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Preface
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ough presentation of the multi-scale computation method for acoustical purposes.
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1. Introduction

The performance of sound absorbing materials is simulated by using proper acoustic parame-
ters in computations. These acoustic parameters are based on the macroscopic parameters
of the materials, used in the modeling. The macroscopic parameters are not mutually inde-
pendent, so the efficient optimization of the materials cannot be based only on the variations
of the individual macroscopic parameters. They are dependent on the microscopic parameters
of the materials, the latter being more independent on each other. Also the microscopic pa-
rameters are those to which we can affect directly in manufacturing processes. The chain of
the parameters is presented in Figure 1. The dependences of the parameters between different
categories have to be known in order to control, e.g., what microscopic parameters have to be
changed and how, to obtain good absorptive properties in selected frequency ranges.

Figure 1. Chain of parameters in controlling the performance of sound absorbing materials.

In this report, the multi-scale computation method is treated for acoustical purposes, for con-
trolling the chain of parameters in Figure 1, including the relations between the microscopic,
macroscopic and acoustic parameters of sound absorbing materials. The basics of the multi-
scale computation of sound absorbing materials are presented in Chapter 4, the multi-scale
asymptotic method is presented in more detail in Chapter 7 and the ways of obtaining the
homogenized macro-scale parameters are presented in detail in Chapter 8. Before the detailed
treatment, some typical results found with multi-scale computation are presented in Chapter
5.

The dyadic notation (closely related to the tensor notation) is mostly used, to take into account
possible anisotropic behaviour of materials. Most of the references assume the materials to be
isotropic and scalar notation is used there. Some references take into account anisotropy by
using tensor notation. Using the dyadic notation here has made it necessary to derive the
equations in detail. In the literature, many writers use normalized quantities in their equations.
In this report, no normalizations have been used, to get a better physical insight to the method.
This also has raised the need for detailed derivations of the equations.

2. Goal

The goal of this study is to give a thorough presentation of the multi-scale computation method
for acoustical purposes, for controlling the chain of parameters including the relations between
the microscopic, macroscopic and acoustic parameters of sound absorbing materials, taking
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into account possible anisotropic behaviour of materials. The second goal is to derive the rel-
evant equations in detail, to clarify what must be assumed and at what stage to obtain the
required relationships.

3. Models for absorptive materials

Absorptive materials are mostly modelled as equivalent fluids where the various acoustic prop-
erties are taken into account with complex macroscopic acoustic parameters. The simplest
model for absorptive materials is the Delany-Bazley model [1], based on empirical expressions
for the complex impedance and the complex wave number. Besides the fluid parameters, it
only needs the flow resistivity as an input parameter. It is clear that this kind of a model is not
suitable for all kinds of absorbents. Mechel [2] has done a correction to this model, for better
usability at low frequencies.

The macroscopic parameters needed in the traditional models of absorbing materials are pre-
sented in Figure 2. With traditional rigid frame models, besides the fluid parameters and the
flow resistivity, there are a couple of parameters that should also be known: porosity, tortuosity,
viscous characteristic length and thermal characteristic length (Johnson-Champoux-Allard
model). In these models, the material skeleton is assumed to be non-moving. With the limp
frame model, the density of the porous material is also needed. With the Biot (elastic) model,
three more parameters of the porous material are needed: Young’s modulus, shear modulus
(or Poisson’s ratio) and loss factor, to take into account the effects of the skeleton vibration to
the sound propagation. In all of these material models (despite the Delany-Bazley model and
the Biot model), the complex impedance and the complex wave number are calculated through
the complex density and the complex compressibility. In the Biot model, the complex density
and the complex compressibility are included in the various parameters of the model in a more
complicated way. The imaginary part of the density is due to the viscous losses and the imag-
inary part of the compressibility is due to the thermal losses of the fluid in the porous material.
With these complex quantities, the basic equations of acoustics can be presented as in the
fluid without any losses, the losses included in the complex parameters of the equivalent fluid.
The deviations of the real parts of the density and the compressibility from their physical values
take into account some other things affecting the sound propagation in the porous material,
like isothermal behaviour at low frequencies and adiabatic at high frequencies (compressibil-
ity), and the fact that sound cannot propagate in rectilinear motion due to the presence of the
skeleton (density).

The models treated here belong to the categories of rigid frame models and Biot model. The
macro-scale complex parameters can be defined using two alternative ways: the direct numer-
ical approach and the hybrid numerical approach. In the former, the complex parameters are
directly formed from the calculated dynamic viscous and thermal permeability functions. In the
latter, static viscous and thermal permeability functions, three tortuosity functions (the strict
amount depending on the selection from three possible models), and the viscous and thermal
characteristic lengths, are computed, from which the complex density and compressibility are
finally calculated.
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Figure 2. Macroscopic parameters of absorbents needed in the traditional models [3].

4. Basics of multi-scale computation of sound absorbing materials

4.1 Periodic structures

In setting the multi-scale equations it is supposed that the absorbing material under consider-
ation can be handled as spatially periodic in the micro-scale, as presented in Figure 3. The
material is thus assumed to include similar unit cells, Figure 4, whose volumes are . The
material is said to be -periodic in the micro-scale. The fluid phase volume in each cell is f

and the fluid-solid interface surface between fibres (or foam phase) and pores in each cell is
. The solid surface  is supposed to be rigid, so no motion of the surface exists. This is the

rigid-frame presumption.

Figure 3. Periodic material.
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Figure 4. Unit cell of the periodic material; f is fluid phase (pore) volume,  is interface (sur-
face) between fibres (or foam phase) and pores; total volume of the cell is  and  is its outer
boundary.

4.2 Preliminaries in multi-scale computation

Before we are using the multi-scale methods, we have to specify the micro-scale geometry
and microstructure features, and make some numerical model of the material in micro-scale,
as presented in Figure 5. These aspects are beyond the scope of this report.

Also parameters describing the dissipation in fluid (viscosity , thermal conductivity ) have to
be known before using the methods.

4.3 Multi-scale methods

Multi-scale asymptotic method (MAM) in this context is a multi-scale approach based on an
asymptotic analysis of the basic linearized equations of acoustics in the frequency domain,
Eqs. (4), assuming a perfect gas with no static flow and the viscous and heat conduction effects
taken into account [4, 5, 6, 7, 8]. It is used to derive a set of well-posed micro-scale equations
for computing effective macro-scale variables via averaging (homogenizing) over the unit cell.
So the micro-scale properties are mapped to complex macro-scale parameters of equivalent
fluids via homogenization. In this approach, first two space coordinates are introduced: x for
the macro-variations and y for the micro-variations, see Figure 9. Because of the -periodicity
in the spatial coordinates (Figure 3 and Figure 4), the calculated micro-scale quantities have
also to be -periodic. This is assumed throughout the following texts and it is not repeated in
the following.

The structures in multi-scale methods and homogenization are presented in Figure 6. The first
selection is if to use the direct numerical approach or the hybrid numerical approach [8]. In the
direct approach, the equations to be solved are presented in Eq. (16) and/or (18). The direct
approach requires significant computation at each frequency. Recently, an alternative and
lighter, analytic-based approach has been introduced [9, 10, 11], termed as the hybrid numer-
ical approach [8]. In this approach, there is need to solve only three static problems, static
Stokes and heat conduction problems, Eq. (17) and/or (19), and electrical conduction problem,
Eq. (71). According to simulations of Lee et al. [8], the absorption coefficient as a function of
frequency, obtained from both approaches, are in very good agreement.
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Figure 5. Flowchart of multi-scale computation of sound absorbing materials.

Multi-scale methods have been also utilized in predicting the sound absorption of multi-periodic
materials like dual porosity absorbents [6] and acoustic composites [12]. The multi-period ma-
terials are not treated in this report.
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Figure 6. Flowchart of structures in multi-scale methods and homogenization in computation
of sound absorbing materials.
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4.3.1 Direct numerical approach

In the direct numerical approach, the dynamic Stokes and dynamic heat conduction problems,
Eq. (16) and/or (18), in the dynamical multi-scale microstructural model are solved to obtain
the dynamic micro-scale viscous permeability function ),(yK  and the dynamic micro-scale
thermal permeability function K’(y, ). In the isotropic case, the viscous permeability dyadic
(tensor) is replaced by scalar K(y, ). The corresponding macro-scale dynamic permeabilities

)(K  and )(K  can be obtained by homogenization (averaging over the micro-scale) ac-

cording to Eq. (21). From these macro-scale permeabilities, the effective density eff  and its

normalized version dynamic viscous tortuosity )(  can be obtained using Eqs. (26) and (28)
correspondingly, and the effective compressibility Qeff and its normalized form  can be ob-
tained using Eq. (37). Also the dynamic thermal tortuosity ’( ), connected to the effective
compressibility, can be obtained from Eq. (38). From these parameters, the impedance, the
complex sound speed and the complex wave number can be obtained using Eq. (41) with rigid
frame models.

4.3.2 Hybrid numerical approach

In the hybrid numerical approach, the static Stokes and heat conduction problems, Eq. (17)
and/or (19), in the static multi-scale microstructural model are solved to obtain the static micro-
scale viscous permeability function )0,()(0 yKyK  and the static micro-scale thermal per-
meability function K0’(y) = K’(y,0). In the isotropic case, the viscous permeability dyadic (ten-

sor) is replaced by scalar K0(y). The corresponding macro-scale static permeabilities 0K  and

0K  can be obtained by homogenization (averaging over the micro-scale) according to Eq.

(42). The permeability 0K  is related to the static flow resistivity  as stated in Eq. (45), so it
also can be measured. From these macro-scale permeabilities, the viscous relaxed tortuosity

0  can be obtained from Eqs. (58), (60) or (62) (last equation for 0 in isotropic case) and the
thermal relaxed tortuosity ’0 can be obtained from Eq. (70). The electrical conduction problem,
Eq. (71), is solved to obtain the tortuosity  from Eqs. (81), (83) or (85) (last equation for

in isotropic case) and the viscous characteristic length , according to Eqs. (107) or (106)
(last equation for  in isotropic case). The thermal characteristic length ’ is obtained from
geometrical properties according to Eq. (112). From the parameters above, the dynamic vis-
cous tortuosity ( ) in the isotropic case and the normalized dynamic effective compressibility

( ) can be obtained using Eqs. (113) and (114), and the dynamic viscous tortuosity )(  in
the anisotropic case can be obtained using Eqs (118), (119) and (124). From these last pa-
rameters, the impedance, the complex sound speed and the complex wave number can be
obtained using Eq. (41) with rigid frame models, as in the direct approach.

There are three models included in Eqs. (113) and (114) for the dynamic viscous tortuosity
)(  and the normalized dynamic effective compressibility. In the “Johnson-Champoux-Allard”

(JCA) model, static macro-scale viscous permeability 0K  (or static flow resistivity), tortuosity

, viscous characteristic length  and thermal characteristic length ’ are used. In the
“Johnson-Champoux-Allard-Lafarge” (JCAL) also static macro-scale thermal permeability 0K
is used in addition to the former parameters. In the “Johnson-Champoux-Allard-Pride-Lafarge”
(JCAPL) model also viscous and thermal relaxed tortuosities 0  and ’0 are used in addition
to the former parameters [13]. All models need also the porosity .
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4.3.3 Extension to Biot model

In the Biot model, the elastic behaviour of the frame is taken into account, leading to equations
with three wave motions, two compressional waves and one shear wave, all of them propagat-
ing both in the air and the solid phase. The viscous and thermal effects are coupled, so the
logic presented earlier for the rigid frame models cannot be directly applied. The impedance,
the complex sound speed and the complex wave number cannot now be directly obtained
using the effective density eff  or its normalized version dynamic viscous tortuosity )( , and
the effective compressibility Qeff or its normalized form  as with the rigid frame models. How-
ever, these parameters can directly be included in the parameters of the Biot model, to take
into account the viscous and thermal properties of the fluid phase. These parameters, when
used in the Biot parameters, can be based on either the direct numerical approach or any of
the methods in the hybrid numerical approach. The internal losses of the solid phase can be
taken into account in a familiar way using complex elastic parameters of the viscoelastic struc-
ture.

The Biot parameters P, Q, R and N, appearing in the stress-strain relationships of Eq. (125)
and defined in Eqs. (127) and (128) or in (129) and (130), include, besides the bulk moduli and
the shear modulus of the solid phase, also the porosity, and the effective compressibility of the
fluid, the latter taking into account the thermal effects of the fluid phase. The Biot density pa-
rameters 11 , 12  and 22 , appearing in the equations of motion, Eq. (131), defined in Eq.
(132), include, besides the density of the solid phase, also the porosity and the dynamic vis-
cous tortuosity of the fluid, the latter taking into account the viscous effects of the fluid phase.
The Biot equations are presented in Eq. (134), and as separated into the compressional and
shear waves in Eqs. (138) and (139). The wave numbers of the compressional waves are
presented in Eqs. (145) and (146) for an isotropic medium, and in Eqs. (153), (152), (147) and
(154) or (155) for an anisotropic medium, and those of the shear waves for an anisotropic case
in Eq. (168). The displacement relationships between the compressional waves are presented
in Eqs. (157) and (158) and between the shear waves in Eqs. (164) and (165). The impedance
quantities for the compressional waves are presented in Eqs. (162) and (163).

5. Typical results found with multi-scale computation

According to computations Peyrega and Jeulin [14,15], there is a frequency dependent opti-
mum of the radii of the fibres at constant porosity for maximum sound absorption. Their expla-
nation to that is the viscous boundary layer thickness , presented in Eq. (49). Near a surface,
the tangential velocity reduces exponentially to zero at the surface as a function of distance
to the surface, due to viscous losses of the fluid. The “range” of this phenomenon is about the
boundary layer thickness, according to Figure 7. If the distance between two near-by fibres is
two times the boundary layer thickness, the space between fibres is “fully occupied” by the
ranges of the near-by loss regions. If the distance is smaller, all possible loss region is not
used because the boundary layer thicknesses overlap, and the sound absorption is lower. With
constant porosity, decreasing the radius of the fibres implies an increase of the surface area
of the fibres-pore interface, thus evidently increasing the viscous losses. However, if the radius
is decreased too much, the range of the loss regions of two near-by fibres overlap and the
viscous losses decrease.

The viscous (and thermal) boundary layer thickness as a function of frequency is presented in
Figure 8. It can be seen that the optimum radius of fibres at constant porosity is bigger at lower
frequencies than at higher frequencies.
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Figure 7. Proportional tangential velocity near a surface in a viscous fluid as a function of the
ratio of the distance  to the surface and the boundary layer thickness .

Figure 8. Viscous and thermal boundary layer thicknesses as functions of frequency [16].

According to the computations of Peyrega and Jeulin [14], for larger fibres, the absorption
coefficient is globally higher for a stimulation orthogonally to the lumens than along them.
Smaller fibres absorb better the acoustic energy when stimulated along their internal porosity.
Absorption coefficient globally increases when the material gets thicker. However, for each
radius of the fibres at each frequency, there exists a critical thickness for which the asymptotic
absorption coefficient is reached, and further increasing the thickness from this does not in-
crease the absorption coefficient. The critical thickness is the bigger and the asymptotic ab-
sorption the higher the bigger the radius of the fibre is.

According to the computations of Peyrega and Jeulin [15], randomness in unit cells in hetero-
geneous media gives quite similar mean absorption properties than regular cells. With bigger
fibre dimensions frequency shifts are observed between the sound absorption curves of regu-
lar and random cells. In that reference, a method for determining the representative volume
element of random fibrous media has been given.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

/

P
ro

po
rti

on
al

m
ag

ni
tu

de

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f [Hz]

[m
m

]

Viscous
Thermal



RESEARCH REPORT VTT-R-05212-16
13 (43)

According to the computations of Perrot et al. [11], Duval et al. [13], and Hoang and Perrot
[17], the throat size (smallest distance between the fibres or smallest interconnecting size be-
tween opened cells of foams) and the closure rate (degree of openness inversed) of the solid
films in open-cell foams play an important role in the sound absorption. Increasing the closure
rate and decreasing the throat size from open-cell construction to an optimum value increases
the flow resistivity and tortuosity and decreases the viscous characteristic length, improving
the middle frequency performance of absorptive foams. The cell size has an effect to the se-
lectivity of the frequency band of high sound absorption. In sound insulation applications
smaller closure rates are better.

6. Basic field equations

The state equation of a perfect gas, the Navier-Stokes equation containing viscous effects, the
equation of continuity (mass balance) and the energy balance equation containing thermal
conductivity effects in a fluid domain f without static flow can be presented in linearized for-
mulae as (can be found in any books of acoustics, see, e.g., [18, 16])
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where P0, 0 and T0 are the static pressure, density and temperature, p, ’ and T’ are the
corresponding fluctuating (perturbation) components of the pressure, density and temperature,
u is the (perturbation) particle velocity,  is the thermal conductivity of the fluid, and cP is the
specific heat of the fluid at constant pressure. The last line in Eqs. (1) gives the boundary
conditions at the fluid-solid interface  of the fluid domain f, the interface being supposed to
obey no-slip condition for the particle velocity and isothermal condition for the perturbation
temperature. The viscous stress dyadic  can be obtained from

IuuuIu
3
2T

v , (2)

where  and v are the coefficient of viscosity and the expansion coefficient of viscosity of the
fluid, I  is the identic dyadic, and superscript “T” means transpose. The divergence of the
viscous stress dyadic in Eq. (1) is
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In the frequency domain, Eqs. (1) can be presented as
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where  is the angular frequency and j is the imaginary unit.

7. Multi-scale asymptotic method

In the multi-scale asymptotic method, first two space coordinates are introduced: x for the
macro-variations and y for the micro-variations [4, 5, 6, 7, 8]

L
l,xy , (5)

where the small parameter  (<< 1) is a scale ratio of a characteristic unit cell length l and
frequency dependent wavelength L according to Figure 9. For the characteristic lengths, there
also exist other definitions [7, 14].

Figure 9. Characteristic lengths and macro- and micro-variation coordinates in periodic mate-
rials.
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7.1 Power series in multi-scale method

The desired solution variables are split into their macroscopic and microscopic components by
using power series involving  as [4, 5, 6, 7, 8]
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Because variables x and y are dependent, we obtain [5]
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and the differential operators gradient and Laplacian take the form
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(8)

7.2 Power series of basic field equations

Inserting the differential operators above to Eqs. (4) we obtain

.at0,0

12jj

1j

12

11
3

1j

2
2

22
0

0

2
2

22

0

000

T

TpTc

p

T
T

P
p

yxyxP

yx

yxyx

yxyxvyx

u

u

u

uu

(9)

Inserting the first equation above to the third one and making some rearrangements we obtain
further
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The viscosity and thermal conductivity terms are of the order 2 compared to other terms [6],
so this can be taken into account by marking [5]

.2

2

2

vv (11)

Inserting the power series (6) and Eq. (11) into presentation (10) and taking a few first terms
into account we obtain
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7.3 Equations of multi-scale method for sound absorbing materials

Separating the two highest orders ( -1 and 0) from the two first equations in Eqs. (12) and the
highest order ( 0) from the third equation we obtain further
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So p0 is only function of x and the divergence of u0 in the micro-scale vanishes, and the equa-
tions above may be written as
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It is assumed that T0’, p1 and u0 can be obtained by using a scalar operator K’, a vector operator
 and a dyadic (or tensor) operator K  from following presentations [7]
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The last equation in (15) is the dynamic Darcy’s law in the micro-scale [15] and the first equa-
tion is its thermal analogy.

Inserting these into Eq. (14), reducing common factors from them, re-using Eq. (11), and sub-
stituting (1/ ) y with  according to Eq. (8) (noticing that the variables are not functions of
macro-variation coordinates x), we obtain equations for the three operators [7]

.at0,0
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1
j

j

20

20

K

KK
cP

K

K

IKK

(16)

The first equation in (16) is the dynamic (unsteady) Stokes problem and the second one the
dynamic heat conduction problem.

At zero frequency Eq. (16) leads to

.at0,0

0

12

2

K

K

K

K

IK

(17)

The first equation in (17) is the static (steady) Stokes problem and the second one the static
heat conduction problem.

For calculating purposes, the Stokes problem can be further developed into a vector form by
multiplying it with a unit vector ei. For the dynamic Stokes problem we obtain
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(18)

and for the static Stokes problem

.at0
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iii

eK

eK

eeeK

(19)

These equations can be solved for three orthogonal unit vectors ei, to obtain the dyadic K .
With the formulae above, it has been utilized that the identic dyadic can be presented as

332211 yyyyyy eeeeeeI . (20)

It should be noted that Eqs. (18) and (19) need a constraint for ie  at some point. Without
that the equations cannot be solved with FEM programs.1

8. Homogenized macro-scale parameters

8.1 Direct numerical approach

Solving Eqs. (16) and/or (18), we obtain terms ),(yK  and K’(y, ). The first is the micro-scale
dynamic viscous permeability function and the latter is the micro-scale dynamic thermal per-
meability function.

The macro-scale dynamic permeabilities can be obtained by homogenization (averaging over
the micro-scale) [7, 10]

,),()(

),()(

y

y

KK y

yKK
(21)

where the average y is taken in the fluid domain f of a cell. The macro-scale dynamic vis-

cous permeability )(K  is a symmetric dyadic [5].

The porosity  needed above can be defined as

ff

d

d

, (22)

1 Private communication with Comsol Oy.
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so it is the ratio of fluid phase volume to the total volume of a cell.

The last and firs equation in (15) can be presented macro-scale as

.)(j)(1

)()(1

00

00

x

xKu

pKT

p

y

xy

(23)

8.1.1 Effective density

From the first equation of (23) we can obtain

yx p 0
1

0 )()( uKx , (24)

where superscript “-1” means inverse of a dyadic.

Comparing this to the second equation of (4), with the viscous effects included to the “effective
density” dyadic (tensor) eff  in the macro-scale

yx p 0eff0 .j)( ux , (25)

we can see that the effective density can be obtained from [8, 15]

1
eff )(

j
K . (26)

8.1.2 Dynamic viscous tortuosity

The dynamic viscous tortuosity dyadic (or tensor)  can be defined via [19, 7, 10]

yx p 000 )(j)( ux . (27)

Comparing this to Eqs. (24) and (25) we obtain

1

00

eff )(
j

)( K . (28)

It can be seen that the dynamic viscous tortuosity is the same as the normalized effective
density.

Because the macro-scale dynamic viscous permeability is a symmetric dyadic, the dynamic
viscous tortuosity and the effective density also are symmetric dyadics.

8.1.3 Effective compressibility

The second equation in (14) is in macro-scale

)(jj 010000
0

0 xuu pPPT
T
P

yyyxy . (29)
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Using Gauss theorem it can be seen that

0d1d1
111 Sn

f
y

f
yy

f

euuu , (30)

where en is the unit normal vector on the boundary surfaces. The surface integral vanishes at
, due to the boundary conditions in Eq. (14). It vanishes also at , due to -periodicity of

the fields.

Using the result of Eq. (30) and applying the second equation of (23), we obtain from Eq. (29)
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0 xuxy pPpK
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yxy , (31)

from which we can further obtain
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(32)

where the state equation for a perfect gas has been utilized in the form

PcR
T

P 1

00

0 , (33)

where R is the gas constant and  is the adiabatic constant.
Without thermal losses the third equation of (4) in the macro-scale can be presented as

)(j 000 xu pQ
yx , (34)

 where the compressibility Q0 is

0
0

1
P

Q . (35)

Comparing Eq. (32) to Eq. (34), with the thermal effects included to the “effective compressi-
bility” Qeff in the macro-scale (without thermal losses)

)(j 0eff0 xu pQ
yx , (36)

we can see that the effective compressibility can be obtained from [7, 8, 15]

,1

)(1j

0
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P
Q

K
c

QQ

P . (37)

where  is the normalized effective compressibility.
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8.1.4 Dynamic thermal tortuosity

The dynamic thermal tortuosity can be defined analogously with the viscous one, Eq. (28)
(latter formula), as

1

0

)(
j

)( K
cP

. (38)

Using this definition, the second equation in (23) can be presented as

yP Tcp 000 )()(x . (39)

Comparing Eqs. (37) and (38), the normalized effective compressibility can be written as

)(
1

. (40)

8.1.5 Effective sound speed and characteristic impedance in rigid frame models

The effective characteristic impedance Z, the effective complex sound speed ceff [15] and the
complex wave number k of the homogenized porous medium can now be obtained from the
effective complex density (or tortuosity) and compressibility from the following formulae
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(41)

where e1 is the unit vector in the propagation direction of the acoustic wave and c0 is the speed
of sound in free space. These equations hold for rigid frame models.

8.2 Hybrid numerical approach

The direct approach requires significant computation at each frequency. In the hybrid numeri-
cal approach, there is need to solve only three static problems, static Stokes problem (first
equation in (17) or Eq. (19)), static heat conduction problem (second equation in (17)) and
electrical conduction problem (presented later, Eq. (71)).

Solving Eqs. (17) and/or (19) we obtain static permeabilities )0,()(0 yKyK  and K0’(y)  =
K’(y,0). The first is the micro-scale static viscous permeability function and the latter is the
micro-scale static thermal permeability function.

The macro-scale static permeabilities can be obtained by homogenization (averaging over the
micro-scale) [10, 9, 11]
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At low frequencies, the first equation in (23) can be written as

)(1
000 xKu pxy . (43)

The macroscopic definition of the static flow resistivity  can be presented as

)(0

1

0 xu pxy
. (44)

Comparing Eqs. (43) and (44), we can see that [20]

1
0K . (45)

The dynamic viscous and thermal tortuosities at low frequencies can be written, using Eqs.
(28) and (38), approximately as
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0

0

K
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(46)

where 0  and ’0 are the viscous and thermal ”relaxed” tortuosities, appearing as the first
(real-valued constant) corrections to the leading imaginary terms having (j )-1 [9].

The viscous and thermal tortuosities at infinite frequencies are defined by

.)(
)( (47)

The viscous and thermal characteristic lengths  and ’ are defined by limiting values of  and
0T  when the frequency is high [19, 20]

,,j)1(1)lim

,j)1(1)(lim

000 TT
(48)

where T00’ is the temperature without thermal boundary losses, and  and ’ are the viscous
and thermal boundary layer thicknesses

.2

2

0

0

Pc

(49)

These limiting values of tortuosities and the characteristic lengths are treated in the following.
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8.2.1 Viscous relaxed tortuosity 0

Multiplying the first equation of (14) by u0* (* meaning complex conjugate) and averaging this
equation over the fluid domain, we obtain (the corresponding boundary condition and zero
divergence condition included)
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(50)

Integrating by parts, using Gauss theorem, and utilizing the third line in Eq. (50), the averaged
part of the second term in Eq. (50) can be presented as
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(51)

The surface integral vanishes at , due to the boundary conditions in Eq. (50). It vanishes also
at , due to -periodicity of the fields.

Integrating by parts, using Gauss theorem, and utilizing the second and third lines in Eq. (50),
the third term in the equation above can be seen to vanish
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yyyyyy
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(52)

Also now, the surface integral vanishes at , due to the boundary conditions in Eq. (50), and
at , due to -periodicity of the fields.

The definition of the dynamic viscous tortuosity, Eq. (27), can be presented at low frequencies,
according to the first equation in (46), as

yyx p 000
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0
00 j

j
j)( uKuKx . (53)

Now Eq. (50) can be presented, using Eqs. (51), (52) and (53) as

yyyyyy 0000

1

000000 jj uuKuuuu . (54)

The macro-scale static permeabilities and the relaxed tortuosities are real valued. Making the
imaginary parts to match in Eq. (54), we obtain

yyy 00000 uuuu . (55)
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The third equation in (15) at low frequencies and the same as averaged to macro-scale is

.)()(1

)()(1

000

000

xyKu

xyKu

p

p

x
yy

x

(56)

Inserting this to Eq. (55) we obtain
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From Eq. (57) we can obtain the result, indicating the components of the viscous relaxed tor-
tuosity and the static viscous permeability
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For tensor component jiij ee 00 , the above can be presented as

y
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from which we obtain [21]
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where the Einstein summation notation on p is implicit: when an index variable (here p) appears
twice in a single term it implies summation of that term over all the values of the index.

In a principal axes system, cross components of the viscous relaxed tortuosity (i j) disappear
and we obtain
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and in isotropic case we have
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8.2.2 Thermal relaxed tortuosity ’0

Multiplying the third equation of (14) by T’0* and averaging this equation over the fluid domain,
we obtain (the corresponding boundary condition included)
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Integrating by parts, using Gauss theorem, and utilizing the second line in Eq. (63), the aver-
aged part of the second term in Eq. (63) can be presented as
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The surface integral vanishes at , due to the boundary conditions in Eq. (63). It vanishes also
at , due to -periodicity of the fields.

Eq. (39), can be presented at low frequencies, according to the second equation in (46), as
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Eq. (63) can be presented, using Eqs. (64) and (65), as

yyPyyyyP TTcKTTTTc 0000

1
000000 jj . (66)

The macro-scale static permeabilities and the relaxed tortuosities are real valued. Making the
imaginary parts to match in Eq. (66), we obtain

yyy
TTTT 00000 . (67)

The first equation in (15) at low frequencies and the same as averaged to macro-scale is
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Inserting this to Eq. (67) we obtain
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The thermal relaxed tortuosity can now be written as [9, 8]
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8.2.3 Viscous tortuosity

Consider the static field (particle velocity, electric field) in the fluid domain to be constructed of
constant external macroscopic static field up and unrotational field –  that arises for the total
field u to fulfil the boundary conditions. The divergence of the total static field is zero. So the
corresponding equations are
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0
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p

eu
u

uu
(71)

This is also called an electrical problem because the particle velocity can be substituted by the
electric field in which case Eq. (71) describes an electrical conduction problem for a porous
medium filled with a conducting fluid and having an insulating solid phase [9, 11].

Averaging over the fluid domain, the equations are
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At high frequencies, Eq. (27) can be written as

yx p 000 j)( ux , (73)

where  is the limiting value of the dynamic viscous tortuosity when the frequency grows to
infinite. It can be presented as a sum of the identic dyadic and a deviation of that as [9]

I . (74)

At very high frequencies there are no viscous effects and in that case we can write

)(j)( 00 xux px p (75)

and Eq. (73) can be written as

yyp 00)( uIuxu . (76)

This can be presented, including the properties of u, as
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It can be seen that the equations above are the same as in Eq. (72) if u0 corresponds the term
u and

y0u  corresponds the term
y
. So, solving the static problem of (71), the dy-

namic viscous tortuosity at high frequencies can be obtained from



RESEARCH REPORT VTT-R-05212-16
27 (43)
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Let up
(i) be the static external field in case i (e.g., i = 1, 2, 3 for field in the direction of x, y and

z axes), and u(i) and (i) be the corresponding total field and the potential. In that case we obtain
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Integrating by parts, using Gauss theorem, and utilizing the second and third line in Eq. (71),
the last term in the equation above can be seen to vanish
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The surface integral vanishes at , due to the boundary conditions in Eq. (71). It vanishes also
at , due to -periodicity of the fields.

So from Eq, (79) we obtain the formula giving the viscous tortuosity dyadic at high frequencies
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If the absolute value of the macroscopic external field is unity ( 1pu ), we obtain for the tensor
components of the viscous tortuosity [9]
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In a principal axes system, cross components disappear and we have
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from which we obtain
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In the isotropic case this leads to
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. (85)

8.2.4 Thermal tortuosity ’

From Eq. (39), we obtain at high frequencies

yP Tcp 000 )(x . (86)
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The third equation in (14) at high frequencies, averaged over the fluid volume, is

yP Tcp 000 )(x . (87)

Comparing the equations above, we see that the thermal tortuosity at high frequencies is one

1. (88)

8.2.5 Viscous characteristic length

If the divergence of the particle velocity disappears, the viscous stress dyadic in Eq. (2) is

Tuu . (89)

Viscous loss power per unit volume can be obtained from [16]

uvW . (90)

By integrating over volume f, the average viscous loss power per unit volume can be seen to
be

,d:

d:d1

d:d1d1

T

f

f

fff

f

n
f

ff
v

S

W

Iuuu

Iuue

Iuuu

(91)

where the partial integration, the Gauss theorem and Eq. (89) have been used. The surface
integral vanishes at , due to -periodicity of the fields. It vanishes also at , because the
particle velocity vanishes at . The normal component of it vanishes naturally, and the tangen-
tial component vanishes according to the next equation.

The viscosity causes a boundary layer near surfaces. Near a plane surface the particle velocity
is, due to this effect, (see, e.g., [19, 16] and Figure 7)

/j)1(e1)()( wp ruru , (92)

where rw and r are coordinates on the surface and above it at a normal distance of  from the
surface. The particle velocity u near the surface is tangential to the surface and it vanishes just
on it. The particle velocity up is the velocity without this viscous surface effect. At high frequen-
cies, the different particle velocities are equal except in the very close vicinity of the surface.

Now the viscous effects near boundaries can be taken into account using Eq. (92) if the surface
is assumed to be locally plane. With it, the integrand in (91) only contains term (in complex
notation with time harmonic fields)

uuIuuu :T (93)

and the average viscous loss power per unit volume is
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With a plane wave, the acoustic energy density is

2
0 uE . (95)

At high frequencies, the thermal tortuosity ’ is one, according to Eq. (88), and the normalized
effective compressibility  is one, according to Eq. (40). Thus in the isotropic case at high
frequencies, according to Eq. (41),
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(96)

With a plane wave, the acoustic intensity I is the acoustic energy density times the speed of
sound, which at high frequencies is, according to Eqs. (95) and (96)
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The average acoustic intensity at high frequencies with a plane wave is thus
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In the last formula, the surface effect has been ignored. At high frequencies it is reasonable.

The imaginary part of the wave number, attached to attenuation of sound due to viscosity, can
be presented as [19]
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With a plane wave at high frequencies, it can be presented, using Eqs. (94), (98) and (49), as
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At high frequencies, the viscous tortuosity can be given as [19]
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The imaginary part of the wave number at high frequencies is thus, utilizing also Eq. (96)
(lower),
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Comparing this to the frequency dependence of Eq. (100), it can be noticed that p = ½ and
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From this we can further obtain, by using Eq. (100)

f

p

wp

u

u
kcC

d)(

d)(
Im

2
2

2

2

0
0

r

r
. (104)

Eq. (101) can now be presented, utilizing Eq. (49), as
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where, according to definition (48) (first line),  is the viscous characteristic length [19], being

d)(

d)(

2 2

2

wp

p

u

u
f

r

r

. (106)

So, the viscous characteristic length has been presented by the volume and surface integrals
of the squared particle velocity without viscous losses.

The problem was assumed to be isotropic. Using Ref. [9], it can be deduced that in the aniso-
tropic case the viscous characteristic length can be obtained from
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U12 , (107)

where the components of the inverse of the viscous tortuosity  can be obtained from Eq.

(82) and the components of U  can be obtained from
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The symbols u(i) are the same as in paragraph 8.2.3 and calculated as presented there.

In a principal axes system, cross components disappear and we have
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8.2.6 Thermal characteristic length

The thermal conductivity causes a boundary layer near surfaces. Near a plane surface the
temperature is, due to this effect, (see, e.g., [20, 16], Figure 7 is also valid for temperature near
a plane surface)

/j)1(
000 e1)()( wTT rr , (110)

where rw and r are coordinates on the surface and above it at a normal distance of  from the
surface, and T00’ is the temperature without the boundary effects. At high frequencies, accord-
ing to the third equation in (14), T00’ is not a function of the micro-scale coordinates. So at high
frequencies
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 (111)

where, according to definition (48) (second line), ’ is the thermal characteristic length [20],
being

d

d

22 ff . (112)

8.2.7 Dynamic tortuosity and compressibility

The dynamic viscous tortuosity ( ) in the isotropic case, according to Pride et al. [22], and
the normalized dynamic effective compressibility ( ), according to Lafarge [23, 9], can now
be approximated by (see also Eq. (40))
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where
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This is called “Johnson-Champoux-Allard-Pride-Lafarge” (JCAPL) model [13, 21]. If q = q’ = 1,
the equations lead to “Johnson-Champoux-Allard-Lafarge” (JCAL) model where the relaxed
tortuosities 0 and 0’ are not used as independent variables [7, 13, 21, 24]. In that case, terms

0 –  and 0’ – 1 in the expressions of f( ) and f’( ’) are replaced by
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If, in addition [21],

8

2

0K , (116)

the equations lead to “Johnson-Champoux-Allard” (JCA) model, in which the thermal permea-
bility 0K  is not used as an independent variable, and the term 0’ – 1 in the expression of f’( ’)
is replaced by

4
110 . (117)

In the anisotropic case, the dynamic viscous tortuosity )(  can be obtained from the gener-
alization of ( ) from Eqs. (113) and (114) as [9]

)(j)(
1

f , (118)

where
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.2

2j)(
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0

0
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1

Kq

K

qIqqIf

(119)

If Iq  and q’ = 1, the equations lead to “Johnson-Champoux-Allard-Lafarge” (JCAL) model
as in the isotropic case. In that case, term 0’ – 1 in the expression of f’( ’) is as in Eq. (115)
and 0  in the expression of )(f  is replaced by

21
00

2 K . (120)

In the “Johnson-Champoux-Allard” (JCA) model, the replaced expression for 0’ – 1 in the
expression of f’( ’) is as in the isotropic case, Eq. (117).

Lafarge [9] uses a different formula for q . Taking the inverse of q  above we obtain

121
00

1

2
Kq , (121)

from which we obtain

IKq
21

0
11

0
2

. (122)

Now we can write
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1
0

1212

0
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2

21
0

11
000

1

00
1

00
1

KqKq

KqKq

IKqKq

(123)

From the equation above we obtain the formula of Lafarge [9], used to solve q

KqKq
1

0
1

00
1 22

. (124)

Once the dynamic tortuosities and the effective compressibility have been calculated, the im-
pedance, the effective sound speed and the wave number vector can be calculated with rigid
frame models from the same equations, Eq. (41), as with the direct calculation method.
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9. Biot model

In the Biot model, the elastic behaviour of the frame is taken into account, leading to equations
with three wave motions, two compressional waves and one shear wave, all of them propagat-
ing both in the air and the solid phase. The viscous and thermal effects are coupled, so the
logic presented earlier for the rigid frame models cannot be directly applied [9]. The impedance,
the complex sound speed and the complex wave number cannot now be obtained using Eq.
(41), using the effective density eff  or its normalized version dynamic viscous tortuosity )(
, Eqs. (26) and (28), and the effective compressibility Qeff or its normalized form , Eq. (37).
However, these parameters can directly be included in the parameters of the Biot model, as is
presented in the following, to take into account the viscous and thermal properties of the fluid
phase. The effective density and the effective compressibility, used in the Biot parameters, can
be based on either the direct numerical approach or any of the methods in the hybrid numerical
approach.

The internal losses of the solid phase can be taken into account in a familiar way using complex
elastic parameters of the viscoelastic structure.

9.1 Stress-stain relationships

In the Biot model, the stress–strain relationships are [9, 20]

,::

2::2

IIeIeI

eIIeIe

fsf

sfss

RQp

NQNP
(125)

where  is the stress dyadic, e  is the strain dyadic, Ie :  is the dilatation

,:
2
1 T

sIe

sse
(126)

where s is the displacement vector, and subscripts “s” and “f” refer to the solid phase and the
fluid phase correspondingly.

Quantity N is the shear modulus of the frame in vacuum. Other parameters P, Q and R can be
obtained from

,

3
41

2

eff

BR
BAQ

NQKABP b

(127)

where

,

1

effQKA
K

B

K
K

A

s

s

s

b

(128)
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and where Kb an Ks are the bulk moduli of the frame in vacuum and the elastic solid from which
the frame is made.

For materials used in practice, Ks >> Kb and Ks >> 1/Qeff, in which case we have

,1
1

effQ
B

A
(129)

and

.

1
3
41

eff

eff

eff

2

Q
R

Q
Q

NK
Q

P b

(130)

In that case the bulk modulus Ks of the elastic solid is not needed.

9.2 Equations of motion

As well in the Biot model, the equations of motion are [9, 20]

,2

2
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2
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2

2
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ss
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(131)

where

,)(

)(

)(

022

02112

0111

I

II

(132)

where 1 is the density of the frame in vacuum

s11 , (133)

where s is the density of the elastic solid from which the frame is made.

9.3 Biot equations

By combining Eqs. (125) and (131) we obtain the “Biot Equations”
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where the following relationship has been utilized by the help of Eq. (126)
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Biot Equations (134) can be presented in time harmonic fields as

0:
:

2212

12112 s
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s

f

s N
RQ
QP s
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Ie

s
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. (136)

The displacements can be divided into the compressional waves (second subscript “c”) and
the shear waves (second subscript “s”), the first being irrotational and the second divergence-
free, obeying

.00
00

fsfc

sssc

fsfcfssscs

ss
ss

ssssss
(137)

With this division, Eqs. (136) can be presented separately for the compressional waves as

fc

sc

fc

sc

RQ
QP

s
s

s
s 2

2212

12112 (138)

and for the shear waves as

0

2

2212

12112 ss

fs

ss N s
s
s

. (139)

The stress-strain relationships in Eq. (125) can be presented for later purposes only for the
compressional waves as

,::

::

IeIe

IIeIe

fcsc

fcscsc

RQp

QP
(140)

which can be presented by the help of Eq. (126) also as

.fcsc

fcscsc

RQp
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ss
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(141)
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9.4 Compressional waves

9.4.1 Wave numbers

From Eq. (138) it can be seen that two compressional waves propagate. By taking the inverse
of the matrix on the right-hand side, it can be written as

fc

sc

fc

sc

PQPQ
QRQR

QPR s
s

s
s

22121211

22121211
2

2
2 . (142)

By writing

fc

sc

fc

sc
c

fc

sc

QPR s
s

s
s

k
s
s

2,12

22
2,1

2 , (143)

the eigenvalues 12 can be obtained, with an isotropic medium, from

0det
2,122121211

22122,11211

PQPQ
QRQR

. (144)

This leads to wave numbers kc1,2 of the compressional waves obeying [20]

2,12

2
2

2,1 QPR
kc , (145)

where
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With an anisotropic medium, the matrix corresponding that in Eq. (144) is

.
2,122121211
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QRQR (147)

The inverse of the matrix can be seen to be
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By multiplying terms (1,1) and (2,1) in the right-hand side of Eq. (148) by
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and terms (1,2) and (2,2) by

Iaaaaaaaa
1

21
1

22121121
1

221211 , (150)

we obtain
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where

12
1

11212221
1

221211 aaaaaaaaA . (152)

The eigenvalues 2,1  can  now be obtained, instead of Eq. (144) or (146), from

0A (153)

and the corresponding wave numbers from

2,12

22
2,1k

QPR
c (154)

or

12,112

2
2

2,1 ee
QPR

kc , (155)

where e1 is the propagation direction of the compressional wave.

9.4.2 Displacement relationships

Combining Eqs. (138) and (143) we obtain

fc

sc
c

fcsc

fcsc k
RQ
QP

s
s

ss
ss 2

2,1
2212

12112 , (156)

from which we get presentation for the displacement relationships between the compressional
waves in the air and in the frame

scfc ss 2,1 , (157)
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where quantity 2,1  can be obtained from following alternative formulae
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9.4.3 Characteristic impedances

Four characteristic impedances can be defined, because both waves simultaneously propa-
gate in the air and frame phases. The characteristic impedance Zf and Zs related to the prop-
agation in the air and frame correspondingly are
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where 1e  is a unit vector in the direction of propagation. Using Eqs. (141) these can be pre-
sented as
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By noting that

1j ess k (161)

and utilizing Eq. (158), the impedances can be further presented as
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9.5 Shear waves

From Eq. (139) it can be seen that only one shear wave exists; the lower equation in (139)
gives only the displacement relationship between the shear waves in the air and in the frame
as

ssfs ss 3 , (164)

where

12

1

223 . (165)

By inserting this to the first equation in Eq. (139) we obtain for the shear wave in the solid

ssss N ss 2
12

1

221211
2 . (166)

By writing

sssss k ss2 (167)

we obtain readily the wave number ks of the shear wave

12

1

221211

2
2

N
k s . (168)

10. Conclusions

Multi-scale asymptotic method (MAM) is a multi-scale approach based on an asymptotic anal-
ysis of the basic linearized equations of acoustics in the frequency domain. It is used to derive
a set of well-posed micro-scale equations for computing effective macro-scale variables via
averaging (homogenizing) over the unit cell. So the micro-scale properties are mapped to com-
plex macro-scale parameters of equivalent fluids via homogenization. In setting the multi-scale
equations it is supposed that the absorbing material under consideration can be handled as
spatially periodic in the micro-scale. The material is thus assumed to include similar unit cells.

The macro-scale complex parameters can be defined using two alternative ways: the direct
numerical approach and the hybrid numerical approach. The direct approach requires signifi-
cant computation at each frequency. An alternative and lighter, analytic-based approach has
been introduced recently, termed as the hybrid numerical approach. The absorption coeffi-
cients as a function of frequency, obtained from both approaches, are in very good agreement.

In the direct numerical approach, the dynamic Stokes and dynamic heat conduction problems
in the dynamical multi-scale microstructural model are solved to obtain the dynamic micro-
scale viscous and thermal permeability functions. The corresponding macro-scale dynamic
permeabilities can be obtained by homogenization (averaging over the micro-scale). From
these macro-scale permeabilities, the effective density and its normalized version dynamic
viscous tortuosity, and the effective compressibility can be obtained. From these parameters,
the impedance, the complex sound speed and the complex wave number for rigid frame mod-
els can be obtained.
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In the hybrid numerical approach, the static Stokes and heat conduction problems in the static
multi-scale microstructural model are solved to obtain the static micro-scale viscous and ther-
mal permeability functions. The corresponding macro-scale static permeabilities can be ob-
tained by homogenization (averaging over the micro-scale). From these macro-scale permea-
bilities, the viscous and thermal relaxed tortuosities can be obtained. The electrical conduction
problem is solved to obtain the tortuosity and the viscous characteristic length. The thermal
characteristic length is obtained from geometrical properties. From the parameters above, the
dynamic viscous tortuosity and the normalized dynamic effective compressibility can be ob-
tained. From these last parameters, the impedance, the complex sound speed and the com-
plex wave number for rigid frame models can be obtained as in the direct approach.

The imaginary parts of the effective density and the effective compressibility are due to the
viscous and thermal losses of the fluid in porous materials. The deviations of their real parts
from their physical values take into account some other things affecting the sound propagation
in porous materials, like isothermal behaviour at low frequencies and adiabatic at high frequen-
cies, and the fact that sound cannot propagate in rectilinear motion due to the presence of the
skeleton.

In the Biot model, the elastic behaviour of the frame is taken into account, leading to equations
with three wave motions, two compressional waves and one shear wave, all of them propagat-
ing both in the air and the solid phase. The viscous and thermal effects are coupled, so the
logic presented for the rigid frame models cannot be directly applied and the impedance, the
complex sound speed and the complex wave number cannot now be obtained as done with
the rigid frame models. However, the effective compressibility and the dynamic viscous tortu-
osity can directly be included in the parameters of the Biot model, to take into account the
viscous and thermal properties of the fluid phase. The effective density and the effective com-
pressibility, used in the Biot parameters, can be based on either the direct numerical approach
or any of the methods in the hybrid numerical approach. The internal losses of the solid phase
can be taken into account in a familiar way using complex elastic parameters of the viscoelastic
structure.

According to simulation results in literature, there is a frequency dependent optimum of the
radii of the fibres at constant porosity for maximum sound absorption. With constant porosity,
decreasing the radius of the fibres implies an increase of the surface area of the fibres-pore
interface, thus evidently increasing the viscous losses. However, if the radius is decreased too
much, the range of the loss regions of two near-by fibres overlap and the viscous losses de-
crease. For larger fibres, the absorption coefficient is globally higher for a stimulation orthogo-
nally to the lumens than along them. Smaller fibres absorb better the acoustic energy when
stimulated along their internal porosity. Absorption coefficient globally increases when the ma-
terial gets thicker. However, for each radius of the fibres at each frequency, there exists a
critical thickness for which the asymptotic absorption coefficient is reached, and further in-
creasing the thickness from this does not increase the absorption coefficient. Increasing the
closure rate and decreasing the throat size from open-cell construction to an optimum value
improves the middle frequency performance of absorptive foams. The cell size has an effect
to the selectivity of the frequency band of high sound absorption. In sound insulation applica-
tions smaller closure rates are better.

11. Summary

The multi-scale computation method has been treated for acoustical purposes, for controlling
the chain of parameters including the relations between the microscopic, macroscopic and
acoustic parameters of sound absorbing materials. Possible anisotropic behaviour of materials
has been taken into account.

The macro-scale parameters complex density and complex compressibility are produced by
the multi-scale computation. Their imaginary parts are due to the viscous and thermal losses
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of the fluid in porous materials. The deviations of their real parts from their physical values take
into account some other things affecting the sound propagation in porous materials.

The macro-scale complex parameters can be defined using two alternative ways: the direct
numerical approach and the hybrid numerical approach. In the former, the complex density
and compressibility are directly formed from the calculated dynamic viscous and thermal per-
meability functions. In the latter, static viscous and thermal permeability functions, three tortu-
osity functions (the strict amount depending on the selection from three possible models), and
the viscous and thermal characteristic lengths, are computed, from which the complex density
and compressibility are finally calculated. From the complex density and compressibility, the
impedance and the complex wave number for rigid frame models are computed similarly in
both of the methods.

In the Biot model, the viscous and thermal effects are coupled, so the logic presented for the
rigid frame models cannot be directly. However, the effective compressibility and the dynamic
viscous tortuosity, based on either of the approaches, can directly be included in the parame-
ters of the Biot model, to take into account the viscous and thermal properties of the fluid
phase.

Some examples from literature have been given considering the optimization of the perfor-
mance of the absorbing materials based on micro-scale modifications by the help on multi-
scale computing.
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