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1. Introduction

Digital instrumentation & control (I&C) systems are becoming more and more common in
safety-critical environments such as in nuclear power plants. Nuclear domain regulators (see
e.g., [1]) require that these systems are adequately verified using simulation, formal methods,
and many variations of testing, including structure-based testing.

The application software of nuclear domain safety systems is commonly designed using func-
tion block diagrams (FBD). FBD as defined in the IEC standard 61131-3 [2] is a commonly
used graphical programming language for programmable logic controllers, in which the design
consists of inputs, outputs, and a set of simple elementary function blocks such as AND, OR, or
timer function blocks, and the connections between these components. In the nuclear domain,
the IEC 61131-3 standard is not commonly applied. Instead vendor-specific variants of the
FBD language are typically used. In this report we use the term function block diagram, and
the abbreviation FBD, to refer to the design diagrams, and not the design language itself.

In the design process, FBDs are typically converted into software code using an automatic code
generator. Applying structure-based testing to automatically generated code is undesirable as
the test cases can become non-intuitive and difficult to understand. Structure-based testing of
automatically generated code is also not effective in detecting function block level defects in
FBDs [3]. One alternative to this is to determine the structure-based tests on the level of the
FBD.

Several structure-based test criteria for FBDs have recently emerged. These coverage criteria
are based on interpreting the system as a data flow diagram, and generating a set of test
requirements that the tests have to fulfil. However, the existing approaches are not based on
formal definitions, and do not consider possible time delays associated with data paths through
the FBD. In this paper, we define three new structure-based test criteria customised for FBD
systems operating in constant length time intervals. The criteria are based on the work of Jee et
al. [4, 5]. Our criteria extend the methodology by Jee et al. with more exact definitions of when
an input affects an output. We also take the time dimension into account in our definitions. The
developed methodology focuses only on Boolean valued signals, and the parts of the design
concerning analogue signals are left out of test coverage calculations.

The developed coverage criteria offer a good basis for planning structure-based tests. How-
ever, on large system designs that contain memories, timers and feedback loops, it can be
overwhelmingly difficult to design the test cases manually. Therefore, an automatic technique
for test design is needed. We have applied a formal method called model checking [6] to as-
sist in the test design process. In model checking, a model of the system is written and the
system requirements are formalised in a suitable language, e.g. state invariants, or temporal
logic. A model checking tool then analyses the model against the temporal logic clause in a
way that takes all possible system behaviours into account. If it is possible to violate the spe-
cification in the model, the model checking tool gives a concrete counter-example as output
that demonstrates on variable-level how the violation might occur. This ability to produce con-
crete counter-examples can also be exploited to generate test cases. The classic way of this
is to take the negation of a system requirement and formalise that in temporal logic. When the
resulting formula is analysed using the model checking tool a counter-example will be produced
that is according to the original requirement. The inputs and expected outputs of the test case
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can then be read from the counter-example.

We have developed an automatic method for test generation that uses model checking to gen-
erate the concrete test cases. We primarily employ the k-induction algorithm [7, 8] provided by
the model checker NuSMV 2.5.4 [9]. In that approach the state invariants are proved using in-
duction, and the base step and the induction step of the proof are basically reduced to bounded
model checking problems.

We have tested our technique on several fictitious FBDs, and a set of vendor-specific real-
world industrial FBDs. In order to analyse the fault detection capability of the method, we have
also performed mutation analysis on the case study systems. The results suggest that the
developed technique is feasible for most systems. The average fault detection capability of the
generated tests was 95 % when the most rigorous test criterion was used for test generation.

2. Related work

The idea of using model checking for test generation originally came from Callahan et. al [10]
and Engels et. al [11]. The general test generation idea has since been adapted in a variety of
applications, see e.g., [12] for an extensive survey.

Applying formal methods to generate structure-based tests for FBDs is a newer research sub-
ject. To the best of our knowledge, this line of work started after Jee et al. developed [4, 5] the
first structure-based coverage criteria for FBDs: basic coverage (BC), input condition coverage
(ICC), and complex condition coverage (CCC). In [13], the authors describe a technique for
generating test cases automatically based on these criteria. The technique is based on using a
Satisfiability Modulo Theories (SMT) solver. In their experiments they show that the technique
substantially outperforms manually created tests, and could detect 82 % of previously known
faults in an industrial case study system, whereas manually generated tests only detected 35 %
of the faults.

Another coverage criterion called FB-Path Complete Condition Test Coverage (FPCC) for FBDs
is introduced in [14] with the aim of detecting function mutation errors. An automatic tool is
introduced in the paper that translates the PLCOpen XML form FBDs directly to models for the
UPPAAL model checker. The UPPAAL tool is used to generate the test cases.

In [15], an automatic test generation technique for FBDs is also described. In this paper, two
coverage metrics called MC/DC4d and Propagation Toggle Coverage (PTC) are described.
MC/DC4d is based on the commonly used Modified Condition/Decision Coverage (MC/DC)
[16] criterion. The developed tool uses an SMT solver to generate the tests. The authors
have also experimented with mutation analysis to confirm the ability of the technique to detect
defects.

The work by Enoiu et al. [17] also discusses FBDs in the context of test generation using model
checking. They have defined their own coverage criteria for FBDs, and used the model checker
UPPAAL to generate a test set. This work is continued in [18]. In addition to the previous cri-
teria, the MC/DC criterion has also been applied to the systems and the technique is evaluated
in several industrial programs. The results of this work show that their technique is efficient and
scales well for most of the programs.

In this paper we have defined our own coverage metrics that are based on the definitions by
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Jee et al. [4, 5], and applied the model checker NuSMV to generate test cases. Like other
authors, we have also applied the MC/DC principles in these definitions. However, our metrics
are more formally defined, and focus on the time dimension in a way that has not been done
in other papers. We also present a model checker assisted way of composing the input-output
conditions required in the technique. An early alternative version of our technique and its
implementation are explained in more detail in a conference paper [19].

3. Test coverage criteria

In this Chapter, we give definitions for three coverage metrics that we call modified basic cov-
erage (MBC), modified input condition coverage (MICC) and modified complex condition cov-
erage (MCCC). The criteria are based on interpreting the FBD as a data flow graph, and then
creating test requirements for the data paths of that graph. The test requirements state that the
input of a data path must individually affect the output of the path. In section 3.1, we first define
these input-output conditions for individual function blocks and for data paths. In section 3.2,
we then use these definitions and introduce the test coverage metrics. Finally, in section 3.3
we demonstrate the definitions using a small example system.

3.1 Definitions

INPUTS OUTPUTS

INSTANCE_1

FB_TYPE

Output

Signal 1 IN1 OouT1 signal 1

4.0 s——TIME

INSTANCE_2
FB_TYPE

IN1
ouT1 ouiput
Signal 2 IN2 signal 2

EXAMPLE TITLE

Figure 1. An example of a function block diagram (FBD)

A function block diagram is built by connecting function block instances to each other by drawing
lines between input and output gates of the function blocks. It is also possible to create higher
level hierarchical function block structures by assembling instances of function blocks to form
new composed components. An example of a FBD following the graphical notations used in
this paper is illustrated in Fig. 1.

A function block is defined as FB = (I, O, IV, P) where | is the set of input edges, O is the set of
output edges, 1V is the set of internal variables, and P is the set of parameters that the function
block has. We define an edge as a connection between two function blocks, or a function block
and an input/output. An edge e at time point t is denoted e!.
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We define a Function Block Condition (FBC) as the logical condition under which the output
edge e, of a function block is affected by the value at the input edge e;. We base this definition
on the widely used coverage criterion Modified Condition/Decision Coverage (MC/DC). One
requirement of the MC/DC requirement is that it must be shown that each input individually
affects the outputs. We interpret this so that a Boolean input of a system is shown to affect
a Boolean output if negating the input value also results in a negated output value, while the
values of all other inputs are fixed. In this methodology we only focus on edges that have
Boolean values, and only use paths that consist only of Boolean edges (Boolean paths). The
parts of the design concerning analogue signals are left out of test coverage calculations. In
case analogue valued edges exist within a path, only the Boolean valued fragment of that path
is considered as a path.

An input of a function block may affect an output instantaneously, or with a delay (e.g. in the
case of the DELAY function block). We define a function block condition delay (FBCD) as the
smallest delay at which the input can individually affect the output. For example, the AND
function block has a FBCD value of 0 since the inputs immediately affect the output value, i.e.
FBCDanp((€j, €0)) = 0. If the input can not be shown to affect the output at any delay value, an
FBCD for the input-output pair does not exist.

In order to define the FBC formally, we must first define a timed variant of the FBC named
Timed Function Block Condition (TFBC) as a condition under which the output edge e, at time
o is affected by an input edge e; at time t;, denoted as: TFBCrg((e]', €2)).

Formally the TFBC can be defined as follows. An evaluation of an edge e at time point ¢ is
denoted as v(ef). An assignment of an edge e to the value True at time point t is denoted
v(e! «+ True). TFBC is a formula of the input edges / of the function block excluding e; at time
point t;. Correspondingly, the TFBC formula is true in a set of evaluations of the input edges
denoted as C. The value of the output edge e, at time point t, is determined by a function
fe?(c, v(ef‘)), where ¢ denotes the evaluations of the input edges of the function block at time
points ranging from 1 to &, el,€?,..., €%, ..., e}, €%, ..., e2, excluding el'. The output edge e, at
time t is affected by an input edge e; at time t; when the set of evaluations C is such that:

ceC < fy(c v(e] « True)) =~f,(c,v(e] « False)).

Intuitively, this means that the evaluation of the output is of opposite value when the input is
flipped. Finally, the function block condition (FBC) of an input-output pair (e;, e,) can then be
formally defined as:

TFBCrg((e] "oCPre((@%)) gly) It FBCDEs((er, €0))
FBCFB(<G',', €0, t>) = exists.
FALSE Otherwise

In the equation t denotes a non-specific reference point of time. The function block condition
formula is not dependent on the specific value of t.

Next we define data paths of the FBD, and a condition called data path condition (DPC) under
which the input of the data path affects the output. A data path of a FBD is defined as a finite
sequence (eﬁ1 , e§2 ef;’> of edges where all the edges succeed one another on the FBD. The
time parameters of a path shall be such that t,4 = t; + FBCDFg((€}, €j.1)) to accommodate
for the delays induced by the individual function blocks. We define a Boolean data path as a
fragment of a data path in which all the edges carry Boolean data.
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A data path condition (DPC) is a condition related to a Boolean data path under which the input
value affects the output. It can be composed as the conjunction of the function block conditions
on that path.

3.2 Modified test coverage criteria

Jee et al. [4, 5] introduced three coverage metrics: basic coverage (BC), input condition cover-
age (ICC), and complex condition coverage (CCC) for FBDs. Here we define slightly modified
versions of these metrics that are based on the methodology of section 3.1.

The modified basic coverage (MBC) criterion is met when each DPC corresponding to a Boolean
path is fulfilled by some test case at some time point.

The modified input condition coverage (MICC) criterion is met when for each Boolean path
there is i) a test case in which the DPC of that path is fulfilled, and the first edge of that path
is true, and ii) a test case in which the DPC of that path is fulfilled, and the first edge of that
path is false.

The modified complex coverage condition (MCCC) criterion requires that for all edges within
a Boolean path there is a test case in which i) the DPC of that path is fulfilled, and the edge is
true, and ii) the DPC of that path is fulfilled, and the edge is false.

3.3 Example system

INPUTS OUTPUTS

DELAY1 AND1
DELAY AND

inputl input inputl

,7input2

outputl

input2

Example FBD

Figure 2. An example of a function block diagram (FBD)

An FBD we use as a running example in Fig. 2 has two function blocks: a DELAY function block
and an AND gate. The FBCs for these function blocks can be found in Table 1. An input of the
AND block affects the output whenever the other input is true, and there is no delay involved.
The input of the DELAY function block always affects the output, but this happens with a delay
of one processing cycle.

The example system has two Boolean paths: from inputi to output1, and from input2 to
output1. The path from input1 to output1 has the following data path condition:

DPC(inputi1, output1,t) = FBCpgLay+ ({input1, DELAY1.output1,t — 1))A
FBCanp1((DELAY1.output1, output1, t)) = v(TRUE'™") A v(input2!).
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Table 1. The function block conditions required for the analysis of the example system

FB FBC FBCD

AND FBC anp({input1, outputi, t)) = v(input2?) 0
FBC anp({input2, outputi, t)) = v(input1?) 0

DELAY FBCpgay((inputl, outputl, t)) = v(TRUE™T) 1

The second path from input2 to output1 has the following data path condition:
DPC(input2, outout1, t) = FBCanp1 ((input2, outoutl, t)) = v(input?).

The MBC criterion is met when both of these Boolean formulas evaluate to true at some point in
atest case, i.e. there are two test requirements. The MICC criterion has additional requirements
on the first edge of the path, and results in four test requirements:

1. v(input1=") A v(TRUE'™") A v(input2")
2. —v(input1™=") A v(TRUE'™") A v(input2')
3. v(input2) A v(inputt?)

4. —v(input2') A v(inputt®)

Finally, the MCCC condition has additional requirements for each edge within the paths result-
ing in 10 test requirements:

1. v(input1=") A v(TRUE*™") A v(input2")
—v(input1=" A v(TRUE'™") A v(input2!)
v(DELAY1.output1’) A v(TRUE'™") A v(input2?)
—~Vv(DELAY1.output11') A v(TRUE'™") A v(input2')
v(AND1.outout1) A v(TRUE'™") A v(input2!)
-v(AND1.output1') A v(TRUE™") A v(input2!)
v(input2') A v(input1?)

=v(input2') A v(input1')

v(AND1.output1') A v(input1?)

—v(AND1.output1') A v(input1')

© © © N o o k~ W D

—

4. Test set generation

4.1 Using model checking for generating test cases

Our technique for using model checking to generate test cases for FBDs is illustrated in Fig. 3.
The prerequisites for the technique are that the function block conditions have been defined
for each function block type, and that a suitable model of the FBD exists. A methodology for
modelling FBDs already exists; see e.g. [20]. Once the initial information has been acquired,
the Boolean data paths of the system are identified, and a set of test requirements is created.
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Function
block
conditions

Function -
Data Test Invariant Model Counter-
dit:Orc:m ™" patis [ ] requirements [ formula example | Testcase

Test
coverage
criterion

Model

?

Figure 3. Test generation using model checking

This is straight-forward work and can be done automatically if the system design is in computer
readable form.

The model is then augmented so that for each test requirement a new Boolean variable is
added to the model. The variable is true whenever the test requirement is true in the model. Our
methodology assumes that the system is operating cyclically in constant length time intervals.
A previous time point refers to the previous operating cycle of the system.

There is also need to to divide certain test requirements into several parts. Each test require-
ment is related to a data path of the system. That data path may involve function blocks with
delayed function block conditions (e.g. an input affects an output at a later time point). Such
function blocks divide the data path into two parts: the data path before the function block,
and the data path after that function block. Therefore, in these cases the test requirement also
needs to refer to signal values at different time points. The test requirement is divided into parts
according to these path fragments so that each part always refers to a single time point of the
system. Additional variables are added tracking the values of the parts at previous time points.

In order to create a test case that fulfills a given test requirement, we create a state invariant
formula stating the negation of that test requirement. The model checking tool can be used to
evaluate the invariant formula against the system model. If a path exists to a state in which the
test requirement is fulfilled, it is given as a counter-example. The system inputs used for a test
case and the expected outputs of the system can be read from the counter-example.

4.2 Test set generation for the example system

We now demonstrate the test generation technique using the same running example that was
defined in section 3.3, see Fig. 1. The NuSMV model code for the example system is shown
in Listing 4.1. In the model code, a separate module is modelled for both function block types
AND, and DELAY. Instances of the function blocks are then created in the main module. The
main module also declares the input variables of the system, and defines the output of the
system.

In the example case, if the MBC test criterion is followed, two test requirements need to be ad-
ded to the model. The lines that need to be added to the main module are shown in Listing 4.2.
There is a variable for both test requirements: TR_1 and TR_2. TR_1 consists of two parts
( DPC_1_0 and DCP_1_1). Note that the variables DPC_1_0 and DCP_1_1 get their values
based on the FBCs defined in Table 1, i.e. DPC_1_0 is true when input1 affects the output of
the DELAY, and DPC__1_1 is true when the output of the DELAY affects the output of the AND
gate.
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Because of the delay on the path, TR_1 is true whenever DPC _1_1is true and DPC_1_0 was
true at the previous time step. The previous value of DPC_1_0 is captured with the variable
prev_1_DPC _1_0.

In order to find a test case that fulfills test requirement 1 an invariant is added on line 11 in
Listing 4.2.

MODULE main

VAR
inputl : boolean;
input2 : boolean;

DELAY1 : DELAY (inputl);
AND1 : AND_2(DELAY1.outputl, input2);

DEFINE

outputl := AND1.outputl;
MODULE AND_2(inputl, input2)
DEFINE

outputl := inputl & input2;
MODULE DELAY (inputl)
VAR

prev : boolean;
DEFINE

outputl := prev;
ASSIGN

init (prev) := FALSE;

next (prev) := inputl;

Listing 4.1. NuSMV model code for the example system

VAR

prev_1_DPC_1_0 : boolean;

DEFINE
DPC_1_0 := TRUE;
DPC_1_1 := (input2);
TR_1 := prev_1_DPC_1_0 & DPC_1_1;
TR_2 := DELAY1l.outputl;

ASSIGN
init(prev_1_DPC_1_0) := FALSE;
next (prev_1_DPC_1_0) := DPC_1_0 ;

INVARSPEC ( ! TR_1 );

Listing 4.2. NuSMV model code needed for incorporating the test requirements

When model checking is run on the generated model, a counter-example is received. The
counter-example corresponds to a test case that is depicted as a timing diagram in Fig. 4.
TR_1is satisfied at the second time step as the previous value of DPC_1_0 is true, and input2
is true.

i n p utl A v'.'.I T T
inF)utZ T O U S
Outputl R A fufﬂﬁ_é*i-“.ﬂnf RO U U

Figure 4. Generated test case for the example system
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Algorithm 1 Test set generation algorithm

1: procedure GENERATETESTSET(TRSs, FBD)
2 Unchecked < TRs > Covered test requirements
3 Infeasible < > Infeasible test requirements
4: Tests + () > Resulting test set
5: while |Unchecked| > 0 do
6
7
8

CurrentTR + Unchecked.pop()
[testfound, ce] = runMC(FBD, TRs, CurrentTR)
: if not testfound then
9: Infeasible + Infeasible U CurrentTR

10: else > Test found
11: Tests < Tests U ce

12: satisfiedTRs < parseCounterExample(ce, TRS)

13: for t € satisfiedTRs do

14: if t € Unchecked then

15: Unchecked.remove(t)

16: end if

17: end for

18: end if

19: end while
20: end procedure

4.3 Test set generation algorithm

In order to generate a compact test set that fulfills all feasible test requirements we follow a
simple algorithm presented in Algorithm 1. In the procedure GenerateTestSet we assume that a
set of test requirements TRs has been calculated and that the system FBD has been modelled.
The procedure makes calls to another function runMC creates the invariant formula based on
the currently examined test requirement, incorporates the test requirements as definitions in
the model, and performs model checking on the model, and returns two elements: a Boolean
variable testfound that expresses whether a suitable test case could be found, and the counter-
example file ce, if one exists. The function parseCounterExample has the counter-example ce,
and list of test requirements as input, and parses through the counter-example. It returns a list
of test requirements that are true at some point within the counter-example.

The algorithm simply selects a test requirement from the set of unchecked test requirements,
and tries to find a test case for it. If a test case is found we parse through the test to see all
the other test requirements that were satisfied in that test. If a test case can not be found,
the current test requirement is added to the set of infeasible test requirements. The process is
continued until all test requirements are either satisfied by a test case, or determined infeasible.

We implemented the algorithm in a prototype tool using Python. The tool automatically de-
duces the structure of the FBD based on annotations, and calculates the data paths and test
requirements of the system. It then augments the model by adding model code for the test re-
quirements and runs the test generation algorithm. The tool uses the k-induction algorithm with
a small bound to model check the invariant specification. If the k-induction algorithm does not
find a counter-example or a proof of the invariant within that bound we check the invariant using
a BDD-based approach which is guaranteed to give a result. Also, after the test set has been
generated the tool checks if any of the test cases are redundant (test requirements satisfied by
it can be satisfied by other test cases).
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5. Efficient generation of the function block conditions

It can be difficult to compose the function block conditions by hand. We devised a semi-
automatic technique for creating the FBCs. In this technique we create a model checking
model in which there are two instances of the same function block type, and no other function
blocks. In addition to these two instances there is a variable in the model called trigger that can
become true at any one time point, and after that is always false. One input-output pair is then
selected for examination. The inputs of the two function blocks are connected to variables that
decide their value non-deterministically at every time point. The function block instances always
receive the same inputs, except the input under examination. For this input one of the function
blocks receives the result of applying the logical XOR operator with the value of the input and
the variable trigger as operands. This results in a model in which both function blocks always
receive the same input values except at a single time point the value of one input is different.
The described configuration is illustrated in Fig. 5.

This framework allows us to work out the function block conditions iteratively. We start by
assuming that the function block condition delay is 0, and the function block condition is false.
Then we try to verify the LTL specification:

G (trigger -> (FBC <-> (instancel.outputl <-> !instance2.outputl))),

where FBC is the assumed function block condition. The formula states that whenever the trig-
ger variable is true and the function block condition is true, the outputs of the two function block
instances are of opposite value. If the result is false we can manually refine the FBC based
on the counter-example and check the refined specification again until the formula evaluates
as true. If we deduce that the input does not affect the output (FBC is false), we increase the
assumed function condition delay by one. The checked formula is also changed accordingly by
adding the temporal operator Y (yesterday):

G (Y trigger ->
(FBC <-> (instancel.outputl <-> l!instance2.outputl)))

The process can be continued until a non-false FBC is found, or it is reasonable to assume that
the input does not affect the output. Note that in standard function blocks an input typically can
affect the output somehow. Complex vendor-specific function blocks, however, may be built in
such a way that an input may not affect all the outputs of the function block. For example, a

instancel

FB
inputl inputl
; . outputl
input2 input2
instance2
FB
xorl inputl
XOR P outputl
L—linputl input2
trigger input2

Figure 5. Configuration for determining FBCs using model checking
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single large function block may be defined that consists of several partitions, and the inputs and
outputs of a single partition are isolated from other partitions.

6. Experiment

We performed mutation analysis to evaluate the fault detection effectiveness of the test sets.
In mutation analysis, variations or mutants of the target system are created. These mutations
represent alternative erroneous designs of the system. A test set is then generated for the
original system according to one of the test coverage metrics. The test set should be such
that by executing the test set it is possible to distinguish between the original design and the
erroneous mutant. It is checked whether running the test cases on a mutant causes behavioral
changes on the outputs. If it does, the design error it represents could be observed by runnung
the test set, and it is said that the mutant is killed. The quality of a test set is determined by the
percentage of killed mutants.

The FBDs used in this experiment are listed in Table 2 accompanied with some data on their
structure. The FBDs E1 — E9 are fictitious but realistic FBDs. The FBDs 10 — [10 are based on
actual industrial designs.

We have created four different types of mutants for these FBDs: NOT-mutants, AND-OR -
mutants, TIME-mutants, and Flip-Flop(FF) -mutants. NOT-mutants are created by negating a
single boolean edge of the FBD. AND-OR -mutants are created by replacing a single AND
function block with an OR block and vice versa. TIME-mutants are created by replacing a
timer block (TON, TOF or PULSE) with another timer block with the same parameters. The
FF-mutants are created by replacing a set priority flip-flop with a reset priority flip-flop and vice
versa. Each mutant had only a single change when compared to the original FBD. Behaviourally
equivalent mutants with respect to the original FBD were not used in the analysis.

7. Results

In this Chapter we present data from the test generation process for the example FBDs in
Table 2, and the results of the mutation analysis experiment. The tests were generated on a
PC with Intel Core i7-4600U processor and 8 GB of RAM. For model checking, NuSMV version
2.5.4 was used.

Using the developed test generation technique, we generated test sets for the example systems
based on the three coverage criteria (BC, MICC and MCCC). Information related to the test
generation process is presented in Table 3, Table 4, and Table 5. For each FBD, the tables
show the number of test requirements, infeasible test requirements, test cases, and model
checker runs. In addition, the time needed for test generation is shown.

From the test generation data we can see that in many cases the industrial FBDs used in
the experiment result in a rather large number of test requirements. This is due to the fact
that these FBDs contain vendor-specific function blocks with additional signal status inputs
and outputs. This subsequently causes a large number of data paths and test requirements.
The test requirements of the industrial FBDs are also mainly infeasible. The vendor-specific
features are such that an input of a function block often can not influence an output causing
all data paths flowing through that input-output pair to become infeasible. Since the FBCs of
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Table 2. Function block diagrams used as input for test generation
FBD data Mutants
ID Inputs Outputs Function blocks Data paths | NOT AND-OR TIME FF
E1 3 1 6 3 7 2 4 0
E2 2 1 4 2 4 1 2 0
E3 1 1 1 1 2 0 2 0
E4 1 4 14 15 20 3 8 0
E5 4 4 12 18 21 4 2 1
E6 1 1 6 3 9 2 3 0
E7 1 2 5 6 9 2 2 0
E8 3 2 8 15 15 4 0 0
E9 2 5 10 10 17 2 2 0
10 14 4 10 488 35 5 6 1
I 14 14 14 1194 42 2 12 0
12 2 8 6 20 17 0 10 0
13 4 6 3 16 14 0 4 1
14 8 6 6 67 19 0 4 1
15 2 10 5 20 20 0 10 0
16 16 18 20 5692 74 6 14 1
17 24 6 24 6772 82 11 6 3
18 6 10 10 86 30 4 0 0
19 16 2 10 265 30 3 2 0
10 6 6 7 182 20 1 6 0

Table 3. Test generation data for the MBC test criterion

FBD Name Test regs

Infeasible Testcases MC runs Elapsed time

E1
E2
E3
E4
E5
E6
E7
E8
E9
10
11
12
13
14
15
16
17
18
19
10

3
2
1
15
18
3
6
15
10
488
1194
20
16
67
20
5692
6772
86
265
182
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8.02s
1.05s
30.04 s
1.56 s
7004 s
4323 s
0.67 s
119s
14.73 s
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Table 4. Test generation data for the MICC test criterion

FBD Name Test regs

Infeasible Testcases MC runs Elapsed time

E1
E2
E3
E4
E5
E6
E7
E8
E9
10
11
12
13
14
15
16
17
18
19
110

6
4
2
30
36
6
12
30
20
976
2388
40
32
134
40
11348
13544
172
530
364

0
0

—
o e

wh~hDNDO

2
904
2074
18
8
68
10
11046
13132
104
459
274
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16
12

5
3
2
12
17
4
4
13
10
39
59
11
9
20
4
229
182

37
16

Table 5. Test generation data for the MCCC test criterion

1.40s
0.99s
0.63s
10.64 s
7.57s
1.16 s
2.28 s
3.48 s
3.14s
188.83 s
419.6 s
28.43 s
3.17 s
74.44 s
2.81s
12065 s
1428 s
1.39s
4991 s
37.70 s
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Infeasible Testcases MC runs Elapsed time
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I
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110

20
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4
152
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46
148
104
5952
14488
128
64
510
80
88688

100968

528
2706
1725
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0
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0
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16
15
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98206
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48315s
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Figure 6. Mutant kill rates for test sets based on MBC, MICC and MCCC
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Figure 7. Average kill rates of the different mutant variants by test sets based on MBC, MICC
and MCCC

these pairs are simply “FALSE”, these infeasible data paths can be identified in pre-processing
before model checking is run, making the test generation process much quicker.

The complex FBDs that result in many test requirements, require more model checker execu-
tions than the simpler FBDs. It also takes more time to run the model checker against the more
complex FBDs. Consequently, some FBDs (16 and I7 especially) result in excessively long test
generation times.

The mutant kill rates of the generated test sets are illustrated in Fig. 6. The kill rates are
generally quite good, reaching 100 % on many FBDs, but on some FBDs the kill rates remain
lower. We can see that the test sets generated based on MBC have a weaker mutant kill rates
on almost all FBDs. In every FBD the kill rates of MICC based test sets and MCCC based test
sets were identical.

Fig. 7 illustrates the average Kill rates of the different mutant variants. The Kill rates of the
TIME-mutants (68 %, 84 %, 84 %) are quite low while the kill rates for NOT-, AND-OR, and
FF-mutants are over 97 % for MICC and MCCC.
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8. Conclusions

In this work, we have defined three structure-based test criteria for FBDs, and developed an
automatic technique for designing test cases according to these criteria. Unlike other similar
test criteria, the developed criteria focus on delayed input-output dependencies of function
blocks. The DELAY function block is one example where such a dependence is relevant but
similar examples exist especially among vendor-specific variations of timer function blocks.

We have tested our technique on fictitious FBDs, and a set of vendor-specific real-world indus-
trial FBDs. The tests suggest that the developed technique is scalable to most nuclear domain
safety systems. However, on some complex FBDs the time required to generate the tests be-
comes quite infeasible. In these cases, it could be useful to partition the FBD into smaller
subsystems, or otherwise divide the test generation task into smaller sub-tasks.

The results also showed that a vast majority of test requirements were infeasible in the industrial
FBDs. This is primarily due to vendor-specific features of the function blocks. We also note that
in some cases infeasible test requirements may be indicators of potential defects in the design,
and analysis of the infeasible requirements could be a beneficial bug finding technique. We
leave this for future work.

The fault detection capability of the method was analysed using mutation analysis. The average
fault detection capability of the generated tests was 90 % when the MBC test criterion was used
and 95 % when the more rigorous test criteria (MICC, MCCC) were used for test generation.
The fault detection capability of the tests generated using the MICC criterion was identical to
tests generated using the MCCC criterion. This suggests that it may not be sensible to use the
MCCC criterion since the benefits when compared to MICC may be small when compared to
the additional computational effort required.

We have not yet addressed the test oracle problem, i.e. the problem of distinguishing the de-
sired and correct behaviour of a system from incorrect behaviours given an input for that sys-
tem. In the test generation technique we have developed, a set of test cases is created based
on a model of that system’s design. The generated test sequences, however, can be such
that they do not correspond to the desired functionality of the system. This is because the
design used for test generation, or the model of that design may be incorrect, resulting in in-
correct test sequences. In the ideal case the test generation process should be coupled with
a computer-based test oracle (a system capable of distinguishing between desired and incor-
rect test sequences) that would ensure that the tests always correspond to desired behaviour.
Unfortunately, creating such a test oracle for an arbitrary system is very difficult. In practice
a human test oracle who manually analyses the generated test cases can be used. In the
mutation analysis experiment, the original reference models are assumed correct, so that the
generated test cases always represent desired system behaviour.

Threats to internal validity of this work might come from errors in the implementation code, the
model checking model, and the function block conditions. To reduce possible errors in these
components, the implementation was tested on many FBDs, and intermediate products such
as data paths and test requirements were manually reviewed. The methodology of this paper
also relies on the fact that the system is cyclically run on constant length intervals so that the
system behaviour corresponds to the discrete time model checking model. A threat to external
validity is whether the system can be adequately described in the used modelling language.
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Designs including complex mathematical functions cannot be exactly modelled. Also, analogue
variable ranges have to be discretised for the model checking tool.
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