
 

 
 

 

 

 

 

 RESEARCH REPORT  VTT-R-02326-16 

 

 
 

 

FEM based virtual testing of HSS 
beams with flange holes 

Authors: Asko Talja, Juha Kurkela, Petr Hradil 

Confidentiality: Public 

 
 
 
 





 

 

RESEARCH REPORT VTT-R-02326-16 

2 (58) 

  

 

Contents 

1. Introduction ....................................................................................................................... 3 

2. Theoretical study of material ductility for beams without holes .......................................... 7 
2.1 Rotation capacity ...................................................................................................... 7 
2.2 Plastic moment resistance ........................................................................................ 9 
2.3 Code provisions for material ductility ....................................................................... 11 

3. Determination of rotation capacity ................................................................................... 11 
3.1 Testing methods ..................................................................................................... 11 
3.2 Four-point bending test ........................................................................................... 12 
3.3 Rotation capacity in the case of a localised plastic hinge ........................................ 13 
3.4 Required rotation capacity – an example based on localized failure ....................... 15 
3.5 Required rotation capacity – plastic collapse .......................................................... 16 

4. Code provisions for member resistance .......................................................................... 17 
4.1 Members in bending ............................................................................................... 17 
4.2 Members in tension ................................................................................................ 18 

5. Preliminary study for I beam with real material properties ............................................... 19 
5.1 Input data ............................................................................................................... 19 
5.2 Moment-rotation behaviour ..................................................................................... 20 
5.3 Rotation capacity .................................................................................................... 24 
5.4 Effect of beam length on the rotation capacity ........................................................ 30 

6. I beam with virtual material properties ............................................................................. 30 
6.1 Material data ........................................................................................................... 30 
6.2 Moment-rotation behaviour ..................................................................................... 32 

7. Centre hole tension specimens with virtual material properties ....................................... 39 
7.1 Material data ........................................................................................................... 39 
7.2 Force-displacement behaviour ................................................................................ 40 

8. Material ductility requirements for the validity of the results ............................................. 49 

9. Summary and conclusions .............................................................................................. 51 
9.1 Test matrix for virtual testing ................................................................................... 51 
9.2 Verification of net and gross cross section resistances ........................................... 51 
9.3 Verification of rotation capacity ............................................................................... 54 
9.4 Main conclusions .................................................................................................... 56 
9.5 Some remarks on the results .................................................................................. 57 

References ........................................................................................................................... 57 
 
  



 

 

RESEARCH REPORT VTT-R-02326-16 

3 (58) 

  

 

1. Introduction 

In the plastic design of structures, ductility is defined as the capacity of a structure to undergo 
deformations after reaching its initial yield without any significant reduction in ultimate strength. 
The ductility of a structure allows prediction of the ultimate capacity of a structure which is the 
most important criteria for designing structures under ultimate loads. 

The inelastic behaviour of a structure depends upon the amount of moment redistribution. The 
attainment of the predicted collapse load is strictly related not only to the hinge position where 
the sections reach the full plastic moment Mp, but also to the inelastic rotation of other hinges 
elsewhere (Shokouhian & Shi 2014). 

The following ductility types are widely used (Gioncu 2000, Figure 1 and Figure 2): 

 material ductility, or axial ductility, which characterizes the material plastic deformations 

 cross-section ductility, or curvature ductility, which refers to the plastic deformations of 
cross-section, considering the interaction between the parts composing it 

 member ductility, or rotation ductility, when the properties of a member are considered 

 structural ductility, or displacement ductility, which considers the behaviour of the whole 
structure. 

In Figure 1 the subscript u refers to the ultimate deformation (strain, curvature, rotation or 
displacement), while subscript y indicates the corresponding deformation for first yielding. 
Referring to the ultimate deformation, the collapse of an element can be reached by plastic 
deformations limited by buckling or by fracture of some components. So, the ductility can be 

 deformation ductility, when the collapse is due to buckling of a compressed element, 
or 

 fracture ductility, when the collapse is the result of the fracture of a tensioned element. 

This study focuses on the cross section ductility, and the study is based on the fracture ductility 
of different steel grades. Usually in limit design of structures it is required that plastic hinges 
have a sufficient rotation capacity, which is based on the occurrence of local buckling of plate 
elements in the member cross-section (Figure 2). However, local buckling is excluded from 
this study. 
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Figure 1. Different type of ductility (Gioncu 2000). First two cases are based on material 
ductility of tensioned parts of the cross section, third one on the stability of compression parts 
of the member, and the last one on member and connection ductility of a frame. 
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Figure 2. Different structural factors effect on the structure ductility (Gioncu 2000). 

Section ductility of a steel section is usually defined as the ratio x between the curvature which 

leads to the maximum moment max and the curvature corresponding to plastic moment p 

𝜇𝑥 =
𝜒𝑚𝑎𝑥

𝜒𝑝
 

Most usually section ductility is used for the classification of cross sections based on the plate 
buckling of the cross section, not for material ductility as in our case. The differences among 
cross section classes are governed by the element slenderness, defined by the width-to-
thickness ratio. 

In Eurocode approach the definition of the section ductility is related to the fully plastic moment 
(Figure 3 (b)). The rotation capacity is determined in the descending post-buckling curve at the 
intersection with the theoretical full plastic moment Mp. This definition is given in the 
Background Document 5.02 of Eurocode 3. In the Background Document of Eurocode 8 
(earthquake design) there is also a proposal to use a reduced plastic moment Mp/1.1 ≈ 0.9 Mp, 
which leads to an increase in ultimate rotation values (Gioncu & Petcu 1997, Shokouhian & 
Shi 2014). 

In Eurocode 3 (RFCS1998) the formula calculating the available rotation capacity is given as 

𝑅 = 𝜇𝜃 =
𝜃𝑟𝑝

𝜃𝑝
=

𝜃𝑟−𝜃𝑝

𝜃𝑝
=

𝜃𝑟

𝜃𝑝
− 1 

where rp is the ultimate plastic rotation, p is the rotation corresponding to the formation of the 

plastic hinge and r is the total ultimate rotation (see Figure 3 (b)). 

During some loading conditions of experimental tests the yielding plateau can occur under the 
reference value Mp. Therefore the above definition of rotation capacity cannot be used. For 
this case the rotation capacity can be determined for a reduced plastic moment 0.9 Mp. Based 
on Eurocode 8 proposal (Gioncu & Petcu 1997) the rotation capacity is then 

𝑅0.9 = 𝜇𝜃0.9 =
𝜃𝑟0.9

𝜃𝑝
− 1 
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According to (Gioncu & Petcu 1997, Shokouhian & Shi 2014) also two other definitions have 
been proposed. Some researchers have proposed that the ultimate rotation should be based 
on the maximum moment with different levels of 0.8–0.95 Mmax (Figure 3 (a)). The rotation 
capacity can also been considered in a more general way, in which, in addition to the rotation, 
the slope of the descending part of the moment-rotation curve is calculated (Figure 3 (c)). 

 

Figure 3. Different approaches to determine the rotation capacity (Gioncu & Petcu 1997). 

In Eurocode 3 four classes of cross-sections are defined as follows (Figure 4, Figure 3b): 

 Class 1 cross-sections are those which can form a plastic hinge with the rotation capacity 
required from plastic analysis without reduction of the resistance. 

 Class 2 cross-sections are those which can develop their plastic moment resistance, but 
have limited rotation capacity because of local buckling. 

 Class 3 cross-sections are those in which the stress in the extreme compression fibre of 
the steel member assuming an elastic distribution of stresses can reach the yield stress, 
but local buckling prevents development of the plastic moment resistance. 

 Class 4 cross-sections are those in which local buckling will occur before the attainment 
of yield stress in one or more parts of the cross-section. 

 

Figure 4. Cross section classes according to Eurocode 3. 
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Based on (Shokouhian & Shi 2014) the definitions of Classes 2 and 3 are clear. In the former 
case the girder must develop the plastic moment of the cross section (Mp), while in the latter 
the yield moment of the section (My). For the limit between Classes 1 and 2 some discrepancy 
exists between the codes in regard to the appropriate value of the rotation capacity. EC3 does 
not propose a certain value, stipulating that for Class 1 ‘sufficient’ rotation capacity must be 
available to allow for a plastic redistribution of the bending moments1. The AISC LRFD 
specification states in the Commentary a value for the rotation capacity R = 3 for Class 1 
sections, while the AIJ LSD Code (Japanese Recommendations on Limit State Design of 
Buildings) stipulates R = 4 (from Shokouhian & Shi 2014). 

According to Shokouhian & Shi (2014) Mazzolani and Piluso (1997) have proposed 
classification criteria for members according to ductility classes: 

 HD, high ductility, μθr ≥ 7.5 

 MD, medium ductility, 4.5 ≤ μθr < 7.5 

 LD, low ductility, 1.5 ≤ μθr < 4.5 

where μθr is the rotation capacity of a flexural member. 

2. Theoretical study of material ductility for beams without 
holes 

Material ductility is necessary so that the requirements of Class 1 and Class 2 can be achieved. 
To be able to reach plastic moment resistance Mpl in Class 1 and Class 2 cross sections, the 
gain due to material strain hardening has to overcome the loss caused by the imperfect cross 
section plastification. Moreover, the condition of rotation capacity R = 3 for Class 1 cross 
sections assumes that the material can tolerate certain plastic deformations. For instance 
beam flanges should provide sufficient plastic deformation capacity to satisfy this condition. 

Eurocode 3 gives for the uniform elongation of material a requirement ofu ≥ 15y (y = fy/E). 

2.1 Rotation capacity 

The deflection of a beam, which is loaded by end moments, is a circular arc with uniform axial 
strain distribution along its length. This is valid for uniform elongation until the ultimate strength 
of the material is reached and the necking in the tension flange starts. The load is typically 
rapidly decreasing beyond this point. Therefore we can conservatively assume that the rotation 

capacity is defined by the rotation at maximum load max instead of av (Figure 4). Then the end 

rotation of a symmetric cross section can also be expressed by means of beam curvature  or 

by edge strain  of the cross section (Figure 5). 

𝜑𝑚𝑎𝑥

𝜑𝑝𝑙
=

𝜀𝑚𝑎𝑥

𝜀𝑝𝑙
=


𝑝𝑙

  
𝑚𝑎𝑥

 

where max, max and max refer to Mmax, and pl, pl and pl refer to Mpl in Figure 4. 

                                                
1 In addition to the previous, however, it has been found that rotation requirement R = 3 has also been used in 

Eurocode background documentation. The documentation has been presented in Annex 12 of reference (RFCS 
1998) 
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Figure 5. Strains in a partially plastified section of a beam subjected to uniform bending. 

Because the plastic rotation in Figure 4 is defined as 

𝜑𝑝𝑙 =
𝑀𝑝𝑙

𝑀𝑦
𝜑𝑦 =

𝑊𝑝𝑙

𝑊
𝜑𝑦 

the rotation capacity for av = max can be expressed as 

𝑅 =
𝜑𝑚𝑎𝑥

𝜑𝑝𝑙
− 1 =

𝑊

𝑊𝑝𝑙

𝜑𝑚𝑎𝑥

𝜑𝑦
− 1 =

𝑊

𝑊𝑝𝑙

𝜀𝑚𝑎𝑥

𝜖𝑦
− 1 

where y = fy/E. Then the condition for the uniform edge strain is 

𝜀𝑚𝑎𝑥

𝜀𝑦
≥

𝑊𝑝𝑙

𝑊
(𝑅 + 1) 

Assuming that max is achieved when max = u, the condition for material ductility corresponding 
to R = 3 can be presented as 

𝜀𝑢 ≥ 4
𝑊𝑝𝑙

𝑊
𝜀𝑦 

where the uniform elongation u corresponds to the ultimate strength fu on material stress-
strain curve. 

Table 1 shows the condition for selected cross sections. The table is determined using the 
centreline dimension of the cross section. Because the effect of plate thickness is omitted, the 

real values of min u can be slightly higher then given in the table. The most conservative value 

of u = 6y is valid if the cross section is a solid rectangle, or in the case of CHS if d1/d2 > 0.65. 
Therefore in the case of usual I beams and hollow sections with any shape the minimum 

uniform elongation of 6y results in adequate ductility. For example in the case of fy = 1000 

MPa 6y is 3%. 
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Table 1. Required minimum uniform elongation u for some cross sections. 

Cross section W Wpl 
𝑾𝒑𝒍

𝑾
 min 𝜺𝒖 

I section without web 𝑏𝑡𝑓 ∙ ℎ𝑤 𝑏𝑡𝑓 ∙ ℎ𝑤 1.00 4.0𝜀𝑦 

I section with hwtw = btf 
7𝑏𝑡𝑓 ∙ ℎ𝑤

6
 

5𝑏𝑡𝑓 ∙ ℎ𝑤

4
 1.07 4.3𝜀𝑦 

RHS with hw = b 
4𝑏𝑡 ∙ ℎ𝑤

3
 

3𝑏𝑡 ∙ ℎ𝑤

2
 1.13 4.5𝜀𝑦 

RHS with hv = 3b 2𝑏𝑡 ∙ ℎ𝑤 
5𝑏𝑡 ∙ ℎ𝑤

2
 1.25 5.0𝜀𝑦 

CHS 𝜋𝑟2𝑡 4𝑟2𝑡 1.27 5.1𝜀𝑦 

CHS with d1/d2 ≥ 0.65 
𝜋(𝑑2

4 − 𝑑1
4)

32𝑑2
 

(𝑑2
3 − 𝑑1

3)

6
 ≤1.5 6.0𝜀𝑦 

Solid rectangle 
𝑏ℎ2

6
 

𝑏ℎ2

4
 1.5 6.0𝜀𝑦 

Notations 

tf is flange thickness of I section 

tw is web thickness of I section 

b is flange width of I section and RHS 

hw is height I of section and RHS 

t is plate thickness of RHS and CHS 

t is centreline radius of CHS 

d1 and d2 are inner and outer diameter for CHS 

b and h are width and height for a solid rectangle 

 

2.2 Plastic moment resistance 

The reduction of cross-section capacity caused by imperfect cross section plastification in the 
vicinity of the neutral axis has to be compensated by material strain hardening, in order to 
reach plastic moment resistance Mpl (Figure 6). In common double symmetric cross section 

the gain 𝑀+ and loss 𝑀−can be calculated from quarter of the section as: 

𝑀− = 4 ∫ 𝑥 ∙ 𝜎−(𝑥)𝑑𝐴
𝑥0

0

 

and the gain can be determined as 

𝑀+ = 4 ∫ 𝑥 ∙ 𝜎+(𝑥)𝑑𝐴
h

x0

 

Stress distributions 𝜎−(𝑥) and 𝜎+(𝑥) are shown in Figure 6. 

We assume a limit of the spread of plastic axial strain in the section (x0 in Figure 5 ). Below 
that position in the section the stress distribution is 𝜎−(𝑥) which causes the loss in bending 

stress with value of  = fy at x = 0 and  = 0 at x = x0. Above that position the stress distribution 

which causes the maximum possible gain in bending moment 𝜎+(𝑥) has value of  = fy at x = 

x0 and  = m∙fy at x = h. 
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Figure 6. Effect of strain hardening on bending resistance. 

Here it is conservatively assumed that the failure in tension flange occurs when the edge strain 
of the beam reaches the uniform elongation of the material. Table 2 shows the formulas for 
calculation the loss and gain for some sections. For simplifying the calculations the effect of 
ratios tf /h and r/t is excluded. 

Calculation results for some specific cross sections in Figure 7 show that the required uniform-

to-yield elongation ratio u/y depends on the shape of the cross section and on fu/fy ratio. If fu/fy 

is at least 1.02, uniform elongation of u ≥ 6y is adequate for usual I beams and hollow 

sections. However, if fu/fy ratio is higher, also lower values of u are making it possible to reach 
Mpl, the requirement for Class 2 cross sections. 

Table 2. Maximum gain in bending resistance due to strain hardening and loss due to 
imperfect cross section plastification. 

 RHS and symmetric I beam CHS tube 

Mpl for perfect 

plastification 
𝑀𝑝𝑙 = 2ℎ(𝐴𝑓 +

𝐴𝑤

2
) ∙ 𝑓𝑦 𝑀𝑝𝑙 = 4𝑓𝑦𝑟2𝑡 

Loss due to 

imperfect 

plastification 

𝑀− = 𝐴𝑤𝑓𝑦

ℎ

3𝑛2
 

𝑀− = 4𝑓𝑦𝑟2𝑡 [1 − cos (𝜑0) −
𝜑0

2

+
1

4
sin(2𝜑0)] 

Maximum gain due 

to strain hardening 

𝑀+ = 2𝑚𝑓𝑦ℎ [𝐴𝑓 +
𝐴𝑤

6
(2 −

1

𝑛

−
1

𝑛2
)] 

𝑀+ = 4𝑚𝑓𝑦𝑟2𝑡
1

1 − 𝑠𝑖𝑛𝜑0
[
𝜋

4
−

𝜑0

2

−
1

4
sin (2𝜑0)] 

Notations 

h = hw/2 (half height) 

Af = btf  (flange area) 

Aw = htw (half of web area) 

m = fu/fy-1 

n = u/y 

m = fu/fy -1 

n = u/y 

sin(0) = 1/n 
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Figure 7. Relative gain in bending resistance due to material strain hardening. 

2.3 Code provisions for material ductility 

In rules of Eurocode 3 (EN1993-1-1), valid for steels up to grade S460, the material 
requirements are fu/fy ≥ 1.10 and εu ≥ 15εy, where ultimate strain εu corresponds to the ultimate 
strength fu and εy is the yield strain (εy = fy/E). The elongation at failure shall be A5 ≥ 15% (L0 

= 5.65 A). For steel grades above S460 and up to S700 (EN1993-1-12) the material shall 
have fu/fy ≥ 1.05 and A5 ≥ 10%, but the requirement for εu ≥ 15εy is identical. 

In North American specification AISI S100 (2007) for cold-formed structural members the 
requirements are fu/fy ≥ 1.08 and A50 ≥ 10% (L0 = 50 mm). If these requirements cannot be met, 
the local elongation across the fracture shall be ≥20% in a 12.7 mm gauge length and the 
uniform elongation outside the fracture shall be ≥3%. Background for AISI approach is 
presented by Dexter & al. (2002). 

3. Determination of rotation capacity 

3.1 Testing methods 

The rotation capacity (R) indicates how much the plastic hinge can rotate before the moment 
falls below the plastic moment resistance (Mpl) on the descending part of the moment-rotation 
curve. 

The background for the rotation capacity is in utilization of plastic design in continuous beams 
(Figure 8). Therefore in Eurocode background documentation (RFCS 1998) three point 
bending test has been used to obtain the rotation capacity under moment gradient. However, 
there is mentioned that to obtain the rotation capacity of section with moments but without 
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moment gradient, four-point bending test may also be used. Four-point bending test has been 
used e.g. by Wilkinson & Hancock (1998) in determination of class 1 limits for rectangular 
hollow sections (Figure 9). 

 

Figure 8. Obtaining the required rotation on support (RFCS 1998). 

 

Figure 9. Non dimensional curvature /pl of cold-formed RHS beams (Wilkinson & Hancock 
1998). 

3.2 Four-point bending test 

The principle of the test is shown in Figure 10. The rotation capacity is expressed as 

𝑅 = 
𝜒

𝜒𝑝𝑙
− 1 

where /pl is a non-dimensional curvature. Value ofpl in the non-dimensional curvature /p 

is determined by 

𝜒𝑝𝑙 =
𝑀𝑝𝑙

𝐸𝐼
=

𝑊𝑝𝑙𝑓𝑦

𝐸𝐼
 

It is dependent only on material yield stress and cross-sectional properties. The beam 

curvature  is based on measurement of displacements in three positions. The measuring 
points are positioned at the region of uniform bending moment. The measured curvature 
includes both elastic and plastic deformations. 
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Figure 10. Determination of rotation capacity by four-point bending test (Wilkinson & 
Hancock 1998). 

Because the curvature of a uniform beam under uniform bending is constant, the curvature 

can be determined based on a circular arc with radius r = 1/and deflection . The length of 
the arc is the distance L of the outermost measurement points. Based on the equation in Figure 
11, 

𝜒 =
1

𝑟
=

8𝛿

𝐿2 + 4𝛿2
 

 

Figure 11. Determination of the curvature based on measured difference of deflections. 

3.3 Rotation capacity in the case of a localised plastic hinge 

The rotation capacity can be presented by the help of the end rotation  (Figure 12). When the 
curvature of the beam is constant, 

𝑅 = 
𝜑

𝜑𝑝𝑙
− 1 

where the reference value for the rotation is defined as 

𝜑𝑝𝑙 =
𝑀𝑝

𝐸𝐼
∙

𝐿

2
=

𝑊𝑝𝑓𝑦

𝐸𝐼
∙

𝐿

2
 

 

Figure 12. The relationship between the curvature and end rotation. 
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If a plastic hinge with an angle of θ is formed in the middle of the beam (e.g. because of a 

large hole in flange, Figure 13), it increases the end rotation of the beam by θ/2 (Figure 14). 

 

Figure 13. Local plastic hinge of a beam (Arasaratnam 2008). 

In addition to the local angle, there exists also end rotation θpl due to the uniform curvature of 
the beam (Figure 14). Then the rotation capacity is 

𝑅 = 
𝜃𝑝𝑙 + ∆𝜃/2

𝜑𝑝𝑙
− 1 

 

Figure 14. End rotation in the case of localized plastic hinge. 

In the case of localized plastic hinges, θpl due to uniform curvature depends on the length of 

the beam but θ is independent on it. Therefore, with shorter length (L) the effect of a local 
hinge on the rotation capacity is increasing. Due to the localized failure, the rotation capacity 
is a subjective measure and it depends also on loading arrangements of the test (see also 
Arasaratnam 2008). 
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3.4 Required rotation capacity – an example based on localized 
failure 

If we consider the case of a uniformly loaded continuous beam with a hinge forming on the 
support; and conservatively assume that the hinge does not take any bending moment (Figure 
15). What kind of rotation capacity is necessary at the support, if the design is based on limited 
deflection or on initiation of yield at mid-span? 

 

Figure 15. Rotations in the case of localized plastic hinge of a two-span beam. 

Assuming that that determining factor in the design can be beginning of yield in the mid-span 
or mid-span deflection. 

The deflection of a single span beam is 

𝛿 = 
5𝐹𝐿3

384𝐸𝐼
=

5𝐹𝐿3

16 ∙ 24𝐸𝐼
=

5𝐿

16
𝜃 

where F is the load of one span. The end rotation (slope at the beam end) is 

𝜃 = 
𝐹𝐿2

24𝐸𝐼
=

16

5

𝛿

𝐿
 

This is the maximum value of end rotation if L/h is large enough (Figure 16) and the design is 

limited by the deflection limit (/L). Otherwise the end rotation is smaller and it is determined 
based on the beginning of yield in mid-span. 

 

Figure 16. Limit for end rotation of a beam based on yield limits or deflection limits (steel 
grades S355, S700 and S960). 
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In the case of symmetric beam with height h, the deflection at the beginning of yield is (Figure 
16) 

𝛿 = 
5𝑓𝑦𝐿2

24𝐸ℎ
 

⟹ 𝜃 =
16

5

𝛿

𝐿
=

2

3

𝑓𝑦

𝐸

𝐿

ℎ
 

The required rotation at the mid-support is double to the end rotation 

∆𝜃 = 2𝜃 =
32

5
∙

𝛿

𝐿
 

Based on the deflection limit (/L), to reach such a rotation, the difference of elongations of 
top and bottom flanges shall be 

∆𝑙 =  ∆𝜃 ∙ ℎ =
32

5
ℎ ∙

𝛿

𝐿
 

⟹
∆𝑙

ℎ
=

32

5
∙

𝛿

𝐿
= 6.4 ∙

𝛿

𝐿
  

If e.g. deflection limit L/200 is used in the structural design, the required difference in elongation 

of flanges is l = 0.032h. In the case of h = 600 mm that means axial deformation of 9.6 mm 
in both flanges. The beam has to tolerate these local deformations without failure. 

It should be noted that the end rotation in the case of uniform bending, based on deflection 
limit, is a little bit higher than in previous study. Then 

𝜃 = 4
𝛿

𝐿
 

and then in the case of deflection limit the difference of elongations of top and bottom flanges 
shall be 

⟹
∆𝑙

ℎ
= 8 ∙

𝛿

𝐿
 

3.5 Required rotation capacity – plastic collapse 

A good literature review on background of rotation capacity is presented by Wilkinson (1999) 
which is referred below. In plastic design the already formed plastic hinges must be able to 
rotate a certain amount to redistribute the bending moment. 

Kerfoot (1965) analysed three span beams with point loadings. It was found that only in 
extreme cases would a plastic hinge rotation greater than MplL/EI be needed to form a plastic 
collapse mechanism (L is the length of each span). For I/W = h/2, MplL/EI = (fy/E)(2L/h). That 
means that the required hinge rotation depends also on the material strength in the case of 
plastic collapse. 

Driscoll (1958) considered three span beams (each span of length L) with distributed loads. It 
was shown that a plastic hinge rotation of 0.425 MplL/EI was the maximum required for the 
three-span beam. Driscoll extended the analysis to frames. For a single span rigid frame 
(Figure 17) 0.475 MplL/EI was the required plastic hinge rotation, and for gable frames (pitched 
roof) 1.05 MplL/EI was the maximum required plastic hinge rotation. 
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Figure 17. Plastic hinges in a simple portal frame (Wilkinson1999). 

Since the rotation capacity requirements vary according to the loading and geometry of the 
structure, it is convenient to establish a representative value of rotation capacity that covers 
most common practical situations. The Eurocode 3 Editorial Group (1989) summarise the 
rotation requirements for a variety of frames and multi-span beams constructed from I sections 
and concluded that a value of R = 3 was a suitable value to ensure that a plastic collapse 
mechanism could form. The value of R = 3 is therefore used in Eurocode 3. 

Yura, Galambos and Ravindra (1978) state that the AISC LRFD specification is also based on 
R = 3. AISC LRFD states, in Commentary to Clause B.5, that in seismic regions greater rotation 
capacity may be required that the rotation provided by a compact section, and rotation 
capacities of the order R = 7 ~ 9 (Chopra and Newmark 1980) need to be provided. 

Korol and Hudoba (1972) considered hollow sections and recommended that a value of R = 4 
was the minimum necessary to ensure that a plastic mechanism could form. Hasan and 
Hancock (1988) and Zhao and Hancock (1991) followed the suggestion of Korol and Hudoba, 
and used the value of R = 4, for determining suitability for plastic design in the establishment 
of values for the Australian Standard AS 4100. 

4. Code provisions for member resistance 

4.1 Members in bending 

According to Eurocode, for beams with Class 1 and Class 2 cross sections, the design 
resistance shall be greater than 

𝑀𝑐,𝑅𝑑 =
𝑊𝑝𝑙𝑓𝑦

𝛾𝑀0
;  𝛾𝑀0 = 1.0 

Each cross-section of the beam shall fulfil the above condition. Therefore, for net section 
resistance Wpl.net can be used in the equation. In that case internal forces and moments may 
be calculated according to elastic global analysis; however the section check is still carried out 
using plastic resistance (RFCS 1998). 

Concerning the fastener holes in the tension flanges of beams, the holes may be ignored 
provided that for the tension flange 

0.9𝐴𝑓 ,𝑛𝑒𝑡 𝑓𝑢

𝛾𝑀2
≥

𝐴𝑓𝑓𝑦

𝛾𝑀0
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Note that the condition is not required for cross-sections if the global analysis is elastic; it is 
required only in capacity design of Class 1 cross sections in a plastic global analysis. A cross 
section requirement for plastic global analysis is that the member has Class 1 cross-section at 
the plastic hinge location and that adjacent to a plastic hinge location any fastener holes in 
tension satisfy the condition above. 

In AISC (2010) the holes in tension flange of beams may be ignored provided that for the 
tension flange 

𝐴𝑓,𝑛𝑒𝑡𝑓𝑢 ≥ 𝑌𝑡𝐴𝑓𝑓𝑦 

where 𝑌𝑡 = 1 for 𝑓𝑦/𝑓𝑢 ≤ 0.8, else 𝑌𝑡 = 1.1. Otherwise the moment resistance is determined by 

𝑀𝑛 =
𝐴𝑓,𝑛𝑒𝑡

𝐴𝑓
𝑓𝑢𝑊 

where W is elastic section modulus. 

4.2 Members in tension 

According to Eurocode, the design resistance in tension is based on the plastic resistance of 
the gross cross-section (Npl.Rd) and ultimate resistance of the net cross-section at holes for 
fasteners (Nu,Rd). Design resistance shall be taken as the smaller of Npl.Rd and Nu,Rd. 

𝑁𝑝𝑙,𝑅𝑑 =
𝐴𝑓𝑦

𝛾𝑀0
;  𝛾𝑀0 = 1.0 

𝑁𝑢,𝑅𝑑 =
0.9𝐴𝑛𝑒𝑡𝑓𝑢

𝛾𝑀2
;  𝛾𝑀2 = 1.25 

Where capacity design (EN1998) is requested, the design plastic resistance Npl,Rd should be 
less than the design ultimate resistance of the net section at fasteners holes Nu,Rd. This results 
in the following condition for capacity design 

𝐴𝑛𝑒𝑡 ≥
1.25

0.9

𝑓𝑦

𝑓𝑢
𝐴 = 1.39

𝑓𝑦

𝑓𝑢
𝐴 

In AISC Specification (AISC 2010) the corresponding resistances are determined by 

𝐹𝑦 = 0.9𝐴𝑔 ∙ 𝑓𝑦 

𝐹𝑢 = 0.75𝐴𝑛𝑒𝑡 ∙ 𝑓𝑢 

Based on AISC equations the condition for the yield of gross cross section is 

𝐴𝑛𝑒𝑡 ≥ 1.20
𝑓𝑦

𝑓𝑢
𝐴𝑔 

This means that the Eurocode requirement is more conservative than the AISC requirement. 
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5. Preliminary study for I beam with real material properties 

5.1 Input data 

The case study is made to describe the influence of material properties on the moment rotation 
behaviour. One I beam (Figure 18, height 256 mm, width 164 mm) made of four different 
materials (Table 3, Figure 19) has been compared. The tension flange has a small hole on 
both sides of the web. In addition to the beam without holes, two diameters with hole sizes 8 
mm and 16 mm are studied. The length of the beam is 1000 mm except of some preliminary 
studies with length of 500 mm. Both ends are modelled infinitely stiff and the beams are loaded 
by end rotation, resulting in uniform bending moment along the beam. Because only the 
material ductility is under consideration, the buckling of the compressed flange is prevented by 
forcing it to remain in the horizontal plane. One quarter of the beam (length L = 500 mm), using 
symmetry conditions, was modelled by Abaqus. 

 

Figure 18. Cross-sectional dimensions and material thicknesses used in modelling. 

Table 3. Material properties based on tensile testing of coupons. 

 t (mm) b (mm) fy (MPa) 
fu 

(MPa) 
E 

(GPa) 
fu/fy u (Agt) f  eq,f 

S960 8.07 20.12 1062 1167 210 1.10 3.0% 9.8 % (A80) 98% 

S700 10 20 708 792 210 1.12 9.5% 20.6% (A5) 114% 

S355MC 7.97 25 397 473 210 1.19 17.6% 31.3% (A5) 141% 

S355J2 9.98 19.8 393 550 210 1.40 13.4% 28.1% (A5) 138% 

 

t – material thickness 
b – specimen width 

fy – upper yield strength or 0.2% proof stress 
fu – ultimate tensile strength 

E – Modulus ofelasticity

u (Agt) – percentage of total elongation at 
maximum load (gauge length A5 or 80 mm) 

f  – percentage of total elongation at fracture 

eq,f  – maximum equivalent plastic (true 
strain) at fracture (FEM calculation) 
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Figure 19. Material stress-strain -curves of the case study. The true stress-strain curves 
correspond to the case that the Abaqus model of the tension test specimen results to 
measured engineering curve (Hradil & Talja 2015). 

In the case of specimens with a small hole, the maximum equivalent plastic strain at fracture 
can be somewhat lower than given in Table 3. For example in CHT (centre-hole tension) tests 
for the materials S960 the calculated maximum strains at experimental failure elongation were 
87% for 8 mm hole in flat bar of 80x8 mm2. Based on the test results for different notched test 

specimens, the strains at failure have been found to be always higher than A5 (or A80) (Talja & 

Hradil 2015). Therefore in a common case the failure occurs somewhere between strains of f 

and eq,f. However, because the stress triaxiality at failure of a tension test coupon and CHT 

specimen are same order of magnitude, eq,f gives a good estimate of the fracture for 

specimens with a hole. 

5.2 Moment-rotation behaviour 

M-curves and plastic axial strains (PE11) in the middle of the tension flange are shown in 
Figure 20. Axial strains PE11 are taken from distance of 0 mm and 250 mm from the hole. The 

strains show that when eq,f (Table 3) is reached in specimens with holes, PE11 at 0 mm starts 
to grow very fast, PE11 at 250 mm strains continues steady growth. The local deformations 
and reduction of tension area of the cross-section are starting at that moment. In the case of 
specimens without holes (‘no hole’), that kind of failure of the tension flange does not occur 
(Figure 21). 

The results assembled in Table 4 show the following: 

– In spite of the prevention of plate buckling of the compressed flange, the flange buckles 
when the rotations are large. In the case of specimens without holes, the flange 
buckling happens in all cases. The buckling mode resembles beam buckling on elastic 
foundation (Figure 22). 
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– at Mmax is always less than at eq,f given in Table 3 (i.e. the maximum load is 

reached before the strains begin to grow very fast in hole-affected zone ). Highest 

values of elongations eq at Mmax occur in the case of the larger hole. 

– The lower is fu/fy ratio or u, the lower are the rotations corresponding A5 and eq,f . 

– The lowest rotations corresponding A5 and eq,f elongations correspond to the biggest 
hole. 

– The rotation corresponding maximum moment is strongly depending of the hole size in 
the case of S700 and S960 steels. 

Table 4. End rotation radians) corresponding  and eq,f and Mmax (from Figure 20). 

 S355 J2 S355 MC S700 S960 

fu / fy 1.40 1.19 1.12 1.10 

u 13.4% 17.6% 9.5% 3.0% 

Hole no 8  16 no 8  16 no 8  16 no 8  16 

 at flange 
buckling 

0.48 0.46 0.29 >0.40 0.37 0.26 0.22 0.19 - 0.13 - - 

at eq.max =  >0.48 >0.16 0.10 >0.40 0.17 0.06 >0.22 0.05 0.03 >0.13 0.03 0.02 

at eq,f >0.48 0.43 0.24 >0.40 >0.37 0.21 >0.22 >0.19 0.07 >0.13 0.08 0.04 

at Mmax 0.29 0.28 0.22 0.29 0.28 0.19 0.18 0.16 0.05 0.11 0.07 0.04 

eq at Mmax 12% 55% 97% 12% 58% 95% 6,7% 70% 74% 3,5% 60% 51% 
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Figure 21. Equivalent plastic strains eq when the maximum moment Mmax is reached 

(deformations in true scale). 
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Figure 22. An example of an observed buckling mode of the compression flange (S700). 

5.3 Rotation capacity 

The moment-rotation relationship M/Mpl – fem/pl was determined from the results. 

The rotation capacity R is calculated from equation 

𝑅 =
𝜑𝑓𝑒𝑚

𝜑𝑝𝑙
− 1, where 𝜑𝑝𝑙 =

𝑀𝑝𝑙𝐿

𝐸𝐼
 and 𝑀𝑝𝑙 = 𝑓𝑦𝑊𝑝𝑙 (Figure 23) 

values of I and Wpl are based on full gross section. Therefore can be presented (Figure 24) 

𝜑𝑓𝑒𝑚

𝜑𝑝𝑙
= 𝑅 + 1 

 

Figure 23. End rotation  

Note that the results, presented here, are calculated on the basis of full cross-section 
properties. If I and Wpl would be determined based on net section instead of full cross section, 
both Mmax/Mpl and R+1 would increase by a factor 1.05 (Table 5, hole 8 mm) or 1.10 (hole 16 
mm). For the given cross-section Wpl/W = 1.09. 

Table 5. Comparison of net section properties (no hole) to the gross cross section properties 
with holes 8 and 16 mm. 

 no hole hole 8 mm hole 16 mm 

I 1.0 0.949 0.906 

W 1.0 0.922 0.843 

Wpl 1.0 0.956 0.906 

 

The values concerning rotation capacity R in Table 6 show the following: 
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 All materials fulfil Eurocode Class 1 requirement Mmax/Mpl ≥ 1.0, when eq,f failure 

criterion is used. 

 S960 with holes do not fulfil Eurocode Class 1 requirement Mmax/Mpl ≥ 1.0, if A5failure 
criterion is used. 

 For specimens without holes Mmax/Mpl (eq,f) ≈ fu/fy, and for S700 and S960 even > fu/fy 

 Except S960 with hole 16 mm, all materials fulfil Eurocode Class 1 requirement R+1 ≥ 

4.0, when eq,f failure criterion is used. 

 S355 J2 and S355 MC fulfil Eurocode Class 1 requirement R+1 ≥ 4.0, even when  
failure criterion is used. 

 Mmax/Mpl ≥ Wpl/Wel = 1.09 except S960 with hole 16 mm, when eq,f failure criterion is 
used. 

 Mmax/Mpl and fu/fy are the same order of magnitude also for specimen with holes. (When 

comparing Mmax/Mpl to fu/fy, note also that the gross cross section of flange divided by 

its net cross section is 1.24 for hole 16 mm. For hole 8 mm the ratio is 1.11.) 

Table 6. Results of moment-rotation capacity (from Figure 24 and Figure 25). 

 S355 J2 S355 MC S700 S960 

fu/fy 1.40 1.19 1.12 1.10 

u 13.4% 17.6% 9.5% 3.0% 

Hole no 8 16 no 8 16 no 8 16 no 8 16 

R at flange 

buckling 
60 58 36 >50 46 32 28 - 24 17 - - 

Mmax/Mpl (eq,f) 1.39 1.38 1.35 1.17 1.17 1.13 1.15 1.14 1.09 1.16 1.13 1.06 

Mmax/Mpl ( 1.39 1.33 1.22 1.17 1.14 1.06 1.15 1.10 1.04 1.16 1.05 0.96 

R+1 (eq,f) >60 >58 30 >50 >46 26 15 14 5.0 6.1 3.7 2.0 

R+1 () >60 20 12 >50 21 7.3 15 3.7 2.0 6.1 1.6 1.1 

PE11 (250)/y 49 47 33 48 47 29 17 15 3,3 5,4 3,0 0,90 

PE11 (max)/y 61 78 82 61 54 68 20 38 25 5,7 15 7,3 

PE11 (250) 9.2% 8.8% 6.2% 9.1% 8.9% 5.5% 5.7% 5.1% 1.1% 2.7% 1.5% 0.5% 

PE11 (max) 11% 15% 15% 12% 10% 13% 6.7% 13% 8.4% 2.9% 7.6% 3.7% 

 

Figure 25 and Figure 26 show the maximum axial plastic strains in the tension flange at the 
moment when the maximum value of bending moment is reached. The figure shows the 
following: 

 Except of S960, the hole of 8 mm have no effect on beam behaviour, because the curve 
of plastic strains for cases ‘no hole’ and ‘hole 8’ have almost equal level. Hole of 16 
mm affects in all cases on beam behaviour (Figure 25). 

 If the hole has no effect on beam behaviour, plastic strains in the tension flange at the 
moment when the maximum value of bending moment is reached, are not constant 

along the beam. It is particularly evident when the value fu/fy ratio and u is large (which 

means that also P11 (250) values are high). 

 Except of case ‘no hole’, the maximum axial strain is not located exactly in the middle 
of beam where the hole locates. 

Axial strains in two points of flange are presented in Table 6; PE11 (max) is in the mid-region 
and PE11 (250) at distance of 250 mm from the hole Plastic strains are also shown relative to 

y = fy/E. The table shows the following: 
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 The lower is fu/fy ratio or u, the lower are PE11 (max)/y and PE11 (250)/y. 

 In the case of S355 cases PE11 (250)/y = 29–49, but for S960 PE11 (250)/y = 0.9–
5.4. 

 Except S960 with hole 16 mm, PE11 (250)/y ≥ 3.0 (i.e. plastic axial strain in flange 

outside the hole-affected zone is greater than 3y when Mmax is reached). 

 Except of non-holed S960 beam, PE11 (250) is in all cases less than u–fy/E. 

 In the case of non-holed S960 beam PE11 (250) = 2.7% ≈ u–fy/E = 3.0%–0.5% = 2.5% 

(i.e. plastic axial strains u of material test are reached in the beam flange). In other 

cases PE11 (250) < u–fu/E. Note that if axial strains in flange can reach u, R = 3 may 

be reached in the case of a non-holed beam if u ≥ 4fy/E (i.e. for S960 u ≥ 1.9%). 
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Figure 26. Plastic axial strains eq (PE11) for the case of 8 mm hole, at the moment when 

maximum moment Mmax is reached (deformations in true scale). 
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5.4 Effect of beam length on the rotation capacity 

To compare the effect of beam length on rotation capacity, the rotation is determined from two 
different distances from the mid-beam. The rotation capacity R based on the rotation at the 
distance 250 mm is compared to the value based on rotation at the distance 500 mm (end 
rotation). Figure 27 shows that the localized plastification at the hole has some effect on R, as 
described in Section 3.3. The longer the beam, the lower is R. Therefore a relative long beam 
with half-beam length of L = 500 mm is used in this study. 

 

Figure 27. Effect of beam length on rotation capacity R in the case of 16 mm hole.

6. I beam with virtual material properties 

The case study is made to see the influence of material properties on Eurocode Class 1 
requirement R ≥ 3.0 and Mmax/Mpl ≥ 1.0. The comparison is made for the same beam as in 
previous Section 5.1. 

6.1 Material data 

Tri-linear material model were used in material modelling (Figure 28). Elastic stage, strain-
hardening stage and ideal plastic stage were used for describing true-stress strain curve. This 
means that strain-hardening was not utilized after the ultimate tensile strength on engineering 
stress-strain curve was reached. 

Eight different material with fu/fy = 1.02–1.2 and with u = 2–10% were under consideration 
(Table 7). Results with fy = 1000 MPa and fy = 500 MPa were compared. In all cases E = 

210 GPa was used. Figure 29 compares the new materials to the true stress versus true strain 
curves of the materials used in previous Section 4.1. SC-10-05 it is most similar to S960. 
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Figure 28. True and engineering stress-strain curves. 

Table 7. Material properties for virtual materials. 

 Engineering values True values Eng. values 

 fu/fy u fu/fy u u/y

SC-02-02 1.02 2% 1.04 2.0% 3.2 

SC-02-05 1.02 5% 1.07 4.9% 11 

SC-05-02 1.05 2% 1.07 2.0% 3.2 

SC-05-05 1.05 5% 1.10 4.9% 11 

SC-05-10 1.05 10% 1.16 9.5% 21 

SC-10-05 1.10 5% 1.16 4.9% 11 

SC-10-10 1.10 10% 1.21 9.5% 21 

SC-20-10 1.20 10% 1.32 9.5% 21 

 

 

Figure 29. Comparison of virtual and true material models. The dots show the end of strain-
hardening stage. The continuous lines show the stress-strain curves of the true materials 
used in Section 4.1. Open dots are used only for tension plates in section 7. 
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6.2 Moment-rotation behaviour 

Figure 30 and Figure 31 show that in all cases without hole in specimen, and also in some 
cases with small hole, the failure mode is buckling of the compression flange. However, Figure 
32 and Figure 33 show that the maximum bending moment of specimens with hole is reached 
before the failure starts at the compression flange. 

Table 8 and Figure 34 show that when Mpl is based on gross cross section, all materials except 
of SC-02-02 (S1000 and S500) and SC-02-05 (S1000) with hole of 16 mm, fulfil Eurocode 
Class 1 requirement Mmax/Mpl ≥ 1.0. However, if fu/fy > Wpl/Wpl,net, all cases satisfy the condition 
Mmax/Mpl ≥ 1.0. If net section resistance is calculated by Mu = Wpl,net∙fu, Mmax/Mu ≥ 1.0 except of 
two cases of S1000 with fu/fy = 1.2, where Mmax/Mpl = 0.99 (Figure 34). Comparisons in Figure 
34 show also that, besides of hole size, moment resistance Mmax is affected by the ratio fu/fy. 
The results for case ‘no hole’ are affected by plate buckling of the compression flange. 

Table 8. Ratio of Mmax/Mpl.and Mmax/Mu. Materials with fy = 1000 MPa. 

 Mmax/Mpl Mmax/Mu 

 hole 16 mm hole 8 mm no hole hole 16 mm hole 8 mm no hole 

SC-20-10 1.03 1.08* 1.08* 1.04 1.06* 1.05* 

SC-10-10 1.01 1.06* 1.06* 1.02 1.05* 1.04* 

SC-10-05 1.00 1.06 1.08* 1.03 1.04 1.03* 

SC-05-10 0.98 1.04* 1.06* 0.99 0.99* 0.95* 

SC-05-05 1.08 1.14 1.14* 1.06 1.07 1.04* 

SC-05-02 1.03 1.09 1.13* 1.05 1.06 1.03* 

SC-02-05 0.98 1.06* 1.09* 1.06 1.06* 1.01* 

SC-02-02 0.96 1.04* 1.07* 1.03 1.03* 0.98* 

 

Table 9. Ratio of Mmax/Mpl.and Mmax/Mu. Materials with fy = 500 MPa. 

 Mmax/Mpl Mmax/Mu 

 hole 16 mm hole 8 mm no hole hole 16 mm hole 8 mm no hole 

SC-20-10 1.04 1.09* 1.11* 1.07 1.07* 1.04* 

SC-10-10 1.02 1.07* 1.08* 1.06 1.06* 1.05 

SC-10-05 1.02 1.07* 1.09* 1.04 1.05* 1.04* 

SC-05-10 1.00 1.05* 1.07* 1.00 1.01* 0.99* 

SC-05-05 1.09 1.16* 1.19* 1.08 1.08* 1.05* 

SC-05-02 1.04 1.10* 1.14* 1.07 1.07* 1.04* 

SC-02-05 1.01 1.07* 1.10* 1.08 1.07* 1.03* 

SC-02-02 0.99 1.05* 1.07* 1.04 1.04* 1.01* 

* Failure starts in compression flange. 
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Figure 30. M-R curves of I beams, materials with fy = 1000 MPa. 



 

 

RESEARCH REPORT VTT-R-02326-16 

34 (58) 

  

 

 

 

 

Figure 31. M-R curves of I beams, materials with fy = 500 MPa. 
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Figure 32. M vs. equivalent plastic strain (PEEQ), materials with fy = 1000 MPa. 
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Figure 33. M vs. equivalent plastic strain (PEEQ), materials with fy = 500 MPa. 
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Figure 34. Ratio of Mmax/Mpl.and Mmax/Mu. Materials with fy = 1000 MPa and fy = 500 MPa. 
The vertical dashed lines show the lower limit of condition fu/fy ≥ Wpl/Wpl,net for holes 8 mm 
and 16 mm (see Table 5). 

Table 10, Figure 32 and Figure 33 show that the equivalent plastic strain at the hole is 40–
72% for S1000 and 29–77% for S500 when the maximum bending moment is reached and 
that the strains do not depend much on the size of the hole. The material has to tolerate these 
plastic strains in order that the conclusions presented here are valid. 

Table 10. Equivalent plastic strain (PEEQ) at maximum moment. 

 fy = 1000 MPa fy = 500 MPa 

 hole 16 mm hole 8 mm no hole hole 16 mm hole 8 mm no hole 

SC-20-10 64% 56%* 3.9%* 59% 69%* 9.2%* 

SC-10-10 57% 55%* 3.0%* 49% 61%* 5.6%* 

SC-10-05 48% 54% 3.9%* 39% 55%* 4.8%* 

SC-05-10 43% 49%* 2.7%* 36% 44%* 4.6%* 

SC-05-05 72% 60% 5.4%* 69% 77%* 10%* 

SC-05-02 53% 65% 4.7%* 48% 64%* 5.0%* 

SC-02-05 40% 49%* 2.5%* 31% 45%* 2.4%* 

SC-02-02 42% 47%* 2.0%* 29% 38%* 1.9%* 

* Failure starts in compression flange. 

Figure 32 and Figure 33 show that the strains begin to grow very fast in hole-affected zone 
when the maximum load is reached. Therefore, here the rotation capacity R is determined by 
the maximum point of the moment-rotation curve. This is a conservative assumption, because 
the descending part of the curve is not utilized. 
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Figure 35 shows that rotation capacity R = 3 is reached in this case study, if calculated Mmax = 
1.06–1.09∙Mpl. Therefore the correct estimation of the design value for Mmax is very important. 

Figure 36 shows that the R < 3 values are more dominant in the case of hole 16 mm than in 
the case of 8 mm. Ratio of fu/fy = 1.1∙Wpl/Wpl,net, with values of 1.15 and 1.21 for holes 8 mm 
and 16 mm, seems to be a conservative estimate for R ≥ 3. Figure 36 shows also that R is 

slightly depending on u and fu/fy ratio. 

The theoretical value for the rotation capacity of the beam without holes in this study (Wpl/W = 
1.09) is 

𝑅𝑢 =
𝑊

𝑊𝑝𝑙

𝜀𝑢

𝜖𝑦
− 1 

The equation is based on beams without holes and assumption that max =u (see Chapter 2.1). 

When u = 2%, Ru = 2.9 for S1000 and Ru = 6.7 for S500 (E = 210 GPa). These Ru values are 
not exactly reached in the case materials SC-05-02 and SC-02-2 and (Table 11, no hole). 
However, it has to be noted that the rotation capacities of the beams without hole were limited 
by the plate buckling of the compression flange. 

Table 11. Moment-rotation capacity R. 

 fy =1000 MPa fy =500 MPa 

 hole 16 mm hole 8 mm no hole hole 16 mm hole 8 mm no hole 

SC-20-10 2.7 7.7* 7.4* 6.2 19* 25* 

SC-10-10 1.0 4.2* 4.9* 2.2 12* 21* 

SC-10-05 0.7 3.5 6.3* 1.7 8.4* 13* 

SC-05-10 0.5 2.5* 3.0* 1.3 7.1* 13* 

SC-05-05 0.4 2.0 4.8* 0.9 4.9* 12* 

SC-05-02 0.2 1.3 3.0* 0.6 3.1* 6.2* 

SC-02-05 0.2 1.3* 3.2* 0.6 2.7* 10* 

SC-02-02 0.1 0.8* 2.6* 0.4 1.9* 4.9* 

* Failure starts in compression flange. 

 

Figure 35. Comparison of Mmax/Mpl to rotation capacity R. The plots are based on results in 
Table 8, Table 9 and Table 11. 
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Figure 36. Material models which results to moment-rotation capacities of R > 3 and R < 3. 
The horizontal dashed lines show the values of 1.1∙Wpl/Wpl,net. 

7. Centre hole tension specimens with virtual material 
properties 

7.1 Material data 

A flat bar with length of 1000 mm, width b = 80 mm and thickness t = 8 mm, having a hole in 
the middle, is modelled in tension; thus corresponding to half of beam flange in the previous 
study. The flat bar can be understood as ideal cases of a beam with zero web thickness. One 
eight of the flat bar with length of L = 500 mm is modelled. 

Specimens with hole of 16 mm and 8 mm and bars without hole are modelled. Materials with 
fy = 1000 MPa and fy = 500 MPa are studied. 

In addition of the previous materials use for beams (Table 7), four additional material models 
SC-20-02, SC-20-05, SC-30-05 and SC-30-10 (Table 12) are used in this case. 
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Table 12. Material properties of centre hole tension specimens. 

 Engineering values True values 

 fu/fy u fu/fy u 

SC-02-02 1.02 2% 1.04 2.0% 

SC-05-02 1.05 2% 1.07 2.0% 

SC-10-05 1.10 5% 1.16 4.9% 

SC-20-10 1.20 10% 1.32 9.5% 

SC-02-05 1.02 5% 1.07 4.9% 

SC-05-05 1.05 5% 1.10 4.9% 

SC-05-10 1.05 10% 1.16 9.5% 

SC-10-10 1.10 10% 1.21 9.5% 

SC-20-02 1.20 2 % 1.22 2.0% 

SC-20-05 1.20 5% 1.26 4.9% 

SC-30-05 1.30 5% 1.37 4.9% 

SC-30-10 1.30 10% 1.43 9.5% 

 

7.2 Force-displacement behaviour 

Lengthening capacity R is determined by 

𝑅𝑡 =
𝜀𝑚𝑎𝑥

𝜖𝑦
− 1 =

∆𝑚𝑎𝑥

∆𝑦
− 1;  ∆𝑦= 𝐿

𝑓𝑦

𝐸
 

It should also be noted that the equation assumes that the geometry and behaviour of the 
compression flange are identical with those of the tension flange. In addition the web of a beam 
affects not only the bending resistance. Therefore the results with the tension plate approach 
are not fully comparable with the results of the beam model. 

Plastic tensile resistance is determined by 

𝐹𝑝𝑙 = 𝐹𝑦 = 𝐴𝑔 ∙ 𝑓𝑦 

Ultimate tensile resistance is determined by 

𝐹𝑢 = 𝐴𝑛𝑒𝑡 ∙ 𝑓𝑢 

In addition reduced ultimate tensile resistance Fu,r is used in comparisons. 

𝐹𝑢,𝑟 =
𝐴𝑛𝑒𝑡 ∙ 𝑓𝑢

𝑘
;  𝑘𝑟 = 1 + 0.1 (

𝑓𝑢

𝑓𝑦
− 1) 

Table 13, Table 14 and Figure 37 (top graphs) show that in all cases Fmax/Fy ≥ 1.0, if fu/fy ≥ 
Ag/Anet. However, when the trend lines in Figure 37 are considered, Fmax/Fy may be slightly less 
than 1.0 when Ag/Anet = 1.25 (hole 16 mm, S500). This means that the condition fu/fy ≥ Ag/Anet 
can be slightly unsafe. 

All cases which have been modelled until the maximum load do not fulfil Fmax/Fu ≥ 1.0 (Figure 
37, mid graphs). In the case of hole 16 mm and high fu/fy ratios Fmax can be 2–3% less than Fu. 
However, if small reduction factor kr (dependant on fu/fy) is used for Fu, all results will be 
conservative (Figure 37, bottom graphs). Results for both S1000 and S500 are almost 
identical. 
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Table 15, Table 16 and Figure 42 show that the equivalent plastic strains at the hole are 10–
57% for S1000 and 11–53% for S500 when the maximum axial force is reached. The strains 
do not depend much on the size of the hole. 

Figure 38 shows that lengthening capacity Rt = 3 is reached, when calculated Fmax = 1.01–
1.09∙Fpl. Therefore the correct estimation of the design value for Fmax is very important. 

Figure 39 shows that the Rt < 3 values are more dominant in the case of hole 16 mm than in 
the case of 8 mm. Ratio of fu/fy = 1.1∙Ag/Anet, with values of 1.22 and 1.38 for holes 8 mm and 
16 mm seems to be a conservative estimate for R ≥ 3. Figure 39 shows also that R is slightly 

depending on u and fu/fy ratio. 

The theoretical value for lengthening capacity of flat bars without holes is Rt.u = u/y-1, when 
the capacity Rt is determined based on the maximum point of load-displacement curve. In the 

case of u = 2%, Rt,u = 3.2 for S1000 and Rt,u = 7.4 for S500 (E = 210 GPa). For those cases 
where the maximum elongation has been determined Rt,u is quite exactly equal to Ru (Table 
15 and Table 16, case ‘no hole’). 

Table 13. Ratio of Fmax/Fy and Fmax/Fu. Materials with fy = 1000 MPa. 

 Fmax/Fy Fmax/Fu 

 hole 16 mm hole 8 mm no hole hole 16 mm hole 8 mm no hole 

SC-02-02 0.82 0.93 1.02 1.01 1.01 1.00 

SC-05-02 0.84 0.95 1.05 1.00 1.01 1.00 

SC-10-05 0.88 0.99 1.081) 1.00 1.00 0.981) 

SC-20-10 0.94 1.07 1.102) 0.98 0.99 0.922) 

SC-02-05 0.83 0.93 1.02 1.02 1.01 1.00 

SC-05-05 0.84 0.95 1.052) 1.00 1.01 1.002) 

SC-05-10 0.84 0.95 1.022) 1.00 1.01 0.972) 

SC-10-10 0.87 0.99 1.052) 0.99 1.00 0.952) 

SC-20-02 0.96 1.08 1.20 1.00 1.00 1.00 

SC-20-05 0.94 1.08 1.192) 0.98 1.00 0.992) 

SC-30-05 1.02 1.17 1.282) 0.98 1.00 0.982) 

SC-30-10 1.01 1.142) 1.152) 0.97 0.972) 0.882) 
1) Calculated only up to elongation of 4%   2) Calculated only up to elongation of 5%. 

Table 14. Ratio of Fmax/Fy and Fmax/Fu. Materials with fy = 500 MPa. 

 Fmax/Fy Fmax/Fu 

 hole 16 mm hole 8 mm no hole hole 16 mm hole 8 mm no hole 

SC-02-02 0.83 0.93 1.02 1.02 1.01 1.00 

SC-05-02 0.85 0.96 1.05 1.01 1.02 1.00 

SC-10-05 0.88 1.00 1.081) 1.00 1.011) 0.981) 

SC-20-10 0.94 1.08 1.102) 0.98 1.002) 0.922) 

SC-02-05 0.83 0.94 1.02 1.02 1.02 1.00 

SC-05-05 0.85 0.96 1.052) 1.01 1.022) 1.002) 

SC-05-10 0.85 0.96 1.032) 1.01 1.022) 0.982) 

SC-10-10 0.88 1.00 1.052) 1.00 1.012) 0.952) 

SC-20-02 0.96 1.09 1.20 1.00 1.01 1.00 

SC-20-05 0.95 1.08 1.202) 0.99 1.002) 1.002) 

SC-30-05 1.03 1.17 1.292) 0.99 1.002) 0.992) 

SC-30-10 1.01 1.152) 1.162) 0.97 0.982) 0.892) 
1) Calculated only up to elongation of 4%   2) Calculated only up to elongation of 5%. 
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Figure 37. Fmax/Fy and Fmax/Fu vs. fu/fy for centre hole flat bars. The vertical dashed lines in 
topmost graphs show the lower limit of condition fu/fy ≥ Ag/Anet for holes 8 mm and 16 mm 
(see Table 5). 
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Table 15. Equivalent plastic strain (PEEQ) at maximum force and Rt factors for centre hole 
flat bars. Materials with fy = 1000 MPa. 

 PEEQ Rt Note 

 hole 16 mm hole 8 mm no hole hole 16 mm hole 8 mm no hole u/y-1 

SC-02-02 10% 11% 1.5% -0.08 0.02 3.1 3.2 

SC-05-02 13% 14% 1.5% -0.03 0.08 3.2 3.2 

SC-10-05 30% 37% 3.5%1) 0.23 0.39 7.41) 9.5 

SC-20-10 52% 57% 4.4%2) 0.68 7.0 9.52) 20 

SC-02-05 22% 24% 4.5 % 0.05 0.16 9.3 9.5 

SC-05-05 27% 31% 4.5 %2) 0.13 0.26 9.52) 9.5 

SC-05-10 36% 43% 4.5 %2) 0.26 0.42 9.52) 20 

SC-10-10 43% 49% 4.4 %2) 0.41 0.58 9.52) 20 

SC-20-02 16% 15% 1.5% 0.16 1.6 3.4 3.2 

SC-20-05 35% 37% 4.3%2) 0.42 4.0 9.52) 9.5 

SC-30-05 40% 34% 4.3%2) 1.3 5.7 9.52) 9.5 

SC-30-10 56% 41%2) 4.4%2) 1.4 9.52) 9.52) 20 
1) Calculated only up to elongation of 4%     2) Calculated only up to elongation of 5%. 

Table 16. Equivalent plastic strain (PEEQ) at maximum force and Rt factors for centre hole 
flat bars. Materials with fy = 500 MPa. 

 PEEQ Rt Note 

 hole 16 mm hole 8 mm no hole hole 16 mm hole 8 mm no hole u/y-1 

SC-02-02 11% 12% 1.8% 0.05 0.16 7.2 7.4 

SC-05-02 12% 16% 1.8% 0.10 0.26 7.3 7.4 

SC-10-05 30% 36% 3.7%1) 0.63 0.84 15.91) 20 

SC-20-10 49% 53% 4.7%2) 1.47 16.3 20.02) 41 

SC-02-05 23% 24% 4.7% 0.31 0.42 19.4 20 

SC-05-05 27% 31% 4.7%2) 0.47 0.63 20.02) 20 

SC-05-10 35% 43% 4.8%2) 0.73 0.99 20.02) 41 

SC-10-10 43% 50% 4.7%2) 1.05 1.31 20.02) 41 

SC-20-02 18% 16% 1.8% 0.42 3.6 7.6 7.4 

SC-20-05 35% 33% 4.6%2) 0.79 8.8 20.02) 20 

SC-30-05 36% 31% 4.6%2) 2.89 12.0 20.02) 20 

SC-30-10 53% 37%2) 4.6%2) 3.52 20.02) 20.02) 41 
1) Calculated only up to elongation of 4%     2) Calculated only up to elongation of 5%. 

 

Figure 38. Comparison of Fmax/Fpl to lengthening capacity Rt. 
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Figure 39. Material models which results to lengthening capacities of Rt >3 and Rt <3. The 
values on the horizontal dashed lines show the value of 1.1∙Ag/Anet. 
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Figure 40. F-Rt curves for centre hole flat bars. Materials with fy = 1000 MPa. 
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Figure 41. F-Rt curves for centre hole flat bars. Materials with fy = 500 MPa. 
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Figure 42. F vs. equivalent plastic strain (PEEQ) for centre hole flat bars with hole 8 mm. 
Materials with fy = 1000 MPa and fy = 500 MPa. 
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Figure 43. Examples of equivalent plastic strains (PEEQ) at the moment of maximum force. 
In all pictures dark blue colour presents PEEQ = 0 and grey colour presents PEEQ ≥ 25%. 
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8. Material ductility requirements for the validity of the results 

In the studies with modified material properties the point of maximum force and displacement 
taken from load-displacement curve has been used as the failure criterion (see Chapter 6.2). 
This approximation is conservative if the materials can tolerate the equivalent plastic strains at 
that moment. 

The validity study is based on the assumption that that the equivalent plastic strains (eq, 

PEEQ), achieved at the A5 elongation of tensile coupon (gauge length L0 = 5.65 A), can be 
accepted in the specimens with holes (Figure 44). This assumption can be considered reliable, 
because the stress triaxiality at the failure of the specimen with a hole is smaller than the stress 
triaxiality in the middle of a tension test coupon, and because the relation between failure strain 
and stress triaxiality can usually be approximated by a monotonic decreasing function (Hradil 
& al. 2015). If a more accurate solution is desired, it has to be based on rather complicated 
testing programme. 

 

Figure 44. Prediction of minimum required elongation at failure (Hradil & al. 2015). 

For determining the A5 elongations corresponding to the utilized maximum plastic strains 
PEEQ in this study, the tension coupons were modelled (A = 8 mm x 20 mm). The simulated 
coupon test had about the same mesh density as the specimens with holes. 

Table 17 and Figure 45 summarize the maximum required plastic strains PEEQ utilized in this 

study and the corresponding necking capacity (A5-u) in material tests. It can be concluded 
that the results outlined above are valid if A5 is at least 6% higher than uniform elongation. 
The most critical case is the beam with material model SC-05-05 and fy = 500 MPa (required 
plastic strains PEEQ = 77%). 
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Table 17. Maximum required plastic strains PEEQ utilized in this study and corresponding 

necking capacity (A5-u) in material tests. PEEQ values are the larger values of holes 8 mm 
and 16 mm. 

 fy = 1000 MPa fy = 500 MPa 

 Beam Flat bar Beam Flat bar 

 PEEQ A5-u PEEQ A5-u PEEQ A5-u PEEQ A5-u 

SC-20-10 64% 4.7% 57% 4.2% 69% 5.2% 53% 4.1% 

SC-30-10 –  56% 4.2% –  53% 4.1% 

SC-10-10 57% 4.2% 49% 3.6% 61% 4.6% 50% 3.8% 

SC-05-10 49% 3.4% 43% 3.0% 44% 3.1% 50 % 3.6% 

SC-30-05 –  40% 3.6% –  36% 3.4% 

SC-20-05 –  37% 3.4% –  35 % 3.3% 

SC-10-05 54% 4.5% 37% 3.3% 55% 4.8% 36% 3.3% 

SC-05-05 72% 5.5% 31% 2.7% 77% 6.0% 31% 2.7% 

SC-02-05 49% 3.8% 24% 1.8% 45% 3.7% 24% 1.9% 

SC-20-02 –  16% 1.8% –  18% 2.1% 

SC-05-02 65% 5.3% 14% 1.5% 64% 5.6% 16% 1.8% 

SC-02-02 4 % 4.2% 11% 1.1% 38% 3.6% 12% 1.2% 

 

 

Figure 45. Maximum required plastic strains PEEQ utilized in this study (top graphs) and 

needed necking capacity (A5-u) in material tests to achieve the utilized PEEQ (bottom 
graphs). 
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9. Summary and conclusions 

Virtual testing of a beam under uniform bending and a flat plate under tension was carried out. 
Two hole sizes and two material strengths with different material models were under 
consideration. Tri-linear true stress-true plastic strain material with no strain hardening after 
the ultimate tensile strength was adopted in the analysis. 

9.1 Test matrix for virtual testing 

A beam and a flat bar (Figure 46) was tested virtually by ABAQUS. The specimens were 
calculated without hole and with holes of 8 mm and 16 mm. In the case of beam the holes 
were only in the bottom flange. Based on the symmetry conditions a quarter of both specimens 
with length of L = 500 mm was modelled. The beam was loaded by end rotation, resulting in 
uniform bending moment along the beam; and flat bar by axial end displacement. The flat bar 
presents a borderline case of a beam with a zero web thickness. Materials with fy = 1000 MPa 
and fy = 500 MPa were studied. E = 210 GPa was used in all calculations. Three-stage material 
model with parameters shown in the table of Figure 46 were used for material modelling. 
Stages are elastic stage up to fy, strain-hardening stage up to fu and ideal plastic stage after fu. 

It means that no strain hardening was used in true-stress strain curve after u. 

 

 

 

Material models

 fu/fy u 

SC-02-02 1.02 2% 

SC-02-05 1.02 5% 

SC-05-02 1.05 2% 

SC-05-05 1.05 5% 

SC-05-10 1.05 10% 

SC-10-05 1.10 5% 

SC-10-10 1.10 10% 

SC-20-02 1.20 2% 

SC-20-05 1.20 5% 

SC-20-10 1.20 10% 

SC-30-05 1.30 5% 

SC-30-10 1.30 10% 

Figure 46. Cross section of the beam and flat bar models and a table of used material model 
parameters. 

The point of maximum force and displacement taken from load-displacement curve has been 
used as the basis for comparison. This is a conservative assumption, because the descending 
part of the curve is not utilized in the calculation of rotation capacity R. However, the 
approximation is valid only if the materials can tolerate the plastic strains at that stress level. 

Therefore it is required that A5 elongation (gauge length L0 = 5.65 A) in material testing shall 
be at least 6% larger than the uniform elongation. It means that the necking capacity shall be 
at least 6%. The conclusion is based on comparison of the plastic strains in holed specimens 
with the strains in modelled standard tensile coupons. 

9.2 Verification of net and gross cross section resistances 

According to Eurocodes the design resistance of beams with Class 2 cross sections is based 
on net cross section properties. Then the resistance shall be greater than 
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𝑀𝑐,𝑅𝑑 =
𝑊𝑝𝑙,𝑛𝑒𝑡𝑓𝑦

𝛾𝑀0
;  𝛾𝑀0 = 1.0 

For tension members with holes the resistance shall be greater than both values 

𝑁𝑝𝑙,𝑅𝑑 =
𝐴𝑓𝑦

𝛾𝑀0
;  𝛾𝑀0 = 1.0 and 𝑁𝑢,𝑅𝑑 =

0.9𝐴𝑛𝑒𝑡𝑓𝑢

𝛾𝑀2
;  𝛾𝑀2 = 1.25 

The best estimate for resistance in virtual testing is achieved by using ultimate resistance 
(Figure 47) which is determined by 

𝑀𝑢 = 𝑊𝑝𝑙,𝑛𝑒𝑡 ∙ 𝑓𝑢 for beam model 

𝐹𝑢 = 𝐴𝑛𝑒𝑡 ∙  𝑓𝑢 for flat bar model 

However, especially in the case of flat bars, a small reduction is necessary. 

𝐹𝑢,𝑟 =
𝐹𝑢

𝑘𝑟
;   𝑘𝑟 = 1 + 0.1 (

𝑓𝑢

𝑓𝑦
− 1) 

The reduction is significant only in the case of high fu/fy ratios (e.g. 3% for fu/fy = 1.3). If fy is 
used in the comparison, as may be used for beams with Class 2 cross sections, factor kr is not 
needed. However, then the results are very conservative in the case of large fu/fy ratios. 

 

Figure 47. Results for net section resistance (Class 2). 

It is worth noting in that when uniform elongation is relatively low (u = 4.2y for material S1000 

with u = 2%), the results (materials SC-02-02 and SC-02-05 in Figure 47) deviate from other 
results. The deviation cannot be seen in the case of flat bars. 
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Interestingly, net cross-section together with ultimate tensile strength can be used also to 
predict the bending resistance of beams. Some tests of relatively compact RHS beams (Ma & 
Havula 2015) support this rule (Table 18, Mmax/Mpl ≈ fu/fy). The tests were made for non-holed 
beams. The strength class of the steel was S700. 

Table 18. Test results for S700 rectangular hollow sections (Ma & Havula 2015). 

Dimensions fy fu A5 fu/fy Mmax/Mpl R 

RHS 160x160x10 743 MPa 869 MPa 15.0% 1.17 1.19 3.6 

RHS 150x150x8 746 MPa 841 MPa 14.7% 1.13 1.13 2.8 

 

According to Eurocodes the design resistance of beams with Class 1 cross sections is based 
on gross cross section properties. Then the resistance shall be greater than 

𝑀𝑐,𝑅𝑑 =
𝑊𝑝𝑙𝑓𝑦

𝛾𝑀0
;  𝛾𝑀0 = 1.0 

Concerning the fastener holes in the tension, the holes may be ignored provided that for the 
tension flange 

0.9𝐴𝑛𝑒𝑡𝑓𝑢

𝛾𝑀2
≥

𝐴𝑔𝑓𝑦

𝛾𝑀0
;  𝛾𝑀0 = 1.0, 𝛾𝑀2 = 1.25 

Therefore the results of the beams in virtual testing are compared with the condition 

𝑀𝑚𝑎𝑥 ≥ 𝑀𝑝𝑙 = 𝑊𝑝𝑙 ∙ 𝑓𝑦 

For the flat bars the corresponding condition is 

𝐹𝑚𝑎𝑥 ≥ 𝐹𝑝𝑙 = 𝐹𝑦 = 𝐴𝑔 ∙ 𝑓𝑦 

The comparisons (Figure 48) show following results: 

 In the case of beam, condition Mmax≥Mpl is fulfilled in all cases if fu/fy > Wpl/Wpl.net 
(Wpl/Wpl,net = 1.05 for hole 8 mm and Wpl/Wpl,net = 1.10 for hole 16 mm). Dashed lines in 
Figure 48 show that for the border line case when fu/fy = Wpl/Wpl,net, the results are 3–
7% conservative. 

 In the case of flat bar, condition Fmax ≥ Fy is fulfilled almost in all cases if fu/fy > Ag/Anet 
(Ag/Anet = 1.11 for hole 8 mm and Ag/Anet = 1.25 for hole 16 mm). However, in the case 
of high fu/fy ratios, slightly reduced resistance Fy.r = Fy/kr is required. 

It can be concluded that if Ag/Anet or Wpl/Wpl,net is greater than kr ∙fu/fy, Eurocode Class 2 
requirement is always fulfilled. For the considered case of I beam this approximation is about 
5% conservative, but for flat bars the condition is quite accurate (Figure 48). 
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Figure 48. Results for gross cross section resistance (Class 1). The vertical dashed lines 
show the lower limit of condition fu/fy ≥ Wpl/Wpl,net and fu/fy ≥ Ag/Anet for holes 8 mm and 
16 mm. 

9.3 Verification of rotation capacity 

Eurocode requirement for the rotation capacity of beams with Class 1 cross section is 

𝑅 =
𝜑𝑚𝑎𝑥

𝜑𝑝𝑙
− 1; 𝜑𝑝𝑙 =

𝑀𝑝𝑙𝐿

𝐸𝐼
;  𝑀𝑝𝑙 = 𝑊𝑝𝑙𝑓𝑦 

It is based on gross cross section properties. The given rotation pl is valid for a beam with 
uniform bending moment. 

Correspondingly, the lengthening capacity of the flat bar is determined by 

𝑅𝑡 =
𝜀𝑚𝑎𝑥

𝜖𝑦
− 1 =

∆𝑚𝑎𝑥

∆𝑦
− 1;  ∆𝑦= 𝐿

𝑓𝑦

𝐸
 

Here a conservative approach where the maximum point of load-displacement curves is used 

in determination of R and Rt. For the case flat bars without hole max/y = u/y. Therefore the 
condition R ≥ 3 is always fulfilled (Figure 49) in the cases when the calculation has been 

continued until elongation L∙u. 
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Figure 49. Results for flat bars without holes. The graph includes only the cases in which the 

calculation has been continued until elongation L∙u. 

Virtual testing of specimens with holes show following results (Figure 50): 

 In the case of beams, condition R ≥ 3 is fulfilled in all cases if Mmax ≥ 1.08 Mpl. 

 In the case of flat bars, condition Rt ≥ 3 is fulfilled in all cases if Fmax ≥ 1.09 Fy. 

 If Mmax or Fmax is estimated by reduced net section resistance Mu,r, or Fu,r, the results are 
slightly more conservative, then shall be Mu,r ≥ 1.07 Mpl and Fu,r ≥ 1.06 Fy. 

It can be concluded that Eurocode Class 1 requirement for R t≥ 3 is fulfilled if Wpl.net∙fu ≥ 
1.1 Wpl∙fy for the beam or Af,net∙fu ≥ 1.1 Af∙fy for the tension flange. 

 

Figure 50. Results for rotation capacity of beams and lengthening capacity of flat bars. 
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9.4 Main conclusions 

Material ductility requirements of beams with flange holes were verified by virtual testing. Local 
buckling of the compressed parts was prevented by restraints. Tri-linear stress-strain material 
behaviour with elastic stage up to yield stress fy, strain-hardening stage up to ultimate strength 
fu and ideal plastic stage after fu was used in true stress-strain material model. Materials with 

fu/fy from 1.02 to 1.30 and u from 2 to 10%, and strengths of fy = 1000 MPa and fy = 500 MPa 

were under consideration. The requirements for uniform elongation (u) and elongation at 
fracture (A5) were determined from the results. 

Beams without holes: 

Conditions given for the cross section classification in Eurocodes, which are in fact set for 
limiting the slenderness of compression plates in the cross section, were used as the basis of 
the study. The conditions for cross section classes Class 1 and Class 2 comprise conditions 
for bending resistance, rotation capacity and net section resistance. 

The basic starting point of the study is a beam without holes. Then, the first requirement of 
Class 1 and Class 2 is that the plastic moment resistance Mpl = Wplfy shall be achieved. The 

study in Chapter 2.2 indicates that for fu/fy ≥ 1.02, uniform elongation of u ≥ 6y is adequate for 
usual I beams and hollow sections, to reach Mpl. However, with higher fu/fy ratio, even with 

lower values of u it is possible to reach the requirement. Class 2 cross sections, which do not 
have additions that do not have conditions for rotation capacity, may have lower requirement 

for u too. 

A second Eurocode requirement specifically for Class 1 is that the plastic rotation capacity R 
= 3 shall be achieved. The study in Chapter 2.1 indicates that in the case of usual I beams and 

hollow sections with any shape, uniform elongation of u ≥ 6yresults in adequate rotation 
capacity to fulfil Class 1 cross sections conditions too. 

Beams with flange holes: 

The virtual testing of beams with flange holes is based on the condition that a specimen with 
the holes shall tolerate the same equivalent plastic strains as a tension test coupon in standard 
material testing. Based on the study in Chapter 8, the elongation at fracture (A5 elongation) 

shall be at least 6% higher than the uniform elongation u, to fulfil the condition. 

In the case of beams with flange holes the condition of Class 2 is that the plastic moment net 
section resistance Mpl = Wpl,net fy shall be achieved in net cross section. The study in Chapter 
9.2 shows that all virtual tests fulfil this condition. 

In the case of Class 1 sections, an additional requirement is necessary for the net section 
resistance. This ensures that sufficient plastic elongations, resulting in the rotation capacity R 
≥ 3, develop in the gross cross section before the net section fails. The results in Chapter 9.2 
show that the condition Mu ≥ 1.1Mpl is necessary to fulfil this requirement. Then the ultimate 
bending resistance of the net section is determined by Mu = Wpl,net fu and plastic bending 
resistance by Mpl = Wpl fy. 

The results above indicate that Eurocode requirements are too conservative for beams with 

flange holes. In Eurocodes the material requirements are for uniform elongation u ≥ 15y and 

for fracture elongation A5 ≥ 10% (see Chapter 2.3). Also the requirement concerning the 
fastener holes in the tension flange of Class 1 cross sections seem to be too conservative, 

when the partial safety factor M0 = 1.25 is applied together with additional reduction factor of 
0.9 (see Chapter 9.2). 
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9.5 Some remarks on the results 

It should be noted that this study is based on a beam with a flange hole and a uniform bending 
moment. Therefore in the case of other loading conditions or structural details the results may 
be different. In the case of localised plastic deformations, the rotation capacity depends also 
on dimensions and loading arrangements of the beam. Large deformations in the areas of local 
discontinuities or other type of large secondary effects (tolerances, residual stresses, sharp 
notches, etc.) may have different impact on the material ductility requirements than an ideal 
hole in tension flange has. 

The most significant parameter affecting rotation capacity is the ratio of u/y. Therefore, for a 

fixed R and u, required plastic rotations are the larger the higher is fy. More favourable in the 

case of high strength steels should be to use required plastic rotation req instead of R. 

The net section resistance is proportional to fu. The lower is fu/fy the more difficult is the yielding 
of the gross cross-section outside net cross section. Therefore materials with low fu/fy are more 
sensitive to net section failure. 

In a general sense the conditions presented above for a hole do not alone guarantee adequate 
deformation capacity at other type of local discontinuities. The deformation capacity depends 
on the level of local plastic strains and material-dependant critical plastic strains. 
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