
This document is downloaded from the
VTT’s Research Information Portal
https://cris.vtt.fi

VTT
http://www.vtt.fi
P.O. box 1000FI-02044 VTT
Finland

By using VTT’s Research Information Portal you are bound by the
following Terms & Conditions.

I have read and I understand the following statement:

This document is protected by copyright and other intellectual
property rights, and duplication or sale of all or part of any of this
document is not permitted, except duplication for research use or
educational purposes in electronic or print form. You must obtain
permission for any other use. Electronic or print copies may not be
offered for sale.

VTT Technical Research Centre of Finland

Probabilistic modelling of common cause failures in digital I&C systems -
Literature review
Tyrväinen, Tero

Published: 23/09/2021

Document Version
Publisher's final version

License
Unspecified

Link to publication

Please cite the original version:
Tyrväinen, T. (2021). Probabilistic modelling of common cause failures in digital I&C systems - Literature review.
VTT Technical Research Centre of Finland. VTT Research Report No. VTT-R-00728-21

Download date: 09. Nov. 2021

https://cris.vtt.fi/en/publications/f8087cb4-f131-4ff2-a524-b61b88e10146

 RESEARCH REPORT VTT-R-00728-21

Probabilistic modelling of
common cause failures in digital
I&C systems - Literature review
Authors: Tero Tyrväinen

Confidentiality: VTT Public

RESEARCH REPORT VTT-R-00728-21

1 (15)

Report’s title

Probabilistic modelling of common cause failures in digital I&C systems - Literature review
Customer, contact person, address Order reference

VYR

SAFIR 3/2021

Project name Project number/Short name

New developments and applications of PRA 128648/NAPRA
Author(s) Pages

Tero Tyrväinen 14/1
Keywords Report identification code

Common cause failure, digital I&C, probabilistic risk

assessment, software failure

VTT-R-00728-21

Summary

This report presents a state of the art review on probabilistic risk assessment of CCFs in

digital instrumentation and control (I&C) systems of nuclear power plants. It covers a

literature study and a questionnaire to Finnish nuclear power companies. Both software and

hardware CCFs are in the scope of the report. There is relatively little literature addressing

these CCFs. Concerning both software and hardware, lack of data is the main challenge, and

there is need for data collection and method development activities.

Software CCF probabilities are usually based on either expert judgments or operating

experience. Software reliability analysis methods in scientific literature do not usually address

CCFs specifically. Only one method that focuses on software CCFs of a digital reactor

protection system was found.

It is generally agreed that CCFs between identical redundant software modules can be

modelled assuming full dependency. However, when there is some diversity present, the

modelling is challenging. Some guidance exists for such cases nevertheless.

Hardware CCFs can be analysed according to normal CCF analysis principles. However, lack

of data on digital I&C components often makes it necessary to use generic parameters or

engineering judgment -based methods, which can lead to quite conservative results. Large

and asymmetric CCF groups are one particularly challenging area related to digital I&C

hardware.

Confidentiality VTT Public

Written by

Tero Tyrväinen,
Research Scientist

Reviewed by

Kim Björkman,
Research Scientist

VTT’s contact address

VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, FINLAND

Distribution (customer and VTT)

 SAFIR2022 RG2 members, VTT archive

The use of the name of VTT Technical Research Centre of Finland Ltd in advertising or publishing of a part of this

report is only permissible with written authorisation from VTT Technical Research Centre of Finland Ltd.

RESEARCH REPORT VTT-R-00728-21

2 (15)

AT

Approval

Date:

23.9.2021

Signature:

Name: Nadezhda Gotcheva

Title: Research Team Leader

URES

RESEARCH REPORT VTT-R-00728-21

3 (15)

Contents

1. Introduction ... 4

2. Software common cause failures .. 4

2.1 Software failure probabilities in literature .. 5
2.2 Methods .. 5

2.2.1 Nordic approach ... 5

2.2.2 Other methods .. 7
2.3 Software common cause failures in presence of diversity ... 8

3. Hardware common cause failures ... 9

4. Questionnaire ... 10

4.1 Software common cause failures .. 10
4.2 Hardware common cause failures ... 10

5. Conclusions .. 11

References ... 12

Appendix: Questionnaire to Finnish power companies ... 14

RESEARCH REPORT VTT-R-00728-21

4 (15)

1. Introduction

Modelling of digital instrumentation and control (I&C) systems is one of the most challenging
areas in probabilistic risk assessment (PRA) of nuclear power plants. The reasons for this are
the lack of sufficient failure data on digital I&C systems, the nature of software failures and the
complexity of the I&C systems. Software failures can be caused, for example, by design errors,
requirements specification errors or programming errors, and therefore, their probabilities are
difficult to estimate.

The majority of the risk related to digital reactor protection systems comes from common cause
failures (CCFs), because those systems are designed to tolerate a single failure. Common
cause failures of both hardware and software components are potentially important. The
analysis of hardware and software CCFs is quite different because of the different nature of
those failures. Software CCFs are particularly challenging to analyse, but there may not also
be sufficient data to estimate CCF probabilities of large groups of hardware components.

As software failures are systematic in nature, it is very likely that redundant and identical
software modules used for the same purpose fail at the same time, if one module fails.
Typically, the beta-factor model with the beta parameter set to 1 is applied in that case. Cases
where software modules are not identical or are used to process different signals are more
challenging, because it may be too conservative to use beta-factor of 1 and it is very difficult
to estimate the correlation between failures.

There is also not much data on hardware CCFs in digital I&C systems. Common cause
component groups (CCCGs) may grow large if identical components are used for several
different purposes. Lack of data is a problem particularly for large groups, and also large
CCCGs can be difficult to handle in PRA models.

Literature related to software CCFs is surveyed in Section 2 and related to hardware CCFs in
Section 3. In addition to the literature survey, a questionnaire has been prepared for Finnish
nuclear power companies. Its results are summarised in Section 4. Section 5 concludes the
report.

2. Software common cause failures

Software failures can be caused by faults in requirements specification, design or software
implementation. Therefore, it is very likely that a failure occurs in identical redundant software
modules at the same time, if it occurs in one. Because of this, software failures that are
modelled in PRA are mostly CCFs.

In addition to a fault, a software failure requires also a trigger. A fault can lead to a failure only
when such a trigger occurs that the fault impacts on the functioning of the software and the
software functions incorrectly. Therefore, a CCF between software modules can occur only if
there is a common trigger. The common trigger can be common signal trajectory (e.g. rare
plant condition), human action, external event or temporal effect (IAEA 2009). To reduce CCFs,
one has to therefore either reduce the number of common faults or probability of common
trigger. Common faults can be reduces by diversity in the development of different
(sub)systems, whereas common triggers can be reduced by diversity in the signal trajectories
e.g. by diversity in inputs.

Software CCFs are discussed in general e.g. in (IAEA 2009), and methods have been
developed to identify software CCFs (Bao et al. 2020). In this report, the focus is on PRA
modelling of software CCFs.

RESEARCH REPORT VTT-R-00728-21

5 (15)

2.1 Software failure probabilities in literature

Bäckström et al. (2015) prepared a literature review on software reliability analysis, which still
covers most of the available references. Software failures have often been modelled in a very
simple manner in PRA or not modelled at all, because there have not been sufficient data and
methods to estimate failure probabilities. A presumably conservative probability, e.g. 1E-4, is
often used without any detailed analysis. The view of Regulator Task Force on Safety Critical
Software (2018) is that reliability claims smaller than 1E-4 should be treated with caution.

Operating experience is, of course, preferred in failure probability estimation, if sufficient data
is available. In some studies, software failure probabilities have been estimated based on
operating experience:

- According to (Bäckström et al. 2015), software CCF probability of 1E-6 was estimated
for safety automation systems in Ringhals 1 nuclear power plant.

- Enzinna et al. (2009) estimated probability of 1E-7 for operating system software CCF,
and probability 1E-5 for application software CCF based on operating experience.

- AREVA (2013) estimated operating system CCF failure probability of 1E-7 based on
TXS operating experience from 44 units. A conservative 95th percentile value was used
assuming that a failure causes the system to be unavailable for one hour. Beta-factor
of 1 was used as the CCF parameter.

- Bickel (2008) estimated the failure rate of latent software design error as 1.18E-6/h,
based on failure data from the first generation of digital reactor protection systems. The
failure rate was however not estimated directly for PRA use. Other types of CCFs in
digital reactor protection systems were also analysed based on observed failure
events.

Sometimes, software failures are screened out from PRA, because software failure
probabilities are considered negligible or there is no suitable method available to estimate the
probabilities (Bäckström et al. 2015). Even if failure probabilities are not defined, sensitivity
analyses on the failure probabilities can be performed, such as in Ringhals 2 PRA study
(Bäckström et al. 2015).

Expert judgements are also sometimes used. Varde et al. (2003) assumed that the probabilities
of software failures are 10% of the hardware failure probabilities in a PRA study of advanced
pressurized water reactor (APR) 1400. They applied beta-factor of 0.03 to both hardware and
software.

2.2 Methods

2.2.1 Nordic approach

A Nordic software reliability analysis method (Bäckström et al. 2015; Authen et al. 2016)
divides software used in a digital reactor protection system into four failure cases (with some
subcases) to be modelled in PRA. The failure cases are presented in Table 1. Possible fault
locations are system software (SyS), functional requirements specification of an acquisition
and processing unit (APU-FRS), application software of an acquisition and processing unit
(APU-AS), functional requirements specification of voting unit (VU-FRS), application software
of voting unit (VU-AS), and data communication software (DCS). All failure cases represent
CCFs, except 4c.

RESEARCH REPORT VTT-R-00728-21

6 (15)

Table 1: Generic software failure modes and effects (Authen et al. 2016).

Effects

Software fault location

SyS APU-FRS APU-AS VU-FRS VU-AS DCS

Loss of complete system Case 1 Case 1

Loss of one subsystem Case 2a Case 2a Case 2a Case 2a Case 2b

Loss of one group of
redundant APUs in one
subsystem

 Case 3a Case 3a

Loss of one group of
redundant voters in one
subsystem

 Case 3b Case 3b

Loss of one function in
all divisions of one
subsystem

 Case 4a Case 4a Case 4b Case 4b

Loss of one function in
one division of one
subsystem

 Case 4c Case 4c

The quantification is divided between fatal system level failures (cases 1 and 2) and non-fatal
application software failure (cases 3 and 4). Probabilities of fatal failures can be estimated
based on operating experience as presented in (Authen et al. 2016). Probabilities of non-fatal
application software failures can be estimated based on software complexity and level of
verification and validation (V&V). Basic application software failure probability has tentatively
been assumed as 1E-6, and this basic probability is scaled by a shaping factor determined in
Table 2. The numbers have been selected by expert judgment, but they are in line with
software failure probabilities used in some PRA models. Software complexity analysis can be
performed using, e.g., the SICA method (Tyrväinen et al. 2016). The V&V levels correspond
to safety integrity levels. The failure probability estimate can be updated based on operating
data in a Bayesian manner, if suitable data is available.

Table 2: Shaping factor for application software failure probability (Authen et al. 2016).

 Complexity

 High Medium Low

V&V

0 10000 1000 100

1 1000 100 10

2 100 10 1

3 10 1 0.1

4 1 0.1 0.01

RESEARCH REPORT VTT-R-00728-21

7 (15)

2.2.2 Other methods

A number of software reliability analysis methods can be found from literature, though real
PRA studies use mostly simpler expert judgment and operating experience methods
(Bäckström et al. 2015). Chu et al. (2010) reviewed many software reliability methods found
from literature considering their applicability to nuclear power plant PRA. The methods were
divided into four categories: software reliability growth methods, Bayesian belief networks
(BBNs), test-based methods and other methods. Only a few of the methods were developed
for the reliability analysis of software systems in nuclear power plants, and none of the methods
was designed to quantify different types of software failures, like the Nordic method presented
in the previous section. For the review, desirable characteristics of a quantification method
were formulated. One of the characteristics is the capability of the method to estimate CCF
parameters. However, there is no mention of such capability on any of the methods. Practically
all the methods actually consider the software system as one entity instead of dividing it into
modules between which there could be a CCF.

Some newer references from the past decade include:

- Chu et al. (2017) have developed a statistical testing approach to estimate the failure
on demand probability of software. Test cases are created based on PRA scenarios so
that they represent realistic demand conditions. The scenarios are simulated using a
thermal hydraulic model to generate input signals for the software.

- Chu et al. (2018) have developed a BBN model to estimate software reliability for
nuclear applications. The BBN model covers the phases of software development
lifecycle and it estimates the number of defects left after each phase, e.g. based on the
quality of the development process. The number of defects left is assumed to correlate
with the failure probability. The model was developed with help of expert elicitation.

- Based on the two previous methods, Cai et al. (2020) have developed a software
reliability analysis method for software in a reactor protection system of a nuclear power
plant. A BBN model that covers different software development phases is used to
calculate the failure on demand probability of the software. The failure probability is
used to calculate the number of tests required to meet the reliability target. Finally,
scenarios from PRA model are used to generate the test cases for the software with
help of a thermal hydraulic model.

- Smidts et al. (2011) have developed a method called Reliability Prediction System
(RePS) to estimate software reliability based on selected metrics, which include defect
density, test coverage, requirements traceability, function point analysis, bugs per line
of code, cyclomatic complexity, cause and effect graphing, requirements specification
change requests, fault-days number, capability and maturity model, completeness, and
coverage factor.

- Guo et al. (2019) have developed a reliability growth model for safety-critical software
in a reactor protection system. The model predicts the software reliability based on
faults detected during software testing taking into account the severity of the faults. It
is not presented how to apply the model in PRA context.

- Shin et al. (2017) present another test-based software reliability analysis method for
software in a digital reactor protection system. The test cases are created based on
investigation of probable internal states of the software.

- Yang and Sydnor (2012) developed a flow network model of software. Software failure
probability was modelled using binomial distribution. Software failure rates were
estimated by testing.

RESEARCH REPORT VTT-R-00728-21

8 (15)

The methods do not specifically address CCFs.

2.3 Software common cause failures in presence of diversity

There seems to be a consensus that CCFs between identical redundant software modules can
be modelled using beta-factor of 1. However, CCFs between non-identical software modules
and CCFs between software modules in different (sub)systems are more difficult to analyse,
because beta-factor of 1 is usually too conservative and it is difficult to estimate a lower value.
Causes for such CCFs can be common functional requirements specification and use of same
elementary functions (Authen et al. 2015).

There are several types of diversity that can decrease the dependencies between different
software modules, e.g.: independent development teams, signal diversity, different
development approaches, diversity of development tools, use of different programming
languages and different algorithms. It can however be difficult to achieve and justify complete
statistical independence, even if several diversity measures are used.

Functional diversity is one way that has been recognised to protect against software CCFs
(IAEA 2009). It typically means that the same function can be actuated based on different plant
parameters processed by different subsystems. Functional diversity is often assumed to
eliminate application software CCFs between functionally diversified subsystems. For
example, AREVA (2013) reasoned such assumption by different functional specifications,
different sensed parameters and different signal trajectories. On the other hand, operating
system CCFs between functionally diverse subsystems are usually modelled, e.g. in (AREVA
2013). The Nordic approach (Authen et al. 2016) described in Section 2.2.1 also assumes
potential system software CCF between subsystems, but not application software CCF
between subsystems.

EPRI (2012) reasons that inter-system software CCFs may need to be modelled with a beta-
factor depending on the similarity and differences. Application software CCF between systems
may not need to be modelled when there is functional and signal diversity. When similar
platforms are used to implement similar functions activated at different plant conditions, a beta-
factor of 0.001-0.1 is recommended. If the functions are very different, it is not necessary to
model CCF, even if the platforms are similar. On the other hand, EPRI (2012) recommends a
beta-factor value near 1 for intra-system CCFs even if there is diversity between channels.
Failures originate most likely from functional specification, and if it is the same for different
channels, diversity in equipment and software does not necessarily protect from CCFs.

In the PRA of APR1400 design, Korea Electric Power Corporation and Korea Hydro & Nuclear
Power Co., Ltd (2018) modelled both operating system and application software CCFs
between systems when software platforms were similar. No CCFs between different software
platforms were modelled. Application software CCFs were modelled separately for different
component types, such as bistables, local coincidence logic modules, group controllers and
loop controllers. CCFs between those were not modelled.

Authen et al. (2016) presented an approach to estimate beta-factor for CCFs between similar
but non-identical application software modules. The beta-factor depends on the number of
identical inputs and whether the software modules belong to the same complexity category.
The approach has however not been validated.

Littlewood and Rushby (2011) have studied a special case of software CCF between a
complex system and a simple system that are used to actuate the same function. It is argued
that a dependency should not be ruled out, because a demand impacts both systems, and
some demands are more difficult than others. Both systems have a larger failure probability
when a difficult demand comes, and therefore, the failure probabilities are dependent. A

RESEARCH REPORT VTT-R-00728-21

9 (15)

conservative mathematical model for failure probability estimation was developed utilising an
assumption that the simple system is possibly perfect.

3. Hardware common cause failures

Digital I&C hardware modelling can be performed in a more traditional manner than software
modelling, because hardware failures are random events, like failures of any mechanical
components. Normal CCF analysis principles apply to digital I&C hardware (EPRI 2012).

More complex models than beta-factor, such as alpha-factor model or multiple Greek letter
model (MGLM), can be used for hardware CCFs depending on data. The parameters should
preferably be estimated based on operating data. If there is no data, use of generic parameters
has been suggested in (EPRI 2012; Authen et al. 2015). Jockenhövel-Barttfeld et al. (2018)
stated that generic parameters are conservative. Therefore, they are usable, but may lead to
overly conservative results. Engineering judgments are also used (Authen et al. 2015).

Engineering judgment -based method from IEC 61508-6 (IEC 2010) has been applied e.g. for
Ringhals nuclear power plant PRA studies according to (Authen et al. 2015). The analysis
covers 37 questions that determine the beta-factor for the analysed components (Sun 2013).
The questions concern e.g. separation, diversity, maturity, complexity, design reviews,
maintenance procedures, diagnostic tests, competence of developers, and operating
environment. For a group of two components, the beta-factor can range from 0.005 to 0.1
depending on the answers and the type of the components. The method gives smaller beta-
factors for logic solvers than for other components. The beta-factors can also be adjusted for
larger groups with specific multipliers.

Jockenhövel-Barttfeld et al. (2019) estimated alpha-factor parameters for hardware modules
based on TELEPERM XS operating experience using impact vectors. There had been no CCF
events. Therefore, it was important to take into account also potential CCFs, where only one
division failed, but other divisions shared the same cause and could have been affected by the
same coupling mechanism. The estimated CCF parameters were compared to generic
parameters from (U.S. NRC 2016), and the estimated values were significantly smaller
indicating that the generic parameters are very conservative. On the other hand, the estimated
parameters were in line with values estimated using the IEC 61508-6 method (IEC 2010).
Priority control modules had significantly smaller CCF parameters than input/output modules.

Recent DIGMAP project (Porthin et al. 2021) raised one problematic issue related to hardware
CCFs, which is that a large number of identical hardware components is sometimes used in
digital I&C systems of nuclear power plants. For example, in the fictive reference case of
DIGMAP, there are in total 16 identical hardware components in analog input modules in two
subsystems. Large groups like these are not only a challenge for parameter estimation, but
also PRA modelling. Traditional alpha-factor and MGLM models are not well suited for large
groups, because the number of CCF combinations is too large to be included in PRA explicitly.
On the other hand, the beta-factor model might be too simplistic and conservative. The group
in the DIGMAP case is not symmetric, i.e. all CCF combinations of the same size do not have
the same impact, which increases the need for a finer model.

One question mentioned in (Authen et al. 2015) is whether same CCF parameters should be
applied to undetected and detected failures. Jockenhövel-Barttfeld et al. (2018) comment that
CCFs of detected failures are usually not modelled, because a detected failure is repaired
relatively fast, and therefore, the time window for multiple failures to occur is short. Undetected
failures, on the other hand, accumulate over a longer time period. IEC 61508-6 (IEC 2010)
separates the beta-factor estimation of detected and undetected failures. Detected failures
have smaller beta-factors in some cases depending on the diagnostic coverage and testing

RESEARCH REPORT VTT-R-00728-21

10 (15)

interval, but the order of the magnitude is the same. Liang et al. (2020) also used smaller CCF
parameters for detected failures, though it is not explained where the values come.

4. Questionnaire

A questionnaire was prepared for the Finnish nuclear power companies on CCF modelling.
The questions are presented in Appendix. Two organizations answered to the questionnaire.
The results are summarised in the following, and the answers are treated anonymously.

4.1 Software common cause failures

In most of the nuclear power plant units, there are not many programmable systems, and
software CCFs have very small impact on the core damage risk. In one unit, the reactor
protection system is digital. For that unit, software is modelled as a global failure of all software
in a platform, and also CCF between platforms. Software CCFs in the measurement system
of the neutron flux and multifunctional relays of the power network have also been modelled in
some units.

Different probability estimation approaches have been applied at different units. The Nordic
software reliability analysis method is applied in one unit (Bäckström et al. 2015), i.e. operating
experience combined with conservative engineering judgments. Generic values, statistics from
the supplier and conservative expert judgments have also been used. One I&C supplier is said
to apply IEC 61508-6 (IEC 2010).

Typically, CCFs are modelled between software in identical equipment. However, in some
cases, CCFs between software from different suppliers have been modelled, because there
might be similarities in the software at low level.

CCFs between different systems have been modelled in some cases. For example, a CCF
between two subsystems has been modelled as presented in (Bäckström et al. 2015) [beta-
factor of 0.01 is found in the reference].

Application software CCFs are assumed to be covered by hardware CCFs at least in one plant.
Spurious signals have been evaluated in one unit, but not included in the PRA model due to
small impact.

More operating experience should be collected to improve the estimates. A global CCF
between I&C platforms is particularly seen as an important item to study. It is also suggested
that more research could be performed on root causes of software CCFs and means to prevent
CCFs. General software CCF method development is also seen as beneficial.

4.2 Hardware common cause failures

MGLM, beta-factor model and primitive parameters (Johanson et al. 2003) are used for
hardware common cause failures. Generic parameter values and values found from literature
have been used for CCF parameters. The I&C supplier of one plant uses the IEC 61508-6
method (IEC 2010) to estimate beta-factors.

CCFs between identical components are always modelled. The components that are modelled
include at least processors, input modules, output modules, communication modules and
measurement sensors.

RESEARCH REPORT VTT-R-00728-21

11 (15)

CCF groups include typically four components. An answer indicated that there are larger
groups, but did not specify how large the groups are.

There is difference in the CCF modelling between undetected and detected failures in some
cases. As said in Section 3, IEC 61508-6 (IEC 2010) treats those in slightly different ways. In
one unit, detected CCFs are not modelled.

Lack of operating experience is a challenge in hardware CCF estimation, and there are
limitations in the CCF methods. Selection of the level of modelling detail is also not a trivial
task. It is time-consuming to perform failure modes and effects analysis. Root causes and
prevention of CCFs could also be studied more.

5. Conclusions

This report has presented a state of the art review on PRA modelling of CCFs in digital I&C
systems. Both software and hardware CCFs have been in the scope of the report. There is
relatively little literature addressing these CCFs, whereas there is plenty of literature on
software reliability analysis in general.

There are some references on software CCF probabilities used in PRA studies. The estimates
are usually based on either expert judgments or operating experience, but even the estimates
based on operating experience seem quite uncertain. Many software reliability analysis
methods can be found from literature, but they have mostly not been used in practise and do
not specifically address CCFs, though software failures modelled in PRA are usually CCFs.
The Nordic method (Bäckström et al. 2015; Authen et al. 2016) seems to be the only practical
method that analyses software CCFs of a digital reactor protection system.

It is generally agreed that CCFs between identical redundant software modules can be
modelled using beta-factor of 1. However, when there is some diversity present, the modelling
is challenging. There is lack of methods to estimate CCF parameters between non-identical
software modules. EPRI (2012) recommends a beta-factor of 0.001-0.1, when similar platforms
are used to implement similar functions activated at different plant conditions. Functional
diversity is often assumed to prevent application software CCFs between subsystems. On the
other hand, operating system CCFs between functionally diverse subsystems are usually
modelled.

Hardware CCFs can be analysed according to normal CCF analysis principles. However, lack
of data on digital I&C components often makes it necessary to use generic parameters or
engineering judgment -based methods, which can lead to quite conservative results. Large
and asymmetric CCF groups are one particularly challenging area related to digital I&C
hardware.

Data related to both software and hardware CCFs are sparse. Even though hardware CCF
analysis is more mature than software CCF analysis, there is need for data collection and
method development activities in both areas.

RESEARCH REPORT VTT-R-00728-21

12 (15)

References

AREVA. 2013. AREVA design control document rev. 5 - Tier 2 chapter 19 - probabilistic risk

assessment and severe accident evaluation. U.S. Nuclear Regulatory Commission.

https://www.nrc.gov/docs/ML1326/ML13262A290.html

Authen, S., Bäckström, O., Holmberg, J.-E., Porthin, M. and Tyrväinen, T. 2016. Modelling of

digital I&C, MODIG - Interim report 2015, NKS-361. Nordic nuclear safety research,

Roskilde, Denmark.

Authen, S., Holmberg, J.-E., Tyrväinen, T. and Zamani, L. 2015. Guidelines for reliability

analysis of digital systems in PSA context - Final report, NKS-330. Nordic nuclear

safety research, Roskilde, Denmark.

Bao, H., Shorthill, T. and Zhang, H. 2020. Hazard analysis for identifying common cause

failures of digital safety systems using a redundancy-guided systems-theoretic

approach. Annals of Nuclear Energy, Vol. 148.

Bickel, J.H. 2008. Risk implications of digital reactor protection system operating experience.

Reliability Engineering and System Safety, Vol. 93, 107-124.

Bäckström, O., Holmberg, J.-E., Jockenhövel-Barttfeld, M., Porthin, M., Taurines, A. and

Tyrväinen, T. 2015. Software reliability analysis for PSA: failure mode and data

analysis, NKS-341. Nordic nuclear safety research, Roskilde, Denmark.

Cai, Y., Wu, Y., Zhou, J., Liu, M. and Zhang, Q. 2020. Quantitative software reliability

assessment methodology based on Bayesian belief networks and statistical testing for

safety-critical software. Annals of Nuclear Energy, Vol. 145.

Chu, T.-L., Varuttamaseni, A., Baek, J.S., Yue, M., Kaser, T., Marts, G., Murray, P., Harwood,

B., Johnson, N. and Li, M. 2017. Development of a statistical testing approach for

quantifying safety-related digital system on demand failure probability, NUREG/CR-

7234. U.S. Nuclear Regulatory Commission, Washington, DC.

Chu, T.-L., Varuttamaseni, A., Yue, M., Lee, S.J., Kang, H.G., Cho, J. and Yang, S. 2018.

Developing a Bayesian belief network model for quantifying the probability of software

failure of a protection system, NUREG/CR-7233. U.S. Nuclear Regulatory

Commission, Washington, DC.

Chu, T.-L., Yue, M., Martinez-Guridi, G. and Lehner, J. 2010. Review of quantitative software

reliability methods. Brookhaven National Laboratory.

Electric Power Research Institute. 2012. Modelling of digital instrumentation and control in

nuclear power plant probabilistic risk assessment. Palo Alto, California.

Enzinna, B., Shi, L. and Yang, S. 2009. Software common-cause failure probability

assessment. Proceedings of Sixth American Nuclear Society International Topical

Meeting on Nuclear Plant Instrumentation, Control, and human-machine interface

technologies, NPIC&HMIT 2009, Knoxville, Tennessee, April 5-9, 2009.

Guo, C., Zhou, S., Li, J., Chen, F., Li, D. and Huang, X. 2019. A novel software reliability growth

model of safety-critical software considering fault severity classification. 4th

International Conference on System Reliability and Safety, Rome, Italy, November 20-

22, 2019.

https://www.nrc.gov/docs/ML1326/ML13262A290.html

RESEARCH REPORT VTT-R-00728-21

13 (15)

International Atomic Energy Agency. 2009. Protecting against common cause failures in digital

I&C systems of nuclear power plants, IAEA nuclear energy series No. NP-T-1.5.

Vienna, Austria.

International Electrotechnical Commission. 2010. Functional safety of

electrical/electronic/programmable electronic safety-related systems - Part 6:

Guidelines on the application of IEC 61508-2 and IEC 61508-3, IEC 61508-6.

Jockenhövel-Barttfeld, M., Karg, S., Hessler, C. and Bruneliere, H. 2018. Reliability analyses

of digital I&C systems within the verification and validation process. 14th International

Conference on Probabilistic Safety Assessment and Management, PSAM14, Los

Angeles, California, 16-21 September, 2018.

Jockenhövel-Barttfeld, M., Abusharkh, Y., Hessler, C. and Kollasko, H. 2019. Estimation of

specific common cause factors for digital I&C modules in the PSA. PSAM 2019 topical:

Practical use of probabilistic safety assessment, Stockholm, Sweden, 2-3 December,

2019.

Johanson, G., Hellström, P., Mankamo, T., Bento, J.-P., Knochenhauer, M. and Pörn, K. 2003.

Dependency defence and dependency analysis guidance, SKI report 2004:04,

Appendix 4.1 Model survey and review. Swedish Nuclear Inspectorate, Sweden.

Korea Electric Power Corporation and Korea Hydro & Nuclear Power Co., Ltd. 2018. APR1400

design control document tier 2, Chapter 19, Probabilistic risk assessment and severe

accident evaluation, revision 3. U.S. NRC. https://www.nrc.gov/reactors/new-

reactors/design-cert/apr1400/dcd.html

Liang, Q., Liu, M., Xiao, P., Guo, Y., Xiao, J. and Peng, C. 2020. Reliability assessment for a

safety-related digital reactor protection system using event-tree/fault-tree (ET/FT)

method. Science and Technology of Nuclear Installations, Vol 2020.

Littlewood, B. and Rushby, J. 2011. Reasoning about the reliability of diverse two-channel

systems in which one channel is “possibly perfect”. IEEE Transactions on Software

Reliability, Vol. 38, No. 5, 1178-1194.

Porthin, M., Shin, S.M., Jaros, M., Sedlak, J., Picca, P., Quatrain, R., Demgne, J., Brinkman,

H., Natarajan, V., Tyrväinen, T., Mueller, C. and Piljugin, E. 2021. WGRISK DIGMAP:

Comparison of PSA modelling approaches for digital I&C. 12th Nuclear Plant

Instrumentation, Control and Human-Machine Interface Technologies, NPIC&HMIT

2021, Virtual meeting, June 14-17, 2021.

Regulator Task Force on Safety Critical Software. 2018. Licensing safety critical software for

nuclear reactors, Common position of international nuclear regulators and authorised

technical support organisations. Bel V, BfE, CNSC, CSN, ISTec, KAERI, KINS, NSC,

ONR, SSM, STUK.

Shin, S.M., Cho, J., Jung, W. and Lee, S.J. 2017. Test based reliability assessment method

for a safety critical software in reactor protection system. 10th International Topical

Meeting on Nuclear Plant Instrumentation, Control, and Human-Machine Interface

Technologies, NPIC&HMIT 2017, San Francisco, California, June 11-15, 2017.

Smidts, C.S., Shi, Y., Li, M., Kong, W. and Dai, J. 2011. A large scale validation of a

methodology for assessing software reliability, NUREG/CR-7042. U.S. Nuclear

Regulatory Commission, Washington, DC.

Sun, W. 2013. Determination of beta-factors for safety instrumented systems. Norwegian

University of Science and Technology, Trondheim, Norway.

https://www.nrc.gov/reactors/new-reactors/design-cert/apr1400/dcd.html
https://www.nrc.gov/reactors/new-reactors/design-cert/apr1400/dcd.html

RESEARCH REPORT VTT-R-00728-21

14 (15)

Tyrväinen, T., Bäckström, O., Holmberg, J.-E. and Porthin, M. 2016. SICA - A software

complexity analysis method for the failure probability estimation. 13th International

Conference on Probabilistic Safety Assessment and Management, PSAM13, Seoul,

Korea, 2-7 October, 2016.

Varde, P.V., Choi, J.G., Lee, D.Y. and Han, J.B. 2003. Reliability analysis of protection system

of advanced pressurized water reactor - APR 1400. Korea Atomic Energy Research

Institute.

Yang, Y. and Sydnor, R. 2012. Reliability estimation for a digital instrument and control system.

Nuclear Engineering and Technology, Vol. 44, No. 4, 405-414.

U.S. Nuclear Regulatory Commission. 2016. CCF parameter estimations 2015. Washington

DC.

Appendix: Questionnaire to Finnish power companies

Software CCFs

1. Which software CCFs do you include in PRA model?

2. How do you estimate probabilities of software failures?

3. In which cases do you assume complete dependence (beta-factor of 1) between

software modules?

4. Do you use beta-factor smaller than 1 for some software CCFs, or some other CCF

model? For which software CCFs? Which models and parameters do you use?

5. If you have screened out software CCFs, what are the reasons for that?

6. Do you model CCFs between non-identical software modules? How and with what

parameters? What is the reasoning for the modelling choices?

7. Do you model CCFs between software modules in different systems or subsystems?

How and with what parameters? What is the reasoning for the modelling choices?

8. What could be improved in your software CCF modelling?

9. What aspects of software CCFs should be studied more? Do you have any

suggestions for research?

Hardware CCFs

10. Which models do you use to model hardware CCFs in digital I&C systems?

11. Where do you get the parameter values for hardware CCFs in digital I&C systems?

Can you provide details of the parameter estimation?

12. Are there cases where you do not model CCFs between identical hardware

components in digital I&C systems, e.g. components in different systems? What is

the reasoning for not modelling such CCFs?

RESEARCH REPORT VTT-R-00728-21

15 (15)

13. Which are the hardware component types in digital I&C systems for which CCFs are

modelled?

14. How large are the CCF groups for hardware components in digital I&C systems?

15. Is there difference between CCF modelling of detected and undetected failures of

hardware components in digital I&C systems? What are the differences if there are

any?

16. What are the main modelling challenges related to hardware CCFs in digital I&C

systems? Do you have any suggestions for research?

	Contents
	1. Introduction
	2. Software common cause failures
	2.1 Software failure probabilities in literature
	2.2 Methods
	2.2.1 Nordic approach
	2.2.2 Other methods

	2.3 Software common cause failures in presence of diversity

	3. Hardware common cause failures
	4. Questionnaire
	4.1 Software common cause failures
	4.2 Hardware common cause failures

	5. Conclusions
	References
	Appendix: Questionnaire to Finnish power companies

	EnvelopeID_27945389-22be-4c3e-bc14-81b8c642e89a: DocuSign Envelope ID: 0F821658-9CC8-426F-A91D-6C1CFC567338
	EnvelopeID_afb3e98a-de68-4682-bf0f-c7692fa2c231: DocuSign Envelope ID: 0F821658-9CC8-426F-A91D-6C1CFC567338
	EnvelopeID_53dddc94-fb58-450c-9dfd-16cdf306d2ce: DocuSign Envelope ID: 0F821658-9CC8-426F-A91D-6C1CFC567338
	EnvelopeID_5ca86639-52de-406d-9a4b-9df62249d4ca: DocuSign Envelope ID: 0F821658-9CC8-426F-A91D-6C1CFC567338
	EnvelopeID_f1abfa2f-264c-4e81-8129-3822e00c6f40: DocuSign Envelope ID: 0F821658-9CC8-426F-A91D-6C1CFC567338
	EnvelopeID_3d6d44c1-6452-4d25-ae7b-2dc0f67c073e: DocuSign Envelope ID: 0F821658-9CC8-426F-A91D-6C1CFC567338
	EnvelopeID_583e68c4-483d-40ea-b4aa-78cd1877f595: DocuSign Envelope ID: 0F821658-9CC8-426F-A91D-6C1CFC567338
	EnvelopeID_559718f6-f55f-42ac-b502-99fe24354353: DocuSign Envelope ID: 0F821658-9CC8-426F-A91D-6C1CFC567338
	EnvelopeID_f91231eb-6eea-4991-8081-f8dd4813d3af: DocuSign Envelope ID: 0F821658-9CC8-426F-A91D-6C1CFC567338
	EnvelopeID_bc7c11d0-139c-4f68-8476-4068b79adff0: DocuSign Envelope ID: 0F821658-9CC8-426F-A91D-6C1CFC567338
	EnvelopeID_7f6fd8db-6c41-4913-bb00-c14f262358d0: DocuSign Envelope ID: 0F821658-9CC8-426F-A91D-6C1CFC567338
	EnvelopeID_aa551261-e081-47f0-830e-02ba83f7bd8b: DocuSign Envelope ID: 0F821658-9CC8-426F-A91D-6C1CFC567338
	EnvelopeID_936c0284-4a8b-4857-87a8-05f7301d8bde: DocuSign Envelope ID: 0F821658-9CC8-426F-A91D-6C1CFC567338
	EnvelopeID_428be54d-e420-413b-8b4d-151d62c243b7: DocuSign Envelope ID: 0F821658-9CC8-426F-A91D-6C1CFC567338
	EnvelopeID_53a0d003-9014-458f-9ffa-ad30a81f47ff: DocuSign Envelope ID: 0F821658-9CC8-426F-A91D-6C1CFC567338
	EnvelopeID_8d606d96-9e9a-472c-ac6f-e65db14cc75d: DocuSign Envelope ID: 0F821658-9CC8-426F-A91D-6C1CFC567338
		2021-09-23T23:02:48-0700
	Digitally verifiable PDF exported from www.docusign.com

