

Title	Small satellite solutions for land
	transport monitoring.
Author(s)	Aapaoja, Aki; Praks, Jaan; Hautala,
	Raine; Kostiainen, Juho; Kinnunen,
	Tuomo K; Höyhtyä, Marko
Citation	12th European Congress and
	Exhibition on Intelligent Transport
	Systems and Services, ITS European
	Congress 2017, 19 - 22 June 2017,
	Strasbourg, France. ERTICO.
Rights	This article may be downloaded for
	personal use only.

VTT	By using VTT Digital Open Access Repository you are
http://www.vtt.fi	bound by the following Terms & Conditions.
P.O. box 1000 FI-02044 VTT	I have read and I understand the following statement:
Finland	This document is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of this document is not permitted, except duplication for research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered for sale.

Organised by:

Supported by:

Small satellite solutions for land transport monitoring

Dr. Aki Aapaoja

VTT Technical Research Centre of Finland Ltd.

Co-authors:


Jaan Praks, Aalto University, Finland

Raine Hautala, Juho Kostiainen, Tuomo K Kinnunen & Marko Höyhtyä, VTT, Finland

Motivation towards satellite observation

- Small satellite (<500 kg) technology spreads quickly
- Real time imaging is soon possible
- Satellite images are (and become) freely available
- Satellite is always a global solution

 From 900 Million USD to 2.50 Billion USD by 2020

• Annual costs of

- extreme weather events 13-18 billion € in Europe, 50 B\$ in the USA
- land infrastructure maintenance and asset management costs in OECD countries are over 130 billion

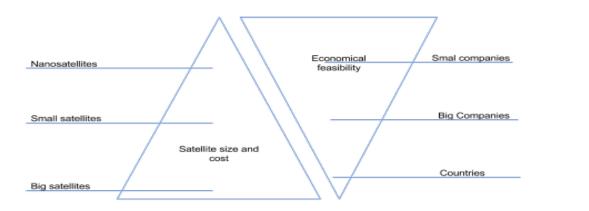
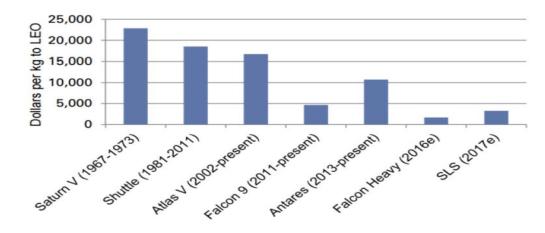
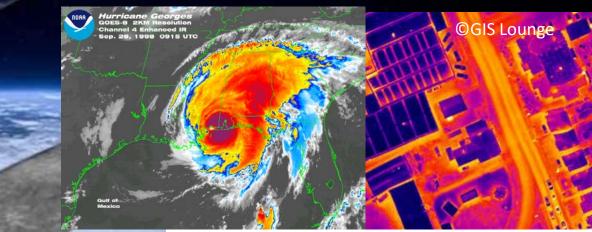



Exhibit 5: Falling launch costs open opportunity for new missions Launch costs per payload kg fall over time, especially recently


ITS EUROPEAN CONGRESS Strasbourg, France | 19-22 June 2017

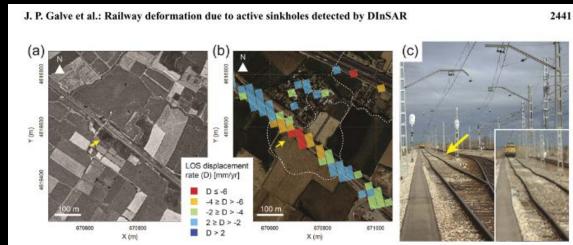
Small satellites' promises and obstacles

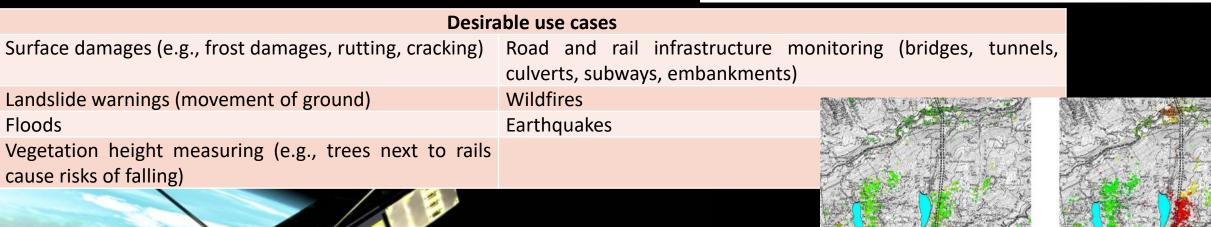
Obstacles
Space debris is a growing risk and launching a large number of
<u>satellites</u> is controversial
Frequency coordination according to current practices is too
slow
Small satellite <u>reliability</u> (e.g., miniaturized technology) is not
yet on par with requirements
Small size of the satellite limits the performance (size of
payload, energy, monitoring capability) of the single satellite

cesa Use case: operability and usability in all conditions

- Collecting near real-time and accurate road weather and condition data is crucial
- Observing large areas by traditional means (e.g, RWIS) is challenging, expensive and spatial
- Small satellites
 - Supplementary solution
 - Cost-effective

DIL SPILL DETECTION

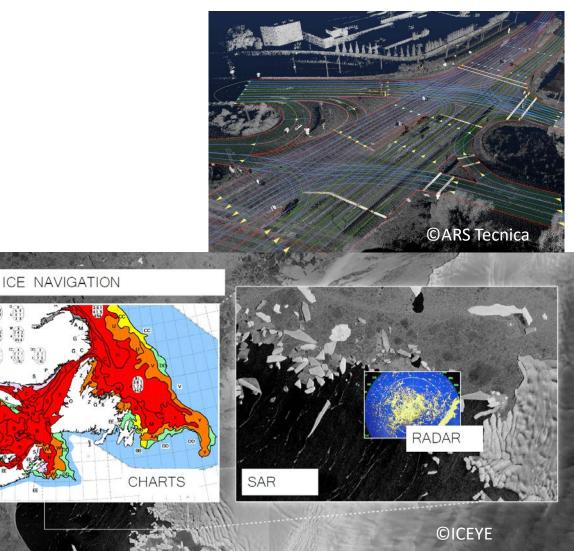




Desirable use cases				
Snow and frozen ground maps	Frost heave and bearing capacity			
Sudden extreme weather events (floods, snow/sand	On-road/-rail condition detection (snow, slush, packed snow)			
storms/blizzards, downpour)				
Traffic census (congestions, incidents)	Thermal mapping (friction, surface temperature)			
Detection of on-road/-rail obstacles	Sky and atmospheric condition observations for weather			
	forecast			

Use case: long-term asset management and evaluation

- Optimizing infrastructure life-cycle
- Enhancing resilience
 - Preparation
 - Adaptability



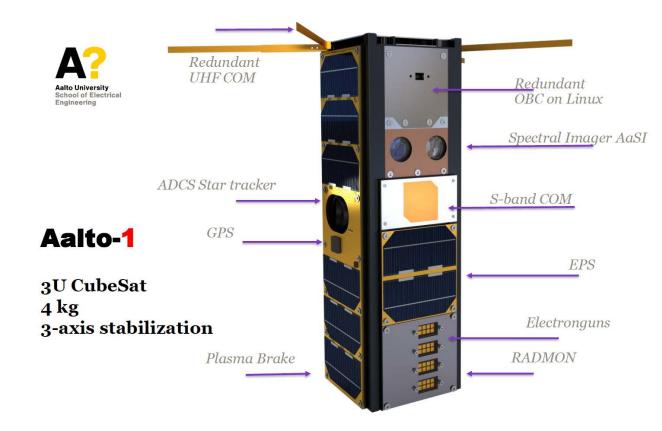
Digitalization of transport and mobility

- Automated vehicles call for a comprehensive situational picture and connectivity
 - Combined data from LIDARs, cameras, radars...
- Communication through satellites in sparsely populated areas
 - Fast and reliable (5G)
 - Low latency

Desirable features and needs		
Detection of on-road obstacles and	Positioning	
incidents		
Traffic census and	Communication, especially in rural	
decentralization/balancing	areas	
High-definition up-to-date maps		

Research opportunities

Research topics	Subtopics
Data fusion and analytics	Integration of multisource data (satellites and terrestrial)
	Analytics of remote sensing data and added value information
Standardization and legislation	Communication formats and interfaces
	Satellite structure and modularity
	International legislation and coordination
Remote sensing technologies and data resolution	Radio, radar and optical imaging capability and application areas
Communication technologies	Miniaturized radio technologies
	Integration of satellite and terrestrial systems
	Inter-satellite communications
Technological validation and socio-economic assessment	Pilots and proof-of-concepts,
	Technological and economic validation and assessments


Future land transport monitoring supported by satellites and machine vision

New space – key promises and developments

- Rapidly decreasing cost enables large number of satellites
- Decreasing investment requirements enable new investors and players
- Short revisit time enables new applications and new markets
- Constellations enables cheap and fast communication
- More consumer services will depend on space segment
- Spaceborne sensing will approach real time and enable new application areas
- New level of global collaboration is inevitable

The CubeSat generation will have hands full of work!

VTT

AKI AAPAOJA Research Scientist, D.Sc. (Tech.) Intelligent Transport Systems

Tel. +358 20 722 2017 Mobile +358 40 7444 823 Email aki.aapaoja@vtt.fi

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

Kaitoväylä 1, Oulu P.O. Box 1100 FI-90571 Oulu, Finland

www.vtt.fi

