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1. Introduction 

Dynamic flowgraph methodology (DFM) is a method for the reliability analysis of dynamic 

systems with time-dependencies and feedback loops [1-5]. As in fault tree analysis, the aim 

of DFM is to identify which conditions can cause a top event, which can be, for example, a 

system's failure. A DFM model is a directed graph representation of the analysed system. 

The nodes of the graph represent system’s variables, e.g. physical and software variables, 

and the edges between them represent causal and other relationships between the 

variables. Components of DFM models are analysed at discrete time points and they can 

have multiple states. The reason for the development of DFM is that traditional methods, 

such as fault tree analysis, can describe a system's dynamic behaviour only in a limited 

manner. DFM can more accurately represent system's evolution in time. 

DFM has been most often applied to different digital control systems that include both 

hardware and software components. One reason for this is that a DFM model can represent 

the interactions between a control system and the controlled process. DFM supports the 

modelling of multi-state components, which is an advantage in modelling digitally controlled 

systems because their variables generally do not behave in binary manners. Another 

advantage of DFM is that only one model is needed to represent the complete behaviour of a 

system and therefore different states of the system can be analysed using the same model 

[2]. 

The result of DFM analysis is a set of prime implicants [6, 7]. A prime implicant is a minimal 
combination of basic events and other conditions that is sufficient to cause the top event. 
DFM analysis considers at which time points events have to occur to cause the top event. 
Compared to static fault tree analysis, DFM provides more accurate information about the 
development of accident scenarios and enables more accurate probability calculations. 

VTT has previously developed a DFM tool called Yadrat [8], which solves a DFM model by 
transforming it into a binary decision diagram (BDD). It has however not been possible to 
apply Yadrat to large systems, mainly because DFM analysis is generally quite demanding, 
but also because of the limitations of BDDs. To improve Yadrat’s computational capacity and 
to reduce computation times, this report studies an alternative way of solving a DFM model. 
A DFM model is transformed from Yadrat into the fault tree format of the probabilistic risk 
assessment (PRA) software FinPSA [9], then solved by the fault tree algorithm of FinPSA. 

It is not a new idea to solve a DFM model using fault trees. The original DFM implementation 
[1] already used that approach. In Dymonda software [10], prime implicants are solved by 
applying the method of generalized consensus [11, 12] to initial prime implicants solved from 
a fault tree. FinPSA implementation developed in this work is also based on post-processing 
of initial prime implicants but is slightly different from the method of generalized consensus. 

2. Dynamic flowgraph methodology 

A DFM model is a directed graph that consists of nodes representing the system's 
components and variables, and edges representing causal and other dependencies between 
nodes [1-5]. A node can have a finite number of states and the state of a node is determined 
either by a probability model or by states of its input nodes at specified time steps relative to 
the time step considered. Input dependencies of a node are represented in a decision table 
which is an extension of a truth table. Decision tables can be constructed based on empirical 
knowledge on the system, physical equations, simulations, expert judgement, software 
design or software code. 

Figure 1 shows an example of a DFM model based on a tank system with a digitally 
controlled valve, and Table 1 gives an example of a decision table. A tank gets water from an 
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infinite water source. The outflow from the tank is regulated by a valve, which is controlled by 
a digital controller based on measurement of the water level. In the model, node V 
represents the functional state of a valve (V=0 means that the valve is closed, V=1 means 
that it is open), WLM represents water level measurement value (WLM=0 means that the 
water level is below the reference value, WLM=2 that it is above the reference value, and 
WLM=1 that it is within tolerance limits of the reference value) and WL represents water 
level. Nodes VF and MF determine whether the valve and the water level measurement are 
failed and they change states by a probability model. Each row of the decision table 
represents a state combination of input nodes (VF, WLM and V) and the state of the output 
node V to which the state combination of the input nodes leads. The state of a node can also 
be defined irrelevant (“irr” in the table for WLM), which means that the state of the output 
node is the same regardless of in which state the input node (WLM) is. The time lag row 
determines the delays in the dependencies between the input nodes and the output node. 
The time lags are also seen in Figure 1. In Table 1, node V depends on its own state at the 
previous time step because the time lag is 1. 

 

Figure 1: A DFM model with five nodes [7]. 

Table 1: The decision table of component V. 

 Output Inputs 

Node V VF WLM V 

Time lag  0 0 1 

 0 0 0 0 

 0 0 0 1 

 0 0 1 0 

 1 0 1 1 

 1 0 2 0 

 1 0 2 1 

 0 1 irr 0 

 1 1 irr 1 
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The primary target of DFM is to identify prime implicants of the top event. A prime implicant is 
a minimal combination of conditions that is sufficient to cause the top event. Respectively, an 
implicant is any combination of conditions that causes the top event, minimal or non-minimal. 
In DFM, these conditions are represented by literals. In this context, a literal is triplet 
consisting of a node 𝑉, state 𝑠 and time point −𝑡, and denoted as 𝑉𝑠(−𝑡). Hence, prime 
implicants of DFM can be understood as multi-state and timed minimal cut sets. The 
mathematical definition of prime implicants is presented and discussed in [7]. 

The top event is also defined as a set of literals that all must hold for the top event to happen. 
The analyst can freely choose any top event.  Therefore, it is possible to analyse several top 
events in parallel with the same DFM model, and both success and failure scenarios can be 
analysed. The analyst has to also choose the initial time −𝑡𝐼, which defines how many time 
steps the analysis will cover. Typically, the top event is fixed to time step 0, and then the 
analysis covers 𝑡𝐼 time steps. 

In DFM, there are two types of nodes: deterministic nodes and stochastic nodes. The state of 
a deterministic node is determined by its input nodes through a decision table. The state of a 
stochastic node is determined by a probability model. At the initial time step, a deterministic 
node behaves like a stochastic node. Implicants of a top event can contain initial states of 
deterministic nodes and states of stochastic nodes at any time step. 

A DFM model is typically analysed by tracing event sequences backwards from effects to 
causes. Deductive analysis starts from the top event. The model is traced backwards in the 
cause-and-effect flow to identify what initial states of deterministic nodes and states of 
stochastic nodes produce the top event. The process ends when the initial time step is 
reached. 

Failures of non-repairable components can be modelled using failure nodes. A failure node is 
a stochastic node with two states, a “functioning state” (0) and a “failure state” (1). It cannot 
turn from state 1 to state 0, and it is fixed to state 0 at the initial time step. In the Yadrat tool, 
a failure node is modelled with an assistive random node and a decision table. The random 
node does not appear in the graph model created by the user, but is added there 
automatically by Yadrat. First, the failure is affected by the random node so that the failure 
node turns to the state 1 if the random node gets value 1. After the failure node has turned to 
the state 1, it is not affected by the value of the random node anymore and the failure node 
cannot turn back to the state 0. The decision table of a failure node is presented in Table 2. 

Table 1: The decision table of a failure node. 

 Output Inputs 

Node F F H 

Time lag  1 0 

 0 0 0 

 1 0 1 

 1 1 0 

 1 1 1 

 

3. FinPSA 

FinPSA is a software tool for full-scope PRA [9]. FinPSA supports PRA levels 1 and 2. Level 
1 PRA concerns accident sequences leading to core damage and calculation of the core 
damage frequency. Level 2 PRA concerns the progression of severe accidents after core 
damage and calculation of frequencies and amounts of radioactive releases. 
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In level 1 PRA, FinPSA uses event trees and fault trees [13, 14]. An event tree represents 
how an accident can evolve from an initiating event via failures of safety systems to a 
consequence, e.g. core damage. A fault tree represents which events can cause the 
analysed system to fail. Fault trees are linked to branching points in event trees. From fault 
trees, minimal cut sets are solved. Minimal cut sets are minimal combinations of events that 
can cause the top event, e.g. core damage. Probabilistic analysis is performed based on 
minimal cut sets and reliability data of components. 

FinPSA has been designed for large models and its computational capacity is extremely 
high. FinPSA uses efficient data structures, fault tree manipulation and truncation to solve 
minimal cut sets. It divides a fault tree into a set of subproblems and solves the subproblems 
in an order that is optimal with regard to computation times. 

A relevant property of FinPSA with regard to this work is a not-group. It defines events that 
are mutually exclusive and cannot appear in same minimal cut sets. Typically, some initiating 
events are placed in the same not-group. In DFM, different states of a node are mutually 
exclusive. Therefore, not-groups are utilised in the generation of prime implicants. However, 
they are used a bit differently than in normal PRA. 

4. Solving DFM model with FinPSA 

To solve a DFM model with FinPSA, the following steps need to be performed: 

1. A DFM model from Yadrat is transformed into FinPSA’s fault tree import format. 

2. The fault tree is imported in FinPSA. 

3. Prime implicants of the DFM model are solved from the fault tree in FinPSA. 

4.1 Transforming DFM model into fault tree 

A DFM model can be transformed into a fault tree using the following basic rules: 

1. Literals representing the top event are set as inputs for the top gate, which is an AND 
gate. 

2. The rows of a decision table leading to the considered state are combined under an 
OR gate. 

3. A row of a decision table is represented by an AND gate, and literals representing the 
states of the input nodes are set under this AND gate. 

4. Literals representing stochastic nodes and initial states of deterministic nodes are set 
as basic events. Initial states of a deterministic node are the node’s value(s) at time 
instances −𝑡 ≤ −𝑡𝐼. 

The fault tree production is implemented in Yadrat using the following functions: 

StartBuildingFT 

Function writes the header rows of FinPSA fault tree import file. For example, 

FinPSA transfer data 

Fault tree created by Yadrat 

 ---------- Fault tree <transfer data> ---------- 

FT3 
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 Tree 

It also writes a row for the top gate, where literals representing the top event are combined 
under an AND gate. For example, 

Top  AND WL_0_2 WL_-1_2 

Literals are written in text form: ‘Node_Time_State’. Then, the function starts developing the 
fault tree for each literal of the top event. If the time step of a literal is the initial time, function 
CreateFTatInitial is called for it. If the time step of a literal is not the initial time, function 
CreateGate is called for it. 

The fault tree is finalised by writing “EndTree” to the FinPSA fault tree import file. After that, 
the function calls the WriteDataBase function. 

CreateFTatInitial (Literal) 

Function calls the IsLegalBasicEvent function to find out if the literal should be represented 
by a basic event or gate in the fault tree. If the literal is represented by a basic event, the 
CreateNewBE function is called. If the literal is represented by a gate, the CreateGate 
function is called. 

IsLegalBasicEvent (Literal) 

The function checks if the literal represents a stochastic node or a deterministic node. If it 
represents a stochastic node, the function returns ‘true’. If the literal represents a 
deterministic node, the function checks if the time step of the literal is the initial time or 
smaller. If the time step is larger than the initial time, the function returns ‘false’. If the time 
step is the initial time or smaller, the function checks the time lags of the input dependencies 
of the deterministic node. If one of the time lags is larger than 0, the function returns ‘true’. If 
all time lags are 0, the function returns ‘false’. 

CreateNewBE (Literal) 

The function writes a row where the literal is defined as a basic event. For example, 

V_-3_0 BE 

It also adds the literal to the list of handled literals and returns the literal in text form. 
However, if the probability of the literal is 1, the function returns ‘1’, and if the probability of 
the literal is 0, the function returns ‘0’. For example, a failure node must be in state 0 at the 
initial time. Initial state probabilities of some other nodes can also be 0 or 1. 

CreateGate (Literal) 

If the literal has already been handled, the function only returns the literal in text form. 
Otherwise, the function writes a row where the literal is defined as an OR gate, and the 
inputs are the rows of the decision table (of the node represented by the literal) that have the 
same state as the literal. For example, 

WL_-2_0 OR WL_-2_0_Row1 WL_-2_0_Row3 

For each row of the decision table having the same state as the literal, the function writes a 
row where literals representing the input nodes are combined under an AND gate. For 
example, 

WL_-2_0_Row1 AND V_-3_1 WL_-3_0 
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For each input node, the state is taken from the decision table, and the time step is the time 
step of the literal representing the output node minus the time lag specified in the decision 
table. If the state of an input node is defined irrelevant, no literal representing the input node 
is created and written in the fault tree file. For each input literal, the IsLegalBasicEvent 
function is called. If it returns ‘false’, the CreateGate function is called. If the  
IsLegalBasicEvent function returns ‘true’, the CreateNewBE function is called. If the 
CreateNewBE or CreateGate function returns ‘0’, no row is written for the corresponding 
decision table row. If the CreateNewBE or CreateGate function returns ‘1’, no literal 
representing the input node is created and written in the fault tree file. If the CreateNewBE 
and CreateGate functions return ‘1’ for all inputs, the function also returns ‘1’ and does not 
write OR and AND rows. If the CreateNewBE or CreateGate function returns ‘0’ in each 
relevant decision table row, the function returns ‘0’ and does not write OR and AND rows. 

State 1 of a failure node is handled slightly differently in order to optimize the fault tree 
structure. The literal is defined as an OR gate that has two inputs: the assistive random node 
of the failure node in state 1 at the same time step, and the failure node in state 1 at the 
previous time step. For example, 

MF_-1_1 OR MF_-2_1 MF=help_-1_1 

For the assistive random node, the CreateNewBE function is called, and for the failure node 
at the previous time step, the CreateGate function is called. If the previous time step is the 
initial time, the assistive random node of the failure node in state 1 at the same time step is 
the only input. For example, 

VF_-2_1 OR VF=help_-2_1 

The function finally adds the literal (which is represented by the OR gate) to the list of 
handled literals, and returns the literal in text form. 

WriteDataBase 

The function writes the literals of the DFM model into FinPSA’s data base format. First, the 
function writes header rows: 

 ---------- Data records <transfer data> ---------- 

Name  Not-group RelP1 

Then, the function goes through all literals that are represented by basic events in the fault 
tree. For each literal, the function writes the name, not-group and probability. For example, 

V_-3_0 V 0.4 

VF=help_-2_0 VF-2 0.999999 

V_-3_1 V 0.6 

WL_-3_0 WL 0.33 

WL_-3_1 WL 0.34 

WLM_-3_0 WLM 0.33 

MF=help_-2_0 MF-2 0.999999 

WLM_-3_1 WLM 0.34 

WLM_-3_2 WLM 0.33 

MF=help_-2_1 MF-2 1.0E-6 

Literals that represent the same node at the same time step are placed in the same not-
group. For deterministic nodes, the name of the not-group is simply the name of the node: 
there is no need to attach a time label because only literals representing deterministic nodes 
at the initial time are treated as basic events. For stochastic nodes, the name of the not-
group is a combination of the name of the node and the time step. 
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4.2 Solving prime implicants from a fault tree 

The main challenge in the solving of prime implicants is the non-coherent logic of DFM. The 
algorithms of FinPSA assume that the model is coherent. Hence, the correct prime implicants 
cannot be generated in FinPSA without some modifications to the source codes. The normal 
algorithm of FinPSA can generate a set of implicants, but they are not minimized correctly. It 
has to be taken into account that each node is always in one of its states at each time step. 

The problem can be illustrated with a simple example. Let node A be a failure node, and 
nodes B and C be deterministic nodes with two states 0 and 1. The initial time of the analysis 
is -3. Literal sets {𝐴0(−2), 𝐵0(−3), 𝐶0(−3)}, {𝐴1(−2), 𝐵0(−3), 𝐶0(−3)} and 

{𝐴1(−2), 𝐵0(−3), 𝐶1(−3)} are identified as implicants, but since node A is always either in 
state 0 or 1, set {𝐵0(−3), 𝐶0(−3)} must also be an implicant. Similarly, set {𝐴1(−2), 𝐵0(−3)} 
must be an implicant because node C is always in state 0 or 1. Hence, the set of those three 
implicants can be minimized into a set of two implicants, {𝐵0(−3), 𝐶0(−3)} and 

{𝐴1(−2), 𝐵0(−3)}. 

In the preliminary DFM implementation in FinPSA, the literals that represent the same node 
at same time step are placed into a not-group. When a new implicant is identified, for each 
literal in the implicant, it is checked if the literal can be switched to the other literals in the 
same not-group so that the top event still occurs. If the literal can be switched to each of the 
other literals, it can be removed from the implicant so that it still remains implicant. This is 
done by comparing the implicant canditates with switched literal to other existing implicants. 
If all those implicant candidates are already found in the set of implicants, they are removed 
from the set and a new implicant with the literal removed is added. 

If set {𝐴0(−2), 𝐵0(−3), 𝐶0(−3)} has previously been added to the list of implicants, and 

{𝐴1(−2), 𝐵0(−3), 𝐶0(−3)} is identified as new implicant, literal 𝐴1(−2) is switched to 𝐴0(−2) 
so that an implicant candidate {𝐴0(−2), 𝐵0(−3), 𝐶0(−3)} is created based on 

{𝐴1(−2), 𝐵0(−3), 𝐶0(−3)}. Then, {𝐴0(−2), 𝐵0(−3), 𝐶0(−3)} is compared to the existing 
implicants, and the same implicant can be found from the list, which means that it can be 
removed from the list, and {𝐵0(−3), 𝐶0(−3)} can be added as a new implicant. However, 

before {𝐵0(−3), 𝐶0(−3)} is added, similar analysis is also performed for it, i.e. sets 
{𝐵1(−3), 𝐶0(−3)} and {𝐵0(−3), 𝐶1(−3)} are searched from the list. Also, sets 

{𝐴1(−2), 𝐵1(−3), 𝐶0(−3)} and {𝐴1(−2), 𝐵0(−3), 𝐶1(−3)} are searched from the list, but cannot 
be found at this point. 

Implicant canditates need not to be compared only to the implicants with the same length, 
but also shorter implicants. If now {𝐴1(−2), 𝐵0(−3), 𝐶1(−3)} is identified as an implicant, it 
needs to be checked if {𝐴0(−2), 𝐵0(−3), 𝐶1(−3)}, {𝐴1(−2), 𝐵1(−3), 𝐶1(−3)} and 

{𝐴1(−2), 𝐵0(−3), 𝐶0(−3)} are also implicants. The two first sets are not implicants, but 

{𝐴1(−2), 𝐵0(−3), 𝐶0(−3)} is an implicant, because it implies set {𝐵0(−3), 𝐶0(−3)} which has 
previously been identified as an implicant. Based on this, it is known that literal 𝐶1(−3) can 

be removed from implicant {𝐴1(−2), 𝐵0(−3), 𝐶1(−3)}, and {𝐴1(−2), 𝐵0(−3)} is also an 
implicant. Again, sets {𝐴0(−2), 𝐵0(−3)} and {𝐴1(−2), 𝐵1(−3)} need to be compared to the 

existing implicants, but they are not identified as implicants. Therefore, {𝐴1(−2), 𝐵0(−3)} is 
added to the list of implicants, and at the end of the process, the list contains implicants 
{𝐵0(−3), 𝐶0(−3)} and {𝐴1(−2), 𝐵0(−3)}. 

An algorithm for the minimization of implicants is presented as follows. It is performed for 
each newly identified implicant (after it has been checked that the implicant is of minimal 
length and has not been identified before). After completing a step in the algorithm, move to 
the next step if no other instructions are given. 
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1. Get the first literal in the new implicant P. The literal is denoted as L, the node that is 
represented by the literal is denoted as N and the state of the node in the literal is 
denoted as S. 

2. Get the first state of node N, which is different from state S. This new state is denoted 
as S*. 

3. Create a new set of literals P*, which is otherwise the same as the implicant P, except 
that state S in literal L is switched to state S*. 

4. Check if set of literals P* can be found in the set of implicants. If it does, add this 
implicant P* to the list of potentionally removable implicants and go to step 6. 

5. Check if a subset of set of literals P* can be found in the set of implicants. If not, go to 
step 10. 

6. Check if all the states of node N have been examined. If not, get the next state, which 
is different from state S, and go to step 3. The new state is then denoted as S*. 

7. Remove all implicants that are in the list of potentionally removable implicants from 
the set of implicants. 

8. Create a new implicant PM, which is otherwise the same as the implicant P, except 
that literal L is left out. Write down that the implicant P will not be added to the set of 
implicants. 

9. Perform the whole procedure starting from step 1 for the new implicant PM. 

10. Check if all the literals in the implicant P have been examined. If not, empty the list of 
potentionally removable implicants, get the next literal in the implicant P and go to 
step 2. The next literal is then denoted as L, the node that is represented by the literal 
is denoted as N and the state of the node in the literal is denoted as S. 

11. If step 8 has not been applied for the implicant P, add it to the set of implicants. 

The previously described procedures are implemented in the AddMinimal function of 
FinPSA’s MinEngine unit. See reference [15] for more information about MinEngine. Other 
parts of the code are the same as in regular minimal cut set search. 

FinPSA solves minimal cut sets (or prime implicants) by dividing the fault tree into a set of 
smaller subproblems, which are solved in optimal order with regard to computation times. 
Minimization of implicants is applied already on the subproblem level, which is expected to 
be more efficient than the solution where the minimization would be performed only at the 
end of analysis. 

5. Results 

The simple model presented in Figure 1 was analysed with the top event that the water level 
is low at time steps -1 and 0. The decision tables of the model are presented in Table 1 and 
Appendix. The model was traced backwards 3 time steps. All prime implicants were correct, 
i.e. the same as presented in [16]. They are also presented in Appendix. Probabilities are 
also presented in the FinPSA output of Appendix, but attention should not be paid to them, 
since the FinPSA implementation has not been developed yet to calculate probabilities 
correctly in all cases. 

With larger models, prime implicants could not yet be solved correctly. In some cases, 
FinPSA produced no prime implicants at all. Before the computational capabilities of the 
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developed approach can be assessed, the issues with the preliminary FinPSA 
implementation need to be resolved. 

6. Discussion and conclusions 

This report presented how DFM models can be solved using the fault tree algorithm of 
FinPSA. First, a DFM model is transformed from DFM tool Yadrat to the fault tree format of 
FinPSA. Then, the prime implicants of the DFM model can be solved from the fault tree. The 
fault tree algorithm of FinPSA could not be applied to non-coherent DFM models as such. 
Therefore, a new part had to be added to the algorithm. The new algorithm identifies 
mutually exclusive events in implicants and minimizes the implicants from that basis. The 
algorithm presented in Section 4 is not FinPSA or fault tree specific. It could be applied in 
any tool that solves prime implicants of a non-coherent reliability model.  

Prime implicants were solved correctly for a simple model, which gives confidence that the 
approach has potential. More complex models could not be solved correctly, and in some 
cases, FinPSA produced no prime implicants at all. The next step is to resolve these issues. 

Because of problems with complex models, the computational efficiency of the 
implementation could not be evaluated yet. Assuming that the implementation can be 
corrected for larger models, it can be expected to be efficient because the implicants are 
minimized on the subproblem level of the analysis, which restricts the number of implicants 
that need to be handled. However, the implementation is only tentative. FinPSA optimizes 
the order in which different subproblems are solved, but the optimization has been developed 
only from the minimal cut set solving point of view, which means that the order could be 
different for a DFM model. 

The most well-known DFM tool Dymonda utilises the method of generalized consensus [11, 
12] to solve prime implicants. Implementation of the method of generalized consensus in 
FinPSA could also be considered. Especially, if it was found out that the current 
implementation does not produce complete set of prime implicants, the method of 
generalized consensus could be used to find the missing prime implicants. 

Prime implicant solving algorithm has been implemented in a developer version of FinPSA. 
The implementation is considered tentative and experimental. Literals representing different 
states of a node at the same time step have been placed in the same not-group, and the 
minimization of implicants is performed based on the not-groups. In FinPSA, not-groups are 
typically used differently. Hence, when the DFM implementation will be added to the release 
version, mutually exclusive literals need to be defined in some other way. There are several 
other DFM related properties that could also be implemented in FinPSA: dynamic constaints 
between literals (e.g. for non-repairable components [7]), computation of probabilities, 
common cause failure modelling, risk importance measures, etc. Even a new DFM modelling 
feature could be developed in FinPSA so that there would not be need to transform models 
from Yadrat. 

The possibility to solve a DFM model in FinPSA also makes it easier to integrate it in full 
scope nuclear power plant PRA. However, it does not solve all the issues related to the 
integration, such as how to handle component failures that appear both in the DFM model 
and in fault trees as basic events. The integration of DFM in PRA has been studied 
previously in [17]. 

The next step in this work is to study why prime implicants are not solved correctly for larger 
models and resolve the issues. Then, FinPSA implementation can be benchmarked with 
Yadrat to find out whether FinPSA is faster and able to solve large models. Improved 
computational efficiency and capacity could make DFM analysis more attractive, and inspire 
further DFM studies and practical applications of DFM. 
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Appendix 

Table A-1: The decision table of WL. 

 Output Inputs 

Node WL V WL 

Time lag  1 1 

 1 0 0 

 2 0 1 

 2 0 2 

 0 1 0 

 0 1 1 

 1 1 2 
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Table A-2: The decision table of WLM. 

 Output Inputs 

Node WLM MF WLM WL 

Time lag  0 1 0 

 0 0 0 0 

 1 0 0 1 

 2 0 0 2 

 0 0 1 0 

 1 0 1 1 

 2 0 1 2 

 0 0 2 0 

 1 0 2 1 

 2 0 2 2 

 0 1 0 0 

 0 1 0 1 

 0 1 0 2 

 1 1 1 0 

 1 1 1 1 

 1 1 1 2 

 2 1 2 0 

 2 1 2 1 

 2 1 2 2 

 

Syve test: Syve, cut set importances  170526 12:31   <TPT> 
==================================== 
 
S1-sum 1.66E-06 TOP mc S1-sum 1.66E-06 
 
  Num Freq. % Cumul Prob Name  
 
    1 4.00E-07 24.12 24.12 1.00E-06 VF=help_-2_1 
    4.00E-01 V_-3_0  
 
    2 2.64E-07 15.92 40.03 2.00E-06 MF=help_-1_1 
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    1.00E+00 MF=help_-2_0 
    4.00E-01 V_-3_0  
    3.30E-01 WL_-3_0  
 
    3 2.64E-07 15.92 55.95 1.00E+00 MF=help_-2_0 
    2.00E-06 VF=help_-1_1 
    4.00E-01 V_-3_0  
    3.30E-01 WL_-3_0  
 
    4 1.36E-07 8.20 64.15 1.00E-06 MF=help_-2_1 
    4.00E-01 V_-3_0  
    3.40E-01 WLM_-3_1  
 
    5 1.32E-07 7.96 72.11 1.00E-06 MF=help_-2_1 
    4.00E-01 V_-3_0  
    3.30E-01 WLM_-3_0  
 
    6 1.09E-07 6.57 78.67 1.00E-06 MF=help_-2_1 
    1.00E+00 VF=help_-2_0 
    3.30E-01 WLM_-3_0  
    3.30E-01 WL_-3_2  
 
    7 8.98E-08 5.41 84.08 2.00E-06 MF=help_-1_1 
    4.00E-01 V_-3_0  
    3.40E-01 WLM_-3_1  
    3.30E-01 WL_-3_0  
 
    8 8.98E-08 5.41 89.50 2.00E-06 VF=help_-1_1 
    4.00E-01 V_-3_0  
    3.40E-01 WLM_-3_1  
    3.30E-01 WL_-3_0  
 
    9 8.71E-08 5.25 94.75 2.00E-06 MF=help_-1_1 
    4.00E-01 V_-3_0  
    3.30E-01 WLM_-3_0  
    3.30E-01 WL_-3_0  
 
   10 8.71E-08 5.25 100.00 2.00E-06 VF=help_-1_1 
    4.00E-01 V_-3_0  
    3.30E-01 WLM_-3_0  
    3.30E-01 WL_-3_0  
End of output 
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