VTTVTT Tietopalvelu Julkaisutoiminta

Preparation of nanoparticles consisting of methacrylic polymers and drugs by an aerosol flow reactor method

Eerikäinen, Hannele

VTT Processes, Biologinkuja 7, P.O.Box 1602, FI–02044 VTT, Finland


VTT Publications 563, May 2005, 112 p. + app. 55 p. [in English]
ISBN 951–38–6443–X (soft back ed.)
ISBN 951–38–6444–8 (PDF edition)

Keywords: methacrylic polymer nanoparticles, preparation of drug nanoparticles, aerosol flow reactor method, drug release, solubility properties, particle size, morphology, crystallinity, thermal properties, drug content

Abstract

Drug-containing polymer nanoparticles are submicron-sized particles consisting of drug and stabilising or functional polymer. In this experimental study, methacrylic polymer nanoparticles with and without incorporated model drug were prepared using a novel method, namely, aerosol flow reactor method. This method involves first preparing a solution containing the drug and the polymer, followed by spraying the solution as nanosized droplets into a carrier gas stream, then drying the nanoparticles in a tubular laminar flow reactor tube, and finally collecting the nanoparticles. Model polymers used in this study were Eudragit L, Eudragit E, and Eudragit RS, which are commonly used methacrylic polymers in the pharmaceutical industry. Model drugs studied were beclomethasone dipropionate, ketoprofen, and naproxen.

Various properties of the prepared nanoparticles were studied, such as particle size and size distribution, morphology, crystallinity, thermal properties, drug content, and drug release. It was found that this method could be used to produce amorphous, spherical, homogeneous matrix-type drug-polymer nanoparticles. The size of the particles was adjusted between 90 and 200 nm by the concentration of the solution. The morphology of the particles varied as a function of the properties and composition of the starting solution.

The nanoparticles were collected as dry powders, but the stability of the powders in an amorphous form was found to be dependent on the interactions between the drug and the polymer. When the amount of the drug in the nanoparticles was below the solubility limit of the drug in the polymer, the amorphous nanoparticles were found to be stable and no crystallisation of the drug took place. When the amount of the drug was larger than the solubility limit, large crystalline structures were formed due to crystallisation of the drug. The crystallisation was also dependent on the thermal properties of the drug, as amorphous nanoparticles consisting of a drug having a high glass transition temperature could be collected at room temperature. A low glass transition temperature of the drug led to crystallisation of the drug at ambient conditions, when the drug amount in the nanoparticles was larger than the solubility limit. Drug release from the nanoparticles could be modified by using polymers having specific solubility properties.

Contents

Abstract
Preface
List of original publications
List of symbols and abbreviations
1. Introduction
2. Review
2.1 Structures of drug nanoparticles
2.2 Applications of drug nanoparticles
2.2.1 Biodegradable and non-biodegradable materials
2.2.2 Oral administration
2.3 Theory of dissolution
2.4 Amorphous drug materials and amorphous solid solutions consisting of drug and polymer
2.5 Polymer materials of the study
2.6 Methods of preparation of drug nanoparticles
3. Objective of the study
4. Experimental
4.1 Aerosol flow reactor method for the preparation of nanoparticles
4.1.1 Starting solution and atomisation
4.1.2 Solvent evaporation
4.1.3 Particle sampling and collection
4.2 Materials
4.2.1 Drug materials
4.2.2 Polymer materials
4.3 Instrumentation and characterisation
5. Results
5.1 Particle size, particle size distribution, and particle morphology (I, II, III, IV)
5.1.1 Particle size and particle size distribution as a function of solution concentration (IV)
5.1.2 Particle size and particle morphology (I, II, III)
5.2 Collection and properties of bulk nanoparticle powder (III, IV, V)
5.2.1 Collection of the nanoparticles (III, IV, V)
5.2.2 Drug release from nanoparticles containing ketoprofen (IV, V)
5.2.3 Drug release from nanoparticles containing beclomethasone dipropionate
5.2.4 Stability of the nanoparticles
6. Summary and conclusions
References
Appendices
Publications I–V

Figures and Tables

Figure 1. Schematics of exemplary types of drug nanoparticles. A. A matrix-type nanoparticle, where the drug molecules are evenly dispersed in the polymer matrix. B. A core-shell nanoparticle, where a core containing the drug is covered with a polymer shell. C. A matrix-type nanoparticle, where drug crystals are imbedded in a polymer matrix. Adapted from [20].


Table 1. Examples of applications and preparation methods of nanoparticles.
a) Range of mean particle sizes reported in the publication, expressed as mean±standard deviation of the distribution, where available. Geometric standard deviation used for lognormal distributions is described in [42].

Application

Proposed administration route

Materials

Preparation method

Mean particle sizes reported (nm) a

Reference

Bioavailability increase

Oral

Avarol + PBCA

Emulsion polymerisation

136±5–707±98

[43]

Bioavailability increase

Oral

RR01 + Eudragit L

Emulsification-diffusion

292±22–297±6

[34]

Bioavailability increase

Oral

CGP 70726 + Eudragit L

Emulsification-diffusion

275±5–296±6

[44]

Bioavailability increase

Oral

CGP 57813 + Eudragit L / Eudragit S

Salting-out

245–264

[45]

Bioavailability increase

Oral

Danazol

Wet milling

169

[46]

Bioavailability increase

Oral

HO-221

Wet milling

453±23

[47]

Bioavailability increase

Oral

Buparvaquone

High pressure homogenisation

558–663

[48]

Bioavailability increase

Oral

Cyclosporine A

Evaporative precipitation into aqueous solution

131–526

[49]

Insulin administration

Oral

Insulin + PBCA

Interfacial emulsion polymerisation

136±90–152±51

[29]

Reduction of gastric irritation

Oral

Naproxen

Wet milling

270

[50]

Drug targeting

Ocular

Flurbiprofen + PCL

Solvent displacement

201–284

[51]

Drug targeting

Ocular

Flurbiprofen + Eudragit RS / Eudragit RL

Quasi-emulsion solvent diffusion

14–96

[52]

Gene delivery

Pulmonary

pDNA + PLGA-PEI

Solvent displacement

207±11–231±12

[53]

Sustained release

Pulmonary

Insulin + PBCA

Emulsion polymerisation

255

[54]

Drug delivery

Oral / nasal / pulmonary

Nafarelin acetate
+ PLGA

Emulsion-phase separation

500–800

[55]

Sustained release

i.m.

Savoxepine + PLA

Salting-out

230–680

[56]

Dissolution enhancement

i.v.

Tarazepide

High pressure homogenisation

347–517

[57]

Drug targeting

i.v.

Dalargin / Kyotorphin
+ PBCA

Emulsion polymerisation

195–289

[58]

Drug targeting

i.v.

Indomethacin /
5-fluorouracil + PLGA

Spontaneous emulsification solvent diffusion

338±67–637±40

[59]

Cancer therapy

i.v.

Piposulfan / Etoposide / Camptothecin / Paclitaxel

Wet milling

202±31–279±30

[60]

Toxicity reduction

i.v.

Primaquine + PLA

Solvent displacement

153–169

[61]

Drug targeting

No routes proposed

Amoxicillin

Supercritical antisolvent precipitation

250–1200

[62]

Drug targeting

No routes proposed

Insulin

Electrospray

88–117

[63]

Drug targeting

No routes proposed

Triamcinolone acetonide + PLA

Emulsification-evaporation

476±410–710±406

[64]

Drug targeting

No routes proposed

Atovaquone + PCL / PLA / PLGA

Solvent displacement

228±16–242±33

[65]

Drug targeting

No routes proposed

Tamoxifen + PCL

Solvent displacement

200–300

[23]

Gene delivery

No routes proposed

pDNA + PLGA

Double emulsion-evaporation

589±190–640±64

[7]

Sustained release

No routes proposed

Isradipine + PCL / PLA / PLGA

Solvent displacement

110–208

[66]

Technical studies on preparation method

Oral / ocular / topical

Indomethacin + EC / CAB / PMMA / Eudragit RS / Eudragit RL

Emulsification-evaporation

100–125

[12]

Technical studies on preparation method

No routes proposed

Chlorambucil + PLA / PLGA / PCL / Eudragit S

Emulsification-diffusion

246–591

[67]

Technical studies on preparation method

No routes proposed

PLA

Emulsification-diffusion

100–450

[68]

Technical studies on preparation method

No routes proposed

PAA / PMMA / PBCA / PECA / PMCA

Polymerisation

51–145

[16]

Technical studies on preparation method

No routes proposed

PLA / Eudragit S / Eudragit E / ethyl cellulose

Salting-out

172–1117

[69]

Figure 2. Schematic representation of a model depicting the dissolution process [113].

Figure 3. Diagrammatic representation of a solid carboxylic acid, HA, dissolving into a reactive medium containing hydroxide ion and buffer components B and BH+ with a Nernst diffusion layer existing between the solid and the bulk solution. Sink conditions exist in the bulk solution, and the products, BH+, A-, and H+, diffuse out of the diffusion layer at a rate determined by their chemical reactivity and diffusivity [116].

Figure 4. Schematic depiction of the variation of enthalpy (or volume) as a function of temperature for crystalline and amorphous (glassy) solid material [129].

Figure 5. Schematics of particle formation in the aerosol flow reactor method.

Figure 6. Experimental set-up used in the preparation of nanoparticles (N2 = clean, dry pressurized nitrogen, Vac. = vacuum, l/min = standard litres per minute, Kr-85 aerosol neutraliser using 85Kr b-source, DMA = differential mobility analyser, CPC = condensation particle counter) (II, IV, V).

Figure 7. Temperature (t (K), upper part) and velocity contours (u (m/s), lower part) in the aerosol flow reactor, 80 °C temperature, 1.5 l/min carrier gas flow rate. Courtesy of David P. Brown (published with permission) [213, 214].


Table 2. Physicochemical properties of the drug materials studied.

Beclomethasone dipropionate

Ketoprofen

Naproxen

Molecular formula

C28H37ClO7

C16H14O3

C14H14O3

Chemical name

9-Chloro-11b,17,21-trihydroxy-16b-methylpregna-1,4-diene-3,20-dione 17,21-dipropionate

(2RS)-2-(3-benzoylphenol)
propanoic acid

(2S)-2-(6-mathoxynaphthalen-
2-yl)propanoic acid

CAS number

[5534-09-8]

[22071-15-4]

[22204-53-1 ]

Molecular weight (g/mol)

521.05

254.28

230.26

Solubility in water (mg/l)

150 (at 37 °C) [223]

118 (at 25 °C) [224]
51 (at 22
°C) [225]

14 (at 25 °C) [224]
16 (at 25
°C) [225]

Solubility at pH 1.2 (mg/l)

130 [96]

5 [96]

Solubility at pH 5.0 (mg/l)

840 [96]

90 [96]

Solubility at pH 7.4 (mg/l)

> 1400 [96]

> 2500 [96]

Biopharmaceutical classification system class

II (at pH 1.2) [96]
I (at pH 7.4)
[96]

II (at pH 1.2) [96]
I (at pH 7.4)
[96]

pKa

3.98 [224]

4.18 [224]

Melting temperature (°C)

212 (measured)

97 (measured)

158 (measured)

Glass transition temperature (°C)

66 (calculated) [125, 138]

-14 (calculated) [125, 138]
-2 (measured)

29 (calculated) [125, 138]

Particle size, 90% less than (µm)

6 (measured)

19 (measured)

Particle size, 99% less than (µm)

9 (measured)

42 (measured)

Density (g/(cm)3)

1.36 [226]

1.28 [227]

1.27 [228]

Molar volume ((cm3)/mol)

383 (calculated)

199 (calculated)

182 (calculated)

Unit cell

Orthorhombic [226]

Triclinic [227]

Monoclinic [228]

Unit cell dimensions

a = 12.12 Å [226]
b = 14.13 Å
c = 14.84 Å
a = 90 °
b = 90 °
g = 90 °

a = 3.89 Å [227]
b = 7.74 Å
c = 6.14 Å
a = 89.6 °
b = 94.6 °
g = 88.8 °

a = 13.32 Å [228]
b = 5.78 Å
c = 7.87 Å
a = 90 °
b = 93.9 °
g = 90 °


Table 3. Physicochemical properties of the polymer materials studied.

Eudragit L 100

Eudragit E 100

Eudragit RS 100

Composition

Poly(methacrylic acid, methyl methacrylate) 1:1 [161]

Poly(butyl methacrylate,
(2,2-dimethylaminoethyl)

methacrylate, methyl methacrylate) 1:2:1
[161]

Poly(ethyl acrylate,
methyl methacrylate, trimethylammoniumethyl methacrylate chloride) 1:2:0.1
[161]

Water solubility

Soluble at pH ³ 6 [161]

Soluble at pH £ 5 [161]

Not soluble
Not pH-dependent

Tg (°C)

67 (measured)

45 (measured)

64 (measured)

Density (g/(cm)3)

0.83-0.85 [161]

0.81-0.82 [161]

0.815-0.835 [161]

Mw (g/mol)

115000 [230]

23500 (measured)

39000 [231]

Polydispersity (Mw/Mn)

2.0 [230]

1.9 (measured)

1.5 [231]

Figure 8. Determination of glass transition temperatures for exemplary curves. A) Nanoparticles containing 25% (w/w) ketoprofen / 75% (w/w) Eudragit E, B) Nanoparticles containing 0% (w/w) ketoprofen / 100% (w/w) Eudragit L.

Figure 9. Particle size distributions for the various starting solution concentrations (IV).

Figure 10. Geometric number mean diameter and calculated particle volume as a function of starting solution concentration. The dashed line represents linear least squares fit of particle volume data points (r2 =0.99070) (IV).

Figure 11. Geometric number mean diameter of the nanoparticles containing various amounts of drug and polymer as a function of temperature. Total concentration of solids was 1 g/l (III).

Figure 12. TEM image of a hollow BDP nanoparticle produced (I).

Figure 13. A summary of the effects of various parameters on particle morphology (II).

Figure 14. SEM images of polymer nanoparticles containing 50% (w/w) Eudragit L and 50% (w/w) BDP. The nanoparticles were prepared from A) a good solvent (ethanol) or B) a mixture of a good solvent (ethanol) and a poor solvent (water). Nominal magnification 50000x.

Figure 15. X-ray diffraction patterns of the nanoparticles. A) Untreated ketoprofen. B) 50% (w/w) ketoprofen / 50% (w/w) Eudragit L nanoparticles. C) 25% (w/w) ketoprofen / 75% (w/w) Eudragit L nanoparticles. Curve A was reduced by a factor of 4 to fit in the same image. The curves are shifted along y-axis for clarification (IV).

Figure 16. Differential scanning calorimetry thermograms of the nanoparticles. A) Untreated ketoprofen. B) 50% (w/w) ketoprofen / 50% (w/w) Eudragit L nanoparticles. C) 33% (w/w) ketoprofen / 67% (w/w) Eudragit L nanoparticles. D) 25% (w/w) ketoprofen / 75% (w/w) Eudragit L nanoparticles. E) 10% (w/w) ketoprofen / 90% (w/w) Eudragit L nanoparticles. F) 100 % (w/w) Eudragit L nanoparticles. Curve A was reduced by a factor of 20 to fit in the same image. The curves are shifted along y-axis for clarification (IV).

Figure 17. TEM image showing amorphous, spherical nanoparticles prepared. Nanoparticles containing 25% (w/w) ketoprofen and 75% (w/w) Eudragit L. Electron optical magnification 5600x (IV).

Figure 18. Exemplary SEM images of the collected nanoparticle powders. A) Nanoparticles containing 33% (w/w) ketoprofen and 67% (w/w) Eudragit L. Nominal magnification 50000x. B) Nanoparticles containing 10% (w/w) naproxen and 90% (w/w) Eudragit L. Nominal magnification 50000x. C) Nanoparticles containing 67% (w/w) ketoprofen and 33% (w/w) Eudragit L. Nominal magnification 10000x. D) Nanoparticles containing 67% (w/w) naproxen and 33% (w/w) Eudragit L. Nominal magnification 10000x (IV).

Figure 19. Schematics of the drug-polymer structures formed in particle collection.

Table 4. Glass transition temperatures of the nanoparticles prepared from ketoprofen and various polymers. a) Also an endothermic transition corresponding to the melting of ketoprofen crystals was observed at 94 °C (V).

Amount of ketoprofen (w/w)

Eudragit L

Eudragit E

Eudragit RS

0 %

54 °C

49 °C

53 °C

5 %

52 °C

45 °C

50 °C

10 %

50 °C

41 °C

50 °C

25 %

50 °C

24 °C

28 °C

33 %

48 °C

23 °C

20 °C

50 %

40 °C a)

Figure 20. Differential scanning calorimetry thermograms of the ketoprofen nanoparticles. A) Untreated ketoprofen, B) Nanoparticles containing 50% (w/w) ketoprofen, C) Nanoparticles containing 33% (w/w) ketoprofen, D) Nanoparticles containing 25% (w/w) ketoprofen, E) Nanoparticles containing 10% (w/w) ketoprofen, F) Nanoparticles containing 5% (w/w) ketoprofen, G) Nanoparticles containing 0% (w/w) ketoprofen. Curve A was reduced by a factor of 20 to fit in the same image. The curves are shifted along y-axis for clarification (V).

Figure 21. Exemplary scanning electron microscopy images of the ketoprofen nanoparticles. A) Nanoparticles containing 25% (w/w) ketoprofen and 75% (w/w) Eudragit L. Nominal magnification 50000x. B) Nanoparticles containing 10% (w/w) ketoprofen and 90% (w/w) Eudragit RS. Nominal magnification 50000x. C) Nanoparticles containing 25% (w/w) ketoprofen and 75% (w/w) Eudragit E. Nominal magnification 5000x. D) Nanoparticles containing 25% (w/w) ketoprofen and 75% (w/w) Eudragit RS. Nominal magnification 10000x ().

Figure 22. Glass transition temperatures of the nanoparticles containing ketoprofen and polymer. For the calculated values, the glass transition temperature of the nanoparticles consisting of only polymer was used as the polymer glass transition temperature.

Figure 23. Exemplary infrared spectra at a wavenumber range of 2000–1500 cm-1. A) Pure ketoprofen. B) Nanoparticles containing 33% (w/w) ketoprofen. C) Pure polymer. The curves are shifted along y-axis for clarification (V).

Figure 24. Exemplary infrared spectra at a wavenumber range of 3500–2500 cm-1. A) Pure ketoprofen. B) Nanoparticles containing 33% (w/w) ketoprofen. C) Pure polymer. The curves are shifted along y-axis for clarification (V).

Figure 25. DSC scans of nanoparticles containing various amounts of BDP and Eudragit L. A) 100% (w/w) BDP, B) 80% (w/w) BDP / 20% (w/w) Eudragit L, C) 60% (w/w) BDP / 40% (w/w) Eudragit L, D) 50% (w/w) BDP / 50% (w/w) Eudragit L, E) 100% (w/w) Eudragit L. Observed crystallisation and melting of the crystals are marked with cr and m, respectively . The curves are shifted along y-axis for clarification (III).

Figure 26. Ketoprofen release for nanoparticles containing various amounts of drug as a function of time (IV). Pure ketoprofen denotes untreated, commercial, crystalline ketoprofen powder (particle size 90% less than 19 µm).

Figure 27. Ketoprofen release for nanoparticles containing various polymers as a function of time. All the nanoparticles studied for drug release contained 10% (w/w) ketoprofen (V). Pure ketoprofen denotes untreated, commercial, crystalline ketoprofen powder (particle size 90% less than 19 µm).

Figure 28. Schematic representation of dissolution of a polyelectrolyte containing carboxylic acid groups (Eudragit L).

Figure 29. Compartmental absorption and transit model [264].

Figure 30. CAT modeling (CAT predicted) of literature reference data (Observed) and CAT modeling (Nanoparticles predicted) of nanoparticles containing ketoprofen and Eudragit RS.

Figure 31. BDP release for pure BDP (particle size 90% less than 6 µm) and BDP nanoparticles.

Figure 32. X-ray diffraction patterns of nanoparticle dry powder containing 33% (w/w) ketoprofen and 67% (w/w) Eudragit L after 3 months storage time. A) Nanoparticle dry powder stored in a refrigerator. B) Nanoparticle dry powder stored at 25 °C at 0% relative humidity. C) Nanoparticle dry powder stored at 25 °C at 75% relative humidity. The curves are shifted along y-axis for clarification.

References

[1] Allémann, E., Gurny, R., and Doelker, E. Drug-loaded nanoparticles - preparation methods and drug targeting issues. European Journal of Pharmaceutics and Biopharmaceutics, 1993. Vol. 39, pp. 173–191.

[2] Kawashima, Y. Nanoparticulate systems for improved drug delivery. Advanced Drug Delivery Reviews, 2001. Vol. 47, pp. 1–2.

[3] Soppimath, K. S., Aminabhavi, T. M., Kulkarni, A. R., and Rudzinski, W. E. Biodegradable polymeric nanoparticles as drug delivery devices. Journal of Controlled Release, 2001. Vol. 70, pp. 1–20.

[4] Panyam, J. and Labhasetwar, V. Biodegradable nanoparticle from drug and gene delivery to cells and tissue. Advanced Drug Delivery Reviews, 2003. Vol. 55, pp. 329–347.

[5]´Brigger, I., Dubernet, C., and Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Advanced Drug Delivery Reviews, 2002. Vol. 54, pp. 631–651.

[6] Cui, Z. and Mumper, R. J. Plasmid DNA-entrapped nanoparticles engineered from microemulsion precursors: In vitro and in vivo evaluation. Bioconjugate Chemistry, 2002. Vol. 13, pp. 1319–1327.

[7] Cohen, H., Levy, R. J., Gao, J., Fishbein, I., Kousaev, V., Sosnowski, S., Slomkowski, S., and Golomb, G. Sustained delivery and expression of DNA encapsulated in polymeric nanoparticles. Gene Therapy, 2000. Vol. 7, pp. 1896–1905.

[8] Kreuter, J. Nanoparticles and Nanocapsules – New Dosage Forms in the Nanometer Range. Pharmaceutica Acta Helvetiae, 1978. Vol. 53, pp. 33–39.

[9] Kreuter, J. Nanoparticles. In: Swarbrick, J. and Boylan, J. C. (Eds.) Encyclopedia of Pharmaceutical Technology. pp. 165–190. New York, USA: Marcel Dekker, Inc., 1994. ISBN 0-8247-2809-2

[10] Birrenbach, G. and Speiser, P. P. Polymerized micelles and their use as adjuvants in immunology. Journal of Pharmaceutical Sciences, 1976. Vol. 65, pp. 1763–1766.

[11] Couvreur, P., Dubernet, C., and Puisieux, F. Controlled drug delivery with nanoparticles: current possibilities and future trends. European Journal of Pharmaceutics and Biopharmaceutics, 1995. Vol. 41, pp. 2–13.

[12] Bodmeier, R. and Chen, H. Indomethacin polymeric nanosuspensions prepared by microfluidization. Journal of Controlled Release, 1990. Vol. 12, pp. 223–233.

[13] de Chasteigner, S., Fessi, H., Cavé, G., Devissaguet, J. P., and Puisieux, F. Gastro-intestinal tolerance study of a freeze-dried oral dosage form of indomethacin-loaded nanocapsules. STP Pharma Sciences, 1995. Vol. 5, pp. 242–246.

[14] Pohlmann, A. R., Weiss, V., Mertins, O., Pesce da Silveira, N., and Guterres, S. S. Spray-dried indomethacin-loaded polyester nanocapsules and nanospheres: development, stability evaluation and nanostructure models. European Journal of Pharmaceutical Sciences, 2002. Vol. 16, pp. 305–312.

[15] Saez, A., Guzman, M., Molpeceres, J., and Aberturas, M. R. Freeze-drying of polycaprolactone and poly(-lactic-glycolic) nanoparticles induce minor particle size changes affecting the oral pharmacokinetics of loaded drugs. European Journal of Pharmaceutics and Biopharmaceutics, 2000. Vol. 50, pp. 379–387.

[16] Kreuter, J. Physicochemical characterization of polyacrylic nanoparticles. International Journal of Pharmaceutics, 1983. Vol. 14, pp. 43–58.

[17] Legrand, P., Barratt, G., Mosqueira, V., Fessi, H., and Devissaguet, J. P. Polymeric nanocapsules as drug delivery systems. A review. STP Pharma Sciences, 1999. Vol. 9, pp. 411–418.

[18] Barratt, G. M. Therapeutic applications of colloidal drug carriers. Pharmaceutical Science and Technology Today, 2000. Vol. 3, pp. 163–171.

[19] Fresta, M., Cavallaro, G., Giammona, G., Wehrli, E., and Puglisi, G. Preparation and characterization of polyethyl-2-cyanoacrylate nanocapsules containing antiepileptic drugs. Biomaterials, 1996. Vol. 17, pp. 751–758.

[20] Vauthier-Holtzscherer, C., Benabbou, S., Spenlehauer, G., Veillard, M., and Couvreur, P. Methodology for the preparation of ultra-dispersed polymer systems. STP Pharma Sciences, 1991. Vol. 1, pp. 109–116.

[21] Brannon-Peppas, L. Recent advances on the use of biodegradable microparticles and nanoparticles in controlled drug delivery. International Journal of Pharmaceutics, 1995. Vol. 116, pp. 1–9.

[22] Schmidt, C. and Bodmeier, R. Incorporation of polymeric nanoparticles into solid dosage forms. Journal of Controlled Release, 1999. Vol. 57, pp. 115–125.

[23] Chawla, J. S. and Amiji, M. M. Biodegradable poly(e-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. International Journal of Pharmaceutics, 2002. Vol. 249, pp. 127–138.

[24] Labhasetwar, V., Song, C., and Levy, R. J. Nanoparticle drug delivery system for restenosis. Advanced Drug Delivery Reviews, 1997. Vol. 24, pp. 63–85.

[25] Yang, L. and Alexandritis, P. Physicochemical aspects of drug delivery and release from polymer-based colloids. Current Opinion in Colloid & Interface Science, 2000. Vol. 5, pp. 132–143.

[26] Vauthier, C., Dubernet, C., Fattal, E., Pinto-Alphandary, H., and Couvreur, P. Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications. Advanced Drug Delivery Reviews, 2003. Vol. 55, pp. 519–548.

[27] Lambert, G., Fattal, E., and Couvreur, P. Nanoparticulate systems for the delivery of antisense oligonucleotides. Advanced Drug Delivery Reviews, 2001. Vol. 47, pp. 99–112.

[28] Damgé, C., Michel, C., Aprahamian, M., Couvreur, P., and Devissaguet, J. P. Nanocapsules as carriers for oral peptide delivery. Journal of Controlled Release, 1990. Vol. 13, pp. 233–239.

[29] Damgé, C., Vranckx, H., Balschmidt, P., and Couvreur, P. Poly(alkyl cyanoacrylate) nanospheres for oral administration of insulin. Journal of Pharmaceutical Sciences, 1997. Vol. 86, pp. 1403–1409.

[30] Gurny, R., Boye, T., and Ibrahim, H. Ocular therapy with nanoparticulate systems for controlled drug delivery. Journal of Controlled Release, 1985. Vol. 2, pp. 353–361.

[31] Khopade, A. J. and Jain, N. K. Self assembling nanostructures for sustained ophthalmic drug delivery. Pharmazie, 1995. Vol. 50, pp. 812–814.

[32] Pignatello, R., Bucolo, C., Ferrara, P., Maltese, A., Puleo, A., and Puglisi, G. Eudragit RS100 nanosuspensions for the ophthalmic controlled delivery of ibuprofen. European Journal of Pharmaceutical Sciences, 2002. Vol. 16, pp. 53–61.

[33] de Vringer, T. and de Ronde, H. A. G. Preparation and structure of a water-in-oil cream containing lipid nanoparticles. Journal of Pharmaceutical Sciences, 1995. Vol. 84, pp. 466–472.

[34] De Jaeghere, F., Allémann, E., Doelker, E., and Gurny, R. pH-dependent dissolving nano- and microparticles for improved peroral delivery of a highly lipophilic compound in dogs. AAPS Pharmsci, 2001. Vol. 3, pp. Article 8.

[35] Kreuter, J. Peroral administration of nanoparticles. Advanced Drug Delivery Reviews, 1991. Vol. 7, pp. 71–86.

[36] Müller, R. H., Jacobs, C., and Kayser, O. Nanosuspensions as particulate drug formulations in therapy Rationale for development and what can we expect for the future. Advanced Drug Delivery Reviews, 2001. Vol. 47, pp. 3–19.

[37] Shekunov, B. Y. and York, P. Crystallization processes in pharmaceutical technology and drug delivery design. Journal of Crystal Growth, 2000. Vol. 211, pp. 122–136.

[38] Mehnert, W. and Mäder, K. Solid lipid nanoparticles Production, characterization and applications. Advanced Drug Delivery Reviews, 2001. Vol. 47, pp. 165–196.

[39] Miller, K. J. and Das, S. K. Antisense oligonucleotides: strategies for delivery. Pharmaceutical Science and Technology Today, 1998. Vol. 1, pp. 377–386.

[40] Hans, M. L. and Lowman, A. M. Biodegradable nanoparticles for drug delivery and targeting. Current Opinion in Solid State and Materials Science, 2002. Vol. 6, pp. 319–327.

[41] Moghimi, S. M., Hunter, A. C., and Murray, J. C. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacological Reviews, 2001. Vol. 53, pp. 283–318.

[42] Hinds, W. C. Aerosol technology : properties, behavior, and measurement of airborne particles. New York, USA: John Wiley & Sons, Inc., 1999. ISBN 0-471-19410-7.

[43] Beck, P. H., Kreuter, J., Müller, W. E. G., and Schatton, W. Improved peroral delivery of avarol with polybutylcyanoacrylate nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 1994. Vol. 40, pp. 134–137.

[44] De Jaeghere, F., Allémann, E., Kubel, F., Galli, B., Cozens, R., Doelker, E., and Gurny, R. Oral bioavailability of a poorly water soluble HIV-1 protease inhibitor incorporated into pH-sensitive particles: effect of the particle size and nutritional state. Journal of Controlled Release, 2000. Vol. 68, pp. 291–298.

[45] Leroux, J.-C., Cozens, R. M., Roesel, J. L., Galli, B., Doelker, E., and Gurny, R. pH-sensitive nanoparticles: an effective means to improve the oral delivery of HIV-1 protease inhibitors in dogs. Pharmaceutical Research, 1996. Vol. 13, pp. 485–487.

[46] Liversidge, G. G. and Cundy, K. C. Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. International Journal of Pharmaceutics, 1995. Vol. 125, pp. 91–97.

[47] Kondo, N., Iwao, T., Masuda, H., Yamanouchi, K., Ishihara, Y., Yamada, N., Haga, T., Ogawa, Y., and Yokoyama, K. Improved oral absorption of a poorly water-soluble drug, HO-221, by wet-bead milling producing particles in a submicron region. Chemical and Pharmaceutical Bulletin, 1993. Vol. 41, pp. 737–740.

[48] Müller, R. H. and Jacobs, C. Buparvaquone mucoadhesive nanosuspension: preparation, optimisation and long-term stability. International Journal of Pharmaceutics, 2002. Vol. 237, pp. 151–161.

[49] Chen, X., Young, T. J., Sarkari, M., Williams III, R. O., and Johnston, K. P. Preparation of cyclosporine A nanoparticles by evaporative precipitation into aqueous solution. International Journal of Pharmaceutics, 2002. Vol. 242, pp. 3–14.

[50] Liversidge, G. G. and Conzentino, P. Drug particle size reduction for decreasing gastric irritancy and enhancing absorption of naproxen in rates. International Journal of Pharmaceutics, 1995. Vol. 125, pp. 309–313.

[51] Gamisans, F., Lacoulonche, F., Chauvet, A., Espina, M., Garcia, M. L., and Egea, M. A. Flurbiprofen-loaded nanospheres: analysis of the matrix structure by thermal methods. International Journal of Pharmaceutics, 1999. Vol. 179, pp. 37–48.

[52] Pignatello, R., Bucolo, C., Spedalieri, G., Maltese, A., and Puglisi, G. Flurbiprofen-loaded acrylate polymer nanosuspensions for ophthalmic application. Biomaterials, 2002. Vol. 23, pp. 3247–3255.

[53] Bival-Benita, M., Romeijn, S., Juninger, H. E., and Borchard, G. PLGA-PEI nanoparticles for gene delivery to pulmonary epithelium. European Journal of Pharmaceutics and Biopharmaceutics, 2004. Vol. 58, pp. 1–6.

[54] Zhang, Q., Shen, Z., and Nagai, T. Prolonged hypoglycemic effect of insulin-loaded polybutylcyanoacrylate nanoparticle after pulmonary administration to normal rats. International Journal of Pharmaceutics, 2001. Vol. 218, pp. 75–80.

[55] Niwa, T., Takeuchi, H., Hino, T., Nohara, M., and Kawashima, Y. Biodegradable submicron carriers for peptide drugs: Preparation of DL-lactide/glycolide copolymer (PLGA) nanospheres with nafarelin acetate by a novel emulsion-phase separation method in an oil system. International Journal of Pharmaceutics, 1995. Vol. 121, pp. 45–54.

[56] Allémann, E., Doelker, E., and Gurny, R. Drug loaded poly(lactic acid) nanoparticles produced by a reversible salting-out process: purification of an injectable dosage form. European Journal of Pharmaceutics and Biopharmaceutics, 1993. Vol. 39, pp. 13–18.

[57] Jacobs, C., Kayser, O., and Müller, R. H. Nanosuspensions as a new approach for the formulation for the poorly soluble drug tarazepide. International Journal of Pharmaceutics, 2000. Vol. 196, pp. 161–164.

[58] Schroeder, U., Sommerfeld, P., Ulrich, S., and Sabel, B. A. Nanoparticle technology for delivery of drugs across the Blood-Brain Barrier. Journal of Pharmaceutical Sciences, 1998. Vol. 87, pp. 1305–1307.

[59] Niwa, T., Takeuchi, H., Hino, T., Kunou, N., and Kawashima, Y. Preparations of biodegradable nanospheres of water-soluble and insoluble drugs with D,L-lactide/glycolide copolymer by a novel spontaneous emulsification solvent diffusion method, and the drug release behaviour. Journal of Controlled Release, 1993. Vol. 25, pp. 89–98.

[60] Merisko-Liversidge, E., Sarpotdar, P., Bruno, J., Hajj, S., Wei, L., Peltier, N., Rake, J., Shaw, J. M., Pugh, S., Polin, L., Jones, J., Corbett, T., Cooper, E., and Liversidge, G. G. Formulation and antitumor activity evaluation of nanocrystalline suspensions of poorly soluble anticancer drugs. Pharmaceutical Research, 1996. Vol. 13, pp. 272–278.

[61] Rodrigues Jr., J. M., Fessi, H., Bories, C., Puisieux, F., and Devissaguet, J.-P. Primaquine-loaded poly(lactide) nanoparticles: physicochemical study and acute tolerance in mice. International Journal of Pharmaceutics, 1995. Vol. 126, pp. 253–260.

[62] Reverchon, E., Della Porta, G., and Falivene, M. G. Process parameters and morphology in amoxicillin micro and submicro particles generation by supercritical antisolvent precipitation. Journal of Supercritical Fluids, 2000. Vol. 17, pp. 239–248.

[63] Gomez, A., Bingham, D., de Juan, L., and Tang, K. Production of protein nanoparticles by electrospray drying. Journal of Aerosol Science, 1998. Vol. 29, pp. 561–574.

[64] Krause, H.-J., Schwarz, A., and Rohdewald, P. Polylactic acid nanoparticles, a colloidal delivery system for lipophilic drugs. International Journal of Pharmaceutics, 1985. Vol. 27, pp. 145–155.

[65] Cauchetier, E., Deniau, M., Fessi, H., Astier, A., and Paul, M. Atovaquone-loaded nanocapsules: influence of the nature of the polymer on their in vitro characteristics. International Journal of Pharmaceutics, 2003. Vol. 250, pp. 273–281.

[66] Leroueil-Le Verger, M., Fluckiger, L., Kim, Y.-I., Hoffman, M., and Maincent, P. Preparation and characterization of nanoparticles containing an antihypertensive agent. European Journal of Pharmaceutics and Biopharmaceutics, 1998. Vol. 46, pp. 137–143.

[67] Leroux, J.-C., Allémann, E., Doelker, E., and Gurny, R. New approach for the preparation of nanoparticles by an emulsification-diffusion method. European Journal of Pharmaceutics and Biopharmaceutics, 1995. Vol. 41, pp. 14–18.

[68] Quintanar-Guerrero, D., Fessi, H., Allémann, E., and Doelker, E. Influence of stabilizing agents and preparative variables on the formation of poly(D,L-lactic acid) nanoparticles by an emulsification-diffusion technique. International Journal of Pharmaceutics, 1996. Vol. 143, pp. 133–141.

[69] Allémann, E., Gurny, R., and Doelker, E. Preparation of aqueous polymeric nanodispersions by a reversible salting-out process: influence of process parameters on particle size. International Journal of Pharmaceutics, 1992. Vol. 87, pp. 247–253.

[70] Leroux, J.-C., Cozens, R., Roesel, J. L., Galli, B., Kubel, F., Doelker, E., and Gurny, R. Pharmacokinetics of a novel HIV-1 protease inhibitor incorporated into biodegradable or enteric nanoparticles following intravenous and oral administration to mice. Journal of Pharmaceutical Sciences, 1995. Vol. 84, pp. 1387–1391.

[71] Jacobs, C., Kayser, O., and Müller, R. H. Production and characterisation of mucoadhesive nanosuspensions for the formulation of bupravaquone. International Journal of Pharmaceutics, 2001. Vol. 214, pp. 3–7.

[72] Merisko-Liversidge, E., Liversidge, G. G., and Cooper, E. R. Nanosizing: a formulation approach for poorly-water-soluble compounds. European Journal of Pharmaceutical Sciences, 2003. Vol. 18, pp. 113–120.

[73] Mitchell, S. A., Reynolds, T. D., and Dasbach, T. P. A compaction process to enhance dissolution of poorly water-soluble drugs using hydroxypropyl methylcellulose. International Journal of Pharmaceutics, 2003. Vol. 250, pp. 3–11.

[74] Müller, R. H., Schmidt, S., Buttle, I., Akkar, A., Schmitt, J., and Brömer, S. SolEmuls-novel technology for the formulation of i.v. emulsions with poorly soluble drugs. International Journal of Pharmaceutics, 2004. Vol. 269, pp. 293–302.

[75] Müller, R. H. and Peters, K. Nanosuspensions for the formulation of poorly soluble drugs I. Preparation by a size-reduction technique. International Journal of Pharmaceutics, 1998. Vol. 160, pp. 229–237.

[76] Pillay, V. and Fassihi, R. Unconventional dissolution methologies. Journal of Pharmaceutical Sciences, 1999. Vol. 88, pp. 843–851.

[77] Vadnere, M. K. Coprecipitates and melts. In: Swarbrick, J. and Boylan,
J. C. (Eds.) Encyclopedia of Pharmaceutical Technology. Pp. 337–352. New York, USA: Marcel Dekker, Inc., 1990. ISBN 0-8247-2802-5.

[78] Humberstone, A. J. and Charman, W. N. Lipid-based vehicles of the oral delivery of poorly water-soluble drugs. Advanced Drug Delivery Reviews, 1997. Vol. 25, pp. 103–128.

[79] Vemuri, S. and Rhodes, C. T. Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharmaceutica Acta Helvetiae, 1995. Vol. 70, pp. 95–111.

[80] Duchêne, D., Wouessidjewe, D., and Ponchel, G. Cyclodextrins and carrier systems. Journal of Controlled Release, 1999. Vol. 62, pp. 263–268.

[81] Hirayama, F. and Uekama, K. Cyclodextrin-based controlled drug release system. Advanced Drug Delivery Reviews, 1999. Vol. 36, pp. 125–141.

[82] Loftsson, T. and Brewster, M. E. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. Journal of Pharmaceutical Sciences, 1996. Vol. 85, pp. 1017–1025.

[83] Beten, D. B. and Moës, A. J. Controlled-release coevaporates of dipyridamole prepared wth acrylic polymers. International Journal of Pharmaceutics, 1994. Vol. 103, pp. 243–251.

[84] Ford, J. L. The current status of solid dispersions. Pharmaceutica Acta Helvetiae, 1986. Vol. 61, pp. 69–88.

[85] Sarkari, M., Brown, J., Chen, X., Swinnea, S., Williams III, R. O., and Johnston, K. P. Enhanced drug dissolution using evaporative precipitation into aqueous solution. International Journal of Pharmaceutics, 2002. Vol. 243,
pp. 17–31.

[86] Corrigan, O. I., Holohan, E. M., and Sabra, K. Amorphous forms of thiazide diuretics prepared by spray-drying. International Journal of Pharmaceutics, 1984. Vol. 18, pp. 195–200.

[87] Kondo, N., Iwao, T., Kikuchi, M., Shu, H., Yamanouchi, K., Yokoyama, K., Obyama, K., and Ogyu, S. Pharmacokinetics of a micronized, poorly water-soluble drug, HO-221, in experimental animals. Biological and Pharmaceutical Bulletin, 1993. Vol. 16, pp. 796–800.

[88] Nimmerfall, F. and Rosenthaler, J. Dependence of area under the curve on proquazone particle size and in vitro dissolution rate. Journal of Pharmaceutical Sciences, 1980. Vol. 69, pp. 605–607.

[89] Mosharraf, M. and Nyström, C. The effect of particle size and shape on the surface specific dissolution rate of microsized practically insoluble drugs. International Journal of Pharmaceutics, 1995. Vol. 122, pp. 35–47.

[90] Hörter, D. and Dressman, J. B. Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Advanced Drug Delivery Reviews, 1997. Vol. 25, pp. 3–14.

[91] Florence, A. T. and Attwood, D. Physicochemical Principles of Pharmacy. Hampshire and London, UK: The Macmillan Press Ltd., 1988. ISBN 0-333-44996-7

[92] Hussain, A. S., Lesko, L. J., Lo, K. Y., Shah, V. P., Volpe, D., and Williams, B. L. The biopharmaceutics classification system: highlights of the FDA's draft guidance. Dissolution Technologies, 1999. Vol. 6, pp. 5–9.

[93] Yu, L. X., Amidon, G. L., Polli, J. E., Zhao, H., Mehta, M. U., Conner, D. P., Shah, V. P., Lesko, L. J., Chen, M.-L., Lee, V. H. L., and Hussain, A. S. Biopharmaceutics classification system: the scientific basis for biowaiver extensions. Pharmaceutical Research, 2002. Vol. 19, pp. 921–925.

[94] Dressman, J., Butler, J., Hempenstall, J., and Reppas, C. The BCS: where do we from here. Pharmaceutical Technology, 2001. Vol. July, pp. 68–76.

[95] Amidon, G. L., Lennernäs, H., Shah, V. P., and Crison, J. R. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharmaceutical Research, 1995. Vol. 12, pp. 413–420.

[96] Yazdanian, M., Briggs, K., Jankovsky, C., and Hawi, A. The "high solubility" definition of the current FDA guidance on biopharmaceutical classification system may be too strict for acidic drugs. Pharmaceutical Research, 2004. Vol. 21, pp. 293–299.

[97] Vandamme, T. F., Lenourry, A., Charrueau, C., and Chaumeil, J.-C. The use of polysaccharides to target drugs to the colon. Carbohydrate polymers, 2002. Vol. 48, pp. 219–231.

[98] Chambliss, W. G. Enteric Coatings. In: Swarbrick J. and Boylan, J. C. (Eds.) Encyclopedia of Pharmaceutical Technology. Pp. 189–200. New York, USA: Marcel Dekker, Inc., 1992. ISBN 0-8247-2804-1.

[99] Seitz, J. A., Mehta, S. P., and Yeager, J. L. Tablet Coating. In: Lachman, L., Lieberman H. A. and Kanig, J. L. (Eds.) The Theory and Practice of Industrial Pharmacy. Pp. 346–373. Philadelphia, USA: Lea & Febiger, 1986. ISBN 0-8121-0977-5.

[100] Earnest, D. L. NSAID-induced gastric injury: Its pathogenesis and management. Seminars in Arthritis and Rheumatism, 1990. Vol. 19, pp. 6–10.

[101] Fara, J. W. and Myrback, R. E. Formulation and dosage form design in drug-induced topical irritation of the gastrointestinal tract. Pharmaceutical Research, 1990. Vol. 7, pp. 616–620.

[102] Palmieri, G. F., Bonacucina, G., Di Martino, P., and Martelli, S. Microencapsulation of semisolid ketoprofen/polymer microspheres. International Journal of Pharmaceutics, 2002. Vol. 242, pp. 175–178.

[103] Cioli, V., Putzolu, S., Rossi, V., Scorza Barcellona, P., and Corradino, C. The role of direct tissue contact in the production of gastrointestinal ulcers by anti-inflammatory drugs in rates. Toxicology and Applied Pharmacology, 1979. Vol. 50, pp. 283–289.

[104] Ammoury, N., Fessi, H., Devissaguet, J.-P., Dubrasquet, M., and Benita, S. Jejunal absorption, pharmacological activity, and pharmacokinetic evaluation of indomethacin-loaded poly(D,L-lactide) and poly(isobutyl-cyanoacrylate) nanocapsules in rats. Pharmaceutical Research, 1991. Vol. 8, pp. 101–105.

[105] Guterres, S. S., Fessi, H., Barratt, G., Puisieux, F., and Devissaguet, J.-P. Poly(D,L-lactide) nanocapsules containing non-steroidal anti-inflammatory drugs: gastrointestinal tolerance following intravenous and oral administration. Pharmaceutical Research, 1995. Vol. 12, pp. 1545–1547.

[106] Kondo, N., Iwao, T., Hirai, K.-I., Fukuda, M., Yamanouchi, K., Yokoyama, K., Miyaji, M., Ishihara, Y., Kon, K., Ogawa, Y., and Mayumi, T. Improved oral absorption of enteric coprecipitates of a poorly soluble drug. Journal of Pharmaceutical Sciences, 1994. Vol. 83, pp. 566–570.

[107] Andrianov, A. K. and Payne, L. G. Polymeric carriers for oral uptake of microparticulates. Advanced Drug Delivery Reviews, 1998. Vol. 34, pp. 155–170.

[108] Couvreur, P. and Puisieux, F. Nano- and microparticles for the delivery of polypeptides and proteins. Advanced Drug Delivery Reviews, 1993. Vol. 10,
pp. 141–162.

[109] Morishita, M., Morishita, I., Takayama, K., Machida, Y., and Nagai, T. Novel oral microspheres of insulin with protease inhibitor protecting from enzymatic degradation. International Journal of Pharmaceutics, 1992. Vol. 78, pp. 1–7.

[110] Bruner, L. and Tolloczko, S. Über die Auflösungsgeschwindigkeit Fester Körper. Zeitscrift für Physikalische Chemie, 1900. Vol. 35, pp. 283–290.

[111] Nernst, W. Theorie der Reaktionsgeschwindigkeit in Heterogenen Systemen. Zeitscrift für Physikalische Chemie, 1904. Vol. 47, pp. 52–55.

[112] Brunner, E. Reaktionsgeschwindigkeit in Heterogenen Systemen. Zeitscrift für Physikalische Chemie, 1904. Vol. 47, pp. 56–102.

[113] Banakar, U. V. Pharmaceutical Dissolution Testing. New York, USA: Marcel Dekker, Inc., 1992. ISBN 0-8247-8567-3.

[114] Abdou, H. M. Dissolution, Bioavailability & Bioequivalence. Easton, USA: Mack Printing Company, 1989. ISBN 0-912-734-20-5

[115] Mooney, K. G., Mintun, M. A., Himmelstein, K. J., and Stella, V. J. Dissolution kinetics of carboxylic acids I: Effect of pH under unbuffered conditions. Journal of Pharmaceutical Sciences, 1981. Vol. 70, pp. 13–22.

[116] Mooney, K. G., Mintun, M. A., Himmelstein, K. J., and Stella, V. J. Dissolution kinetics of carboxylic acids II: Effect of buffers. Journal of Pharmaceutical Sciences, 1981. Vol. 70, pp. 22–32.

[117] Serajuddin, A. T. M. and Jarowski, C. I. Effect of diffusion layer pH and solubility on the dissolution rate of pharmaceutical bases and their hydrochloride salts I: Phenazopyridine. Journal of Pharmaceutical Sciences, 1985. Vol. 74, pp. 142–147.

[118] Serajuddin, A. T. M. and Jarowski, C. I. Effect of diffusion layer pH and solubility on the dissolution rate of pharmaceutical acids and their sodium salts II: Salicylic acid, theophylline, and benzoic acid. Journal of Pharmaceutical Sciences, 1985. Vol. 74, pp. 148–154.

[119] Higuchi, W. I., Parrott, E. L., Wurster, D. E., and Higuchi, T. Investigation of drug release from solids II. Theoretical and experimental study of influences of bases and buffers on rates of dissolution of acidic solids. Journal of the American Pharmaceutical Association, 1958. Vol. 47, pp. 376–383.

[120] Buckton, G. Interfacial Phenomena in Drug Delivery and Targeting. In: Florence, A. T. and Gregoriadis, G. (Eds.) Drug Delivery and Targeting. Chur, Switzerland: Harwood Academic Publishers, 1995. ISBN 3-7186-5633-7.

[121] Noyes, A. A. and Whitney, W. R. Ueber die Auflösungsgeschwindigkeit von Festen Stoffen in Ihren Eigenen Lösungen. Zeitscrift für Physikalische Chemie, 1897. Vol. 23, pp. 689–692.

[122] Vergote, G. J., Vervaet, C., Van Driessche, I., Hoste, S., De Smedt, S., Demeester, J., Jain, R. A., Ruddy, S., and Remon, J. P. In vivo evaluation of matrix pellets containing nanocrystalline ketoprofen. International Journal of Pharmaceutics, 2002. Vol. 240, pp. 79–84.

[123] Buckton, G. and Darcy, P. Assessment of disorder in crystalline powders – a review of analytical techniques and their application. International Journal of Pharmaceutics, 1999. Vol. 179, pp. 141–158.

[124] Hancock, B. C. and Parks, M. What is the true solubility advantage for amorphous pharmaceuticals? Pharmaceutical Reseach, 2000. Vol. 17, pp. 397–404.

[125] Byrn, S., Pfeiffer, R., Ganey, M., Hoiberg, C., and Poochikian, G. Pharmaceutical solids: a strategic approach to regulatory considerations. Pharmaceutical Research, 1995. Vol. 12, pp. 945–954.

[126] Broadhead, J., Rouan, S. K. E., and Rhodes, C. T. The spray drying of pharmaceuticals. Drug Development and Industrial Pharmacy, 1992. Vol. 18, pp. 1169–1206.

[127] Kerc, J. and Srcic, S. Thermal analysis of glassy pharmaceuticals. Thermochimica Acta, 1995. Vol. 248, pp. 81–95.

[128] Yu, L. Amorphous pharmaceutical solids: preparation, characterization and stabilization. Advanced Drug Delivery Reviews, 2001. Vol. 48, pp. 27–42.

[129] Hancock, B. C. and Zografi, G. Characteristics and significance of the amorphous state in pharmaceutical systems. Journal of Pharmaceutical Sciences, 1997. Vol. 86, pp. 1–12.

[130] Giron, D. Thermal Analysis, microcalorimetry and combined techniques for the study of pharmaceuticals. Journal of Thermal Analysis and Calorimetry, 1999. Vol. 56, pp. 1285–1304.

[131] Phipps, M. A. and Mackin, L. A. Application of isothermal microcalorimetry in solid state drug development. Pharmaceutical Science and Technology Today, 2000. Vol. 3, pp. 9–17.

[132] Vippagunta, S. R., Brittain, H. G., and Grant, D. J. W. Crystalline solids. Advanced Drug Delivery Reviews, 2001. Vol. 48, pp. 3–26.

[133] Ward, G. H. and Schultz, R. K. Process-induced crystallinity changes in albuterol sulfate and its effect on powder physical stability. Pharmaceutical Research, 1995. Vol. 12, pp. 773–779.

[134] Buckton, G. Characterisation of small changes in the physical properties of powders of significance for dry powder inhaler formulations. Advanced Drug Delivery Reviews, 1997. Vol. 26, pp. 17–27.

[135] Byrn, S. R., Xu, W., and Newman, A. W. Chemical reactivity in solid-state pharmaceuticals: formulation implications. Advanced Drug Delivery Reviews, 2001. Vol. 48, pp. 115–136.

[136] Ahlneck, C. and Zografi, G. The molecular basis of moisture effects on the physical and chemical stability of drugs in the solid state. International Journal of Pharmaceutics, 1990. Vol. 62, pp. 87–95.

[137] Shalaev, E. Y. and Zografi, G. How does residual water affect the solid-state degradation of drugs in the amorphous state? Journal of Pharmaceutical Sciences, 1996. Vol. 85, pp. 1137–1141.

[138] Hancock, B. C. and Zografi, G. The relationship between the glass transition temperature and the water content of amorphous pharmaceutical solids. Pharmaceutical Research, 1994. Vol. 11, pp. 471–477.

[139] Kontny, M. J., Grandolfi, G. P., and Zografi, G. Water vapor sorption of water soluble substances: Studies of crystalline solids below their critical relative humidities. Pharmaceutical Research, 1987. Vol. 4, pp. 104–112.

[140] Fukuoka, E., Makita, M., and Yamamura, S. Glassy state of pharmaceuticals. III. Thermal properties and stability of glassy pharmaceuticals and their binary glass systems. Chemical and Pharmaceutical Bulletin, 1989. Vol. 37, pp. 1047–1050.

[141] Timko, R. J. and Lordi, N. G. Thermal analysis studies of glass dispersion systems. Drug Development and Industrial Pharmacy, 1984. Vol. 10, pp. 425–451.

[142] Nicholson, J. W. The Chemistry of Polymers. Cambridge, UK: The Royal Society of Chemistry, 1991. ISBN 0-85186-413-9

[143] Odian, G. Principles of Polymerization. New York, USA: John Wiley & Sons, Inc., 1991. ISBN 0-471-61020-8

[144] Leuner, C. and Dressman, J. Improving drug solubility for oral delivery using solid dispersions. European Journal of Pharmaceutics and Biopharmaceutics, 2000. Vol. 50, pp. 47–60.

[145] Ford, J. L. The use of thermal analysis in the study of solid dispersions. Drug Development and Industrial Pharmacy, 1987. Vol. 13, pp. 1741–1777.

[146] Jenquin, M. R., Liebowitz, S. M., Sarabia, R. E., and McGinity, J. W. Physical and chemical factors influencing the release of drugs from acrylic resin films. Journal of Pharmaceutical Sciences, 1990. Vol. 79, pp. 811–816.

[147] Jenquin, M. R. and McGinity, J. W. Characterization of acrylic resin matrix films and mechanisms of drug-polymer interactions. International Journal of Pharmaceutics, 1994. Vol. 101, pp. 23–34.

[148] Lin, S. Y. and Perng, R. I. Solid-state interaction studies of drugs/polymers: I. Indomethacin/Eudragit E, RL or S resins. STP Pharma Sciences, 1993. Vol. 3, pp. 465–471.

[149] Lin, S.-Y., Cheng, C.-L., and Perng, R.-I. Solid-state interaction studies of drug-polymers (II): Warfarin-Eudragit E, RL, or S resins. European Journal of Pharmaceutical Sciences, 1994. Vol. 1, pp. 313–322.

[150] Lin, S.-Y., Liao, C.-M., Hsiue, G.-H., and Liang, R.-C. Study of a theophylline-Eudragit L mixture using a combined system of microscopic Fourier-transform infrared spectroscopy and differential scanning calorimetry. Thermochimica Acta, 1995. Vol. 245, pp. 153–166.

[151] Lovrecich, M., Nobile, F., Rubessa, F., and Zingone, G. Effect of ageing on the release of indomethacin from solid dispersions with Eudragits. International Journal of Pharmaceutics, 1996. Vol. 131, pp. 247–255.

[152] Wu, C. and McGinity, J. W. Influence of ibuprofen as a solid-state plasticizer in Eudragit RS 30 D on the physicochemical properties of coated beads. AAPS PharmSciTech, 2001. Vol. 2, pp. Article 24.

[153] Yüksel, N., Tincer, T., and Baykara, T. Interaction between nicardipine hydrochloride and polymeric microspheres for a controlled release system. International Journal of Pharmaceutics, 1996. Vol. 140, pp. 145–154.

[154] Crowley, K. J. and Zografi, G. The effect of low concentrations of molecularly dispersed poly(vinylpyrrolidone) on indomethacin crystallization from the amorphous state. Pharmaceutical Research, 2003. Vol. 20, pp. 1417–1422.

[155] Karjalainen, T., Rich, J., and Seppälä, J. Release of model compounds from modified lactone copolymers. Journal of Applied Polymer Science, 2001. Vol. 81, pp. 2118–2126.

[156] Rich, J., Karjalainen, T., Ahjopalo, L., and Seppälä, J. Model compound release from DL-lactide/e-caprolactone copolymers and evaluation of specific interactions by molecular modeling. Journal of Applied Polymer Science, 2002. Vol. 86, pp. 1–9.

[157] Pignatello, R., Amico, D., Chiechio, S., Spadaro, C., and Puglisi, G. Preparation and analgesic activity of Eudragit RS100 microparticles containing diflunisal. Drug Delivery, 2001. Vol. 8, pp. 35–45.

[158] Pignatello, R., Ferro, M., and Puglisi, G. Preparation of solid dispersions of nonsteroidal anti-inflammatory drugs with acrylic polymers and studies on mechanisms of drug-polymer interactions. AAPS PharmSciTech, 2002. Vol. 3, pp. Article 10.

[159] Wu, C. and McGinity, J. W. Non-traditional plasticization of polymeric films. International Journal of Pharmaceutics, 1999. Vol. 177, pp. 15–27.

[160] Mura, P., Manderioli, A., Bramanti, G., and Ceccarelli, L. Properties of solid dispersions of naproxen in various polyethylene glycols. Drug Development and Industrial Pharmacy, 1996. Vol. 22, pp. 909–916.

[161] Shukla, A. J. Polymethacrylates. In: Wade, A. and Weller, P. J. (Eds.) Handbook of Pharmaceutical Excipients. Washington DC, USA: American Pharmaceutical Association, Pharmaceutical Press, 1994. ISBN 0-91730-66-8.

[162] Dittgen, M., Durrani, M., and Lehmann, K. Acrylic polymers A review of pharmaceutical applications. STP Pharma Sciences, 1997. Vol. 7, pp. 403–437.

[163] El-Kamel, A. H., Sokar, M. S., Al Gamal, S. S., and Naggar, V. F. Preparation and evaluation of ketoprofen floating oral delivery system. International Journal of Pharmaceutics, 2001. Vol. 220, pp. 13–21.

[164] Esposito, E., Roncarati, R., Cortesi, R., Cervellati, F., and Nastruzzi, C. Production of Eudragit microparticles by spray-drying technique: influence of experimental parameters on morphological and dimensional characteristics. Pharmaceutical Development and Technology, 2000. Vol. 5, pp. 267–278.

[165] Esposito, E., Cervellati, F., Menegatti, E., Nastruzzi, C., and Cortesi, R. Spray dried Eudragit microparticles as encapsulation devices for vitamin C. International Journal of Pharmaceutics, 2002. Vol. 242, pp. 329–334.

[166] Palmieri, G. F., Wehrlé, P., and Stamm, A. Evaluation of spray-drying as a method to prepare microparticles for controlled drug release. Drug Development and Industrial Pharmacy, 1994. Vol. 20, pp. 2859–2879.

[167] Takeuchi, H., Handa, T., and Kawashima, Y. Controlled release teophylline tablet with acrylic polymers prepared by spray-drying technique in aqueous system. Drug Development and Industrial Pharmacy, 1989. Vol. 15, pp. 1999–2016.

[168] Al Khouri Fallouh, N., Roblot-Treupel, L., Fessi, H., Devissaguet, J. P., and Puisieux, F. Development of a new process for the manufacture of polyisobutylcyanoacrylate nanocapsules. International Journal of Pharmaceutics, 1986. Vol. 28, pp. 125–132.

[169] Rollot, J. M., Couvreur, P., Roblot-Treubel, L., and Puisieux, F. Physicochemical and morphological characterization of polyisobutyl cyanoacrylate nanocapsules. Journal of Pharmaceutical Sciences, 1986. Vol. 75, pp. 361–364.

[170] Fessi, H., Puisieux, F., Devissaguet, J. P., Ammoury, N., and Benita, S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. International Journal of Pharmaceutics, 1989. Vol. 55, pp. R1–R4.

[171] Magenheim, B. and Benita, S. Nanoparticle characterization: a comprehensive physicochemical approach. STP Pharma Sciences, 1991. Vol. 1, pp. 221–241.

[172] Arshady, R. Preparation of biodegradable microspheres and microcapsules: 2. Polylactides and related polyesters. Journal of Controlled Release, 1991. Vol. 17, pp. 1–22.

[173] Bodmeier, R., Chen, H., Tyle, P., and Jarosz, P. Spontaneous formation of drug-containing acrylic nanoparticles. Journal of Microencapsulation, 1991. Vol. 8, pp. 161–170.

[174] Kawashima, Y., Niwa, T., Handa, T., Takeuchi, H., Iwamoto, T., and Itoh, K. Preparation of controlled-release microspheres of ibuprofen with acrylic polymers by a novel quasi-emulsion solvent diffusion method. Journal of Pharmaceutical Sciences, 1989. Vol. 78, pp. 68–72.

[175] Kawashima, Y., Iwamoto, T., Niwa, T., Takeuchi, H., and Hino, T. Size control of ibuprofen microspheres with an acrylic polymer by changing the pH in an aqueous dispersion medium and its mechanism. Chemical and Pharmaceutical Bulletin, 1993. Vol. 41, pp. 191–195.

[176] Quintanar-Guerrero, D., Allémann, E., Doelker, E., and Fessi, H. Preparation and characterization of nanocapsules from preformed polymers by a new process based on emulsification-diffusion technique. Pharmaceutical Research, 1998. Vol. 15, pp. 1056–1062.

[177] Peltonen, L., Koistinen, P., Karjalainen, M., Häkkinen, A., and Hirvonen, J. The effect of cosolvents on the formulation of nanoparticles from low-molecular-weight poly(l)lactide. AAPS PharmSciTech, 2002. Vol. 3, pp. Article 32.

[178] Bodmeier, R., Wang, H., Dixon, D. J., Mawson, S., and Johnston, K. P. Polymeric microspheres prepared by spraying into compressed carbon dioxide. Pharmaceutical Research, 1995. Vol. 12, pp. 1211–1217.

[179] Bodmeier, R. and Chen, H. Preparation and characterization of microspheres containing the anti-inflammatory agents, indomethacin, ibuprofen, and ketoprofen. Journal of Controlled Release, 1989. Vol. 10, pp. 167–175.

[180] Bodmeier, R. and McGinity, J. W. Solvent selection in the preparation of poly(DL-lactide) microspheres prepared by the solvent evaporation method. International Journal of Pharmaceutics, 1988. Vol. 43, pp. 179–186.

[181] Jain, R. A. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials, 2000. Vol. 21, pp. 2475–2490.

[182] Müller, C. R., Schaffazick, S. R., Pohlmann, A. R., de Lucca Freitas, L., Pesce da Silveira, N., Dalla Costa, T., and Guterres, S. S. Spray-dried diclofenac-loaded poly(e-caprolactone) nanocapsules and nanospheres. Preparation and physicochemical characterization. Pharmazie, 2001. Vol. 56, pp. 864–867.

[183] Vergote, G. J., Vervaet, C., Van Driessche, I., Hoste, S., De Smedt, S., Demeester, J., Jain, R. A., Ruddy, S., and Remon, J. P. An oral controlled release matrix pellet formulation containing nanocrystalline ketoprofen. International Journal of Pharmaceutics, 2001. Vol. 219, pp. 81–87.

[184] De Jaeghere, F., Allémann, E., Leroux, J.-C., Stevels, W., Feijen, J., Doelker, E., and Gurny, R. Formulation and lyoprotection of poly(lactic acid-co-ethylene oxide) nanoparticles: influence on physical stability and in vitro cell uptake. Pharmaceutical Research, 1999. Vol. 16, pp. 859–866.

[185] Reverchon, E. Supercritical antisolvent precipitation of micro- and nano-particles. Journal of Supercritical Fluids, 1999. Vol. 15, pp. 1–21.

[186] Reverchon, E. and Della Porta, G. Production of antibiotic micro- and nano-particles by supercritical antisolvent precipitation. Powder Technology, 1999. Vol. 106, pp. 23–29.

[187] Reverchon, E., De Marco, I., and Della Porta, G. Rifampicin micoparticles production by supercritical antisolvent precipitation. International Journal of Pharmaceutics, 2002. Vol. 243, pp. 83–91.

[188] Rogers, T. L., Johnston, K. P., and Williams III, R. O. Solution-based particle formation of pharmaceutical powders by supercritical or compressed fluid CO2 and cryogenic spray-freezing technologies. Drug Development and Industrial Pharmacy, 2001. Vol. 27, pp. 1003–1015.

[189] Tom, J. W. and Debenedetti, P. G. Particle formation with supercritical fluids – a review. Journal of Aerosol Science, 1991. Vol. 22, pp. 555–584.

[190] Tu, L. S., Dehghani, F., and Forster, N. R. Micronisation and microencapsulation of pharmaceuticals using a carbon dioxide antisolvent. Powder Technology, 2002. Vol. 126, pp. 134–149.

[191] Yeo, S.-D., Lim, G.-B., Debenedetti, P. G., and Bernstein, H. Formation of microparticulate protein powders using a supercritical fluid antisolvent. Biotechnology and Bioengineering, 1993. Vol. 41, pp. 341–346.

[192] York, P. Strategies for particle desing using supercritical fluid technologies. Pharmaceutical Science & Technology Today, 1999. Vol. 2, pp. 430–440.

[193] Palakodaty, S., York, P., and Pritchard, J. Supercritical fluid processing of materials from aqueous solutions: The application of SEDS to lactose as a model substance. Pharmaceutical Research, 1998. Vol. 15, pp. 1835–1843.

[194] Moshashaée, S., Bisrat, M., Forbes, R. T., Nyqvist, H., and York, P. Supercritical fluid processing of proteins I: Lysozyme precipitation from organic solution. European Journal of Pharmaceutical Sciences, 2000. Vol. 11, pp. 239–245.

[195] Palakodaty, S. and York, P. Phase behavioural effects on particle formation processes using supercritical fluids. Pharmaceutical research, 1999. Vol. 16, pp. 976–985.

[196] Juppo, A. M., Boissier, C., and Khoo, C. Evaluation of solid dispersion particles prepared with SEDS. International Journal of Pharmaceutics, 2003. Vol. 250, pp. 385–401.

[197] Giunchedi, P. and Conte, U. Spray-drying as a preparation method of microparticulate drug delivery system: an overview. STP Pharma Sciences, 1995. Vol. 5, pp. 276–290.

[198] Nielsen, F. Spray drying pharmaceuticals. Manufacturing Chemist, 1982. Vol. 57, pp. 38–41.

[199] Bodmeier, R. and Chen, H. Preparation of biodegradable poly(+)lactide microparticles using a spray-drying technique. Journal of Pharmacy and Pharmacology, 1988. Vol. 40, pp. 754–757.

[200] Wang, F.-J. and Wang, C.-H. Sustained release of etanidazole from spray dried microspheres prepared by non-halogenated solvents. Journal of Controlled Release, 2002. Vol. 81, pp. 263–280.

[201] Pignatello, R., Vandelli, M. A., Giunchedi, P., and Puglisi, G. Properties of tolmetin-loaded Eudragit RL100 and Eudragit RS100 microparticles prepared by different techniques. STP Pharma Sciences, 1997. Vol. 7, pp. 148–157.

[202] Maa, Y.-F., Nguyen, P.-A. T., and Hsu, S. W. Spray-drying of air-liquid interface sensitive recombinant human growth hormone. Journal of Pharmaceutical Sciences, 1998. Vol. 87, pp. 152–159.

[203] Jung, J.-Y., Yoo, S. D., Lee, S.-H., Kim, K.-H., Yoon, D.-S., and Lee, K.-H. Enhanced solubility and dissolution rate of itraconazole by a solid dispersion technique. International Journal of Pharmaceutics, 1999. Vol. 187, pp. 209–218.

[204] Corrigan, O. I., Holohan, E. M., and Reilly, M. R. Physicochemical properties of indomethacin and related compounds co-spray dried with polyvinylpyrrolidone. Drug Development and Industrial Pharmacy, 1985. Vol. 11, pp. 677–695.

[205] Kristmundsdóttir, T., Gudmundsson, Ó. S., and Ingvarsdóttir, K. Release of diltiazem from Eudragit microparticles prepared by spray-drying. International Journal of Pharmaceutics, 1996. Vol. 137, pp. 159–165.

[206] Takenaka, H., Kawashima, Y., and Lin, S. Y. Polymorphism of spray-dried microencapsulated sulfamethoxazole with cellulose acetate phtalate and colloidal silica, montmorillonite, or talc. Journal of Pharmaceutical Sciences, 1981. Vol. 70, pp. 1256–1260.

[207] Tsapis, N., Bennett, D., Jackson, B., Weitz, D. A., and Edwards, D. A. Trojan particles: Large porous carriers of nanoparticles for drug delivery. Proceedings of the National Academy of Sciences of the United States of America, 2002. Vol. 99, pp. 12001–12005.

[208] Wan, L. S. C., Heng, P. W. S., and Chia, C. G. H. Preparation of coated particles using a spray drying process with an aqueous system. International Journal of Pharmaceutics, 1991. Vol. 77, pp. 183–191.

[209] Wan, L. S. C., Heng, P. W. S., and Chia, C. G. H. Plasticizers and their effects on microencapsulation process by spray-drying in an aqueous system. Journal of Microencapsulation, 1992. Vol. 9, pp. 53–62.

[210] Wan, L. S. C., Heng, P. W. S., and Chia, C. G. H. Spray drying as a process for microencapsulation and the effect of different coating polymers. Drug Development and Industrial Pharmacy, 1992. Vol. 18, pp. 997–1011.

[211] Watanabe, W., Ahonen, P., Kauppinen, E., Brown, D., Jokiniemi, J., and Muttonen, E. (2003). “Inhalation Particles.” Patent WO 03/002111, Orion Corporation.

[212] TSI Incorporated. Model 3075/3076 constant output atomizer instruction manual. St. Paul, USA: TSI Incorporated, 2000.

[213] Brown, D. P. Development of a three-dimensional coupled flow, species and aerosol model: Applications to particle deposition in gas turbines and aerosol formation and growth in jet engine exhausts. Ph.D. thesis. Cincinnati, USA: University of Cincinnati, Environmental Engineering, 1996.

[214] Brown, D. P., Jokiniemi, J. K., and Kauppinen, E. I. Heat and mass transfer in aerosol systems. Proceedings of Vapor Phase Synthesis of Materials III, Haikko, Finland, July 18–23, 1999.

[215] Hillamo, R. E. and Kauppinen, E. I. On the performance of the Berner low pressure impactor. Aerosol Science and Technology, 1991. Vol. 14, pp. 33–47.

[216] Giunchedi, P., Conti, B., Maggi, L., and Conte, U. Cellulose acetate butyrate and polycaprolactone for ketoprofen spray-dried microsphere preparation. Journal of Microencapsulation, 1994. Vol. 11, pp. 381–393.

[217] Moretti, M. D. L., Gavini, E., Juliano, C., Pirisino, G., and Giunchedi, P. Spray-dried microspheres containing ketoprofen formulated into capsules and tablets. Journal of Microencapsulation, 2001. Vol. 18, pp. 111–121.

[218] Palmieri, G. F., Bonacucina, G., Di Martino, P., and Martelli, S. Gastro-resistant microspheres containing ketoprofen. Journal of Microencapsulation, 2002. Vol. 19, pp. 111–119.

[219] Palmieri, G. F., Elisei, I., Di Martino, P., and Martelli, S. Formulation of microparticulate systems for modified release containing ketoprofen. 19th Pharmaceutical Technology Conference, April 11.–13., Italy, 2000.

[220] Sveinsson, S. J. and Kristmundsdóttir, T. Naproxen microcapsules: preparation and in vitro characterization. International Journal of Pharmaceutics, 1992. Vol. 82, pp. 129–133.

[221] Yamada, T., Onishi, H., and Machida, Y. Sustained release ketoprofen microparticles with ethylcellulose and carboxymethylethylcellulose. Journal of Controlled Release, 2001. Vol. 75, pp. 271–282.

[222] Kim, J.-H., Paxton, T. E., and Tomasko, D. L. Microencapsulation of naproxen using rapid expansion of supercritical solutions. Biotecnology Progress, 1996. Vol. 12, pp. 650–661.

[223] Rohdewald, P. Beclometasondipropionat. In: Hartke, K. (Ed.) Kommentar zum Europäischen Arzneibuch. Stuttgart, Eschborn, Germany: Wissenschaftliche Verlagsgesellschaft mbH, Govi-Verlag, 2001. ISBN 3-8047-1791-8.

[224] Avdeef, A., Berger, C. M., and Brownell, C. pH-metric solubility. 2: correlation between the acid-base titration and the saturation shake-flask solubility-pH methods. Pharmaceutical Research, 2000. Vol. 17, pp. 85–89.

[225] Yalkowsky, S. H. and Dannenfelser, R. M. The Aquasol Database of Aqueous Solubility. Tucson, USA: College of Pharmacy, University of Arizona, 1992.

[226] Millard, J. W. and Myrdal, P. B. Anhydrous beclomethasone dipropionate. Acta Crystallographica E, 2002. Vol. 58.

[227] Briard, P. P. and Rossi, J. C. Kétoprofène. Acta Crystallographica, 1990. Vol. C46, pp. 1036–1038.

[228] Ravikumar, K., Rajan, S. S., and Pattabhi, V. Structure of naproxen. Acta Crystallographica C, 1985. Vol. 41, pp. 280–282.

[229] Greenley, R. Z. Q and e values for Free Radical Copolymerization of Vinyl Monomers and Telogens. In: Brandrup, J. and Immergut, E. H. (Eds.) Polymer Handbook. pp. II/267–II/274. New York, USA: John Wiley & Sons, Inc., 1989. ISBN 0-471-81244-7.

[230] Porsch, B., Hillang, I., Karlsson, A., and Sundelöf, L.-O. Ion-exclusion controlled size-exclusion chromatography of methacryllic acid-methyl methacrylate copolymers. Journal of Chromatography A, 2000. Vol. 872, pp. 91–99.

[231] Wittgren, B., Welinder, A., and Porsch, B. Molar mass characterization of cationic methyl methacrylate – ethyl acrylate copolymers using size-exclusion chromatography with online multi-angle light scattering and refractometric detection. Journal of Chromatography A, 2003. Vol. 1002, pp. 101–109.

[232] Atkins, P. W. Physical Chemistry. Oxford, UK: Oxford University Press, 1990. ISBN 0-19-855283-1.

[233] Neubeck, M. Ketoprofen. In: Hartke, K. (Ed.) Kommentar zum Europäischen Arzneibuch. Stuttgart, Eschborn, Germany: Wissenschaftliche Verlagsgesellschaft mbH, Govi-Verlag, 2001. ISBN 3-8047-1791-8.

[234] Wirbizki, E. Naproxen. In: Hartke, K. (Ed.) Kommentar zum Europäischen Arzneibuch. Stuttgart, Eschborn, Germany: Wissenschaftliche Verlagsgesellschaft mbH, Govi-Verlag, 2001. ISBN 3-8047-1791-8.

[235] United States Pharmacopeia 25. <724> Drug Release. Rockville, MD, USA: United States Pharmacopeial Convention, 2001. ISBN 1-889788-10-4.

[236] Gurav, A., Kodas, T., Pluym, T., and Xiong, Y. Aerosol Processing of Materials. Aerosol Science and Technology, 1993. Vol. 19, pp. 411–452.

[237] Lefebvre, A. H. Atomization and Sprays. In: Chigier, N. (Ed.) Combustion: An International Series. New York, USA: Hemisphere Publishing Corporation, 1989. ISBN 0-89116-603-3.

[238] Che, S., Sakurai, O., Shinozaki, K., and Mizutami, N. Particle structure control through intraparticle reactions by spray pyrolysis. Journal of Aerosol Science, 1998. Vol. 29, pp. 271–278.

[239] Zhou, X. D., Zhang, S. C., Huebner, W., Ownby, P. D., and Gu, H. Effect of the solvent on the particle morphology of spray dried PMMA. Journal of Materials Science, 2001. Vol. 36, pp. 3759–3768.

[240] Jayanthi, G. V., Zhang, S. C., and Messing, G. L. Modeling of Solid Particle Formation During Solution Aerosol Thermolysis. The Evaporation Stage. Aerosol Science and Technology, 1993. Vol. 19, pp. 478–490.

[241] Xiong, Y. and Kodas, T. T. Droplet evaporation and solute precipitation during spray pyrolysis. Journal of Aerosol Science, 1993. Vol. 24, pp. 893–908.

[242] Leong, K. H. Morphological control of particles generated from the evaporation of solution droplets: theoretical considerations. Journal of Aerosol Science, 1987. Vol. 18, pp. 511–524.

[243] Giunchedi, P., Torre, M. L., Maggi, L., Conti, B., and Conte, U. Cellulose acetate trimetillate ethylcellulose blends for non-steroidal anti-inflammatory drug (NSAID) microspheres. Journal of Microencapsulation, 1996. Vol. 13, pp. 89–98.

[244] Leong, K. H. Morphological control of particles generated from the evaporation of solution droplets: experiment. Journal of Aerosol Science, 1987. Vol. 18, pp. 525–552.

[245] Dubernet, C. Thermoanalysis of microspheres. Thermochimica Acta, 1995. Vol. 248, pp. 259–269.

[246] Dubernet, C., Rouland, J. C., and Benoit, J. P. Ibuprofen-loaded ethylcellulose microspheres: analysis of the matrix structure by thermal analysis. Journal of Pharmaceutical Sciences, 1991. Vol. 80, pp. 1029–1033.

[247] Wunderlich, B. Thermal Analysis. San Diego, USA: Academic Press, Inc., 1990. ISBN 0-12-765605-7.

[248] Morimoto, Y., Kokubo, T., and Sugibayashi, K. Diffusion of drugs in acrylic-type pressure-sensitive adhesive matrix. II. Influence of interaction. Journal of Controlled Release, 1992. Vol. 18, pp. 113–122.

[249] Saleem, M., Asfour, A.-F. A., and De Kee, D. Diffusion of organic penetrants through low density polyethylene (LDPE) films: effect of size and shape of the penetrant molecules. Journal of Applied Polymer Science, 1989. Vol. 37, pp. 617–625.

[250] Lin, S.-Y., Chen, K.-S., and Run-Chu, L. Organic esters of plasticizers affecting the water absorption, adhesive property, glass transition temperature and plasticizer permanence of Eudragit acrylic films. Journal of Controlled Release, 2000. Vol. 68, pp. 343–350.

[251] Cilurzo, F., Minghetti, P., Casiraghi, A., and Montanari, L. Characterization of nifedipine solid dispersions. International Journal of Pharmaceutics, 2002. Vol. 242, pp. 313–317.

[252] Wu, C. and McGinity, J. W. Influence of methylparaben as a solid-state plasticizer on the physicochemical properties of Eudragit RS PO hot-melt extrudates. European Journal of Pharmaceutics and Biopharmaceutics, 2003. Vol. 56, pp. 95–100.

[253] Mura, P., Faucci, M. T., Parrini, P. L., Furlanetto, S., and Pinzauti, S. Influence of the preparation method on the physicochemical properties of ketoprofen-cyclodextrin binary systems. International Journal of Pharmaceutics, 1999. Vol. 179, pp. 117–128.

[254] Sancin, P., Caputo, O., Cavallari, C., Passerini, N., Rodriguez, L., Cini, M., and Fini, A. Effects of ultrasound-assisted compaction on Ketoprofen/Eudragit S100 mixtures. European Journal of Pharmaceutical Sciences, 1999. Vol. 7, pp. 207–213.

[255] Röhm Pharma Polymers Degussa. Specifications and test methods for Eudragit. Darmstadt, Germany: Röhm GmbH & Co. KG, 2003.

[256] Lin, S.-Y., Yu, H.-L., and Li, M.-J. Formation of six-membered cyclic anhydrides by thermally induced intramolecular ester condensation in Eudragit E film. Polymer, 1999. Vol. 40, pp. 3589–3593.

[257] Morawetz, H. Theoretical aspects of chain configuration and counterion distribution in solutions of flexible chain polyelectrolytes. In: S. A. Rice and M. Nagasawa, Eds. Polyelectrolyte Solutions. pp. 207–248. New York: Academic Press, 1961.

[258] Tanford, C. Physical Chemistry of Macromolecules. New York: John Wiley & Sons, Inc., 1961. ISBN 0-471-84447-0.

[259] Meares, P. Transport in Ion-exchange Polymers. In: Crank, J. and Park,
G. S. (Eds.) Diffusion in Polymers. pp. 373–428. London: John Wright & Sons, Inc., 1968.

[260] Higuchi, T. Mechanism of sustained-action medication. Journal of Pharmaceutical Sciences, 1963. Vol. 52, pp. 1145–1149.

[261] Corrigan, O. I. Mechanisms of dissolution of fast release solid dispersions. Drug Development and Industrial Pharmacy, 1985. Vol. 11, pp. 697–724.

[262] Lennernäs, H., Knutson, L., Knutson, T., Lesko, L., Salmonson, T., and Amidon, G. L. Human effective permeability data for furosemide, hydrochlortiazide, ketoprofen, and naproxen to be used in the proposed biopharmaceutical classification for IR-products. Pharmaceutical research, 1995. Vol. 12, pp. S-396.

[263] Pharmaca Fennica. Helsinki: Lääketietokeskus Oy, 2004. ISBN 0355-7472.

[264] Yu, L. X., Crison, J. R., and Amidon, G. L. Compartmental transit and dispersion model analysis of small intestinal transit flow in humans. International Journal of Pharmaceutics, 1996. Vol. 140, pp. 111–118.

[265] Yu, L. X. and Amidon, G. L. A compartmental absorption and transit model for estimating oral drug absorption. International Journal of Pharmaceutics, 1999. Vol. 186, pp. 199–125.

[266] Jamali, F. and Brocks, D. R. Clinical pharmacokinetics of ketoprofen and its enantiomers. Clinical Pharmacokinetics, 1990. Vol. 19, pp. 197–217.

VTT