
This document is downloaded from the
VTT’s Research Information Portal
https://cris.vtt.fi

VTT
http://www.vtt.fi
P.O. box 1000FI-02044 VTT
Finland

By using VTT’s Research Information Portal you are bound by the
following Terms & Conditions.

I have read and I understand the following statement:

This document is protected by copyright and other intellectual
property rights, and duplication or sale of all or part of any of this
document is not permitted, except duplication for research use or
educational purposes in electronic or print form. You must obtain
permission for any other use. Electronic or print copies may not be
offered for sale.

VTT Technical Research Centre of Finland

Probabilistic modelling of common cause failures in digital I&C systems -
Literature review
Tyrväinen, Tero

Published: 23/09/2021

Document Version
Publisher's final version

License
Unspecified

Link to publication

Please cite the original version:
Tyrväinen, T. (2021). Probabilistic modelling of common cause failures in digital I&C systems - Literature review.
VTT Technical Research Centre of Finland. VTT Research Report No. VTT-R-00728-21

Download date: 09. Nov. 2021

https://cris.vtt.fi/en/publications/f8087cb4-f131-4ff2-a524-b61b88e10146


 

 
 

 

 

 

 

 RESEARCH REPORT  VTT-R-00728-21 

 

 

Probabilistic modelling of 
common cause failures in digital 
I&C systems - Literature review 
Authors: Tero Tyrväinen 

Confidentiality: VTT Public 

 
 
 
 



 

 

RESEARCH REPORT VTT-R-00728-21 

1 (15) 

 
 

 

 
Report’s title 

Probabilistic modelling of common cause failures in digital I&C systems - Literature review 
Customer, contact person, address Order reference 

VYR 

 

SAFIR 3/2021 

Project name Project number/Short name 

New developments and applications of PRA 128648/NAPRA 
Author(s) Pages 

Tero Tyrväinen 14/1 
Keywords Report identification code 

Common cause failure, digital I&C, probabilistic risk 

assessment, software failure 

VTT-R-00728-21 

Summary 

This report presents a state of the art review on probabilistic risk assessment of CCFs in 

digital instrumentation and control (I&C) systems of nuclear power plants. It covers a 

literature study and a questionnaire to Finnish nuclear power companies. Both software and 

hardware CCFs are in the scope of the report. There is relatively little literature addressing 

these CCFs. Concerning both software and hardware, lack of data is the main challenge, and 

there is need for data collection and method development activities.  

 

Software CCF probabilities are usually based on either expert judgments or operating 

experience. Software reliability analysis methods in scientific literature do not usually address 

CCFs specifically. Only one method that focuses on software CCFs of a digital reactor 

protection system was found. 

 

It is generally agreed that CCFs between identical redundant software modules can be 

modelled assuming full dependency. However, when there is some diversity present, the 

modelling is challenging. Some guidance exists for such cases nevertheless. 

 

Hardware CCFs can be analysed according to normal CCF analysis principles. However, lack 

of data on digital I&C components often makes it necessary to use generic parameters or 

engineering judgment -based methods, which can lead to quite conservative results. Large 

and asymmetric CCF groups are one particularly challenging area related to digital I&C 

hardware. 

Confidentiality VTT Public 

 
Written by 

 
Tero Tyrväinen, 
Research Scientist 

Reviewed by 

 
Kim Björkman, 
Research Scientist 

 

VTT’s contact address 

VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, FINLAND  

Distribution (customer and VTT) 

 SAFIR2022 RG2 members, VTT archive 

The use of the name of VTT Technical Research Centre of Finland Ltd in advertising or publishing of a part of this 

report is only permissible with written authorisation from VTT Technical Research Centre of Finland Ltd. 

 



 

 

RESEARCH REPORT VTT-R-00728-21 

2 (15) 

 
 

 

AT 

 

Approval 
 
 
Date: 
 

23.9.2021 

  
 
 
Signature: 

 
 
 
 
 

  
Name: Nadezhda Gotcheva 

 
  
Title:  Research Team Leader 

 
 

URES





 

 

RESEARCH REPORT VTT-R-00728-21 

3 (15) 

 
 

 

Contents 

1. Introduction ....................................................................................................................... 4 

2. Software common cause failures ...................................................................................... 4 

2.1 Software failure probabilities in literature .................................................................. 5 
2.2 Methods .................................................................................................................... 5 

2.2.1 Nordic approach ........................................................................................... 5 

2.2.2 Other methods .............................................................................................. 7 
2.3 Software common cause failures in presence of diversity ......................................... 8 

3. Hardware common cause failures ..................................................................................... 9 

4. Questionnaire ................................................................................................................. 10 

4.1 Software common cause failures ............................................................................ 10 
4.2 Hardware common cause failures ........................................................................... 10 

5. Conclusions .................................................................................................................... 11 

References ........................................................................................................................... 12 

Appendix: Questionnaire to Finnish power companies ......................................................... 14 

 
 
  



 

 

RESEARCH REPORT VTT-R-00728-21 

4 (15) 

 
 

 

1. Introduction 

Modelling of digital instrumentation and control (I&C) systems is one of the most challenging 
areas in probabilistic risk assessment (PRA) of nuclear power plants. The reasons for this are 
the lack of sufficient failure data on digital I&C systems, the nature of software failures and the 
complexity of the I&C systems. Software failures can be caused, for example, by design errors, 
requirements specification errors or programming errors, and therefore, their probabilities are 
difficult to estimate. 

The majority of the risk related to digital reactor protection systems comes from common cause 
failures (CCFs), because those systems are designed to tolerate a single failure. Common 
cause failures of both hardware and software components are potentially important. The 
analysis of hardware and software CCFs is quite different because of the different nature of 
those failures. Software CCFs are particularly challenging to analyse, but there may not also 
be sufficient data to estimate CCF probabilities of large groups of hardware components. 

As software failures are systematic in nature, it is very likely that redundant and identical 
software modules used for the same purpose fail at the same time, if one module fails. 
Typically, the beta-factor model with the beta parameter set to 1 is applied in that case. Cases 
where software modules are not identical or are used to process different signals are more 
challenging, because it may be too conservative to use beta-factor of 1 and it is very difficult 
to estimate the correlation between failures. 

There is also not much data on hardware CCFs in digital I&C systems. Common cause 
component groups (CCCGs) may grow large if identical components are used for several 
different purposes. Lack of data is a problem particularly for large groups, and also large 
CCCGs can be difficult to handle in PRA models. 

Literature related to software CCFs is surveyed in Section 2 and related to hardware CCFs in 
Section 3. In addition to the literature survey, a questionnaire has been prepared for Finnish 
nuclear power companies. Its results are summarised in Section 4. Section 5 concludes the 
report. 

2. Software common cause failures 

Software failures can be caused by faults in requirements specification, design or software 
implementation. Therefore, it is very likely that a failure occurs in identical redundant software 
modules at the same time, if it occurs in one. Because of this, software failures that are 
modelled in PRA are mostly CCFs. 

In addition to a fault, a software failure requires also a trigger. A fault can lead to a failure only 
when such a trigger occurs that the fault impacts on the functioning of the software and the 
software functions incorrectly. Therefore, a CCF between software modules can occur only if 
there is a common trigger. The common trigger can be common signal trajectory (e.g. rare 
plant condition), human action, external event or temporal effect (IAEA 2009). To reduce CCFs, 
one has to therefore either reduce the number of common faults or probability of common 
trigger. Common faults can be reduces by diversity in the development of different 
(sub)systems, whereas common triggers can be reduced by diversity in the signal trajectories 
e.g. by diversity in inputs.  

Software CCFs are discussed in general e.g. in (IAEA 2009), and methods have been 
developed to identify software CCFs (Bao et al. 2020). In this report, the focus is on PRA 
modelling of software CCFs. 
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2.1 Software failure probabilities in literature 

Bäckström et al. (2015) prepared a literature review on software reliability analysis, which still 
covers most of the available references. Software failures have often been modelled in a very 
simple manner in PRA or not modelled at all, because there have not been sufficient data and 
methods to estimate failure probabilities. A presumably conservative probability, e.g. 1E-4, is 
often used without any detailed analysis. The view of Regulator Task Force on Safety Critical 
Software (2018) is that reliability claims smaller than 1E-4 should be treated with caution. 

Operating experience is, of course, preferred in failure probability estimation, if sufficient data 
is available. In some studies, software failure probabilities have been estimated based on 
operating experience: 

- According to (Bäckström et al. 2015), software CCF probability of 1E-6 was estimated 
for safety automation systems in Ringhals 1 nuclear power plant. 

- Enzinna et al. (2009) estimated probability of 1E-7 for operating system software CCF, 
and probability 1E-5 for application software CCF based on operating experience. 

- AREVA (2013) estimated operating system CCF failure probability of 1E-7 based on 
TXS operating experience from 44 units. A conservative 95th percentile value was used 
assuming that a failure causes the system to be unavailable for one hour. Beta-factor 
of 1 was used as the CCF parameter. 

- Bickel (2008) estimated the failure rate of latent software design error as 1.18E-6/h, 
based on failure data from the first generation of digital reactor protection systems. The 
failure rate was however not estimated directly for PRA use. Other types of CCFs in 
digital reactor protection systems were also analysed based on observed failure 
events. 

Sometimes, software failures are screened out from PRA, because software failure 
probabilities are considered negligible or there is no suitable method available to estimate the 
probabilities (Bäckström et al. 2015). Even if failure probabilities are not defined, sensitivity 
analyses on the failure probabilities can be performed, such as in Ringhals 2 PRA study 
(Bäckström et al. 2015). 

Expert judgements are also sometimes used. Varde et al. (2003) assumed that the probabilities 
of software failures are 10% of the hardware failure probabilities in a PRA study of advanced 
pressurized water reactor (APR) 1400. They applied beta-factor of 0.03 to both hardware and 
software. 

2.2 Methods 

2.2.1 Nordic approach 

A Nordic software reliability analysis method (Bäckström et al. 2015; Authen et al. 2016) 
divides software used in a digital reactor protection system into four failure cases (with some 
subcases) to be modelled in PRA. The failure cases are presented in Table 1. Possible fault 
locations are system software (SyS), functional requirements specification of an acquisition 
and processing unit (APU-FRS), application software of an acquisition and processing unit 
(APU-AS), functional requirements specification of voting unit (VU-FRS), application software 
of voting unit (VU-AS), and data communication software (DCS). All failure cases represent 
CCFs, except 4c. 
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Table 1: Generic software failure modes and effects (Authen et al. 2016). 

Effects 

Software fault location 

SyS APU-FRS APU-AS VU-FRS VU-AS DCS 

Loss of complete system Case 1     Case 1 

Loss of one subsystem Case 2a Case 2a  Case 2a Case 2a Case 2b 

Loss of one group of 
redundant APUs in one 
subsystem 

 Case 3a Case 3a    

Loss of one group of 
redundant voters in one 
subsystem 

   Case 3b Case 3b  

Loss of one function in 
all divisions of one 
subsystem 

 Case 4a Case 4a Case 4b Case 4b  

Loss of one function in 
one division of one 
subsystem 

 Case 4c Case 4c    

 

The quantification is divided between fatal system level failures (cases 1 and 2) and non-fatal 
application software failure (cases 3 and 4). Probabilities of fatal failures can be estimated 
based on operating experience as presented in (Authen et al. 2016). Probabilities of non-fatal 
application software failures can be estimated based on software complexity and level of 
verification and validation (V&V). Basic application software failure probability has tentatively 
been assumed as 1E-6, and this basic probability is scaled by a shaping factor determined in 
Table 2. The numbers have been selected by expert judgment, but they are in line with 
software failure probabilities used in some PRA models. Software complexity analysis can be 
performed using, e.g., the SICA method (Tyrväinen et al. 2016). The V&V levels correspond 
to safety integrity levels. The failure probability estimate can be updated based on operating 
data in a Bayesian manner, if suitable data is available. 

Table 2: Shaping factor for application software failure probability (Authen et al. 2016). 

  Complexity 

  High Medium Low 

V&V 

0 10000 1000 100 

1 1000 100 10 

2 100 10 1 

3 10 1 0.1 

4 1 0.1 0.01 
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2.2.2 Other methods 

A number of software reliability analysis methods can be found from literature, though real 
PRA studies use mostly simpler expert judgment and operating experience methods 
(Bäckström et al. 2015). Chu et al. (2010) reviewed many software reliability methods found 
from literature considering their applicability to nuclear power plant PRA. The methods were 
divided into four categories: software reliability growth methods, Bayesian belief networks 
(BBNs), test-based methods and other methods. Only a few of the methods were developed 
for the reliability analysis of software systems in nuclear power plants, and none of the methods 
was designed to quantify different types of software failures, like the Nordic method presented 
in the previous section. For the review, desirable characteristics of a quantification method 
were formulated. One of the characteristics is the capability of the method to estimate CCF 
parameters. However, there is no mention of such capability on any of the methods. Practically 
all the methods actually consider the software system as one entity instead of dividing it into 
modules between which there could be a CCF. 

Some newer references from the past decade include: 

- Chu et al. (2017) have developed a statistical testing approach to estimate the failure 
on demand probability of software. Test cases are created based on PRA scenarios so 
that they represent realistic demand conditions. The scenarios are simulated using a 
thermal hydraulic model to generate input signals for the software. 

- Chu et al. (2018) have developed a BBN model to estimate software reliability for 
nuclear applications. The BBN model covers the phases of software development 
lifecycle and it estimates the number of defects left after each phase, e.g. based on the 
quality of the development process. The number of defects left is assumed to correlate 
with the failure probability. The model was developed with help of expert elicitation. 

- Based on the two previous methods, Cai et al. (2020) have developed a software 
reliability analysis method for software in a reactor protection system of a nuclear power 
plant. A BBN model that covers different software development phases is used to 
calculate the failure on demand probability of the software. The failure probability is 
used to calculate the number of tests required to meet the reliability target. Finally, 
scenarios from PRA model are used to generate the test cases for the software with 
help of a thermal hydraulic model. 

- Smidts et al. (2011) have developed a method called Reliability Prediction System 
(RePS) to estimate software reliability based on selected metrics, which include defect 
density, test coverage, requirements traceability, function point analysis, bugs per line 
of code, cyclomatic complexity, cause and effect graphing, requirements specification 
change requests, fault-days number, capability and maturity model, completeness, and 
coverage factor. 

- Guo et al. (2019) have developed a reliability growth model for safety-critical software 
in a reactor protection system. The model predicts the software reliability based on 
faults detected during software testing taking into account the severity of the faults. It 
is not presented how to apply the model in PRA context. 

- Shin et al. (2017) present another test-based software reliability analysis method for 
software in a digital reactor protection system. The test cases are created based on 
investigation of probable internal states of the software. 

- Yang and Sydnor (2012) developed a flow network model of software. Software failure 
probability was modelled using binomial distribution. Software failure rates were 
estimated by testing. 
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The methods do not specifically address CCFs. 

2.3 Software common cause failures in presence of diversity 

There seems to be a consensus that CCFs between identical redundant software modules can 
be modelled using beta-factor of 1. However, CCFs between non-identical software modules 
and CCFs between software modules in different (sub)systems are more difficult to analyse, 
because beta-factor of 1 is usually too conservative and it is difficult to estimate a lower value. 
Causes for such CCFs can be common functional requirements specification and use of same 
elementary functions (Authen et al. 2015). 

There are several types of diversity that can decrease the dependencies between different 
software modules, e.g.: independent development teams, signal diversity, different 
development approaches, diversity of development tools, use of different programming 
languages and different algorithms. It can however be difficult to achieve and justify complete 
statistical independence, even if several diversity measures are used. 

Functional diversity is one way that has been recognised to protect against software CCFs 
(IAEA 2009). It typically means that the same function can be actuated based on different plant 
parameters processed by different subsystems. Functional diversity is often assumed to 
eliminate application software CCFs between functionally diversified subsystems. For 
example, AREVA (2013) reasoned such assumption by different functional specifications, 
different sensed parameters and different signal trajectories. On the other hand, operating 
system CCFs between functionally diverse subsystems are usually modelled, e.g. in (AREVA 
2013). The Nordic approach (Authen et al. 2016) described in Section 2.2.1 also assumes 
potential system software CCF between subsystems, but not application software CCF 
between subsystems. 

EPRI (2012) reasons that inter-system software CCFs may need to be modelled with a beta-
factor depending on the similarity and differences. Application software CCF between systems 
may not need to be modelled when there is functional and signal diversity. When similar 
platforms are used to implement similar functions activated at different plant conditions, a beta-
factor of 0.001-0.1 is recommended. If the functions are very different, it is not necessary to 
model CCF, even if the platforms are similar. On the other hand, EPRI (2012) recommends a 
beta-factor value near 1 for intra-system CCFs even if there is diversity between channels. 
Failures originate most likely from functional specification, and if it is the same for different 
channels, diversity in equipment and software does not necessarily protect from CCFs. 

In the PRA of APR1400 design, Korea Electric Power Corporation and Korea Hydro & Nuclear 
Power Co., Ltd (2018) modelled both operating system and application software CCFs 
between systems when software platforms were similar. No CCFs between different software 
platforms were modelled. Application software CCFs were modelled separately for different 
component types, such as bistables, local coincidence logic modules, group controllers and 
loop controllers. CCFs between those were not modelled. 

Authen et al. (2016) presented an approach to estimate beta-factor for CCFs between similar 
but non-identical application software modules. The beta-factor depends on the number of 
identical inputs and whether the software modules belong to the same complexity category. 
The approach has however not been validated. 

Littlewood and Rushby (2011) have studied a special case of software CCF between a 
complex system and a simple system that are used to actuate the same function. It is argued 
that a dependency should not be ruled out, because a demand impacts both systems, and 
some demands are more difficult than others. Both systems have a larger failure probability 
when a difficult demand comes, and therefore, the failure probabilities are dependent. A 
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conservative mathematical model for failure probability estimation was developed utilising an 
assumption that the simple system is possibly perfect. 

3. Hardware common cause failures 

Digital I&C hardware modelling can be performed in a more traditional manner than software 
modelling, because hardware failures are random events, like failures of any mechanical 
components. Normal CCF analysis principles apply to digital I&C hardware (EPRI 2012). 

More complex models than beta-factor, such as alpha-factor model or multiple Greek letter 
model (MGLM), can be used for hardware CCFs depending on data. The parameters should 
preferably be estimated based on operating data. If there is no data, use of generic parameters 
has been suggested in (EPRI 2012; Authen et al. 2015). Jockenhövel-Barttfeld et al. (2018) 
stated that generic parameters are conservative. Therefore, they are usable, but may lead to 
overly conservative results. Engineering judgments are also used (Authen et al. 2015). 

Engineering judgment -based method from IEC 61508-6 (IEC 2010) has been applied e.g. for 
Ringhals nuclear power plant PRA studies according to (Authen et al. 2015). The analysis 
covers 37 questions that determine the beta-factor for the analysed components (Sun 2013). 
The questions concern e.g. separation, diversity, maturity, complexity, design reviews, 
maintenance procedures, diagnostic tests, competence of developers, and operating 
environment. For a group of two components, the beta-factor can range from 0.005 to 0.1 
depending on the answers and the type of the components. The method gives smaller beta-
factors for logic solvers than for other components. The beta-factors can also be adjusted for 
larger groups with specific multipliers. 

Jockenhövel-Barttfeld et al. (2019) estimated alpha-factor parameters for hardware modules 
based on TELEPERM XS operating experience using impact vectors. There had been no CCF 
events. Therefore, it was important to take into account also potential CCFs, where only one 
division failed, but other divisions shared the same cause and could have been affected by the 
same coupling mechanism. The estimated CCF parameters were compared to generic 
parameters from (U.S. NRC 2016), and the estimated values were significantly smaller 
indicating that the generic parameters are very conservative. On the other hand, the estimated 
parameters were in line with values estimated using the IEC 61508-6 method (IEC 2010). 
Priority control modules had significantly smaller CCF parameters than input/output modules. 

Recent DIGMAP project (Porthin et al. 2021) raised one problematic issue related to hardware 
CCFs, which is that a large number of identical hardware components is sometimes used in 
digital I&C systems of nuclear power plants. For example, in the fictive reference case of 
DIGMAP, there are in total 16 identical hardware components in analog input modules in two 
subsystems. Large groups like these are not only a challenge for parameter estimation, but 
also PRA modelling. Traditional alpha-factor and MGLM models are not well suited for large 
groups, because the number of CCF combinations is too large to be included in PRA explicitly. 
On the other hand, the beta-factor model might be too simplistic and conservative. The group 
in the DIGMAP case is not symmetric, i.e. all CCF combinations of the same size do not have 
the same impact, which increases the need for a finer model. 

One question mentioned in (Authen et al. 2015) is whether same CCF parameters should be 
applied to undetected and detected failures. Jockenhövel-Barttfeld et al. (2018) comment that 
CCFs of detected failures are usually not modelled, because a detected failure is repaired 
relatively fast, and therefore, the time window for multiple failures to occur is short. Undetected 
failures, on the other hand, accumulate over a longer time period. IEC 61508-6 (IEC 2010) 
separates the beta-factor estimation of detected and undetected failures. Detected failures 
have smaller beta-factors in some cases depending on the diagnostic coverage and testing 
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interval, but the order of the magnitude is the same. Liang et al. (2020) also used smaller CCF 
parameters for detected failures, though it is not explained where the values come. 

4. Questionnaire 

A questionnaire was prepared for the Finnish nuclear power companies on CCF modelling. 
The questions are presented in Appendix. Two organizations answered to the questionnaire. 
The results are summarised in the following, and the answers are treated anonymously. 

4.1 Software common cause failures 

In most of the nuclear power plant units, there are not many programmable systems, and 
software CCFs have very small impact on the core damage risk. In one unit, the reactor 
protection system is digital. For that unit, software is modelled as a global failure of all software 
in a platform, and also CCF between platforms. Software CCFs in the measurement system 
of the neutron flux and multifunctional relays of the power network have also been modelled in 
some units. 

Different probability estimation approaches have been applied at different units. The Nordic 
software reliability analysis method is applied in one unit (Bäckström et al. 2015), i.e. operating 
experience combined with conservative engineering judgments. Generic values, statistics from 
the supplier and conservative expert judgments have also been used. One I&C supplier is said 
to apply IEC 61508-6 (IEC 2010). 

Typically, CCFs are modelled between software in identical equipment. However, in some 
cases, CCFs between software from different suppliers have been modelled, because there 
might be similarities in the software at low level. 

CCFs between different systems have been modelled in some cases. For example, a CCF 
between two subsystems has been modelled as presented in (Bäckström et al. 2015) [beta-
factor of 0.01 is found in the reference]. 

Application software CCFs are assumed to be covered by hardware CCFs at least in one plant. 
Spurious signals have been evaluated in one unit, but not included in the PRA model due to 
small impact. 

More operating experience should be collected to improve the estimates. A global CCF 
between I&C platforms is particularly seen as an important item to study. It is also suggested 
that more research could be performed on root causes of software CCFs and means to prevent 
CCFs. General software CCF method development is also seen as beneficial. 

4.2 Hardware common cause failures 

MGLM, beta-factor model and primitive parameters (Johanson et al. 2003) are used for 
hardware common cause failures. Generic parameter values and values found from literature 
have been used for CCF parameters. The I&C supplier of one plant uses the IEC 61508-6 
method (IEC 2010) to estimate beta-factors. 

CCFs between identical components are always modelled. The components that are modelled 
include at least processors, input modules, output modules, communication modules and 
measurement sensors. 
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CCF groups include typically four components. An answer indicated that there are larger 
groups, but did not specify how large the groups are. 

There is difference in the CCF modelling between undetected and detected failures in some 
cases. As said in Section 3, IEC 61508-6 (IEC 2010) treats those in slightly different ways. In 
one unit, detected CCFs are not modelled. 

Lack of operating experience is a challenge in hardware CCF estimation, and there are 
limitations in the CCF methods. Selection of the level of modelling detail is also not a trivial 
task. It is time-consuming to perform failure modes and effects analysis. Root causes and 
prevention of CCFs could also be studied more. 

5. Conclusions 

This report has presented a state of the art review on PRA modelling of CCFs in digital I&C 
systems. Both software and hardware CCFs have been in the scope of the report. There is 
relatively little literature addressing these CCFs, whereas there is plenty of literature on 
software reliability analysis in general. 

There are some references on software CCF probabilities used in PRA studies. The estimates 
are usually based on either expert judgments or operating experience, but even the estimates 
based on operating experience seem quite uncertain. Many software reliability analysis 
methods can be found from literature, but they have mostly not been used in practise and do 
not specifically address CCFs, though software failures modelled in PRA are usually CCFs. 
The Nordic method (Bäckström et al. 2015; Authen et al. 2016) seems to be the only practical 
method that analyses software CCFs of a digital reactor protection system. 

It is generally agreed that CCFs between identical redundant software modules can be 
modelled using beta-factor of 1. However, when there is some diversity present, the modelling 
is challenging. There is lack of methods to estimate CCF parameters between non-identical 
software modules. EPRI (2012) recommends a beta-factor of 0.001-0.1, when similar platforms 
are used to implement similar functions activated at different plant conditions. Functional 
diversity is often assumed to prevent application software CCFs between subsystems. On the 
other hand, operating system CCFs between functionally diverse subsystems are usually 
modelled. 

Hardware CCFs can be analysed according to normal CCF analysis principles. However, lack 
of data on digital I&C components often makes it necessary to use generic parameters or 
engineering judgment -based methods, which can lead to quite conservative results. Large 
and asymmetric CCF groups are one particularly challenging area related to digital I&C 
hardware. 

Data related to both software and hardware CCFs are sparse. Even though hardware CCF 
analysis is more mature than software CCF analysis, there is need for data collection and 
method development activities in both areas. 
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Appendix: Questionnaire to Finnish power companies 

Software CCFs 

1. Which software CCFs do you include in PRA model? 

 
2. How do you estimate probabilities of software failures? 

 
3. In which cases do you assume complete dependence (beta-factor of 1) between 

software modules? 

 
4. Do you use beta-factor smaller than 1 for some software CCFs, or some other CCF 

model? For which software CCFs? Which models and parameters do you use? 

 
5. If you have screened out software CCFs, what are the reasons for that? 

 
6. Do you model CCFs between non-identical software modules? How and with what 

parameters? What is the reasoning for the modelling choices? 

 
7. Do you model CCFs between software modules in different systems or subsystems? 

How and with what parameters? What is the reasoning for the modelling choices? 

 
8. What could be improved in your software CCF modelling? 

 
9. What aspects of software CCFs should be studied more? Do you have any 

suggestions for research? 

 
Hardware CCFs 

10. Which models do you use to model hardware CCFs in digital I&C systems? 

 
11. Where do you get the parameter values for hardware CCFs in digital I&C systems? 

Can you provide details of the parameter estimation? 

 
12. Are there cases where you do not model CCFs between identical hardware 

components in digital I&C systems, e.g. components in different systems? What is 

the reasoning for not modelling such CCFs? 
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13. Which are the hardware component types in digital I&C systems for which CCFs are 

modelled? 

 
14. How large are the CCF groups for hardware components in digital I&C systems? 

 
15. Is there difference between CCF modelling of detected and undetected failures of 

hardware components in digital I&C systems? What are the differences if there are 

any? 

 
16. What are the main modelling challenges related to hardware CCFs in digital I&C 

systems? Do you have any suggestions for research? 
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