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Abstract—Formal  methods  –  such  as  model  checking  –  have
definite advantages over more commonplace verification
techniques. By providing proof of the analyzed systems’
correctness, they are especially useful in domains that are under
regulatory supervision, like the nuclear industry. The foremost
challenge for wider adoption of model checking is the effort and
the expertise required for formalizing functional requirements
into verifiable properties. A particular challenge in verifying the
application software of industrial process control systems is
taking into account the different sequencing and timing issues
that arise from, e.g., the dynamic behavior of the plant processes
being controlled. In this paper, we review specification languages
that are aimed at making formal methods more accessible. We
have collected 1079 sample formal properties from practical
model checking projects in the nuclear industry, and identified
repeatedly occurring property types. We present our findings,
and based on the sample data, evaluate the applicability of
different approaches on user-friendly property specification.

Keywords—model checking; formal specification languages;
requirement patterns; requirements engineering; nuclear power

I. INTRODUCTION

Reliability of industrial instrumentation and control (I&C)
systems is a question that is sometimes critical to safety and
almost always critical to cost. Due to the complexity of modern
digital I&C systems, exhaustive verification through
conventional methods (e.g., testing, simulation, or reviews) is
nevertheless practically impossible. Formal methods, on the
other hand, can be used to systematically demonstrate the
consistency and completeness of system specifications, and
moreover, to verify the system implementation using rigorous
analysis techniques and mathematical proofs [1].

The  nuclear  industry  is  one  example  of  a  domain  where
safety is paramount, and accordingly, the regulatory
requirements are strict. It should therefore be no surprise that
the nuclear industry – despite being traditionally conservative
when it comes to applying emerging techniques – has adopted
formal verification methods to practical use. In Finland, VTT
has performed model checking of nuclear I&C software design

in practice since the year 2008 [2].

The major catch is that formalization of system
requirements into automatically verifiable properties is hard
and error-prone [3]. The use of formalisms such as temporal
logics requires a level of sophistication many users never
develop [4]. The training required to reach proficiency may
outweigh expected benefits [1], which presents an impediment
to moving formal techniques from theoretical research to
practice [5]. If used inappropriately, by insufficiently trained
personnel, or without proper tool support, formal methods can
even be dangerous [1].

Since the 1990s, there have been different attempts to
create a user-friendly specification language, to hide the
complexity of the underlying formal language, and allow the
user work with a more acceptable way of representation – be it
a pattern, a natural language template, or a visual language,
preferably one that resembles a language already used in the
industry.

The contribution of the paper is threefold. First, after
introducing model checking in the context of industrial I&C
systems in Section II, we survey different approaches on user-
friendly property specification in Section III. Second, in
Section IV, we analyze our sample data, which is composed of
1079 collected sample properties from practical customer
projects VTT has carried out in the nuclear industry. Finally, in
Section V, we examine the applicability of the different user-
friendly approaches based on the sample data. Our conclusions
are stated in Section VI.

II. FORMAL VERIFICATION OF INDUSTRIAL CONTROL
SOFTWARE

A. Model checking of process control application software
Model checking [6] is a formal verification method than

can be used to show that a model of a (hardware or software)
system fulfills specified properties. A software tool called a
model checker is used to automatically determine if a property
holds, taking into account all the possible states or executions

This work has been funded by the Finnish Research Programme on
Nuclear Power Plant Safety 2015–2018 (SAFIR 2018), and also supported by
the Government of Russian Federation, Grant 074-U01.



of the model. If an execution path contrary to a stated property
is found, it is returned to the user as a counterexample.

Model checking of industrial programmable logic controller
(PLC) software is a topic addressed by several authors using a
range of different methods [7, 8, 9, 10]. Application areas are
as diverse as those of PLCs – nuclear [2], chemical [9], rail
traffic [11], automotive industry [12], or even knitting [13], just
to name a few. Much research has focused on generating the
system model automatically from standard PCL programming
languages [14]. Even with non-standard vendor-specific
languages in use, creating or generating the system model is
relatively easy [14] when compared with specification of the
properties. Nevertheless, model checking is still far from
common industry practice [12].

In model checking, the system is usually modelled as a type
of finite state machine (FSM), using a discrete model of time.
For analyzing I&C systems, discrete time is usually a sufficient
approximation for the cyclic processing of time in, for
example, PLC equipment [15, 16]. Still, different modelling
tricks are sometimes required to properly handle timed aspects
of the logic [14, 17]. Techniques for real-time model checking
do exist, but our experience has shown that real-time model
checkers are not – as of yet – as practical in I&C applications
as discrete-time tools are [18]. Other abstractions are also
needed in defining the FSM in order to handle analogue data,
complex algebra, and asynchrony in distributed systems [2, 14,
15]. When aiming for safety demonstration, the limitations
imposed by these abstractions should be understood and
documented [1].

B. Property formalization
The formalized properties are typically divided in two main

types. Safety properties state that something (“bad”) should
never happen, while liveness properties state that something
(“good”) must eventually happen [19]. Verification of safety
properties, in particular, highlights the advantages of formal
methods,  as  it  can  be  difficult  to  assess  what  kind  of  test
coverage, for example, is sufficient for demonstrating that an
unwanted situation will never occur.

In model checking, temporal logics are typically used to
specify the properties. A temporal logic is a formalism that
describes sequences of transitions between states in a system
[6]. Languages such as Linear Temporal Logic (LTL) and
Computational Tree Logic (CTL) use temporal operators,
which can be combined with Boolean logic or nested arbitrarily
[6]. LTL is based on linear time, while CTL handles time as a
branching structure, utilizing path quantifiers.

The most common LTL temporal operators are introduced
in Table I. (Different notations are in use, the symbols used
here are taken from [6].) In Table I, p and q are placeholders
for propositions – statements about the state of affairs (in terms
of model variable values) than are either true or false at any
given time. Temporal operators can accept not only
propositions, but also other temporal formulas. As for CTL
temporal operators, they are obtained from LTL ones by adding
path quantifiers E (“there is a path from the current state”) or A
(“for all paths from the current state”), e.g. EX or AX.

TABLE I. BASIC TEMPORAL OPERATORS IN LTL

Op. Semantics
X p (“next state”): p is true in the next state of the path.
G p (“always” or “globally”): p is true at every state on the path.

F p (“eventually” or “in the future”): p is true at some future state
on the path.

p U q (“until”): q is true at some future state, and at every preceding
state on path, p is true.

Notably, the operators listed in Table I are all related to
future states of systems, while many interesting properties of
systems are nonetheless more naturally formulated in a way
that addresses past states. Accordingly, temporal logics with
past operators have also been developed. In Table II, we list
past temporal operators developed for LTL (taken from [20]):

TABLE II. PAST TEMPORAL OPERATORS FOR LTL

Op. Semantics
Y p (“yesterday”): p holds in the previous state of the path.

H p (“historically”): p is true at every preceding (and the current)
state on the path.

O p (“once”): p is true ar some past (or the current) state on path.

p S q (“since”): q is true at some past state, and for every state that
has then followed on the path, p has been true.

The past operators can be seen as temporal duals of the
future operators, Y being the dual of X, H the dual of G, O the
dual of F, and S the dual of U [20].

In specifying functional requirements (and therefore also
verifiable properties) for process control systems, there is a
specific need to address sequences in time, mostly due to the
dynamic behavior of the physical plant processes being
controlled, and feedback from both the processes and human
users. Desired effects of taken actions do not occur
immediately, but take place within different time windows.
Proper timing is often crucial for system design, be it a matter
of simple delays or execution of more complex sequences.

The need to address timing can be due to different factors:

Filtering of sporadic signals (due to, e.g.,
electromagnetic interference, flickering switches, or
measurements fluctuating at the alarm limit) may
require that signals are only acknowledged after having
been active for some time (on-delay).

Actuation commands may need to be held (off-delay)
for a given time to ensure that actuators have sufficient
time to reach a desired state.

Complex sequences may need to be executed in
transient situations such as process start up. Controlling
actions will need to take place in a particular order, to
minimize production losses, save energy, and protect
the equipment.

Feedback from the controlled processes has to be
accounted for. For example, a tank full of liquid is not
heated  in  an  instant.  It  also  takes  a  long  while  for



process equipment such as large generators or motors to
fully start or stop.

Feedback from human users has to be taken into
account. Consider, for example, an application where a
low-level alarm will not directly lead to actions, if an
operator acknowledges the alarm within a given time
limit.

Languages such as LTL and CTL are more concerned with
the relative order of events than explicit time, although, as
mentioned above, discrete time can still be used to represent
the cyclic processing of PLCs. For more exact handling of
time, real-time specification languages such as MTL and TCTL
have been developed (see, e.g., [21]).

III. USER-FRIENDLY SPECIFICATION LANGUAGES

A. Property patterns
A common solution to bridge the gap between generally

acceptable, natural language requirements and formal
specification languages is to use property specification
patterns. A specification pattern describes some aspect of a
system’s desired behavior, and provides suitable expressions in
different formalisms.

A particularly oft-cited collection of patterns was proposed
in [22] and [23], where Dwyer et al. introduce a system of
patterns for finite-state verification tools such as model
checkers, organized into hierarchies to support browsing. A
pattern consists of a name, a statement of the pattern’s intent,
mappings into formal logic, examples of pattern use, and
relationships to other patterns. Each pattern has a scope that
specifies the extent of the model execution over which the
pattern must hold (Globally, Before R, After Q, Between Q and
R, After Q until R).

In [24] and [25], Campos et al. propose a collection of
domain-specific specification patterns for automated
production systems, based on property data collected from
literature. In [26], Monteiro et al. propose a set of patterns for
cellular interaction networks.

B. Visual languages
When looking for a specification language that would be

both 1) generally understandable to users not familiar with
temporal logic, and 2) suited for expressing complex
sequences, an obvious starting point is to look into visual
languages. Here, we survey a few different approaches.

In Graphical Interval Logic (GIL) [27], properties of legal
state sequences are expressed with timing diagrams. An
interval (denoted by a left-closed right-open line segment)
specifies the context within which properties hold. Search
primitives (dashed arrow-ended line) locate the first future
point at which their target holds. A triangle is used as a point
operator, locating a point, and asserting that a property holds
over the interval specified below, starting at that point. Layout
determines the grouping of operations (see Fig. 1 for an
example).

The TimeLine Editor [28] uses a representation of the
timeline as a horizontal bar, with vertical marks notating
interesting event occurrences as they are generated over time.
The system events come in three types: regular events (that do
not always need to occur but make a property relevant when
they do), required events (that must occur in response to
regular events), and fail evens (that should not occur). Actual
timing is not addressed (even in approximate terms), only the
ordering of events.

Fig. 1.  A GIL specification example that reads: “The elevator goes up when it
departs the first floor, arriving at the second floor without first visiting any
other floors.”

A visual language developed for a tool called Timing
Diagram Editor (TDE) is introduced in [29]. The timing
diagram consists of two parts, with the upper “if” part
representing “input” signals, and the lower “then” part
representing desired “outputs”. When the “if“ part is achieved,
it is required that the changes of the “then” signals do not
violate the partial ordering specified in the diagram. Partial
ordering means that ordering between events is not determined
by  their  horizontal  position  on  the  time  line.  In  order  to
constrain ordering, precedence operators are used. While
sequential ordering would be more intuitive, it would mean
that only a single scenario would be described in each diagram.
To illustrate, in Fig. 2, there are several possible scenarios,
since the diagram (a) does not state that the rising edge of the
s2 signal occurs before the rising edge of s1, until precedence
operators are added (as in diagram (b)).

Fig. 2.  In TDE specifications, the ordering of events is not specified by their
horizontal position on the timeline, but by the use of precendence operators.
[29]



The specification language for the TDE is reminiscent of
Symbolic Timing Diagrams (STD), in development since 1993
[30].

Property Sequence Chart (PSC) [5] is a scenario-based
language for expressing temporal properties. PSC extends a
subset of UML 2.0 Interaction Sequence Diagrams, introducing
graphical elements that specify ordering and constraints for
messages passed between communicating system components.
Some ideas, terms, and graphical elements are borrowed from
TimeLine Editor. PSC also supports partial ordering.

In PSC diagrams, time runs from the top down. Messages
fall in three categories familiar from TimeLine Editor, with the
prefix “e” for regular, “r” for mandatory, and “f” for fail
messages. The exemplar PSC property in Fig. 3 states: “if the
user has logged in and if the withdraw request has been
satisfied, the bank database must be updated; the withdraw
request is allowed only if the user has not logged out”.
Symbols on arrows denote constraints, with the filled circle in
Fig. 3 standing for unwanted messages.

Fig. 3.  An exemplar PSC property [5]

Live Sequence Charts (LSC) [31] represent another attempt
at modifying UML charts in order to capture properties. LSC
scenarios are described in terms of charts, locations, messages,
and conditions – all of which can be “hot” (mandatory) or
“cold” (provisional). Both liveness (“yes-stories”) and safety
(“no-stories”) properties can be specified.

VTS [32] is a scenario-based notation aimed at expressing
real-time requirements. The notation is based on points
connected by lines and arrows. Points stand for sets of events.
An arrow between two points defines the precedence of the
events. The event labels on the arrows stand for forbidden
events between the connected points. Temporal constraints can
also  be  included  in  the  arrows.  A  simple  example  of  the
notation can be seen in Fig. 4. The pattern in the figure depicts
an execution that is true if and only if it contains a stimulus e
that is followed by two responses, r1 and r2,  and  there  is  no
event r3 between them.

In  LR [33], properties are visualized as directed acyclic
graphs. Nodes of the graph represent predicates (propositions),
logical connections (conjunction, disjunction, negation), and
temporal operators. Path quantifiers are also used. Predicates
that specify inputs end with “!”, while predicates that specify
outputs end with “?”. Notably, the temporal operators are
defined by a formal method expert for each application
domain. A keyword such as “eventually” or “always” is used in

the graphs, while the matching formal template is specified
manually. For an example of LR, see Fig. 5.

Fig. 4.  An exemplar simple VTS pattern [32]

The Simulink Design Verifier [34] uses function block
diagrams for specifying properties. Three basic temporal
operator blocks are provided: Detector (for detecting and
constructing inputs and outputs with a user-specified length of
true duration), Extender (extending the true duration of an
input signal by a fixed number of steps or indefinitely), and
Within Implies (capturing the within implication by observing
whether  the  second  input  is  true  for  at  least  one  time  step
within each true duration of the first input).

Fig. 5.  An exemplar property in LR [33]

The applicability of the languages listed above to fit our
domain-specific needs is discussed in Section V. Visual
languages dealing with real time properties (see, e.g., [35]), are
outside of our scope (with the exception of VTS), since our
experience has shown that real time model checkers are so far
not efficient enough for functional verification of I&C software
in practice [18].

C. PSL
Property Specification Language (PSL) [36] is an IEC and

IEEE standard for the specification of properties or assertions
about hardware design. It is designed to be compatible with
hardware description languages (GFL, VHDL, Verilog and
SystemC) via different “flavors”, but can just as well be used in
any context where LTL or CTL applies. Indeed, PSL is
formally an extension of LTL and CTL.

The aim is that PSL specifications should be “human
readable” [37]. PSL uses two styles, LTL style, and Sequential
Regular Expressions (SERE) style.

The LTL style provides syntactic sugaring (“always” for G,
“never” for !G, etc.), but also useful operator variations. A
variant of the “next” operator allows one to conveniently state
the property “a leads to b for the following three to five cycles”
as [37]:



always (a -> next_a[3:5] (b));

The SERE style is used to describe multi-cycle behavior as
a  series  of  Boolean expressions.  A SERE is  enclosed  in  curly
braces, and the “atoms” of the SERE are separated by semi-
colons. Here is a simple example from [37]:

always {req} |=> {ack ; busy[*3] ; done};

Using the implication operator |=> and the repetition
operator [*n], the above formula translates to: “if req is  true,
then, starting at the next cycle, there must follow a sequence
where ack is  true  for  one  cycle,  then busy is true for three
cycles, and then done is true for one cycle.” The equivalent
nested LTL property would be harder to write and read.

IV. ANALYSIS OF CUSTOMER SPECIFICATIONS

A. Practical industry applications
Since 2008, VTT has been applying model checking in

practical customer projects in the Finnish nuclear industry. On
commission from the Finnish Radiation and Nuclear Safety
Authority (STUK), VTT has evaluated the Protection System
(PS) and the Priority and Actuation Control System (PACS) of
the Olkiluoto 3 nuclear power plant (NPP) under construction.
On  commission  from  Fortum  Power  and  Heat,  VTT  has
performed independent, third-party verification of application
functions related to, e.g., reactor protection, in support of the
Loviisa  NPP  automation  renewal  projects  LARA  [2]  and
ELSA. For Fennovoima, the future operator of the NPP in
Hanhikivi, VTT has evaluated the functional architecture of
I&C systems.

To evaluate the applicability of different approaches on
user-friendly property specification, we have collected
properties written and verified in practical customer projects
VTT has performed for four clients in the nuclear industry
between the years 2014 and 2016. The properties have been
written by two analysts, each with approximately eight years of
experience in practical work. The properties have been written
in LTL, CTL and PSL, to the extent which PSL is supported by
the NuSMV [38] model checker.

The actual verification has been performed using the
graphical modelling tool MODCHK [14], developed by VTT,
using NuSMV. The models employ a manually specified
function block library (since the source material is based on
non-standard, vendor-specific, black-box function blocks) [14],
and a discrete time modelling approach for time-dependent
components [15]. The specified properties typically relate to
(safety) I&C functions, expressed as function block diagrams.

As far as we are aware, no similar study has been
conducted in the I&C domain. In [24] and [25], the domain-
specific study was based on literature, not actual industrial
applications. In [12], the authors collected about one hundred
example properties from car and aerospace component
manufacturing industry, but the properties were not formal to
begin with, but formalized by the authors for research
purposes.

B. The sample data
1079 properties were collected. 943 (87 %) of the

properties were written in LTL, 133 (12 %) in PSL, and only 3
in CTL. For all the LTL properties written, the occurrence of
different temporal operators is shown in Table III.

All of the PSL properties use SEREs, and specifically, 130
(98  %)  of  the  PSL  properties  contain  at  least  one  SERE  that
employs the repetition operator [*n].

993  (92  %)  of  all  properties  can  be  classified  as
implications (due to the use of operators ->, |->, and |=>).

TABLE III. THE USE OF TEMPORAL OPERATORS IN THE LTL PROPERTIES

Operator no. of
properties

of all LTL
properties

G 938 99.5 %
X 122 12.9 %
F 49 5.2 %
O 25 2.7 %
H 11 1.2 %
Y 11 1.2 %
U 8 0.8 %

Regarding timing, of all properties, 263 (24.4 %) refer to a
specific future or past state (by using the LTL operator X or Y,
or PSL SEREs).

Out of the sample data, we can identify patterns (types of
properties) that repeat. In Table IV, we list the property types
that are used more than two times in total, and appear in the
context of more than one model (I&C function).

TABLE IV. MOST COMMON TYPES OF PROPERTIES IN THE SAMPLE DATA

# Property type Lang. %
1 G (p -> q); LTL 646 59.9
2 always {SERE} |-> {SERE}!; PSL 102 9.5
3 G (p & X q -> X r); LTL 64 5.9
4 G (p); LTL 50 4.6
5 G (p -> F q); LTL 31 2.9
6 G (!p); LTL 23 2.1
7 G (p) -> G (q -> r); LTL 22 2.0
8 never {SERE}; PSL 22 2.0
9 G (p -> O q); LTL 20 1.9
10 always {SERE} |=> {SERE}!; PSL 9 0.8
11 G (p & X q -> r); LTL 6 0.6
12 G (p) -> G (q); LTL 5 0.5
13 G (p -> X q); LTL 4 0.4
14 G (p & X q & X X r -> X X s); LTL 3 0.3

 Others * 72 6.7
Total * 1079 100

The temporal logic behind property types (1), (4), and (6) is
the same, as there are only differences in the Boolean algebra.
For the purposes of evaluating different approaches, we
nevertheless separate them here. The type G (p) therefore



actually covers 719 (66.6 %) of all  properties. The PSL types
(2), (8) and (10), on the other hand, contain different temporal
structures within each type depending on the use of SEREs.

Out of the 72 (LTL and CTL) properties categorized as
others, 10 could easily be rewritten using PSL types (2), (8) or
(10), but the analyst who was involved was more comfortable
with nested LTL expressions. Many others could also be
rewritten in PSL, although not directly with the constructs
listed in Table IV. In all, none of the property types categorized
as others generally repeat, nor are used in the context of more
than one model. It is also worth noting that not all of the
properties necessarily relate to actual functional system
requirements, but may represent an attempt of the analyst to
understand some aspect of the system (model) behavior.

Since the occurrence of property types (6) and (8) adds up
to only 4.2 %, it would seem there are surprisingly few safety
properties. However, when we consider, e.g., spurious
actuation, a safety property: “the (safety) function shall not be
actuated unless the process criteria is true” can be written as: G
(actuation -> criteria). While this is equivalent with G
!(actuation & !criteria), it seems to take the form of a liveness
property. The former is easier to write, and also modify to the
property type (9) to state: “the (safety) function shall not be
actuated unless the process criteria has been true at some point
in the past”.

Types (7) and (12) are examples of 41 different properties
(3.8 % of sample data) that begin with the expression “G (p) -
>”. In 35 of these 41 properties (as in (7) or (12)), what then
follows  is  one  of  the  other  property  types  listed  in  Table  IV.
Reasons for using such an expression might include 1) filtering
out irrelevant execution paths, 2) checking to see if a different
counterexample is possible, or 3) wanting to understand how
the system (model) behaves under certain assumptions.

V. APPLICABILITY OF THE SPECIFICATION LANGUAGES

A. Specification patterns
Dwyer et al. claim that in their experience, 92% of

collected requirements match their specification patterns, the
most popular being Response (“p leads to s”), Universality (“p
is true”), and Absence (“p is false”) [23]. Based on Table IV, of
the properties we have collected, 64.5 % ((1) and (4)
combined) fall under Universality, 2.9 % under Response, and
2.1 % under Absence. The type (9) could also be captured
using the Precedence pattern, bringing the total up to 71.4 %,
with only four patterns. The domain-specific patterns in [24]
also contain our type (13) in the form of the Immediate
Response pattern, which would bring a marginal advantage of
further 0.4 %. The numbers might be different if the analysts
behind the case data had made a specific effort to apply the
patterns, but our experience has shown that it is difficult to
express I&C specific properties related to timing and sequences
by using the scopes of Dwyer et al. [39].

From Table IV, we can see that just eleven LTL templates
or patterns ((1), (3), (4), (5), (6), (7), (9), (11), (12), (13) and
(14)) would be enough to capture 81.0 % of all sampled
properties. ((1), (4), and (6) could also be combined to a more
generic pattern, since their temporal aspects are equivalent.)

However, if we wish to capture more, in a way that still  frees
the user from having to learn temporal logic, the number of the
necessary patterns increases dramatically. The relatively large
share of the PSL properties suggests that a pattern-based
solution alone (without a SERE-type logic for expressing
sequences of states, at least) does not suffice for our domain. In
general, it is also challenging to create specification patterns
that are both generic enough to be applicable, and concrete
enough to be comprehensible [26].

Still, if we were to introduce new, domain-specific
specification patterns for I&C (similarly as authors of [24], as
well as [26] in their own field, have done), an obvious
candidate would be the third-most common property type in
Table IV: G (p & X q -> X r), or: “p followed on the next time
step by q shall lead to r” (5.9 % of collected properties). An
exemplar application of this pattern is to state: G (!p & X p ->
X q), or: “a rising edge of p shall lead to q”.

B. Visual languages
In graphical specification languages based on sequence

diagrams, properties are seen as relations on a set of messages
being exchanged between system components, with different
constraints applied (messages being mandatory, provisional,
etc.) [5]. Sequence diagrams tend to depict (wanted or
unwanted) scenarios, while verifiable properties should focus
on transitions between system states in a reactive system not
designed to terminate [6]. Safety properties are particularly
challenging, since “anti-scenarios” can easily lead to
cumbersome and error-prone diagrams [32].

Graphical languages based on timing diagrams, where
states of variables are visualized on a time line, are
undoubtedly familiar to many engineers, but additional
elements are often needed for expressing constraints. Effective
property formalization calls for (seemingly counterintuitive)
partial  ordering,  where  the  horizontal  position  of  events  on  a
time line, for example, does not necessarily determine the order
in which events have to take place. Sequential ordering – while
common in our sample data – as an only option limits the
representational capabilities [29], and “we sometimes want to
specify that the relative occurrence times between certain
events are irrelevant” [3].

Instead of analyzing in detail how each individual graphical
language can be used to capture our sample properties, we can
identify general, I&C domain-specific criteria:

C1: Modelling of time should be possible, at least in
discrete terms.

C2: Not limiting to message exchange – The “events”
of VTS, for example, are a more versatile starting point
than messages, and closer to the idea of propositions
referring to system (model) states.

C3: Resemblance to a language already used in I&C
engineering would ease the adoption by industry
experts.

C4: Availability of tools has obvious benefits, but also
suggests that the approach is applicable in practice.



C5: Partial ordering should be supported (see above).

C6: Alternative state paths (such as: “A leads to B or
C”) should be supported.

In Table V, we list visual languages mentioned in Section
III, to see how they meet the above criteria.

Based on Table V, it would seem that the Simulink Design
Verifier holds the most potential. Still, the expressiveness
comes at a cost, as the analyst still has to get familiar with
temporal logic operators, here in the form of specialized
function blocks. Furthermore, using the same language for
stating both the requirements and the design can lead to
confusion, if, for example, temporal operator blocks are
confused with delay blocks.

TABLE V. CRITERIA FOR VISUAL SPECIFICATION LANGUAGES

C1 C2 C3 C4 C5 C6
Simulink Design Verifier + + + + + +
Graphical Interval Logic + + +
LR + + + +
TimeLine Editor + a

VTS + + b +
PSC +c +
LSC +d +
STD e + + f +
Timing Diagram Editor + + g +

a. Has been available at some point from Bell Labs?
b. A Microsoft Visio plugin is described in [32], but it is apparently unavailable.

c. CHARMY [5], PragmaDev Tracer (http://www.pragmadev.com/product/tracing.html)
d. Play-Engine (http://www.wisdom.weizmann.ac.il/~playbook/)

e. “Distance measures” are a part of an extension of STD called STDx [30].
f. CheckOff is introduced in [30], but is apparently unavailable.

g. Source code for the TDE tool [29] is in theory available, but the implementation is over ten years old
and left at a prototypical stage.

C. PSL
PSL is a textual language, but it does meet all the

requirements we specified for visual specification languages in
Table V. It is especially convenient in expressing sequences
and (discrete) timing through the use of SEREs. For analysts
already familiar with temporal logic, PSL is – as intended – a
user-friendly specification language.

Looking at our sample data, all the LTL property types
listed in Table IV could easily be expressed using PSL, with
the exception of (9), which contains the past operator O. This
formula is useful in expressing safety properties of the type:
“the function p should only be activated, if there was a criteria
q active in some point in the past”. The formula can be
replaced with the equivalent [40] PSL expression !(!q until (p
& !q)), or based on the “Precedence” [23] pattern: (always !p) |
(!p until q), but both formulae are nevertheless less convenient
to read or write.

In all, there are only three types of PSL property types in
Table IV, and within those types, the only aspect that varies is
how the SEREs are constructed. A visual language (and a tool)

based on easy manipulation of SERE-type properties would
therefore seem like a worthwhile topic for further research.

VI. CONCLUSIONS

The sample data we have collected from VTT’s practical
customer work on model checking supports the conclusions
others have already drawn: a relatively small number of
specification patterns can cover a large part of the specification
needs. On the other hand, the data support our own assumption
that a specification language aimed the verification of I&C
application software design needs also to support properties
that deal with timing issues and sequences: 24.4 % of all
sampled properties referred to certain specific future or past
states.

Many of the attempts at a visual specification language are
based on representations I&C professionals are already familiar
with, such as sequence or timing diagrams. However, such
representations tend to visualize single (wanted or unwanted)
scenarios, while there are a practically infinite number of
scenarios than can fulfill or violate a stated property. To
express properties, the languages have to introduce features and
constructs that are unfamiliar, or even counterintuitive. The
right balance between expressiveness and readability is hard to
achieve, and the current lack of established and maintained
tools speaks for itself.

If we were to present the user with a set of nine to eleven
LTL patterns (whose temporal structure would not have to be
modified in use, only the Boolean algebra inside the
propositions) and a graphical, user-friendly way of specifying
properties that conform to the basic SERE-type PSL
implications, we would have covered 93.3 % of the properties
in the sample data. Knowing that many of the properties
belonging to the remaining 6.7 % 1) could in many cases be
modified to fit given patterns, and/or 2) are likely not all that
essential for verifying given functional requirements (but
rather, e.g., the analyst trying understand some aspect of the
system (model) behavior), these numbers seem satisfactory.

PSL  is  a  good  option  for  users  already  familiar  with
temporal logic. Given our sample data, the only noteworthy
disadvantage of PSL is the lack of past operators. The formula
“G (p -> O q)”, specifically, is quite useful for expressing
certain safety properties. The equivalent formulae without the
past operator O are more difficult to read. The formula is used
in 1.9 % of properties in the sample data.

Finding a user-friendly formal specification language has
been a research topic for over twenty years. Had the problem
been already solved, formal methods such as model checking
would today be in much wider use.
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