

 RESEARCH REPORT VTT-R-04722-15

Implementation of ReqIF for the
Simantics platform

Authors: Teemu Mätäsniemi, Jarmo Alanen

Confidentiality: Public

RESEARCH REPORT VTT-R-04722-15

1 (22)

Report’s title

Implementation of ReqIF for the Simantics platform
Customer, contact person, address Order reference

Tekes, Matti Säynätjoki

Kyllikinportti 2, P.O. Box 69, FI-00101 Helsinki, FINLAND

Tekes: 40204/12

Project name Project number/Short name

Computational methods in mechanical engineering product develop-

ment

100553 (78634)/SIMPRO

Author(s) Pages

Teemu Mätäsniemi, Jarmo Alanen 22/−
Keywords Report identification code

Requirements engineering, Requirements management,

ReqIF, Simantics, XML, XML Schema

VTT-R-04722-15

Summary

This report is the result of task 3 (‘Requirement- and simulation driven design’) of the SIM-
PRO project (‘Computational methods in mechanical engineering product development’) car-
ried out during the years 2012–2015. The report focuses on the steps to support ReqIF data
roundtrip and data validation in the Simantics environment. ReqIF and an example use case
to exchange ReqIF data between two companies are introduced. In addition, applicability of
different XML schema languages for data validation in the Simantics environment is consid-
ered. Possible approaches and technologies to resolve ReqIF data (XML data) exchange are
presented. Finally, implemented features in the Simantics environment are demonstrated.

Confidentiality Public

Tampere 20.10.2015
Written by

Teemu Mätäsniemi,
Research Scientiest

Reviewed by

Marko Luukkainen,
Research Scientist

Accepted by

Riikka Virkkunen,
Head of Research Area

VTT’s contact address

VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere, Finland

Distribution (customer and VTT)

Tekes/Matti Säynätjoki, 1 original

VTT/archive, 1 original

The use of the name of VTT Technical Research Centre of Finland Ltd in advertising or publishing of a part of this

report is only permissible with written authorisation from VTT Technical Research Centre of Finland Ltd.

RESEARCH REPORT VTT-R-04722-15

2 (22)

Preface

This report is the main result of VTT subproject Task 3 (‘Requirement- and simulation driven
design’) of the SIMPRO project (‘Computational methods in mechanical engineering product
development’) carried out during the years 2012–2015 and financed by the following organi-
sations: Tekes (the Finnish Funding Agency for Innovation, Aalto University, Tampere Uni-
versity Technology, Lappeenranta University of Technology, University of Jyväskylä, Wärtsilä
Finland Oy, Patria Land Systems Oy, KONE Oyj, MeVEA Oy, FS Dynamics Finland Oy Ab,
EDR & Medeso Oy, Dassault Systèmes Oy, Techila Technologies Oy and VTT Technical
Research Centre of Finland Ltd. The project was coordinated by VTT.

Tampere 20.10.2015

Authors

RESEARCH REPORT VTT-R-04722-15

3 (22)

Contents

Preface ... 2

Contents ... 3

Terminology, Definitions, Abbreviations .. 4

1. Introduction ... 5

2. ReqIF and data roundtrip .. 5

2.1 ReqIF use cases ... 5

3. ReqIF Simantics implementation background ... 6

3.1 Data exchange process .. 6
3.2 Schemas and schema languages ... 7
3.3 XSD schema: datatypes, components and references .. 8
3.4 Possible approaches .. 12
3.5 Technologies .. 13
3.6 Simantics and ontologies .. 15

4. Demonstration of SIMANTICS ReqIF capability .. 15

5. Conclusions .. 20

References ... 21

RESEARCH REPORT VTT-R-04722-15

4 (22)

Terminology, Definitions, Abbreviations

Abbreviation Description

DOM Document Object Model

DTD Document Type Definition

JAXB Java™ Architecture for XML Binding

JAXP Java™ API for XML Processing

JDK Java™ Development Kit

OMG Object Management Group

OSGi™ The Dynamic Module System for Java™

PSVI Post Schema Validation Infoset

RDF Resource Document Format

Relax NG A simple schema language for XML, based on RELAX and TREX.

ReqIF Requirements Interchange Format

RM Requirement Management

SAX Simple API for XML

Schematron Document Schema Definition Language (ISO/IEC 19757-3, 2006)

StAX Streaming API for XML

TrAX Transformations API for XML

W3C World Wide Web Consortium

XML eXtensible Markup Language

XMLBeans A technology for accessing XML by binding it to Java types

XNI Xerces Native Interface

XSD XML Schema Definitions

RESEARCH REPORT VTT-R-04722-15

5 (22)

1. Introduction

This report focuses on the steps to support ReqIF data roundtrip and data validation in
Simantics environment. Chapter 2 introduces ReqIF and a use case to exchange ReqIF data
between two companies. The use case scenario serves as a background idea for the Siman-
tics ReqIF implementation. Firstly, the Chapter 3 generalizes a problem statement from
ReqIF data exchange to general XML support in the Simantics environment. Also, the scope
of research is set up. The data exchange process is presented in terms of Simantics. Then, it
is explained what is purpose of schemas and what they are. Usefulness of different schema
languages is estimated. Schematron, DTD, XML Schema and RELAX NG are under consid-
eration. Study continues deeper with XML Schema, supported data types and abstract data
model behind XML Schema (i.e. schema component model). Approaches to exchange XML
data with Simantics are introduced and technological possibilities are evaluated. In the Chap-
ter 4, main features of the Simantics ReqIF implementation, based on selected approach and
technology, are demonstrated and documented. Finally, the Chapter 5 contains conclusions.

2. ReqIF and data roundtrip

ReqIF1 is an XML (XML 1.1, 2006) specification for requirements interchange. The ReqIF
specification is maintained by Object Management Group (OMG) (ReqIF 2013). The goal of
ReqIF is to provide a file format to exchange requirements between different organisations or
departments of an organisation developing a system. The file format is based on XML. The
ReqIF specification is comprehensive enough to support different brands of requirements
management tools on the market to facilitate cooperation of organisations with different tools.
A common case is in which a system developer passes requirements to its subcontractors;
the subcontractor may update the requirements or comment them and may send the updated
set of requirements in ReqIF format back to the main contractor.

ReqIF allows exchange of all kinds of artefacts (and their attributes) besides requirement
statements. This gives the possibility to pass verification and validation information, like
simulation results, back from the subcontractors to the requirements originator.

ReqIF is not a model for the requirements management database structure. However, there
is a tool on the market that allows editing of ReqIF files natively. The tool is called ProR.
ProR can be used as a simple requirements authoring tool, but it does not support version
control.

2.1 ReqIF use cases

Figure 1 depicts the procedure of roundtrip exchange of requirements between two parties
with different or same requirements management tools (RM tool). One important question is
raised by the roundtrip use case scenario: How well the RM tool A is able to synchronise its
database with the ReqIF XML file received from RM tool B? There may be new require-
ments, changes in original requirements and deletions of original requirements by Us-
er/Company 2, but also by User/Company 1 during the User/Company 2 work if no concur-
rency control is exercised. This question is also raised in case of a one-way scenario (in
which User/Company 2 only receives ReqIF files and does not send such back): How well
the RM tool B is able to synchronise its database if User/Company 1 sends an updated
ReqIF file?

1
 Formely known as RIF, Requirements Interchange Format.

RESEARCH REPORT VTT-R-04722-15

6 (22)

Command ReqIF export at the RM tool A

RM tool A database (org)

Create ReqIF XML-file

ReqIF XML-file (org)

Send ReqIF XML-file to User 2

User/Company 1 RM tool A

Command ReqIF import at the RM tool B

User/Company 2 RM tool B

ReqIF XML-file (org)
(a copy or access
to the file repos.)

Import ReqIF XML-file

RM tool B database

Command ReqIF export at the RM tool B Create ReqIF XML-file

ReqIF XML-file (upd)

Update and create requirements

Send ReqIF XML-file to User 1
ReqIF XML-file (upd)
(a copy or access
 to the file repos.)

Command ReqIF import at the RM tool A

RM tool A database (upd)

Import ReqIF XML-file

Figure 1. ReqIF roundtrip use case scenario.

Poor implementation of the synchronisation makes the ReqIF interchange very impractical.
Hence usage of a shared requirements database is a considerable alternative over ReqIF file
interchange.

A detailed description of the one-way and roundtrip scenarios can be found in the ReqIF
(2013) specification.

3. ReqIF Simantics implementation background

3.1 Data exchange process

An approach to demonstrate ReqIF data exchange with the Simantics (Simantics, 2014) in-
tegration platform is presented in Figure 2.

Prerequisite to transfer XML data consistently is depend on data validation possibilities. In
this respect, schemas have an important role in quality assurance and they are used for
schema-validity assessment of XML information. According to this observation the Simantics
data exchange approach has been divided to the following phases:

 Import schema files to support ReqIF data in Simantics

 Export ReqIF data from another tool (not present in Figure 2)

 Import ReqIF data into Simantics. The data is validated and bound to con-
cepts provided by the schema while importing.

 Manipulate data in the Simantics environment or transform it totally to another
form with the Simantics Constraint Language (SCL)

RESEARCH REPORT VTT-R-04722-15

7 (22)

 Export updated data from Simantics in XML format in order to support data
round trip between a system developer and a subcontractor.

In typical business cases, data round trip operations occur multiple times for same data. This
means data import over existing data that can be supported by data comparison or version-
ing as explained in the first chapter. This kind of functionality is not yet supported in Siman-
tics because common versioning mechanism (change sets) is under design by the Simantics
core developers at this time. In addition, it is clear that a friendly user interface is needed to
manipulate requirements and related data but ergonomic graphical user interface design is
currently out of scope of this research. Thus, this report focuses on the first steps to support
ReqIF data roundtrip and data validation in the Simantics environment.

Figure 2. ReqIF data exchange approach with Simantics.

3.2 Schemas and schema languages

Schemas have an important role in a validation of XML documents and in XML based appli-
cation development. According to Murata (Murata et al., 2001) a schema specifies permissi-
ble names for XML elements and attributes, and further specifies permissible structures and
values for these elements and attributes. Schema creation can provide the following ad-
vantages:

1. The schema precisely describes permissible XML documents
2. A computer programs can determine whether or not a given XML document is

permitted by the schema,
3. A schema can be used in application program creation (by generating code

skeletons, for example).

There exist several languages for specifying schemas and they are called schema lan-
guages. A schema language can be based on general XML constructs (as in the case of
DTD based on elements and attributes) or more specific constructs representable by XML
(as in the case of RDF Schema based on resources, properties and statements). On the oth-
er hand, Eric van der Vlist (van der Vlist, 2001) describes XML schema languages in the fol-
lowing way: “All XML schema languages define transformations to apply to a class of in-
stance documents. XML schemas should be thought of as transformations. These transfor-
mations take instance documents as input and produce a validation report, which includes at
least a return code reporting whether the document is valid and an optional Post Schema
Validation Infoset (PSVI), updating the original document's infoset (the information obtained
from the XML document by the parser; XML InfoSet, 2004) with additional information (de-
fault values, datatypes, etc.)”. This description concerns with validation process which is also
a major key in our implementation and data interpretation (or data typing).

RESEARCH REPORT VTT-R-04722-15

8 (22)

There are many kind of comparisons related to features of different schema languages (XML
Schema languages, 2014; Dongwon et al., 2000). Comparison of Eric van der Vlist (van der
Vlist, 2001) is based on validation levels enabled by schema languages. These levels are:

 The validation of markup – controlling the structure of a document

 The validation of the content of individual leaf nodes (datatyping)

 The validation of integrity, i.e. the validation of the links between nodes within
a document or between documents.

 Any other tests (often called "business rules").

The levels define important decision points while selecting a schema language for the ReqIF
Simantics implementation. From design point of view a schema language is required to sup-
port data interpretation in order to make data typing while importing XML document into
Simantics. In addition, validation of document structure and integrity are relevant aspects
while creating ontology based information model correctly.

Although, the Document Type Definition (DTD) (in XML 1.0, 2008) is widely used and one of
easiest schema languages it is not selected for the ReqIF Simantics implementation because
it provides only a restricted content model specifications for XML elements. On the other
hand, Relax NG (RELAX NG, 2001) provides a lot of expression power for element content
specifications but an augmentation is not supported. This means that Relax NG can natively
not provide default values for element attributes nor typing information or PSVI. Thus, the
creation of ontology information model will lead to incomplete model. Thirdly, Schematron
schemas (ISO/IEC 19757-3, 2006; Jelliffe, 2001) or rule based schemas lead typically very
verbose specification. For that reason, Schematron schemas are often used together with
W3C XSD (XML Schema Definitions) or RELAX NG to define only the most specific con-
straints for XML document contents. Usage of Schematron means hybrid model in design
and may lead to over complicated implementation and hard maintenance. For these reasons,
the ReqIF Simantics implementation avoids the usage of Schematron. Thus, W3C XSD is
selected as the most suitable schema language for the purpose in the ReqIF Simantics im-
plementation. In addition, some XML parsers can provide a consistent Post Schema Valida-
tion Infoset based on abstract schema component model of W3C XSD during XML pro-
cessing.

3.3 XSD schema: datatypes, components and references

W3C (XSD 1.1) XML Schema Definitions are defined in three parts in the W3C XML Schema
specifications. XML Schema Part 0 (XML Schema, 2004) is an introductory document (pri-
mer), XML Schema Part 1 (XSD 1.1, 2012a) offers facilities for describing the structure and
constraining the contents of XML documents and XML Schema Part 2 (XSD 1.1, 2012b) de-
fines facilities for defining datatypes to be used in XML Schemas as well as in other XML
specifications. The datatype language provides a superset of the capabilities found in DTDs.

W3C XSD is used to provide a vocabulary (list of elements and attributes), to associate types
(such as integer, string, hatsize, sock_colour, etc.) with element and attribute content, to
constrain appearance of elements and attributes, to provide human-readable and machine-
processable documentation and to give a formal description of one or more documents.

To ensure robustness in document interpretation and data interchange a high degree of type
checking is required. XML Schema Part 2 defines build-in datatypes that can be used in an
XML Schema. A datatype is characterized by its value space, lexical space and lexical map-
ping. The lexical mapping is a relation which maps the lexical space of datatype into its value
space. The specification defines atomic, list and union datatypes. Atomic value is an ele-
mentary value, not constructed from simpler values by any user-accessible mean of the
specification. Despite of this the values may be described with internal structure, which can
be utilized while checking value constraints. Atomic datatypes are those whose value spac-

RESEARCH REPORT VTT-R-04722-15

9 (22)

es contain only atomic values. Values of list datatypes consist of a finite-length (possibly
empty) sequence of atomic values separated by a space and specified by item type attribute
of the list datatype. Thus, a lexical representation of a list element can’t contain a
whitespace. Union datatypes are those whose value spaces, lexical spaces, and lexical
mappings are the union of the value spaces, lexical spaces, and lexical mappings of one or
more other datatypes or those that are derived by facet-based restriction of another union
datatype. The datatypes which participate to union datatype declaration are called to mem-
ber types of the union.

In addition, the specification introduces the following facilities for new datatype generation.

 facet-based restriction

 construction by list

 construction by union

The facet-based restriction constructs a new datatype by restricting the value space or lexical
space of a base type using zero or more constraining facets (e.g. pattern, enumeration, max-
Inclusive, minExlusive). Construction by list defines a new datatype by specifying the new
datatype as a list of items of some item type and construction by union specifies a new
datatype by defining it as a union of some specified sequence of member types. The specifi-
cation uses also these facilities to demonstrate the provided mechanisms. Figure 3 presents
build-in datatypes which are described as an independent of their use in the particular con-
text.

Build-in datatypes are distinguished to special, primitive and ordinary (or constructed)
datatypes. Datatypes anySimpleType and anyAtomicType are special according to their posi-
tion in the type hierarchy. Primitive datatypes are those datatypes that are not special and
are not defined in terms of other datatypes. All primitive datatypes have anyAtomicType as
their base type, but their value and lexical spaces are given in prose. Ordinary datatypes are
all datatypes other than the special and primitive datatypes. User-defined datatypes are con-
structed with Simple Type Definition schema component by schema designer. The mecha-
nism defines a datatype in terms of other datatypes and attaches a qualified name (QName)
to it. More generally, the mechanism integrates build-in datatypes into XML XSD context be-
cause the given datatypes of the specification are also intended to be useful in other con-
texts.

The XML Schema Part 1 (Structures) specification offers facilities for describing the structure
and constraining the contents of XML documents. In addition, extra information for an XML
document or a corresponding XML Infoset augmentation, such as normalization and default-
ing of attribute and element values or the types of the information items can be specified.
The XML Schema Part 1 introduces a conceptual and abstract data model for XML Schema
information which must be available in conformant processing but the specification does not
mandate any particular implementation or representation of the data model information. The
abstract data model has been made up from schema components and thus an XSD schema
is defined as a set of schema components. According to the specification the schema com-
ponents are falling into groups:

 Primary schema components
o Simple type definitions
o Complex type definitions
o Attribute declarations
o Element declarations

 Secondary schema components
o Attribute group definitions
o Identity-constraint definitions
o Type alternatives
o Assertions

RESEARCH REPORT VTT-R-04722-15

10 (22)

o Model group definitions
o Notation declarations

 "Helper" schema components
o Annotations
o Model groups
o Particles
o Wildcards
o Attribute Uses

The schema components named with "definition" end define schema components that are
used by other schema components. The helper components are dependent on their context.
The declaration components are associated by (qualified) name to XML information items
being validated during validation process. Many components have a target namespace,
which is either absent or a namespace name (XML Namespaces, 2006). The target
namespace identifies the namespace within which the association between the component
and its name exists. The target namespace for predefined schema components is
http://www.w3.org/2001/XMLSchema. Detailed descriptions of schema components, their
properties, XML representations, their contributions to post-schema-validation infoset (PSVI)
and validation can be found from the specification.

Figure 3. Build-in datatypes in XML XSD.

RESEARCH REPORT VTT-R-04722-15

11 (22)

It has to pay attention to a difference of XSD Schema and schema document. XSD Schema
corresponding to a schema document contains definitions and declarations of the schema
document, built-in schema components, automatically known components (primitive or user
defined) and schema components included by consequence of the inter-schema-document
references. Thus, XSD Schema is assembled from multiple sources and can contain a lot of
schema components (with name association from different namespaces) not defined in a
schema document. On the other hand, the schema document can define at most one (or
none) targetNamespace associating top-level schema components of that document with a
target namespace. To license references to components outside the document's target
namespace (to components in the imported namespace) the <import> element is used in
schema document.

<xs:import namespace="anyURI" schemaLocation ="anyURI"/>

The location of schema document for imported namespace can also be provided as sche-
maLocation attribute value. The schemaLocation operates only as a hint which processor
may attempt to de-reference. If namespace attribute is absent, then the import allows unqual-
ified reference to components with no target namespace.

Secondly, <include> element is used to assemble schema from multiple schema documents
to single target namespace. For example,

<xs:include schemaLocation ="anyURI"/>

The included schema documents must either have the same targetNamespace as referenc-
ing schema document or no targetNamespace at all. In the latter case, the included schema
components are converted to target namespace of assembling schema document.

Thirdly, <override> element is used to replace old schema components with new ones with-
out any constraint. For example,

<xs:override schemaLocation="v1.xsd">

 <xs:complexType name="personName">...

</xs:override>

replaces the "personName" complexType definition located in v1.xsd schema document by a
new one. For <include> and <override> elements the processor must attempt to de-
reference according to a value of the schemaLocation attribute. Thus, the elements <im-
port>, <include> and <override> signal a schema-aware processor that a schema document
contains references to other schema documents.

More fine grained control to include certain schema components to a schema according to
version of schema specification or types known by processor is presented as condition inclu-
sion attributes. These attributes are vc:minVersion, vc:maxVersion, vc:typeAvailable,
vc:typeUnavailable, vc:facetAvailable and vc:facetUnavailable.

For validation a XML instance document can provide hints to a processor about relevant
schema document locations. The instance document refers to schema document locations
by xsi:schemaLocation and xsi:noNamespaceSchemaLocation attribute values.

<purchaseReport

 xmlns="http://www.example.com/Report"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.example.com/Report

 http://www.example.com/Report.xsd"

The schemaLocation attribute value consists of one or more pairs of URI references. The
first part is a namespace name, and the second is a hint describing where to find an appro-

RESEARCH REPORT VTT-R-04722-15

12 (22)

priate schema document for the namespace. The processor is free to use the referenced
schema documents or other schemas or to use no schema at all. If a schema document
does not define the targetNamesace the instance document refers to this kinds of schema
documents by noNamespaceSchemaLocation attribute. In this case, the attribute lists only
schema location URIs.

3.4 Possible approaches

To support requirement management and exchange of ReqIF requirements in the Simantics
platform (Simantics), several approaches and technologies have been studied. The following
approaches have been conceived as possible ways to enable ReqIF based requirement
management in Simantics:

 JAXB (JSR 222, 2009) based XML information binding

 XMLBeans (XMLBeans, 2012) based XML information binding

 JAXP (JSR 206, 2013), Java™ API for XML Processing

 DOM (DOM 3, 2004) based XML-document handling

 Simple API for XML (SAX 2, 2002) based XML-document handling

 StAX (JSR 173, 2014) based XML-document handling

 TrAX (TrAX, 2006), Transformations API for XML, Apache Xalan

Before pros and cons of the approaches are presented the research problem is generalized.
From the Simantics view point a challenge is: How any kind of XML information can be ex-
changed between Simantics and other applications. Thus, the generalized goal is to demon-
strate that data from heterogeneous XML sources, actually files, can be collected to Siman-
tics and the ReqIF data is considered as a special use case. This kind of generalization is
justified because Simantics is an integration platform and more benefits can be reached by
the generalized implementation. In addition, it is required that XML data can be validated in
order to avoid missing or misleading data fragments in data exchange. This means that XML
data has also to have XML schema declarations.

XML information mapping or binding approaches based on JAXB or XMLBeans requires that
XML schema definitions (XSD 1.1 2012a) are available and theirs definitions can be com-
piled to corresponding Java classes. Therefore, these approaches can work quite efficiently
with ReqIF requirements but not in the context of the generalized problem. In the latter case,
schema and Java compilers have to be integrated into Simantics in order to work with other
kind of XML data and XML schemas. In addition, JAXB supports only partly XML Schema 1.0
definitions. XMLBeans has a full XML Schema 1.1 support.

JAXP combines a number of Java APIs and enables applications to parse and transform
XML documents using implementation independent APIs. The plugability layer of JAXP in-
cludes Datatype, XPath, XSLT (TrAX), Validation, StAX, SAX and DOM plugabilities. The
plugability mechanism allows to dynamically load compliant implementations or to switch
between particular XML processor implementations. (JSR 206, 2013; JAXP 1.4)

Typically, DOM based approaches handle XML documents in memory representation. It pro-
vides a tree-based API to handle XML data. These kinds of APIs are quite friendly to pro-
grammers because XML data can be traversed by API or the needed data can be queried by
XQuery language (XQuery 3.0, 2014) or XPath (XPath 3.0, 2014) expressions. In addition, all
information is virtually available all the time and DOM API can provide features to validate
XML data. However, DOM based approach is not selected for the Simantics data exchange
because this kind of technologies do not provide enough computation power for large XML
files.

SAX and StAX are event-based APIs for XML data processing. They provide XML infor-
mation by reporting parsing events to handlers registered by an application. Difference be-

RESEARCH REPORT VTT-R-04722-15

13 (22)

tween APIs is that StAX provides pull-parsing API and SAX provides push-parsing API. In
other world, StAX gives parsing control to programmer while SAX takes the program control
during parsing. Both APIs are very powerful with large XML files because there is no need to
construct internal data representation as in the case of DOM based approach. In addition,
both event-based APIs consume only a little memory resources and they can support XML
data validation with XML schemas

TrAX consists actually of multiple APIs. A challenge of the TrAX is how to deal with different
kind of inputs and outputs without becoming specialized for any types. Inputs and outputs
may have form of URL, XML stream, a DOM tree, SAX Events, or a proprietary format or
data structure. In addition, transformations can be described by Java code, Perl code, XSLT
Stylesheets, other types of script or even in proprietary formats. TrAX is not studied for the
Simantics data exchange although it can be used to specify and execute XML transfor-
mations with XSLT engines.

In conclusion, the several possible approaches have been proposed to exchange ReqIF re-
quirements with Simantics. Some of them have limitations in XML schema support and oth-
ers in their data processing performance. In addition, some can lead to over complicate ar-
chitecture. Finally, SAX and StAX based approaches have been evaluated and selected as
the most suitable to overtake stated goals and to satisfy the presented requirements.

3.5 Technologies

This chapter describes some useful technologies for the most attractive implementation ap-
proach. The following possible and interesting technologies have been identified:

 Apache Xerces based implementation

 JDK based implementation

 Woodstock based implementation

In addition, the role of XML OASIS catalogues (XML Catalogs, 2005) has to be taken into
account while implementing the approach.

XML catalogues are entity catalogues that map both external identifiers and arbitrary URI
references to URI references for desired resources. With OASIS standard the following cas-
es can be handled.

 Mapping an external entity's public identifier and/or system identifier to a URI
reference.

 Mapping the URI reference of a resource (a namespace name, stylesheet,
image, etc.) to another URI reference.

By using XML Catalogs the several XML Schema files can be pre-downloaded and refer-
ences to these files can be redirected while parsing XML information. This kind of configura-
tion reduces parsing time a lot because download times are saved. OASIS XML Catalog
manager looks for CatalogManager.properties file which defines locations of XML Catalogs.

CatalogManager.properties
 catalogs=./CatalogForResolver.xml

Below is also an example of a content of catalogue file which maps system identifiers to local
file URI references.

RESEARCH REPORT VTT-R-04722-15

14 (22)

CatalogForResolver.xml
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE catalog SYSTEM "http://www.oasis-open.org/committees/entity/release/1.0/catalog.dtd" PUBLIC "-
//OASIS//DTD Entity Resolution XML Catalog V1.0//EN">
<catalog prefer="public" xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">
 <system uri="file:///C:/MathML/mathml3-common.xsd" systemId="mathml3-common.xsd"/>
 <system uri="file:///C:/ MathML/mathml3-strict-content.xsd" systemId="mathml3-strict-content.xsd"/>
 <system uri="file:///C:/MathML/mathml3-presentation.xsd" systemId="mathml3-presentation.xsd"/>
 <system uri="file:///C:/ MathML/mathml3-content.xsd" systemId="mathml3-content.xsd"/>
</catalog>

Apache Xerces2 Java Parser 2.11.0 (Xerces2, 2010) supports the following standards and
APIs:

 eXtensible Markup Language (XML) 1.0 Fourth Edition Recommendation

 Namespaces in XML 1.0 Second Edition Recommendation

 eXtensible Markup Language (XML) 1.1 Second Edition Recommendation

 Namespaces in XML 1.1 Second Edition Recommendation

 XML Inclusions (XInclude) Version 1.0 Second Edition Recommendation

 Document Object Model (DOM) Level 3 Core, Load and Save, (DOM) Level 2
Core, Events, and Traversal and Range Recommendations

 Element Traversal First Edition Recommendation

 Simple API for XML (SAX) 2.0.2 Core and Extensions

 Java APIs for XML Processing (JAXP) 1.4

 Streaming API For XML (StAX) 1.0 Event API (javax.xml.stream.events)

 XML Schema 1.0 Structures and Datatypes Second Edition Recommenda-
tions

 XML Schema 1.1 Structures and Datatypes Working Drafts (December 2009)

 XML Schema Definition Language (XSD): Component Designators (SCD)
Candidate Recommendation

Its latest version can be downloaded from

http://xerces.apache.org/mirrors.cgi

Xerces Java 2.11.0 (XML Schema 1.1) (Beta)

Xerces2 is promising to achieve the goal because the newest version (v2.11) introduces the
Xerces Native Interface (XNI) which enables a complete framework for building parser com-
ponents and configurations in extremely modular and easy way. The framework provides
also support for OASIS XML Catalogs and defines an XML Schema API (Litani, 2004) for
accessing and querying the post schema validation infoset (PSVI). In addition, the API de-
fines interfaces for loading XML schema documents (javax.xml.validation.SchemaFactory)
and for accessing a generated data model of schema or a set of schema components
through XML Schema Component API. For event based XML document processing the ja-
vax.xml.parsers.SAXParserFactory API enables applications to configure and obtain a SAX
based parser. Sometimes, it is challenging to know the actual SAXParserFactory implemen-
tation class resolved according to JAXP. In these kinds of situations the following command
can be aid of:

>java -Djaxp.debug=1 YourProgram

XML parsers are also provided by Java Development Kit (JDK). JDK includes typically an
older Xerces version as Apache can provide. To check the version of Xerces bundled with
the JDK you can type a command in command prompt (http://cafe.elharo.com/xml/what-
version-of-xerces-are-you-using/, Referenced 1 Sep 2015):

> java com.sun.org.apache.xerces.internal.impl.Version

RESEARCH REPORT VTT-R-04722-15

15 (22)

The command can return e.g. Xerces-J 2.7.1. Because the older Xerces versions neither
implement XML Schema API nor grammar pool features the JDK enabled parser is not used
in the Simantics data exchange.

Woodstock (Woodstox, 2015) is a high-performance Java XML processor. It implements
Streaming XML API (JSR-173, 2014), and supports XML document validation with DTD,
W3C Schema or RelaxNG. It is available under two open source licenses (Apache License,
LGPL). However, Woodstock is limited in term of schema caching features.

3.6 Simantics and ontologies

The Simantics platform (Simantics, 2014) is an open and high level application platform on
which different computational tools can be easily integrated to form a common environment
for modelling and simulation. Simantics has semantic modelling features and high-level on-
tology tools. A high performance data management and arbitrary data mappings are respon-
sible of a data triple engine on the server side. Simantics is based on OSGi plugin architec-
ture (OSGi, 2015) and is implemented by Eclipse (Eclipse, 2015). Thus, Eclipse plugins are
actually used.

In Simantics, ontology is a compilation of shared concepts (types, relations and instances).
The ontologies are defined by a graph file format. A graph file describes a collection of
statements. One statement is written as a triple: subject-predicate-object. Subject, predicate
and object are all resources in the Simantics platform. Multiple statements for a subject can
be written by presenting only new consecutive predicate-object pairs. In addition, statements
for fixed subject and predicate can be abbreviated by presenting only new objects. Below is
an example which defines new movie instance (tt0381061) under library resource.

MO = <http://www.acme.com/Movie-1.0>

ML = <http://www.acme.com/MovieLibrary> : L0.Library

 @L0.new

ML.tt0381061 : MO.Movie

 MO.HasTitle "Casino Royale" : L0.String

 MO.IsDirectedBy ML.MartinCampbell

 @MO.Casting ML.JamesBond ML.DanielCraig

HasTitle and IsDirectedBy predicates are relations. HasTitle refers to a literal resource with
value "Casino Royale" and IsDirectedBy refers to another resource under the ML which is
identified by MartinCampbell name. The @MO.Casting reminds the usage of a template.
More information can be found from the Simantics Developer Documentation and its Ontolo-
gy Development section (Simantics, 2015).

4. Demonstration of SIMANTICS ReqIF capability

Implementation of ReqIF for the Simantics platform utilizes ontologies and data triple engine
of Simantics. To enable ReqIF data exchange (Figure 1) and requirement management
Simantics has firstly to recognize the XML Schemas in some way (Figure 2). This is achieved
by predefining the schema component model (introduced in the Section 3.3) as ontology of
Simantics (Simantics, 2015). The OSGi plugin named

org.simantics.xml.schema.ontology

contains these schema component definitions which form a base for implementation. Below
are example definitions for the ElementDeclaration schema component.

SCC.SchemaComponent <T L0.Entity

 >-- SCC.SchemaComponent.targetNamespaceOf <R L0.IsRelatedTo

 --> SCC.SchemaComponent

RESEARCH REPORT VTT-R-04722-15

16 (22)

 >-- SCC.SchemaComponent.targetNamespace <R L0.IsRelatedTo L0.InverseOf

SCC.SchemaComponent.targetNamespaceOf

 --> L0.Library

 L0.HasDescription "Target namespace of schema.":L0.String

SCC.Term <T SCC.SchemaComponent

SCC.ElementDeclaration <T SCC.Term

 >-- SCC.ElementDeclaration.annotations <R L0.IsComposedOf : L0.FunctionalRelation

 --> L0.List

 L0.HasDescription "A sequence of Annotation components.":L0.String

 >-- SCC.ElementDeclaration.name <R L0.HasProperty : L0.FunctionalRelation

 --> L0.String

 L0.HasDescription "An xs:NCName value. Required.":L0.String

 >-- SCC.ElementDeclaration.targetNamespace <R L0.HasProperty : L0.FunctionalRelation

 --> L0.String

 L0.HasDescription "An xs:anyURI value. Optional.":L0.String

 >-- SCC.ElementDeclaration.typeDefinition <R L0.IsRelatedTo : L0.FunctionalRelation

 --> SCC.TypeDefinition

 L0.HasDescription "A Type Definition component. Required.":L0.String

 >-- SCC.ElementDeclaration.typeTable <R L0.HasProperty : L0.FunctionalRelation

 --> SCC.TypeTable

 >-- SCC.ElementDeclaration.scope <R L0.HasProperty : L0.FunctionalRelation

 --> SCC.Scope

 L0.HasDescription "A Scope property record. Required.":L0.String

 >-- SCC.ElementDeclaration.valueConstraint <R L0.HasProperty : L0.FunctionalRelation

 --> SCC.ValueConstraint

 L0.HasDescription "A Value Constraint property record. Optional.":L0.String

 >-- SCC.ElementDeclaration.nillable <R L0.HasProperty : L0.FunctionalRelation

 --> L0.Boolean

 L0.HasDescription "An xs:boolean value. Required.":L0.String

 >-- SCC.ElementDeclaration.identityConstraintDefinitions <R L0.IsRelatedTo

 --> SCC.IdentityConstraintDefinition

 L0.HasDescription "A set of Identity-Constraint Definition components.":L0.String

 >-- SCC.ElementDeclaration.substitutionGroupAffiliations <R L0.IsRelatedTo

 --> SCC.ElementDeclaration

 L0.HasDescription "A set of Element Declaration components.":L0.String

 >-- SCC.ElementDeclaration.substitutionGroupExclusions <R L0.IsRelatedTo

 --> SCC.ElementDeclaration.SubstitutionGroupExclusionEnum

 L0.HasDescription "A subset of {extension, restriction}.":L0.String

 >-- SCC.ElementDeclaration.disallowedSubstitutions <R L0.IsRelatedTo

 --> SCC.ElementDeclaration.DisallowedSubstitutionsEnum

 L0.HasDescription "A subset of {substitution, extension, restriction}.":L0.String

 >-- SCC.ElementDeclaration.abstract <R L0.HasProperty : L0.FunctionalRelation

 --> L0.Boolean

 L0.HasDescription "An xs:boolean value. Required.":L0.String

To import ReqIF schema or any other schemas into Simantics, the plugin

org.simantics.xml.ui

defines a command

org.simantics.xml.ui.schemaXniImport

and a command handler

org.simantics.xml.ui.browser.handler.SchemaXniImport.

for that purpose. The implementation is based on Apache Xerces2 Java Parser 2.11.0 (Sec-
tion 3.5; Xerces2, 2010) and a feature of Xerces Native Interface (XNI) framework which pro-
vides an interface

org.apache.xerces.xni.grammars.XMLGrammarPool

for an application to interact with a parser to exchange grammar objects or XML Schemas
and XML Schema components. The feature gives a possibility to the application to store or
cache the grammars. In XML document validation the parser requests initial grammars at

start up by retrieveInitialGrammarSet method. If a needed grammar is not in an initial

set the parser requests it by retrieveGrammar method. After successfully validating an XML

RESEARCH REPORT VTT-R-04722-15

17 (22)

document, the validator makes any new grammars available to application by using the

cacheGrammars method. The classes org.simantics.xml.schema.xni.GrammarPool and

org.simantics.xml.schema.xni.psvi.SSGrammarPool implement grammar pooling into

the Simantics database. The breadth-first-search algorithm is used to cache grammars as
Simantics ontologies. Figure 4 shows snapshots of imported and cached ReqIF schema in
the Simantics database.

Figure 4. ReqIF Schema imported into Simantics.

Several observations can be seen from the snapshots. URI fragments of the target
namespace of the schema are used to form a hierarchy into the Simantics database. In addi-
tion, different kind of schema components can have same name in the schema. This is not
allowed in Simantics. Thus, some prefixes are used (e.g. $$$ElementDeclaration$$$) to dif-
ferentiate the schema components. Figure 5 presents a complex type definition in Simantics.
This complex type definition has no name and it has been inherited from a predefined any-
Type definition.

RESEARCH REPORT VTT-R-04722-15

18 (22)

Figure 5. Unnamed complex type definition.

Figure 6. Element declaration.

Figure 6 shows THE-HEADER element declaration of the ReqIF schema in Simantics. It is
declared under REQ-IF complex type definition and is an instance of ElementDeclaration.
One interesting notice is that schema component element declarations are modelled as rela-
tions in Simantics unlike schema component attribute declarations which are modelled as
properties (SubrelationOf HasProperty) in Simantics.

To import ReqIF requirements the plugin

org.simantics.xml.ui.browser.handler

defines a command

org.simantics.xml.ui.xmlXniImport

and a command handler

org.simantics.xml.ui.browser.handler.XmlXniImport

for that purpose. XML data is imported according to XML InfoSet data model (XML InfoSet,
2004). The XML data model has been defined as ontology and it is predefined in the plugin

org.simantics.xml.ontology

The ontology contains XML information item definitions. Below is a definition for the Ele-
mentInfoItem.

XIS.ElementInfoItem <T XIS.InfoItem

 >-- XIS.ElementInfoItem.namepaceName <R L0.HasProperty : L0.FunctionalRelation

 --> L0.String

 L0.HasDescription "The namespace name, if any, of the element type. If the element

does not belong to a namespace, this property has no value.":L0.String

 >-- XIS.ElementInfoItem.localName <R L0.HasProperty : L0.FunctionalRelation

 --> L0.String

 L0.HasDescription "The local part of the element-type name. This does not include any

namespace prefix or following colon.":L0.String

 >-- XIS.ElementInfoItem.prefix <R L0.HasProperty : L0.FunctionalRelation

 --> L0.String

 L0.HasDescription "The namespace prefix part of the element-type name. If the name is

unprefixed, this property has no value. Note that namespace-aware applications should

use the namespace name rather than the prefix to identify elements.":L0.String

 >-- XIS.ElementInfoItem.children <R L0.IsComposedOf : L0.FunctionalRelation

 --> L0.List

RESEARCH REPORT VTT-R-04722-15

19 (22)

 L0.HasDescription "An ordered list of child information items, in document order. This

list contains element, processing instruction, unexpanded entity reference, character,

and comment information items, one for each element, processing instruction, reference

to an unprocessed external entity, data character, and comment appearing immediately

within the current element. If the element is empty, this list has no mem-

bers.":L0.String

 >-- XIS.ElementInfoItem.attributes <R L0.HasProperty

 --> XIS.AttributeInfoItem

 L0.InverseOf XIS.AttributeInfoItem.ownerElement

 L0.HasDescription "An unordered set of attribute information items, one for each of

the attributes (specified or defaulted from the DTD) of this element. Namespace decla-

rations do not appear in this set. If the element has no attributes, this set has no

members.":L0.String

 >-- XIS.ElementInfoItem.namespaceAttributes <R L0.HasProperty

 --> XIS.AttributeInfoItem

 L0.InverseOf XIS.AttributeInfoItem.ownerElement

 L0.HasDescription "An unordered set of attribute information items, one for each of

the namespace declarations (specified or defaulted from the DTD) of this element. Dec-

larations of the form xmlns='' and xmlns:name='', which undeclare the default

namespace and prefixes respectively, count as namespace declarations. Prefix undecla-

ration was added in Namespaces in XML 1.1. By definition, all namespace attributes

(including those named xmlns, whose [prefix] property has no value) have a namespace

URI of http://www.w3.org/2000/xmlns/. If the element has no namespace declarations,

this set has no members.":L0.String

 >-- XIS.ElementInfoItem.isParentOf <R L0.IsComposedOf

 --> XIS.ElementInfoItem

 --> XIS.CharacterInfoItem

 L0.InverseOf XIS.InfoItem.parent

 L0.HasDescription "The document or element information item which contains this infor-

mation item in its [children] property.":L0.String

 >-- XIS.ElementInfoItem.elementType <R L0.IsRelatedTo : L0.FunctionalRelation

 L0.HasDescription "An indication of the type found for this element during schema val-

idation.":L0.String

On the other hand, Figure 7 presents actual element data (i.e. the content of imported REQ-
IF-HEADER element) in Simantics.

It can be observed that XML elements map to instances of ElementInfoItems. However, they
have elementType relation to actual simple or complex type definition of schema. This infor-
mation is known according to PSVI provider of XML parser. This kind of design gives a lot of
flexibility for element contents. Thus, different kind of XML content can be imported although
all schemas are not available. In addition, usage of element and attribute declarations as
relations and properties respectively has been shown.

The Simantics XML data import functionality is based on implementation of SAX2 event han-
dler (DefaultHandler). The class

org.simantics.xml.ui.browser.handler.MyContentHandler

implements this behaviour. Element character content and attribute values are mapped from
XML data types into types of Simantics by the following way:

 anyType, string, NMTOKEN, NMTOKENS, IDREF, IDREFS, ID, ENTITY, ENTITIES,
NCName, Name, language, token, normalizedString

o L0.String

 anyURI, QName, gYear, gYearMonth, gMonth, gMonthDay, duration, dayTime-
Duration, yearMonthDuration, dateTime, dateTimeStamp, date

o L0.String

 integer, long, int, short, byte, nonNegativeInteger, positiveInteger, unsignedLong, un-
signedInt, unsignedShort, unsignedByte, nonPositiveInteger, negativeInteger

o L0.Long // also L0.Integer and L0.Byte would be available

 boolean
o L0.Boolean

 decimal, double
o L0.Double

 float

RESEARCH REPORT VTT-R-04722-15

20 (22)

o L0.Float

Figure 7. An element of XML document.

Today, the mapping implementation is quite trivial but it can be made more sophisticated with
the Simantics Databoard and its type system.

Because the design and implementation of graphical user interface to manipulate ReqIF re-
quirements in Simantics was the out of scope of this research the later steps in the ReqIF
data roundtrip are not included in this report. However, exporting manipulated ReqIF data
from Simantics is not so challenge problem as the presented data import.

5. Conclusions

This report focused on the steps to support ReqIF data roundtrip and data validation in the
Simantics environment. The report started by presenting a holistic user point of view of
ReqIF data roundtrip. After that, the problem statement was generalized for the Simantics
environment and alternative approaches to tackle the challenges were presented. In addition,
the needed technologies for the selected approach were documented and rationales for the
choices were presented. Finally, the demonstration was shown to concretize and visualize
the results of this research. The work illustrated that deep knowledge of XML Schema and its
abstract data model are necessary to survive with Simantics ReqIF data roundtrip implemen-
tation. Research questions related to full data roundtrip are still open and waiting for new
features of Simantics.

RESEARCH REPORT VTT-R-04722-15

21 (22)

References

DOM 3. 2004. Document Object Model (DOM) Level 3 Core Specification. Version 1.0. W3C Recommendation 07

April 2004. http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/. Referenced 7 Oct 2014.

Dongwon, L., Wesley W. C. 2000. Comparative Analysis of Six XML Schema Languages. Department of Com-

puter Science, University of California, Los Angeles. http://www.cobase.cs.ucla.edu/tech-

docs/dongwon/ucla-200008.html. Referenced 5 Nov 2014.

Eclipse. 2015. The Eclipse Foundation. http://www.eclipse.org/. Referenced 8 Oct 2015.

ISO/IEC 19757-3. 2006. Information technology — Document. Schema Definition Languages (DSDL) — Part

3:Rule-based validation — Schematron. First edition. 1 June 2006.

http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html. Referenced 5 Nov 2014.

JAXP 1.4. Trail: Java API for XML Processing (JAXP) in The Java™ Tutorials. Oracle.

http://docs.oracle.com/javase/tutorial/jaxp/. Referenced 17th March 2014.

Jelliffe, R. 2001. The Schematron. An XML Structure Validation Language using Patterns in Trees. Academia

Sinica Computing Centre, Taibei. http://xml.ascc.net/resource/schematron/schematron.html. Referenced

5 Nov 2014.

JSR 173. 2014. Streaming API for XML (StAX). Version 1.3. 4 Mar 2014. https://jcp.org/en/jsr/detail?id=173. Ref-

erenced 7 Oct 2014.

JSR 206. 2013. Java™ API for XML Processing (JAXP). Version 1.6. https://www.jcp.org/en/jsr/detail?id=206. 4

Dec 2013. Referenced 7 Oct 2014.

JSR 222. 2009. JavaTM Architecture for XML Binding (JAXB) 2.2. Sun Microsystems, Inc. (Kawaguchi, K., Vajjha-

la, S., Fialli, J.), Final Release. December 10, 2009. https://jcp.org/en/jsr/detail?id=222. Referenced 5th

Oct 2015.

Litani, E. 2004. XML Schema API. W3C Member Submission 9 Mar 2004.

http://www.w3.org/Submission/2004/SUBM-xmlschema-api-20040309/. Rerefenced 27th Oct 2014.

Murata, M., Dongwon, L., Murali, M. 2001. Taxonomy of XML Schema Languages Using Formal Language Theo-

ry. Presented at eXtreme Markup Language 2001. http://www.cobase.cs.ucla.edu/tech-

docs/dongwon/mura0619.pdf. Referenced 5 Nov 2014.

OSGi. 2015. The Dynamic Module System for Java™. OSGi Alliance.

http://www.osgi.org/Technology/WhatIsOSGi. Referenced 8 Oct 2015.

RELAX NG. 2001. RELAX NG Specification. Committee Specification 3 December 2001. The Organization for the

Advancement of Structured Information Standards [OASIS]. https://www.oasis-

open.org/committees/relax-ng/spec-20011203.html or https://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=relax-ng. Referenced 5 Nov 2014.

ReqIF. 2013. Requirements Interchange Format (ReqIF). Version 1.1. OMG Object Management Group. October

2013. http://www.omg.org/spec/ReqIF/. Referenced 6th Feb 2014

SAX 2. 2002. Simple API for XML. Version 2.0.1. http://sax.sourceforge.net/. Referenced 7 Oct 2014.

Simantics. 2014. THTH Association of Decentralized Information Management for Industry. Simantics Division.

https://www.simantics.org/simantics. Referenced 7 Oct 2014.

Simantics. 2015. http://dev.simantics.org/index.php/Main_Page. 25 June 2015. Referenced 7 Oct 2015.

TrAX. 2006. Transformations API for XML. http://xml.apache.org/xalan-j/trax.html. Referenced 5th October 2015.

Van der Vlist, E. 2001. Comparing XML Schema Languages.

O’Reilly Media, Inc. 12 Dec 2001. http://www.xml.com/pub/a/2001/12/12/schemacompare.html. Refer-

enced 5 Nov 2014.

http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/
http://www.cobase.cs.ucla.edu/tech-docs/dongwon/ucla-200008.html
http://www.cobase.cs.ucla.edu/tech-docs/dongwon/ucla-200008.html
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
http://xml.ascc.net/resource/schematron/schematron.html
https://jcp.org/en/jsr/detail?id=173
http://www.w3.org/Submission/2004/SUBM-xmlschema-api-20040309/
http://www.cobase.cs.ucla.edu/tech-docs/dongwon/mura0619.pdf
http://www.cobase.cs.ucla.edu/tech-docs/dongwon/mura0619.pdf
https://www.oasis-open.org/committees/relax-ng/spec-20011203.html
https://www.oasis-open.org/committees/relax-ng/spec-20011203.html
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=relax-ng
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=relax-ng
http://sax.sourceforge.net/
https://www.simantics.org/simantics
http://www.xml.com/pub/a/2001/12/12/schemacompare.html

RESEARCH REPORT VTT-R-04722-15

22 (22)

Woodstox. 2015. http://wiki.fasterxml.com/WoodstoxHome. Referenced 1 Sep 2015.

Xerces2. 2010. Xerces2 Java Parser 2.11.0 Release. The Apache Software Foundation.

https://xerces.apache.org/xerces2-j/. Referenced 5th October 2015.

XML 1.0. 2008. Extensible Markup Language (XML) 1.0. Fifth Edition. W3C Recommendation 26 November

2008. http://www.w3.org/TR/xml/. Referenced 5 Nov 2014.

XML 1.1. 2006. Extensible Markup Language (XML) 1.1. Second Edition. W3C. 16 August 2006.

http://www.w3.org/TR/2006/REC-xml11-20060816/. Referenced 6th Feb 2014

XML Catalogs. 2005. XML Catalogs OASIS Standard V1.1. Walsh, N. (ed). 7 Oct 2005. https://www.oasis-

open.org/committees/download.php/14809/xml-catalogs.html. Rerefenced 27 Oct 2014.

XML InfoSet. 2004. XML Information Set. Second Edition. W3C. 4 February 2004

http://www.w3.org/TR/2004/REC-xml-infoset-20040204/. Referenced 6th Feb 2014

XML Namespaces. 2006. Namespaces in XML 1.1. W3C. 16 August 2006. http://www.w3.org/TR/xml-names11/.

Referenced 6th Feb 2014

XML Schema languages. 2014. Wikipedia. 17 Oct 2014. http://en.wikipedia.org/wiki/XML_schema_languages.

Referenced 5 Nov 2014.

XML Schema. 2004. XML Schema Part 0: Primer. W3C Recommendation 28 October 2004.

http://www.w3.org/TR/xmlschema-0/. Referenced 6th Feb 2014.

XMLBeans. 2012. Apache XMLBeans. Version 2.6.0. 14 Aug 2012. http://xmlbeans.apache.org/. Referenced 7

Oct 2014.

XPath 3.0. 2014. XML Path Language (XPath) 3.0. W3C Recommendation 08 April 2014.

http://www.w3.org/TR/xpath-30/. Rerefenced 7 Oct 2014.

XQuery 3.0. 2014. An XML Query Language. W3C Recommendation 08 April 2014.

http://www.w3.org/TR/xquery-30/. Rerefenced 7 Oct 2014.

XSD 1.1. 2012a. W3C XML Schema Definition Language (XSD) 1.1 - Part 1: Structures. W3C Recommendation 5

April 2012. http://www.w3.org/TR/xmlschema11-1/. Rerefenced 7 Oct 2014.

XSD 1.1. 2012b. W3C XML Schema Definition Language (XSD) 1.1 - Part 2: Datatypes. W3C Recommendation 5

April 2012. http://www.w3.org/TR/xmlschema11-2/. Referenced 17th March 2014.

http://www.w3.org/TR/xml/
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
http://en.wikipedia.org/wiki/XML_schema_languages
http://www.w3.org/TR/xmlschema-0/
http://xmlbeans.apache.org/
http://www.w3.org/TR/xpath-30/
http://www.w3.org/TR/xmlschema11-1/
http://www.w3.org/TR/xmlschema11-2/

	Preface
	Tampere 20.10.2015
	Authors
	Contents
	Terminology, Definitions, Abbreviations
	1. Introduction
	2. ReqIF and data roundtrip
	2.1 ReqIF use cases

	3. ReqIF Simantics implementation background
	3.1 Data exchange process
	3.2 Schemas and schema languages
	3.3 XSD schema: datatypes, components and references
	3.4 Possible approaches
	3.5 Technologies
	3.6 Simantics and ontologies

	4. Demonstration of SIMANTICS ReqIF capability
	5. Conclusions
	References

