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Fiber Evolution during Alkaline Treatment and Its Impact 
on Handsheet Properties 
 
Yun Ji,a,b Yangyang Peng,c Anders Strand,d Shiyu Fu,c Anna Sundberg,d and  

Elias Retulainen b,* 

 
To understand the swelling effects of alkaline treatment on the 
morphological properties of fibers and physical properties of handsheets, 
bleached softwood kraft pulp was treated with NaOH at different 
concentrations. The results showed that the fiber swelling increased, but 
the shrinkage and elongation of the paper at a NaOH concentration of 6% 
or higher did not improve. Dissolution of amorphous material occurred 
during the treatment together with peeling reactions. The fiber length and 
shape factor decreased and the fines content increased with an increasing 
alkali concentration. The cellulose crystallinity decreased with an 
increasing NaOH concentration. This was confirmed by X-ray 
diffractometry, which also showed that some cellulose I was converted to 
cellulose II, especially at higher NaOH concentrations (> 9%). The fiber 
curl and kink indices increased and the handsheet density decreased with 
an increasing NaOH concentration. However, the tensile index decreased 
more steeply than the density with an increasing NaOH concentration, 
possibly because of the lower number and strength of the interfiber bonds, 
increased kinks, and reduced fiber strength and length. The handsheet 
extensibility first increased and subsequently decreased as the NaOH 
concentration increased, which indicated that well-controlled NaOH 
treatment could be used to improve the extensibility of paper. 
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INTRODUCTION 
 

Considering the continuing concern regarding environmental issues and the 

growing need for sustainable packaging materials, high quality bio-based materials with a 

high extensibility are necessary to compete with petroleum-based materials, especially in 

the packaging, construction, and composite industries. Currently, oil-based packaging 

materials outperform paper products because of their high formability and durability. 

Therefore, research needs to be conducted to improve the flexibility of fiber networks and 

the formability/extensibility of paper packaging products. 

Fiber properties and fiber-fiber bonding play important roles in the deformability 

and extensibility of the fiber network in paper products (Vishtal and Retulainen 2014). 

Increased drying shrinkage is an efficient tool that improves the elongation of paper 

(Khakalo et al. 2017). Increased fiber swelling increases the drying shrinkage potential and 

subsequently improves the elongation potential of dry paper. The swelling of wood fiber 

by refining improves the water retention value (WRV) of fibers and the mechanical 
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properties of paper (Olejnik 2012; Khakalo et al. 2017). Fibers are known to swell under 

alkaline conditions, but it is not clear to what degree alkaline treatment can improve the 

mechanical properties of paper. 

Alkaline treatment has been shown to change the properties of pulp fibers, such as 

the fiber wall structure and swelling (via ballooning behavior), fiber kink index, interfiber 

bonding, and paper bulk (Lawson and Hertel 1974; Klemm et al. 2004; Le Moigne and 

Navard 2010; Zhang et al. 2013). Zhang et al. (2013) found that the solvent or swelling 

agent type (NaOH, thiourea, and urea mixture) and quality could greatly affect the swelling 

and dissolution mechanisms of cellulose fibers. Cold caustic extraction (CCE) is also a 

poplar process to remove hemicellulose during the production of dissolving grade pulp 

(Arnoul-Jarriault et al. 2015; Dou and Tang 2017; He et al. 2017).  It was also reported 

that NaOH solutions could homogeneously swell cellulosic fibers of various origins 

without remarkable dissolution (cotton linter (degree of polymerization, DP = 620), spruce 

wood (DP = 800), and absorbent cotton (DP = 1400)) (Zhang et al. 2013). Le Moigne and 

Navard (2010) studied the dissolution mechanisms of wood cellulose fibers in NaOH 

aqueous solutions and found that spruce wood fibers and kraft pulp behaved differently in 

NaOH aqueous solutions because of their different DP values. Budtova and Navard (2016) 

published a critical review on cellulose dissolution in NaOH-containing aqueous solvents 

and concluded that when the mechanical properties of the materials were not of primary 

importance, a NaOH solution would be a suitable solvent to produce cellulose-based 

functional materials, e.g., highly porous solids. 

Based on the literature, NaOH treatment appears to be a promising technique to 

improve the fiber swelling and extensibility of paper products. However, detailed analysis 

of the morphological change to fibers and its consequent impact on the physical properties 

of handsheets have not been reported. In this study, bleached kraft softwood pulp fibers 

(DP = 2300) were used to investigate the effects of the NaOH concentration on the fiber 

morphology and physical properties of paper handsheets. An additional objective was to 

obtain a deeper understanding of the changes to the fiber morphology, crystallinity, and 

DP and the effects on the handsheet physical properties, such as the tensile strength and 

strain at break, under two different drying conditions (unrestrained and restrained). 

 

 

EXPERIMENTAL 
 

Materials 
Bleached softwood kraft pulp was used as the raw material. It was obtained as a dry 

lap pulp from Metsä Fiber Oy, Äänekoski Mill (Äänekoski, Finland) and refined to 25 °SR 

at a 3.6% consistency using 135 kWh/T of refining energy at Åbo Akademi University 

(Turku, Finland). The detailed refining procedure used was previously described by Strand 

et al. (2017). Sodium hydroxide was purchased from Sigma-Aldrich (Helsinki, Finland). 

 

Methods 
NaOH extraction 

The refined softwood kraft pulp was added to different NaOH solutions (0%, 3%, 

6%, 9%, and 12%, w/w) and sat at room temperature (23 °C ± 1 °C) for 1 h. Due to the 

NaOH addition, the fiber concentration ranged from 1.95 to 3.67 w/w%.  
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All the experiments were conducted with low fiber concentration to ensure the 

NaOH is not a limiting factor of mass transfer during the alkali swelling process. Then, the 

NaOH concentration was reduced by 95% before further analysis. The fiber analysis was 

conducted at three conditions: (1) tested right after the dilution without washing, (2) kept 

in diluted alkaline condition for 48 h, and (3) neutralized to pH 7±1. It was found that the 

fiber properties did not change significantly when comparing those three conditions. A 

small fraction of the wet pulp was used for fiber analysis and measurement of the WRV, 

viscosity, and crystallinity. The rest of the pulp was used to make handsheets. 

 

Handsheet preparation 

The diluted pulp was made into 60-g/m2 handsheets. Two drying methods were 

used in this study: restrained drying and unrestrained drying. To compare the effect of 

drying methods, handsheets were made according to ISO 5269-1 (2005) standard method 

using a Lorenzen and Wettre (L&W) (Helsinki, Finland) laboratory handsheet mold 

(Ketola et al. 2018). The unrestrained dried handsheets were placed between two wire 

plates with a 1-mm to 3-mm gap, which allowed the handsheets to shrink freely without 

excessive cockling or curling. The restrained dried sheets were made at South China 

University of Technology using Rapid-Köthen method based on ISO 5269-2 (2004). The 

main difference between these methods was in the drying shrinkage of the sheets. All the 

handsheet samples were conditioned in a standard atmosphere according to ISO 187 (1990) 

prior to further testing. 

 

Fiber analysis 

Detailed fiber analysis, including measurements of the length, weighted fiber 

length, fiber width, shapes, fibril area, fibril perimeter, percentage of fines, kinks, etc., were 

performed with a L & W Fiber Tester Plus analyzer (ABB/Lorentzen & Wettre). The fiber 

shape factor (often given as a percentage value) is defined as the ratio of the projected fiber 

length (shortest distance between the fiber ends) and true (contour) fiber length, and 

indicates the straightness of a fiber (Zeng et al. 2012). 

The curl index, which indicates the curliness of a fiber, was calculated from the 

shape factor with Eq. 1 (Page et al. 1985; Zeng et al. 2012). 

𝐶𝑢𝑟𝑙 𝑖𝑛𝑑𝑒𝑥 =  
1 − 𝑆ℎ𝑎𝑝𝑒 𝑓𝑎𝑐𝑡𝑜𝑟

𝑆ℎ𝑎𝑝𝑒 𝑓𝑎𝑐𝑡𝑜𝑟
             (1) 

The fiber analyzer measured the fiber properties using two dimensional images of 

thousands of fibers in the pulp suspension, which resulted in detailed information about the 

fiber changes during treatment with different NaOH loadings. 

The WRV was determined using the Scandinavian test standard SCAN-C 62:00 

(2000). A pulp pad was formed with a wire screen, and then placed in the centrifuge 

chamber and centrifuged at 4000 rpm (centrifugal force of 3000 g ± 50 g) for 15 min. When 

the centrifuge stopped, the test pad was weighed and placed in an oven at 105 °C ± 2 °C 

for more than 16 h. The dry pad was then weighed, with the weight being rounded to the 

nearest milligram. The WRV was calculated with Eq. 2. 

𝑊𝑅𝑉 =  
𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑐𝑒𝑛𝑡𝑟𝑖𝑓𝑢𝑔𝑒𝑑 𝑤𝑒𝑡 𝑡𝑒𝑠𝑡 𝑝𝑎𝑑 (g) − 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑑𝑟𝑦 𝑡𝑒𝑠𝑡 𝑝𝑎𝑑 (g)

𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑑𝑟𝑦 𝑡𝑒𝑠𝑡 𝑝𝑎𝑑 (g)
        (2) 
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Crystallinity 

The crystallinity of the softwood fibers was determined by X-ray diffraction (XRD; 

Bruker D8 Advance, Bruker AXS Inc., Madison, WI) with CuKα radiation (Kα1 = 0.15406 

nm; Kα2 = 0.15444 nm; 40 kV; and 40 mA) at the South China University of Technology 

(Guangzhou, China). The XRD spectra were recorded from 5° to 60° at a scan rate of 

1°/min. The crystallinity index (CI) was calculated with Eq. 3 (Segal et al. 1959; Roncero 

et al. 2005), 

𝐶𝐼 =  
𝐼200 − 𝐼am

𝐼200
 ×  100%              (3) 

where I200 is the maximum intensity of the 200 peak (2θ = 22° to 23°), which is the 

diffraction of the crystalline cellulose, and Iam is the minimum intensity value between the 

200 and 110 peaks (2θ = 18° to 19°), which is the diffraction of the amorphous cellulose. 

 

Intrinsic viscosity and degree of polymerization of the cellulose 

The intrinsic viscosity of the pulp fibers was tested according to TAPPI standard 

test method T 230 om-13 (2009). This method is commonly used to measure the viscosity 

of bleached cotton and wood pulps using 0.5 M cupriethylenediamine (CED) and a 

capillary viscometer.  

After the pulp sample viscosity was determined, the DP value was calculated with 

Eq. 4 (Evans and Wallis 1989). It should be noted that Eq. 4 does not account for the effect 

of the hemicellulose content (assuming 100% cellulose) on the overall DP value of the pulp 

fiber, which could introduce some error into the results. However, bleached softwood kraft 

pulp was used in this study, which usually contains a low amount of hemicellulose 

(Lahtinen et al. 2014). 

𝐷𝑃 =  (1.65 ×  𝑉𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 (mL/g))1.111            (4) 

Physical properties of the handsheets 

The physical properties of the obtained handsheets were measured, including the 

basis weight/grammage according to ISO 536 (2012); the thickness and density according 

to ISO 534 (2011); and the tensile strength, strain at break, and tensile stiffness according 

to ISO 1924-2 (2008). Zero-span testing is a common method used to determine the fiber 

strength. The wet and dry zero-span tensile strengths were tested according to ISO 15361 

(2000), which is commonly used to determine the strength of pulp fibers. 

 

Shrinkage of the unrestrained dried handsheets 

The shrinkage of the unrestrained dried handsheets was measured using Magic Scan 

software (V6.0, UMax Data Systems Inc., Hsinchu, Taiwan). Four holes forming a square 

with a certain perimeter were punched into the wet handsheet using a standard metal plate, 

and then the handsheet was dried using the unrestrained drying method. The perimeter of 

the square on the dried handsheet was measured and the shrinkage was calculated 

according to Eq. 5. 

𝑆ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒 (%)  =
𝑃w − 𝑃d

𝑃w
 ×  100%             (5) 

where Pw is the wet perimeter (mm) and Pd is the dry perimeter (mm) of the square made 

by the four holes. 
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RESULTS AND DISCUSSION 
 

Effect of the NaOH Concentration on the Properties of the Pulp Fibers 
Fiber analysis 

The effects of the alkali treatment on the fiber properties are shown in Table 1. The 

fiber length decreased with an increase in the NaOH concentration, while the fiber width 

did not undergo major changes (Table 1). The fiber shortening was most likely related to 

carbohydrate peeling reactions, i.e., shortening of the cellulose molecules because of 

hydrolysis under alkaline conditions. The peeling reactions probably cut the fibers and 

peeled off fragments from fiber surface lamellas, generating smaller particles, which are 

known as fines. The observed increase in the fines content in the pulp suspension 

corroborated this hypothesis. The correlations of the observed decrease in the relative fiber 

length (calculated with Eq. 6) and the corresponding fines increase (calculated with Eq. 7) 

at different NaOH treatment conditions are plotted in Fig. 1. 

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑓𝑖𝑏𝑒𝑟 𝑙𝑒𝑛𝑔𝑡ℎ (mm) − 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑓𝑖𝑏𝑒𝑟 𝑙𝑒𝑛𝑔𝑡ℎ (mm)

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑓𝑖𝑏𝑒𝑟 𝑙𝑒𝑛𝑔𝑡ℎ (mm)
 ×  100%          (6) 

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑓𝑖𝑛𝑒𝑠 (%) − 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑓𝑖𝑛𝑒𝑠 (%)

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑓𝑖𝑛𝑒𝑠 (%)
 ×  100%            (7) 

Figure 1 shows a good correlation between the fiber length decrease and fines 

content increase during the NaOH treatment (R2 = 0.98). 

 

Table 1. Fiber Properties of the Treated Pulps at Different NaOH Concentrations 

NaOH 
(%) 

Fiber 
Length 
(mm) 

Fiber 
Width 
(μm) 

Shape 
Factor 

(%) 

Fibril 
Area 
(%) 

Fibril 
Perimeter 

(%) 

Fines  
(%) 

Mean 
Kink 
Index 

Yield 
(%) 

0 2.038 30.1 86.1 3.2 11.5 22.9 1.33 100 

3 1.988 30.4 84.5 3.3 12.2 25.1 1.19 98.3 

6 1.898 31 81.2 2.6 11 28.9 2.14 93.7 

9 1.746 30.8 80.7 1.5 6.8 32.1 2.55 90.4 

12 1.654 31.2 79.7 1.6 7.5 36.6 2.74 87.5 

 

 

 
 
Fig. 1. Correlation of the fiber length decrease and fines content increase during the NaOH 
treatment 
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The fiber shape factor indicates the straightness of a fiber (Page et al. 1985; Rusu 

et al. 2011; Zeng et al. 2012). It usually ranges from 80% to 90%, and higher values 

indicate straighter fibers. The data listed in Table 1 indicated that the fibers became curlier 

with an increase in the NaOH concentration. Similar trends were observed with an 

increasing fibril area and perimeter. Interestingly, fiber width did not change significantly 

during alkaline treatment. Choi et al. (2016) reported that kraft pulp fiber width increased 

with the increase of NaOH concentration. However, the fiber width is not a direct measure 

of fiber wall swelling but it is affected also by other factors. The possible change from flat, 

ribbon-like fibers to round, tube-like fibers may even reduce the projected fiber width.  It 

is probable that different fiber source, fiber collapseness, and beating process are 

responsible for the observed different results. 

The WRV is an empirical indicator of the capacity of a wet fiber pad to hold water. 

Figure 2a shows that the WRV increased with an increase in the NaOH concentration, 

which was most likely because of the swelling effect NaOH has on fibers. This effect 

probably widened the small internal pores of the fibers and fibrils. The handsheet shrinkage 

also increased with an increase in the NaOH concentration within the low concentration 

range (< 5%) and then reached a plateau (Fig. 2b). Figure 3 shows that the relative 

shrinkage increase was not linearly correlated with the relative increase in the WRV.  

 

 
 

Fig. 2. Correlation of the WRV (a) and shrinkage (b) with the NaOH concentration 
 

 
 

Fig. 3. Relative shrinkage increase vs. WRV increase 
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microfibrillated cellulose was added. The dissolution of carbohydrates during alkaline 

treatment (yield loss) might result in more porous structure of fiber, which contributes to 

the increase of WRV. However, the sheet shrinkage is also dependent on the inter-fiber 

adhesion before and during shrinkage, which probably was affected negatively by removal 

of amorphous carbohydrates.   

 

Crystallinity 

The obtained XRD patterns of the fiber samples and the corresponding calculated 

crystallinity are shown in Fig. 4. The narrow peak between 22° and 23° in the diffractogram 

represented the high crystallinity region, where the linear cellulose molecules were linked 

by hydrogen bonds and thus formed a crystalline structure (Gupta et al. 2013). It was 

reported in the literature that individual fibrillar units consisting of long chain ordered 

crystalline regions could be interrupted by disordered amorphous regions in the cellulose, 

which shows as a diffuse peak between 18° and 19° on diffractograms (Khalifa et al. 1991; 

Davidson et al. 2004; Alemdar and Sain 2008; Gupta et al. 2013). When the NaOH 

concentration was increased from 3% to 9%, the basic cellulose structure was not changed, 

while the cellulose structure changed remarkably with the 12% NaOH treatment (indicated 

by red circles in Fig. 4a). This change likely occurred because cellulose I was transformed 

to cellulose II at higher NaOH concentrations. 

 

 
 

Fig. 4. Effect of the NaOH concentration on the diffraction pattern (a) and crystallinity index of the 
fibers (b); red circles indicate major changes to the cellulose structure 
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alkaline treatment (Raymond et al. 1995; Oh et al. 2005; Ass et al. 2006; Le Moigne and 

Navard 2010; Gupta et al. 2013; Keck and Fulland 2016). 

 

Degree of polymerization 

Though the DP of cellulose can be readily measured by viscometry, this fast and 

facile method has some limitations because of the possible chemical degradation of 

cellulose in the CED-containing solvent. Moreover, the bleached chemical softwood pulp 

usually contains small amounts of hemicellulose, which lowers the effective DP value. For 

the purpose of comparison, these measurements were conducted despite this limitation. 

Figure 5a shows that the DP of the cellulose increased with an increase in the NaOH 

concentration. This increase likely occurred because the lower molecular weight in the 

amorphous fractions of the cellulose and hemicellulose were more readily 

hydrolyzed/degraded in the NaOH solutions; thus, higher molecular weight fractions were 

left in the solid fraction. Figure 5b compares the dry and wet zero-span tensile strengths of 

the treated fibers at different NaOH concentrations. This comparison showed that the zero-

span tensile strength decreased with an increasing NaOH concentration. 

 

   
 
Fig. 5. DP of the cellulose (a) and fiber strength (b) vs. the NaOH concentration; red arrows 
indicate that the differences in the dry and wet zero-span decreased with an increase in the 
NaOH concentration 
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condition. This was probably because of the removal of hemicellulose and fibrils and the 

transformation of the cellulose during the NaOH treatment. However, the same 

phenomenon also likely occurred within the fiber wall and resulted in a reduced interfiber 

bonding of fibrils and lamellas, which led to a reduction in the fiber strength. 

 

Fiber dissolution 

The treated pulp yield decreased with an increasing NaOH concentration (Table 1). 

This weight loss indicated fiber dissolution. The literature on this subject states that some 

fraction of cellulose could undergo dissolution in 8% NaOH-water solutions (Le Moigne 

and Navard 2010). The results of the present study showed that the molar mass (or DP of 

the cellulose) increased with an increase in the NaOH loading (Fig. 5a), while the pulp 

yield decreased (Table 1). These results suggested that both the cellulose macrostructure 

(amorphous and crystalline regions) and NaOH concentration played an important role in 

cellulose dissolution. 

Several researchers have reported that the swelling of cellulose fibers in NaOH and 

water media was not homogeneous along the fiber length, e.g., a well-known ballooning 

phenomenon took place during the NaOH treatment (Fleming and Thaysen 1921; Hock 

1950; Le Moigne et al. 2008; Budtova and Navard 2016). It is accepted that the cellulose 

in the secondary wall tends to be the most prone to swelling and dissolution. This causes 

the primary wall to break in some localized places, specifically where the ballooning 

phenomenon occurs. The primary wall might experience cuts and then roll in two opposite 

directions to form “collars,” as has been shown by several studies (Le Moigne et al. 2008; 

Budtova and Navard 2016). After the 12% NaOH treatment, the bleached softwood fibers 

showed some instances of localized initial ballooning phenomena (microscope image not 

shown), which suggested that the cellulose in the primary wall and NaOH concentration 

were the main factors that influenced the fiber swelling. Mozdyniewicz et al. (2013) 

reported that secondary peeling reactions played an important role in the cellulose yield 

loss (Mozdyniewicz et al. 2013). 

 

Effect of the NaOH Concentration on the Handsheet Properties 
Strength properties 

Restrained and unrestrained dried handsheets were conditioned in a standard 

climate room for more than 24 h, and then they were analyzed for correlations between the 

NaOH concentration and resulting paper properties. Figure 6a shows that the handsheet 

densities decreased with an increase in the NaOH concentration for both the restrained and 

unrestrained dried handsheets. This was presumably because of two reasons: (1) the prior 

NaOH treatment increased the kink index and reduced fiber flexibility thus making the 

handsheet bulkier (cf. Steadman and Luner 1985); and (2) the removal of amorphous 

material made the fiber surfaces less hydrophilic and/or reduced the surface area, which 

affected the surface tension of the wet sheets and made the handsheets bulkier. Figure 6b 

shows that the tensile strength decreased remarkably for both the restrained and 

unrestrained dried handsheets when the NaOH concentration exceeded 3%. This was 

apparently because of the decrease in the fiber length, increased curliness, decreased 

number of interfiber bonds, and probably also because of weaker bonds and fibers. The 

restrained dried handsheets featured a higher tensile strength than the unrestrained dried 

handsheets because the fiber walls and segments had a more uniform alignment during the 

restrained drying process and could bear loads more uniformly. 
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Fig. 6. Handsheet density (a) and tensile index (b) vs. NaOH concentration for the different 
treatments 
 

Figure 7 demonstrates that the drying shrinkage played an important role in the 

handsheet properties. Figure 7a shows that the tensile stiffness index of both the restrained 

and unrestrained dried handsheets decreased with an increase in the NaOH concentration. 

The tensile stiffness index of the restrained dried handsheets was nearly three times that of 

the corresponding unrestrained dried handsheets. Figure 7b shows that the strain at break 

of both the restrained and unrestrained dried handsheets first increased slightly at the 3% 

NaOH concentration and then decreased with a further increase in the NaOH concentration 

(> 6%). It seemed that there might have been an optimum strain at break value below 6% 

NaOH. The unrestrained dried handsheets featured three times higher strain at break values 

than the corresponding restrained dried handsheets. 

 

 
 

Fig. 7. Tensile stiffness index (a) and strain at break (b) of the handsheets vs. NaOH 
concentration for the different treatments 

 

The information provided in Figs. 7a and 7b shows the opposite effects of the 

drying shrinkage on the tensile stiffness index and strain at break. This observation was 

further studied by plotting the inverse value of the strain at break (1/strain at break) vs. the 

tensile stiffness index for both the restrained and unrestrained drying methods (Fig. 8a). 

When the tensile stiffness increased, the inverse strain at break decreased for both drying 

methods. Thus, these effects, though opposite, did not quite compensate for each other.  

Figure 8b shows the comparison of the product of these two important properties 

(tensile stiffness index × strain at break) for the samples obtained by restrained drying vs. 
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a similar product for the sample obtained by unrestrained drying, which had an excellent 

linear correlation (R2 = 0.996). 

To understand this correlation, it should be remembered, analogous to Hooke’s law, 

that this product yields a potential strength value that could be realized if the material 

behaved in a linear elastic manner. This potential value is roughly the same for both drying 

modes. The tensile stiffness also measures the amount of cellulosic material bearing the 

load in the beginning of the tensile test. If the product of the tensile stiffness and strain at 

break decrease in the same way in both the restrained and unrestrained sheets, then a high 

amount of load-bearing material in the beginning of the test resulted in an earlier break of 

the sample and vice versa. The NaOH treatment resulted in a linear relationship, which 

suggested that the monotonous change in the fiber and network properties (like reduced 

fiber shape factor and interfiber bonding) resulted in a similar change in the tensile stiffness 

and strain at break of the product. This may also have indicated that the product was a 

characteristic material property dependent on the raw material and network structure of the 

fiber. 

 

 
 

Fig. 8. (a) Inverse strain at break vs. tensile stiffness index; (b) restrained drying vs. unrestrained 
drying 

 

 

CONCLUSIONS 
 

1. In addition to fiber swelling, material dissolution occurred during the alkaline 

treatment, which led to yield loss, a decreased fiber length, and decreased cellulose 

crystallinity. 

2. With relatively low NaOH concentrations (≤ 9%), the cellulose structure did not change 

remarkably, even though the crystallinity decreased. When treated with concentrated 

NaOH (12%), the crystallinity index decreased, which was likely because of a partial 

conversion of cellulose I to cellulose II. 

3. The increase in the viscosity/DP suggested that a lower molecular weight fraction in 

the fiber (perhaps both the hemicellulose and part of the amorphous cellulose) tended 

to dissolve more readily than the larger molecular weight fractions. 

4. The observed decrease in the handsheet density (and increase in the fiber kink index) 

suggested that NaOH could be a potential swelling agent for manufacturing special 
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bulky paper products. Though the strength properties and extensibility of the 

handsheets decreased at NaOH concentrations greater than 6%, the treatment with 3% 

NaOH resulted in increased extensibility. 

5. The values of the tensile stiffness and strain at break showed mutual reciprocity. The 

product of these two values, a type of potential elastic tensile strength, developed in the 

same way for both the unrestrained and restrained dried sheets. 
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