation is used, including a fast dedicated 
network between the separate computers, the system is called a computation cluster and the 
computers are called nodes [5]. Sometimes the system combined from separate but connected 
computation clusters is called a computation grid. If normal desktop or laptop computers’ idle 
resources are utilised, the system can be called a workstation grid. Nowadays, computation 
power is sold as service in pay-per-use idea and the connection between the resources and 
used hardware is not explicit; this is called cloud computing. 

This report discusses the management of computation in the shared-memory, distributed 
memory, computation cluster, grid, and cloud systems. The management is handled by dedi-
cated software tools called distributed resource management systems (DRMS)2 or meta-
schedulers. In addition, the requirements they set to computational engineering are discussed. 
Some of the available open source DRMS and meta-scheduling systems are introduced, and 
experiences of the selected systems are examined. 

                                                
1 Distributed memory approach have been utilised also in supercomputer from 1980s [4]. 
2 Synonyms for DRMS are e.g. job scheduler, batch system, distributed resource manager, and workload auto-
mation. 
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1.1.1 Terminology  

The field of computational resource management is wide and the terminology is varying. Still, 
similar concepts are present across the field, and the objectives are more or less comparable 
for all the systems. Above all, there are two levels of computational resource management: 

A distributed resource management system (DRMS) control the usage of hardware re-
sources, such as CPU cycles, memory, disk space and network bandwidth, in high-
performance parallel computing systems or e.g. workstation networks. Users request re-
sources by submitting jobs, which can be sequential or parallel. The goal of a DRMS is 
to achieve the best utilisation of resources and to maximise system throughput by or-
chestrating the process of assigning the hardware resources to users’ jobs. [6] 

A meta-scheduler is a software system that provides a virtual layer on top of heterogeneous 
computational grid middleware, DRMSs, and resources. It is used, for example, in grid 
computing, i.e. in computing that supports workload execution on computing resources 
that are shared across a set of collaborative organisations. Meta-schedulers typically en-
able end-users and applications to compete over distributed shared resources through 
the use of one or more instances of the same meta-scheduler, in a centralised or distrib-
uted manner, respectively. [7] 

Thus, a DRMS is used to manage local computational resources, typically only one resource 
pool. In contrast, meta-schedulers a used for scheduling in one level upper: meta-schedulers 
manage groups of resource pools, which themselves are managed by DRMSs. A group of 
resource pools can consist of several computational clusters. The above division is somewhat 
artificial, as meta-schedulers can also be seen as a subgroup of DRMSs. 

From the hardware and security point of view, the field of resource management can be or-
ganised as follows: 

Cluster and workstation network management: The remarkable feature is that the re-
sources are known by the users and the management and maintenance is done by local 
administrators. The network can be assumed, at least in most cases, to be trusted. This is 
a typical use of DRMSs. 

Management of the local resource pools: This is similar to the previous category; except 
that the users do not necessary know the resources anymore and they may not have di-
rect access to the resources. 

Grid management: In this architecture, the resources are managed and maintained by local 
administrators of several organisations. The computational resources are only partially 
available for external users. In this approach, meta-scheduling is typically utilised. 

Cloud computing and management: Computational resources are provided as a service, and 
depending on the conditions of the service, the user may be responsible for installing 
and maintaining all the low-level computational facilities, such as the operating system 
and all the necessary software applications. 

These divisions are not ordered and are not exclusive, but may help the reader to understand, 
on the one hand, the common features and concepts of the different systems, and, on the other 
hand, the differences and needs for different IT systems and approaches. 

Further, let us define some terminology common for computational resource management 
systems: 

Worker, computation node: Computational cluster or grid include one (or few) frontend 
computers (e.g. master nodes, servers), which handle the resource management. Addi-
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tionally, the system also includes workers or computational nodes which are the com-
puters doing the actual computations. 

Shared memory: A multiprocessing design where several processors can access the same 
memory, i.e. the memory of the computer system is shared by all CPU resources. 

Checkpoint: Checkpoint is a snapshot of the application's state, which can be used to restart 
the application from that state. Restart can be performed e.g. in another computer in 
case of a failure in the first computer. The resource management systems typically ask 
for a checkpoint from the application, i.e. start the checkpoint procedure. 

Embarrassingly parallel: A problem type in parallel computation, for which little or no ef-
fort is required to separate the problem into a number of parallel tasks, is called embar-
rassingly parallel. In other words, it means there are little or no connections between 
computation processes during the computation, so the processes are almost independent 
and do not share any data or use common memory allocation, or the sharing and com-
mon memory portion is minor. 

1.1.2 Principles 

Taking computational resource management systems into use requires planning and deciding 
the use scenarios, architecture, supporting systems, access control and policies, among other 
things. From the end user point of view, these are often unessential points compared to the 
computational challenges in hand. Thus, some guidelines may be useful when planning to 
setup computational resource management. The following principles are proposed for build-
ing new resource management strategies: 

“Keep it simple”: This applies both for the end user point of view as well as for the admin-
istrations point of view. The system should be easy and intuitive to use for the end us-
ers, otherwise the advantage will not be fully utilised. For the administration, systems 
with clean architecture and straightforward configuration are simpler to keep safe and 
running. 

“Keep it flexible”: The needs and requirements in computational engineering are changing 
rapidly. New software applications are taken into use and new versions of old software 
are utilised. Thus, new features are introduced, and to utilise the existing resources effi-
ciently, the infrastructure has to follow the changes. In addition, requirements for short 
term special cases, such as a project that has high demands on computational resources, 
may address needs for temporary changes in the system. 

“Make it modular”: Simple low-level architectures are easier to maintain and well-designed 
configurations can be easily copied to new installations. This improves the efficiency of 
the administration and makes the overall system more reliable and flexible. 

“Make it extensible”: As the users learn to utilise the resources through the resource man-
agement systems, the request for larger resources will usually follow. Well-designed 
systems and modules are easy to copy and extend with existing maintenance resources. 

1.2 Requirements for resource management systems 

There are several definitions for distributed resource management systems. Even the concept 
is defined with several names, such as resource management system and workload manage-
ment system. Throughout this report, the concept is called distributed resource management 
system (DRMS) and it is used for a system that provides the following functionality: 

- job submission system; 
- queuing system; 

https://en.wikipedia.org/wiki/Multiprocessing
https://en.wikipedia.org/wiki/Shared_memory_(interprocess_communication)
https://en.wikipedia.org/wiki/Shared_memory_(interprocess_communication)
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- load balancing functionality; and 
- job progress monitoring and execution control functionality. 

The main feature of DRMS is to improve the utilisation of the computational resources in the 
organisation and to free the users from taking care of their computational jobs in detail. The 
computational resources include the cluster systems, computational servers, workstations, and 
even desktop computers and laptops. Even though the cost for floating-point operations per 
second (FLOPS) in computing is decreasing, the need for more computational resources is 
increasing faster and all the available resources should be utilised efficiently. Still, the work-
ing conditions at a workstation should be guaranteed for the main user of that system. Further, 
parallelisation of computational software and hardware has made the management of compu-
tational resources more complex than in past. 

In Figure 1, the general structure of the computational resources for VTT’s local organisation 
is illustrated from the computational resource management point of view. In the figure, the 
computational pools are local computational resources, such as research areas at VTT (an 
organisational unit of 100‒150 people). Inside a computational pool, the computational re-
sources may include desktop computers, workstations, computational servers, and cluster sys-
tems. A cluster system is in fact a sub-pool in the computational pool, because it has its own 
computational resource management system. Due to its special role (e.g. users are not sup-
posed to log in to one computational node in a cluster system and thus use its resources), clus-
ter systems are treated as special type of computers in this study. The local computational 
resources are typically managed using one resource management system, such as Grid En-
gine, Techila, HTCondor, or SLURM. Figure 2 presents the needed software and system 
components for a local resource pool using HTCondor system. In each system component, a 
set of server and client processes are running to fulfil the different roles needed by the overall 
system. 

When local resource pools or management sets—whatever the locally managed resources are 
called—are connected, a computational grid is formed. The technical difference between lo-
cally managed resources and grids is fuzzy, and often the distinct feature of a grid is that it 
connects the computational resources of several organisations or organisation units, and only 
some of the resources are opened for the other users of the grid. In addition, the maintenance 
of the local resources is done by the local administrators. 

A computer cluster consists of a set of connected computers that work together so that in 
many respects they can be viewed as a single system. Each computer in the cluster is called a 
node, running its own operating system and, likely, suitable server software processes. Typi-
cally, a computer cluster is used through a single interface computer and a user does not nec-
essarily know which nodes of the cluster they are utilising. 

The essence of a cluster system is to provide a single system image (SSI) for all the cluster 
nodes, providing an illusory feeling to the user that the cluster is one single computer system 
with all the power of the constituent nodes as one powerful resource. SSI can be offered by 
[8]: 

- hardware layer; 
- operating system kernel; and 
- software applications. 

A hardware solution allows user to view the system as shared memory system, i.e. a virtual 
shared memory among cluster nodes is utilised by means of intermodal space mapping [8]. 
Alternatively, scheduling and load balancing can be included in the operating system kernel, 
like in SCO UnixWare, Sun Solaris MC, and GLUnix. The application solutions can be 
founded on system management tools, runtime systems (e.g. parallel file system), or middle-
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ware modules (e.g. resource management and scheduling software). In this study, we concen-
trate on the middleware application solution. 

 

 
Figure 1: Illustration of the computational resource offering in an organisation. 

1.2.1 Resource management in computational clusters 

Typically, the activities of the computation cluster nodes are handled by so-called clustering 
middleware, a software layer above the operating system layer and below the user interface 
layer [8]. The middleware sits atop the computation nodes and allows the users to treat the 
cluster as one large computing unit—i.e. from the user’s point-of-view, all the computers’ 
resources (CPU, memory, and storage) seem to work together as one single computer. The 
middleware should allow the user to utilise the cluster easily and effectively, without the 
knowledge of the details of the underlying system architecture [8]. This middleware includes 
a batch scheduling, that is above called a distributed resource management system (DRMS), 
and also a parallel programming environment to support parallel computation. In traditional 
solutions, a computer cluster DRMS has centralised management and it works in a client-
server fashion. It is distinct from other approaches such as grid computing DRMSs, which 
also uses many nodes, but with a far more distributed nature. [9] 
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Figure 2: Illustration of the architecture of an HTCondor local resource pool. 

The extendibility of cluster systems is presently prominent. Although a cluster may consist of 
just a few personal computers connected by a simple network, the cluster architecture may 
also be used to achieve high performance. The list of the fastest supercomputers often in-
cludes many clusters, e.g. the world's fastest computer system in June 2014, Tianhe 2 [10], 
has a distributed memory and cluster architecture. From the conventional point-of-view, clus-
ters are not supercomputers, because they do not have shared memory, but presently the dif-
ference have diminished, as many supercomputer architectures have also abandoned shared 
memory. 

In addition to scientific computations, computer clusters are used, for example, in web server 
clusters and high-availability clusters; the latter operates by using redundant nodes in reserve 
for a component failure. Here we concentrate on high-performance computing (HPC) clusters, 
i.e. the computation-intensive purposes rather than handling IO-oriented or failover opera-
tions. 

As discussed above, operation of a computer cluster relies on two separate software tools (so-
called clustering middleware): message passing interfaces and the cluster management tools 
(i.e. DRMSs). Here, message passing is a form of communication used in parallel computing 
between the computing nodes. As the number of nodes in a cluster has rapidly increased, the 
complexity of the communication subsystem has exploded. Furthermore, specifically the ex-
tent of the inter-node communication differentiates cluster computation from grid computa-
tion, where the communication is severely more limited. 

In last decades, the two most common solutions for communication between cluster nodes 
have been the Parallel Virtual Machine (PVM) and the Message Passing Interface (MPI). 
However, MPI has now emerged as the de facto standard for message passing on computer 
clusters. PVM is free software enabling distributed processing and grid computing by a set of 
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software libraries, whereas MPI is a specification rather than a specific set of software librar-
ies. Presently, MPI is the most common communication model enabling parallel programs to 
be written e.g. in C, C++, Fortran, Java, and Python [8]. The most popular general MPI im-
plementations are Open MPI3 and MPICH. Open MPI aims to use the best ideas and technol-
ogies from other older MPI projects and to create one world-class open source MPI imple-
mentation that excels in all areas [11,12]. Most of the software compiler and development tool 
vendors, such as Intel and Microsoft, as well as complete computer system vendors, such as 
Oracle and IBM, provide their own optimised MPI implementations. 

Presently, the most popular operating system for the HPC computer clusters is Linux, and all 
the main DRMSs support at least it. Further, many other UNIX and UNIX-based operating 
systems are supported. For Windows, HTCondor [13] supports natively (but limitedly) all 
contemporary Windows versions, Grid Engine [14] supports Windows through different Unix 
subsystem under Windows, and TORQUE [15] works within Cygwin environment. Opposite-
ly, SLURM [16] do not support Windows platform at all. 

1.2.2 Managing workstation, desktop, and server computer resources 

Workstations and desktop computers are not the primary target systems of distributed re-
source management systems, but they can form cluster-like groups, or workstation or desktop 
grids. There are many challenges in applying resource management systems for workstation 
and desktop networks. One of those is slower network connection between computational 
nodes compared to dedicated cluster systems. Further, the workstations (and also computa-
tional servers) are also used interactively from the desktop, and this hinders the cluster usage. 
In addition, workstation and desktop system management may be heterogeneous and e.g. 
availability and configuration of software applications in the workstation network can cause 
additional challenges. On the other hand, locally inside a multi-user workstation or computa-
tion server, DRMSs could be used for queuing, but the usefulness of this is questionable. The 
utilisation of DRMS is understandable only if there is surplus of users and some prioritisation 
is necessary or there are e.g. less software application licenses than there are computing re-
sources (processors or processor cores) and computational cases. 

Workstation or desktop grids are computer grids that use the idle CPU resources of the work-
stations [17]. The use of desktop or laptop computer instruction cycles that would otherwise 
be wasted, e.g. at night or during breaks, is called e.g. cycle-scavenging, CPU scavenging, 
cycle stealing, or shared computing. This is natural usage for a network of workstations for 
HPC usage. In practice, participating computers also donate some supporting amount of disk 
storage space, RAM, and network bandwidth, in addition to raw CPU power. Workstation 
grid DRMSs are able to detect that a machine is no longer available (i.e. to detect that the 
main user of the workstation starts to use the computer from the desktop, e.g. a key press or 
mouse movement is detected), and are able to transparently produce a checkpoint4 and mi-
grate a job to a different machine which would otherwise be idle. Further, these workstation 
grid middleware tools can transfer the job's data files on behalf of the user and no shared file 
system across machines is necessarily needed. Examples of tools that embody, apart from 
basic DRMS features, above workstation grid specialities contains HTCondor [13], Techila 
[18], BOINC [19], and XtremWeb5 [22]. Some of these workstation grid tools are compatible 
with volunteer computing, in which private people can give their personal computer resources 
to scientific research. 
                                                
3 Open MPI should not be confused with OpenMP, which is an implementation of multithreading, i.e. interface 
for developing parallel applications for shared memory multiprocessing. In contrary, MPI is a solution for dis-
tributed memory parallelisation.  
4 Checkpoint is a snapshot of the application's state, which can be used to restart the application from that state 
e.g. in another computer in case of a failure in the first computer. 
5 Along with its derivatives XtremWeb-CH [20] and XtremWeb-HEP [21]. 
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Heterogeneous workstation grids with different operating systems create some challenges to 
the operation of the grid. For example, HTCondor supports pools with workstations of differ-
ent operating systems, but one job gets executed in all nodes only if there is a compatible exe-
cutable for each operating system. Further, with Techila, there is a possibility to compile the 
executable separately in each Worker node, which enables efficient use of heterogeneous 
grids. There exists also research on combining cycle-scavenging and virtualisation, i.e., sys-
tem where the job in Worker is run inside a virtual machine. This allows usage of different 
operating systems by sandboxing the job executives from the main operating system, and re-
duces compatibility issues between the job executable and node operating system. 

The node-to-node network connection speed in the workstation grids is typically much lower 
than with dedicated cluster systems. Further, this connection speed is normally too slow for 
efficient MPI-computations. Hence, workstation grids are normally used for embarrassingly 
parallel computation, i.e., to computation for which little or no effort is required to separate 
the problem into a number of parallel tasks. Thus, there is none or little communication be-
tween grid nodes. 

1.2.3 Grid computing and resource management 

By grid computing, we mean a collection of computer resources from multiple locations used 
in computationally heavy computation. Computational grid is often compared to electric grid 
that makes electric power or, in case of computational grid, computational power easily avail-
able to the users [23]. The main difference to computer clusters is that grids tend to be more 
loosely coupled, heterogeneous, and computational resources may be located in and managed 
by several organisations. Workstation grids are a special type grid, but here we concentrate on 
grids built from dedicated computers. Such a grid comprises from separate computer clusters, 
computation servers, etc., likely having their own DRMS. Grids are often constructed with 
general purpose grid middleware software that is built on top of the cluster managements sys-
tems. Thus, grid resource management systems are typically above-mentioned meta-
schedulers. 

Informally, a computer grid is something between a computer cluster and workstation grid. 
The main technical differentiating issue is the connection speed between the nodes, which is 
slower in grids than in clusters but typically faster than in workstation grids. Thus, grid com-
puting is favourable for parallel computing with little communication between grid nodes. 
This behaviour varies from grid to grid, depending on the connection speed between the 
nodes. 

One disadvantage of computer grids is that the grid computers might not be entirely trustwor-
thy. This can be overcome by above-mentioned virtualisation and sandboxing idea. Also, due 
to the lack of central control over the hardware, there is no way to guarantee that nodes will 
not drop out of the network at random times. The unreliability of network connection can be 
partly overcome by reducing need of continuous network connectivity and reassigning work 
units when a given node fails to report its results in expected time. Further, a computer grid 
does not necessarily share disk storage, but the data must be sent to the grid nodes as a data 
package. 

Globus Toolkit can be seen as one kind of a standard of grid computing middleware. In addi-
tion to working as a front end for job schedulers, it includes also tools for e.g. security, data 
management, communication, and fault detection [24]. Implementations of Globus Toolkit are 
based on various standards and it is compatible with various DRMSs and other computing 
related tools, for example HTCondor, Grid Engine, SLURM, and TORQUE. For another, 
GridWay [25] is a Globus Alliance project aiming for a meta-scheduler allowing user to sub-
mit, monitor, synchronise, and control jobs by means of a DRMS-like command line inter-
face. 
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1.2.4 Distributed resource management application API 

The Distributed Resource Management Application API (DRMAA) [26] is a set of specifica-
tions for submission and control of jobs to cluster, grid, and cloud systems, developed by the 
Open Grid Forum [27]. DRMS vendors can provide a standardised access to their product 
through a DRMAA implementation. The API standardisation is focused on job submission, 
job control, reservation management, and retrieval of job and monitoring information. It is 
meant for meta-scheduler architects and end users for a unified access to execution resources. 
Thus, with DRMAA, it is possible to submit jobs to a grid with a meta-scheduler, assuming 
each grid is running a local compatible DRMS. Presently, Grid Engine, HTCondor, 
TORQUE, GridWay, and SLURM support DRMAA. 

1.3 Open source solutions for resource management 

1.3.1 Resource management systems 

1.3.1.1 Grid Engine 
Grid Engine [14] is a resource management system originally developed by Genias Software, 
Gridware, and Sun Microsystems. Grid Engine was available as open source software from 
year 2001 until Oracle Corporation acquired Sun Microsystems in 2010. After 2010, the new 
versions were licensed under a commercial license. In October 2013, Oracle sold the source 
code, copyrights, and trademarks associated with Grid Engine to Univa and cancelled the Or-
acle Grid Engine product. Because of its meandering history, the software is also known as 
CODINE, GDR, Sun Grid Engine (SGE), Oracle Grid Engine (OGE), and Univa Grid Engine 
(UGE), but we choose to call it SGE and Grid Engine. After Oracle Corporation announced 
that the new versions of SGE will be available under commercial license, several forks of the 
open source version were formed. At the moment, the most active Grid Engine versions are: 

- Son of Grid Engine [28]; 
- Open Grid Scheduler [29]; and 
- Univa Grid Engine Core [30]. 

Of the above projects, Univa Grid Engine (UGE) is the only official commercial product. The 
present situation, i.e. there are several forks6 of the open source project, has led to a situation, 
in which none of the projects is dominating and the community seems to be passivising. 

Grid Engine includes features, such as: 

- multiple scheduling algorithms enabling policy-based resource allocation; 
- queuing of jobs in a cluster; 
- job and scheduler fault tolerance, including job checkpoint procedure; 
- MPI, PVM, and OpenMP support for parallel jobs; 
- DRMAA support; and 
- resource reservation. 

Based on the long history of Grid Engine and its vast usage, users value SGE—above all—to 
be reliable. As being one of the most popular DRMS, it has been thoroughly tested during last 
decades in various sizes of clusters. This also tells that SGE is quite scalable; it works well in 
small to very large clusters. Further, it is quite flexible and easily modifiable, but because of 
the above-mentioned ramification of its development, development of new features is not any 
                                                
6 A software project fork stands for existence of several parallel development branches of originally same soft-
ware. Apart from parallel development branches, the developer community is commonly split. An open source 
software can be forked without violating licences or copyrights.  
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more straightforward. Further, its own graphical user interface qmon is quite out-of-date and 
supposedly not developed any more. However, the DRMAA-support makes it possible to use 
third-party software to submit and control jobs, along with monitoring the cluster. 

The present open source versions Son of Grid Engine and Open Grid Scheduler are distribut-
ed by source code and Linux binaries, and their compatibility with other than Linux operating 
systems is not clear. However, the commercial version of Grid Engine from Univa (and pre-
viously from Oracle) is supporting the following platforms: 

- Solaris (SPARK, x86, x64); 
- Linux (x86, x64, ia64); 
- Microsoft Windows (2000, Server 2003, Server 2008, XP, Vista Ultimate); 
- Mac OS X; 
- AIX; and 
- HP-UX. 

There are small differences in which computer architectures are supported by Univa and were 
supported by Oracle, but mainly the support is identical. 

History of Grid Engine 

The origin of Grid Engine (SGE) is in the Distributed Queuing System (DQS) developed by 
Florida State University (FSU) in early 1990s [31,32]. DQS was designed by Thomas Green 
as a management tool to aid in computational resource distribution across a network. Genias 
Software in Neutraubling, Germany, got into agreement with FSU and started to distribute 
and develop a commercial version of DQS from 1992–1993, named CODINE. From the be-
ginning, Fritz Ferstl was a member of the CODINE development team in Genias. 

In parallel with CODINE development in Genias, from year 1996, Global Resource Director 
(GRD) policy module was developed in collaboration between Genias, E-Systems (later part 
of Raytheon) and Instrumental Inc. Because the ownerships of the GRD module was shared, 
GRD (i.e. CODINE and GRD module) and the plain CODINE were co-marketed as separate 
products until year 2000. Raytheon marketed GRD to government customers and Genias 
marketed both tools to commercial accounts. Genias’ business began to grow rapidly and in 
1999 they merged with California-based Chord Systems and renamed the company GridWare 
[31]. 

In year 2000 Sun Microsystems acquired GridWare. As part of acquisition, Sun Microsystems 
acquired all rights to GRD for compensation to Raytheon. Sun Microsystems renamed the 
combination of CODINE and GDR-module as Sun Grid Engine (SGE) in 2000. Raytheon 
retained a right to sell Grid Engine into own accounts. In early 2001, Sun Microsystems re-
leased a free version of SGE for Solaris and Linux, and in June 2001 released the source code 
of Grid Engine. Sun Microsystems hosted a gridengine.sunsource.net site which included the 
source code, documentation, how-to documents and a very active mailing list. The mailing list 
became the default support channel for many SGE users and administrators. In this time, Sun 
Microsystems did the major part of the implementation and distributed everything as open 
source under SISSL (Sun Industry Standards Source License). Sun Microsystems provided 
free qualified binaries and offered superior community support to organisations that adopted 
Grid Engine. During this open source period, Grid Engine gained a large adoption and be-
come the most popular DRMS. 

Sun Microsystems marketed commercial version which occasionally included some small 
modifications from the free version that were later also included in the open source version. 
The main benefits from the commercial SGE were mainly support, training, localisation, and 
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extra testing. In the middle of 2000s, the commercial version of SGE was called N1 Grid En-
gine (N1GE). 

Oracle acquired Sun Microsystems in January 2010. By the end of 2010, Oracle announced 
that Grid Engine would no longer be freely available as an open source product, closed the 
open source community project, increased the license fees, and essentially eliminated Sun 
Microsystems’ HPC business. The last open source version of SGE was 6.2u5. After that Or-
acle published two updates to the non-free proprietary Grid Engine, now named Oracle Grid 
Engine. However, the last update dates back to December 2010. Thus, practically Oracle 
stopped the development of Grid Engine already in late 2010. 

During the announcement of open source project closure, Oracle officially announced [33] 
that pass on the torch for maintaining the open source code base to the Open Grid Scheduler 
(OGS) project. The main developers of OGS are Ron Chen and Rayson Ho. At the beginning 
of the project, Ron Che wanted to wait for Oracle to officially sunset project before adding 
new changes to the OGS, but then Dave Love (from the University of Liverpool) wanted to 
add changes and started his own project, Son of Grid Engine (SoGE). The both projects sur-
vived as open source versions of Grid Engine and both are forks of Sun Microsystems’ free 
Grid Engine version 6.2u5. 

In January of 2011, Univa announced that it had hired the core Oracle/Sun Grid Engine de-
velopment team, who had worked on Grid Engine for several years, including Fritz Ferstl. 
Univa started its own repository for the third open source grid engine fork. However, Univa 
did not publish all its Grid Engine modifications as open source, but only some core patches. 
Thus, Univa is taking an open core approach, where the commercial version of Grid Engine 
(called Univa Grid Engine, UGE) will be built from the open core with additional features 
added by Univa. Univa tried to get the other two open source forks (i.e. OGS and SoGE) to 
join Univa core project, but by others this was seen as an attempt to remove the rivals. When 
the possibility of merging the project became even more difficult, Univa started a slandering 
campaign against the open source rivals and Oracle [34,35]. Further, Univa hinted to its cus-
tomers that OGS and SoGE are distributing Sun Microsystems’ proprietary material and giv-
ing an image that Univa is the only official continuer of SGE development, even if it had not 
bought the rights from Oracle yet then. 

Starting from October 22, 2013, Oracle handed over the support of Oracle Grid Engine cus-
tomers to Univa for the remaining term of their existing Oracle Grid Engine support contracts. 
Univa acquired the source code, copyrights, and trademarks associated with the Oracle Grid 
Engine. Thus Oracle Grid Engine do not exists anymore, which makes Univa the only com-
mercial provider of Grid Engine. 

It seems like the situation with the three separate forks of SGE will continue in near future; 
the Univa’s acquisition of SGE source code, copyrights, and trademarks did not change the 
situation. Univa claims to be the official supplier of commercial Grid Engine and support for 
it, whereas OGS sees itself as the official open source version. There is no conflict between 
OGS and SoGE developers. The two versions can be seen as two close patch packages to the 
original 6.2u5 SGE version. Apart from Univa, also other companies, like Scalable Logic 
[36], sell support for SGE. Scalable Logic is presently the main developer of OGS, but their 
proprietary development delays the development of open source version OGS. They cannot 
sell the SGE core as it is SILSS licenced and Univa owns the rights to Grid Engine code base. 
Thus, in commercial perspective, support and development of Grid Engine is guaranteed by 
two rival companies, but the situation of open source versions is frail. Checking in October 
2014, no updates to OGS have been published in 2014 and the last update for SoGE was in 
January 2014. 
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Differences of Grid Engine versions 

The differences of the different present versions of Grid Engine, i.e. UGE, OGS, and SoGE, 
are not clear, as there is much accusations, disinformation, and self-praise between the organi-
sations behind the versions. However, for all three, almost all features are common and devel-
oped by Sun Microsystems and its predecessors. Most of the updates from the Univa and open 
source projects are bug fixes or other technical improvements, and new features are quite rare. 
Further, the different parties are copying code enhancement from each other, or re-
implementing the same features from scratch. Basically both the open source projects—OGS 
and, particularly, SoGE—are only collections of different patches to the original 6.2u5 SGE 
version. Their patch collection is quite identical and, thus, their differences are slight. Howev-
er, Univa has (or at least advertises to have) multiple new features unique to their version only 
and they are not publishing that part of the code as open source. 

One major feature that Open Grid Scheduler project implemented first was the hwloc topolo-
gy binding, i.e. user can specify the processor cores used for the job with the hwloc package, 
instead of Sun Microsystems’ deprecated PLPA implementation. Hwloc helps applications to 
gather information about computing hardware so as to exploit it accordingly and efficiently. 
Hwloc supports newer hardware architectures and more operating systems than old PLPA 
implementation. However, Univa re-implemented this and went further by using topology 
masks to allow users to reserve some abstract computer power instead of specific cores. This 
allows equally utilising different hardware in the same cluster, as UGE translates the abstract 
computer power binding to the number of cores on the specific node [37]. 

1.3.1.2 HTCondor 
High Throughput Condor (HTCondor) is a resource management system developed at the 
University of Madison-Wisconsin, USA. The website of the HTCondor [13] defines the soft-
ware as “a specialised workload management system for compute-intensive jobs”. HTCondor 
provides a job queuing mechanism, scheduling policy, priority scheme, resource monitoring, 
and resource management. Users submit their serial or parallel jobs to HTCondor, HTCondor 
places them into a queue, chooses when and where in the computational environment (called 
computational pool) to run the jobs based upon a policy, monitors the progress of the jobs, 
and informs the user when the jobs are completed. The use and administration of HTCondor 
is described in the extensive manual [38]. 

What differentiates HTCondor from most other DRMSs, such as SGE and PBS, is that 
HTCondor also works with workstation grid middleware, i.e. it supports cycle-scavenging, 
transparent process checkpoint procedure and migration of a job to a different machine, and 
transferring the job data. Thus, unlike traditional DRMSs, HTCondor can effectively utilise 
non-dedicated machines to run jobs, i.e. workstations that are currently not being used (no 
keyboard activity, low load average, etc.). HTCondor also supports workstation grids with 
different operating systems, but a job gets executed in all nodes only if there is a compatible 
executable for each operating system. Another difference from most other DRMSs is that the 
operation of HTCondor does not rely on named computational queues. When submitting a job 
into the HTCondor pool, the user does not have to think about what computational queue 
(named resource) to utilise, but instead just submits the job into the general queue and the 
system selects matching resources from the pool. This simplifies especially the utilisation of a 
heterogeneous workstation computational pool, in which individual resources may or may not 
be available for the user. 

HTCondor can be used to build grid-style computing environments that span many adminis-
trative domains by allowing multiple HTCondor compute installations to work together. This 
mechanism is called flocking and is, in practise, utilising the HTCondor-C mechanism (the 
condor grid type in HTCondor) that allows a job to be moved from one pool's job queue to the 
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remote pool's job queue. Further, HTCondor-G (the gt2 and gt5 grid type in HTCondor) al-
lows the same mechanism to utilise remote Globus resources and, with this, HTCondor is 
fully interoperable with resources managed by Globus. The HTCondors manual describes the 
operation as follows: “HTCondor-C is highly resistant to network disconnections and ma-
chine failures on both the submission and remote sides. An expected usage sets up Personal 
HTCondor on a laptop, submits some jobs that are sent to an HTCondor pool, waits until the 
jobs are staged on the pool, then turns off the laptop. When the laptop reconnects at a later 
time, any results can be pulled back.” “It may appear that HTCondor-G is a simple replace-
ment for the Globus Toolkit's globusrun command. However, HTCondor-G does much more. 
It allows the submission of many jobs at once, along with the monitoring of those jobs with a 
convenient interface. There is notification when jobs complete or fail and maintenance of 
Globus credentials that may expire while a job is running. On top of this, HTCondor-G is a 
fault-tolerant system; if a machine crashes, all of these functions are again available as the 
machine returns.” 

HTCondor works either with shared file systems (e.g. Network File System, NFS, like typical 
cluster DRMS) and without such (like workstation grid DRMS). The latter one utilises 
HTCondor’s built-in File Transfer Mechanism, which transfers files needed by a job from the 
submit computer to the execute computer and transfers all the result files from the execute 
computer back to the submit computer. Further, it is possible to download and upload input 
and output files from and to a specified URL. In addition, a continuous transfer during the 
computation is possible [38]. 

HTCondor supports running jobs in virtual machines on execute machines. Presently, 
VMware, Xen, and KVM virtual machine software are supported [38]. This feature enables 
utilising cloud computing environments with HTCondor. HTCondor also supports the 
DRMAA job API (version 1.0). This allows DRMAA compliant clients to submit and moni-
tor HTCondor jobs. 

1.3.1.3 SLURM 
The Simple Linux Utility for Resource Management (SLURM) [16] is an open source soft-
ware system for highly scalable cluster management and job scheduling for large and small 
Linux clusters. It is developed and maintained by a consortium of organisations that—at be-
ginning—included Lawrence Livermore National Laboratory, SchedMD, Linux NetworX, 
Hewlett-Packard, and Groupe Bull. Presently it is used and developed by many of the organi-
sations with large computation resources. SLURM is available under GNU General Public 
License version 2 (GPL 2). While SLURM was originally written for Linux, the latest version 
supports many other UNIX-like operating systems: AIX, different BSD variants, Linux, Mac 
OS X, and Solaris. 

SLURM's design is very modular with many optional plugins. Optional plugins can be used 
for accounting, advanced reservation, time sharing for parallel jobs, backfill scheduling (abil-
ity to start a not-high-priority job before highest priority jobs, if it causes no delay to the high 
priority job), topology optimised resource selection, resource limits by user account, and so-
phisticated multifactor job prioritisation algorithm. Like many other DRMSs, SLURM has a 
centralised management server and the computational nodes work as clients. The manager 
runs a slurmctld daemon and the nodes a slurmd daemon, which can be compared to a remote 
shell: it waits for work, executes that work, returns status, and waits for more work. The ad-
ministration is handled by sacctmgr database, which identify e.g. the clusters and valid users. 
[16] 
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1.3.1.4 TORQUE 
TORQUE [15] (Terascale Open-Source Resource and QUEue Manager) is an open source7 
DRMS based on Portable Batch System (PBS) developed for NASA beginning from year 
1991. The main developers were NASA Ames Research Center, Lawrence Livermore Nation-
al Laboratory, and Veridian Information Solutions Inc. The latter one acquired the original 
developer, MRJ Technology Solutions, in the late 1990s. MRJ released PBS as open source in 
1998 under the name OpenPBS [39], but this version is not developed anymore. TORQUE is 
a fork of OpenPBS maintained by Adaptive Computing Enterprises, Inc. (formerly Cluster 
Resources, Inc.). In 2003, Altair Engineering acquired all the PBS technology rights and intel-
lectual property from Veridian. Presently, Altair has a commercial product on basis of PBS, 
called PBS Professional (PBS Pro), and it employs the original development team from 
NASA. The development of TORQUE is not directly connected to the PBS Pro, even though 
they both are based on the same original PBS code base. 

TORQUE is a typical DRMS with a centralised management server and computational nodes 
working as clients. It has typical features: control over batch jobs and distributed compute 
nodes. However, its default scheduler does not have advanced scheduling options, like back-
fill or tying to license servers. For that reason, TORQUE can integrate with the open source 
Maui Cluster Scheduler or its commercial version, Moab Workload Manager (from the same 
company Adaptive Computing than TORQUE), to improve the utilisation, scheduling and 
administration of a cluster. [40] 

TORQUE supports different UNIX-like operating systems, but it is not officially delivered in 
binary form for any operating system, but only in source code. The source code can be com-
piled on different Linux distributions, UNIX systems, Mac OS X, and Windows on the 
Cygwin environment. 

1.3.2 Grid management systems 

In the following, we discuss grid management solutions the Globus Toolkit and GridWay that 
both are projects of the Globus Alliance [41]. The Globus Alliance is an international collabo-
ration that conducts research and development to create fundamental Grid technologies. The 
alliance includes Argonne National Laboratory, the Information Sciences Institute in the Uni-
versity of Southern California, the University of Chicago, the University of Edinburgh, the 
Swedish Center for Parallel Computers, and the National Center for Supercomputing Applica-
tions (NCSA). 

1.3.2.1 Globus Toolkit 
The Globus Toolkit [42] is a middleware solution for computational resource sharing and 
computing in a heterogeneous network environment. The toolkit collects a set of useful tech-
nologies into a one combined set and simplifies the management of the technologies in organ-
isations. Strictly speaking, The Globus Toolkit is not a DRMS, but a toolkit for building com-
puting grids that utilises external utilities e.g. for DRMS style operations. 

The Globus Toolkit has been called the de facto standard of grid computing. It includes tools 
for security, information infrastructure, resource management, data management, communica-
tion, fault detection, and portability [24]. It includes components for building systems that 
follow the Open Grid Services Architecture (OGSA) framework defined by the Open Grid 
Forum (OGF) [27]. 

The Globus Toolkit includes the Globus resource allocation manager (GRAM) that handles 
jobs on grid computing resources. GRAM is a not a meta-scheduler or other type of DRMS, 
                                                
7 TORQUE is described by its developers as open source software, using the OpenPBS version 2.3 license. 
However, Debian Free Software Guidelines sees it as non-free software owing to issues with the license. 
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as GRAM does not provide job scheduler functionality and is just a front end to the function-
ality provided by an external scheduler. GRAM’s idea is to simplify the use of remote sys-
tems by providing a single standard interface for requesting and using remote system re-
sources for the execution of jobs. The Globus Toolkit is compatible—through GRAM or oth-
erwise—with various DRMSs and other computing related tools, for example HTCondor, 
Grid Engine, SLURM, and TORQUE. It is mainly developed by the Globus Alliance. 

1.3.2.2 GridWay 
GridWay [25] provides a unified interface to large, grid computing resources inside organisa-
tions and between organisations. In the GridWay documentation, this solution is illustrated to 
operate on top of the local resource management and the Globus Toolkit layers, providing 
unified interface to access and monitor resources in large resource pools. GridWay aim to 
reduce the gap between grid middleware and users (including application developers) by 
providing a consistent and familiar working environment to access all cluster, grid and cloud 
resources in the organisation, i.e. it decouples the usage from the underlying local resource 
management systems. 

GridWay is a Globus Alliance project aiming for a meta-scheduler that allows a user to sub-
mit, monitor, synchronise and control jobs by means of a DRMS-like command line interface. 
GridWay performs job submission and scheduling transparently to the end user and provides 
fault recovery mechanisms, load and resource based dynamic scheduling, and resubmission of 
the job when poor performance is detected. It enables sharing of all types of computing re-
sources: clusters, supercomputers, and stand-alone servers. GridWay supports most of the 
existing grid middleware systems, can be used on grid infrastructures, and can access cloud 
resources. GridWay interfaces to remote resources through Globus GRAM. Thus, it supports 
all Globus compatible remote platforms and resource managers, e.g. SGE, PBS, and HTCon-
dor. 
For operating system support, GridWay has been tested on Linux and Solaris [25]. 

1.3.2.3 Bosco 
Bosco [43] is a meta-scheduler for simplifying the job scheduling in a large and heterogene-
ous computing environment. The system enables submitting computational jobs from the us-
er’s local computer to the network of resource management systems, such as the intranet of a 
large organisation. The network of resource management systems may consist of a different 
kind of local cluster and resource management systems. At the moment, the following cluster 
and resource management systems are supported: 

- PBS-based TORQUE and PBS Professional; 
- HTCondor (starting from version 7.6); 
- Platform Load Sharing Facility, LSF (IBM’s proprietary workload management plat-

form); 
- SGE; and 
- SLURM. 

Bosco uses Secure Shell (ssh) for submitting jobs from the user’s local computer. The job 
scheduler is based in HTCondor and the jobs are submitted using HTCondor job description 
mechanism and syntax. 

The advantage of using a meta-scheduler, such as Bosco, is that the users need to learn only 
one scheduler system and its job submission, monitoring, and management procedures, and 
can utilise the resources of a large and heterogeneous computational environment. The chal-
lenges of the approach are the differences of the resource management systems. The load bal-
ancing and submission mechanisms are different and e.g. the syntax of submission descrip-
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tions differs from each other. This may cause some detailed features of the different resource 
management systems not to be available for the users of the meta-scheduler systems. 

1.4 Other solutions for utilising remote computational resources 

1.4.1 Techila 

Techila is a commercial grid computation management environment for embarrassingly 
parallel computations [18]. As described before, embarrassingly parallel means there are little 
or no connections between computation processes during the computation, so the processes 
are independent and do not share any data or use common memory allocation. Techila runs in 
background in the computational nodes (i.e. computer that belong to the Techical grid), and is 
only activated when no other processes are loading the processor. Techila data flow is 
illustrated in Figure 3. There are three layers which may be separated in practise: Server, 
Workers, and End User. Techila environment consists of Techila Server (for distributing the 
work load) and Techila Workers which do the actual computations. They create together the 
gridified section, which internal operations are hidden from the end user. 

The end user may monitor the operations and launch new projects and bundles with Techila 
User Interface. Typically, the launching of new projects and bundles is done by some 3rd party 
software, such as MATLAB. In addition to MATLAB, Python, R, Perl, Java, C/C++, .NET 
and FORTRAN programming languages are supported. The source code created with 
supported environment must be compiled with Techila software development kit (SDK). The 
compilation may be done either at End User part (local) or in the Techila grid (remote). Both 
approaches have their advantages and disadvantages. For local compilation, you must know 
the architecture of the Workers to cross-compile directly to the correct run-time format. On 
the other hand, if compiled remotely there must be suitable compilers and their control 
structures installed in the remote system. 

The monitoring function is fulfilled with a web-based view to the Techila server. There the 
general, Worker and project status of the grid and computation may be monitored. 

The Workers may be computers in the local computer network or they may be any computer 
resources which may be bundled with the Techila Server system, such as Microsoft Azure 
cloud computing resource. One of the original ideas of Techila has been to utilise the local 
computer network computers as Workers while they are idling (for example in night times). 

Ideally, when using the local network capacity, Techila is very sensitive to a normal computer 
usage, so it quickly transfers the computations elsewhere if the user needs his or her 
computer. Undocking of the laptops etc. may also be done as usually. Techila dynamically 
searches for the best computation capacity, and takes the best idle computer into use. The 
more idle computers there are, the better the system works. 

Unfortunately, this vision has not been fulfilled especially due to the more widespread usage 
of laptop computers, which are often not connected to the network when not in use, and which 
also have less computational resources (processing power, cores and memory) than desktop 
computers. 
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Figure 3: Techila data flows. Courtesy of Techila presentation material 2011. 

When using independent software vendor (ISV) applications, there are three ways to integrate 
them to the Techila environment: 1) plug-in integration, 2) seamless integration, and 3) black 
box integration [44]. The plug-in integration is possible, if the software supports the plug-in 
Techila architecture. The seamless integration may be utilised, if the source code is available, 
and suitable computationally intensive parts may be separately compiled with Techila SDK. 
The black box integration is possible, if there is suitable command line interface (CLI) 
available to control the program execution. This integration scheme is shown in Figure 4. 

 
Figure 4: ISV integration schemes to Techila [44]. 

1.4.2 Azure cloud service together with Techila 

The Microsoft Azure cloud service was tested with Techila environment. The Azure cloud 
service with Techila consists of Windows Azure Virtual Machines (WAVM) and Techila 
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front-end [45]. WAVM provides infrastructure as a service (IaaS). Figure 5 shows its 
components. 

Techila supports several could services, including Google GCE, Amazon EC2 and Microsoft 
Azure. Furthermore, local virtualisations such as WMware ESXi are supported. Virtual 
machines may be created using either the Windows Azure Management Portal or the REST-
based Windows Azure Service Management API. When used together with Techila, Techila 
front-end with suitable API is used. Creating a new VM requires choosing a virtual hard disk 
(VHD) for the VM’s image. These VHDs are stored in Windows Azure Blobs. Azure Blob 
storage is a service for storing large amounts of unstructured data. 

 
Figure 5: Windows Azure Virtual Machines provides Infrastructure as a Service. Courtesy 
and copyright of Microsoft Corporation, 2014. 
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2 Experiences with resource management systems 

2.1 Grid Engine in a cluster system 

2.1.1 Description of the computational environment “the Doctor” 

VTT has a computer cluster called “the Doctor”. Its configuration has presently (early 2015) 
1456 cores in 69 nodes including a master host, a backup master host (working as normal ex-
ecution host) and 67 execution hosts. 61 of the cluster nodes are Dell PowerEdge M620s with 
16 or 20 cores total in two processors. In addition, there are three R820 and five R630 ma-
chines with 32 cores total in four processors and one R920 with 60 cores total in four proces-
sors. The processors for M620s are Intel Xeon E5-2680 at 2.70GHz for the first 16 nodes and 
E5-2680v2 at 2.8GHz for the newer 45 nodes. The R820s have E5-4650 processors at 
2.70GHz, R630s E5-2698 v3 at 2.30GHz, and the R920 E7-4880 v2 at 2.50GHz. All the exe-
cution hosts are connected together with an InfiniBand network (the 40 Gbps version) for 
MPI data and 10 Gbps Ethernet for Network File System (NFS) traffic (disc usage) and non-
MPI communication between nodes. Most of the nodes have 2 SSD discs for swapping and 
system image, but the computation results are stored in two NetApp systems having totally 
130TB capacity. Several tests have shown that the M620s (older ones with E5-2680) are 
somewhat more efficient than the R820s, even if the clock rate and architecture of the proces-
sor are the same. The R820s have even more L1 cache (512 kB vs. 256 kB). The efficiency 
difference is supposedly related to the identical memory bandwidth, which in R820s is shared 
with 32 cores and in M620s with 16 cores. The M620/R630 nodes have 128‒256 GB of 
memory, whereas the R820s have 512GB memory and the one R920 has 1536 GB of 
memory. 

All the nodes have a Rocks Cluster Distribution 6.1.1 (CentOS release 6.5) as their operating 
system intended for high-performance computing clusters. The operating system includes 
tools for mass installation onto many computers. Further, Rocks Cluster includes many tools 
(such as MPI) which are not part of CentOS but are vital to make a group of computers work 
as a computational cluster. The operating system includes several alternative DRMSs, chosen 
install-time by using so-called Rolls, along with useful cluster tools like Ganglia [46]. 

The cluster is, for the time being, meant for all VTT staff, more than 2000 people, but there 
are only few hundred users who utilise modelling and simulation; even less who need HPC 
environment for their simulations. However, in reality there are less than 20 users in the clus-
ter, and even then the cluster is close to 100 % usage most of the year. Thus, there is real need 
for resource management, i.e. scheduling and automatic load balancing. Further, the variety of 
usage is quite wide, from embarrassingly parallel computation to barely parallel FEM simula-
tions. An example of embarrassingly parallel computation is bioinformatics algorithm and 
tool BLAST, for comparing primary biological sequence information, which could utilise 
even several thousands of cores in parallel. For the other end, commercial FEM tools 
ACTRAN and ABAQUS, especially in modal analysis, can effective utilise only 6‒10 cores 
due to strongly connection of the parallel sub problems, causing heavy core-to-core (MPI) 
data traffic causing slowdowns even inside one computation node. 

2.1.2 Resource management in the cluster 

The (Sun) Grid Engine (SGE) was selected as the computation resource manager, or distribut-
ed resource management systems (DRMS), on the cluster. The reason for the choice was the 
fact that SGE is still the most popular clusters DRMS, even if SLURM is raising its populari-
ty in new clusters. Most of the tests are done with SGE version 6.2u5, which is the last open 
source version released by Oracle and the last unified version before the division of the open 
source development of SGE. Thus, all the results should be applicable for all SGE versions, 
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but possibly some newer versions include features that are still missing from version 6.2u5. 
Presently, after the update from Rocks 6.0 to 6.1.1, SGE was replaced by OGS 2011.11p1. 
The change did not affect the usability of the DRMS in the cluster. 

2.1.2.1 Operation of SGE in cluster environment 
A SGE cluster is composed of execution machines, a master machine, and possible shadow 
master machines. The execution hosts run the Grid Engine execution daemon and master host 
runs the SGE qmaster daemon. In a case that the master machine fails (e.g. crashes), the 
shadow daemon on one of the shadow master machines will take over the role of the master 
host. The qmaster daemon is the heart of the cluster, and it handles the submitting and sched-
uling of all the jobs. The running of the jobs is done in the execution daemons, i.e. the execu-
tion daemons are the work horses of the cluster [47]. However, like in the VTT cluster, the 
master host can (partially) work as execution host and the shadow masters work in normal 
conditions as normal execution hosts. In “the Doctor” cluster, the master host has 16 cores, 
but only 12 of them are employed for SGE execution and the rest are saved for SGE master 
usage and non-SGE usage. 

 
Figure 6: Illustration of Grid Engine usage and different hosts. [47] 

All the usage of the SGE cluster is handled through the master host. The user logs with SSH 
to the master host and uses SGE commands to manage his/her computation. For example, the 
job submission is done in command line by qsub or graphically with qmon tool, but the com-
mand line tools are by far more popular and handy. In the job submission command, the user 
includes all of the important information about the job, like what it should actually run, what 
kind of execution machine it needs; possibly also upper limits to how much memory it will 
consume, how long it will run, etc. All of that information is then used by the qmaster to 
schedule and manage the job as it goes from pending to running and finally to finish. 

First, a submitted job always enters the pending state. On the next scheduling run, the qmaster 
will rank the job in importance compared to the other pending jobs. The configured schedul-
ing policies largely determine the relative importance. After ranking, the most important jobs 
will be scheduled to available job slots. Typically, a CPU core in an execution host represents 
a job slot; i.e. the number of slots is equal to the total number of CPU cores in the cluster exe-
cution hosts. Every available slot is filled with a pending job. If a job requires a resource or a 
slot on a certain type of machine that isn't currently available, that job will be skipped over 
during that scheduling run. For example, a typical job for HPC usage is a parallel job, which 
is distributed across multiple nodes and ran in parallel. Thus, the job needs as many free slots 
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as there is parallel jobs; if there is not enough free slots, job will be skipped and waits for slots 
to be released. 

After the job has been scheduled, it is sent to the execution daemon on the selected machine. 
The execution daemon executes the job, i.e. the job enters the running state. The job runs until 
it completes, fails, is terminated, or is re-queued. Further, the job may be suspended, resumed, 
or performed a checkpoint any number of times. SGE does not handle checkpoint procedure 
itself, but triggers whatever checkpoint mechanism is available and configured for the job. 
After a job has completed or failed, the execution daemon cleans up and notifies the qmaster. 
The qmaster saves the job's information in the logs and removes the job from the list of active 
jobs. 

SGE organises the computation resources by different queues. The user selects, which queue 
the job is sent to, based on the requirements of the case in hand. The queue is a collection of 
slots, i.e. a certain group to computers, treated as one computation resource. If the user sends 
the job to a certain queue, the scheduling is done inside these resources. However, to be pre-
cise, the connection between queues and computational hardware is not so simple, as one exe-
cution host can be included into several queues. Thus, queues can be configured to stand for 
some resource or for some special type of job: e.g. short, medium length, and long jobs; inter-
active jobs; high memory jobs; and queues with different priorities. Of course, there could be 
correlation between different types of use and needed hardware, e.g. a high memory queue 
would use execution hosts with more memory than average hosts. In many organisations, 
there are policies restricting who can use certain resources or limiting the resource usage of 
certain users. For example, a cluster can include nodes owned by a small unit of the organisa-
tion, and the members of the unit have higher priority on that resource. Further, the duration 
limited queues (e.g. short, medium, and long queues) can have stiff limitations on the job exe-
cution duration, meaning that the job is terminated or suspended if the limits are exceeded. 

As mentioned in section 1.2.1, there exist several message passing solutions for communica-
tion between cluster nodes, e.g. MPI and PVM. In SGE, these solutions are selected by choos-
ing a so-called parallel environment. In detail, the parallel environments are parallel pro-
gramming and runtime environments allowing for the execution of shared memory or distrib-
uted memory parallelised applications. Presently, different MPI implementations are the most 
used ones. For Open MPI, the parallel environment is called orte, and for MPICH simply 
mpich. There are also shared memory parallel environments, like smp and openmp, and some 
software specific environments.  

2.1.2.2 SGE configuration in “the Doctor” cluster 
A Grid Engine based cluster have, at the time of writing (end of 2014), been two years in test 
use in VTT. The following sections are based on the experiences during the test period. 

In the present configuration of “the Doctor” cluster in VTT, the main queue, all.q, is the 
most used one and there are no stiff limitations on the job duration or memory usage. Howev-
er, there are separate queues for certain unit’s own hardware, where the access to the queues 
is restricted to a certain group of users. However, these kinds of queues are planned to be used 
by others e.g. via a Techila grid, when the hosts of these queues are in idle. Presently, there 
are only four queues: two for the above-mentioned unit-restricted nodes, the main queue 
all.q, and one for the 12 (of 16) cores of the master host. The last mentioned queue is in-
tended for interactive work, such as post-processing, optimisation control, and small 
MATLAB jobs. Several overlapping queues were tested in the beginning of the test period 
(separate queues for ABAQUS and all the other use), but this was found confusing, as the 
users had to check the state of a host from two separate queues. 
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One of characteristics of the default SGE configuration was that the execution hosts were al-
lowed to be overloaded, i.e. a 16 core host was allowed to have load8 close to 32. Thus, the 
default SGE configuration allows heavy overloading of the hardware. This was not effective 
in typical FEM and CFD simulation jobs, as the overloading only caused lower average effi-
ciency of the computation. By default, the loading of a host is monitored by the five minute 
average load of the machine divided by core number, denoted np_load_avg. The configuration 
was changed such a way that jobs are not scheduled if np_load_avg > 1.05, i.e. if the host has 
full load, no new jobs are assigned to it. This change solved the above-mentioned problem of 
harmful overloading. 

Also other types of load sensors can be configured to affect the scheduling, e.g. the memory 
usage in an execution host. In some large memory usage situation, all the memory of a host 
can be used but most of the cores are free. In that case, with a load sensor based only on CPU 
load, SGE can assign new jobs to the host resulting an out-of-memory situation and one of the 
jobs will then be killed. In addition, so-called complex values of SGE can be used for reserv-
ing the node memory of a host to one job. For example, virtual_free complex value can be 
used for reserving the host memory and scheduling a job to a host that has enough free (virtu-
al) memory. Also, complex value exclusive can be helpful. If it is enabled for a host, a user 
can exclusively reserve the host for her/his job, e.g. in a situation when the user knows that 
the job will use all the memory from the node. 

2.1.3 Practical examples and how the systems works 

2.1.3.1 Using OpenFOAM in the SGE cluster 

Submitting computation 

This section describes how to send a job of a computational fluid dynamics (CFD) analysis to 
the computational nodes from the master host (the front node) of “the Doctor” cluster; in the 
following text, the name of the front node is vttcalc001. Notice that in the examples, the 
command prompt of the command shell is included and is “%>”. After the SSH connection has 
been established, the environmental variables have to be changed to proper ones for the case 
in hand. In this case, the computation is performed with the OpenFOAM-2.1.x software ap-
plication. The environmental variables can be changed e.g. by modifying the .bashrc file in 
the /home/user folder. In this case the .bashrc file is changed to (the additions are in bold 
face): 

# .bashrc 
# Source global definitions 
if [ -f /etc/bashrc ]; then 
. /etc/bashrc 
fi 
# User specific aliases and functions 
# OpenFOAM-2.1.x 
source /share/apps/OpenFOAM/OpenFOAM-2.1.x/etc/bashrc 

In the beginning of a session, the .bashrc script is run e.g. with the source command: 
%> source .bashrc 

The computations are not to be executed in the front node, but instead in the computational 
nodes. The computations can be sent to the computational nodes with the qsub command: 

                                                
8 Load is a number to measure the amount of computational work that a computer performs. For 16 core ma-
chine, load value 16 equals that all the cores are fully utilised. Value 32 means that there is about double of 
amount of computational load compared the real computation power of the hardware. 
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%> qsub submit 

and for a specific computational (e.g. all.q@compute-0-5.local) node with the -q option: 
%> qsub -q all.q@compute-0-5 submit 

where the string after the -q option defines the computational queue (in this case all.q) and 
the computational node (in this case compute-0-5) and the submit file includes all the infor-
mation needed to execute the computation as demonstrated below for the OpenFOAM’s sim-
pleFoam solver: 

#!/bin/sh 
# Used command-line interpreter 
#$ -S /bin/bash 
# The name of the job 
#$ -N test 
# Use this folder as a working folder 
#$ -cwd 
# Write one output file and give its name 
#$ -j y 
#$ -o output 
# Set the Open MPI parallel environment and the number of processors 
#$ -pe orte 16 
# Pass the enviromental variables 
#$ -V 
# Reserve resources for the parallel job 
#$ -R y 
#OpenFOAM specific command 
decomposePar 
mpirun -np $NSLOTS simpleFoam -parallel 
#OpenFOAM specific command 
reconstructPar 

The queues and the state of the computations and other information, such as the job ID, can be 
viewed with the qstat command, e.g.: 

%> qstat -f -u <user> 

where <user> is your or some other user’s user name. You can view jobs from all users by 
replacing <user> with "*" in the above example. The computation can be deleted from the 
computational nodes with the qdel command: 

%> qdel <job-ID> 

where <job-ID> is the ID number of the job to be deleted. 

Scaling results 

One of the most important aspects of parallel computation in clusters is the scaling of the 
computation, i.e. how the real computation time behaves as the function of the number of 
computation cores. Here we present the scaling results of the OpenFOAM software applica-
tion for a 2.5 million cell case with double precision, SCOTCH decomposition, and 500 itera-
tions, computed in “the Doctor” cluster in its 16 core nodes. The scaling results are presented 
in Table 1, Figure 7, Figure 8, and Figure 9. 

Table 1: Scaling results of the OpenFOAM test case. 

# of cores Real time Efficiency Speed-up 
80 110 s 0.907 72.56 
64 126 s 0.990 63.36 
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48 169 s 0.984 47.232 
32 250 s 0.998 31.94 
16 499 s 1.0 16 

 

 
Figure 7: Wall-clock times for solutions with different number of cores. 

 
 

 
Figure 8: Efficiency for solutions with different number of cores. Efficiency means the capabil-
ity to utilise the cores, value one means full utilisation. 
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Figure 9: Speed-up for solutions with different number of cores. Speed-up is the ratio of 
computation time compared to the case computed with one core, here 16 core case is the 
reference level. The red dashed line represents the optimal performance (linear scaling). 

The results show that OpenFOAM scales quite ideally up to 64 cores in the cluster system. 
Above that, the scalability decreases. Hence, runs using more than 64 cores should be avoided 
in OpenFOAM simulations. However, this result is valid only for just this hardware setup and 
this version of the OpenFOAM software—in other types of OpenFOAM cases the scaling 
may be different. 

2.1.3.2 Using Abaqus in the SGE cluster 
Abaqus FEA is a FEM software suite from SIMULIA, owned by Dassault Systèmes, original-
ly released in 1978. It is among the most popular FEM tools along with Ansys. 

For Abaqus usage in the VTT computational cluster environment, user must log in to the clus-
ter front-end machine vttcalc001.ad.vtt.fi. All software applications installed to the cluster 
are located in the /share/apps folder. Different versions of the Abaqus software package can 
be found from the /share/apps/Simulia folder. General abaqus command starts the latest 
Abaqus version; an exact individual Abaqus version can be started by using a version labelled 
format, for example abq6123. The Abaqus environment file (abaqus_v6.env) can be found 
from each Abaqus version's site directory (for example, /share/apps/Simulia/6.12-
3/SMA/site). If needed, that can be copied to one’s own home directory for necessary modifi-
cations. A scratch directory definition is not needed, because that is handled automatically by 
the job invoking procedures. 

All cluster jobs have to be directed to the all.q queue. An Abaqus job is started by using e.g. 
the following command: 

%> abaqus job=jobname cpus=8 queue=all.q 

This command reserves 8 CPU cores for the job. If the user wants to direct the job to a certain 
computation node, the following modification is needed: 

%> abaqus job=jobname cpus=8 queue=all.q@compute-0-2 

where compute-0-2 is the name of a node. The number of Abaqus license tokens needed for a 
job with certain number of cores (CPUs) can be determined by using the following command: 

%> abaqus job=test cpus=30 queue=tokens 

mailto:queue=all.q@compute-0-2
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Abaqus supports distributed memory parallelising (DMP) and an analysis job can be extended 
beyond a single computation node. In these cases, the number of necessary analysis tokens 
should to be determined and compared against available tokens. Licence usage (using the li-
cense manager set in the file abaqus_v6.env) can be checked by using the following com-
mand: 

%> abaqus licensing ru 

If it is required that a job will be run only in a single computation node, it can be forced by 
using the memory type option mt[dmp;smp] in the queue definition, for example: 

%> abaqus job=test cpus=8 queue=all.q:mtsmp      (single node) 
%> abaqus job=test cpus=8 queue=all.q:mtmpi      (several nodes when needed, 

default) 

In the case of extensive disk usage during an analysis, instead of local computation node disk 
space, front-end machine disk resources have to be used for storing the analysis data. The 
analysis data storage option can be enforced by adding file system definition 
fs[local;shared] to the queue definition, for example: 

%> abaqus job=test cpus=8 queue=all.q:fsshared      (data files at front-end 
directory) 

%> abaqus job=test cpus=8 queue=all.q:fslocal       (data files at 
   computation node local directory, default) 

All analyses have to be run through SGE queuing system invoked from the front-end ma-
chine. The detailed cluster queue status can be monitored by using the following command: 

%> qstat -f -u "*" -q all.q 

During an Abaqus analysis, there is no other information available in the front node start di-
rectory than a log file that includes the name of the primal execution node and working direc-
tory in that host. After the analysis has completed, the run files are copied to the front node 
automatically. The work directories are created automatically to the /tmp/username directory, 
where username is the user’s user name. 

List of one’s own submitted runs can be viewed simply by using the following command: 
%> qstat 

If the submitted run has to be terminated before its normal completion, run termination is in-
voked using the following command: 

%> qdel <job_ID> 

Here <job_ID> refers to the run ID number. When using Abaqus, if the analysis was run with 
the local mode in the computation node, restoring analysis data to front-end directory can take 
few moments. 
In order to get the user subroutines working, few settings have to be added to the user files. 
When using bash or bourne shell as the command shell, following lines should be added to 
the .bashrc file (in the /home/user directory): 

source 
/share/apps/intel/composer_xe_2013.0.079/composer_xe_2013.0.079/bin/compilerv
ars.sh intel64 
 
export PATH=/share/apps/Simulia/Commands:${PATH} 
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In the case of csh or tcsh command shell, the following lines should be added to the .cshrc 
or .tcshrc file (in the /home/user directory): 

source 
/share/apps/intel/composer_xe_2013.0.079/composer_xe_2013.0.079/bin/compilerv
ars.csh intel64 
setenv PATH "/share/apps/Simulia/Commands/:/home/user/scripts:${PATH}" 

2.1.3.3  Elmer in SGE cluster 
Elmer is an open source finite element software that is developed by CSC – IT Center for Sci-
ence Ltd. (later in this document CSC) and it is intended for multi-physics simulations. Elmer 
has been recently developed towards low-frequency electromagnetic simulations, applications 
being especially transient electrical machines. For a long time, Elmer’s strengths have been in 
parallel computing and the parallel computation has been partly developed in the SIMPRO 
project. Especially a vast number of parallel performance tests have been run in large compu-
tational environments utilising the SGE and SLURM systems. 

The test for this study was performed in VTT’s “the Doctor” cluster system. As an open 
source software application, parallel performance of Elmer is vastly based on the used compi-
lation options. After the update to Rocks Linux version 6.1.1 (CentOS 6.5), the performance 
of Elmer was slowed down considerably, if the system’s default gcc compiler and Open MPI 
were used in the compilation of Elmer. Utilisation of locally compiled gcc version 4.9.0 and 
Open MPI version 1.8.1, together with Open MPI flags “--with-sge --disable-mca-dso” 
accelerated the test runs three-fold. Further, Elmer was compiled with optimisation options 
"-g -O2 -march=sandybridge" to improve its performance. 

To run Elmer, one has to set some additional environmental variables: 
export MPIHOME=/share/apps/local 
export ELMER_HOME="/share/apps/elmer/Elmer" 
export ELMER_LIB="$ELMER_HOME/share/elmersolver/lib/" 
export ELMER_POST_HOME="$ELMER_HOME/share/elmerpost" 
export LD_LIBRARY_PATH="$MPIHOME/lib64:$MPIHOME/lib:$LD_LIBRARY_PATH" 
export PATH="$MPIHOME/bin:$PATH:$ELMER_HOME/bin:$HOME/bin" 

In the following examples, these are included in the user’s .bashrc file (in the user’s home 
directory) and are automatically taken into account. Without using SGE, Elmer is run in paral-
lel with the following command: 

%> mpirun -np 20 ElmerSolver_mpi 

where -np 20 defines the number of cores used in the host where the command is run. In a 
multiuser system, the computation can be queued and divided into several nodes by using 
SGE. Here is an example script of an Elmer run for SGE: 

#!/bin/bash 
# Used command-line interpreter 
#$ -S /bin/bash 
# The name of the job 
#$ -N Elmer_scaling 
# Use this folder as a working folder 
#$ -cwd 
# Write one output file and give its name 
#$ -j y 
#$ -o output 
# Pass the enviromental variables 
#$ -V 
# Reserve resources for the parallel job 
#$ -R y 
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source ~/.bashrc 
mpirun -np $1 ElmerSolver_mpi case.sif > logfile.log 2>&1 

The number of cores utilised is given as a command line input argument for the script. This 
script, for example saved as a file named run_elmer_case.sh, is run as SGE job with the fol-
lowing command: 

%> qsub -pe orte 100 –q all.q -l excl=true run_elmer_case.sh 100 

where 100 is the number of cores, given as input through the Elmer script to mpi and to the 
SGE parallel environment orte. The queue all.q is utilised exclusively by “-l excl=true”, 
which means that no other job can share the nodes with this job. This is very important for 
reliable parallel scaling tests results, i.e. reliable computation times with variable number of 
cores. 

For parallel tests, multiple runs for the same problem with different number of cores were 
utilised. Here is an example script to run such a series of jobs: 

#!/bin/sh 
cases="160 140 120 100 80 60 40 20 10" 
mkdir scaling_tests 
cd scaling_tests 
for m in $cases; do 
  echo "case $m" 
  mkdir $m; cd $m ; 
  cp ../../case.sif . 
  cp ../../lorentz* . 
  cp ../../mesh.names . 
  cp -r ../../mesh . 
  cp ../../ELMERSOLVER_STARTINFO . 
  ElmerGrid 2 2 mesh -partdual -metis $m 3 
  qsub -pe orte $m -q all.q -l excl=true ../../run_elmer_case.sh $m 
  cd .. 
done 
cd .. 

This creates hierarchy of folders for different cases, copies the input files to the folders and 
runs Elmer with proper number of cores in each folder. This demonstrates how one can bene-
fit from SGE; there is no need for the user to know in which nodes the computation is done. 
SGE can decide in which order the different runs are performed in such a way that the utilisa-
tion rate of the machines is the highest possible. The built-in feature of SGE for overloading 
the nodes by several jobs—which can a wanted feature, if the jobs do not utilise the CPU all 
the time by 100 %—can be avoided here by the “-l excl=true” flag. To use this feature, this 
must be enabled to the nodes by qconf -me command in every node (which opens the proper 
configuration file in the default editor), and by editing the following: 

complex_values        slots=20 

where 20 is the number of physical cores in the node. 

2.1.4 Lessons learned with the Grid Engine system 

Taking SGE into use in VTT’s new computation cluster “the Doctor” was a big improvement 
to the situation, where no computation management system was utilised in the previous 
smaller clusters. With SGE, real queueing and load balancing was possible. However, in the 
beginning there were some challenges and many SGE features were not taken into use due to 
lack of user friendliness or challenges in the usage. For example, SGE could restrict the run-
ning time and usage of resources of a user, but the rules are quite strict for organisation like 
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VTT and as an example, jobs exceeding the maximum time would be killed. This is not ac-
ceptable for long simulations of seldom users, whose intermediate results of the simulation 
are possibly not saved at all. Thus, some of these strict SGE limits were replaced by user 
rules, i.e. a kind of gentlemen's agreement. 

One of the lessons learned from SGE was that SGE inheritable tries to utilise the resources as 
effectively as possible by overbooking the resources. There is a threshold for how high the 
load in a node can raise until no further jobs are submitted to that node. The default value was 
1.75 for the five minute average of load.9 This means, the computation nodes could be almost 
doubly booked with jobs, slowing down the simulation times and sometimes even doubling 
the solution time. This could be advantageous for some software tools, where the CPU usage 
is not constant for all solution phases. For example, some FEM tools have a long phase during 
the overall case solving, when large amount of memory is used but the CPU usage is low. In 
these cases, running two simulations together and thus overbooking the resources may be jus-
tified. However, tools like OpenFOAM and Elmer can use 100 % of the reserved CPU for the 
whole simulation time and in these cases overloading is highly disadvantageous. For this rea-
sons, to avoid overbooking, the five minute load average threshold was lowered to 1.05. In 
some queues, also the above-mentioned exclusive reservation of nodes was found to be prac-
tical. 

One problem with SGE is that many grand users of SGE have been switching to use other 
DRMSs within the last 5 years. For example, CSC’s old clusters (sometimes also called su-
percomputers) have utilised SGE, but the newest one called Sisu is using SLURM. Thus, the 
practical knowledge of SGE and its new features is declining and help for administrating SGE 
is increasing hard to find. It is very easy to get SGE to work tolerable, but fine-tuning of its 
settings is time-consuming and experimenting with settings are unwise in a production sys-
tem. However, by basic settings with minor modifications (i.e. tuning of the load threshold 
and enabling exclusive reservations) along with above-mentioned gentlemen's agreement 
have turn out to be a satisfactory solution for time being. 

2.1.5 Future steps for system development in “the Doctor” 

The present settings of the SGE system in “the Doctor” cluster are somewhat satisfactory, but 
enabling some features could be beneficial for some users. In addition, new users and new 
tools sometimes give challenges to present settings of the system. One previously occurred 
problem has been software tools that use relatively more memory than CPU. In the basic set-
ting, a user can only reserve CPU from computation nodes, not memory. For example, certain 
software applications use the full 512GB memory of the 32-core nodes, but utilise only 1‒4 
cores. In these cases, SGE—even with the 1.05 load threshold—sees only load of 1/32–4/32, 
and submits new jobs until load exceeds 1.05. Then, the new jobs have no free memory and 
all the jobs are slowed down due to vast usage of virtual memory. There is possibility to add a 
setting to reserve memory from nodes, but then every scheduled job must include the data for 
maximum needed memory in the submission phase. This seems quite cumbersome from the 
users’ point of view. Thus, exclusive reserving of the node is a better solution for a high 
memory case, as long as node’s all memory is needed and there are nodes with free high-
memory available. 

In the future, there will be further discussion whether or not changing to some other DRMS, 
probably SLURM, would be more beneficial than the troubles caused by the change. 

                                                
9 Load is a measure of the amount of computational work that a computer performs. The load average is the time 
average of the system load over a certain time period. In SGE, load maximum is one, not depending on the num-
ber of cores, i.e. SGE load is the UNIX load divided by number of cores. 
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2.2 SLURM in a cluster system 

2.2.1 Description of the computational environment Sisu 

Sisu is a supercomputer owned and managed by the CSC. The computer is manufactured by 
Cray Inc., belonging to the XC30 family, and it is the fastest supercomputer in Finland. It was 
originally taken into use in autumn 2012 and updated in September 2014. Structurally it 
equals to computer clusters, differentiating from VTT’s cluster especially by its size and the 
connecting network between the nodes. Sisu has Cray’s Aries proprietary interconnect fabric 
network. The topology of the network is called dragonfly, which is an "n-dimensional" torus. 
After September 2014 update, Sisu is composed of 422 compute blades, each of which hosts 4 
computing nodes, i.e. 1688 computation nodes in total, each with 2 12-core Intel Xeon E5-
2690v3 processors. In the whole system there are 40512 cores, with 64 GB memory per com-
pute node. The theoretical peak performance of the system is 1688 TFLOPS, placing the sys-
tem among the 25 most efficient computers in the world. The compute nodes run a light-
weight Linux kernel provided by Cray, called Compute Node Linux (CNL). 

2.2.2 Resource management in Sisu 

Instead of SGE, which was used in CSC’s old supercomputers, SLURM is used in Sisu. The 
setup in Sisu is not a typical SLURM setup. The parallel commands are launched using ALPS 
(Application Level Placement Scheduler) resource manager, produced by Cray. It is a rudi-
mentary scheduling software system dependent upon external scheduler for workload man-
agement. In Sisu, the external scheduler is SLURM. For launching a batch job, the ALPS 
command aprun is used instead of the srun which is normally used in SLURM. 

In Sisu, it is recommended to use full computation nodes for running jobs. This is done by 
using SLURM option –N with the number of nodes to be reserved. 

2.2.3 Practical examples with Elmer 

Comparative Elmer electromagnetic electrical machine simulations were performed in Sisu, to 
compare the scalability of Elmer in VTT computation cluster and in Sisu. Thus, similar series 
of runs with variable number of cores were performed also in Sisu (see section Elmer in SGE 
cluster). 

Here is an example script to run an Elmer job in Sisu: 
#!/bin/bash -f 
#SBATCH -t 06:00:00 
#SBATCH -J ElmerJob 
#SBATCH -o ElmerJob.%j 
#SBATCH -e ElmerJob.%j 
#SBATCH -p small 
#SBATCH -N 4 
(( ncores = SLURM_NNODES * 24 )) 
aprun -n $ncores /path/to/Elmer/bin/ElmerSolver_mpi > logfile.log 2>&1 

The second line defines the maximum execution time of the job, in this case six hours. The 
following lines in the script describe the name of the batch job, along with the file names for 
the standard output and standard error (both including the SLURM batch job number after 
dot). The partition called “small” is used; a partition is similar to a queue in SGE. With option 
–N 4 full nodes are reserved for this job, and the job gets 4×24 cores to be used in total. The 
batch job is submitted to the SLURM system with the following command: 

%> sbatch file_name.sh 
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The command squeue can be used to jobs submitted to the scheduler. If the user wants to see 
only his or her own jobs, the following command is useful: 

%> squeue -l -u $USER 

A job can be cancelled with the scancel command, followed by the job ID given by squeue 
command. The usage of different partitions and the number of free nodes can be checked with 
the command sinfo. 

2.2.4 Lessons learned with the SLURM system 

From the user point of view, Sisu’s SLURM system is easier to use than the Doctor’s SGE 
system. The reservation of full nodes seemed to be more straightforward than SGE’s approach 
with overbooking resources. SLURM seems to fit better with the present highly scalable 
codes than SGE. Actually, Sisu is mainly intended for massively parallel codes, not for exam-
ple for commercial FEM packages, whose parallel performance is still quite limited. In addi-
tion, Sisu is such a large system that reservation by full nodes is much more straightforward 
solution than reserving the resources by slots, i.e. basically by cores. Hence, SLURM fits bet-
ter to larger clusters than SGE, and for those cases, in which resource overloading is not ac-
ceptable. 

2.3 HTCondor in a workstation and PC network 

2.3.1 Description of the computational environment 

The common practice nowadays in research and development is that product development 
engineers and researchers have a personal computer, i.e. a desktop computer, laptop, or a 
workstation, as their primary tool for modelling and simulation. In addition, more powerful 
computational resources, such as computation servers and cluster systems, may be available 
for large and resource intensive computational cases. Depending on the company policy on 
computational hardware investments and user’s personal preferences, the local computational 
infrastructure can by heterogeneous. Computers may have different amount of main memory 
and disk capacity, different number of processors and processor cores, different operating 
systems, and varying set of software applications. In addition, the utilisation rate of individual 
computers in the local office network may vary between users and in time. This sets difficult 
constraints for efficiently utilising the computational resources of the office network. Still, a 
company design office can have remarkable overall computational resources when utilised 
properly (Figure 10). 

Utilisation of the distributed computational resources in an office network is demanding for 
the end users. The heterogeneous hardware and software environment sets challenges for se-
lecting appropriate computing resources and managing computational load balancing. In addi-
tion, when utilising personal computers, the primary user must have the highest priority in 
using his or her local computing resources. This, on the other hand, means that the availability 
of PC resources may vary in time, which makes the utilisation of these resources even more 
difficult. Flexible distributed resource management system may provide a solution for this. 
HTCondor (see Section 1.3.1.2), a distributed resource management system, was tested for the 
use in a heterogeneous office network. The test environment for the test contained a work-
station and a laptop computer (Figure 11). Technical details of the test environment comput-
ers are given in Table 2. The workstation computer was the HTCondor computational pool 
Central Manager and the laptop computer was a Submit client. Both computers were connect-
ed to a local area network (office network) that provided centralised domain name service 
(DNS) and dynamic host configuration protocol (DHCP) service. The virtual machine (in 
which the Submit client was installed) used the host computer’s network in bridged mode by 
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replicating the physical network connection state. The virtual machine was not in DNS, which 
meant that the HTCondor master (the workstation system) could not communicate with the 
client computer using only hostnames. 

 
Figure 10: A schematic picture of an office computational infrastructure. The network can be 
heterogeneous both from computational hardware and software point of view. 

 

Table 2: Technical details of the computers in the test environment. 

Feature Workstation Laptop computer 
Manufacturer and model Dell WS7500 Dell Latitude E6520 
CPU 2 × Intel Xeon X5690, 

3.46 GHz 
Intel Core i7-2760QM, 
2.4 GHz 

# of computational cores 12 (12 threads) 4 (8 threads) 
Main memory 96 GB 8 GB 
Disk space 3 TB 500 GB 
Operating system Ubuntu Linux version 12.04 

LTS, 64 bit 
Host: Microsoft Windows 7 
Enterprise, 64 bit 
Virtual machine: Ubuntu Linux 
version 12.04 LTS, 64 bit 

HTCondor version 8.0.4 x86_64 Ubuntu12 8.0.4 x86_64 Ubuntu12 
HTCondor roles Central Manager, 

Execute node. 
Submit client, 
Checkpoint Server 

Submit client 

 

2.3.1.1 Configuration of the computational pool 
The challenge of utilising computational resources in a heterogeneous office network has 
been discussed in Section 1.2.2 Managing workstation, desktop, and server computer re-
sources. The variation of computer hardware and software in the local network computers, 
and the availability of the computational resources of personal computers make it very chal-
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lenging to utilise these resources using a computational queue based approach. The operating 
principle of HTCondor makes all this relatively easy for the user. 

 
Figure 11: The HTCondor test environment. 

The workstation in the HTCondor test environment was defined to be the computational pool 
Central Manager, i.e. the workstation took care of collecting information from the computa-
tional nodes in the computational pool, resolving computational requirements for the submit-
ted jobs and balancing the computational load in the pool. In addition, the workstation was 
defined to be the Execute node of the computational pool and a Submit client in the system. 
The laptop had only one role (submit): computational jobs could be submitted and the pool 
could be monitored and managed from it. An example printing of the condor_status utility of 
the HTCondor test environment, executed from the computational pool client: 

Name               OpSys      Arch   State     Activity LoadAv Mem   ActvtyTime 
 
slot10@espvm50019. LINUX      X86_64 Unclaimed Idle      0.000 8056  3+00:25:47 
slot11@espvm50019. LINUX      X86_64 Unclaimed Idle      0.000 8056  3+00:25:48 
slot12@espvm50019. LINUX      X86_64 Unclaimed Idle      0.000 8056  3+00:25:49 
slot1@espvm50019.a LINUX      X86_64 Unclaimed Idle      0.000 8056  0+00:49:34 
slot2@espvm50019.a LINUX      X86_64 Unclaimed Idle      0.000 8056  2+20:20:41 
slot3@espvm50019.a LINUX      X86_64 Unclaimed Idle      0.000 8056  2+20:20:42 
slot4@espvm50019.a LINUX      X86_64 Unclaimed Idle      0.000 8056  2+20:20:15 
slot5@espvm50019.a LINUX      X86_64 Unclaimed Idle      0.000 8056  2+20:20:44 
slot6@espvm50019.a LINUX      X86_64 Unclaimed Idle      0.010 8056  3+00:25:51 
slot7@espvm50019.a LINUX      X86_64 Unclaimed Idle      0.000 8056  3+00:25:52 
slot8@espvm50019.a LINUX      X86_64 Unclaimed Idle      0.000 8056  3+00:25:45 
slot9@espvm50019.a LINUX      X86_64 Unclaimed Idle      0.000 8056  3+00:25:46 
                     Total Owner Claimed Unclaimed Matched Preempting Backfill 
 
        X86_64/LINUX    12     0       0        12       0          0        0 
 
               Total    12     0       0        12       0          0        0 

The printing shows that the HTCondor test environment has totally 12 slots (processor cores), 
which are running the Linux X86-64 operating system, and all the cores are in idle state (at 
the time of printing). 

The properties of the computer’s HTCondor installation are defined in the HTCondor config-
uration files. In a Linux system, these files are located in the directory /etc/condor. The main 
configuration files are: 

- condor_config: The main configuration file that contains all the relevant configuration 
variables. The file is divided into four sections, based on the importance likeliness of 
the variables to be needed to change. The changed variables are presented in Table 4. 

- condor_config.local: The system’s local configuration file that contains only the main 
variables for the computer. The defined variables for the Central Manager computer are 
presented in Table 4 and for the Submit client computer in Table 5. 
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Table 3: The changed variables in the condor_config configuration file for the Central Man-
ager and Submit client computer. 

Variable and value Notes 
UID_DOMAIN = ad.vtt.fi The common Internet domain for the pool 
ALLOW_WRITE = *.ad.vtt.fi Allow all the computers in the domain to 

have write access to the pool (required for 
e.g. submitting jobs to the pool) 

DEFAULT_DOMAIN_NAME = ad.vtt.fi Define the default domain name for the 
computers in the pool; this allows alias 
names to be used even though they are not 
defined in NIS or in the /etc/hosts file 

NO_DNS = TRUE Enable computers that are not in DNS to use 
the pool (this was the case with the HTCon-
dor test environment for the client computer) 

TRUST_UID_DOMAIN = TRUE Define the HTCondor to trust that the client 
given UID_DOMAIN is correct; this setting 
is not secure! 

 
Table 4: The variables set in the condor_config.local configuration file for the Central Man-
ager computer. 

Variable and value Notes 
CONDOR_HOST = ESPVM50019.ad.vtt.fi The Central Manager computer 
COLLECTOR_NAME = 
VTT/TK3047 workstation - $(FULL_HOSTNAME) 

Description for the collector system (this is 
visible in the pool status for the collector)  

START = TRUE Start the local HTCondor system daemons 
on system start-up 

SUSPEND = FALSE Do not allow job suspend 
PREEMPT = FALSE Do not allow killing nicely jobs 
KILL = FALSE Do not allow killing instantly jobs 
DAEMON_LIST = COLLECTOR, MASTER, 
NEGOTIATOR, SCHEDD, STARTD 

Local system daemons to be started 

ADAMS_SOLVER_LIMIT = 2 This variable was used for defining the max-
imum number of parallel MSC Adams pro-
cesses in the pool to be two 

 
Table 5: The variables set in the condor_config.local configuration file for the Submit client 
computer. 

Variable and value Notes 
CONDOR_HOST = ESPVM50019.ad.vtt.fi The Central Manager computer 
COLLECTOR_NAME = 
Personal Condor at $(FULL_HOSTNAME) 

Description for the collector system (this is 
visible in the pool status for the collector)  

START = TRUE Start the local HTCondor system daemons 
on system start-up 

SUSPEND = FALSE Do not allow job suspend 
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PREEMPT = FALSE Do not allow killing nicely jobs 
KILL = FALSE Do not allow killing instantly jobs 
DAEMON_LIST = MASTER, SCHEDD Local system daemons to be started 
ADAMS_SOLVER_LIMIT = 2 This variable was used for defining the max-

imum number of parallel MSC Adams pro-
cesses in the pool to be two 

 

HTCondor recognises the computers in the computational pool based on the computers host-
name and IP address. For the Central Manager computer to be able to communicate with the 
other computers in the pool by using hostnames, a domain name service (DNS) is needed or 
the hostnames of the hosts in the pool must be otherwise defined, e.g. in the operating sys-
tem's hosts file. If no DNS is available, the HTCondor system has to be defined accordingly 
(variable NO_DNS = TRUE in the condor_config file). If there are problems in configuring 
HTCondor, the log files should be studied and especially the hostnames and IP addresses 
checked carefully. 

The default configuration of the HTCondor system for Ubuntu Linux systems is targeted for a 
local single computer computational pool. In the main configuration file (condor_config), the 
pool write variable (ALLOW_WRITE) is set by default to point to the local computer. To enable 
other computers to submit jobs to the pool, the variable needs to be defined to include all the 
allowed submitting computers in the pool (e.g. ALLOW_WRITE = *.ad.vtt.fi). 

2.3.1.2 Using the computational pool 
Submitting computational jobs to the HTCondor computational pool is described in detail in 
the HTCondor Manual, User’s Manual section [38]. A Job is defined with a job description 
file and it is submitted from command line with the condor_submit command. The job de-
scription file defines in minimum: 

- The command or program to be executed (the executable keyword) 
- The queuing command (the queue keyword) 

If no other keywords are defined, the job will be submitted to the vanilla HTCondor universe 
and standard out and standard error channels are not recorded. A universe defines the execu-
tion environment for the HTcondor jobs. Different universes have different features and e.g. 
the standard universe enables checkpoint procedure (a mechanism to pause a job and move 
the execution to another computational node) to be used which is not available for the jobs 
run in e.g. the vanilla universe. In this document, only the vanilla universe has been used. The 
details of the HTCondor job description file are given in the HTCondor Manual. An example 
of more typical simple job description file (example_01.job) is: 

executable = test.sh 
universe   = vanilla 
output     = test.out 
log        = test.log 
queue 

This job description file defines that a shell script test.sh is executed in the vanilla universe, 
and the standard output is recorded into the test.out file. The HTCondor job log is recorded 
into the test.log file. The job is submitted from the command line with the command: 

%> condor_submit example_01.job 

In this example case, successful job submission into the computational pool returns: 
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Submitting job(s). 
1 job(s) submitted to cluster 126. 

This tells that the job has been submitted, there are one jobs defined in the job description file 
and the job ID for this case is 126; the job ID can be used for getting more information of the 
status of this particular job or e.g. removing the job from the computational pool. For more 
information, see the HTCondor documentation. 

2.3.1.3 How HTCondor treats job files 
HTCondor runs the computational jobs in the execution nodes in a dedicated temporary exe-
cution directory. To enable the execution, HTCondor copies by default the defined executable 
file from the submit computer to the execution node's execution directory. In addition, the 
explicitly defined input files are copied to the same directory. The copying of the executable 
file can be prevented in the job description file with the option: 

transfer_executable = false 

Another way to execute a program is to set HTCondor to use the execution node’s local soft-
ware installation. This is done by defining the job with a driver script. An example of such a 
driver script (a bash shell script) for running the MSC Adams Solver is presented below: 

#/bin/bash 
adams2013_2 -c ru-s i case.acf exit 
exit 

In this case, HTCondor copies the driver script from the submit computer to the execution 
node and executes it. To explicitly define the input files to be transferred to the HTCondor 
execution node, the HTCondor File Transfer mechanism can be used. In the job description 
file, the File Transfer mechanism needs to be defined to be on, HTCondor has to be told when 
the files are transferred, and the files to be transferred need to be listed, e.g.: 

should_transfer_files = yes 
when_to_transfer_output = on_exit 
transfer_input_files = file1, file2 

2.3.2 Practical examples and how the systems works 

2.3.2.1 Example 1: Simple single simulation run in the local computer 
MSC Adams [48] is a multibody system simulation software package for simulation and 
analysis of mechanical systems, such as vehicle dynamics and handling. The simulation cases 
with the software are typically relatively fast, taking from couple of tens of seconds to half an 
hour to complete. 

In this example, a simple MSC Adams simulation case is run in the local computer using the 
HTCondor local universe. This makes HTCondor to execute the computational job immedi-
ately in the job submitting directory. The MSC Adams software is a large software package, 
so it is convenient to run the simulation using the execution node local installation of the 
software instead of transferring the whole software package together with the computational 
job. In this case, an executable script is used for running the software application. The simula-
tion case execution standard output is recorded into the run_case.out file and the HTCondor 
log is recorded into the run_case.log file. The whole job description file for the example is: 

executable = run_case.sh 
universe   = local 
output     = run_case.out 
log        = run_case.log 
queue 
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Notice that when local universe is used for executing a case, no file transfer is done and no 
actual pooling is done for the job. This means also that the HTCondor's concurrency mecha-
nism does not apply (see example 2 and HTCondof manual for more details about the concur-
rency mechanism). This case can be seen as a simple test for case execution. 

2.3.2.2 Example 2: Single simulation run in the computational pool with concurrency limits 
In this example, more advanced features of the HTCondor system than in example 1 are used 
for running a single computational case. The example introduces how transferred files are 
defined in HTCondor and how concurrent execution of processes can be controlled. 

One common analysis type with the MSC Adams simulation software is to run parameter 
studies to gather more information of the simulated system behaviour and to e.g. optimise the 
simulated system’s performance. Large parameter studies with the software are so-called em-
barrassingly parallel problems, i.e. they do not require any additional effort for case parallel-
isation and they are very suitable for execution in an HTCondor computational pool. 

When the analysis is run in the HTCondor vanilla universe (the HTCondor execution envi-
ronment for closed, black box software applications and scripts), all the necessary files have 
to be provided for the system. HTCondor will transfer the files to the execution node’s execu-
tion directory and run the defined execute file. In the case of MSC Adams, the minimum is to 
provide the solver model file (.adm) and in most cases a separate solver command file (.acf). 
If MSC Adams is used for vehicle simulation, an additional tyre model component is needed, 
which requires additional data files for defining tyre properties and the road. In this case, the 
HTCondor file transfer mechanism is used for transferring the necessary input files for the 
simulation case to the execution node. For this, the keywords should_tranfer_files, 
when_to_transfer_output, and transfer_input_files are defined, and the related parameters 
are given (the simulation_case.acf file as the MSC Adams solver command file, the simula-
tion_model.adm file as the simulation model description for the solver, the roaddata.rdf file 
as the road definition file, and the tyredata.tpf as the tyre property file; see the job descrip-
tion file below). 

MSC Adams is a commercial software package that has a licensing mechanism to control how 
many concurrent software application features are used. For this, the job description file, pre-
sented in example 1, needs only modest modifications. The HTCondor computational uni-
verse is changed to vanilla and an additional concurrency limit is set for the MSC Adams 
solver. The concurrency limit is a simple limiting mechanism that needs modifications to the 
HTCondor local configuration file, e.g. condor_config.local. The configuration and use of 
concurrency limits are described in the HTCondor documentation. In this case, a concurrency 
limit for MSC Adams solver is defined in the condor_config.local file as: 

ADAMS_SOLVER_LIMIT = 2 

This limits then maximum number of concurrent processes with this limit to be two. To take 
the concurrency limit into use for the job, it has to be defined in the job description file as: 

concurrency_limits = ADAMS_SOLVER 

This defines that one unit of the named limit is taken for this job. The HTCondor job descrip-
tion file for this case is: 

executable              = run_case.sh 
universe                = vanilla 
concurrency_limits      = ADAMS_SOLVER 
should_transfer_files   = yes 
when_to_transfer_output = on_exit 
transfer_input_files    = simulation_case.acf, \ 
                          simulation_model.adm, \ 
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                          roaddata.rdf, \ 
                          tyredata.tpf 
output                  = run_case.stdout 
log                     = run_case.log 
queue 

The concurrency limit mechanism seems to require the use of other HTCondor computational 
universes than local (e.g. vanilla universe). It may be possible to change this behaviour by 
modifying the configuration parameters of the HTCondor installation. 

This use scenario can be useful if several simulation cases needs to be run and there is only 
limited number of software licenses available. With this approach, the user can submit the 
cases into the local computational pool and the HTCondor system takes care that the software 
licenses are utilised optimally. 

2.3.2.3 Example 3: Running HTCondor jobs from DAKOTA 
DAKOTA [49] is a software package for large computational analyses, such as parameter 
studies (e.g. design of experiment, DOE, and design and analysis of computer experiments, 
DACE) and computational optimisation. These analyses typically require large number of 
single computer simulations or analyses. By default, DAKOTA runs the analyses in local 
computer system. The study can be defined as parallel and the number of parallel processes 
can be explicitly defined. The DAKOTA package is a general computing package and it has a 
general, file-based interface for the actual computational tools as well as software application-
specific interfaces to some software applications (e.g. Abaqus, MATLAB, and Python). 

The single computations in DAKOTA parameter studies are independent of each other (i.e. 
they are embarrassingly parallel) and can be run in parallel. In case when e.g. software licens-
es are not limiting the number of parallel processes, the bottleneck is usually the computation-
al resource available in the computer running the DAKOTA analysis. When using the general 
interface between DAKOTA and the computational software application, the system can be 
configured so that DAKOTA submits the single simulations to a computational queue, such as 
the HTCondor computational pool, which then takes care of distributing the computations and 
balancing the computational load. This strategy is illustrated in Figure 12. 
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Figure 12: Illustration of the strategy of running single DAKOTA computations using HTCon-
dor. 

In the strategy presented in Figure 12, the procedure of running a DAKOTA analysis using 
HTCondor differs only slightly from the example 2 presented above, i.e. the case is quite sim-
ilar from the HTCondor point of view, but what the case does differs quite much. Instead of 
executing the software application from the DAKOTA case_driver.sh script, the driver 
script submits an HTCondor job by a simple call: 

condor_submit case.job 

The case.job file defines the software application to be run and the files to be transferred 
between the submit client and the computational nodes. The details and necessary input files 
are presented in Appendix A. 

This strategy of running DAKOTA analysis utilising HTCondor is well suited for computa-
tions that are not limited by the number of parallel processes. The DAKOTA can be defined 
so that large number of parallel processes is allowed and HTCondor takes care of efficiently 
utilising the computational infrastructure. 

2.3.2.4 Example 4: Running DAKOTA as an HTCondor job 
When DAKOTA is used for running software applications that have e.g. license limitations 
for the number of parallel processes, the strategy presented in the previous section does not 
necessarily provide any added value but has small additional execution latency due to the de-
lays in submitting single jobs through HTCondor. If it is preferable to utilise existing compu-
tational resources (others than the local computer), a better strategy can be to run the DAKO-
TA analysis through one HTCondor job. In this approach, all the DAKOTA cases are run in 
the same computer and new cases are initiated immediately after the previous process has 
ended, but still taking care of the maximum number of parallel processes (for this, DAKO-
TA's asynchronous evaluation concurrency mechanism can be used; for more information, see 
the DAKOTA documentation). This strategy is illustrated in Figure 13. The input files for this 
example are listed in Appendix A. 
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Figure 13: Illustration of the strategy of running a DAKOTA analysis using one HTCondor job. 

2.3.2.5 Example 5: Local grid computing approach, a “fire-and-forget” scenario 
The function of an HTCondor pool requires that the members of the pool that are related to 
the particular job execution are available and the local HTCondor daemon processes of the 
members are running. In the case where HTCondor is used from a laptop computer, it is likely 
that this computer is not available all the time, which would prevent this scenario to work. To 
enable flexible utilisation of the computational pool resources, another mechanism, HTCon-
dor-C grid, is available. In this approach, jobs are first submitted to the Submit computer's 
internal local pool. With additional parameters, the internal local Central Master submits the 
job further into the grid pool (i.e. the workstation network local pool) for actual execution. 
This approach is illustrated in Figure 14. 
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Figure 14: Utilising HTCondor grid computing features, HTCondor-C, for flexible computing. 

This approach enables a “fire-and-forget” scenario for computing. After the job is transferred 
into the grid pool (i.e. the workstation network local pool), the Submit client can be excluded 
from the local pool. The local pool takes care of the job and the results will be waiting for the 
Submit client to be available again in the grid pool. When this happens, the job results are 
transferred back to the Submit client. 

The grid computing approach with HTCondor-C grid mechanism requires additional defini-
tions both in the Submit client's internal local pool as well as in the HTCondor workstation 
network local pool. This is described in the Grid Computing chapter of the HTCondor manual 
[38]. In addition, the job description needs to have additional definitions for grid computing. 
An example of this approach is presented in Appendix A, where the above described example 
4 is executed in a grid. 

2.3.3 Lessons learned with the HTCondor system 

The HTCondor configuration is sensitive to the network configurations. The daemon log files, 
both in the local computer and the computational pool Central Master, are a good source for 
debugging possible configuration problems. Connections via virtual private network (VPN) to 
the computational pool can cause problems, especially when the local system is running in a 
virtual machine, such as Oracle VirtualBox or VMware Player. Virtual machines can utilise 
network connection of the host system using several different configurations, such as network 
address translation (NAT) or bridged networking, latter with or without replicated host net-
work interface. Depending on the HTCondor configuration, the computational pool may or 
may not accept connections. 

2.3.4 Future steps for local HTCondor system development 

HTCondor provides a flexible and scalable solution for utilising heterogeneous computational 
resources that are available in office networks. The fundamental approach in HTCondor, i.e. 
each computational job is “buying services from the computational pool based on the individ-
ual requirements of the job” is well-suited for ever-changing computational environment that 
still offers good computational performance. One of the challenges in HTCondor is the lack of 
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graphical tools for all the operations. A simple graphical user interface would be especially 
useful for job and queue monitoring. The learning curve for the command line user interface 
can be high for those who have not been using it for e.g. scripting. 

2.4 Techila in a workstation and Azure network 

2.4.1 Overview 

The VTT Techila environment consists of a Techila Server (for taking care of load balancing 
and distributing the work load), Techila Workers that do the actual computations, and Techila 
User Interface, where the users can monitor the operations. In Figure 15, there is a screenshot 
of the VTT Techila Server Status view including the status of the Workers. 

 
Figure 15: VTT Techila Server Status view. 

Currently there are only few VTT’s own Techila Workers as can be seen in Figure 15. 
Additionally, VTT has also tested Microsoft’s Azure cloud service, with its own Server and 
User Interface. VTT has currently access to Azure cloud service and demanding computations 
can access it as needed. Techila tasks can be directed to that service instead of VTT’s own 
Techila Workers, and this may also be more cost-effective and reliable solution. 
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Figure 16: VTT Techila Workers (situation on 30 Jan 2014). Only four active Workers, with 
only one Worker with adequate amount of memory (Worker #2). 

2.4.2 Launch of the grid computing 

The grid computations can be launched in several ways, but three methods were the most 
suitable for the purposes of this study: 

1. Direct launch from the MATLAB using MATLAB functions; 

2. Using MATLAB as a pre-compiled binaries launching platform; and 

3. Using CLI (Command Line Interface) to run pre-compiled binaries. 

In practise, the first method was used in comparison of the grid performance, meaning that 
Techila Workers were launched only inside MATLAB. The most important function for this 
was GridFor, which was later changed to more contemporary CloudFor. From the functional 
point of view these two are equal. CloudFor is a MATLAB function, which automatically 
divides the parallel computations to the Techila Workers that have been set up for that system. 
Techila is in such a way more integrated in certain environments than many other resource 
managers. 

2.4.3 Techila test cases overview 

Two test cases were initially planned:  test cases A and B. Test case A was an engineering test 
case using specific MATLAB functions. The test case A was run on Azure cloud due to the 
limited availability of VTT-specific Workers. The test case B was a more challenging but yet 
interesting case to generate Techila-compatible code directly from SIMULINK graphical 
model. The test case A was successfully run but there were practical difficulties with test case 
B. Finally, only test case A was successfully run. 

2.4.4 Test case A 

The plan was to create an engineering test case using MATLAB functions Peach or GridFor. 
Test case A final realization was an engineering test case using MATLAB function CloudFor 
(initially GridFor), and also for a comparison the MATLAB native ParFor function. The test 
case was realised using the Shotgun Optimiser core code [50].  Shotgun Optimizer applies 
multi-level random search optimisation to find the global optimum of the target function 
within the given parameter space. The realisation principle of the Shotgun Optimiser is to 
compute 3-round random selection of the parameters within a selected parameter space. Each 
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successive round is based on the results of the previous round, and finally a global optimum is 
found. Shotgun Optimiser is an example of resource-hungry embarrassingly parallel 
application, and thus inherently suitable for this evaluation. The code for such an optimiser is 
available in MATLAB and it was a good solver for this test case.  

The system, subject to optimisation, will be a feedback compensation filter for a time-
invariant linear system. The system response is first obtained from a model or from a 
measurement, or a pre-existing response is used. The response may be derived from a 
mechanical or acoustic system. Then, a relatively complex compensation filter is used for 
feedback compensation. Finally, the parameter space, boundary conditions and the 
optimisation resolution are set. 

There were three different types of test runs: 

1. A local solution using only the local computer resources and one core. Conventional 
for loops and similar structures were used. 

2. A local solution using local computer resources and several cores. MATLAB-based 
parallelisation was utilised (ParFor). 

3. A Techila Grid solution, in which CloudFor loops were utilised. 

2.4.5 Test case A results 

The local solution (test run type 1) gave a baseline for the results. The local ParFor solution 
(test run type 2) did not speed up the computations. The acceleration factor of the Techila runs 
is an internal Techila indicator and it is a ratio between non-parallelised and parallelised 
computations. 

With Azure environment it was possible to carry out relatively large tests using CloudFor (test 
run type 3). The use of CloudFor was only compared to regular for loops, because the ParFor 
loop did not speed up the computation in any relevant amount in a 2-core test computer. One 
important finding with the Azure cloud was its sensitivity to 32- or 64-bit environments. If the 
launching end user computer was 32-bit, the system did not use Workers effectively, but it 
was necessary to separately configure it to utilise 32-bit Workers. This issue is becoming now 
less important due to the transfer to 64-bit systems in general. 

Additional tests were carried out to study the behaviour of the Techila Azure cloud. Results 
are presented in Table 6, Table 7, and Table 8. For Table 6, simple functions were carried out 
as a pre-test. The acceleration factor is clear, and there is a saturation point for the 
acceleration factor above 100 000 iterations. For Table 7, more demanding computations were 
involved. For such a case, the acceleration factor was even higher up to one million iterations. 
For Table 8, a test case resembling a real Shotgun Optimizer core code was run, with almost 
8000 jobs and 10 Workers. Such a demanding computation was accomplished in about 13 
minutes wall clock time. Based on this, it seems that especially Monte Carlo type of 
simulations and optimisation cases that utilise algorithmically simple solvers benefit most of 
the Techila gridification (cloudification). 

Table 6: Results of an Azure pre-test. 

Description Iterations Jobs Workers 
participated 

CPU 
time 
used 
(s) 

Wall 
clock 
time 
used (s) 

Acceleration 
factor 

Comments 

Simple one 
iteration 
loop 

1 1 1 2 192 0.01 At initialisation the 
overhead may be 
very large 

More 10 1 1 2 8 0.25 Wall clock time 
varies a lot with 
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iterations small projects 
(unpredictable 
overhead) 

Repeat of 
the previous 
test 

10 1 1 2 4 0.50  

Second 
repeat of 
the previous 
test 

10 1 1 2 4 0.50  

More 
iterations… 

100 1 1 2 3 0.67 No difference in CPU 
time 

And more 1000 1 1 2 4 0.5 Still very light load 

…more 10 000 1 1 2 4 0.5  

… more 100 000 6 2 13 5 2.6 Positive acceleration 

… more 1 000 000 64 4 161 56 2.88  

 
Table 7: Results of an Azure test with a harder-to-calculate function and larger memory 
need. 

Description Iterations Jobs Workers 
participated 

CPU 
time 
used 
(s) 

Wall 
clock 
time 
used (s) 

Acceleration 
factor 

Comments 

More 
iterations 

10 1 1 2 14 0.14 Wall clock time 
varies a lot with 
small projects 
(unpredictable 
overhead) 

More 
iterations… 

100 2 1 4 4 1.00 No difference in CPU 
time 

And more 1000 1 1 2 4 0.5 Still very light load 

…more 10 000 1 1 2 4 0.5  

… more 100 000 6 2 13 4 3.25 Positive acceleration 

… more 1 000 000 64 10 159 14 11.36  

… too 
much 

10 000 000 - - - - - Memory limit 
exceeded, might 
have been possible 
to circumvent with 
%cf:force:largedata 

… too 
much 

2 000 000 - - - - - Memory limit 
exceeded, might 
have been possible 
to circumvent with 
%cf:force:largedata 

Down to 
1 000 000 
again 

1 000 000 81 10 200 21 9.52  

 
Table 8: Results of a large-scale Azure test, using the core loop of a Shotgun Optimizer 
code. 

Description Iterations Jobs Workers 
participated 

CPU 
time 
used 
(s) 

Wall 
clock 
time 
used (s) 

Acceleration 
factor 

Comments 

Shotgun 1 000 000 7693 10 24 817 881 28.17  
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Figure 17: Azure Techila Workers in a Shotgun Optimizer core code test. 

2.4.6 Test case B 

Test case B was planned to be an engineering test case using MATLAB as a pre-compiled 
binary launching platform. The first idea was to use the VTT’s “The Doctor” cluster. 
However, the cluster was in full usage and the plans were changed. The updated plan used 
Simulink-generated code and it was supposed to run on Techila. However, despite of the 
instructions received from Techila and the example model (my_model) the compilation was not 
successful. The code to run the executable for Techila was: 

function run_test() 
% Local Control Code. Creates and computes a simulink model on the Workers. 
% Simulink example used in the example can be found here: 
% 
% http://www.mathworks.se/support/solutions/en/data/1-6M3F5F/index.html?pro 
% duct=CO&solution=1-6M3F5F 
%  
% To run the example, use command 
% 
% run_test() 
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jobs=5 % Defines the number of Jobs. 
  
peach('Simulink Example', {'%P(jobidx)'},{'my_model.exe','newmain.ctf','mymodel_param.mat'}, 
1:jobs,...  
    'Binaries', {{'newmain.exe', 'Windows','x86'}},... % Windows 32-bit executable binary 
    'Executable','true',...                   % Specify that the funcname refers 
                                              % to a precompiled binary. 
    'OutputFiles',{'simulink_output.mat'},... % Define the name of the output file 
                                              % which will be transferred from the 
                                              % Workers 
    'StreamResults', 'true',...               % Stream results 
    'ReturnResults', 'true',...     
    'CallbackMethod',@cbfunc,...              % Name of the callback function 
    'MatlabRequired','true')                  % Matlab Runtime components required 
end 
  
function cbfunc(f)                            % Callback function 
[pathstr, name, ext, versn] = fileparts(f);   % Retrieve information on result file 
% Copy the result file 
copyfile(f,['result_' num2str(bitand(str2num(name),2^32-1)) '.mat'])  
end 

The Techila project is a complete package of executable, control and other codes which run 
on Techila system. The procedure to generate the Techila project from a Simulink model 
(my_model) was: 

1. The Simulink model is compiled. If the MATLAB CTF file is not properly generated, 
it may be generated with: 

mcc -m -C newmain.m 

2. The resulting files should be: 
- my_model.exe 
- newmain.exe 
- newmain.ctf 
- mymodel_param.mat 

3. The file Run_test.m is copied to working directory; and 

4. A new project is created with the function call run_test(). 

The project runs the newmain.exe programme with various parameters. The streaming of the 
results is used. Results should be in .mat files. In practise, this did not work properly. The 
project was sent to Techila server, but no real operation was done: 

>> run_test 
  
jobs = 
  
     5 
  
Grid initialized in 10.940 seconds. 
Executable CRC sum computed in 0.084 seconds. 
Creating 3 databundle(s)... 
Datafile bundle 1 created in 1.167 seconds. 
Executor bundle created in 0.418 seconds. 
Parameter bundle created in 0.256 seconds. 
Project ID 82 created in 0.347 seconds. 
Streaming results.... 
  
Project completed and results streamed in 297.249 seconds. 
Project removed in 0.036 seconds. 
  
Total time used 0 d 0 h 5 m 10 s. 
  
Project Statistics: 
    0 nodes participated 
    Avg efficiency per job:      0.00% 
    CPU Time per job:            0.000s (min) 0.000s (avg) 0.000s (max) 
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    Memory used per job:         0.000MB (avg) 0.000MB (max) 
    I/O read per job:            0.000MB (avg) 0.000MB (max) 
    I/O write per job:           0.000MB (avg) 0.000MB (max) 
    Average total I/O per job:   0.000MB (NaNMB/s) 

The reason for this remained unclear, but due to these difficulties the test case B was dropped 
and only test case A was used as a real test case. 

2.4.7 Conclusions and summary 

A Techila environment offers interesting possibilities to launch grid and cloud computations 
also with relatively little experience on distributed computing. In this context, Techila was 
launched within MATLAB and with relatively small solver computational complexity 
(processing power and memory requirements) but with a large scale of concurrency. In 
addition, the interface between the Techila environment and SIMULINK was tested, but it 
seems to require more attention to make it work properly. 

Currently, VTT’s own Techila environment is not suitable for large computational jobs. More 
Workers are needed for those. In addition, the setup of Workers should be similar to the 
earlier VTT setup of the Techila environment. 

The Azure environment could be used for high-performance computations, as a pay-per-use 
platform. However, the memory limitations with that service could cause difficulties. 
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APPENDIX A: Running HTCondor jobs from DAKOTA 

3.1 Details for example 3: Running HTCondor jobs from DAKOTA 

Below are presented the key input files for the HTCondor example case discussed in section 
2.3.2.3 Example 3: Running HTCondor jobs from DAKOTA. In the example, DAKOTA 
launches the case computations into the HTCondor computational pool. The DAKOTA run is 
controlled with an input file; in this case it is called dakota.in. The file is listed below: 

strategy  
   tabular_graphics_data  
      tabular_graphics_file 'dakota.dat'  
   single_method  
 method  
   multidim_parameter_study  
      partitions = 3 3  
 model  
   single  
variables  
   continuous_design = 2  
      lower_bounds -10.0 -10.0  
      upper_bounds 10.0 10.0  
      descriptors 'x' 'y'  
interface  
   analysis_drivers 'case_driver.sh' 
      fork  
         parameters_file 'params.in'  
         results_file 'results.out'  
         file_save  
         work_directory  
            named 'case'  
            directory_tag  
            directory_save  
            template_directory 'case_template' 
      asynchronous 
responses  
   descriptors 'z'  
   objective_functions 1  
   no_gradients  
   no_hessians 

In the listing above, a multi-dimensional parameter study is defined with totally (3 + 1) × (3 + 
1) = 16 cases and the driver_simulate.sh script has been defined for the analysis driver. In 
addition, a template directory (case_template) is specified, which includes only the executa-
ble (in this case sombrero.py) and the HTCondor job description file run_case.job. All other 
required files, such as pre- and post-processing utilities pyprepro.py and pypostpro.py are in 
the case main directory. The DAKOTA study is executed with the following command: 

%> dakota -i dakota.in -o dakota.out 

The analysis drivers are listed below, first the case_driver.sh: 
#!/bin/bash 
# DAKOTA function evaluation pre-processing: 
../pyprepro.py -i params.in -t ../template.dat -o input.dat 
# DAKOTA function evaluation: 
condor_submit run_case.job 
# DAKOTA function evaluation post-processing: 
condor_wait run_case.log 
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../pypostpro.py -i output.dat -o results.out 
exit 

In the above case_driver.sh script, first a pre-processing phase is done to define the input 
values for the DAKOTA function evaluation (a run of one DAKOTA case). Then, the DA-
KOTA function evaluation is submitted to the computational pool with condor_submit com-
mand. In the third, post-processing phase, condor_wait utility is used. This utility makes the 
script to wait for the HTCondor job to finish before continuing the execution of the script. In 
the actual post-processing phase, the result of the DAKOTA function evaluation is processed 
for DAKOTA. The HTCondor job description file (run_case.job) for the case is: 

executable              = run_case.sh 
should_transfer_files   = yes 
when_to_transfer_output = on_exit 
transfer_input_files    = input.dat, sombrero.py 
universe                = vanilla 
output                  = run_case.out 
log                     = run_case.log 
 
queue 

The run_case.sh file referred in the job description file is: 
#!/bin/bash 
./sombrero.py -i input.dat -o output.dat 
exit 

More details about how to use DAKOTA software can be found from the DAKOTA project 
website (http://dakota.sandia.gov/) and from the software documentation. 

3.2 Details for example 4: Running DAKOTA as a HTCondor job 

Below are presented the key input files for the HTCondor example case discussed in section 
2.3.2.4 Example 4: Running DAKOTA as an HTCondor job. This case is otherwise relatively 
straightforward, except for file transferring. Below is the job description file (case.job) for 
the example: 

getenv                  = true 
executable              = dakota_case.sh 
universe                = vanilla 
log                     = dakota_case.log 
should_transfer_files   = yes 
when_to_transfer_output = on_exit 
transfer_input_files    = dakota.in, case_template 
transfer_output_files   = \ 
   case.1,  case.2,  case.3,  case.4,  case.5,  case.6,  case.7, \ 
   case.8,  case.9,  case.10, case.11, case.12, case.13, case.14, \ 
   case.15, case.16, case.17, case.18, case.19, case.20, case.21, \ 
   case.22, case.23, case.24, case.25, case.26, case.27, case.28, \ 
   case.29, case.30, case.31, case.32, case.33, case.34, case.35, \ 
   case.36, case.37, case.38, case.39, case.40, \ 
   dakota.dat, dakota.out 
queue 

Execution script, dakota_case.sh, is used in this case: 
#! /bin/sh 
dakota -i dakota.in -o dakota.out 
exit 

http://dakota.sandia.gov/
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The DAKOTA input file (dakota.in) for this example case is: 
strategy 
    tabular_graphics_data 
        tabular_graphics_file 'dakota.dat' 
    single_method 
method 
    vector_parameter_study 
        final_point 10.0 -6.0 
        num_steps 39 
 model 
    single 
variables 
    continuous_design 2 
        initial_point -10.0 8.0 
        descriptors 'x' 'y' 
interface 
    analysis_drivers 'mydriver.sh' 
        fork 
            parameters_file 'params.in' 
            results_file 'results.out' 
            file_save 
            work_directory 
                named 'case' 
                directory_tag 
                template_directory 'case_template' 
                    copy 
                directory_save 
    asynchronous 
        evaluation_concurrency 12 
responses 
    descriptors 'z' 
    objective_functions 1 
    no_gradients 
    no_hessians 

The rest of the files needed for this example, including mydriver.sh script, are located in the 
DAKOTA case template directory case_template. The content of the mydriver.sh script is: 

#!/bin/bash 
# DAKOTA pre-propcessing phase: 
./pyprepro.py -i params.in -t ./template.dat -o input.dat 
# DAKOTA function evaluation phase: 
./sombrero.py -i input.dat -o output.dat 
# DAKOTA post-propcessing phase: 
./pypostpro.py -i output.dat -o results.out 
exit 

3.3 Details for example 5: Local grid computing approach, a “fire-and-
forget” scenario 

This case is otherwise similar to example 4 presented in Section 2.3.2.4, except that the 
HTCondor environment is defined for grid computing and the job description file contains 
additional definitions for the case. The approach requires that the local computer, e.g. a lap-
top, has its own HTCondor computing pool defined. To enable grid computing with a local 
pool, the following additional settings need to be defined in the HTCondor configuration files 
(e.g. in the condor_config.local file of the Submit client (e.g. a submit laptop): 

CONDOR_GAHP = $(SBIN)/condor_c-gahp 
C_GAHP_LOG = /tmp/CGAHPLog.$(USERNAME) 
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C_GAHP_WORKER_THREAD_LOG = /tmp/CGAHPWorkerLog.$(USERNAME) 
C_GAHP_WORKER_THREAD_LOCK = /tmp/CGAHPWorkerLock.$(USERNAME) 
SEC_DEFAULT_NEGOTIATION = OPTIONAL 
SEC_DEFAULT_AUTHENTICATION_METHODS = CLAIMTOBE 

Notice that in this case authentication methods claimtobe is defined. This authentication 
method does not do any actual authentication and should only be used for testing or in trusted 
environments. The Submit client has to have at least the following daemon processes running 
(for more details about the daemon processes, see the HTCondor Administrator’s Manual): 

- master; 
- collector; 
- negotiator; and 
- schedd. 

The submit client does not need to provide execute features. In the local computational pool, 
only security settings are required, e.g.: 

SEC_DEFAULT_NEGOTIATION = OPTIONAL 
SEC_DEFAULT_AUTHENTICATION_METHODS = CLAIMTOBE 

The job description file has to contain definitions for both the submit client internal local 
computational pool as well as for the local grid computational pool: 

getenv                  = true 
universe                = grid 
executable              = dakota_case.sh 
log                     = dakota_case.log 
should_transfer_files   = yes 
when_to_transfer_output = on_exit 
transfer_input_files    = dakota.in, dakota_case.sh, case_template 
transfer_output_files   = dakota.dat, dakota.out 
grid_resource                   = condor \ 
                                  worker-2.cornet.fi \ 
                                  worker-2.cornet.fi 
remote_universe                 = vanilla 
+remote_requirements            = true 
+remote_should_transfer_files   = "yes" 
+remote_when_to_transfer_output = "on_exit" 
+remote_transfer_input_files    = "dakota.in, \ 
                                   dakota_case.sh, \ 
                                   case_template" 
+remote_transfer_output_files   = "dakota.dat, dakota.out" 
queue 

In this case, only the DAKOTA final results files are transferred from execute nodes back to 
submit client. Notice that the file transfer settings are needed both for the internal local com-
putational pool as well as for the grid computational pool. 
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