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Abstract 

Mesoscopic physics deals with systems whose size is between everyday macroscopic scale and the 
microscopic scale of individual atoms. With mesoscopic structures the flow of single electrons can be 
controlled. This thesis focuses on the control of single electrons with normal metal - superconductor 
structures. The emphasis is put on understanding the limitations of the control in the so-called SINIS 
turnstile, which is a device transporting one electron at a time. By repeating the drive with frequency 
f, the resulting electrical current in ideal operation I = ef could be utilized as the new definition in the 
SI unit system. Here e is the elementary charge. 
 
In the first part of the thesis, we review the physics of tunnel-coupled normal metals and 
superconductors and present the operation principle of the SINIS turnstile. We then show parallel 
operation of ten such devices. This allows one to reach larger currents required for high accuracy 
measurements. In addition we show that the experimental setup needs to be carefully designed in 
order to avoid spurious effects due to environmentally assisted tunneling. 
 
The second part of the thesis focuses on Andreev tunneling. In this process two electrons tunnel at 
once in form of a Cooper pair. Andreev tunneling leads to transfer errors, when the tunneling of a 
single electron is preferred. We discuss the experimental detection techniques of Andreev tunneling 
based on direct current measurements as well as on electron counting. Furthermore, we show 
experimentally that by having large enough energy cost for charging the structures, achieved by 
decreasing the size of the system, Andreev tunneling is suppressed and the accuracy of the turnstile 
improves. The electron counting techniques allows us to study nontrivial statistics of Andreev 
tunneling. 
 
In the last part of the thesis, excitations in a superconductor are considered. At low temperatures, the 
number of excitations of a superconductor should diminish exponentially. However, excess 
excitations in form of broken Cooper pairs are typically present limiting the performance of 
superconducting circuits. We discuss ways of probing the excitations in the normal metal - 
superconductor based structures. We investigate the diffusion of the quasiparticles and their 
relaxation to normal metallic traps or due to recombination into Cooper pairs via electron-phonon 
interaction. 
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Tiivistelmä 

Mesoskooppinen fysiikka käsittelee rakenteita, joiden koko on jokapäiväisen makroskooppisen 
mittakaavan ja mikroskooppisen atomimittakaavan välillä. Mesoskooppisissa rakenteissa pystytään 
siirtämään elektroneja hallitusti yksitellen. Tämä väitöskirja keskittyy yksittäisten elektronien 
siirtoon normaalimetalleissa ja suprajohteissa. Eräs työn tärkeimmistä painopisteistä on ymmärtää 
niinkutsutun SINIS-kääntöportin toiminnan rajoitukset. SINIS-kääntöportti on laite, jolla pystytään 
siirtämään elektroneja yksitellen suprajohteelta toiselle. Toistotaajuudella f saadaan näin aikaiseksi 
sähkövirta I = ef, jossa e on alkeisvaraus. 

 
Väitöskirjan ensimmäisessä osassa käsitellään elektronien tunneloitumista normaalimetallin ja 
suprajohteen välillä ja esitetään SINIS-kääntöportin toimintaperiaate. Käyttämällä kymmentä 
kääntöporttia rinnakkain saavutetaan riittävä virtataso tarkkuusmittauksiin. Lisäksi näytämme, että 
näyte pitää suojata hyvin, jotta korkeammista lämpötiloista tuleva säteily ei heikennä laitteen 
toimintaa. 
 
Työn toisessa osassa keskitymme niinkutsuttuun Andreev-tunnelointiin. Kyseisessä prosessissa 
kaksi elektronia tunneloituu samanaikaisesti muodostaen Cooperin parin suprajohteelle. Andreev-
prosessi aiheuttaa virheitä laitteisiin, joiden toiminta perustuu yhden elektronin tunnelointiin. 
Käsittelemme kokeellisia tekniikoita, joilla Andreev-tunnelointi havaitaan ja lisäksi osoitamme, että 
tämä prosessi voidaan välttää SINIS-kääntöportissa. Lisäksi tutkimme elektronilaskentaa käyttäen 
Andreev-tunneloinnin statistisia ominaisuuksia. 
 
Väitöskirjan viimeisessä osassa käsitellään suprajohteiden eksitaatioita. Matalassa lämpötilassa 
eksitaatioiden pitäisi hävitä eksponentiaalisesti. Tyypillisesti näin ei kuitenkaan käy, vaan 
ylimääräisiä eksitaatioita jää suprajohteeseen hajonneiden Cooperin parien muodossa. Nämä 
eksitaatiot heikentävät suprajohteiden ominaisuuksia. Esitämme tässä osassa tapoja, joilla 
eksitaatioita voidaan havaita käyttäen normaalimetallin ja suprajohteen välisiä tunneliliitoksia. 
Tutkimme eksitaatioden diffuusiota ja relaksaatiota näillä menetelmillä. Tutkituissa rakenteissa 
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Preface

This thesis was initiated by a common interest shared by the Low Temper-

ature Laboratory (OVVL) at Aalto University and the Centre for Metrol-

ogy and Accreditation (MIKES). Both of the institutes were curious to

know about the accuracy obtainable with the so-called SINIS turnstile.

At the time I begun the thesis, the SINIS turnstile was a promising new

device for generating a well known electrical current. MIKES was inter-

ested to know whether the SINIS turnstile could be utilized to redefine the

SI unit of electrical current whereas Low Temperature Laboratory was

more interested in understanding the physics of the device. For achieving

both of these goals, the accuracy of the device needed to be increased by

several orders of magnitude and this became the goal for my thesis. First

of all, I want to express my gratitude to both of the institutes for allowing

me to work jointly in them. In addition to administrative staff, I espe-

cially thank my instructor Prof. Jukka Pekola from OVVL and Dr. Antti

Manninen from MIKES for taking care of the required arrangements.

The role of my thesis instructor Prof. Jukka Pekola was not at all limited

to the administrative duties. In fact, he deserves the greatest acknowl-

edgment of this thesis. Without his inspiring ideas, effective solutions to

problems, professional instruction ranging from sample fabrication and

English grammar to detailed theoretical calculations, and devotion and

enthusiasm towards research, this thesis would not exist in the form you

have it now. A good example about depth at which Jukka is involved to

the everyday work in the laboratory, is the case when we repaired together

one of the dilution refrigerators during the days between Christmas and

new year. Having such a talented instructor on a day-to-day basis is a

tremendous privilege for a young student striving to become a physicist.

Thank you for that!

In addition to Jukka, Dr. Matthias Meschke has contributed remarkably
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for the thesis. He is the one who does the silent but very important work

for keeping all equipment running and in good condition. I also thank for

his patience and helpfulness for teaching me hands-on how to build, oper-

ate and repair various gadgets and master the device fabrication. Work-

ing with the talented group members of PICO group of OVVL and elec-

tricity group of MIKES has been also a great asset. Especially working

more closely with Olli-Pentti Saira, Antti Kemppinen, Sergey Kafanov,

Helena Knowles, Jonne Koski, Thomas Aref, Emma Mykkänen and Elsa

Mannila has been very fruitful. Jukka also initiated many valuable con-

tacts to other reseach groups. Collaborating with Yuri Pashkin, Dmitri

Averin, Frank Hekking, Mikko Möttönen, Andreas Heimes, Dimitri Gol-

ubev, Christian Flindt, Dania Kambly, Sergey Lotkhov, Martin Gustafs-

son, Per Delsing and Angelo Di Marco has been essential for the thesis

and has given new ways to approach the same problems. I want to thank

especially Prof. Frank Hekking for teaching the calculation techniques

used in this thesis.

The experimental results of the thesis have benefited from the expertise

of the OVVL mechanical workshop staff. They have been able to material-

ize many desing in short notice, for example the shielded sample holders

used in Publication VI as well as a missing collar for helium transfer de-

war which I by accident shipped away. I also acknowledge the access to

clean room facilities of Micronova and financial support of The National

Doctoral Programme in Nanoscience (NGS-NANO).

Last but not least, I want to thank my gorgeous family and especially my

beloved wife Hanna who has taken care of many things during all these

years. She has been there for me and the whole family whenever needed.

She has also (nearly) always remembered to remind me about important

things.

Helsinki, March 15, 2014,

Ville Maisi
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1. Introduction

Using low temperatures freezes out unwanted degrees of freedom. This

allows one to study fundamental properties of matter in high detail and

make predictions on what happens at higher temperatures where the ex-

citations are present. In addition, fully new phenomena take place at low

temperatures. For example the discreteness of electron charge results in

single-electron effects where the electrons are transported sequentially.

On the other hand, superconductivity with dissipation-free electrical cur-

rent and other peculiar properties arises at low temperatures and pro-

vides opportunities for a vast range of possible applications.

This thesis deals with small metallic systems at low temperatures where

single-electron effects and superconductivity play an important role. These

essential concepts in view of the present thesis are reviewed in Chapter 2.

We focus on structures where superconducting and normal metallic struc-

tures are coupled weakly by an insulating tunnel barrier. The electrons

may pass through such a barrier by tunneling. The weak coupling favors

that the electrons tunnel one by one. On the other hand, in supercon-

ductors the electrons are paired as Cooper pairs. Breaking such a pair

and having a single-electron process requires minimally an energy ∆ per

particle, known as the energy gap [1]. Because of the pair breaking en-

ergy cost, the single-electron tunneling process is suppressed if energies

exceeding ∆ are not available. In this case the transport must involve

simultaneously two electrons in form of a Cooper pair. A process where

a complete Cooper pair moves from a superconductor to a normal metal

or vice versa is known as Andreev reflection. It was first used to describe

thermal conductance between two metals [2], one superconducting the

other one normal. In the case of a tunnel barrier, the process is known

as Andreev tunneling, which is the topic of Chapter 5. We will learn that

at low bias, Andreev tunneling is the dominant process [3–9]. However, if
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small metallic structures are considered, the charging of a metallic island

by an additional electron is associated with an energy cost characterized

by charging energy Ec = e2/(2CΣ), where e is the elementary charge and

CΣ the sum of all capacitances contacted to the island. We observe that

if Ec is made larger than the pair breaking energy ∆, Andreev tunneling

becomes suppressed. This is observed in this thesis, e.g., in direct current

measurements. In addition, Andreev tunneling is studied by detecting

discrete tunneling events in real-time. The observation of the individual

events allows one to study the statistics of them. In Sect. 5.5 we find out

that the interplay of single-electron and two-electron tunneling leads to

non-trivial super-Poissonian statistics. The findings of this chapter are

important for understanding the limitations of hybrid normal metal - su-

perconductor systems, especially for single-electron applications.

The peculiar properties of the superconductors are based on the fact that

a single electron excitation requires an energy exceeding ∆. If this energy

is not available, all the electrons are paired, there are no excitations, and

hence dissipation is also absent. However, when the number of excitations

becomes low, their relaxation also becomes weak and typically excess ex-

citations remain. These residual quasiparticles influence adversely the

performance of superconducting circuits [10–19], as discussed in Chap-

ter 6. We first discuss how the excitations can be experimentally probed

with tunnel junctions between a normal metal and a superconductor. We

observe that the number of them is suppressed when the structures are

well protected from the high temperature environment, and when effi-

cient relaxation is provided.

In Sect. 6.2 we consider the electrical heat conduction and relaxation

in superconducting leads. Heat transport along a superconductor is gov-

erned by diffusion of the excitations. With tunnel junction based struc-

tures we show that the injection and probing of quasiparticles can be

done simultaneously. In this way, we see that the diffusion equation ap-

proach is adequate for describing the relaxation in superconducting lines

with relaxation being dominated by diffusive transport of excitations to

normal metallic parts and further relaxation there. In this case, the in-

herent quasiparticle relaxation of the superconductor by recombination

is not taken into account since it is weak as compared to relaxation in

normal metallic traps. In Sect. 6.4 we consider a small superconducting

island where the electrons cannot diffuse to normal metallic parts. Then

the electron-phonon interaction leading to energy loss and recombination

12
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into Cooper pairs, which is the inherent relaxation mechanism, becomes

important. By injecting and detecting the excitations, as in Sect. 6.2, we

are now able to probe the electron-phonon interaction. The probing is

done down to a level where there is only one broken Cooper pair present,

hence allowing to determine its recombination rate. In the absence of

injection, there are essentially no excitations present.

One of the main motivations for studying the physical phenomena of

this thesis has been the possibility to obtain quantized electrical current

in such structures. Here quantization does not refer to quantum mechan-

ics. The quantization is based in this case on the fact that all electrons

carry the same elementary electronic charge e, which was first observed

in micrometer-sized oil droplets [20, 21]. The quantized current I = nef

results when n electrons are transported in a cycle which is repeated at

a frequency f [22–30]. In Fig. 1.1 the principles of the very first devices

achieving the current quantization experimentally as well as the most

prominent candidates for reaching high accuracy and large enough output

current are shown. Figure 1.1 (a) represents a normal metallic turnstile

where only one radio frequency (RF) signal is needed to obtain the quan-

tization [31]. A voltage bias is applied to the device to set the preferred

direction for tunneling. The offset charge of the central island is driven

periodically to plunge an electron to the middle island and then to push

it out to the other lead and hence one electron is transported per cycle

through the device. The two islands next to the middle one are required

to block the static current flow when degeneracy point of the middle island

is passed.

In panel (b) a device similar to the one in panel (a) but one island less

is shown. By using two RF drives, one for each island, the electrons

can be pumped without an external bias voltage, or even against a small

bias [25]. First the left gate offset charge is changed to pull an electron

into the left island from the left lead. Then the gate offset is moved back

and simultaneously the right gate offset charge is changed to move an

electron from the left island to the right one. Finally, the offset charge

of the right island is brought back to the starting value and an electron

tunnels out from it to the right lead and a single electron is transported

through the device. The accuracy of these two normal metallic devices is

limited by co-tunneling of electrons. The co-tunneling can however be re-

duced by adding more islands in series [28]. The highest accuracy reached

so far with single-electron sources was obtained with the approach shown

13
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(a) (b)

(c) (d)

Figure 1.1. Various single-electron sources. (a) The normal metallic turnstile. Three
normal metallic islands are connected with tunnel junctions. A gate drive is
applied to the central island to obtain quantized current. (b) Normal metallic
single-electron pump. The gate offset charge of two islands are driven period-
ically. A quantized current is obtained without applying a bias voltage since
electrons are moved from one island to another by changing the electron num-
bers of the two island controllably. (c) Potential landscape of a semiconductor
pump. The height of the left barrier is changed cyclically to form a quantum
dot, trap one electron to it from the left reservoir and plunge it to the right
reservoir. The solid and dashed lines show schematically the potential for two
different barrier gate values. (d) The SINIS turnstile. The hysteresis needed
for the turnstile operation is achieved with superconducting leads instead of
the two extra islands as in panel (a). The superconducting electrodes provide
in addition protection against co-tunneling.

in panel (b) with seven junctions in series with an error per pumped elec-

tron of 15 parts in 109 [32]. However, the complexity of the device op-

eration was significantly increased and the overall magnitude of output

current reduced.

Almost at the same time as the operation principle of the metallic de-

vices was demonstrated, semiconductor electron pumps were also devel-

oped [33]. Their operation is based on not only tuning the number of

electrons on a conducting island with a gate offset charge but on the pos-

sibility to open and close tunnel barriers with gate electrodes. In Fig. 1.1

(c) we show a potential energy along a device which has recently been used

to obtain the highest quantization accuracy with an error smaller than 1.2

parts in 106 in a semiconductor devices [30]. It is operated by raising and

lowering a tunnel barrier. Together with another static tunnel barrier, a

quantum dot is formed dynamically, a single-electron captured to it and

plunged over the static barrier. Hence a single-electron is transported in

each cycle and quantized current results.

In this thesis, we focus on the so-called SINIS turnstile [34], which is
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presented schematically in Fig.1.1 (d). It is operated like the normal

metallic turnstile of panel (a). The difference is that the turnstile oper-

ation is achieved by using superconducting leads instead of the two ex-

tra islands. The superconductors suppress effectively the co-tunneling

errors [34] and hence the SINIS turnstile is considered as a potential can-

didate to reach high accuracy. Its operation principle is simple enough to

operate many of them in parallel as described in Sect. 3.3. The Andreev

tunneling, the excitations in superconductors as well as photon assisted

tunneling discussed in Sect. 4 all contribute to the errors of the current

quantization of the SINIS turnstile. These error sources are addressed

in this thesis. By optimizing the operation, the best quantization accu-

racy so far with such a device was obtained with a relative uncertainty as

low as 10−4. However, we believe that after the error sources identified

in this thesis have been suppressed by further optimization, the relative

accuracy of the device can be improved to the level of 10−7 or below.

In addition to the single-electron sources presented in this chaper, there

is a vast range of many other approaches studied as well. A more compre-

hensive discussion of the alternative possibilities is presented in Publica-

tion VIII.
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2. Electron tunneling between a
superconductor and a normal metal

Electrons in a superconductor form Cooper pairs. The pairing is due to an

attractive interaction which is incorporated into the microscopic descrip-

tion of free electrons in a metal to formulate the so-called Bardeen-Cooper-

Schieffer (BCS) theory [35]. This theory is typically the starting point for

considering superconductors. Here we first outline the basic results of

the BCS theory in Sect. 2.1 relevant for this thesis. Then in Sect. 2.2 we

consider single-electron processes between a normal metal and a super-

conductor separated by a thin insulating barrier. We see that the energy

exceeding ∆, for tunneling to take place, can be provided either thermally

or by a voltage bias.

2.1 Superconductivity

The electrons in a superconductor are described in BCS theory by a pair-

ing Hamiltonian, see, eg., Ref. [1],

ĤS =
∑

kσ

εkc
†
kσckσ +

∑

kl

Vklc
†
k↑c
†
−k↓c−l↓cl↑. (2.1)

Here the first part describes electron states with energy εk, momentum

k and spin σ, and c†kσ is the corresponding creation operator. The second

part is the coupling leading to superconductivity. It pairs electrons with

momenta and spin being k ↑ and −k ↓. Next we assume c−k↓ck↑ to have an

expectation value bk = 〈c−k↓ck↑〉, and that the fluctuations (c−k↓ck↑ − bk)
away from this value are small. By keeping only the leading order terms,

we obtain from Eq. (2.1)

ĤS =
∑

kσ

εkc
†
kσckσ −

∑

k

(
∆kc

†
k↑c
†
−k↓ + ∆∗kc−k↓ck↑ −∆kb

∗
k

)
, (2.2)

where ∆k = −∑l Vklbl. Equation (2.2) can be diagonalized with the so-

called Bogoliubov transformation [36, 37] by introducing new fermionic
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creation operators γ†kσ relating to the electron operators by




c†k↑ = v∗kγ−k↓ + ukγ
†
k↑

c†−k↓ = −v∗kγk↑ + ukγ
†
−k↓.

(2.3)

The commutation relations yield |uk|2 + |vk|2 = 1. By choosing uk and vk

in such a way that 2εkukvk + ∆∗kv
2
k −∆ku

2
k = 0, the off-diagonal elements

of ĤS vanish when expressed in terms of γkσ. The Hamiltonian is then

ĤS =
∑

kσ

Ekγ
†
kσγkσ, (2.4)

where we have energy

Ek =
√
ε2
k + |∆k|2, (2.5)

for the excitations with creation operator γ†kσ. The constant condensa-

tion energy is neglected because it does not contribute to the calculations

presented in this thesis. Only the energy differences are relevant. The

coefficients of the transformation in the diagonalized form are given by

|vk|2 = 1− |uk|2 =
1

2

(
1− εk

Ek

)
. (2.6)

Equation (2.3) can be written as c†kσ = v∗kσγ−(kσ) + ukσγ
†
kσ, where vk↑ ≡ vk,

vk↓ ≡ −v−k, uk↑ ≡ uk and uk↓ ≡ u−k. This notation is convenient for the

forthcoming calculations. The Hamiltonian of Eq. (2.4) allows to obtain

the temperature depencence of ∆k as well as the critical temperature TC ,

where the material becomes superconducting [1]. In the following we as-

sume that ∆k = ∆, i.e., that the energy gap is independent of the wavevec-

tor k. This assumption is well valid and justified for our considerations

since only states with |k| close to the Fermi wavevector kF are relevant

and the materials we consider are isotropic, i.e. there are no strong direc-

tional dependencies. Also, we take ∆ to be temperature independent since

we consider superconductor temperatures TS < TC/3, where the temper-

ature depencency of ∆ is exponentially weak [1].

Having Eq. (2.5), we can readily obtain the density of states (DoS) of

a superconductor which is in a very essential role for understanding the

properties of a metal in superconducting state. The DoS yields the num-

ber per unit volume and energy of electronic states at a given energy E,

which we measure with respect to the Fermi level. Equation (2.5) links

the energy of an unpaired electron εk to the excitation energy Ek with

the energy gap ∆k. Since we assume a wavevector independent energy

gap ∆, the wavevector k is irrelevant and we may drop it off and obtain

E =
√
ε2 + |∆|2. Throughout this thesis, we consider small energies, up

18



Electron tunneling between a superconductor and a normal metal

(a) (b)

E

n
S
(E

)

E∆

normal state

-∆

Figure 2.1. Density of states of a superconductor. (a), The density of states (DoS)
nS(E) for quasiparticle excitations with energy E. The curve is normalized
with respect to the constant normal state DoS shown as a grey line. (b),
DoS with the occupations in the low temperature limit. Left side shows the
normal state case and the right hand side shows the superconducting case.
For normal metal, DoS is constant and levels below Fermi level E < 0 are
all filled shown by the blue area and levels above, E > 0 are all vacant.
Similarly, for superconductor, all states at E < −∆ are all filled and all with
E > ∆ are vacant. The region −∆ < E < ∆ is known as the energy gap as
there are no electronic states at all.

to a few meV, around the Fermi energy, which, in turn, is on the eV range.

Therefore we assume that the unpaired energies ε have a constant den-

sity of states around the Fermi level. We obtain the superconducting DoS,

normalized with respect to the normal state value, as

nS(E) =
dε

dE
=

|E|√
E2 −∆2

, (2.7)

for |E| > ∆ and nS(E) = 0 for |E| < ∆. This result is plotted in Fig. 2.1 (a).

We observe that an excitation, see Eq. (2.5), carries an energy |E| > ∆, re-

flecting the fact that the minimum energy cost for an unpaired electron is

∆. In the DoS this is seen as the energy gap: there are no states avail-

able for |E| < ∆. Note that in Fig. 2.1 (a) we have reflected the DoS for

negative energies such that it reduces correctly to the normal state result

when ∆→ 0. We find out in Sect. 2.2 that the reflection to negative ener-

gies is illustrative for considering the electron tunneling. This approach is

known as the semiconductor model [1] since the energy gap of a supercon-

ductor reminds greatly the bandgap of a semiconductor and the coherent

effects of a superconductor are not relevant in this picture. In Fig. 2.1 (b)

we present the occupations of the energy levels for a superconductor and

a normal metal in the zero temperature limit. The states with E < 0 are

occupied by electrons and states with E > 0 are vacant.
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2.2 Electron tunneling

A tunnel contact or a tunnel junction is a structure where two metals are

not in a direct contact but they are separated by a thin insulating layer.

The insulating layer can be vacuum or made of an electrically insulating

material such as aluminum oxide, as in this thesis. In Fig. 2.2 (a) such

a junction is presented. The junction is formed here between the over-

lapping region of a normal metallic (N) copper and superconducting (S)

aluminum. Together with the insulating layer (I) they form an NIS junc-

tion which is the basic building block used in this thesis. In panel (b) the

current I through the junction is measured against bias voltage Vb. Next

we discuss the origin and characteristics of this current.

Classically, electrical current cannot flow from one of the metals to the

other because electrons cannot cross the insulating barrier. However,

with thin barriers, we must consider the situation quantum mechanically.

Quantum mechanics predicts that the electronic states are not fully con-

fined inside the conducting regions but they extend to the insulating ma-

terial. This effect decays exponentially with respect to the distance from

the conductor and hence is not relevant at large distances. At short dis-

tances, i.e. in the case of tunnel contacts, this gives rise to electron trans-

port between neighboring metals. Next, we derive the tunneling rates for

such contacts.

2.2.1 Hamiltonian and current operator

A normal metal and a superconductor contacted by a tunnel junction has

a Hamiltonian

Ĥ = ĤS + ĤN + ĤT + ĤB, (2.8)

where ĤS is the Hamiltonian of a superconductor given by Eq. (2.4). ĤN

is similarly the Hamiltonian for the normal metal with Vkl = 0. It reads

ĤN =
∑

kσ

(εk + eδV̂ (t))a†kσakσ, (2.9)

where a†kσ is the creation operator of an electron with wavevector k and

spin σ. We allow here for generality voltage fluctuations δV̂ (t) to add or

remove energy from the electrons. The fluctuations are caused by photons

coupling to the system and they are described by

ĤB =
∑

λ

~ωλb†λbλ, (2.10)
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Figure 2.2. A typical NIS junction. (a), Optical microscope picture (left) and a scan-
ning electron micrograph (right) of a typical NIS junction used in this thesis.
In the optical microscope image, the topmost normal metallic copper film is
visible. This can be seen in the scanning electron micrograph as the bright
parts whereas the lower superconducting aluminum layer gives weaker con-
trast. The structures of this thesis are fabricated with so-called shadow evap-
oration technique [38] allowing single-electron device fabrication [39]. The
junction is biased with a voltage bias Vb and current I through it is mea-
sured. The experimental current - voltage curve is presented in panel (b).
The axes are normalized with respect to the tunnel resistance RT = 600 kΩ

and superconductor gap ∆ = 200 µeV.

with eigenenergies ~ωλ. Here b†λ and bλ are the corresponding bosonic

creation and annihilation operators. In this section we consider the case

δV̂ (t) = 0, when ĤB does not play a role, but we return to the photon

environment in Sect. 4. The last part of Eq. (2.8) is the tunnel coupling of

the two metals

ĤT =
∑

kqσ

tkqc
†
qσakσ + h.c., (2.11)

where h.c. stands for hermitian conjugate and we assumed spin indepen-

dent and spin conserving coupling tkq. In order to calculate the tunnel

current I =< Î >, or the corresponding tunneling rate Γ = I/e, we need

the current operator Î. The most straightforward way to obtain it is to

consider it in Heisenberg picture:

ÎH = e
d

dt
N̂N,H =

ie

~
[Ĥ, N̂N,H ]⇒ Î =

ie

~
[Ĥ, N̂N ] =

ie

~
[ĤT , N̂N ], (2.12)

where subindex H denotes Heisenberg picture and N̂N =
∑

kσ a
†
kσakσ, is

the electron number operator of the normal metal. By using Eq. (2.11) we

obtain

Î =
ie

~
∑

kqσ

(
tkqc

†
qσakσ − h.c.

)
. (2.13)
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2.2.2 Determination of tunneling rates

To calculate the average current I, we use density matrix formalism in the

interaction picture. The average value of the current is expressed as I =<

Î >= Tr(ρÎ), where Tr stands for a trace over the Fock space spanned by

the electronic creation and annihilation operators and the density matrix

ρ follows the Liouville equation of motion [40]

∂

∂t
ρ = − i

~
[Ĥ, ρ]. (2.14)

Now we move to the interaction picture. We make an unitary transforma-

tion ÂI = SÂS† for operator A, where the transformation S satisfies

∂

∂t
Ŝ =

i

~
Ĥ0Ŝ, (2.15)

with Ĥ0 = ĤN +ĤS +ĤB, being the (time-dependent) reservoir part of the

Hamiltonian of Eq. (2.8). By inspection we see that the transformation

Ŝ = e
i
~(K̂0t+ϕ̂(t)N̂N). (2.16)

satisfies the requirement of Eq. (2.15) with K̂0 =
∑

kσ ε
N
k a
†
kσakσ + ĤS +

ĤB being the time indepenent part of Ĥ0 and ϕ̂(t) ≡ e
~
∫ t
t0
dt′δV̂ (t′). With

Equation (2.15) we obtain from Eq. (2.14)

∂

∂t
ρI = − i

~
[ĤT,I , ρI ]. (2.17)

This can be solved formally by integration to yield

ρ(t) = ρ0 −
i

~

∫ t

t0

dt′[ĤT (t′), ρ(t′)], (2.18)

where ρ0 = Z−1eβ(−K̂0+µN N̂N ) is the intial solution taken to be at equilib-

rium (grand canonical) with respect to the leads at temperature T . Here

Z is the partition function and β = (kBT )−1. The operators in Eq. (2.18)

with explicit time dependence, are taken to be in the interaction picture

Â(t) ≡ ÂI . We allow for a chemical potential shift between the normal

metal and the superconductor. It is caused by the voltage bias across the

junction and the charging effects discussed in Sect. 3. The chemical po-

tential of the superconductor is set to zero without losing generality and

hence the shift equals the chemical potential µN of the normal metal.

Now the current can be calculated as I =
〈
Î
〉

= Tr(ρI ÎI). Using Eq. (2.18)

leads to a series expansion. The first non-zero term corresponds to single-

electron tunneling and is given by

I = − i
~

Tr

(∫ t

−t0
dt′[ĤT (t′), ρ0]Î(t)

)
=
i

~

∫ t

−t0
dt′
〈

[ĤT (t′), Î(t)]
〉

0
, (2.19)
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where
〈
Â
〉

0
= Tr(ρ0Â) denotes a thermal average of Â. Equation (2.19)

contains both processes, from superconductor to normal metal and vice

versa. Later on, we need both these processes separately. Therefore we

identify terms containing a†kσakσ to correspond to tunneling from the nor-

mal metal to the superconductor since this term requires the initial state

kσ of the normal metal to be occupied in order for akσ to yield a non-zero

result. Collecting only such terms we obtain the tunneling rate from nor-

mal metal to the superconductor as

ΓN→S =
IN→S
e

=
1

~2

∫ t

−t0
dt′
∑

kqq′σ

{

〈
t∗kqa

†
kσ(t)cqσ(t) tkq′c

†
q′σ(t′)akσ(t′)

〉
0

+
〈
t∗kq′a

†
kσ(t′)cq′σ(t′) tkqc

†
qσ(t)akσ(t)

〉
0

}
.

(2.20)

Next we plug in Eq. (2.3) and obtain

ΓN→S =
1

~2

∫ t

−t0
dt′
∑

kqσ

|tkq|2
{
|vqσ|2

〈
a†kσ(t)γ†−(qσ)(t) γ−(qσ)(t

′)akσ(t′)
〉

0
+

|uqσ|2
〈
a†kσ(t)γqσ(t) γ†qσ(t′)akσ(t′)

〉
0

+

|vqσ|2
〈
a†kσ(t′)γ†−(qσ)(t

′) γ−(qσ)(t)akσ(t)
〉

0
+

|uqσ|2
〈
a†kσ(t′)γqσ(t′) γ†qσ(t)akσ(t)

〉
0

}
.

(2.21)

Next we assume δV̂ = 0 and use akσ(t) = e−iεkt/~akσ and γqσ(t) = e−iEqt/~γqσ.

Also we take the initial time t0 →∞. By identifying Dirac delta functions

δ(x) = 1
2π

∫∞
−∞ dte

ixt, we get

ΓN→S =
2π

~
∑

kqσ

|tkq|2
{
|vqσ|2

〈
a†kσakσγ

†
−(qσ)γ−(qσ)

〉
0
δ (εk + Eq) +

|uqσ|2
〈
a†kσakσγqσγ

†
qσ

〉
0
δ (εk − Eq)

}
,

(2.22)

which is a Fermi golden rule result. Now we change the sums over k

and q to integrals over energies εk and Ek which we relabeled as ε and E

correspondingly. We also make a change of variables for the vqσ term and

assume a constant normal state density of states. We obtain

ΓN→S =
1

e2RT

∫ ∞

−∞
dE nS(E)fN (E − µN ) (1− fS (E)) , (2.23)

where RT is the tunnel resistance of the junction since it determines the

ohmic behaviour of the junction at high bias voltage. nS(E) is the DoS of

a superconductor of Eq. (2.7) and fN the Fermi occupation probability for

the normal metal, and fS for the superconductor. The remaining terms of

Eq. (2.19) yield

ΓS→N =
1

e2RT

∫ ∞

−∞
dE nS(E)(1− fN (E − µN ))fS (E) , (2.24)
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Figure 2.3. Calculated current and tunneling rates in an NIS junction. (a),
Single-electron current I through a voltage biased NIS junction at various
normal metal temperatures (βN = 1/kBTN ). (b), The corresponding tunnel-
ing rate ΓN→S(δE) as a function of the energy gained δE in the tunneling
process.

which is the tunneling rate from the superconductor to the normal metal.

For a single NIS junction biased with voltage Vb the chemical potential

shift is µN = eVb and the total tunnel current is I = e(ΓN→S − ΓS→N),

which we present for three different temperatures in Fig. 2.3 (a). The

lowest temperature result catches well the features of the experimental

curve of Fig. 2.2 (b). This tunneling current through an NIS junction was

measured already in 1960 by I. Giaever [41] and it was one of the first ex-

perimental evidences of the existence of the superconductor energy gap ∆.

The energy gap appears in the curves as suppressed current at |eVb| < ∆,

since single-electron tunneling to a superconductor involves an unpaired

electron with an energy cost of at least ∆. This feature is smeared as

temperature increases, as shown in Fig. 2.3 (a). It demonstrates that in

addition to the biasing, the energy can be provided also by the thermal

bath.

The chemical potential shift µN appearing in Eq. (2.23) is the energy

gained by the electron in the tunneling process from N to S. On the other

hand, in Eq. (2.24) it is the energy cost for the opposing tunneling process.

It is instructive to write both of the rates as a function of the energy gain

δE which the electron obtains in a tunneling process. With this, we have

ΓN→S(δE) =
1

e2RT

∫ ∞

−∞
dE nS(E)fN (E − δE) (1− fS (E)) (2.25)

and

ΓS→N(δE) =
1

e2RT

∫ ∞

−∞
dE nS(E)(1− fN (E + δE))fS (E) . (2.26)
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N

Figure 2.4. Schematic presentation of tunneling in an NIS junction. (a), Density
of states of a normal metal (N) and a superconductor (S) which are shifted by
the chemical potential µN . Blue color represents occupied states and white
empty states which follow Fermi distribution. In panel (a), µN < ∆ and
hence tunneling is suppressed. In panel (b), µN > ∆, and hence tunneling
is taking place even at low temperatures with the rate ΓN→S. In panel (c)
the temperature of the normal metal is elevated with respect to (a), which
increases ΓN→S. Panel (d) shows tunneling rates for an elevated temperature
of the superconductor.

It is now straightforward to show that ΓS→N(δE) = ΓN→S(δE), i.e. that

the tunneling rate depends on the energy gained by the electron but not

whether it is coming from a normal metal or a superconductor. Hence we

could drop subscripts N → S and S → N off. However, the discussion

below is more apparent with the direction explicitly considered. We can

for example distinguish the hole and particle like excitations on a super-

conductor explicitly. Therefore we still keep the subindices.

Now we are ready to consider the tunneling rates in an NIS junction in

more detail with the density of states (DoS) diagrams shown in Fig. 2.4.

See Sect. 2.1 for obtaining the diagrams. We assume the occupation of the

states to follow Fermi distribution. In the diagram in panel (a) we take the

temperature of the superconductor to be TS = 0, i.e. all the states on the

lower branch, E < −∆, are occupied and all at the higher one, E > ∆, are

vacant. The chemical potential µN shifts the two densities with respect to

each other and electrons tunnel then horizontally. Tunneling is possible

if an occupied state is found on one side and a vacant one on the other.

The probability for having an occupied state in normal metal is fN and

in superconductor fS , while the probability to have a vacant one on the

other sides are (1 − fS) and (1 − fN ) respectively. The tunneling rates of

Eqs. (2.23) and (2.24) are then obtained by integrating over the product of

the two DoSes and these probabilities.

In panel (a) the condition of having occupied state on one side and vacant

on the other is not met for a considerable amount of states (µN < ∆) and
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hence current is exponentially suppressed. In panel (b) we have µN > ∆.

The occupied states of N are now so high that the tunneling to the upper

empty branch of S becomes possible. This produces the onset of current at

eVb = ∆, seen in Fig. 2.3 (a). In panel (c) of Fig. 2.4 we show elevated tem-

perature of N in comparison to (a). High energy states are now thermally

populated at N and hence current for eVb < ∆ is increased, causing the

smearing. In panel (d) elevated temperature of S is shown. Some of the

states at the lower branch are vacant and some at the higher branch are

occupied. These quasiparticle excitations give rise to tunneling. From the

higher branch of the superconductor, the electrons tunnel to the normal

metal. On the other hand, the vacancies on the lower branch are filled

by electrons tunneling from the normal metal leading to current in the

opposite direction.

As a summary, we present Fig. 2.3 (b), where ΓN→S is plotted as a func-

tion of the energy gain δE. We observe that there are four regimes of tun-

neling. For δE > ∆, the zero temperature tunneling threshold is exceeded

and the tunneling rate is insensitive to temperature. For 0 < δE < ∆, the

current becomes exponentially suppressed at low temperatures as only

electrons at high enough energy at the normal metal are able to tunnel.

For −∆ < eVb < 0, the tunneling is dominated by quasiparticle excita-

tions at the superconductor, see the rate ΓN→S in panel (d) of Fig. 2.4.

The quasiparticle excitations cause a bias independent rate as all the ex-

citations are at high energies |E| > ∆ in the BCS density of states. For

eVb < −∆, even the quasiparticle tunneling is suppressed as there are no

occupied states available on the normal metallic leads which could tunnel

and fill the vacant excitation states of the superconductor.

The rates at δE < 0 are not seen in Fig. 2.3 (a) since they are over-

whelmed by the opposing rate with δE > 0. Therefore, typically a single

voltage biased NIS junction cannot be used to probe the excitations in a

superconductor. However, if the temperature of the superconductor TS is

higher than the temperature of the normal metal TN , the quasiparticle

excitations of the superconductor dominate the current also in a region

where δE > 0. However, as the vacancies on the lower branch of the

superconductor generate current with the same magnitude but opposite

direction as the particle excitations on the upper branch, the resulting

net current is zero. Again the NIS junction cannot be used for probing the

total number of excitations on a superconductor. However, it is possible

to probe whether the two branches have non-equal number of excitations.
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This situation is known as branch imbalance [42]. In order to probe the

total number of such excitations, we either need to observe the tunneling

events individually or rectify the current to one preferred direction. These

options are discussed in Sect. 6.1.
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3. Charging energy - the SINIS turnstile

In Sect. 2.2 we calculated the single-electron tunneling rates for a voltage

biased NIS junction. Now we extend the discussion to describe a single-

electron transistor (SET) [39, 43, 44]. A typical SET studied in this thesis

is shown in Fig. 3.1 (a). In this device, we have a normal metallic island

(N) contacted to superconducting leads (S) by NIS junctions forming a

device called SINIS turnstile. The operation of the SET is controlled by

applying bias voltage (V1 and V2) and by polarizing the island with a gate

voltage Vg. Typically, current I through the device is measured. We first

consider the charging energy cost of a small metallic island in Sect. 3.1.

Then we discuss in Sect. 3.2 the static operation of the SINIS turnstile

and finally in Sect. 3.3 we apply a radio frequency drive to the gate and

obtain the quantization of electrical current.

3.1 Energy considerations

In order to describe the transport in an SET, we need to consider the

energy required for charging the island with n electrons and include it

to the energy gain δE discussed in Sect. 2.2.2. Since electrons tunnel

sequentially, we may consider the tunnel junctions of Fig. 3.1 as capacitive

elements before and after a tunneling event. Also the gate electrodes

are capacitively coupled to the island. These elements are described by

capacitances Ci with voltages Vi applied to them. Now letQi be the charge

at the capacitor i and VI the voltage at the island. We can express VI and

the charge ne at the island as




VI = Vi −
Qi
Ci

ne =
∑

i

Qi.
(3.1)
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Figure 3.1. Hybrid SET. (a), A typical single electron transistor (SET) studied in this
thesis. Superconducting leads (S) are contacted to a normal metallic island
(N) by thin insulating barriers (I) to form a SINIS structure. (b), The circuit
describing the SET from the point of view of electrostatics. The island has
charge ne with n being the number of electrons. For energy considerations
the tunnel junctions and the coupling between the gate and the island appear
as capacitances Ci connected between voltage sources Vi and the island. We
allow here the number of voltage sources to be arbitary and thus we consider
a more general situation than in panel (a).

Taking the upper equation for i and j, multiplying by CiCj and summing

over j leads to

Qi = CiVi +
Ci
CΣ

e(n− ng), (3.2)

where CΣ =
∑

iCi is the total capacitance to the island and ng =
∑

iCiVi/e

the so-called gate offset. Now we are ready to determine the energy stored

in the circuit. It is given by the Gibbs free energy where we take the

energy stored in the capacitor and substract the energy provided by the

voltage sources. We obtain the charging energy as

Ech =
∑

i

(
Q2
i

2Ci
−QiVi

)
. (3.3)

Plugging Eq. (3.2) to Eq. (3.3) leads to a simple form

Ech(n) = Ec(n− ng)2, (3.4)

where Ec = e2

2CΣ
is known as the charging energy, a characteristic energy

for charging the island by one electron. To obtain Eq. (3.4), we took only

the part depending on n, since only the energy differences when n changes

are relevant for electron tunneling. When one electron tunnels into (+) or

out from (-) the island, the energy gain of charging is

δE± = −(Ech(n± 1)− Ech(n)) = ∓2Ec(n− ng ± 1/2). (3.5)

In addition we must consider the energy supplied by the voltage source.

For an electron which tunnels from the voltage source Vi, the total energy

gain is

δE±i = ∓2Ec(n− ng ± 1/2)∓ eVi. (3.6)
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Figure 3.2. Stability diagram of a SINIS turnstile. (a), Tunneling thresholds δE±i =

∆ are shown as dotted lines for n = 0. These lines bound a Coulomb diamond,
shown as a blue region, where the single-electron tunneling is suppressed due
to an energy cost. Green and red areas show similar diamonds for n = −1

and n = 1 respectively. On the white area, none of the charge states n is
stable and current runs through the SET. (b), Experimental current - voltage
curve of a SINIS turnstile with Ec = 1.2∆. Coulomb diamonds of panel (a)
are represented by the green area with suppressed current (I = 0).

The tunneling rates for the corresponding processes are calculated with

Eqs. (2.25) and (2.26) by substituting δE by the expression of Eq. (3.6).

Let us now consider the single-electron transistor with normal metallic

island and two superconducting leads, see Fig. 3.1 (a). We take Vb = V1 =

−V2 to be the bias voltage per junction. On a qualitative level, the op-

eration of the device can be understood by simple energy considerations.

Let us consider the island to have n electrons on the island. The single-

electron tunneling is suppressed if none of the tunneling processes gain

energy to break a Cooper pair, i.e. δE±i < ∆. These conditions bound a

region colored blue in Fig. 3.2 (a) for n = 0. It is known as a Coulomb dia-

mond. The boundaries of the diamond, δE±i = ∆, are known as tunneling

thresholds, since once they are crossed, tunneling becomes energetically

possible and electron number n changes. At low bias, |eVb| < ∆, crossing

a tunneling threshold leads to another Coulomb diamond, either n = −1

or n = 1 shown as green and red respectively, and the current is again

suppressed. At higher bias, |eVb| > ∆, there is no stable charge state af-

ter crossing the threshold. This means that electron tunneling out of and

into the island are both possible and current runs through the device. In

Fig. 3.2 (b) experimental data for such a device is shown. The diamonds

correspond to a region where the current is suppressed. The size and the

shape of the diamonds allow us to obtain a rough estimate of ∆ = 220 µeV

and Ec = 1.2∆.
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It is worthwhile to note that by using a normal metallic island, the su-

percurrent through the device is suppressed unlike in a fully supercon-

ducting SET [1]. In order to have supercurrent in a SINIS transistor,

the superconducting leads should induce superconductivity to the island

with so-called proximity effect [45], which, however would call for clean

metal-to-metal contacts. The tunnel barriers of the turnstile suppress the

proximity effect down to a level where it does not influence the turnstile

operation.

3.2 Master equation

So far, we have made energy considerations of the SINIS turnstile. Now

we consider how the current I through the device is calculated. This is

achieved with the help of a master equation. We assign a probability P (n)

for having n excess electrons on the island. The time evolution of P (n)

with single-electron tunneling is

d

dt
P (n) = −Γn,nP (n) + Γn−1,nP (n− 1) + Γn+1,nP (n+ 1), (3.7)

where Γn+1,n is the sum of tunneling rates decreasing the electron number

from n + 1 to n and Γn−1,n contains the rates increasing it from n − 1 to

n. Γn,n = Γn,n−1 + Γn,n+1 is the sum of all rates away from the state with

n excess electrons. Once P (n) is known, the current through junction i is

obtained as

Ii = −e
∑

n

P (n)

[
ΓS→N

(
δE+

i (n)
)
− ΓN→S

(
δE−i (n)

)]
. (3.8)

In Fig. 3.3 (a) we plot I calculated with the master equation and compare

the result to experimental data. We observe that there is a decent but

not quantitative correspondence if we assume that the system is not over-

heated. Next we take into account the overheating of the normal metallic

island as will be discussed below [16]. This assumption results in a bet-

ter correspondence between the experimental data and calculations and

allows one to extract the value of Ec reliably.

In addition to the electrical current, it is possible to consider heat flow

with the master equation approach [46, 47]. Considering overheating is

especially important at low temperatures. For example, in order to esti-

mate the device parameters precisely for a SINIS turnstile, the heating

of the normal metallic island needs to be considered: the electrons on a

small island, operated at low temperatures, are poorly coupled thermally
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to the substrate. The heat flow Q̇ to the normal metallic island has an

expression resembling Eq. (3.8), reading

Q̇ =
∑

n,i

P (n)

[
Q̇S→N

(
δE+

i (n)
)

+ Q̇N→S

(
δE−i (n)

)]
. (3.9)

Here Q̇S→N(δE+
i (n)) and Q̇N→S(δE−i (n)) are the heat fluxes to the island

for electrons tunneling in and out from the island with n electrons on the

island. Note that for the heat flow into the island, we sum over the two

junctions i whereas the electric current through the island is calculated

for one of the junctions only. The heat fluxes are calculated with the oper-

ator for power deposited to the normal metal as

Q̇ =
d

dt
ĤN =

i

~
[ĤT , ĤN ]. (3.10)

As a result of a similar analysis as in Eqs. (2.25) and (2.26), one obtains

Q̇N→S =
1

e2RT

∫ ∞

−∞
dE (−E + δE)nS(E)fN (E − δE) (1− fS (E)) , (3.11)

and

Q̇S→N =
1

e2RT

∫ ∞

−∞
dE (E + δE)nS(E)(1− fN (E + δE))fS (E) . (3.12)

These equations are similar to Eqs. (2.25) and (2.26) but here the inte-

grand contains the energy E ∓ δE removed from or deposited to the nor-

mal metal. The heat flux to the superconductor can be calculated simi-

larly. The only difference in the final result is that the energy removed

or deposited is E. Summing the heat fluxes to the normal metal and the

superconductor gives the total heat dissipated in the circuit as P = IVtot,

where I is the current through the system biased at voltage Vtot.

The heat injected to the normal metallic island Q̇ of Eq. (3.9) needs to be

removed in order to avoid overheating. The bottle neck for heat removal

in this case is the electron-phonon coupling [48]. The corresponding heat

current is given by [48]

Q̇e−ph = ΣV (T 5
N − T 5

0 ), (3.13)

where Σ is a material constant, V the volume of the island, TN the tem-

perature of the normal metallic electrons and T0 the temperature of the

phonons. We let TN differ from T0, the latter being at the base temper-

ature of the cryostat, and find its value via the heat balance Q̇ = Q̇e−ph.

This procedure is done iteratively by calculating the solution of the mas-

ter equation for various values of TN . In Fig. 3.3 (a) we show results of

such calculations for one of the devices studied. We obtain parameter
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Figure 3.3. Current - voltage curves of a SINIS transistor. (a), Measured current
of a SINIS transistor shown as a black line. Gate offset ng is swept quickly
and Vb slowly to obtain the so-called envelope curve where the current oscil-
lates up and down to show the minimal and maximal values. Solid blue and
red curves show simulations based on the master equation at ng = 0.5 and
ng = 0 respectively. Here the electronic temperature of the island TN is de-
termined such that the energy balance Q̇ = Q̇e−ph holds. Dotted lines show
similar simulations but with the island assumed to be fully thermalized to
bath temperature. (b), Temperature of the island extracted from simulations
of panel (a). Note that TN increases up to 800 mK already at the bias voltage
of ±3∆/e.

values RT = 130 kΩ by fitting the slope at high bias, ∆ = 216 µeV by

fitting the size of the region with suppressed current, and Ec/∆ = 0.9 by

fitting the current - voltage curves at ng = 0 and ng = 0.5. The island

volume V = 700 nm × 100 nm × 30 nm was estimated from a scanning

electron micrograph and material constant Σ = 2 · 109 WK−5m−3, consis-

tent with other experiments [16], was used for the copper island. A value

T0 = 50 mK was used based on the reading of the thermometer of the

cryostat.

We observe that to obtain a good fit, the heating needs to be taken into

account. If the island is assumed to be at the base temperature, shown

as dotted lines in Fig. 3.3 (a), the fit is not perfect as already pointed out.

However, the node points which are at eVb ≈ ±2∆ for Fig. 3.3 (a), are

not sensitive to heating but depend on Ec. This fact makes it possible to

estimateEc without performing a tedious overheating analysis. In Fig. 3.3

(b) the electronic temperature of the island is shown. It is extracted from

the master equation calculation. We observe that the island heats up to

500 mK and above, which demonstrates the weakness of electron-phonon

coupling at low temperatures. Based on Eq. (3.13), the temperature of

the cryostat, assumed to be equal to the phonon temperature T0, is fully

irrelevant in this situation.
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Figure 3.4. Quantized current in a SINIS transistor. (a), A stability diagram pre-
senting the electron transfer. By moving between two Coulomb diamonds
cyclically at |eVb| < ∆, one electron is taken into the island and another
pushed out in each cycle. With non-zero Vb, the electrons have a preferred
direction for tunneling and current I = ef results. (b), Measured current
plateau of a SINIS turnstile (dots) and simulations based on Eq. (3.7) shown
as black lines.

3.3 Current quantization in the SINIS turnstile

In Sect. 3.2 we considered the operation of a SINIS turnstile under fixed

(time-independent) conditions and saw that the current is suppressed for

|eVb| < ∆. Now we apply a periodic drive to the gate offset ng and find

out that quantized electrical current is obtained [34] in similar way as in

the normal metallic turnstiles [31]. When a non-zero bias voltage with

|eVb| < ∆ is applied, the electron tunneling has a preferred direction. As

ng is changed such that we move between two stability diamonds as shown

in Fig. 3.4 (a), one electron is pulled into the island from one junction and

another one is pushed out from the opposite one. This leads to one elec-

tron being transported through the device in each cycle. In Fig. 3.4 (b)

experimental data in such an operation is shown for three different bias

voltages Vb = 60, 110, 160 µV as red, green and blue points. Note that here

and throughout in this thesis we give the bias values per junction. For

a SINIS turnstile, the total bias voltage is then twice this value. Device

parameter values are RT = 155 kΩ, ∆ = 216 µeV and Ec = 0.63 ∆. The

drive frequency is f = 10 MHz. We observe that the measured current I

forms a plateau at the value ef which indicates that electrons are being

transported one by one. The rise to the plateau and beyond it are deter-

mined by the tunneling thresholds. The higher the bias, the earlier the

current increases as a function of the gate amplitude Ag.

The shape of these current-voltage curves can be calculated by solving
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Eq. (3.7) numerically and calculating the average current of one cycle with

Eq. (3.8). We show the resulting current curves in Fig. 3.4 (b) as solid

black lines and we see that the overall features of the pumping plateau are

described well by the sequential single-electron tunneling model. In the

forthcoming chapters, we consider the current at the plateau and different

processes which influence the value of the current at the plateau. We will

see that many of the error sources can be suppressed and hence we expect

the device to reach a relative accuracy on the level of 10−7 or below [49].

This would be just barely sufficient for metrological applications [50–52].

It is advisable to operate the SINIS turnstile at the highest possible fre-

quency since it results in maximal output current and minimizes possible

frequency independent errors such as thermal errors [34]. High currents

are preferred since they are easier to measure precisely. The current of

the turnstile is limited by an average time τtun needed for an electron

tunneling event to occur. In order to avoid missed tunneling events, the

requirement τtun � 1/Γ must be satisfied, where Γ is the tunneling rate

of the process. The tunneling rate Γ scales linearly with the tunnel junc-

tion conductance GT = R−1
T . However, GT must be limited to avoid errors

arising from higher order tunneling processes [49]. Thus the highest out-

put current of a single turnstile is few tens of picoamperes if the relative

accuracy of 10−7 is required [49, 53].

One of the advantages of the SINIS turnstile is that the operation prin-

ciple is simple. This allows to obtain higher output currents with par-

allelization. In Publication I, we have shown that ten such devices can

be operated in parallel. A reason hindering a large scale parallelization

of any single-electron device is the presence and the variation of the off-

set charges nearby the islands. These are random and they have to be

compensated for each SET island separately by a gate voltage. This is

the main drawback of the devices which provide today the best quanti-

zation accuracy. These devices are based on N normal metallic islands

tunnel coupled in series and they reach a relative uncertainty of 10−8 for

the current quantization [25, 28]. However, the obtainable output cur-

rent of the order of 1 pA is two to three orders of magnitude below the

required level for quantum metrological applications, apart from the ca-

pacitance standard [32]. The SINIS turnstile has two benefits over the

normal metallic arrays in terms of output current. First, the obtainable

current is (N +1)/2 times higher since a cycle involves only two tunneling

events whereas in the array N + 1 events are present. On the other hand,
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with the gate control of N islands in the array, we can control N turn-

stiles in parallel. With the same complexity in the experimental setup,

we can thus obtain roughly a factor of N2/2 higher currents with a SINIS

turnstile. With the ten devices of Publication I, 100 pA output current

sufficient for metrological applications [50, 51] was obtained.
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4. Environmentally activated tunneling

In the considerations of Sect. 2.2.2 we assumed ideal voltage bias for the

tunnel junctions. The energy conservation required then that the elec-

trons gain or lose always a known amount of energy set by the voltage

sources and charging effects. In the energy diagrams of Fig. 2.4, this

was seen as electrons tunneling always horizontally. However, the experi-

ments are typically carried out in a non-ideal configuration. Instead of an

ideal voltage bias, there are voltage fluctuations present which are mod-

elled with a photon bath [23, 54, 55]. With this relatively simple model,

several experimental observations are explained, see e.g. Refs. [56, 57].

These fluctuations may arise from a dissipative circuit near the device,

from thermal radiation, from the electronics used in the measurements

or they can be inherent for the device, as is the case for shot-noise in

electron tunneling [58, 59]. If the photons carry sufficiently large energy,

E & ∆, they may provide it to the electrons so that they are able to create

excitations in a superconductor and therefore single-electron tunneling

becomes activated even when it would otherwise be suppressed. In this

chapter, we consider this effect with the so-called P (E) theory [23]. In

Sect. 4.1 we first review the results of the P (E) theory. Then in Sect. 4.2

we show theoretically and experimentally that a hot resistive environ-

ment is an origin of Dynes density of states in NIS junctions. Finally in

Sect. 4.3, the low bias leakage of NIS junctions is considered for other

environments as well.

4.1 The P (E) theory

In the P (E) theory the electromagnetic environment is modelled with a

frequency dependent impedance Z(ω). We take it to have temperature

Tenv which may differ from the temperature where the tunnel junctions
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Figure 4.1. Photon assisted tunneling. The probability density P (E) that the en-
vironment absorbs energy E from an electron which tunnels. The different
curves correspond to different temperatures of the environment. We have
taken σ0 = R

RQ

kBTenv
∆

= 10−3, which determines the leakage at high tem-
perature and low capacitance, for all the curves. Here the environmental
impedance Z(ω) is taken to be resistive with resistance R. Tenv is the tem-
perature of the environment and RQ = ~/e2. Dotted line is the analytic
expression of Eq. (4.21). The schematic shows a single NIS junction biases by
voltage Vb. However, the environmental impedance Z(ω) makes this voltage
fluctuate. These fluctuations are shunted by capacitance C. Panel on the
right shows the effective leakage σ for a single junction as a function of C.
Figure adapted from Publication II.

are located. In addition to Z(ω) we include also a capacitance C to shunt

the junctions for demonstrating that at large enough values of C the pho-

tons are not coupled to the junction. The circuit we consider is shown

in Fig. 4.1 for a single junction. The results apply directly also to mul-

tijunction circuits such as a SET with rescaled parameter values [23].

The impedance Z(ω) and the capacitance C, forming the total impedance

Zt(ω) = (Z(ω)−1 + iωC)−1, are modelled by a set of harmonic oscillators,

see Eqs. (2.8) and (2.10). Now we relax the assumption δV̂ = 0, which was

done to obtain Eq. (2.22). If that assumption is not made, we have

ΓN→S =
1

~2

∫ t

−t0
dt′
∑

kqσ

|tkq|2
{

|vqσ|2 e
i
~ (εk+E−q)(t−t′)fkf−q〈eiϕ̂(t)e−iϕ̂(t′)〉0

+ |uqσ|2 e
i
~ (εk−E−q)(t−t′)fk(1− fq)〈eiϕ̂(t)e−iϕ̂(t′)〉0

+ |vqσ|2 e−
i
~ (εk+E−q)(t−t′)fkf−q〈eiϕ̂(t′)e−iϕ̂(t)〉0

+ |uqσ|2 e−
i
~ (εk−E−q)(t−t′)fk(1− fq)〈eiϕ̂(t′)e−iϕ̂(t)〉0

}
.

(4.1)
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We see that the effect of the environment in described by terms 〈eiϕ̂(t1)e−iϕ̂(t2)〉0.

For the coupling of the photon bath to the tunnel junction we assume it to

be linear in bosonic annihilation and creation operators [60], i.e.

ϕ̂(t) =
∑

λ

cλb
†
λ(t) + h.c. =

∑

λ

cλb
†
λe
iωλt + h.c., (4.2)

where cλ are constants defining the environment and its coupling and

h.c. stands for hermitian conjugate. To proceed, we used identity eÂ+B̂ =

eÂeB̂e−[Â,B̂]/2, which holds if [Â, B̂] commutes with Â and B̂. Since

[
iϕ̂(t), iϕ̂(t′)

]
=
∑

λ

|cλ|2
(
eiωλ(t−t′) − e−iωλ(t−t′)

)
= c(t− t′) (4.3)

is a complex number, it commutes with iϕ̂(t) and iϕ̂(t′). Therefore we

obtain

eiϕ̂(t)e−iϕ̂(t′) = e−c(t−t
′)/2ei(ϕ̂(t)−ϕ̂(t′)). (4.4)

Next, we use the identity
〈
eÂ
〉

0
= e

1
2〈Â2〉

0 , which holds for thermal aver-

age where Â is a linear combination of bosonic creation and annihiliation

operators. Also, we are interested only on the steady-state case when the

time difference t − t′ matters but not the initial time. Therefore we may

set t′ = 0 without losing generality, and remember that t is the time dif-

ference. Then we have
〈
eiϕ̂(t)e−iϕ̂(0)

〉
0

= eJ(t), (4.5)

where

J(t) = −1

2

(
c(t) +

〈
(ϕ̂(t)− ϕ̂(0))2

〉
0

)
. (4.6)

By using Eq. (4.2), we obtain

J(t) =
∑

λ

|cλ|2
{
eiωλtn(ωλ) + e−iωλt(n(ωλ) + 1)− (2n(ωλ) + 1)

}
, (4.7)

where n(ωλ) =
〈
b†λbλ

〉
0

= (eβenv~ωλ−1)−1, is the Bose-Einstein distribution

at thermal equilibrium with βenv = 1/(kBTenv). Now we express J(t) in

frequency basis as

J(t) =

∫
dωe−iωt

∑

λ

|cλ|2
{
δ(ω+ωλ)n(ωλ)+δ(ω−ωλ)(n(ωλ)+1)−δ(ω)(2n(ωλ)+1)

}
,

(4.8)

and use the fluctuation dissipation theorem [61] to link it to the environ-

mental impedance Zt(ω). For voltage fluctuations across the impedance

Zt(ω) we have
〈
δV̂ 2

〉
= ~ωRe(Zt(ω)) coth(βenv~ω/2). (4.9)
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The voltage fluctuations can be related to the phase fluctuations as

φ̂ =
e

~

∫
dtδV̂ ⇒

〈
φ̂2
〉

=
e2

(~ω)2

〈
δV̂ 2

〉
=

e2

~ω
Re(Zt(ω)) coth(βenv~ω/2).

(4.10)

On the other hand, from Eq. (4.2) we obtain
〈
φ̂2
〉

=
1

2

∫
dteiωt

〈{
ϕ̂(t), ϕ̂(0)

}〉
0

= 2π
∑

λ

|cλ|2
(
n (ωλ) + 1/2

)(
δ(ω + ωλ) + δ(ω − ωλ)

)
.

(4.11)

Combining Eqs. (4.10) and (4.11) leads to
∑

λ

|cλ|2
(
n (ωλ) + 1/2

)(
δ(ω + ωλ) + δ(ω − ωλ)

)

=
Re(Zt(ω))

ωRK
coth(βenv~ω/2),

(4.12)

where RK = h/e2 is the resistance quantum, also known as the von Kl-

itzing constant [62]. Next, we want to plug the result of Eq. (4.12) to

Eq. (4.8). In addition, we need the zero temperature limit of Eq. (4.12).

Since, ωλ > 0, by letting Tenv → 0, we have




1
2

∑
λ |cλ|2 δ(ω + ωλ) = −Re(Zt(ω))

ωRK
, ω > 0

1
2

∑
λ |cλ|2 δ(ω − ωλ) = +Re(Zt(ω))

ωRK
, ω < 0.

(4.13)

Plugging Eqs. (4.12) and (4.13) to Eq. (4.8) leads to

J(t) = 2

∫ ∞

0

dω

ω

Re(Zt(ω))

RK

{
coth

(
βenv~ω

2

)
cosωt− i sinωt

}

−2
∑

λ

|cλ|2
(
n (ωλ) + 1/2

)
δ(ω)

(4.14)

From Eq. (4.7) we see that J(0) = 0. Requiring this for Eq. (4.14) yields,
∑

λ |cλ|2
(
n (ωλ) + 1/2

)
δ(ω) =

∫∞
0

dω
ω

Re(Zt(ω))
RK

coth
(
βenv~ω

2

)
and we finally

obtain

J(t) = 2

∫ ∞

0

dω

ω

Re(Zt(ω))

RK

{
coth

(
βenv~ω

2

)
(cosωt− 1)− i sinωt

}
,

(4.15)

which is the result in Ref. [23]. We continue now with Eq. (4.1). Taking

t0 →∞ we get

ΓN→S =
1

~2

∫ ∞

−∞
dt
∑

kqσ

|tkq|2
{
|vqσ|2 e

it
~ (εk+E−q)fkf−qe

J(t)

+ |uqσ|2 e
it
~ (εk−E−q)fk(1− fq)eJ(t)

}
.

(4.16)

Now we define a function

P (E) =
1

2π~

∫
dt eJ(t)e

it
~ E , (4.17)
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Figure 4.2. Leakage current of an NIS junction caused by electromagnetic en-
vironment. Measured IV curves of an NIS junction with RT = 761 kΩ on
the ground plane (solid symbols) and of a similar junction with RT = 627 kΩ

without the ground plane (open symbols). Solid lines present the results of
the full P (E) theory for capacitance C = 10 pF (red line) and C = 0.3 pF or
smaller (green line). The resistance and the temperature of the environment
are set to R = 2 Ω and Tenv = 4.2 K, respectively, and ∆ = 200 µeV. The
dashed lines correspond to the Dynes model with the parameters yielding
the best fit to the data. The normalized zero-bias slope is 5.3 × 10−4 for the
green line and 2.6× 10−5 for the red line.

and obtain

ΓN→S =
2π

~
∑

kqσ

|tkq|2
{
|vqσ|2 P (εk + E−q)fkf−q

+ |uqσ|2 P (εk − E−q)fk(1− fq)
}
.

(4.18)

Finally, we change the summing to integration and make a change of vari-

ables to the vqσ term and obtain

ΓN→S(δE) =
1

e2RT

∫
dε dE nS(E)fN (ε− δE)(1− fS(E))P (ε− E). (4.19)

This reduces to Eq. (2.25) if Zt(ω) = 0. In that particular case P (E) =

δ(E). From Eq. (4.19) the P (E) function can be interpreted as a prob-

ability density that the electron which tunnels, emits energy E to the

impedance Zt(ω). Note that P (−E) is then the probability density of the

electron to absorb energy E. By calculating the remaining terms, we ob-

tain the tunneling rate to the reverse direction as

ΓS→N (δE) =
1

e2RT

∫
dε dE nS(E)(1− fN (ε+ δE))fS(E)P (E − ε). (4.20)

With Eqs. (4.19) and (4.20) we are now ready to consider quantitatively

the effect of the environment to an NIS junction.

4.2 Electromagnetic environment as an origin of Dynes DoS

We consider now a hot resistive environment with resistance R � RK .

With this impedance, the noise spectrum is white with a thermal cutoff. In
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Publication II the resistive environment was utilized to show theoretically

as well as experimentally that environmentally activated tunneling gives

rise to leakage at sub-gap voltages in NIS junction based devices and it

accounts for the phenomenological Dynes DoS typically used for modelling

the leakage [63, 64]. In Fig. 4.1 the P (E) function is presented for various

temperatures Tenv and shunting capacitances C. If the temperature of

the environment satisfies Tenv > E/kB and the the capacitance is low,

C < ~/(∆R), the P (E) function of Eq. (4.17) is approximately Lorenzian:

P (E) =
1

π∆

σ0

σ2
0 + (E/∆)2

, (4.21)

where σ0 = R
RQ

kBTenv

∆ and RQ = ~/e2. See supplemental material of Pub-

lication II for derivation. When this is plugged into Eqs. (4.19) and (4.20)

and the current through a voltage biased NIS junction, I = e(ΓN→S −
ΓS→N ), is evaluated, we obtain the same result as if we would do the cal-

culation in the absence of the environment (Eqs. (2.25) and (2.26)) but use

for the superconductor an effective density of states

nσS(E) =

∣∣∣∣∣Re

(
E/∆ + iσ√

(E/∆ + iσ)2 − 1

)∣∣∣∣∣ , (4.22)

which is known as the Dynes density of states [63, 64]. Here σ = σ0 is

taken as a lifetime broadening of a level at energy E. For the derivation,

see supplemental material of Publication II. Typically σ = 10−3 . . . 10−6

for aluminum based devices, so that the level broadening effect is small.

In addition to the small broadening around energy E, the finite lifetime

in Dynes DoS results in electronic states which are distant from the non-

broadened energy levels. From Eq. (4.22) we see that we obtain states

into the superconductor gap |E| < ∆. For small energies E, we have

nσS(E) ≈ σ. These subgap states cause linear leakage at low bias |eVb| < ∆

and thus the Dynes DoS is often used to account such features in the

experiment [65–70]. In view of the electro-magnetic environment as the

origin of the Dynes DoS, these are not true electronic states but a re-

sult of photons providing the required energy for the unpaired electron

in the superconductor. This was proven by measuring two NIS junctions,

where one was on top of a ground plane and another one did not have it.

The results are shown in Fig. 4.2. The device on top of the ground plane

shows the anticipated linear leakage at low bias which is suppressed by

an order of magnitude as compared to the junction off the ground plane.

Inserting the ground plane increases the capacitance C between the junc-

tion electrodes. The voltage fluctuations are then suppressed and hence
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σ is decreased, see Fig. 4.1. This experiment demostrates that one needs

to shield carefully the sample against the fluctuations. The same effect

was shown in Publication III in an electron counting experiment. The

technique is discussed in detail in Sect. 5.3.

4.3 Subgap leakage of NIS junctions

The discussion of the leakage current of an NIS junction studied in Publi-

cation II was extended in Publication X to the case of a general Z(ω). The

obtained results are limited to low bias voltages |eVb| < ∆. In other words,

the emphasis is put on describing the subgap leakage and the broadening

at |eVb| > ∆ is not considered. In addition, the temperatures TN and TS at

the junction are assumed to satisfy TN , TS � ∆/kB. Under these assump-

tions, the subgap current arising from environmental activation reads

Isg ≈ σenv
V

RT
, (4.23)

where we have the leakage parameter

σenv = 2

∫ ∞

∆
dE nS(E)P (−E). (4.24)

Furthermore, expanding P (E) of Eq. (4.17) up to the first order of J(t)

yields

P (E) ≈ 1

2π~

∫
dt eiEt/~ [1 + J(t)]

≈ δ(E) +
1

~

∫ ∞

0

dω

ω

Re(Zt(ω))

RK

{[
coth(βenv~ω/2)− 1

]
δ(E/~ + ω)

+
[

coth(βenv~ω/2) + 1
]
δ(E/~− ω)− 2~ coth(βenv~ω/2)δ(E)

}
.

(4.25)

In this form, the P (E) function consists of both elastic and inelastic con-

tributions. The inelastic one involves an exchange of exactly one photon

between the junction and environment. In such one photon regime, the

environment is weakly coupled to the junction. Evaluating the integral

over ω and plugging the result into Eq. (4.24) yields

σenv = 4

∫ ∞

∆
dE nS(E)

Re(Zt(ω))

RK

n(E)

E
, (4.26)

where n(E) = (eβenvE − 1)−1 is the Bose-Einstein distribution of the pho-

tons. Equation (4.26) allows one to evaluate the low bias leakage for

any environment weakly coupled to the junction. For the validity of the
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weak coupling, see details in Publication X. With a resistive environ-

ment, Eq. (4.26) reduces to the result obtained in Sect. 4.2. An effective

approach to suppress the leakage current is to place a resistive transmis-

sion line between the hot environment and the junction. A relevant pa-

rameter for the leakage suppression is the transmission coefficient TC(ω),

which defines the damping of voltage fluctuations at frequency ω when

passing the transmission line. In Publication X it was shown that with

the transmission line |TC(E/~)|2 appears in the integrand of Eq. (4.26).

The transmission coefficient TC decreases exponentially as the length l or

the resistivity per unit length R0 of the line increases. Thus the subgap

leakage was shown to scale as σenv ∝ e−l
√

2∆R0C0/~, where C0 is the capac-

itance per unit length of the line. Utilizing the exponential suppression,

it is possible to reach σenv . 10−7, as shown experimentally in Publication

VI.

Suppressing the environmentally activated tunneling and obtaining a

small value for σenv has a direct influence on the current quantization ac-

curacy of a SINIS turnstile. The influence of environmentally activated

tunneling on the turnstile was experimentally demonstrated in Publica-

tion II by comparing a turnstile with and without the ground plane. Pro-

tection against environmentally activated tunneling is of paramount im-

portance also for the experiments on Andreev tunneling of Chapter 5 and

on quasiparticle excitations of Chapter 6. In these experiments, a ground

plane, a better shielded sample holder or both were utilized for the protec-

tion. As a final remark of this chapter, we note that the electromagnetic

environment not only causes spurious effects. By engineering it, the tun-

neling rates can be influenced in a way which improves the performance

of the turnstile or other SET devices [71–73].
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5. Higher order processes - Andreev
tunneling

In Chapter 2 sequential single-electron tunneling in NIS junctions was

discussed. This is often the dominant mechanism of charge transport.

Multi-electron processes are especially important in the subgap regime

where the bias voltage per junction satisfies |Vb| < ∆/e and single-electron

processes are suppressed, see Figs. 2.2 (b) and 2.3. In this case, multi-

electron processes which avoid Cooper pair breaking are energetically fa-

vorable. One such process is elastic cotunneling, where an electron first

tunnels from normal metal to a superconductor and then coherently to

another normal metal [49, 74]. For the NISIN transistor of Sect. 6.4 this

process is possible but the rates are lower than what we can detect with

direct current measurements [74, 75]. For the other structures of this the-

sis cotunneling without breaking Cooper pairs is not allowed ideally since

the second normal metallic part is missing. Therefore we neglect it in this

thesis.

The other two-electron process avoiding the pair breaking energy cost

involves a Cooper pair tunneling into a normal metal as two unbound

electrons or reversely two electrons from the normal metal tunnel into the

superconductor and form a Cooper pair. Processes, where normal metallic

electrons are converted to Cooper pairs or vice versa are known as An-

dreev processes [2]. In the case of tunnel junctions we use the term "An-

dreev tunneling" since it corresponds to a two-electron tunneling process.

Being the simplest process which avoids Cooper pair breaking, Andreev

tunneling is also the one which produces typically the largest current.

As more and more electrons are involved in a multi-electron process, the

magnitude of the resulting current decreases. This is because the proba-

bility for N electrons to tunnel in the process is proportional to T N , where

T � 1 is an average transmission probability for a single-electron [76].

The process being energetically possible and involving the smallest num-
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ber of electrons is hence dominant. This is reflected in the resulting tun-

neling rate of an N electron process which scales as R −NT .

In this chapter, we consider Andreev tunneling in NIS junctions [3–

6, 8, 70, 77]. We first determine the tunneling rates and then discuss

how to observe them experimentally. We also demonstrate experimen-

tally that the Andreev tunneling can be suppressed with charging energy

costs. This makes three-electron processes dominant [49]. We will also see

that the Andreev tunneling imposes constraints to the design of a SINIS

turnstile when maximal accuracy is pursued.

5.1 Determination of Andreev tunneling rates

The tunneling rates for Andreev tunneling are obtained similarly as the

single-electron rates. In this case, we take the second non-zero term in

the series expansion of Eq. (2.18). Plugging this into I = Tr(ρI ÎI) yields

IAR = − i

~3

∫ t

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3

〈[
ĤT (t3),

[
ĤT (t2),

[
ĤT (t1), Î(t)

]]]〉
0

(5.1)

Following the same steps as for the first order, collecting only terms not

containing energy cost of ∆ and taking terms corresponding to tunneling

from normal metal to superconductor, one arrives at the Andreev tunnel-

ing rate

ΓAR
N→S(δE) =

~∆2

16πe4R2
TN

∫
dεfN (ε− δE/2)fN (−ε− δE/2)×

∣∣∣a(ε+ EC − iδε/2) + a(−ε+ EC − iδε/2)
∣∣∣
2
,

(5.2)

where

a(ε) =
1√

ε2 −∆2
ln

(
∆− ε+

√
ε2 −∆2

∆− ε−
√
ε2 −∆2

)
, (5.3)

and δE is the electrostatic energy gained for the two electrons which tun-

nel [49, 78]. By considering n changing by two in Eq. (3.4) and taking into

account that two electrons are provided by the voltage supply Vi, we ob-

tain the energy gain for adding (++) or removing (−−) two electrons from

the SET island as

δE±±i = Ec(n−ng)2−Ec(n±2−ng)2∓2eVi = ∓4Ec(n−ng±1)∓2eVi. (5.4)

Similarly as for the single-electron tunneling rates of Eqs. (2.25) and

(2.26), for Andreev tunneling we also have ΓAR
N→S(δE) = ΓAR

S→N(δE), i.e.

the tunneling direction does not matter for a given energy gain δE.

For obtaining Eq. (5.2) a few remarks need to be made. First of all, it

was taken into account that the junction consists of several conduction

48



Higher order processes - Andreev tunneling

-3 -2 -1 0 1 2 3

0

2

4

-3 -2 -1 0 1 2 3
10-6

10-4

10-2

100

e4
R

2 T
N

h̄
∆

Γ
A

R
N

→
S

δE/∆

A
nd

re
ev

 tu
nn

el
in

g
bl

oc
ke

d,
 

th
er

m
al

 e
xc

ita
tio

ns

Li
ne

ar
  t

un
ne

lin
g 

ra
te

A
bo

ve
 re

so
na

nt
 

co
nd

iti
on

δE
=

2(
∆

−
E

c
)

δE
=

0

δE
=

2
(∆

−
E

c
)

δE
=

0

(a) (b)

Figure 5.1. Andreev tunneling rates. (a), Andreev tunneling rate ΓAR
N→S as a function

of the energy gain δE. The curves from top to bottom are calculated with
~
∑
± ΓN→S(δE±)/∆ = 10−5, 10−4, 10−3 and 10−2 respectively. The tunneling

threshold δE = 0 and the resonant condition δE = 2(∆ − Ec) are shown as
dotted grey lines. Curves are calculated with ∆/kBTN = 40. (b), Similar
curves but for different temperatures ∆/kBTN = 10, 15, 25 and 40. Here we
use ~

∑
± ΓN→S(δE±)/∆ = 10−5.

channels; N is the effective number of them. This scales the tunneling

rate as 1/N compared to the result obtained with a single channel. We

can express the number of conduction channels as N = A/Ach, where

Ach is the area of one channel and A the total area of the junction. For

aluminum oxide tunnel barriers, we expect Ach = 2 nm2 based on the

estimate given in Publication IV. Experimental findings in Publication

IV, Publication V and Refs. [5, 70] suggest, however, that the actual value

for Ach is roughly an order of magnitude higher resulting in an order of

magnitude higher tunneling rate than expected.

Secondly, we have introduced a lifetime broadening with a term iδε =

i~
∑
± ΓN→S(δE±) to Eq. (5.2). Otherwise the Andreev tunneling rate

would diverge. The broadening is determined by the first order tunneling

rates
∑
± ΓN→S(δE±), which according to the uncertainty relation make

the energy states uncertain as the lifetime of the state is finite. In Fig. 5.1 (a)

we have plotted ΓAR
N→S for different values of δε. The rate depends only log-

arithmically on δε and only if the energy gain in Andreev process satisfies

δE±±i > 2(∆ − Ec), which corresponds to the competing single-electron

tunneling threshold condition δE±i > ∆. In this thesis we focus mainly on

Andreev tunneling rates at δE±±i < 2(∆ − Ec), where they are not sensi-

tive to the broadening. Because of these two reasons, the actual value for

the broadening does not play a major role for the results obtained.

From the rates of Fig. 5.1 we also see that Andreev tunneling is acti-
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Figure 5.2. Andreev tunneling in a NIS junction. The black dots show measured
subgap current of an NIS junction. The data is taken from Fig. 4.2. The solid
red line is a calculated curve with Andreev tunneling producing the linear
slope as in environmental activation.

vated as soon as δE±±i > 0. The superconductor gap ∆ does not appear in

this condition at all reflecting the fact that no pair breaking is involved in

the process. Once the threshold condition is satisfied, the tunneling rate

grows linearly in δE±±i giving rise to linear current - voltage relation.

With δE±±i < 0, tunneling is exponentially suppressed and the rates are

set by thermal activation. All these features are similar to single-electron

tunneling in a fully normal metallic tunnel junction, i.e. Eq. (2.23) with

∆ = 0. Such a linear leakage current can be present also in an NIS junc-

tion (∆ 6= 0) because of environmentally activated tunneling as in Sect. 4

(σ 6= 0 in Eq. (4.22)). Therefore one needs to pay special attention to dis-

tinguish different tunneling processes producing similar features. This

will be the topic of the next section. First we demonstrate that indeed,

Andreev tunneling leads to similar features for voltage biased NIS junc-

tions as the environmentally assisted tunneling. Then we show that by

utilizing charging energy costs, one can clearly distinguish these two ef-

fects.

5.2 Measuring Andreev tunneling: subgap current

The most obvious way to probe experimentally the Andreev tunneling in

NIS junctions is to investigate the tunneling current in the subgap re-

gion, |eVb| < ∆. The simplest experiment is to measure a single volt-

age biased junction [5, 70] as was described in Sections. 2.2.2 and 4. We

actually take the data of Fig. 4.2 which was interpreted there as envi-
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ronmentally activated single-electron tunneling and show that, with free

parameters, it can be fitted as well with the expressions governing An-

dreev tunneling. Thus the interpretation of the subgap currents of a NIS

junction is not necessarily unambiguous. In Fig. 5.2 we replicate the ex-

perimental data obtained with the junction on top of the ground plane

as dark blue dots. In addition, we show simulations where Andreev and

single-electron tunneling without environmental activation is considered

as red line. The current is obtained as I = e(ΓN→S(eVb) + 2ΓAR
N→S(2eVb) −

ΓS→N(−eVb)− 2ΓAR
S→N(−2eVb)). The linear part of the calculated current at

−0.7 ∆ < eVb < 0.7 ∆ is caused solely by Andreev tunneling. The steep

increase at eVb ≈ ∆ is because of thermally activated single-electron tun-

neling.

One approach to resolve the origin of the observed current is to consider

the magnitude of the slope and find out whether it is consistent with An-

dreev tunneling. At low energies ε, we obtain a(ε) = π/2 from Eq. (5.3).

In addition, taking Ec = 0 and TN = 0, we obtain from Eq. (5.2) for small

bias voltages

ΓAR
N→S =

1

8N
RK
eR2

T

Vb, (5.5)

which is consistent with the BTK calculations [3]. Equation (5.5) yields

the ratio of the conductances in the subgap and asymptotic bias regimes

as

σAR =
2eΓAR

N→S

Vb
RT =

1

4N
RK
RT

, (5.6)

which shows that the ratio is set by RKAch/(RTA). The area of the junc-

tion used in the measurement of Fig. 5.2 is A = 80 nm × 110 nm based on

a scanning electron micrograph, and the tunnel resistance RT = 760 kΩ

is obtained from the asymptotic slope of the current-voltage graph. For

getting the subgap slope of Fig. 5.2 correct, we need to take Ach = 30 nm2.

This value is the same as the values obtained in the experiments below

indicating that Andreev tunneling causes the leakage in this case. The

junctions considered in this thesis are relatively small, A . (100 nm)2,

and opaque, RT & 100 kΩ. For such junctions the Andreev tunneling is

ballistic and given by Eq. (5.2). For larger, more transparent junctions

the Andreev tunneling becomes diffusive producing a zero-bias anomaly

in the measurement which helps to identify Andreev tunneling [5, 6, 70].

Still the measured current typically has an extra linear subgap part.

The considerations above apply to a voltage biased NIS junction. In Pub-

lication IV the influence of the charging energy to Andreev tunneling was

considered. From Eq. (5.4) we see that the Andreev threshold δE±±i = 0
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Figure 5.3. Andreev tunneling in SINIS transistors. Colored regions show mea-
sured subgap current for devices with charging energies Ec/kB = 2.3, 1.9, 1.5,

and 0.86 K from top (yellow) to bottom (orange) at all gate offset values (the
"colored" areas). The insets depict the larger scale measurements for samples
with the highest and lowest charging energies and a scanning electron micro-
graph of one of the measured SETs. Solid black lines are theoretical curves
at degeneracy (maximal current) and in Coulomb blockade (minimal current)
with Andreev tunneling taken into account. Dotted blue lines present fits
excluding Andreev processes. Tunneling resistances of the samples were
RT = 129, 78, 55, and 31 kΩ in order of decreasing Ec, and superconduct-
ing gap ∆ = 216 µeV for all of them. Open (solid) circles present the expected
thresholds |eVb| = Ec and 2Ec for Andreev tunneling at degeneracy and in
Coulomb blockade, respectively. This figure is adapted from Publication IV.

is exceeded if the bias per junction satisfies |eVb| > Ec for degeneracy,

ng = 1/2, and |eVb| > 2Ec for Coulomb blockade, ng = 0. Here we have

again taken Vb = V1 = −V2 for the SET. The degeneracy case minimizes

the required bias voltage. Therefore we expect that no Andreev current

will flow below this voltage and above it Andreev tunneling is activated

for a certain gate offset range around ng = 1/2. Likewise, Coulomb block-

ade maximizes the required bias and hence we expect Andreev current to

flow at all values of ng starting from |eVb| = 2Ec. These voltage thresholds

are indeed the features that are observed in SINIS single-electron tran-

sistors. In Fig. 5.3 we present data for four devices. The charging energy

is ranging from Ec = 70 µeV to Ec = 200 µeV. There is indeed no subgap

current at |eVb| < Ec, whereas at higher voltage values the current is non-
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vanishing. The maximum value of the current is obtained with ng = 1/2

and it increases linearly for higher biases Vb. The onsets at eVb = ±Ec are

clear fingerprints of two electrons being involved in the transport. Fur-

thermore, the linear increase after the threshold is in agreement with the

Andreev tunneling rates discussed in Sect. 5.1.

The Andreev tunneling rates can be incorporated in the master equa-

tion (3.7) by adding terms Γn−2,nP (n− 2) and Γn+2,nP (n + 2) which cor-

respond to tunneling of two electrons into or out from the island. The

rates Γn±2,n are set by ΓAR
N→S and ΓAR

S→N. For calculating the current with

Eq. (3.8), we add these rates multiplied by a factor two since two electrons

tunnel in each event. The full equations are given in Publication V. We

show in Fig. 5.3 calculations including Andreev tunneling at ng = 1/2 and

ng = 0 as black lines. For reference, simulations but excluding Andreev

tunneling are given as dotted blue lines. For low charging energy devices,

the features of the excess current are captured well by including Andreev

tunneling rates. At higher Ec, the leakage in the gap vanishes gradually

and only thermally activated single-electron tunneling persists. The slope

at which the current rises above the threshold bias |eVb| = Ec is set by the

magnitude of Andreev tunneling. It allows us to determine the size of a

single conduction channel as Ach = 30 nm2.

5.3 Real-time detection of Andreev tunneling events

An alternative approach for the detection of Andreev tunneling is to uti-

lize electron counting techniques which was done in Publication IV. In

such a setup, a charge sensitive electrometer is used for monitoring the

number of electrons on a metallic island. As the number changes because

of tunneling, we see a jump in the detector signal thus allowing one to

detect the tunneling event. A typical device used as an electrometer is a

single-electron transistor, but also quantum point contacts can be utilized

for charge detection [79–81]. In our case we can use a SINIS transistor

since that can be fabricated in the same process as the studied systems.

For a detailed discussion about the operation, sensitivity and bandwidth

of such electrometers, see Publication VIII and Ref. [82].

The electron counting provides us a major advantage as compared to the

direct current measurement. With it, we are able to determine directly

the number of electrons passed in each tunneling event. This is based

on the fact that the change in detector signal is ideally proportional to
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Figure 5.4. Andreev tunneling in a single electron box. (a), An isolated single-
electron box (SEB) consists of two islands. One is superconducting and the
other normal metallic. Single-electron and Andreev tunneling is possible in
the NIS tunnel junction connecting the two islands. An SET electrometer and
a gate offset voltage can be coupled to either of the islands capacitively. (b),
Scanning electron micrograph of an isolated SEB. The two islands are 25 µm

long horizontal bars shaped in the middle to accomodate the connecting NIS
junction and coupling to the electrometer shown at the bottom.

the number of electrons leaving or entering the island. This advantage is

obtained by utilizing the charging effect of a small island: what we detect

is a change in the electrostatic potential of the island as electrons tunnel.

In Fig. 5.4 (a) we show schematically the system we study. It is an

isolated single electron box (SEB) consisting of a normal metallic and su-

perconducting island. They are connected by an NIS junction allowing

single-electron and two-electron Andreev tunneling to take place. To de-

tect the tunneling events, the two islands are capacitively coupled to other

parts. Typically one of the islands is coupled to the electrometer, allowing

one to monitor the number of electrons on that island, and the other one

to a gate electrode, which allows one to tune the offset charge ng of the

SEB. An actual device is shown in panel (b).

The SINIS SET which is used as the electrometer is biased slightly

above the threshold condition, eVb & ∆, where the current depends strongly

on its offset charge ng,det. It is tuned such that the current is half way

between its maximum and minimum values. This way the dynamical

range for the detection is optimized but typically the sensitivity set by

dI/dng,det is also close to its maximum value around this point. With SET

electrometers, subelectron sensitivity of the order of 10−5 e/Hz1/2 is ob-

tainable [83–86]. Once the detector is tuned to the operation point, time

traces of the detector current are recorded under different biasing condi-

tions of the SEB. When the SEB offset charge ng is changed, the offset

charge ng,det of the detector must be compensated to keep it at the opera-

tion point. This is due to unavoidable cross-couplings. The compensation
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Figure 5.5. SEB time traces. Charging energy E for n excess electrons on the island.
The left panel is for Coulomb blockade, ng = 0, and the right one for de-
generacy, ng = 1/2. (b), Time traces at Coulomb blockade (left panels) and
at degeneracy (right panel). Short time intervals are zoomed in the panels
at the bottom and they show possible two-electron tunneling events. Figure
adapted from Publication IV.

is however straightforward to do: Only a linear component needs to be

substracted from the detector gate offset. The compensation coefficient is

found by trial and error.

When the offset of the SEB is tuned, two extreme cases are found:

Coulomb blockade and degeneracy. The energy E for n excess electrons

on one of the islands as well as typical timetraces recorded at these ex-

treme cases are shown in Fig. 5.5. In Coulomb blockade, one of the charge

states has the lowest energy and the states around it are equally high in

energy. In the time traces, we see that the box stays most of the time at

the lowest energy state n = 0 and equally likely switches to either n = +1

or n = −1. When the system enters one of the higher states we see that
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Figure 5.6. Waiting time histograms and tunneling rates in the SEB of Fig. 5.4.
(a), Waiting time of the charge state n with the lowest energy E in Coulomb
blockade (left) and at degeneracy (right). (b), Tunneling rates for single-
electron processes (open symbols) and Andreev tunneling (filled symbols) for
the two directions. The two single-electron processes with lower rates are
tunneling from lower energy state to higher ones and the two processes with
higher rates are for the reverse processes. The results are obtained at the
base temperature of 60 mK of our cryostat. Figure adapted from Publication
IV

Andreev tunneling events shown as red arrows in panel (a) do not involve

energy cost and become therefore probable. We indeed see on the blow up

that there are fast transitions between n = ±1 without intermediate halt

at n = 0.

At degeneracy, which is the other extreme, two charge states represent

the degenerate minimum energy states. The time spent in these two

states is equal. Entering other states requires in this case at least twice

as much energy as in Coulomb blockade and therefore it is more unlikely.

Since Andreev tunneling from the lower lying states involves also a large

energy cost, it is not as probable as in Coulomb blockade.

Because the SET electrometer has a finite bandwidth, there is one is-

sue which needs to be analysed in order to confirm the detection of two-

electron events. The possible two-electron tunneling events pointed by

red arrows in Fig. 5.5 could in principle be just two single-electron events

occuring subsequently so quickly that the detector cannot resolve them
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separately. This possibility is ruled out by assuming only single-electron

events to occur. By considering the waiting time spent in the state n = 0

before a tunneling event occurs, we get the distributions shown in Fig. 5.6

(a). The fast transients indicated by the red arrows in Fig. 5.5 contribute

to short waiting times t. If those would be originating fully from single-

electron tunneling, the waiting time distribution would be exponential

(Poisson process). However, we see that this is not the case in Coulomb

blockade, where the data point at the smallest t is almost an order of mag-

nitude higher than the exponential distribution at larger values. There-

fore these events are dominantly of other origin suggesting that they are

true two-electron events.

For consolidating that the two-electron processes are indeed Andreev

tunneling, we next consider the tunneling rates for all processes. For ob-

taining the rates, firstly, we need to distinguish between one- and two-

electron processes. We interpret transitions with charge number chang-

ing by ∆n = ±2 and occuring within 0.4 ms as two-electron tunneling and

all other events as one-electron tunneling. The time window here was

chosen to be approximately equal to the risetime of the detector so that es-

sentially all excess events in the histograms of Fig. 5.6 (a) were captured.

In order to calculate the tunneling rates, we use the following arguments:

The average waiting time for a given charge number n is 〈t〉 = 1/ΓΣ,

where ΓΣ =
∑

j Γj is the sum of all tunneling rates Γj out from this state.

The probability that the tunneling event that took place corresponds to a

process with rate Γj is P (Γj) = Γj/ΓΣ. Hence we may write the number of

events corresponding to this process as Nj = NΣP (Γj) = NΣ 〈t〉Γj , where

NΣ =
∑

j Nj is the sum of all events out from this particular state. We

find that

Γj =
Nj

NΣ 〈t〉
, (5.7)

where the denominator, NΣ 〈t〉, is the total time spent in the initial charge

state. Therefore counting the number of occurred events for a given pro-

cess and dividing by the time spent in the inital state yields the tunneling

rate for that process. In Fig. 5.6 (b) the tunneling rates for all processes in

our system are plotted as a function of the gate offset charge ng of the SEB.

The solid green lines are theoretical calculations of Eq. (5.2) for Andreev

tunneling, where a value Ach = 30 nm2 was used. This value defining the

magnitude of Andreev tunneling is in agreement with the one obtained

in Sect. 5.2 from direct current measurements. Furthermore, we observe

that the Andreev tunneling rates obtained experimentally have the cor-
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rect functional dependency on ng as indicated by the solid green lines.

In this section, we have seen that the Andreev tunneling is activated

in Coulomb blockade and suppressed at degeneracy. In Sect. 5.2, see

Fig. 5.3, we however saw that Andreev tunneling is stronger at degen-

eracy than in Coulomb blockade when an SET is biased. At first these

observations seem contradictory. The results of the present section as-

sumed that single-electron processes excite the system to states n = ±1 in

Coulomb blockade allowing for the Andreev process. If this is not present,

the Andreev tunneling would have to start from state n = 0 and the en-

ergy cost for tunneling would be higher than at degeneracy. This is the

case presented in Sect. 5.2 leading to larger Andreev current at degener-

acy thus resolving the contradiction. Having just two coexisting different

kinds of tunneling processes leads to relatively rich characteristics and

the manifestation of various features depends on the relative rates of the

two tunneling processes.

5.4 Influence of Andreev tunneling on SINIS turnstile

Above we discussed Andreev tunneling under static biases Vb and ng. Now

we consider the case studied in Publication V where ng is periodically

driven and quantized current plateaus form in the SINIS turnstile. An-

dreev tunneling leads to pumping errors [49]. Occasionally, an Andreev

tunneling event happens instead of single-electron tunneling. Two elec-

trons are transported in this case and the current is enhanced.

An illustrative way to consider the competition between single-electron

and Andreev tunneling is to draw stability diagrams shown in Fig. 5.7 (a)

and (b) for both of the processes. The thresholds are obtained by requir-

ing δE± = ∆ in Eq. (3.6) for single-electron processes and δE±± = 0 in

Eq. (5.4) for Andreev processes. We observe that the thresholds run in

parallel and form diamonds of similar shape. If Ec < ∆, the diamond set

by Andreev tunneling is smaller than the single-electron one and Andreev

tunneling becomes activated first. For Ec > ∆, the situation is reversed

and single-electron tunneling is activated first. This is reflected in the

current quantization of the devices. In panels (c) and (d) we show the first

pumping plateau for the low and high charging energy device. We see

that the current for the low Ec device is higher than ef whereas for the

high Ec device the current at the plateau is significantly closer to ef . The

measured data points and the calculated curves match well together. The
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Figure 5.7. Andreev tunneling in SINIS turnstiles. Stability diamonds for single-
electron tunneling (solid blue lines) and Andreev tunneling (dotted red lines)
for Ec = 0.63∆ in panel (a) and Ec = 1.4∆ in panel (b). The first quantized
current plateau at f = 10 MHz for Ec = 0.63∆ in panel (c) and Ec = 1.4∆ in
panel (d). The points are experimental data with the bias voltage per junction
of Vb = 80, 120 and 160 µV and dashed black lines are numerically calculated
curves where Andreev tunneling is taken into account. Ag is the amplitude
of the gate offset drive. The error of the current measurement is smaller than
1 % and limited by the uncertainty of the gain of the current preamplifier. A
10−3 level correction is made to the gain in order to match the absolute values
of the current for the simulated and measured currents. Figure adapted from
Publication V.

fast increase of current is caused by exceeding the single-electron tun-

neling thresholds. Ideally the current should take the value ef between

the rising intervals. However, because of Andreev tunneling this does not

happen for the low Ec device. The deviation of the value of the current

on the plateau from ef is proportional to the magnitude of Andreev tun-

neling and hence to Ach. For the simulations we have used Ach = 30 nm2,

again in quantitative agreement with findings in previous chapters.

For the high Ec device, the numerical calculations are insensitive to An-

dreev tunneling. This is because for Ec > ∆, Andreev tunneling is ener-

getically unfavored as compared to the single-electron process: it costs

more energy to charge the island with two electrons than to break a

Cooper pair. Hence, utilizing a high Ec device leads to better current

quantization free of Andreev tunneling. In practice, it is considered to be

sufficient to have Ec & 2∆. In this case, the Andreev tunneling thresh-
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olds at thermally optimal bias, eVb ≈ ∆/2, are at larger ng than the

back-tunneling thresholds and do not anymore limit the device perfor-

mance [49, 53].

5.5 Full Counting Statistics (FCS) of Andreev Events

In Sects. 3.2 and 5.2, a master equation was utilized to calculate single-

electron and two-electron Andreev tunneling on a small metallic island.

As a result, we were able to describe how average current depends on

various quantities such as externally controllable bias and gate voltages.

Although the average quantities reveal many features of the studied sys-

tem, they typically cannot provide direct information about fluctuations

and noise [87] which have non trivial features in superconducting sys-

tems. For example the shot-noise is doubled in Andreev processes com-

pared to single-electron transport [88–90] and it results in positive cross-

correlations in Cooper pair splitters [77, 91]. In this section we discuss

how quantities beyond the average values can be treated for the tun-

nel junctions with the so-called full counting statistics (FCS) techniques

and how the FCS can be straigthforwardly accessed experimentally with

the electron counting techniques [92–96]. We first review the essential

parts of FCS based on a master equation approach [97–100] and then con-

sider the experiment of Publication XI where Andreev tunneling occurs in

avalanches and results in super-poissonian statistics.

5.5.1 Master equation approach to FCS

We consider probability pm(n, t) of having m excess electrons on the island

while n electrons have been transported in total at time t. Taking into

account single-electron and two-electron tunneling the master equation

reads

d
dtpm(n) = −ΓΣ,mpm(n) + Γ++

m−2pm−2(n− 2) + Γ+
m−1pm−1(n− 1)

+Γ−m+1pm+1(n± 1) + Γ−−m+2pm+2(n± 2),
(5.8)

where we dropped the time variable, which is the same for all terms

and Γ±m is single-electron tunneling rate into (+) or out from (−) the is-

land with initially m electrons and Γ±±m the two-electron rate into (++)

or out from (−−) the island with initially m electrons [97, 100]. ΓΣ,m =

Γ+
m + Γ−m + Γ++

m + Γ−−m . The choice of + and − in the last two terms of

the first row determines whether we consider the total number of tunnel-

60



Higher order processes - Andreev tunneling

ing events irrespective of the direction (−) or the net number of electrons

tunneling in one direction, substracting the tunneling to the opposing di-

rection. Also counting the tunneling events for example on only one of the

SET junctions is straighforward to do by using terms where n remains

unchanged for the other junction. This is important for example when the

current noise of a SET is considered.

To get the statistics of n, we are interested in the moment generating

function

M(χ) =< eχn >=
∑

n

eχnP (n, t), (5.9)

where P (n, t) =
∑

m pm(n, t) is the probability of having n events at time t.

Once M(χ) is known, the moments are obtained simply by differentiation

with respect to χ. Also the distribution of the events P (n, t) is obtained

by a Fourier transformation as we can see from the right hand side of

Eq. (5.9). Now we write z = eχ and

M(z) =
∑

m

gm(z, t), (5.10)

where gm(z, t) =
∑

n z
npm(n, t). With Eq. (5.8) we obtain a master equa-

tion for gm:

d
dtgm = −ΓΣ,mgm + Γ++

m−2z
2gm−2 + Γ+

m−1zgm−1

+Γ−m+1zgm+1 + Γ−−m+2z
2gm+2.

(5.11)

Here we again dropped arguments z and t which are the same for all

terms and we count the number of all events. We now consider vector ḡ

whose elements are gm. Equation (5.11) can be then written as

d

dt
ḡ(z, t) = M̄(z)ḡ(z, t), (5.12)

where

M̄(z) =




. . .

z2Γ++
m−2 zΓ+

m−1 −ΓΣ,m zΓ−m+1 z2Γ−−m+2

z2Γ++
m−1 zΓ+

m −ΓΣ,m+1 zΓ−m+2 z2Γ−−m+3

. . .



.

(5.13)

Equation (5.12) can be solved formally to get ḡ(z, t) = eM̄(z)tḡ(z, 0), where

ḡ(z, 0) is the configuration at the beginning of the counting. The quantity

ḡ(z, 0) is taken such that only the states with n = 0 have non-zero prob-

ability and their population is given by solving the steady state d
dt ḡ(z =

1, t) = 0.1 Having gm(z, t), we obtain the moment generating function with

1By taking z = 1 in Eq. (5.12), it reduces to the standard master equation (3.7).
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Figure 5.8. The structure for detecting Andreev avalanches. Two SINIS transis-
tors with the islands coupled capacitively to each other with a metallic strip
(yellow). The transistor on top with higher Ec is used as an electrometer. The
number of excess electrons N on the other transistor island is read via the
current Id flowing through it. Figure adapted from Publication XI.

Eq. (5.12) and we can readily use it to obtain any statistics we are inter-

ested in.

5.5.2 FCS of Andreev tunneling

The electron counting techniques discussed in Sect. 5.3 allow one readily

to perform FCS experiments. The structure which was used in Publica-

tion XI is shown in Fig. 5.8. Instead of measuring the number of excess

electrons N in a isolated box, we measure them in an island of a SINIS

turnstile. These two setups behave identically when the transistor is kept

at zero bias as we did in the experiments below. However the transis-

tor structure allows us to measure transport characteristics and extract

parameter values RT = 490 kΩ, ∆ = 210 µeV and Ec = 40 µeV, as de-

scribed in Sect. 3.2. The drawback is that the rates will be twice as high

as compared to the isolated box, trivially because there are two junctions

contributing to tunneling.

First we tune the offset charge to degeneracy ng = 1/2. The charge

states N = 0 and N = 1 are the lowest lying ones with equal energy as

shown in Fig. 5.9 (a), and results in a time trace where single-electron

tunneling takes place between the two states as shown in panel (b). Now

we can obtain experimentally the FCS distribution. We recorded 3 s time

traces and chopped them in bins of length t. By counting the number

of events in each time bin, we build the probability histogram p(n, t) for

observing n tunneling events in time t shown in Fig. 5.9 (c).

For predicting the experimental distribution, we take Eq. (5.12) with the
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(a)

(b)
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Figure 5.9. Statistics of single-electron tunneling. (a), Charge degeneracy (ng =

0.5) where only single-electron tunneling is active as shown by the time trace
of the detector current in panel (b). The energy parabola is obtained from
Eq. (3.4). (c), Probability p(n, t) for observing n single-electron events in time
window t = 10, 100 and 1000 ms. Solid lines are Poisson distributions. Figure
adapted from Publication XI.

two states N = 0, 1 as

d

dt


 g0(z, t)

g1(z, t)


 =


 −Γ zΓ

zΓ −Γ




 g0(z, t)

g1(z, t)


 , (5.14)

where Γ = 49 Hz is the degeneracy tunneling rate, determined from the

time traces by evaluating the average waiting time before a tunneling

event occurs. Equation (5.14) can be straightforwardly solved to yield

M(z) = g0 + g1 = e(z−1)Γt, which is the moment generating function

of a Poisson distribution with mean < n >= Γt. Therefore p(n, t) =

1
2π

∫ 2π
0 dχ e−inχM(eiχ) = (Γt)n

n! e−Γt, which is presented as solid lines in

Fig. 5.9 (c). We observe that the experimental statistics follow the Poisson

distribution as expected.

In Fig. 5.10 the same experiment is repeated in Coulomb blockade, ng =

0. In this case the energy diagram of panel (a) has N = 0 as the most

probable state and the tunneling to N = ±1 involves an energy cost. A

typical time trace is shown in panel (b). Most of the time the box is in the

charge state N = 0. Then a single-electron event moves the system to ei-

ther of the states N = ±1. In these states two-electron Andreev tunneling

with rate ΓA is energetically neutral as shown by the red horizontal line of

panel (a). Because of the pair breaking energy cost ∆, the single-electron

rate Γd down to N = 0 is exponentially suppressed in temperature as dis-

cussed in Sect. 2.2.2. Therefore it is possible to have ΓA > Γd. In this

case, multiple Andreev tunneling events take place before the system re-

laxes back to N = 0. Such a set of parameters results in bunching of the

tunneling events with a typical avalanche shown in panel (b).
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(a)
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Figure 5.10. Statistics of two-electron Andreev tunneling. (a), A schematic on
charging energy costs and tunneling processes in Coulomb blockade (ng =

0). Charge state N = 0 is preferred as shown by the measured time trace
in panel (b). (c), Probability p(n, t) for observing n single-electron events in
time window t = 10, 100 and 1000 ms. Solid lines are theoretical predictions
based on Eq. (5.15). Figure adapted from Publication XI.

The statistics of Andreev tunneling shown in Fig. 5.10 (c), demonstrate

that the distributions are broader than the Poisson distribution, reflect-

ing the fact that the bunching makes the signal more noisy. To corrobo-

rate this, we again take Eq. (5.12) but now counting only the number of

Andreev events. Since the states N = ±1 are identical, we simplify the

problem by summing them to gA = g1 + g−1. We then obtain

d

dt


 gA(z, t)

g0(z, t)


 =


 ΓA(z − 1)− Γd 2Γu

Γd −2Γu




 gA(z, t)

g0(z, t)


 . (5.15)

Solving Eq. (5.15) and taking the Fourier transform, leads to the theoret-

ical lines of Fig. 5.10 (c). The tunneling rates Γu = 12 Hz, Γd = 250 Hz and

ΓA = 610 Hz were estimated by counting the number of occured events

and dividing by the time spent in the initial state as in Sect. 5.3. Note

that the broader distribution obtained here is not because of the Andreev

process carrying two electrons unlike in Ref. [90]. Since we count the

number of pairs this effect does not show up in the statistics. The distri-

bution is broader solely because of the bunching of the tunneling events.

If one would count the number of electrons instead, it would lead to an

additional factor of two in the variance as in Ref. [90].

In Publication XI it was furthermore shown by expanding the cumu-

lant generating function in by the lowest order in Γu that the FCS in this

case can be approximated as a sum of independent Poisson processes that

generate avalances of m Andreev events with a probability

q(m) =
Γd

ΓA + Γd

(
ΓA

ΓA + Γd

)m
, (5.16)
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where ΓA/(ΓA + Γd) is the probability of having one more Andreev event

in state N = ±1 and Γd/(ΓA + Γd) is the probability of having a tunneling

event down to N = 0 at the end. The distribution q(m) was determined

experimentally and good agreement with Eq. (5.16) was found.
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6. Quasiparticle excitations in a
superconductor

As the temperature TS of a superconductor is lowered, the thermal exci-

tations in form of unpaired electrons diminish exponentially. This hap-

pens since according to Eq. (2.5), all excitations carry energy which is at

least ∆. Because of the exponentially small number of carriers, many

quantities such as electrical heat conduction and recombination of broken

Cooper pairs in a superconductor become also exponentially weak. Hav-

ing such a strong dependency makes the temperature an inconvenient

parameter for quantifying the excitations: a 10 % change in it may lead to

an order of magnitude change in the number of excitations. Therefore one

needs to know the ratio ∆/kBT very well in order to know even roughly

the number of excitations and quantities depending on it.

A more natural parameter for describing excitations in a superconduc-

tor at low temperatures is the number of excitations in unit volume, the

quasiparticle density nqp. It is a convenient quantity for analysing the

properties of a superconductor in the sense that the quantities depending

on the excitations follow a power law. For example heat conduction is ap-

proximately linear in nqp and electron-phonon recombination rate scales

as n2
qp. In Sect. 6.1 we will first formulate the relation between TS and nqp

and consider experimental ways to probe the excitations with NIS junc-

tions. Then we consider the heat conduction along a superconducting line

and obtain a diffusion equation for nqp. By injecting quasiparticles with

a SINIS turnstile allows us to probe the diffusion and relaxation of the

quasiparticles to a normal metallic trap. We also learn that evacuation

of the quasiparticle excitations is of paramount importance in order to

obtain good current quantization in the turnstile.

Then in Sect. 6.4 we consider electron-phonon interaction in supercon-

ducting state. That provides an inherent mechanism for the excitations

to relax. We use a small superconducting island connected with NIS junc-
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tions to normal metallic leads to probe the relaxation rates. We are able

to show that the island is free of quasiparticle excitations for most of the

time. Hence we can probe the recombination of quasiparticles down to a

single quasiparticle pair. We also see that the island cannot be consid-

ered to have a certain temperature TS but the dynamics of quasiparticles

needs to be accounted explicitly. An extended master equation is needed

which describes simultaneously the charge and energy flow on the super-

conducting island.

In Sect. 2.1 we presented the density of states of a superconductor with

two branches, one with energy E < −∆ and one with E > ∆. The ex-

citations of a superconductor consist of either occupied states at E > ∆

(particle like excitations) or vacant states at E < −∆ (hole excitations).

If the excitations are thermal, the number of excitations on the branches

are equal. However, if electrons are predominantly injected to E > ∆,

the number of excitations in this branch is expected to be higher. Simi-

larly, if electrons are removed from E < −∆, the hole excitations are more

abundant. While the increased number of excitations leads to increased

temperature TS , the difference of excitations in the two branches induces

a shift in the chemical potential [1]. In the SINIS turnstile such branch

imbalance is likely to occur since electrons are removed from one super-

conducting lead and injected to another. The possibility for the branch

imbalance is discussed in Sect. 6.3. Yet we find that the branch imbal-

ance is negliglible in the turnstile suggesting that the branch relaxation

is faster than the quasiparticle injection.

6.1 Probing quasiparticles with NIS junctions

In Sect. 2.2.2 we saw that the temperature of the superconductor, in form

of quasiparticle excitations, cannot be probed with a single NIS junction

since the rates in the forward and backward direction compensate each

other or the rates caused by the excitations are overwhelmed by rates

from other mechanisms. In this section we discuss two ways of probing

the excitations. The probing can be done either by making an electron

counting experiment or by measuring the current - voltage characteris-

tics of a SET structure. These both approches utilize Coulomb charging

energy in the same way as was done in Chap. 5 for observing Andreev

tunneling. In the first one, it is used for obtaining a measurable signal

and in the latter one to rectify the current caused by the quasiparticles.
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In the experiments of this thesis, quasiparticle excitations are injected

to energies close to the gap edges, E ≈ ∆ since we consider the low bias

conditions. In this case the excitations can be described in terms of chem-

ical potential shift δµ and elevated temperature TS [1]. The chemical po-

tential shifts if there is an imbalance in the populations of quasiparticles

in the two brances, E ≤ −∆ and E ≥ ∆, respectively. Such charge im-

balance was observed for the first time in the classic experiment by J.

Clarke [42]. There the imbalance was obtained by connecting an NIS and

an SIS junction in series. In the SIS junction the current is carried by

Cooper pairs which do not influence the quasiparticle excitations whereas

electron tunneling in the NIS junction creates excitations only on one of

the branches.

The other parameter TS characterizing the excitations describes the

overall number of them. Let us now find the relation between TS and

the quasiparticle density. We assume vanishing charge imbalance. Then

the quasiparticle density on one of the branches is

nqp,b = D(EF )

∫ ∞

∆
dEnS(E)fS(E), (6.1)

where D(EF ) is the normal state density of states at the Fermi level. For

aluminum, we have D(EF ) = 1.45 × 1047 J−1m3, see Ref. [101]. To get

the total density of all quasiparticles we have to multiply nqp,b by two

due to the two branches: nqp = 2nqp,b. On the other hand, if we take

Eq. (2.26) with energy gain −∆ < δE < ∆, the tunneling of quasiparticle

excitations is the dominant process provided that TN is low. We then have

1− fN (E + δE) ≈ 1 for E > ∆. Hence

ΓS→N =
1

e2RT

∫ ∞

∆
dEnS(E)fS(E) =

nqp

2e2RTD(EF )
, (6.2)

which is the value for the tunneling rate at −∆ < δE < 0 in Fig. 2.3

(b). Equation (6.2) yields a direct relation between the quasiparticle den-

sity and tunneling rate and it can be used to estimate the quasiparticle

density as was done in Publications VI, VII and IX. A specific feature of

the quasiparticle excitations is that the tunneling rate does not depend on

the energy gain δE since the excitations are at high energies. This feature

is useful for arguing that the tunneling is originating from quasiparticle

excitations.

Now we assume in addition that there are not many excitations present.

This low temperature limit, kBT � ∆, is relevant for results presented in

this thesis. In this case we have fS(E) ≈ e−E/kBTS for E ≥ ∆ and Eq. (6.1)
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Figure 6.1. Probing quasiparticle excitations by electron counting. (a), Two SETs
capacitively coupled as in Fig. 5.8. The upper one monitors the charge state
of the lower one. (b), The tunneling rate at degeneracy as a function of bias
voltage Vb per junction. Solid red dots are measured at the base tempera-
ture of 50 mK. Open diamonds have been measured at 158 mK tempera-
ture. Solid black line shows the rates calculated with Eqs. (2.25) and (2.26).
Open green triangles are results at the base temperature for a reference
sample without normal metallic traps. Quasiparticle relaxation is weaker
compared to the case of solid red dots and the tunneling rate is higher at
low Vb. For ease of comparison, the tunneling rates are scaled for the lat-
ter structure by the ratio of junction conductances 1/RT1,t+1/RT2,t

1/RT1+1/RT2
, where

RT1,t = RT2,t = 1.1 MΩ are the resistances of the device with direct trap
and RT1 = 2.0 MΩ, RT2 = 25 MΩ are those for the device without the traps.
Figure adapted from Publication VI.

simplifies to

nqp ≈ D(EF )
√

2π
√
kBTS∆e

− ∆
kBTS . (6.3)

Equation (6.3) shows that nqp and hence also the tunneling rates caused

by quasiparticle excitations are exponentially dependent on temperature

as we expected.

Let us now consider the counting experiment of Publication VI for de-

termining the quasiparticle density. In Fig. 6.1 we show the experimental

structure. It consists of two SINIS type SETs where the islands are ca-

pacitively coupled. One of the SETs is used as an electrometer to read

the number of electrons on the other SET island similarly as in Sect. 5.3.

The SET, from which the tunneling events are counted, is tuned to charge

degeneracy and the tunneling rate shown in Fig. 6.1 (b) is obtained at dif-

ferent bias voltages Vb (per junction). The open green triangles present the

tunneling rates at base temperature for a sample without a quasiparticle

trap with direct N-S contact. In this case we observe a bias independent

rate at small Vb, as we would expect for tunneling by quasiparticle excita-
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tions. The measured values ΓS1→N + ΓS2→N = 50 Hz, RT1 = 2.0 MΩ and

RT2 = 25 MΩ, yield nS = 0.3 µm−3 (Eq. (6.2)). In Ref. [82] it was estimated

that such a density is obtained with pair breaking rate of 2.2 · 105 Hz/µm3

for the 30 nm thick aluminum film. This value is well inline with the upper

limit of fcpb = 2 kHz for the Cooper pair breaking in an island with volume

V = 1.06 µm × 145 nm × 25 nm, discussed in Sect. 6.4.3. These numbers

yield an upper limit for the pair breaking rate fcpb/V = 5 · 105 Hz/µm3.

The red dots of Fig. 6.1 (b) show the tunneling rate for a sample hav-

ing a direct metal-to-metal quasiparticle trap at 10 µm distance from the

junction. Now the current caused by quasiparticles is absent as we ob-

serve a bias dependent rate. We can however obtain an upper limit for

the quasiparticle density by taking the lowest rate ΓS1→N +ΓS2→N = 8 Hz

and use the tunneling resistances RT1 = RT2 = 1.1 MΩ. With these we ob-

tain nqp = 0.03 µm−3, presenting the lowest reported quasiparticle density

observed so far. It is significantly lower than typical values for fully su-

perconducting systems [10–13]. See, however, Ref. [102] where a similar

value as ours was subsequently obtained. Efficient trapping of the quasi-

particles with normal metallic structures as well as admitting only low

frequency signals in the experiment allows us to reach the small quasi-

particle densities in the NIS junction based devices.

In addition to the counting techniques, direct current measurents of a

SINIS SET allow one to probe the quasiparticles as was done in Publi-

cation VII. In order to detect the quasiparticle excitations, the super-

conducting leads were intentionally designed so that the quasiparticles

do not relax to a trap efficiently. A scanning electron micrograph of the

device designed for such an experiment is shown in Fig. 6.2 (a). The su-

perconducting leads are 120 nm wide and 20 µm long; beyond the end of

the line, a wider section with quasiparticle trapping is reached. Since

quasiparticles need to diffuse through the long and narrow line before re-

laxation, they are easily accumulated close to the junctions. Figure 6.2 (b)

presents the measured subgap current of the device. The dark blue and

red parts are caused by thermal excitations on the normal island and al-

lows us to determine the degeneracy points for the graph. When the bias

is lowered, we notice that the current at degeneracy vanishes whereas in

Coulomb blockade a finite current persists.

In Fig. 6.2 (c) we show a numerical calculation with the parameter val-

ues RT = 90 kΩ, Ec = 0.74 ∆ and ∆ = 216 µeV of the experiment of panel

(b). We have taken an elevated temperature TS = 205 mK for the super-
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Figure 6.2. Probing quasiparticle excitations with a SINIS SET. (a), Scanning elec-
tron micrograph of a SINIS transistor designed for weak quasiparticle relax-
ation. (b), measured subgap current I as a function of the gate offset charge
ng and bias voltage Vb. (c), Simulated subgap current by elevated supercon-
ductor temperature. Figure adapted from Publication VII.

conductor, corresponding to nqp = 20 µm−3. We observe that the features

of panel (b) are reproduced with good quantitative correspondence sug-

gesting that the origin of the observed current is the presence of excess

quasiparticle excitations. The current at degeneracy vanishes for small

Vb. In this case, the SINIS transistor operates essentially as a single NIS

junction which is insensitive to quasiparticle excitations as discussed in

Sect. 2.2.2.

The current in Coulomb blockade is constant against Vb and ng reflect-

ing the bias independent tunneling rates of the quasiparticle excitations.

The untrivial feature of the current being maximal in Coulomb blockade

and not at degeneracy is understood with the following reasoning: when

the excitations tunnel to the normal metallic island, the charge of the is-

land moves away from the lowest energy state. Hence another tunneling

event occurs soon after the first one to return the island charge to the

preferred value. This tunneling occurs dominantly in the forward bias di-

rection rectifying the quasiparticle excitation current and yielding a non-

zero current. At degeneracy, the quasiparticle excitations cause tunneling

between the two lowest charge states. The electrons tunnel equally to the

forward and backward directions. Since these two charge states are equal

in energy, no additional tunneling occurs for restoring the island charge

back to the initial value.

The current at the light blue and orange terraces of Fig. 6.2 (b) and (c) is

limited by the tunneling rate due to quasiparticle excitations of Eq. (6.2).

The current through the device is given there as

I =
nqp

eRTD(EF )
. (6.4)

Since I is directly proportional to nqp, measuring the current at the ter-

race probes direcly the quasiparticle density as soon as we know RT and
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Figure 6.3. Diffusion of quasiparticles in a superconducting lead. Quasiparticles
are injected from the normal metal to the superconductor via a tunnel junc-
tion. In order not to tunnel back to the normal metal, the quasiparticles need
to diffuse through the bare superconducting section before reaching a trap
which is either another (large) tunnel junction to a normal metal or a direct
metal-to-metal contact on the right. Below, nqp is sketched at different posi-
tions. In the bare diffusion part, nqp is linear in distance and with the tunnel
junction trap, it decays exponentially. For a direct contact trap we may gen-
erally assume nqp to take the equilibrium value since there the quasiparticle
relaxation is strong compared to the tunnel junctions.

D(EF ). Having shown the sensitivity to quasiparticle excitations, the de-

vice was placed in a sample holder which protects better against stray

infra-red radiation coming from the high temperature parts of the cryo-

stat. Unlike in the first setup, in this case the experiment of Fig. 6.2 (b)

showed no current around Coulomb blockade, see Publication VII, sug-

gesting that nqp is much lower now. The quasiparticle excitations are not

anymore generated by Cooper-pair breaking due to stray radiation.

6.2 Diffusion equation for quasiparticles

We consider diffusion and relaxation of the quasiparticles in a supercon-

ducting lead. A typical situation is sketched in Fig. 6.3. Quasiparticle ex-

citations are generated by electrons tunneling from normal metal to a su-

perconductor. The excitations may tunnel back to the normal metal which

is usually an unwanted process. To avoid this to happen, they need to dif-

fuse through the superconducting line and relax. The inherent relaxation

mechanism in the superconducting material, the electron-phonon interac-

tion [12, 103, 104], is so weak that the dominant relaxation is provided in

the devices studied in this section by diffusion into a normal metallic trap

which either has a direct metal-to-metal contact to the superconductor or

is separated by a tunnel barrier [105–107]. After reaching the normal

metal, the quasiparticles relax there efficiently since the electron-phonon
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relaxation rate is several orders of magnitude stronger in a normal metal

than in a superconductor, see e.g. Publication IX and Ref. [108].

To obtain a diffusion equation for the quasiparticles we consider electri-

cal heat conduction in a superconductor. The heat flow of the quasiparti-

cles ~J follows the equation∇· ~J = −ptrap, where ptrap is the power removed

from the quasiparticle population per unit volume. We use Fourier’s law
~J = −κS∇TS , where

κS =
6

π2

L0TS
ρn

(βS∆)2 e−βS∆, (6.5)

is the heat conductivity of a superconductor at low temperatures kBTS �
∆, see Ref. [109]. L0 is the Lorenz number and ρn the normal state resis-

tivity. Working out the derivates leads to

D

(
∇2nqp +

kBTS
2∆ · nqp

|∇nqp|2
)

= ptrap, (6.6)

where D =
√

2kBTS∆/(
√
πe2D(EF )ρn). This diffusion model has been

used successfully in several experiments, see Refs. [106, 107, 110–112]

and Publication VII. In the absence of a quasiparticle trap, we take

ptrap = 0. For a tunnel junction trap we consider the heat extracted from

the superconductor as in Eqs. (3.11) and (3.13) for the normal metal. The

results are the same in this case except that in the integrand the energy

E±δE deposited to the normal metal is substituted with the energy E ex-

ctracted from the superconductor. For the traps we have no bias voltage

or charging effects so that δE = 0. We obtain then

ptrap =
Ptrap

Ad
=

∆

e2RTAdD(EF )
(nqp − nqp0) , (6.7)

where nqp0 is the quasiparticle density in the absence of injection, A is the

trap area yielding resistance RT and d is the thickness of the film. We

have assumed here that there is no gradient perpendicular to the film, i.

e., we consider the diffusion equation only in two dimensions. This is a

good approximation for the thin films used as at least one of the dimen-

sions parallel to the film is much larger than the film thickness d. One

obtains Eq. (6.7) also by multiplying Eq. (6.2) by ∆ and 2, which are the

energy carried by a single quasiparticle and the number of branches re-

spectively, and normalizing by the junction area and film thickness. At

low temperatures, kBTS/∆ � 1, we may in addition neglect the second

term in Eq. (6.6) and obtain a simple diffusion equation

D∇2nqp = ptrap. (6.8)
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Figure 6.4. Approximation in quasiparticle diffusion calculations. Quasiparticle
diffusion calculations for a superconducting line of l = 20 µm length. The
cross-sectional area is 120 nm × 25 nm and the quasiparticle injection rate
at x = 0 is 50 MHz corresponding to the structure representing weakest re-
laxation and employing maximal quasiparticle injection in Publication VII.
The solid black line is calculated with Eq. (6.8) and the dashed blue line with
Eq. (6.6). For the dotted red line, a constant heat conduction is assumed.

The approximation to obtain Eq. (6.8) is essentially the following. We

consider the derivates of strong exponential dependencies only. The ex-

ponential dependence of κS on TS in Eq. (6.5) is also included. Therefore

this approximation is not as restrictive as a typical one in heat conduction

calculations where the conductivity is assumed to be constant. In Publi-

cation VII the heat diffusion in superconducting leads was experimentally

studied. The quasiparticles were injected by a SINIS turnstile operated

at the first current plateau. The quasiparticle injection rate is then equal

to the pumping frequency f . Measuring the dependence of the current

on the pumping plateau against bias voltage allows one to determine nqp.

These measurements were repeated for several geometries and frequen-

cies. Equation (6.8) was successfully used to predict the findings with the

normal state resistivity ρn = 30 nΩm and the residual quasiparticle den-

sity of the aluminum film being the only fitting parameters. The same

value of ρn was used for all different geometries and injection rates. The

residual quasiparticle density nqp0 depends, however, on the particular

geometry as expected.

To elaborate on the difference between Eqs. (6.6), (6.8) and the more

limiting assumption of constant heat conduction, let us consider as an ex-

ample the case of the 20 µm long aluminum line of Fig. 6.2 which had

the weakest quasiparticle relaxation in Publication VII. In Fig. 6.4 we

present the calculations based on Eqs. (6.6), (6.8) and the constant heat

conduction. We observe that using Eq. (6.8) makes only an approximately
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Figure 6.5. Branch imbalance in SINIS turnstile. (a), The DoS of a SINIS turnstile
with quasiparticle excitations but no branch imbalance. The upper branch,
E > ∆, has the same number of excitations as the lower one, E < −∆. (b),
The DoS with branch imbalance. Electrons are removed from the left su-
perconductor resulting in hole excitations and deposited to the right super-
conductor resulting in particle excitations. Red arrows show the processes
causing error to the operation. (c), Measured current I of the SINIS turnstile
as a function of the gate amplitude Ag with f = 5 MHz and bias voltages
Vb = 70, 100 and 130 µV. The geometry of the device is similar to the one in
Fig. 6.2 (a). Solid black lines are numerical calculations of Eq. (3.7) assuming
no branch imbalance corresponding to panel (a) and dashed gray lines are
with no branch-to-branch relaxation corresponding to panel (b).

10 % error compared to the accurate result of Eq. (6.6). However, if we

would assume the heat conduction to be constant in the lead and taking

the value at x = 0, the quasiparticle number would be underestimated

by a factor of 3. This shows that Eq. (6.8) is sufficient for obtaining a

quantitative understanding about quasiparticle relaxation in supercon-

ducting leads even for weak relaxation. In this example the quasiparticle

density exceeds the thermal population by an order of magnitude. The

more crude approximation of constant heat conduction is, however, not

applicable here.

6.3 Branch imbalance in SINIS turnstile

For analysing the quasiparticle excitations under turnstile operation, we

assumed no branch imbalance. The density of states (DoS) and the quasi-

particle excitations of a SINIS turnstile without the branch imbalance are

shown in Fig. 6.5 (a). Each of the superconductor branches have the same

number of excitations. The excitations contribute to errors in turnstile

operation with the processes indicated by the red arrows. In Fig. 6.5 (b)
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we present a similar sketch but in presence of full branch imbalance. In

this case, the excitations produce error processes to the backward direc-

tion only. If the relaxation between the branches is weak compared to

the quasiparticle injection rate, the excitations of a SINIS turnstile would

have the distribution of panel (b). The operation tends to form branch im-

balance: on one of the superconducting leads quasiparticles are removed

from the lower branch and they are deposited to the upper branch on the

other superconductor leading to the situation of Fig. 6.5 (b).

In Fig. 6.5 (c) we present experimental data for a turnstile which has

similar geometry as the one in Fig. 6.2 (a). The superconducting leads are

200 nm wide, 20 µm long and 25 nm thick. The geometry is chosen for hav-

ing weak relaxation for the quasiparticles so that they dwell nearby the

device and produce an observable signal on the pumping plateau. The de-

vice parameter values are RT = 700 kΩ, ∆ = 236 µeV and Ec/∆ = 1.0.

The drive frequency is f = 5 MHz. Solid black curves show numeri-

cal calculations of Eq. (3.7) assuming no branch imbalance and taking

nqp = 1 000 µm−3. Dashed gray line shows similar calculations but with

the quasiparticles lying on one of the superconductor branches only, see

panel (b). Based on the numerical calculations, we conclude that there is

no significant charge imbalance in the SINIS turnstile: a 10 % difference

in the population of the two branches would already lead to discrepancy

between the experimental data and the numerical calculation. The posi-

tion and the shape of the plateau fits the calculation without branch im-

balance. If the branch imbalance is taken into accout, the plateau shape

is different and it lies below I = ef . In this case the quasiparticle excita-

tions generate error in the backward direction only. In order to match the

experimental and the modeled curves, a 7 % correction would be required

for the current amplifier gain. This is not feasible since the accuracy of

the gain is typically better than 1 %. For the calculation without branch

imbalance such correction is not needed. A quantitative analysis of the

relaxation rates of the two branches is outside of the scope of this thesis.

6.4 Electron-phonon interaction in the superconducting state

In Sect. 6.2 we considered the relaxation of quasiparticles in supercon-

ducting leads. There, we neglected the relaxation mechanisms in the su-

perconductor itself since in that case normal metallic parts of the struc-

tures were providing the dominant relaxation route. In order to observe
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Figure 6.6. Probing quasiparticles on a small superconducting island. (a), A su-
perconducting island (S) coupled to normal metallic leads (N) via two tunnel
junctions. (b), The measured current I as a function of the bias voltage Vb
and gate offset charge ng. (c), Result of a numerical calculation based on
Eq. (6.14) with the parameter values corresponding to the measurement in
panel (b). Figure adapted from Publication IX.

the relaxation in the superconductor one can use fully superconducting

systems [11, 12, 102, 108, 113, 114]. Another approach, involving normal

metals, is shown in Fig. 6.6, see also Ref. [115]. It is based on having

a small superconducting island weakly coupled to normal metallic leads

and was utilized in Publication IX to study excitation and relaxation dy-

namics on the superconducting island down to a single excitation. Min-

imizing the relaxation to normal metallic parts allows us to probe the

inherent relaxation mechanism of a superconductor, the electron-phonon

interaction [103], as well as relaxation of single excitations via tunneling.

First, in Sect. 6.4.1 we discuss the electron-phonon interaction and derive

recombination rates essential for this system and then in Sect. 6.4.2 we

present the experiments allowing one to study the relaxation dynamics

quantitatively.

6.4.1 Derivation of heat flux and related quantities

For studying the electron-phonon interaction in the superconducting state

we utilize the same perturbative formalism as in Sect. 2.2. In this case

the Hamiltonian reads

Ĥ = ĤS + Ĥp + Ĥe−ph, (6.9)

78



Quasiparticle excitations in a superconductor

where ĤS is given by Eq. (2.4) and

Ĥp =
∑

q

~ωqb†qbq, (6.10)

is the Hamiltonian for phonons. b†q is the creation operator of a phonon

with energy ~ωq and wavevector q. The coupling of the electron and phonon

systems is assumed to have the form

Ĥe−ph = ν
∑

k,q

ω1/2
q (c†kck−qbq + c†kck+qb

†
q). (6.11)

as in Ref. [116]. The operator of heat flux to the phonons is

˙̂
Hp =

i

~
[Ĥ, Ĥp] =

i

~
[Ĥe−ph, Ĥp] = iν

∑

k,q

ω3/2
q (c†kck−qbq − c

†
kck+qb

†
q). (6.12)

By evaluating the expectation value of ˙̂
Hp with the technique of Sect. 2.2

we obtain the heat flux due to electron-phonon interaction as

Q̇e−ph =
ΣV

24ζ(5)k5
B

∫ ∞

0
dε ε3 (n(ε, TS)− n(ε, TP ))

∫ ∞

−∞
dE ×

nS(E)nS(E + ε)

(
1− ∆2

E(E + ε)

)
(f(E)− f(E + ε)) ,

(6.13)

where Σ is the electron-phonon coupling constant, V the volume of the su-

perconductor, ζ(5) = 1.037 a value of the Riemann zeta function, n(ε, T ) =

(eε/kBT − 1)−1 the Bose-Einstein distribution at temperature T , TP is the

temperature of the phonons, TS the electron temperature of the super-

conductor and ε is the phonon energy. See the supplemental material of

Publication IX for intermediate steps. Equation (6.13) is also found in

Ref. [108], where the heat flux was measured by using superconducting

tunnel junctions, and it was derived there by kinetic Boltzmann equation

calculations [117].

The heat flux of Eq. (6.13) consists of scattering and recombination. In

the recombination process two electrons form a Cooper pair thus chang-

ing the number of excitations. Scattering on the other hand does not

change the number of quasiparticle excitations but it leads to heat flux

as it changes the energy which a quasiparticle carries. Equation (6.13)

can be split into recombination and scattering terms which at low tem-

perature, TP � TS � ∆/kB read

Q̇rec(TS) ≈ πV Σ

3ζ(5)k5
B

(kBTS∆4 +
7

4
(kBTS)2∆3)e−2∆/kBTS ,

Q̇sc(TS) ≈ V ΣT 5
Se
−∆/kBTS .

Since recombination involves two quasiparticles, each carrying an energy

of at least ∆, the exponential suppression involves energy 2∆. Similarly,
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Figure 6.7. Current of a NISIN transistor under turnstile operation. The current
I through the transistor is shown for various bias voltages Vb as a function of
the gate offset amplitude Ag in the range where the first quantized plateau
I = ef should form for Ec = 240 µeV in panel (a) and Ec = 620 µeV in panel
(b). Dots present measured values and solid black lines numerical calcula-
tions based on Eq. (3.7). Figure adapted from Publication IX.

scattering involves energy ∆ in the exponential suppression. The scat-

tering involves a single quasiparticle and it takes place within one of the

branches only. The heat flux scales thus as Q̇sc ∝ nqp ∝ e−∆/kBTS .

6.4.2 Recombination rates on a small superconducting island

Let us now turn back to consider the device presented in Fig. 6.6. The

single-electron tunneling processes for this device are identical to the SI-

NIS turnstile, see discussion under Eq. (2.26) and Ref. [49]. Therefore we

may drive it by a gate voltage as was done for the SINIS turnstile and ide-

ally quantized current plateaus would form. However, the single-electron

tunneling creates quasiparticle excitations on the superconducting island.

The excitations cannot relax to normal metallic traps as easily as in the

"large" and "trapped" superconducting leads of Sect. 6.2. The weak ther-

mal coupling provides an efficient way of probing the electron-phonon re-

laxation. In Fig. 6.7 we show the region where the first pumping plateau

should form for the two different devices presented. We observe that the

current plateaus are practically absent. The experimental curves have

nontrivial features which are sensitive to the charging energy of the de-

vice and they are reproduced accurately by the numerical results based on

the master equation approach of Eq. (3.7). In the simulations, the temper-

ature of the superconductor TS is allowed to differ from the phonon tem-

perature T0. For each point of Fig. 6.7, TS is found by balancing the heat

injection via tunneling with the electron-phonon heat flux of Eq. (6.13).

The experiment and the heat balance calculations were repeated at vari-
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ous pumping frequencies f in Publication IX and a good agreement with

Eq. (6.13) was found over a wide range of heat fluxes.

6.4.3 Single quasiparticle effects

In the experiments of Fig. 6.7, the average number of excitations was of

the order Nqp ∼ 10. When an electron tunneling event takes place, this

number is changed by one and in a recombination process it changes by

two. Such processes cause fluctuations to Nqp within the turnstile cy-

cle [75]. Since the average number of excitations is an order of magnitude

larger than the fluctuations, it is an adequate approximation to model the

system by using a time-independent temperature for the superconduct-

ing island. However, if the frequency is lowered, or ultimately in a static

situation, the number of quasiparticles decreases close to Nqp = 0 at low

temperatures [4, 7, 74, 118, 119]. This is obviously a situation where such

a thermal description is not valid. Looking back to Fig. 6.6 (b) we no-

tice that for |eVb| < ∆, the periodicity in ng is doubled as compared to

that at |eVb| > ∆. For the high bias, the operation is equivalent to that

of a SINIS device with 1e-periodicity and no significant sensitivity to the

single-quasiparticle excitations. At low bias values the situation is oppo-

site. If ng is set close to an even integer, the island holds an even number

of electrons which are all paired [118]. Hence the current vanishes. If

ng is close to an odd integer, there is an odd number of electrons on the

island and one of them is naturally unpaired. It remains as a quasiparti-

cle excitation carrying an energy of at least ∆. With the given energy, it

can readily escape from the island by tunneling to a normal metal lead.

Due to charging energy costs, proportional toEc, another electron tunnels,

however, into the superconducting island to recover the preferred number

of electrons. For Ec ∼ ∆, both of these processes are active. Such a situ-

ation was realized in the experiment. The cycle then repeats and causes

an experimentally observable current "terrace" similar in shape to those

in Figs. 6.2 (b) and (c).

If the superconducting island is assumed to have an average temper-

ature TS , we can utilize the master equation (3.7) with elevated TS for

the calculations. This would result in a graph similar to that in Fig. 6.2

(c). The result is correct apart from the current terrace around even ng

values. Therefore the change in the parity in Fig. 6.6 is a clear sign of at

most a single quasiparticle present. To model this situation correctly, we
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N I S I N
(a) (b) (c) (d)

Figure 6.8. Tunneling in a NISIN transistor. (a), The tunneling rate
ΓN→N−1,NS→NS−1 is generated by quasiparticle excitations in the supercon-
ductor with energy E > ∆ tunneling out of the island. The opposing process,
tunneling into E > ∆, contributes to ΓN→N+1,NS→NS+1 shown in panel (b).
Similarly, tunneling with energies E < −∆ contributes to ΓN→N+1,NS→NS−1,
shown in panel (c), and ΓN→N−1,NS→NS+1, shown in panel (d). Figure
adapted from Publication IX.

extend the master equation (3.7) to

d

dt
P (N,NS) =

∑

N ′, N ′S

ΓN ′→N,N ′S→NSP (N ′, N ′S), (6.14)

where P (N,NS) is the probability of having N excess electrons and NS

quasiparticle excitations on the island, and ΓN ′→N,N ′S→NS is the transi-

tion rate from N ′, N ′S to N,NS . The rates are set by electron tunneling

and recombination. Tunneling is calculated using Eqs. (2.25) and (2.26)

by treating separately processes where energy is removed and deposited

to the superconductor as shown in Fig. 6.8. For explicit formulas of the

tunneling rates, see the supplemental material of Publication IX.

At low temperatures, we may assume each quasiparticle excitation to

carry energyE = ∆. Then we obtain the recombination rate from Eq. (6.14)

by dividing Q̇rec by 2∆, the latter being the energy carried by the two re-

combining quasiparticles. Rewriting the result in terms of NS leads to

ΓN→N,NS→NS−2 ≈
Σ∆2

12ζ(5)D(EF )2k5
BV

N2
S , (6.15)

for NS ≥ 2. For NS = 0, 1 we have ΓN→N,NS→NS−2 = 0 since a single

excitation cannot pair.

With Eq. (6.14), the experiment of Fig. 6.6 (b) is reproduced up to a high

degree as shown in Fig. 6.6 (c). The current terrace around odd values

of ng with |eVb| < ∆ is caused by the single quasiparticle excitation. The

current at the terrace is set by Eq. (6.4) with nqp = 1/V which is the

quasiparticle density due to a single excitation. Hence the current at the

terrace allows one to determine the single quasiparticle relaxation rate

via tunneling. In addition, in pumping experiments at lower frequencies

than that in Fig. 6.7, recombination rates of Eq. (6.15) are probed down to

82



Quasiparticle excitations in a superconductor

a single quasiparticle pair as reported in Publication IX. In the modeling

based on Eq. (6.14), the energy relaxation of the quasiparticle due to scat-

tering was neglected as all the quasiparticles were assumed to be injected

near the gap edges. In Ref. [75] an alternative formalism is used, which

allows one to consider the scattering relaxation as well. It is shown there

that for the transport and quasiparticle relaxation in a NISIN transistor,

it is not important to take into account the scattering explicitly. However,

if the quasiparticles are injected to energies E � ∆, and the device oper-

ation is sensitive to the exact distribution, this would be an issue [120].

In addition to the probing of electron-phonon interaction, the NISIN

transistor can be utilized to probe the Cooper pair breaking in a supercon-

ductor. The vanishing current at even values of ng in Fig. 6.6 (b) allows

one to estimate an upper limit for the spontaneous Cooper pair breaking

rate on the island which depends presumably on the microwave back-

ground in the setup. The broken Cooper pairs would result in a terrace

around even values of ng. Therefore the measurement resolution allows

us to determine an upper limit for the number of broken Cooper pairs

on the superconducting island. With the relaxation dynamics described

above, we evaluate the pair breaking rate to be less than 2 kHz which in

turn corresponds to less than 0.1 aW power on the superconducting island.
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7. Summary

This thesis focused on studying electrical transport in nanoscaled tunnel

junctions between a normal metal and a superconductor. The main em-

phasis was put on understanding the two-electron Andreev tunneling and

quasiparticle excitations in the superconductor. We demonstrated various

experimental methods for detecting these phenomena and utilized them

to study what kind of influences these two phenomena impose on the de-

vices based on tunnel junctions and superconductors in general. Further

on, we analyzed which quantities influence on the two phenomena and

how.

For the two-electron Andreev tunneling we showed that charging effects

give rise to such features in the current-voltage curves which distinguish

this process from other leakage sources. This distinction is not possible

for voltage biased NIS junctions. We saw that Andreev tunneling becomes

suppressed if the charging energy is made sufficiently large, an essential

feature for improved accuracy of the SINIS turnstile. In addition, we

utilized counting techniques for demonstrating in real time the presence

of two electrons carrying the current in the Andreev process. The electron

counting allowed us to consider the statistics as well.

For investigating the quasiparticle excitations we also used the electron

counting techniques. We demonstrated that the excitations give rise to

a tunneling rate which is independent of the energy cost and that with

sufficient shielding the excitations become largely suppressed. With the

help of charging effects we were able to probe the excitations by a simpler

direct current measurement where the quasiparticles generate a bias in-

dependent current. By driving a SINIS turnstile, a controlled injection

and detection of quasiparticles was obtained. The diffusion and relax-

ation of the excitations in superconducting leads was studied. The inverse

NISIN structure, on the other hand, was utilized to study the recombina-
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tion mechanism of the superconductors by phonon emission, down to the

level of a few excitations only.

The suppressed Andreev tunneling in a SINIS turnstile, which we demon-

strated experimentally, is an important step towards optimizing the ac-

curacy of the turnstile. With the Andreev tunneling being suppressed,

the fundamental multi-electron process limiting the accuracy is the co-

tunneling of a Cooper pair and an electron [49]. Based on the present

knowledge, a relative accuracy on the 10−7 level is obtainable with an

output current on the level of 10 pA. This would call for ten parallel de-

vices, also demonstrated in this thesis, in order to obtain sufficiently large

current for metrological applications [50, 51]. On the other hand the stud-

ies on quasiparticle excitations showed us that providing sufficient relax-

ation for them is a crucial issue for the accuracy of the SINIS turnstile

and requires a careful optimization for reaching the highest accuracy for

the current quantization. With the best devices used in this thesis, the

relative accuracy of the SINIS turnstile was shown to be on the low 10−4

level but still limited by the quasiparticle excitations. For reaching 10−7

relative accuracy, the evacuation and relaxation of the excitations need to

be increased by a factor of 1000. In order to fulfill this requirement, the

most apparent approach would be to decrease the normal state resistivity

ρn, which in principle should be feasible with ultra pure aluminum [121].

However, obtaining single crystalline structure and small number of im-

purities yielding low ρn will be troublesome for thin films. Increasing

the film thickness might help for this goal as the surface scattering will

be then weaker. The thicker film would also help the evacuation of the

excitations since then they would spread to a larger volume. In addi-

tion, creating vortices by applying a magnetic field, the relaxation on the

superconducting leads might be increased [104]. If all these approaches

turn out to be futile, increasing the tunnel resistances of the device will

increase the relative accuracy: the obtainable output current is propor-

tional to the drive frequency being inversely proportional to resistance:

f ∝ 1/RT . The error in the current on the other hand is proportional to

f/RT ∝ 1/R2
T , since f is the injection frequency of the quasiparticles and

1/RT their tunneling rate causing the errors. Hence the relative accuracy

limited by the quasiparticles scales as 1/RT . Increasing the resistance

is however not a tempting option since it would call for more devices in

parallel.

Instead of improving the accuracy of a device itself, there is an alterna-
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Figure 7.1. Error counting in SINIS turnstiles. (a), Two SINIS turnstiles connected
in series with an intermediate island in between. An electrometer reads the
number of excess electrons on the intermediate island. (b), Tunneling rate
to the intermediate island as a function of the bias voltage Vb per junction.
For red points, the SINIS turnstiles are kept at degeneracy and for the blue
points they are in Coulomb blockade. The bias independent tunneling rate at
degeneracy suggests that there are excess quasiparticles present.

tive approach to satisfy the stringent accuracy requirement. In this ap-

proach errors are detected by electron counting techniques and the error

is taken into account when determining the obtained current [122, 123]. A

possible device for error counting of a SINIS turnstile is shown in Fig. 7.1

(a). It consists of two SINIS turnstiles which have an intermediate is-

land in between. The number of electrons on the intermediate island is

monitored by an electrometer. Both of the turnstiles are operated at the

same frequency. If either of the turnstiles fails to transport an electron

in a cycle, it is detected by the electrometer. If the errors occur at a low

frequency ferr � fdet, the electrometer is able to resolve them reliably and

thus they can be taken into account. Here fdet is the bandwidth of the

detector. For this setup, we need to know which direction the errors occur

in order to compensate them. Since the operation of the turnstile can be

described with a high precision as shown in this thesis, it provides a solid

basis for arguments about the direction. Alternative approach would be

to add one more turnstile in series and detect electrons on two intermedi-

ate islands allowing to resolve the direction of tunneling [81]. In Fig. 7.1

(b) we present the measured tunneling rate to the intermediate island

under static conditions when the turnstiles are either at degeneracy or

in Coulomb blockade. We observe that at degeneracy, we have a bias in-

dependent tunneling rate suggesting that there are excess quasiparticles

present. We expect the relaxation of the quasiparticles to be weak on the

superconducting intermediate island. Hence, finding excess quasiparti-
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cles on it is not surprising. In order to accomplish the error counting in

the turnstiles, a stronger quasiparticle relaxation is needed especially for

the intermediate island. With the direct metal-to-metal traps, more ef-

ficient trapping should be feasible [112]. This, however, remains to be

tested. Hopefully in the future we will also see whether either the SINIS

turnstile or the competing semiconductor pumps [30, 124–126] reach the

demanding accuracy requirements and fulfill all the requirements for the

redefinition of the SI unit system.
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ay
er

re
si
st

by
el
ec
tr
on
-b
ea
m

lit
ho
gr
ap
hy
.
T
he

R
F
ga
te

w
as

co
nn
ec
te
d
to

on
e
of

th
e
le
ad
s
an
d
co
ve
re
d
in

th
e
ne
xt

st
ep

by
a
pa
tte

rn
ed

sp
in
-o
n
gl
as
s
la
ye
r
to

is
ol
at
e
it
fr
om

th
e
tu
rn
st
ile

s
m
ad
e
ab
ov
e

th
e
R
F
ga
te
.F

in
al
ly
,S

IN
IS
-t
yp
e
tu
rn
st
ile
s
w
er
e
fa
br
ic
at
ed

us
in
g
tw
o-
an
gl
e
de
po
si
tio

n
th
ro
ug
h

a
su
sp
en
de
d
m
as
k
cr
ea
te
d
in

a
G
e
la
ye
r
us
in
g
a
tr
i-
la
ye
r
el
ec
tr
on

-b
ea
m

pr
oc
es
s.
T
he

tu
rn
st
ile

pa
tte
rn

w
as
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po
se
d
in

th
e
to
p
la
ye
r
of

po
ly
m
et
hy
lm

et
ha
cr
yl
at
e
an
d
th
en
,
af
te
r
de
ve
lo
pm

en
t,

tr
an
sf
er
re
d
in
to

th
e
G
e
la
ye
r
by

re
ac
tiv

e
io
n
et
ch
in
g
in

C
F 4

ga
s.

T
he

un
de
rc
ut

un
de
r
th
e

G
e
m
as
k
w
as

fo
rm

ed
by

et
ch
in
g
of

th
e
bo

tto
m
co
po

ly
m
er
w
ith

ox
yg

en
in
th
e
el
ec
tr
on

-c
yc
lo
tr
on

-
re
so
na
nc
e
m
ac
hi
ne
.
D
ep
os
iti
on

of
th
e
tu
rn
st
ile

le
ad
s
(A

l)
an
d
is
la
nd

s
(A

u/
Pd

)
w
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rf
or
m
ed

in
an

e-
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n
ev
ap
or
at
or

w
ith

an
ox
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at
io
n
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ep

in
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ee
n,

an
d
m
ea
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re
m
en
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w
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e
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rf
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m
ed
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m
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r
th
e
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al
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tio

n
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a
3
H
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re
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at
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m
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s
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w
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3 0.
1
K
.S

ta
nd

ar
d
dc
,a
nd

R
F
vo
lta

ge
so
ur
ce
s
w
er
e
us
ed

w
ith

re
si
st
iv
e
di
vi
de
rs
an
d
at
te
nu

at
or
s
to

se
t
th
e
op

er
at
io
n
vo
lta

ge
s.
C
ur
re
nt

w
as

m
ea
su
re
d
w
ith

a
ro
om

-t
em

pe
ra
tu
re

lo
w
-n
oi
se

cu
rr
en
t

am
pl
ifi
er
.

T
he

op
er
at
io
n
of

a
hy
br
id

tu
rn
st
ile

ca
n
be

un
de
rs
to
od

by
co
ns
id
er
in
g
th
e
en
er
gy

th
re
sh
ol
ds

fo
r
si
ng

le
-e
le
ct
ro
n
tu
nn

el
lin

g.
T
he

th
re
sh
ol
ds

ar
e
de
te
rm

in
ed

by
th
e
ex
te
rn
al
ly

co
nt
ro
lla

bl
e
bi
as

vo
lta

ge
V
b
an
d
ga
te

of
fs
et

n g
=

(C
g,

iV
g,

i
+

C
R
F,

iV
R
F
)/

e,
w
he
re

C
g,

i
an
d

C
R
F,

i
ar
e
th
e
co
up

lin
g

ca
pa
ci
ta
nc
es

fr
om

th
e
dc

an
d
R
F
ga
te
s
to

th
e
is
la
nd
,
re
sp
ec
tiv

el
y.

In
fig

ur
e
1(
b)
,
w
e
pr
es
en
t

th
e
m
ea
su
re
d
dc

cu
rr
en
t
an
d
th
e
th
re
sh
ol
ds

of
on

e
of

th
e
de
vi
ce
s
on

th
e

V
b
–n

g
pl
an
e.

T
he

st
ab
le

re
gi
on

s
fo
r
th
e
ch
ar
ge

st
at
es

n
=

0
an
d
1
(r
ed

an
d
bl
ac
k
bo

xe
s,

re
sp
ec
tiv

el
y)

ov
er
la
p,

an
d
id
ea
lly

no
dc

cu
rr
en
t
flo

w
s
ev
en

at
a
fin

ite
bi
as

vo
lta

ge
up

to
V
b
=

2�
/
e.

H
er
e

�
is

th
e

en
er
gy

ga
p
of

th
e
su
pe
rc
on
du
ct
or

an
d

n
is

th
e
ex
ce
ss

nu
m
be
r
of

el
ec
tr
on

s
in

th
e
is
la
nd

.
T
he

br
oa
d
st
ab
ili
ty

re
gi
on
s
en
ab
le

on
e
to

pu
m
p
el
ec
tr
on
s
se
qu
en
tia
lly

by
m
ov
in
g
th
e
ga
te

of
fs
et

n g
al
on

g
th
e
ho

ri
zo
nt
al

pu
m
pi
ng

tr
aj
ec
to
ry

sh
ow

n
as

th
e
so
lid

bl
ue

lin
e.
To

ob
ta
in

hi
gh

ac
cu
ra
cy
,

th
e
tu
rn
st
ile

sh
ou

ld
sp
en
d
en
ou

gh
tim

e
be
yo

nd
th
e
th
re
sh
ol
ds

sh
ow

n
as

so
lid

lin
es
,b

ut
sh
ou

ld
no

t
cr
os
s
th
e
th
re
sh
ol
ds

of
ba
ck
tu
nn

el
lin

g
sh
ow

n
as

da
sh
ed

lin
es
.A

ll
de
vi
ce
s
sh
ou

ld
cr
os
s
th
e

fo
rw

ar
d
tu
nn

el
lin

g
th
re
sh
ol
ds

in
co
nc
er
tw

hi
le
av
oi
di
ng

th
e
ba
ck
w
ar
d
tu
nn

el
lin

g.
To

te
st

th
is

un
if
or
m
ity

in
a
pa
ra
lle

l
se
tu
p,

fo
ur

tu
rn
st
ile

s
w
er
e
co
nn

ec
te
d
to

a
co
m
m
on

dr
ai
n
w
hi
le
th
e
so
ur
ce

si
de
s
w
er
e
le
ft
se
pa
ra
te
fo
r
in
di
vi
du

al
ch
ar
ac
te
ri
za
tio

n.
A
ft
er
w
ar
ds

th
ey

w
er
e
co
nn

ec
te
d
to
ge
th
er

to
a
co
m
m
on

bi
as

vo
lta

ge
so
ur
ce

to
de
m
on

st
ra
te

pa
ra
lle

l
pu

m
pi
ng

.
T
he

dc
cu
rr
en
t–
vo
lta

ge
ch
ar
ac
te
ri
st
ic
s
of

on
e
tu
rn
st
ile

ar
e
sh
ow

n
in

fig
ur
e
1(
c)
,w

he
re

th
e
ga
te

vo
lta
ge

is
sw

ep
tb
ac
k
an
d
fo
rt
h
so

th
at
w
e
ob
ta
in
bo
th
ex
tr
em

e
ca
se
s
of

ga
te
op
en

(n
g
=

0.
5)

an
d

ga
te
cl
os
ed

(n
g
=

0.
0)
.A

ls
o,
th
e
cu
rr
en
t–
vo
lta

ge
si
m
ul
at
io
ns

fo
r
bo

th
of

th
es
e
ca
se
s
ar
e
sh
ow

n.
T
he
se

cu
rv
es

ar
e
ca
lc
ul
at
ed

w
ith

se
qu

en
tia

l
tu
nn

el
lin

g
ap
pr
ox

im
at
io
n
an
d
ar
e
us
ed

to
ex
tr
ac
t

th
e
de
vi
ce

pa
ra
m
et
er
s
th
at

ar
e
lis
te
d
in

ta
bl
e
1.

Fr
om

pu
m
pi
ng

m
ea
su
re
m
en
ts
,
th
e
ri
si
ng

ed
ge

to
th
e
fir
st
pl
at
ea
u
w
as

de
te
rm

in
ed

as
th
e
R
F
ga
te
vo
lta
ge

V
r,

m
fo
r
w
hi
ch

th
e
cu
rr
en
ti
s
ha
lf
th
e

va
lu
e
at
th
e
pl
at
ea
u.

T
he

m
ea
su
re
d
va
ri
at
io
n
of

V
r,

m
be
tw

ee
n
th
e
de
vi
ce
s
w
as
±7

%
.A

cc
or
di
ng

to
nu

m
er
ic
al
si
m
ul
at
io
ns
,t
hi
s
na
rr
ow

s
th
e
m
et
ro
lo
gi
ca
lly

fla
tp

ar
to

f
th
e
pl
at
ea
u
by

ab
ou

t1
0%

.
In

ad
di
tio

n
to

th
e
cr
uc
ia
l
pa
ra
m
et
er
s
de
te
rm

in
in
g
th
e
th
re
sh
ol
ds
,
in
di
vi
du

al
tu
nn

el
lin

g
re
si
st
an
ce
s

R
T
of

th
e
tu
rn
st
ile

s
ar
e
ob

ta
in
ed

fr
om

si
m
ul
at
io
ns
.
T
hi
s
pa
ra
m
et
er
,
to
ge
th
er

w
ith

th
e
to
ta
l
ca
pa
ci
ta
nc
e

C
an
d
su
pe
rc
on
du
ct
in
g
en
er
gy

ga
p

�
,
de
te
rm

in
e
th
e
m
ax
im

um
op

er
at
io
n
fr
eq
ue
nc
y
of

a
tu
rn
st
ile

[2
5]
.
H
ow

ev
er
,
fo
r
pa
ra
lle

lli
za
tio

n,
th
er
e
ar
e
no

co
ns
tr
ai
nt
s

on
th
e
si
m
ila

ri
ty

of
th
e
tu
nn

el
lin

g
re
si
st
an
ce
s.
T
he

la
rg
es
t
of

th
em

de
te
rm

in
es

th
e
m
ax
im

um
op

er
at
io
na
l
fr
eq
ue
nc
y
of

th
e
sy
st
em

.F
or

an
al
um

in
iu
m
-b
as
ed

de
vi
ce
,t
he

m
ax
im

um
cu
rr
en
t
is

lim
ite

d
to

so
m
ew

ha
ta
bo
ve

10
pA

w
he
n
a
m
et
ro
lo
gi
ca
lly

ac
cu
ra
te
op

er
at
io
n
is
re
qu

ir
ed

[2
3,
25

].
Pa
ra
lle

l
op

er
at
io
n
is

th
er
ef
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e
ne
ce
ss
ar
y
to

ob
ta
in

hi
gh

er
cu
rr
en
t
le
ve
ls

w
hi
le

si
m
ul
ta
ne
ou

sl
y

pr
es
er
vi
ng

hi
gh

pu
m
pi
ng

ac
cu
ra
cy
.

A
ft
er

th
e
ch
ar
ac
te
ri
za
tio

n
of

in
di
vi
du

al
tu
rn
st
ile

s,
th
ey

w
er
e
co
nn

ec
te
d
in

pa
ra
lle

l
an
d
th
e

pu
m
pi
ng

cu
rv
es

pr
es
en
te
d
in

fig
ur
e
2
w
er
e
m
ea
su
re
d.

H
er
e,
w
e
ha
ve

ch
an
ge
d
th
e
ga
te
st
at
es

of
on

e
(fi
gu

re
2(
a)
),
tw
o
(b
),
th
re
e
(c
)
an
d
fo
ur

(d
)
de
vi
ce
s
si
m
ul
ta
ne
ou

sl
y
w
hi
le

ke
ep
in
g
ot
he
rs

at
ga
te

op
en
.
W
e
th
us

ob
ta
in

cu
rr
en
t
pl
at
ea
ux

w
he
re

ze
ro

to
ei
gh
t
el
ec
tr
on
s
ar
e
tr
an
sp
or
te
d

w
ith

in
on
e
cy
cl
e.

T
hi
s
m
ea
su
re
m
en
t
de
m
on
st
ra
te
s
th
at

w
e
ca
n
fu
lly

co
nt
ro
l
th
e
dc

ga
te

st
at
es

of
ea
ch

de
vi
ce
.T

he
ga
te

st
at
e
of

ea
ch

in
di
vi
du
al

de
vi
ce

i
w
as

ex
tr
ac
te
d
fr
om

th
e
to
ta
l
cu
rr
en
t

th
ro
ug
h
al
l
of

th
e
de
vi
ce
s
by

sw
ee
pi
ng

ga
te

vo
lta
ge

V
g,

i.
T
he

ga
te

op
en

st
at
es

co
rr
es
po
nd

to
th
e
m
ax
im

um
va
lu
es

of
cu
rr
en
t.
C
ro
ss
-c
ou
pl
in
g
be
tw
ee
n
th
e
ga
te
s
w
as

le
ss

th
an

3%
an
d
he
nc
e

on
ly

on
e
ite
ra
tio

n
ro
un
d
af
te
r
a
ro
ug
h
se
tti
ng

of
th
e
ga
te
s
w
as

ne
ed
ed

to
ob
ta
in

th
e
ga
te

st
at
es

co
rr
ec
tly

to
w
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F
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u
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1.
Pa
ra
lle

liz
at
io
n
sc
he
m
e
an
d
th
e
op

er
at
io
n
pr
in
ci
pl
e
of

a
si
ng

le
tu
rn
st
ile

.
(a
)S

ca
nn

in
g
el
ec
tr
on

m
ic
ro
gr
ap
h
of

pa
ra
lle

lt
ur
ns
til
es
.D

if
fe
re
nt
m
et
al
la
ye
rs
ar
e

co
lo
ur
ed

fo
r
cl
ar
ity
.N

or
m
al

m
et
al

is
la
nd

s
(r
ed
)
ar
e
pl
ac
ed

on
to
p
of

a
co
m
m
on

ra
di
o
fr
eq
ue
nc
y
(R
F)

ga
te

(y
el
lo
w
).
T
hi
s
ga
te

is
in
su
la
te
d
fr
om

th
e
is
la
nd
s
by

an
Si
O

x
la
ye
r.
B
lu
e
re
gi
on

s
de
no

te
th
e
su
pe
rc
on

du
ct
in
g
al
um

in
iu
m

w
ir
es
.
T
he

tu
nn
el
ju
nc
tio

ns
ar
e
fo
rm

ed
un
de
r
th
e
is
la
nd
s
by

ox
id
iz
in
g
al
um

in
iu
m
.O

ne
ga
te

lin
e
w
ith

dc
vo
lta

ge
V
g,

i
is
ne
ed
ed

fo
r
ea
ch

of
th
e
de
vi
ce
s,
w
hi
le
th
e
bi
as

vo
lta

ge
V
b
an
d
th
e
R
F
si
gn

al
V
R
F
ca
n
be

co
m
m
on

to
al
lt
ur
ns
til
es
.(
b)

St
ab
ili
ty

di
ag
ra
m

of
tu
rn
st
ile

D
(s
ee

ta
bl
e
1)

an
d
th
e
tu
nn

el
lin

g
th
re
sh
ol
ds

fo
r
el
ec
tr
on

pu
m
pi
ng

.
Fo

r
tu
nn

el
lin

g
in
to

th
e
is
la
nd

th
e
re
qu

ir
em

en
ti
s
−2

E
c(

n
+
1/
2
−

n g
)
±

eV
b
/
2
�

�
an
d
fo
r
tu
nn

el
lin

g
ou

t
fr
om

th
e
is
la
nd

it
is

gi
ve
n
by

2
E
c(

n
−
1/
2
−

n g
)
±

eV
b
/
2
�

�
.T

he
up

pe
r
(l
ow

er
)
si
gn

co
rr
es
po

nd
s
to

th
e
ju
nc
tio

n
th
at

lie
s
on

th
e

po
si
tiv

e
(n
eg
at
iv
e)

si
de

of
th
e
bi
as
.

E
c
=

e2
/
2C

is
th
e
ch
ar
gi
ng

en
er
gy

of
th
e

is
la
nd

w
ith

to
ta
l
ca
pa
ci
ta
nc
e

C
an
d

n
is

th
e
nu

m
be
r
of

ex
ce
ss

el
ec
tr
on

s
in

th
e

is
la
nd

.
n g
=

(C
g,

iV
g,

i
+

C
R
F,

iV
R
F
)/

e
is

a
no
rm

al
iz
ed

ga
te
-i
nd
uc
ed

of
fs
et

ch
ar
ge

us
ed

fo
r
co
nt
ro
lli
ng

th
e
en
er
gy

th
re
sh
ol
ds
.
T
he

gr
ee
n
re
gi
on

in
si
de

so
lid

bl
ac
k

lin
es

is
st
ab
le
fo
r

n
=

0,
w
hi
le
th
e
gr
ee
n
re
gi
on

in
si
de

so
lid

re
d
lin

es
is
st
ab
le
fo
r

n
=

1.
So

lid
lin

es
ar
e
th
re
sh
ol
ds

fo
r
de
si
re
d
tr
an
si
tio

ns
du

ri
ng

pu
m
pi
ng

w
hi
le

da
sh
ed

lin
es

co
rr
es
po

nd
to

ba
ck
tu
nn

el
lin

g
in

th
e
w
ro
ng

di
re
ct
io
n.
T
he

so
lid

bl
ue

cu
rv
e
sh
ow

s
th
e
id
ea
lp

um
pi
ng

cu
rv
e
w
ith

po
si
tiv

e
bi
as

vo
lta
ge

at
ga
te
op
en
.(
c)

C
ur
re
nt
–v
ol
ta
ge

ch
ar
ac
te
ri
st
ic
s
of

tu
rn
st
ile

D
.
T
he

ga
te

of
fs
et

ch
ar
ge

is
sw

ep
t

ba
ck

an
d
fo
rt
h
so

th
at
th
e
en
ve
lo
pe
s
co
rr
es
po
nd

to
th
e
ga
te
be
in
g
op
en

or
cl
os
ed
.

Si
m
ul
at
io
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us
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to
ex
tr
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t
de
vi
ce

pa
ra
m
et
er
s
fr
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e
ex
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em

um
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s
ar
e

sh
ow

n
by

bl
ac
k
so
lid

lin
es
.

N
ex
t,
to

de
m
on

st
ra
te
re
pr
od

uc
ib
ili
ty

an
d
ro
bu
st
ne
ss
,t
en

tu
rn
st
ile

s
w
er
e
op

er
at
ed

si
m
ila

rl
y

by
a
si
ng

le
R
F
dr
iv
e.

Tw
o
ch
ip
s
w
er
e
us
ed

fr
om

di
ff
er
en
t
ba
tc
he
s,
w
ith

si
x
tu
rn
st
ile

s
on

on
e

ch
ip

an
d
fo
ur

on
th
e
ot
he
r.
A
ll
te
n
de
vi
ce
s
w
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e
bo
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to
on

e
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m
m
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lin
e
an
d
he
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e
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Ta
b

le
1.

Pa
ra
m
et
er
s
of

th
e
fo
ur

tu
rn
st
ile

s
A
–D

.
R
T
an
d

C
R
F
ar
e
es
tim

at
ed

fr
om

th
e
m
ea
su
re
m
en
td

at
a
w
ith

an
un

ce
rt
ai
nt
y
of

1%
.�

an
d

E
c/

�
ar
e
fit
te
d
w
ith

th
e

he
lp

of
nu

m
er
ic
al
si
m
ul
at
io
ns

to
w
ith

in
2%

pr
ec
is
io
n.

2
R
T
(k

�
)

�
(μ

V
)

E
c/

�
C
R
F
(a
F)

V
r,

m
(m

V
)

A
49
0

21
3

1.
03

25
.3

3.
82

B
58
0

21
4

1.
10

23
.5

3.
60

C
61
0

21
4

1.
10

24
.7

3.
83

D
74
2

21
5

1.
16

23
.4

4.
12

F
ig

u
re

2.
Pa
ra
lle

lp
um

pi
ng

of
fo
ur

tu
rn
st
ile

s
at

f
=

10
M
H
z.
Fr
om

(a
)t
o
(d
),
on

e
to

fo
ur

de
vi
ce
s
ar
e
tu
ne
d
be
tw
ee
n
ga
te
op
en

an
d
ga
te
cl
os
ed

st
at
es
,r
es
pe
ct
iv
el
y,

w
hi
le
th
e
re
st
of

th
e
tu
rn
st
ile
s
ar
e
ke
pt

at
ga
te
op
en
.T

hi
s
yi
el
ds

pl
at
ea
ux

w
he
re

4
or

4
±

N
el
ec
tr
on

s
ar
e
pu

m
pe
d
in

ea
ch

cy
cl
e,
w
he
re

N
is
th
e
nu

m
be
r
of

tu
ne
d

de
vi
ce
s.

T
he

ca
se

N
=

4
sh
ow

s
pu

m
pi
ng

cu
rv
es

si
m
ila

r
to

th
os
e
of

a
si
ng

le
tu
rn
st
ile

bu
tw

ith
fo
ur

tim
es

hi
gh

er
cu
rr
en
t.
T
he

in
se
ti
n
pa
ne
l(
d)

sh
ow

s
a
zo
om

w
he
re

al
l
de
vi
ce
s
ar
e
pu

m
pi
ng

on
e
el
ec
tr
on

in
a
cy
cl
e.

T
he

so
lid

re
d
lin

e
is

a
lin

ea
r
fit

w
hi
ch

gi
ve
s
a
pl
at
ea
u
re
si
st
an
ce

of
50

0
G

�
w
ith

re
sp
ec
tt
o
R
F
vo
lta

ge
.

T
he

fla
tn
es
s
of

th
e
pl
at
ea
u
pe
r
tu
rn
st
ile

is
si
m
ila

r
to

w
ha
t
w
as

ob
se
rv
ed

fo
r

in
di
vi
du

al
tu
rn
st
ile

s.
T
he

ac
cu
ra
cy

of
th
e
m
ea
su
re
m
en
ts
w
as

lim
ite

d
by

th
e
dr
if
t

of
th
e
cu
rr
en
t
am

pl
ifi
er

to
th
e
10

fA
le
ve
l.
T
he

bi
as

vo
lta

ge
w
as

se
t
to

20
0

μ
V

du
ri
ng

th
e
m
ea
su
re
m
en
ts
.

no
pr
el
im

in
ar
y
ch
ar
ac
te
ri
za
tio

n
of

in
di
vi
du

al
de
vi
ce
s
w
as

m
ad
e.

T
he

re
su
lts

fo
r
di
ff
er
en
t
bi
as

vo
lta

ge
s
ar
e
sh
ow

n
in

fig
ur
e
3.

T
hi
s
se
tu
p
yi
el
ds

10
4.
1
pA

at
th
e
fir
st
pl
at
ea
u
w
ith

a
pu

m
pi
ng

fr
eq
ue
nc
y
of

65
M
H
z,

w
hi
ch

de
m
on

st
ra
te
s
a
cu
rr
en
t
le
ve
l
la
rg
e
en
ou

gh
to

cl
os
e
th
e
qu

an
tu
m

m
et
ro
lo
gi
ca
lt
ri
an
gl
e
[1
0]
.I
n
th
e
pr
es
en
te
xp

er
im

en
t,
th
e
nu

m
be
ro

fp
ar
al
le
ld
ev
ic
es

w
as

lim
ite

d
by

th
e
nu

m
be
r
of

dc
lin

es
av
ai
la
bl
e.
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F
ig

u
re

3.
Te
n
tu
rn
st
ile

s
w
or
ki
ng

at
f
=

65
M
H
z
at

di
ff
er
en
t
bi
as

vo
lta

ge
s.
A
ll

tu
rn
st
ile
s
ar
e
se
t
to

ei
th
er

ga
te

op
en

or
ga
te

cl
os
ed

st
at
e.

T
he

cu
rr
en
t
at

th
e

fir
st
pl
at
ea
u
is
ap
pr
ox

im
at
el
y
10

4.
1
pA

.
T
he

in
se
t
sh
ow

s
a
cl
os
e-
up

of
th
e
fir
st

pl
at
ea
u.

T
he

es
tim

at
ed

un
ce
rt
ai
nt
y
of

th
e
cu
rr
en
ts
ca
le
,b

as
ed

on
th
e
ca
lib

ra
tio

n
of

th
e
pr
e-
am

p,
is
of

th
e
sa
m
e
or
de
r
as

th
e
ob

se
rv
ed

de
vi
at
io
ns

fr
om

I
=

10
e

f.

In
m
or
e
ge
ne
ra
l
te
rm

s,
th
e
nu

m
be
r
of

de
vi
ce
s
th
at

ca
n
be

op
er
at
ed

in
pa
ra
lle

l
si
m
ul
ta
ne
-

ou
sl
y
is

de
te
rm

in
ed

by
th
e
of
fs
et

ch
ar
ge

st
ab
ili
ty
.
T
he

st
ra
te
gy

of
a
pu

m
pi
ng

ex
pe
ri
m
en
t
is

to
fir
st
se
t
th
e
ga
te

of
ea
ch

tu
rn
st
ile
,
th
en

pe
rf
or
m

th
e
pu
m
pi
ng

m
ea
su
re
m
en
t,
an
d
af
te
rw

ar
ds

ch
ec
k
th
e
of
fs
et

ch
ar
ge
s
ag
ai
n.

If
th
ey

ar
e
no
t
w
ith

in
th
e
lim

its
,
on
e
di
sc
ar
ds

th
e
da
ta
.
It
is

w
or
th

no
tin

g
th
at
,u

nl
ik
e
de
vi
at
io
ns

in
de
vi
ce

pa
ra
m
et
er
s,
th
e
po
si
tiv

e
an
d
ne
ga
tiv

e
ch
an
ge
s
in

of
fs
et

ch
ar
ge

yi
el
d
er
ro
rs

in
pu

m
pi
ng

cu
rr
en
t
in

th
e
sa
m
e
di
re
ct
io
n,

an
d
th
es
e
ty
pe
s
of

er
ro
r

do
no

t
th
en

av
er
ag
e
ou

t
w
ith

m
an
y
de
vi
ce
s
as

is
th
e
ca
se

fo
r
pa
ra
m
et
er

de
vi
at
io
ns
.
To

st
ud

y
th
e
st
ab
ili
ty

of
th
e
te
n
de
vi
ce
s,
th
e
dc

ga
te

m
od
ul
at
io
n
w
as

m
ea
su
re
d
as

a
fu
nc
tio

n
of

tim
e
fo
r

ea
ch

of
th
e
tu
rn
st
ile

s
si
m
ul
ta
ne
ou

sl
y.
T
he

tim
e
fo
r
on

e
cy
cl
e
w
as

ch
os
en

to
be

10
m
in
,
w
hi
ch

w
as

eq
ua
l
to

th
e
tim

e
re
qu

ir
ed

to
m
ea
su
re

th
e
da
ta

of
on

e
cu
rv
e
in

fig
ur
e
2.

T
he

ga
te

st
ab
ili
ty

fo
r
a
ty
pi
ca
lt
ur
ns
til
e
is
sh
ow

n
in

fig
ur
e
4(
a)
.F

ro
m

th
e
m
ea
su
re
d
da
ta
,h

is
to
gr
am

s
of

th
e
of
fs
et

ch
ar
ge

ch
an
ge
s
w
er
e
de
te
rm

in
ed

fo
r
ea
ch

of
th
e
de
vi
ce
s,
as

sh
ow

n
in

fig
ur
e
4(
b)
.M

or
eo
ve
r,
in

th
e
in
se
ta

hi
st
og

ra
m

fo
r
th
e
co
rr
es
po

nd
in
g
m
ax
im

um
ch
an
ge

of
th
e
te
n
tu
rn
st
ile

s
is
pr
es
en
te
d.

Fr
om

th
is

w
e
ob

ta
in

a
73

%
pr
ob

ab
ili
ty

of
ob

ta
in
in
g
va
lid

da
ta

w
ith

th
is

m
ea
su
re
m
en
t
se
tu
p,

as
de
sc
ri
be
d
in

th
e
ca
pt
io
n.

A
dd

iti
on

al
ly
,
w
e
ca
n
es
tim

at
e
th
e
m
ax
im

um
nu

m
be
r
of

tu
rn
st
ile

s
op

er
ab
le

in
pa
ra
lle

l
to

be
17

in
th
e
pr
es
en
t
ca
se
,
w
hi
ch

w
ou

ld
yi
el
d
an

ef
fic

ie
nc
y
of

50
%
.
B
y

m
ak
in
g
th
e
m
ea
su
re
m
en
t
pe
ri
od

sm
al
le
r,
on

e
co
ul
d
in
cr
ea
se

th
e
nu

m
be
r
of

de
vi
ce
s
as

th
ey

ha
ve

le
ss

tim
e
to

ge
to

ff
se
t.
W
e
es
tim

at
e
th
at
th
e
m
ea
su
re
m
en
tp

er
io
d
ca
n
be

de
cr
ea
se
d
by

on
e

or
tw
o
or
de
rs

of
m
ag
ni
tu
de
.
T
hi
s
w
ill

al
lo
w

on
e
to

in
cr
ea
se

th
e
nu

m
be
r
of

pa
ra
lle

l
de
vi
ce
s

ac
co
rd
in
gl
y.

A
ls
o,

di
ff
er
en
t
m
at
er
ia
ls

or
fa
br
ic
at
io
n
m
et
ho

ds
ca
n
pr
ov
id
e
sm

al
le
r
dr
if
ts

an
d

he
nc
e
al
lo
w
a
la
rg
er
in
te
gr
at
io
n
sc
al
e.
In

ou
rd

ev
ic
es
,t
he

ty
pi
ca
ls
pe
ct
ra
ld
en
si
ty
of

ch
ar
ge

no
is
e

fo
llo

w
ed

th
e
re
la
tio

n
S q

(
f)
=

α
2
/

f2
in

th
e
ob

se
rv
ed

fr
eq
ue
nc
y
ra
ng

e
f
=

1
μ
H
z–
1
m
H
z
w
ith

α
=

10
−6

e√
H
z.

T
he

m
ag
ni
tu
de

is
so
m
ew

ha
t
si
m
ila

r
to

pr
ev
io
us
ly

re
po

rt
ed

va
lu
es

[2
6,

27
].

W
e
no

te
th
at

ev
en

be
tte

r
pe
rf
or
m
an
ce

w
ith

no
dr
if
ts

ha
s
be
en

ob
se
rv
ed

fo
r
m
et
al
lic

si
ng

le
-

el
ec
tr
on

de
vi
ce
s
pr
ev
io
us
ly

[2
8,

29
].
If
su
ch

an
im

pr
ov
em

en
t
co
ul
d
be

re
lia

bl
y
ac
hi
ev
ed
,
on

e
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e)

Numberof
observedevents

0
0.

02
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1
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4.
St
ab
ili
ty

of
of
fs
et
ch
ar
ge
s.
(a
)
G
at
e
m
od

ul
at
io
n
of

on
e
of

th
e
tu
rn
st
ile

s
as

a
fu
nc
tio

n
of

tim
e.

T
he

lig
ht
/d
ar
k
ar
ea
s
co
rr
es
po

nd
to

m
ax
im

um
/m

in
im

um
cu
rr
en
t.
T
he

re
d
do
ts
sh
ow

on
e
of

th
e
ga
te

op
en

st
at
es
,
w
hi
ch

is
ch
an
gi
ng

du
e

to
va
ri
at
io
ns

in
th
e
of
fs
et

ch
ar
ge
s.

T
he
se

da
ta

ar
e
ob

ta
in
ed

as
on

e
se
t
w
ith

in
se
qu
en
tia
ls
w
ee
pi
ng

of
th
e
ga
te
ch
ar
ge
s
of

th
e
te
n
tu
rn
st
ile
s.
T
he
se

te
n
sw

ee
ps

ar
e

th
en

re
pe
at
ed

ev
er
y
10

m
in
.(
b)

A
hi
st
og

ra
m

of
th
e
ch
an
ge
s
in

th
e
of
fs
et

ch
ar
ge

be
tw

ee
n
ea
ch

sw
ee
pi
ng

se
t.
T
he

di
ff
er
en
t
co
lo
ur
s
de
no

te
di
ff
er
en
t
in
di
vi
du

al
de
vi
ce
s.

In
th
e
in
se
t,
a
hi
st
og

ra
m

of
th
e
la
rg
es
t
ch
an
ge

in
ea
ch

se
t
is

sh
ow

n.
T
he

to
ta
ln

um
be
r
of

sw
ee
ps

pe
r
tu
rn
st
ile

is
41

0.
A
lth

ou
gh

fo
r
in
di
vi
du

al
de
vi
ce
s

th
e
ch
an
ge
s
ar
e
pe
ak
ed

at
ze
ro
,
fo
r
te
n
tu
rn
st
ile

s
it
is

m
or
e
lik

el
y
th
at

at
le
as
t

on
e
of

th
e
de
vi
ce
s
ha
s
ch
an
ge
d
by

a
fe
w

pe
r
ce
nt
.
To

ob
ta
in

an
es
tim

at
e
fo
r

th
e
m
ax
im

um
nu

m
be
r
of

de
vi
ce
s
th
at

ca
n
op

er
at
e
in

pa
ra
lle

l,
w
e
as
su
m
e
th
at

th
e
of
fs
et

ch
ar
ge

ch
an
ge
s
ar
e
in
de
pe
nd

en
t
as

th
e
av
er
ag
e
co
rr
el
at
io
n
co
ef
fic

ie
nt

be
tw

ee
n
th
e
de
vi
ce
s
w
as

0.
12

.
T
hi
s
gi
ve
s
a
lo
w
er

lim
it
fo
r
th
e
pr
ob

ab
ili
ty

of
ha
vi
ng

N
tu
rn
st
ile
s
in
co
rr
ec
tg
at
e
st
at
es

as
p N
=

p
N 1
,w

he
re

p 1
is
th
e
pr
ob

ab
ili
ty

of
ha
vi
ng

on
e
tu
rn
st
ile

in
a
co
rr
ec
t
st
at
e.

T
he

fla
tn
es
s
of

th
e
th
eo
re
tic

al
cu
rr
en
t

pl
at
ea
ux

is
su
ch

th
at
w
ith

th
e
ob

se
rv
ed

10
%

va
ri
at
io
n
in
tu
nn

el
lin

g
th
re
sh
ol
ds

w
e

ca
n
st
ill

to
le
ra
te

a
5%

ch
an
ge

in
ga
te

of
fs
et
s.
W
ith

th
e
m
ea
su
re
d
da
ta
,t
hi
s
w
ill

le
ad

to
p 1
=

0.
96

an
d

p 1
0
=

0.
71

.
T
hi
s
is
co
ns
is
te
nt

w
ith

th
e
va
lu
e

p 1
0
=

0.
73

ob
ta
in
ed

fr
om

th
e
da
ta
in
th
e
in
se
to
f(
b)
.T

he
re
fo
re
th
e
re
qu

ir
em

en
tf
or

ef
fic

ie
nc
y

of
p N
�

0.
5
w
ill

lim
it
th
e
nu

m
be
r
of

pa
ra
lle

l
tu
rn
st
ile

s
to

N
=

17
ac
co
rd
in
g
to

th
e
pr
es
en
te
d
da
ta
.

co
ul
d
fu
rt
he
ri
nc
re
as
e
th
e
nu

m
be
ro

fp
ar
al
le
ld
ev
ic
es
.H

ow
ev
er
,f
or

te
n
tu
rn
st
ile

s
an
d
th
e
pr
es
en
t

m
ea
su
re
m
en
tt
im

e,
th
is
im

pr
ov
em

en
ti
s
no

tr
eq
ui
re
d.

T
he

m
ai
n
re
su
lt
of

th
e
pr
es
en
tw

or
k
is
th
e
co
nt
ro
lle

d
op

er
at
io
n
of

pa
ra
lle

le
le
ct
ro
n
pu

m
ps
.

T
he

st
ab
ili
ty
of

of
fs
et
ch
ar
ge
s
w
as

st
ud

ie
d
an
d
it
is
sh
ow

n
to
al
lo
w
m
or
e
th
an

te
n
pa
ra
lle

ld
ev
ic
es

to
be

op
er
at
ed

w
ith

ou
ts
ig
ni
fic

an
tly

co
m
pr
om

is
in
g
th
e
ac
cu
ra
cy
.T

he
se

de
vi
ce
s
ar
e
pr
om

in
en
ti
n

fu
lfi
lli
ng

th
e
st
ri
ct
ac
cu
ra
cy

re
qu

ir
em

en
ts
fo
r
cl
os
ur
e
of

th
e
qu

an
tu
m

m
et
ro
lo
gi
ca
lt
ri
an
gl
e,
an
d

as
th
e
ou

tc
om

e
of

th
is
w
or
k
w
e
sh
ow

th
at
th
e
ob

ta
in
ed

cu
rr
en
tl
ev
el
ac
hi
ev
es

th
is
.T

he
fla

tn
es
s

of
th
e
pl
at
ea
ux

is
pr
es
er
ve
d
in

pa
ra
lle

lo
pe
ra
tio

n.
M
or
eo
ve
r,
re
fe
re
nc
es

[2
2,

30
]
an
d
ou

r
re
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pu
bl
is
he
d
w
or
k
su
gg
es
tt
ha
tt
he

su
b-
ga
p
le
ak
ag
e,
w
hi
ch

is
th
e
re
m
ai
ni
ng

er
ro
r
so
ur
ce
,c
an

be
si
gn

ifi
ca
nt
ly

de
cr
ea
se
d
by

pr
op

er
de
si
gn

of
th
e
el
ec
tr
om

ag
ne
tic

en
vi
ro
nm

en
t.

A
ck

n
o

w
le

d
g

m
en

ts

W
e
ac
kn

ow
le
dg

e
M

M
es
ch
ke

an
d
A

K
em

pp
in
en

fo
r
as
si
st
an
ce

w
ith

m
ea
su
re
m
en
ts

an
d
O

A
st
afi

ev
,
M

M
öt
tö
ne
n,

S
L
ot
kh

ov
,
A

M
an
ni
ne
n
an
d
M

Pa
al
an
en

fo
r
di
sc
us
si
on

s.
T
he

w
or
k

w
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We show that the effect of a high-temperature environment in current transport through a normal metal–

insulator–superconductor tunnel junction can be described by an effective density of states in the

superconductor. In the limit of a resistive low-Ohmic environment, this density of states reduces into

the well-known Dynes form. Our theoretical result is supported by experiments in engineered environ-

ments. We apply our findings to improve the performance of a single-electron turnstile, a potential

candidate for a metrological current source.

DOI: 10.1103/PhysRevLett.105.026803 PACS numbers: 73.40.Gk, 06.20.Jr, 72.70.+m, 73.20.At

Introduction.—The density of states (DOS) of the car-
riers governs the transport rates in a mesoscopic conductor
[1], e.g., in a tunnel junction. Understanding the current
transport in a junction in detail is of fundamental interest,
but it plays a central role also in practical applications, for
instance, in the performance of superconducting qubits [2],
of electronic coolers and thermometers [3], and of a single-
electron turnstile to be discussed in this Letter [4]. When
one or both of the contacts of a junction are superconduct-
ing, the one-electron rates at small energy bias should
vanish at low temperatures because of the gap in the
Bardeen-Cooper-Schrieffer (BCS) DOS [5]. Yet, a small
linear in voltage leakage current persists in the experiments
[3,6–10] that can often be attributed to the Dynes DOS, a
BCS-like expression with lifetime broadening [11,12]. A
junction between two leads admits carriers to pass at a rate
that depends on the DOS of the conductors, the occupation
of the energy levels, and the number of conduction chan-
nels in the junction [13]. In general, basic one-electron
tunneling coexists with many-electron tunneling, for in-
stance, cotunneling in multijunction systems [14], or
Andreev reflection in superconductors [15,16]. However,
when the junction is made sufficiently opaque, a common
situation in practice, only one-electron tunneling governed
by the Fermi golden rule should persist. We demonstrate
experimentally that the subgap current in a high-quality
opaque tunnel junction between a normal metal and a
superconductor can be ascribed to photon-assisted tunnel-
ing. We show theoretically that this leads exactly to the
Dynes DOS with an inverse lifetime of e2kBTenvR=@

2,
where Tenv and R are the temperature and effective resis-
tance of the environment.

We employ a tunnel junction with a normal metal–
insulator–superconductor (NIS) structure; see Fig. 1(a).
The essentially constant DOS in the normal metal renders

the NIS junction an ideal probe for the superconductor
DOS. Because of the BCS energy gap in an NIS system,
the tunneling current is expected to be exponentially sup-
pressed with decreasing temperature. Yet in the experi-
ments a small subgap current persists as shown in
Fig. 1(b). This leakage is typically attributed to Andreev
current [17–20], smeared DOS of the superconductor [21],
nonvanishing DOS in the insulator within the gap [9],
nonequilibrium quasiparticles [22], or physical imperfec-
tions in the junction. Our junctions, like the one in Fig. 1,
are made opaque with large normal-state resistance RT to
efficiently suppress the Andreev current. A convenient way
to account for the smearing of the IV characteristics is to
use the so-called Dynes model [11,12] based on an ex-
pression of the BCS DOS with lifetime broadening. The
Dynes DOS, normalized by the corresponding normal-
state DOS, is given by

FIG. 1 (color online). (a) Geometry of the measured single
NIS junctions made of aluminum (low contrast) as the super-
conductor and copper (high contrast) as the normal metal. The
tapered ends lead to 250� 250 �m2 pads. (b) Typical IV
characteristics, measured at 50 mK for a sample with RT ¼
30 k�. Linear leakage is observed deep in the gap region
jeVj � � ’ 200 �eV, consistent with the Dynes model using
� ¼ 1:8� 10�4, shown by the cyan line.
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nDS ðEÞ ¼
�
�
�
�
�
�
�
�

<e

�

E=�þ i�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðE=�þ i�Þ2 � 1

p

��
�
�
�
�
�
�
�

; (1)

where � is the BCS energy gap. A nonvanishing � intro-
duces effectively states within the gap region, jEj< �, as
opposed to the ideal BCS DOS obtained with � ¼ 0 re-
sulting in vanishing DOS within the gap. This model
reproduces the features observed in our measurements as
is shown in Fig. 1(b). We show that, effectively, the Dynes
DOS can be produced from the ideal BCS DOS by weak
dissipative environment at temperature Tenv * �=kB pro-
moting photon-assisted tunneling. A similar environment
model with comparable parameter values has also been
introduced by other authors to explain, e.g., observations of
excess errors in normal-state electron pumps [23,24] and
Andreev reflection dominated charge transport at low bias
voltages in NISIN structures [25].

Theoretical results.—For inelastic one-electron tunnel-
ing, the rates in forward (þ) and backward (�) directions
through an NIS junction can be written as

�� ¼ 1

e2RT

Z 1

�1
dE

Z 1

�1
dE0nSðE0ÞfNðE� eVÞ

� ½1� fSðE0Þ�PðE� E0Þ; (2)

at bias voltage V. Here, PðEÞ refers to the probability
density for the electron to emit energy E to the environ-
ment [13]. The occupations in the normal and supercon-
ducting leads are given by the Fermi functions

fN=SðEÞ ¼ ½eE=ðkBTN=SÞ þ 1��1, respectively. In an ideally

voltage-biased junction, PðEÞ ¼ �ðEÞ. The current through
the junction at low temperature of the leads, TN; TS ! 0, is
then I0ðVÞ � eð�0þ � �0�Þ ¼ 1

eRT

R
eV
0 dEnSðEÞ. Thus we

obtain the well-known expression for the conductance of
the junction as

dI0=dV ¼ R�1
T nSðeVÞ: (3)

In view of Eq. (1), the nonzero linear conductance at low
bias voltages, typically observed in experiments as shown
in Fig. 1(b), suggests that the superconductor has non-
vanishing constant density of states within the gap.
Within the Dynes model of Eq. (1), the normalized DOS
at low energies jEj � � equals �, the ratio of the con-
ductance at zero bias and that at large bias voltages.
Although this approach is correct mathematically, it is
hard to justify the presence of subgap states physically.

Here we base our analysis on the pure BCS DOS (� ¼
0) and show that the Dynes model in Eq. (1) is consistent
with weakly dissipative environment when Eq. (2) is used
to obtain the current IðVÞ ¼ eð�þ � ��Þ. The effective
resistance value R ¼ �Renv of the environment arises gen-
erally from a possibly larger real part of the environment
impedance, Renv, which is suppressed by a factor of � due
to low-temperature filtering; see Fig. 2. With this environ-
ment, one obtains the probability density PðEÞ in the limit

of small R � RQ � @=e2 and for energies E � @ðRCÞ�1,

kBTenv as a Lorentzian [26]

PðEÞ ’ 1

��

�

�2 þ ðE=�Þ2 ; (4)

where � ¼ RkBTenv=ðRQ�Þ. As the current of an NIS

junction is determined by the values of PðEÞ at jEj & �,
we can apply Eq. (4) when kBTenv * �; see Fig. 2 for a
numerical demonstration. For a general symmetric PðEÞ
and TN; TS ! 0, one obtains from Eq. (2) in analogy with
Eq. (3): IðVÞ ¼ 1

eRT

R
eV
0 dEn�S ðEÞ, and

dI=dV ¼ R�1
T n�S ðeVÞ; (5)

where the effective DOS is given by the convolution

n�S ðEÞ �
Z 1

�1
dE0nSðE0ÞPðE� E0Þ: (6)

For the weak resistive environment described by Eq. (4),
the convolution of a Lorentzian gives

n�S ðEÞ ¼
�
�
�
�
�
�
�
�

<e

�

E=�þ i�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðE=�þ i�Þ2 � 1

p

��
�
�
�
�
�
�
�

: (7)

This expression is identical to the Dynes DOS in Eq. (1) by
setting � ¼ �, with the equivalent inverse lifetime
e2kBTenvR=@

2. The correspondence between the PðEÞ the-
ory and the Dynes model, our main theoretical result, is
valid for nonzero lead temperatures as well, as we show in
the supplementary material [26]. Below, we present nu-
merical and experimental studies verifying our claim.

FIG. 2 (color online). The probability density PðEÞ calculated
for � ¼ 10�3 ¼ RTenvkB=ðRQ�Þ and for a few values of the

environment temperature Tenv ¼ 0:042, 0.42, and 4.2 K. The
dotted line is the corresponding Lorentzian limit of Eq. (4). The
left inset shows the employed circuit model of an NIS junction
(the rectangular symbol at the bottom right) in an RC environ-
ment. The right inset shows the calculated zero-bias conductance
of the NIS junction as a function of the capacitance C with the
environment corresponding to � ¼ 10�3 and Tenv ¼ 0:42, 4.2,
and 42 K. We use � ¼ 200 �eV ’ kB � 2:3 K for aluminum.
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Experiments on single junctions.—The leakage induced
by the electromagnetic environment can be decreased by
efficient rf filtering of the leads and electromagnetic shield-
ing of the sample. One way to do this without affecting
the properties of the junction itself is to increase the
capacitance C across it; see Fig. 2. In this way, one ap-
proaches the case of an ideally voltage-biased junction. In
Fig. 2, we present the zero-bias conductance of an NIS
junction as a function of the shunting capacitance C based
on the full numerical PðEÞ calculation. For low C, the
result using Eq. (7) is valid, but for sufficiently high C,
i.e., for �RC=@ * 1, the leakage decreases significantly,
demonstrating that capacitive shunting is helpful in sup-
pressing the photon-assisted tunneling.

To probe the effect of the capacitive shunting in our
experiments, we introduced a ground plane under the
junctions. The junctions were made on top of an oxidized
silicon wafer, where first a conductive 100-nm-thick Al
layer working as the ground plane was sputtered. On top of
this, a 400-nm-thick insulating high-quality Al2O3 film
was formed by atomic layer deposition. The junctions
were patterned by conventional soft-mask electron beam
lithography on top of Al2O3. For comparison, junctions
were made both with and without the ground plane.

The experiments reported here were performed in a
3He-4He dilution refrigerator with a base temperature of
about 50 mK. All the leads were filtered by using 1.5 m of
Thermocoax cable between the 1-K stage and the sample
stage at the base temperature. The IV curves such as the
one in Fig. 1(b) are thermally smeared at elevated tem-
peratures, but below 200 mK we observe hardly any tem-
perature dependence. Figure 3 shows the IV curves
measured at the base temperature for one junction on top
of a ground plane and for a similar junction without the
ground plane, together with numerical results from the
PðEÞ theory. The capacitive shunting decreases the zero-
bias conductance significantly. The shunt capacitance val-
ues employed in the PðEÞ theory, 10 and 0.3 pF, respec-
tively, match well with the estimates for the experimental
values in each case. The sample without a ground plane
with C ¼ 0:3 pF is already entering the regime, where the
capacitance is too small to play a role. We used an effective
environment resistance of R ¼ 2 � at Tenv ¼ 4:2 K, close
to the values inferred by Hergenrother et al. [25] in the case
of incomplete shielding. However, the choice of Tenv is
somewhat arbitrary here: Tenv > 4:2 K with correspond-
ingly lower R would yield a slightly improved fit to the
data, but Tenv ¼ 4:2 K, the temperature of the outer shield,
was chosen as a natural surrounding in the measurement
setup. Our results with capacitive shunting, on the other
hand, correspond to much improved shielding in the lan-
guage of Ref. [25]. Although the experiments of Ref. [25]
are quite different from ours, their situation resembles ours
in the sense that photons with a very high frequency of
�=h * 50 GHz are responsible for tunneling.

SINIS turnstile.—As a practical application, we discuss
the SINIS turnstile, which is a hybrid single-electron tran-
sistor (SET) and a strong candidate for realizing the unit
ampere in quantum metrology [4,27–30]. In the previous
experimental studies [4,27,29], its accuracy was limited by
the subgap leakage. Here we test the influence of the
ground plane on the flatness of the current plateaus at
multiples of ef, where f is the operating frequency. The
ground plane had a 20-�m-wide gap under the SET to
reduce the stray capacitance to the rf gate. The ground
plane layer was covered by a 300-nm-thick insulating layer
of spin-on glass, on top of which the rf gate and dc leads
were evaporated. Another 300-nm spin-on glass layer was
used to cover the rf gate, and the SETwas fabricated on top
of this layer. The device is shown in Fig. 4(a). This sample
geometry is designed for parallel pumping [30], but here
we concentrate on a single device.
Figure 4(b) shows that in this case, the introduction of

the ground plane reduces the subgap leakage by roughly
2 orders of magnitude as opposed to a typical turnstile
without the ground plane (the latter data from Ref. [29]). In
the turnstile operation, the current was recorded as a func-
tion of the amplitude of the sinusoidal rf drive, Ag, at

several bias voltages. In Fig. 4(c), we show the quantized
current plateau at f ¼ 10 MHz, and the averaged current
on this plateau is given in Fig. 4(d) as a function of the bias
voltage. The differential conductance at the plateau divided

FIG. 3 (color online). Measured IV curves of an NIS junction
with RT ¼ 761 k� on the ground plane (solid symbols) and of a
similar junction with RT ¼ 627 k� without the ground plane
(open symbols). Solid lines present the results of the full PðEÞ
theory for capacitance C ¼ 10 pF (red line) and C ¼ 0:3 pF
(green line). The resistance and the temperature of the environ-
ment are set to R ¼ 2 � and Tenv ¼ 4:2 K, respectively, and
� ¼ 200 �eV. The dashed lines correspond to the Dynes model
with the parameters yielding the best fit to the data. The
normalized zero-bias slope is 5:3� 10�4 for the green line
and 2:6� 10�5 for the red line. The inset shows IV curves
based on the full PðEÞ calculation as functions of the shunt
capacitance C. The red and green lines are reproduced on this
graph from the main figure.
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by the asymptotic conductance of the SET is 2� 10�6.
This result is much improved over those of the earlier
measurements [4,27,28] and that of the reference sample
without the ground plane.

In conclusion, we have shown analytically that the
Dynes density of states can originate from the influence
of the electromagnetic environment of a tunnel junction,
and it is not necessarily a property of the superconductor
itself. Our experiments support this interpretation: We
were able to reduce the leakage of an NIS junction by an
order of magnitude by local capacitive filtering. We stress
that capacitive shunting does not necessarily suppress the
subgap leakage of an NIS junction, if the leakage is caused
by the poor quality of the junction or by true states within
the gap due to, e.g., the inverse proximity effect [3].
Protecting the junctions against photon-assisted tunneling
improves the performance of, e.g., single-electron pumps.
Contrary to the resistive environment aiming at the same
purpose [28], capacitive shunting does not limit the tun-
neling rates.
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FIG. 4 (color online). (a) Scanning electron micrographs of the
SINIS turnstiles. (b) Subgap IV curves of the measured transis-
tors in the gate-open state (charge degeneracy). The slope of the
linear fit corresponds to the leakage of 0:5� 10�6 for the sample
with the ground plane (filled circles) and 50� 10�6 for the
sample without the ground plane (open diamonds) in units of
the asymptotic conductance of each SET. (c) Current through the
turnstile on the ground plane as a function of the amplitude of the
applied sinusoidal gate drive at f ¼ 10 MHz. The gate offset
was set to the charge degeneracy point, and the bias voltage was
varied uniformly between Vb ¼ 140 and 290 �V. (d) Current at
the first plateau as a function of Vb obtained from data similar to
those in (c) (filled circles) showing leakage of 2� 10�6 and for
the sample without the ground plane (open diamonds) with
leakage of 100� 10�6 and a reduced step width.
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TUNNELING RATES IN A RESISTIVE ENVIRONMENT

Let us consider an NIS tunnel junction with a normal-metal and a superconducing lead separated by a thin oxide
layer, shown in Fig. 1 of the original article. We assume that the junction is in an ideal voltage bias V and neglect
the charging energy of the single junction justified by the large capacitance provided by the leads. As in the fully
normal-metal case [1], sequential tunneling rates Γ+/− for single-electron events along/against the bias are obtained
to be

Γ± =
1

e2RT

∫ ∞

−∞

∫ ∞

−∞
dEdE′ nS(E

′)fN (E ∓ eV )[1− fS(E
′)]P (E − E′), (S-1)

where RT is the asymptotic resistance of the junction, nS is the Bardeen-Cooper-Schrieffer (BCS) density of states
(DOS) in the superconductor, and the Fermi functions for the superconductor fS and the normal metal fN are governed
by the temperatures TS and TN , respectively. The function P (E) can be interpreted as the probability density to
emit energy E to the environment. The average electric current through the junction is given by I = e(Γ+ − Γ−).
Thus the current–voltage (IV ) response of the system, which is typically the only experimental observable for a single
junction, is given by

I(V ) =
1

eRT

∫ ∞

−∞

∫ ∞

−∞
dEdE′ nS(E

′)[1− fS(E
′)][fN (E − eV )− fN (E + eV )]P (E − E′). (S-2)

We note that in an ideal case with no coupling to an external electro-magnetic environment in the tunneling process,
P (E) is a delta function and Eqs. (S-1–S-2) reduce into the typical Fermi golden rule results with one-dimensional
integrals. Generally, P (E) can be written as

P (E) =
1

2πh̄

∫ ∞

−∞
exp

(
J(t) +

i

h̄
Et

)
dt, (S-3)

and by modeling the environment by an impedance Z(ω) in a thermal equilibrium at temperature Tenv, one obtains [1]

J(t) = 2

∫ ∞

0

dω

ω

Re[Z(ω)]

2πRQ

[
coth

(
h̄ω

2kBTenv

)
(cosωt− 1)− i sinωt

]
, (S-4)

where RQ = h̄/e2 is the resistance quantum. For a purely resistive environment, Re[Z(ω)] = R/[1+(ωRC)
2
], where R

is the resistance of the environment and C is the total capacitance at the junction including the junction capacitance
and parallel shunt capacitors. Although this rather simple model has essentially only two free parameters, R and Tenv,
for low values of capacitance C, it has been successfully applied to explain several experimental observations [2, 3].
In our case of a resistive environment, the integral in Eq. (S-4) can be evaluated to yield

J(t) =
ρ

2


cot(B)(1− e−|τ |)− |τ |

B
− 2

∞∑

n=1

1− e−nπ|τ |/B

nπ
[
1− (nπ/B)

2
] − i sign (τ) (1− e−|τ |)


 , (S-5)

where ρ = R/RQ, τ = t/(RC) and B = h̄/(2kBTenvRC). For |τ | À 1, B, we can neglect all the terms in Eq. (S-5)
containing |τ | in the exponent. Use of this approximation for evaluating P (E) according to Eq. (S-3) is justified if the
energy exchange E with the environment satisfies |E| ¿ h̄/(RC), kBTenv. For low bias voltages in an NIS junction,
an electron needs to absorb energy of ∆− eV in order to tunnel. Therefore, the BCS gap gives the relevant scale of
the energy exchange at low bias voltages. At higher voltages, the current is essentially linear in V and insensitive to



2

the functional from of P (E). Hence the conditions above can be taken to ∆ ¿ h̄/(RC), kBTenv. Thus, under these
circumstances we simplify Eq. (S-5) into

J(t) = −ρ

2

[
α+

|τ |
B

+ i sign (τ)

]
, (S-6)

where α is the sum of all terms in Eq. (S-3) independent of τ . By evaluating the integral in Eq. (S-3) with J(t) from
Eq. (S-6), we obtain

P (E) =
1

π
e−ρα/2 (ρkBTenv) cos (ρ/2) + E sin (ρ/2)

(ρkBTenv)
2
+ E2

. (S-7)

Here, the normalization condition
∫∞
−∞ P (E)dE = 1 yields e−ρα/2 = 1/ cos (ρ/2). Furthermore, the situation ρ ¿ 1 is

met in experiments [2, 3] unless the environment in the immediate vicinity of the junction is deliberately engineered
to be high Ohmic [4]. Together with the assumption |E| ¿ kBTenv cast above, Eq. (S-7) assumes the form

P (E) =
1

π

(ρkBTenv)

(ρkBTenv)
2
+ E2

. (S-8)

We note that since we neglected the term E sin (ρ/2) in Eq. (S-7), the detailed balance P (−E) = e−E/(kBTenv)P (E)
is not perfectly satisfied. Due to our assumption of high temperature |E| ¿ kBTenv, the error due to the slight
breaking of the detailed balance is, however, small. As shown below, the fact that the P (E) function is symmetric, as
in Eq. (S-8), is crucial in reducing IV characteristics given by Eq. (S-2) into the typical form with a one-dimensional
integral in the energy domain. In this form, the effect of the environment is only to effectively modify the BCS DOS.

EFFECTIVE DENSITY OF STATES

Let us come back to Eq. (S-2) yielding the current–voltage characteristics of an NIS junction. Since the BCS DOS
vanishes inside the energy gap |E| < ∆, Eq. (S-2) can be expressed in the form

I(V ) =
1

eRT

∫ ∞

−∞
dE

∫ ∞

0

dE′ nS(E
′)[fN (E − eV )− fN (E + eV )]P (E − E′), (S-9)

if the temperature of the superconductor satisfies TS ¿ ∆/kB . This condition is met in the experiments reported
here since TS < 100 mK ¿ ∆/kB ≈ 2 K. We expand the integral in Eq. (S-9) as

I(V ) =
1

eRT

∫ 0

−∞
dE

∫ ∞

0

dE′ nS(E
′)[fN (E − eV )− fN (E + eV )]P (E − E′) +

1

eRT

∫ ∞

0

dE

∫ ∞

0

dE′ nS(E
′)[fN (E − eV )− fN (E + eV )]P (E − E′). (S-10)

By negating the integral variables in Eq. (S-10) and employing the symmetry of the Fermi function f(−x) = 1−f(x),
of the BCS density of states nS(−x) = nS(x), and of the P (E) function P (−E + E′) = P (E − E′), we obtain

I(V ) =
1

eRT

∫ ∞

0

dE neff(E)[fN (E − eV )− fN (E + eV )], (S-11)

where we have introduced the effective DOS

neff(E) =

∫ ∞

−∞
dE′ nS(E

′)P (E − E′). (S-12)

We stress that to obtain Eq. (S-11) which corresponds exactly to current through an ideal NIS junction without
coupling to environment but with a modified DOS, we only assumed that the superconductor is at low temperature and
the environment is at high temperature. In this case, it is not possible to distinguish only from the IV characteristics
whether the observed DOS arises, e.g., from some intrinsic property of the superconductor such as lifetime broadening,
or from the electromagnetic environment described by P (E). As reported in the original manuscript, we can make
this distinction by engineering the environment thus showing that it gave the dominating contribution to the effective
DOS.



3

EQUIVALENCE OF THE P(E) AND DYNES DENSITY OF STATES

The Dynes DOS [5, 6] is given by

nD
S (E) =

∣∣∣∣∣<e
[

E/∆+ iγ√
(E/∆+ iγ)2 − 1

]∣∣∣∣∣ , (S-13)

from which the BCS DOS nS is obtained in the limit γ → 0. Thus nS(E ± iγ∆) = nD
S (E), where the sign can be

chosen freely. To show that the effective DOS arising from the environment in Eq. (S-8) is equivalent to the Dynes
model with γ = 2πRkBTenv/(RK∆), we write the inverse Fourier transform of nD

S as

F−1
(
nD
S

)
=

∫ ∞

−∞
nS [ω − i sign(t)γ∆]eiωtdω/

√
2π = e−γ∆|t|F−1 (nS) . (S-14)

On the other hand,

nD
S = F

[
F−1

(
nD
S

)]
= F

[
e−γ∆|t|F−1 (nS)

]
= F

(
e−γ∆|t|

)
∗ nS = neff, (S-15)

where ∗ denotes a convolution integral and we have used the identity F−1(f ∗g) = F−1(f)F−1(g). Thus the effective
DOS in Eq. (S-12) with the environment given by Eq. (S-8) is equivalent to the Dynes model.
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We have measured individual tunneling events and Coulomb step shapes in single-electron boxes with
opaque superconductor–normal metal tunnel junctions. We observe anomalous broadening of the Coulomb step
with decreasing temperature in a manner that is consistent with activation of first-order tunneling events by an
external dissipative electromagnetic environment. We demonstrate that the rates for energetically unfavorable
tunneling events saturate to finite values at low temperatures, and that the saturation level can be suppressed by
more than an order of magnitude by a capacitive shunt near the device. The findings are important in assessing
the performance limits of any single-electronic device. In particular, master-equation-based simulations show
that the electromagnetic environment realized in the capacitively shunted devices allows for a metrologically
accurate charge pump based on hybrid tunnel junctions.

DOI: 10.1103/PhysRevB.82.155443 PACS number�s�: 73.23.Hk, 05.40.Ca, 74.45.�c

I. INTRODUCTION

Various kinds of electron pumps and turnstiles based on
single electronics are under active investigation at the mo-
ment in order to redefine the unit ampere and to provide the
current source for the quantum metrological triangle
experiment.1 The performance requirements in metrology are
demanding. To improve the existing uncertainties of funda-
mental constants, elementary charges have to be transferred
at a frequency on the order of 1 GHz with an error rate less
than 10−7. With present-day thin-film technology, it is
straightforward to realize electron pumps where the error
rates due to thermally activated one-electron processes are
below the metrological bound at subkelvin temperatures. Re-
sidual pumping errors in normal metal pumps are generally
attributed to cotunneling2 and environmental activation
�EA�,3 although a quantitative theoretical analysis of the ex-
perimentally observed error rates is still lacking. A more re-
cently developed candidate is the hybrid turnstile, consisting
of a single-electron transistor �SET� with normal metal-
insulator-superconductor �NIS� junctions.4 Theoretically, the
SINIS turnstile has the potential to reach metrological
accuracy5 but the experimental results have been limited by
the leakage current present when the turnstile is biased at its
operating point.6 Leakage in NIS structures is often attrib-
uted to a finite density of states �DOS� within the Bardeen-
Cooper-Schrieffer �BCS� energy gap, which is modeled with
the phenomenological Dynes DOS.7 In Ref. 8, it was shown
algebraically that a high-temperature environment �kBTenv
��� can manifest itself as smearing of the DOS in the su-
perconducting electrode of a bare NIS junction, which was
experimentally verified. On the contrary, in a Coulomb-
blockaded system embedded in an environment, the device
response depends on one-electron tunneling rates in a way
that cannot be expressed in terms of an effective DOS. A
tunneling electron can overcome the Coulomb blockade by
absorbing energy from the environment, which degrades the
performance of the device.

In the present work, we study experimentally hybrid tun-
nel junctions in the EA regime. We demonstrate that EA

causes the observed low-temperature saturation of one-
electron tunneling rates near the degeneracy point between
two charge states, in the energy range that determines the
accuracy of the SINIS turnstile when operated with a sinu-
soidal drive signal. Hybrid tunnel junctions are well suited
for this investigation, as the EA effects are dramatic owing to
sharp features in the superconductor DOS, which has been
previously exploited in the study of photon-assisted tunnel-
ing by microwave irradiation in SETs.9 The simplest system
where a quantized island charge can be observed is the
single-electron box, first studied in Ref. 10. In the present
work, we probed the charge state of a galvanically isolated
hybrid single-electron box by a capacitively coupled SET
electrometer. Owing to the superconducting energy gap, the
tunneling rates near degeneracy are sufficiently low so that
individual tunneling events can be observed without addi-
tional trapping nodes that are required for normal metal de-
vices. We emphasize that this is the same qualitative differ-
ence that allows quantized current pumping using the SINIS
turnstile with only one Coulomb-blockaded island whereas
the normal metal pumps always have at least two islands. For
demonstrating the EA effects, we measured samples with and
without a ground plane, i.e., a capacitive shunt in the elec-
trical leads acting as a filter for high-frequency environmen-
tal noise. We present data from four samples in total.
Samples G1 and G2 have a ground plane as shown in Fig.
1�a� whereas reference samples R1 and R2 do not have one.
Samples G1, G2, and R1 were fabricated simultaneously on
the same chip and have identical design for the metal layers.
Sample R2 is otherwise similar but has a SISIS-type detector
as opposed to the SINIS type found in all the other samples.
Figure 1�b� illustrates the layout of the active region with the
single-electron box and the electrometer.

Two gate electrodes allow for independent tuning of the
detector and the box. Whenever the box gate voltage was
changed, a compensation signal was subtracted from the de-
tector gate voltage canceling the direct capacitive coupling to
the detector island. For the following discussion, one can
consider the compensated box gate voltage to be the only
external control signal. Due to the compensation, charge
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states of the box correspond to fixed detector current levels.
The response of the box state to a gate control sequence is
demonstrated in Figs. 1�c�–1�e�, displaying a real-time mea-
surement of sample G2.

All the tunnel junctions were oxidized strongly, resulting
in specific resistances of 3 k� �m2, or about 300 k� for
the detector junctions and up to 3.5 M� for the smaller box
junction. High resistance is required for the box junction to
bring the tunneling rates down into the measurement band-
width. The detector current was read out in dc-SET configu-
ration using a room-temperature current amplifier, limiting
the usable bandwidth to about 5 kHz.

II. THEORY OF ENVIRONMENTALLY ACTIVATED
TUNNELING

Due to small tunnel junctions and the lack of galvanic
connection, the charging energy of the box for a single-
electron tunneling was at least 4 K in all of the samples.
Hence, in all of the experiments performed in dilution refrig-
erator temperatures, at most two charge states of the box
have a non-negligible occupancy. We can safely assume that
an equilibrium quasiparticle energy distribution is reached

before each tunneling event as the highest tunneling rates
considered in the experiment were below 10 kHz. Thus, a
complete model for the internal dynamics of the box is a
two-state fluctuator, the states of which we will denote by 1
and 2. Neglecting backaction from the detector, the transition
rates are symmetric and given by ��=���E�, where E
=U2−U1 is the difference in the electrostatic energy of the
two charge states and ��E� is the golden rule tunneling rate11

��E� =
1

e2RT
�

−�

�

dE1�
−�

�

dE2nS�E1�fS�E1��1 − fN�E2��P�E1

− E2 + E� . �1�

Above, nS is the DOS for the superconducting electrode,
fN�S� is the occupation factor for quasiparticle energy levels
in the N�S� electrode, and P�E�� gives the probability for
emitting energy E� to the environment. In our model, we use
the pure BCS density of states nS�E�= �Re E

�E2−�2 � with �

=200 �eV for the superconducting gap parameter of alumi-
num. As we will show in Appendix B, the quasiparticles in
the N electrode are thermalized by electron-phonon coupling
and in the S electrode through the large overlap with the
copper shadow. Hence, the occupation factors are taken to be
Fermi functions at sample stage temperature T0, i.e.,
fN,S�E�= �1+exp�E /kBT0��−1. The probability for a two-
electron process to change the box charge state is low, as for
all those processes the energy cost due to charging energy
and Cooper pair breaking is the same or greater, but the rate
prefactor is much smaller than for one-electron tunneling.

III. MODEL OF THE ELECTRICAL ENVIRONMENT

Electromagnetic environment appears in the P�E� theory
through the expression Re�Zt�	��, where Zt�	� is the total
impedance of the environment including the parallel junction
capacitance, as seen from the two electrodes of the junction.
We model the external environment as a parallel RC element
with the resistor R at liquid-helium temperature in the same
manner as in Refs. 8 and 9. Assume that the box electrodes
have a mutual capacitance of Cj, the main contribution of
which is from the junction area, and that the two electrodes
are coupled to the environment through capacitances C1 and
C2, respectively. Then, the impedance Zt�	� can be evaluated
as

Zt�	� =
1

i	Cj

� 	 1

i	C0
+ R �

1

i	C

 , �2�

where C0= �1 /C1+1 /C2�−1 is the series capacitance of the
coupling capacitances C1 and C2 and A �Bª �1 /A+1 /B�−1 is
used to denote parallel impedance. Under the assumption
Cj
C, we have the algebraic result

Re�Zt�	�� = Re� R/�
1 + i	�R/����C�� , �3�

where �=1+Cj /C0. We refer to � as the decoupling factor,
as �=1 corresponds to the case where a bare junction is
directly connected to the environment. In the hybrid single-
electron box samples, a typical box junction has Cj=0.2 fF

FIG. 1. �Color online� �a� Large-scale electron micrograph of a
sample showing the bonding pads and the electrical leads to the
active region in the middle. A copper ground plane isolated from the
thin-film metal structures by 120 nm aluminum oxide layer is indi-
cated in the bottom half of the picture. �b� Active region of a single-
electron box similar to the measured samples. The hybrid single-
electron box is shown in the middle, and the electrometer SET
below it. The thin-film copper layer appears lighter compared to the
aluminum layer. Tips of the gate electrodes can be seen at the bot-
tom and top right. �c� Four-second real-time electrometer trace �top
black� recorded from sample G2 demonstrating the ability to accu-
rately control the charge state of the box. The control sequence
�bottom red� applied to the box gate is as follows: 0–1 s degeneracy
point, also detailed in panel �d�, showing stochastic switching be-
tween the two charge states with nearly equal occupation. 1–3 s
sinusoidal drive between the charge states at 20 Hz, also detailed in
panel �e�. 3–3.5 s and 3.5–4 s “hold” mode in the first and second
charge state, respectively. The sample stage temperature is 60 mK.
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based on the observed charging energies of 4–5 K whereas
the couplings are of the order C1,2=0.02 fF based on the
gate modulation periods and geometric modeling. Hence,
one can expect � on the order of 20. It is hard to give an
accurate estimate of � based on the conductor geometry as
the environmental noise can couple to the box from all of the
gate and bias lines but on the other hand the common-mode
component of the noise does not affect tunneling through the
junction. We do not try to determine an explicit value for �
but instead use ReffªR /� and Ceffª�C directly as fitting
parameters. When computing the theoretical predictions, the
P�E� function for given environmental parameters is evalu-
ated numerically.

IV. MEASUREMENT RESULTS

A basic measurable quantity of the box is the charge-state
occupation probability that depends on the ratio of forward
and backward tunneling rates and assumes the form p
=�− / ��++�−� for state 1. For an NIN junction under negli-
gible environmental influence, one has the analytic result
��= 1

eRT

�E
1−exp��E/kBT0� , giving a Fermi form for the occupation

as a function of the energy difference E of the charge states,
pNIN= �1+exp�E /kBT0��−1. Occupation factors can be deter-
mined from the Coulomb staircase, i.e., the detector dc cur-
rent as a function of the control gate, by normalizing the
current levels of consecutive plateaus to 0 and 1, respec-
tively. Because at most two states are active, detector non-
linearity with respect to box charge does not affect the re-
sults. The occupation can be determined whenever the
detector has sufficient sensitivity to the box charge, even
when the tunneling rates are beyond the measurement band-
width. If the tunneling rates are low enough so that the de-
tector can separate the charge states, we calculate the occu-
pation from the weight of histogram peaks which gives
improved immunity to low-frequency drifts in the detector
signal.

We determine the width of a step shape obtained from
experiment or numerical calculation by fitting a Fermi func-
tion to it. Numerical results indicate that for the environmen-
tal parameters considered in the present work, the Coulomb
steps at high temperatures in both NIN and NIS states have
the Fermi form given above, with the width corresponding to
the common temperature of the bath and the quasiparticles in
both electrodes. In NIN state, the linear relation between step
width and temperature is valid down to our base temperature
of 60 mK. However, in NIS state the step width behaves
anomalously at temperatures below 200 mK with strong de-
pendence on the environmental parameters. Experimentally,
the hybrid box can be brought into NIN state by an external
magnetic field. In Fig. 2 we show the data from all four
samples measured in the temperature range 60–300 mK �60–
400 mK for sample R2� in both NIS and NIN states. The
NIN data in panels �c�–�f� for all samples displays linear
behavior down to the base temperature, indicating that the
box quasiparticle temperatures were not elevated due to ex-
ternal noise heating. The energy difference E depends lin-
early on the control gate voltage with the conversion factor
determined by the coupling capacitances and the box charg-

ing energy. We determined the conversion factor from gate-
voltage offset into energy by requiring that the step widths in
the linear regime correspond to energy kBT0. For samples G1
and R1, we display theoretical predictions using environ-
mental parameters that yield best fit to the data presented in
both Figs. 2 and 3. For sample R2, provisional parameters
reproducing the observed step widths are used. The data for
sample G2 can be reproduced by parameters that are similar
to those of sample G1. We note that if at least part of the
environment noise is capacitively coupled, adding shunting
capacitance over the sample will also decrease the effective
source resistance.

In the NIS data for the unshielded samples R1 and R2, EA
effects can be observed at temperatures below 200 mK as
broadening of the step with decreasing temperature. At low
temperatures, the tunneling rates for small energy differences
are set by EA and consequently the step width is determined

FIG. 2. �Color online� ��a� and �b�� Grayscale lines: Coulomb
staircase in the NIS state, i.e., charge-state occupation probability
near the degeneracy point as a function of the energy difference for
samples G1 and R1 at temperature points in the range 60–200 mK
corresponding to the step width data presented in panels �c� and �d�.
The curves shown here are obtained by analyzing real-time elec-
trometer traces where the two states are separable. For sample G1
with the ground plane, the step sharpens with reduced temperature,
whereas for the reference sample R1 the opposite is observed. Col-
ored dashed line: staircase in the NIN state at the base temperature.
��c�–�f�� Step widths as a function of temperature in NIS state
�black symbols� and NIN state �red symbols�. Black triangles cor-
respond to step widths determined using real-time traces. In NIN
state �red squares� and in NIS state at elevated temperatures �black
squares�, the step widths have been determined from electrometer
dc averaged over the charge-state fluctuations. Dashed lines show
the predictions of P�E� theory for NIS state �black� and NIN state
�red�.
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by the environmental parameters. When the temperature is
sufficiently high, thermal activation �TA� due to broadening
of the quasiparticle energy distribution begins to govern the
tunneling rates, and a linear relation between step width and
temperature is restored. The EA-limited step width can cor-
respond to a higher temperature than where the transition to
TA regime occurs, which results in a width minimum at finite
temperature. The measured step width for ground plane
samples G1 and G2 is nearly linear for the whole experimen-
tal temperature range which is reflected in smaller Reff and
larger Ceff for the environment.

We determined the tunneling rates by stepping the control
gate voltage across the degeneracy point, identified as the
midpoint of a Coulomb staircase step. At each gate position,
a 3 s trace of the output of the detector current amplifier was
recorded at 100 kHz sampling rate followed by digital low-
pass filtering with a sharp cut off at 5 kHz. The whole sweep
was discarded if an abrupt change in the detector or box
operating point due to shifts in background charges was ob-
served. The tunneling events were identified using threshold
detection with the transition thresholds set based on the his-
togram computed for a trace. The tunneling rates are esti-
mated as ��= 
̄1�2�

−1 , where 
̄1�2� is the mean observed lifetime
of state 1�2�. Due to the possibility of missed events, the rate
estimates obtained from a trace are reliable only if both rates
satisfy 1 / t0
��
Bdet, where t0 is the length of the trace
and Bdet is the detector bandwidth.

In Figs. 3�a� and 3�b�, we present the measured tunneling
rates at different bath temperatures in the range 60–200 mK
for the shielded sample G1 and the reference sample R1. We
also show the P�E� theory predictions using the same envi-
ronment parameters as in Fig. 2. For comparison, the tunnel-

ing rates without EA are also shown. The tunneling resis-
tance RT of the box junction, an otherwise unaccessible
parameter, was determined from the data at 180 mK where
tunneling rates depend weakly on the environmental param-
eters, but are still within the detector bandwidth. The values
obtained this way are 3.5 M� for sample G1 and 2.0 M�
for R1. In the tunneling rate data, the agreement is good for
the two samples in the E range where both rates ��

=���E� are below 1 kHz. Above that, the experimentally
determined rates are smaller than the real values due to
missed events. For both samples, the floor where low-
temperature rates saturate to is set by the environment. In
sample R1, the tunneling rates recorded at 125 and 140 mK
are lower than the base-temperature rates, which we interpret
as an artifact due to reduced sensitivity of the detector SET
at higher temperatures. As illustrated in Figs. 3�c� and 3�d�,
in the ground plane sample G1 the base temperature tunnel-
ing rate at the degeneracy point is an order of magnitude
smaller than in the unshielded sample R1, even after ac-
counting for the difference in tunneling resistances.

V. DISCUSSION

To relate the observed tunneling rate data to the pumping
performance of the SINIS turnstile, we performed master-
equation-based simulations of electron transfer during the
pumping cycle. For the simulations, we assumed a high-
quality turnstile with realistic parameters RT=0.5 M� per
junction, Ec /kB=5 K, and a quasiparticle temperature of 50
mK for all electrodes. Gate-dependent first-order tunneling
rates were calculated according to Eq. �1� using the environ-
ment parameters that we extracted for the shielded sample
G1. At 20 MHz pumping frequency, the simulations predict
an EA-limited total error rate of 1.7�10−6 for a sinusoidal
gate drive, and 1.8�10−7 for a square wave drive. Cancella-
tion of pumping errors of different signs is not included in
these figures and hence the relative deviation of the average
pumped current from the ideal value I=ef is smaller. It re-
mains an open technological challenge to realize a similar or
better environment for an SET with galvanic connections to
biasing leads.

In summary, we have measured single-electron tunneling
rates in an NIS single-electron box near the degeneracy point
in two qualitatively different electromagnetic environments.
The agreement to a model of first-order tunneling activated
by absorption of photons from a warm environment is excel-
lent. Accounting for the enhanced decoupling in the present
experiment due to lack of galvanic connections, the param-
eter values we obtained for the external environment are
comparable with those presented in Ref. 8. The results indi-
cate that environmental fluctuations deteriorate the perfor-
mance of single-electronic devices due to enhancement of
tunneling rates in the energetically unfavorable direction.
The measurements on the sample with an on-chip capacitive
shunt indicate that the environment-induced error rate of the
SINIS turnstile can be suppressed to the metrological level
with an appropriate filtering of high-frequency noise. We em-
phasize that the model of environmentally assisted tunneling
explains the observed tunneling rates without any subgap
states in the superconductor.

r

FIG. 3. �Color online� ��a� and �b�� Tunneling rates as a function
of energy difference for samples G1 and R1, respectively, at tem-
peratures in the range 60–200 mK corresponding to the NIS state
data presented in Figs. 2�a� and 2�b�. Black curves are experimental
data whereas red curves show the theoretical predictions using the
same parameter values as in Fig. 2. For reference, we plot orthodox
theory rates without environment as dashed blue lines. The experi-
mental rates are most reliable near the degeneracy point. Counting
errors due to missed events increase as one of the tunneling rates
grows beyond the detector bandwidth, explaining the discrepancy
between experiment and theory for sample R1 at high temperatures.
��c� and �d�� Individual traces at the base temperature near the de-
generacy point for samples G1 and R1, respectively, demonstrating
the reduction in tunneling rates by capacitive shunting.

SAIRA et al. PHYSICAL REVIEW B 82, 155443 �2010�

155443-4



ACKNOWLEDGMENTS

We thank M. Meschke and S. Kafanov for helpful discus-
sions. The work has been supported partially by the Acad-
emy of Finland, Väisälä Foundation, Emil Aaltonen Founda-
tion, and the Finnish National Graduate School in
Nanoscience. The research conducted within the EU project
SCOPE received funding from the European Community’s
Seventh Framework Programme under Grant Agreement No.
218783.

APPENDIX A: DETECTOR BACKACTION

Typical value for the average detector current used in the
real-time counting experiment was 0.5 nA. Low detector cur-
rent has the benefit of reduced heating and backaction at the
cost of signal-to-noise ratio. To assess experimentally the
effect of detector backaction, we measured the tunneling
rates at base temperature at different operation points of the
detector. In the parameter range where tunneling events
could still be reliably detected, we observed that the tunnel-
ing rate at the degeneracy point for the shielded sample G2
was modulated by factor three. For the unshielded sample
R1, we found no change within experimental error. We were
able to reproduce these results qualitatively using a model
similar to Ref. 12, where the effective position of the box
gate fluctuates due to changes in the charge state of the de-
tector island. Detector backaction is not included in the the-
oretical curves of Figs. 2 and 3, which may affect the values
of fitted environment parameters for the shielded sample but
does not change the conclusions of the paper about the role
of the external environment.

APPENDIX B: QUASIPARTICLE THERMALIZATION IN
THE BOX ELECTRODES

Here, we address the issue of quasiparticle heating and
thermalization in the electrodes of the hybrid single-electron
box. The heat associated with quasiparticle tunneling gov-
erned by Eq. �1� can be calculated as a function of the charg-
ing energy difference E as

Q̇S�E� = −
1

e2RT
�

−�

�

dE1E1�
−�

�

dE2nS�E1�fS�E1��1

− fN�E2��P�E1 − E2 + E� , �B1�

Q̇N�E� =
1

e2RT
�

−�

�

dE1�
−�

�

dE2E2nS�E1�fS�E1��1

− fN�E2��P�E1 − E2 + E� �B2�

for the S and N electrodes, respectively. The average energy
deposited per individual tunneling event can be evaluated as

Q̇N,S�E� /��E�. For the single-electron box with two active

charge states, the average heat load is given by


Q̇N,S� =
Q̇N,S�E�/��E� + Q̇N,S�− E�/��− E�

1/��E� + 1/��− E�
. �B3�

Numerical calculations show that the maximum heating oc-
curs at the degeneracy point, i.e., E=0. Using the sample and
environment parameters extracted from the tunneling rate
data, the heat loads in samples R1 and G1 calculated from
Eqs. �B1�–�B3� are presented in Table I.

In the N electrode, hot quasiparticles can thermalize
through electron-phonon coupling. The electron-phonon heat
flow is given by13

Q̇e-ph = �V�TN
5 − TN,ph

5 � , �B4�

where � is the material-dependent electron-phonon coupling
constant, V is the island volume, and TN,ph is the temperature
of the island phonons, assumed to equal the sample stage
temperature T0. We use the literature value13 for copper �
=2�109 W m−3 K5 and V=0.3�1.5�0.04 �m3. The is-
land phonons are assumed to be well thermalized to the
sample stage. Using the heat load values presented in Table I
at the base temperature T0=60 mK, we find that the N elec-
trode quasiparticle temperature is elevated at most 0.02 mK.

In the S electrode, the electron-phonon heat flow is expo-
nentially suppressed below the critical temperature.14 Hence,
the dominant heat-conduction channel is through the 0.3
�1.3 �m2 overlap with the copper shadow. Using the spe-
cific resistance value 3 k� �m2 obtained for the SET junc-
tions, we get RT=8 k� for the overlap junction. We obtain a
lower bound for the heat flow by considering only first-order
quasiparticle tunneling. In order to determine the quasiparti-
cle saturation temperature, henceforth denoted by TS

0, we
then evaluate the heat flow though the junction from Eq.
�B1� as a function of TS with TN=60 mK. Environmental
fluctuations can be neglected due to large junction capaci-
tance, i.e., we use P�E�=��E�. For the S electrode heat loads
presented in Table I, we find that TS

0 =116 mK for sample R1
and 100 mK for sample G1. However, the tunneling rates in
the parameter range accessed in the experiment have a very
weak dependence on TS. The theoretical curves presented in
the paper are calculated with TS=T0, and there is a negligible
difference between them and curves calculated with TS=TS

0.

TABLE I. Calculated heat loads to the box electrodes from qua-
siparticle tunneling in various configurations at 60 mK.

Sample NIN state NIS state, to N NIS state, to S

R1 4.7�10−20 W 1.2�10−21 W 5.3�10−21 W

G1 1.7�10−20 W 5.5�10−24 W 2.4�10−22 W
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We provide a direct proof of two-electron Andreev transitions in a superconductor–normal-metal tunnel

junction by detecting them in a real-time electron counting experiment. Our results are consistent with

ballistic Andreev transport with an order of magnitude higher rate than expected for a uniform barrier,

suggesting that only part of the interface is effectively contributing to the transport. These findings are

quantitatively supported by our direct current measurements in single-electron transistors with similar

tunnel barriers.

DOI: 10.1103/PhysRevLett.106.217003 PACS numbers: 74.50.+r, 73.23.�b, 73.40.Gk

Electronic transport across a boundary between conduc-
tors with dissimilar carriers is a nontrivial process. Of
particular interest in this respect is the transport through
a superconductor–normal-metal interface that at low ener-
gies is dominated by Andreev reflection [1–10], where a
Cooper pair in a superconductor is converted into two
electrons in the normal metal or vice versa. Here we
employ electron counting techniques [11–17] to detect
these Andreev events. Since the observed rate depends on
the coherence of the two electrons involved in the transi-
tion, we obtain, as a result, a fingerprint of the junction
electrodes and the tunnel barrier.

The techniques used for observing individual electrons
are based on the Coulomb blockade effect where the
electrostatic energy of a small metallic island changes
noticeably when only one elementary charge e is placed
on or removed from it. In the present experiment, we
employ an isolated single-electron box where a supercon-
ducting island is connected to a normal metal one [17], but
neither of these two is connected galvanically to the exter-
nal circuitry. The electron tunneling rates between the
islands are then sufficiently low to be monitored by low-
frequency electrometry and are described in detail by
relatively simple theoretical considerations [17,18]. We
use a single-electron transistor (SET) [11–15,17,19–22]
as an ultrasensitive electrometer. With charge sensitivity

as good as 10�5e=
ffiffiffiffiffiffi

Hz
p

[22–24], it is capable to detect
individual electrons with high precision. In Fig. 1, we
show a micrograph of our sample fabricated by standard
e-beam processing.

The tunneling rates and resulting charge distribution
between the two islands of the isolated box can be adjusted
with an offset charge induced by a gate voltage. The
electrostatic energy of a state with n excess electrons on
one of the islands is given by En ¼ Ecðn� ngÞ2, where Ec

is the charging energy for individual electrons and ng is the

normalized offset charge that can be viewed as the polar-
ization charge on the gate capacitor and determines the
energetically preferred way to occupy the different charge
states n [20]. In Fig. 2(a), the two extreme cases are shown.
In the Coulomb blockade regime for single electrons, ng is

an integer and the state n ¼ ng has the minimal energy

En ¼ 0. To enter an excited state, one electron can tunnel
either into or out of the island [dotted black lines with
arrows in Fig. 2(a)], but energy Ec has to be provided for
the tunneling electron in addition to the Cooper pair break-
ing energy equal to or larger than the superconducting
energy gap � [25]. In the other extreme, at degeneracy
with half-integer ng, two electron states differing by charge

e have equal minimal energy and hence are equally popu-
lated. The tunneling rate between them is higher than in the
Coulomb blockade regime as no extra energy for charging
is needed. For Andreev reflection [solid red lines with

FIG. 1 (color online). Scanning electron micrograph of the
measured structure and the schematic layout of the measurement
setup. The isolated electron box consists of two metallic islands,
seen as 25 �m long rectangles (colored red). They are connected
to each other by a normal-metal–insulator–superconductor tun-
nel junction. Tunneling of electrons through the junction is
monitored with a dc SET electrometer (in blue) coupled capaci-
tively to one of the box islands. The normal-metal–insulator–
superconductor junction (top) and detector (bottom) are shown
magnified on the left side of the main micrograph.
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arrows in Fig. 2(a)], the energy cost of charging is
calculated similarly, but now the initial and final states
are separated by two electrons, and the energy cost of
breaking a Cooper pair is avoided since complete pairs
tunnel at once.

In the experiment (see the supplemental material for
additional details [26]), we measured time traces of the
detector current at various biasing conditions of the box.
With all the other parameters fixed, the detector gate
voltage was adjusted to maximize charge sensitivity and
dynamic range. The observed current jumps [Figs. 2(b) and
2(c)] are attributed to the tunneling events between the two
islands. The switching rate depends on the gate voltage of
the box and hence on its charge state, being lowest in the
Coulomb blockade regime (leftmost panel) and highest at
degeneracy (rightmost panel). The events observed in the
traces [gray regions of Fig. 2(b) zoomed in 2(c)] indicate
that individual electrons tunnel between the islands: In the
Coulomb blockade regime they hop rarely from the lowest
(n ¼ 0) to the higher (n ¼ �1) energy states and back,
while at degeneracy the electrons tunnel frequently be-
tween the two lowest states and only occasionally the
system enters a higher lying level. More interestingly,
the traces also show the coincident events, pointed out by
the vertical arrows, where two electrons appear to tunnel
simultaneously. In the following, we show that most of
these events represent Andreev tunneling.

Because of the finite measurement bandwidth, limited to
1 kHz by the dc readout of the electrometer, events resem-
bling two-electron Andreev tunneling could in principle
arise from almost coincidental tunneling of two indepen-
dent quasiparticles. To assess this option, we recorded time
traces for several minutes at each gate offset value.
From the traces we determined the distribution of the

time t spent in the state n ¼ 0 before a transition took
place. In Fig. 3(a), we show such a distribution on the left
for Coulomb blockade (ng¼0), in the center for ng¼0:25,

and on the right for near degeneracy (ng ¼ 0:45). A direct

transition (Andreev tunneling) between states n ¼ �1
contributes here as essentially a t ¼ 0 event since the
time separation between the two electrons tunneling in
the Andreev process should be on the order of @=�, which
is many orders of magnitude smaller than the time scales
relevant in Fig. 3(a). Overall, the distribution is exponential
as we have Poisson distributed one-electron tunneling
processes. However, at small lifetimes in the Coulomb
blockade regime, the data point indicated by the horizontal
arrow does not follow the exponential dependence and
corresponds to excessively many events. This clear sepa-
ration of the short-lifetime events from the one-electron
transitions shows that the majority of these events are not
coincidental one-electron tunneling but rather two elec-
trons tunneling concurrently. When the box offset charge is
adjusted closer to degeneracy, the anomalous data point
gradually merges to the rest of the data, in accordance with
its interpretation in terms of Andreev transitions, since the
energy cost of the two-electron tunneling increases.
We emphasize that the charging energy should be small
(Ec < �) for Andreev tunneling to occur, since for large
Ec, it is not energetically favorable [17].
For quantitative analysis, we counted the number of

events Nj for each possible forward and backward one-

and two-electron tunneling process for each initial charge
state n. The corresponding tunneling rate was then ob-
tained as �j ¼ Nj=ðhtiN�Þ, where hti is the average life-

time of the initial state n and N� the total number of all
transitions out of this state. The denominator htiN� there-
fore corresponds to the total time spent in the initial state.

FIG. 2 (color online). Energy levels of the various charge states and typical observed time traces of the current through the detector.
(a) Low lying levels of the box in the Coulomb blockade (upper panel) and at degeneracy (lower panel). Dotted (black) and solid (red)
arrows indicate one- and two-electron processes, respectively. (b) Measured time traces of the detector current showing the charge state
of the electron box as a function of time. The leftmost panel presents the case of Coulomb blockade. The rightmost panel depicts the
opposite limit where the two charge states are equal in energy (degeneracy). The trace in the center is taken halfway between these two
cases. (c) Gray sections of the traces of (b) zoomed. Vertical arrows indicate two-electron events.
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Transitions with the charge number changing by�n ¼ �2
and occurring within 0.4 ms were interpreted as two-
electron tunneling and all other events as one-electron
tunneling. The time window was chosen such that it essen-
tially captures all the excess events shown in the histo-
grams of Fig. 3(a) but minimizes the number of
coincidental one-electron events. The results for both pro-
cesses at the temperature of 60 mK are shown in Fig. 3(b).
The parameter values which determine the first-order tun-
neling rates in the box junction, the tunneling resistance
RT ¼ 2 M�, the superconducting energy gap � ¼
216 �eV, and the charging energy Ec ¼ 0:2�, were de-
termined from the one-electron tunneling rates measured at
temperatures ranging from 60 to 200 mK as in Ref. [17].

For analyzing the Andreev tunneling rates quantita-
tively, we assume a ballistic model of the tunnel barrier.
Then, the rate is given by Eq. (3) of Ref. [27]. Apart from
the parameter values obtained from one-electron tunneling,
the only parameter to be determined for the two-electron
tunneling is its overall magnitude controlled by � �
ð@=RTe

2Þ=N , where N is the effective number of the
conduction channels in the junction, N ¼ A=Ach.
Here Ach is the area of one conduction channel and

A ¼ 40 nm� 35 nm the junction area estimated from
the scanning electron micrograph. Ideally, for our alumi-
num oxide tunnel barriers one should have Ach ’ 2 nm2;
see the supplemental material [26]. However, to fit the
observed tunneling rates, we must adopt an order of mag-
nitude higher value, Ach ¼ 30 nm2, leading to an order of
magnitude higher rates. As a result, we obtain the green
lines of Fig. 3(b) for forward and backward tunneling,
demonstrating a good agreement between theory and ex-
periments at different charging energy costs tuned by ng.

An order of magnitude larger area of a conduction
channel is in line with independently performed SET mea-
surements described in detail below and with the conclu-
sions in, e.g., Refs. [6,10], for larger tunnel junctions that
exhibit diffusive Andreev tunneling.We attribute this to the
imperfections of the barrier, with only a small portion of
the junction area dominating the transport. This fact can be
understood by noting that the standard parameters of the
aluminum oxide tunnel barriers [26,28,29] imply that, for
example, variation of the barrier thickness by one atomic
layer (i.e., by about 0.3 nm) results in the specific con-
ductance change by about a factor of 10. This means that
even relatively small fluctuations of the barrier thickness of
the magnitude of one to two atomic layers in comparison
with the average barrier thickness of 6 atomic layers can
reduce the effective area of the region dominating the
barrier transparency to about 10% of the total junction
area.
As an additional way of studying the two-electron tun-

neling, we measured current-voltage characteristics of ba-
sic SET structures with superconducting leads and a
normal metal island. A micrograph of one of the four
devices is shown in the inset in Fig. 4. All the SETs were
fabricated in the same batch so that the junction area (Ec)
varies with constant � / ðARTÞ�1. Here Andreev tunneling
has to be extracted from the measured data containing a
contribution also from one-electron processes. Each of the
SETs was biased at voltage V, and the current I flowing
through the device was measured. At each bias voltage, the
gate offset of the island was varied so that the maximal
and minimal currents, corresponding to degeneracy and
Coulomb blockade, respectively, were observed. The mea-
sured current values between these extremes are shown as
the colored regions in Fig. 4 for the four devices having
different Ec. The parameter values for Ec, RT , and � were
determined from large scale data dominated by one-
electron tunneling. Insets show the data for samples with
the highest and lowest Ec. In the subgap region eV < 2�,
we have no current flowing through the highest charging
energy sample (top) apart from the thermally activated
single-electron tunneling. With smaller Ec, the onset of
the Andreev current penetrates deeper into the subgap
region with the threshold at eV ¼ 2Ec, seen both in the
experimental data and in the fits including Andreev pro-
cesses (solid black lines), as the energy cost for two
electrons tunneling into the island is lowered. With high

FIG. 3 (color online). Lifetime distributions and tunneling
rates. (a) Lifetime distributions of the n ¼ 0 charge state in
the Coulomb blockade, at an intermediate gate position, and
close to degeneracy, from left to right. The corresponding gate
positions are indicated by vertical lines in (b). Excessively many
events at small times are pointed out by horizontal arrows.
(b) One-electron (open symbols) and two-electron (solid sym-
bols) tunneling rates estimated from the counted events at the
base temperature. Red circles and blue triangles denote the
tunneling rates out of states n ¼ �1 and 1, respectively. Dark
blue diamonds and dark yellow squares denote tunneling rates
out of state 0 to states �1 and 1, respectively. Dark green solid
lines present calculated Andreev rates with � ¼ 4� 10�5.
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charging energies Ec * �, it is sufficient to take into
account only one-electron tunneling in the fits (dotted
blue lines). In the numerical simulations for all the
samples, we obtain as the only fit parameter for the subgap
currents � � 4� 10�4, yielding the area of one conduc-
tion channel to be Ach ¼ 30 nm2. This value was adopted
to the analysis of the counting data above. Note that to
increase the measured signal the SET junctions were oxi-
dized less to have larger specific conductance (�) than the
box junction.

In conclusion, we have detected tunneling in the time
domain, allowing us to distinguish two-electron Andreev
transitions from the usual one-electron processes unambig-
uously and on the level of individual events. This tech-
nique, unlike the direct current measurements, addresses
the transition rates in the two directions separately,
allowing for the study of the bias dependence of these rates
also in the regime where currents are far too low to be
detected by standard current measurements. The counting
experiments disclose the detailed statistics of the two

processes, and the results are consistent with the direct
current measurements performed: As a technological re-
sult, both measurements indicate that the tunnel barriers
are nonuniform.
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FIG. 4 (color online). Detection of Andreev current in SETs.
Colored regions show measured subgap current for devices with
charging energies Ec=kB ¼ 2:3, 1.9, 1.5, and 0.86 K from top
(yellow) to bottom (orange) at all gate offset values. The insets
depict the larger scale measurements for samples with the high-
est and lowest charging energies and a scanning electron micro-
graph of one of the measured SETs. Solid black lines are fitted
theoretical curves at degeneracy (maximal current) and in
Coulomb blockade (minimal current) when Andreev tunneling
is taken into account. Dotted blue lines present fits excluding
Andreev processes. Tunneling resistances of the samples were
RT ¼ 129, 78, 55, and 31 k� in order of decreasing Ec,
and superconducting gap � ¼ 216 �eV for all of them. Open
(solid) circles present the expected thresholds eV ¼ �2Ec

(eV¼�4Ec) for Andreev tunneling at degeneracy (Coulomb
blockade).
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Abstract – We present measurements on hybrid single-electron turnstiles with superconducting
leads contacting a normal island (SINIS). We observe Andreev tunneling of electrons influencing
the current plateau characteristics of the turnstiles under radio-frequency pumping. The data is
well accounted for by numerical simulations. We verify the dependence of the Andreev tunneling
rate on the turnstile’s charging energy. Increasing the charging energy effectively suppresses the
Andreev current.

Copyright c© EPLA, 2011

Introduction. – At the present time, there does not
exist a quantum current standard though such standards
exist for both voltage and resistance. A strong candidate
for such a standard is a turnstile with a small normal metal
island connected by tunnel junctions to superconducting
leads (SINIS) [1]. These hybrid turnstiles pump electrons
one at a time producing a well-defined current of I = ef
where e is the electron charge and f is the frequency of
pumping. Understanding and eliminating error processes
in these turnstiles is vital for realizing a quantum metro-
logical triangle (QMT), a key goal in metrology [2]. In
closing the QMT, the three standards of voltage, resis-
tance and current would be compared against each other
via Ohm’s law. Closing the QMT will allow the most accu-
rate comparison of the Josephson constant KJ = 2e/h and
the von Klitzing constant RK = h/e2 (i.e. the charge of the
electron and Planck’s constant) to date.
There exist several potential quantum current standard

candidates. The NIST seven junction pump has demon-
strated a current accuracy of 1.5 parts in 108 [3,4] but
is limited to maximum currents of approximately 1 pA.
Other candidates with the potential for metrological accu-
racy at metrologically relevant currents include semi-
conductor tunable barrier pumps, charge-coupled device
pumps [5], tunnel junction pumps [6–8], quantum dot
pumps [9], surface acoustic wave pumps [10] and quantum
phase slip nanowire pumps [11]. In general, the accuracy

(a)E-mail: Thomas.Aref@aalto.fi

of these quantum currents standards is not yet compara-
ble to the accuracy of the quantum Hall and Josephson
effect standards. A semiconducting quantum dot parallel
pump recently demonstrated an accuracy of 1.5 in 105 at
54 pA [12]. The minimum required current magnitude for
closing the metrological triangle is about 100 pA with an
accuracy of about 1 part in 108, which has not yet been
achieved.
The SINIS turnstile operates by using energy barriers

to control the flow of electrons. The normal metal island
is capacitively coupled to a gate electrode. By applying
an appropriate voltage to the gate, single electrons can
be added and removed from the normal metal island. In
essence, the SINIS turnstile operates as a single-electron
transistor, with the superconducting gap providing extra
protection against unwanted tunneling of the electrons.
There are multiple transport processes that can occur in

a SINIS turnstile. The dominant one employed in charge
pumping is sequential single-electron tunneling through
the insulating barrier. The dominant two-electron process
causing errors is Andreev tunneling. In Andreev tunnel-
ing, an electron in the normal metal is reflected as a hole
(or a hole as an electron) at the interface of the NIS junc-
tion. This forms (or removes) a Cooper pair in the super-
conducting electrode and can be alternatively viewed as
two electrons tunneling simultaneously across the insu-
lating barrier [13]. It has been shown that errors arising
from sequential 1e-tunneling in turnstiles such as environ-
mental activation can be effectively suppressed by proper
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Fig. 1: (Colour on-line) Experimental set-up (a) Layout for
sample of type one. The leads are coupled to the ground plane
by large ground plane couplers (GPC) yet the turnstile itself
is off the ground plane. (b) A SEM micrograph of the first
sample type showing the turnstile and combined RF gate. The
GPC and ground plane are not shown. This is sample S1 with
junction area 50 nm by 125 nm. (c) The second sample set-up
with the samples in the patterned part of the ground plane.
The device design is modified to include a separate RF and
DC gate. (d) A SEM micrograph of the second sample type
showing the turnstile and the DC gate on top of the RF gate.
This is sample S4 with junction area 60 nm by 70 nm.

filtering including an on-chip capacitively coupled ground
plane [14]. Higher-order, multiple-electron error processes
not eliminated by this filtering may then be observed.
Many experimental observations of Andreev currents have
been reported previously [15–17]. Andreev processes in
devices with Coulomb blockade have been studied previ-
ously, both theoretically [18] and experimentally [13,19].
Only recently were individual Andreev reflection events
detected in NIS junctions [20,21].
Here we demonstrate that the Andreev tunneling

process is detectable in single-electron turnstile current
pumping plateaus and that the resulting error effect can
be minimized by increasing the charging energy of the
turnstile. The data is well accounted for by numerical
simulations with reasonable parameter values and the
observed behavior is physically intuitive.

Experiment. – To form the SINIS turnstile, a normal
copper island is connected to two superconducting
aluminum electrodes using double angle evaporation with
an intermediate oxidation step. Two types of devices were
fabricated using electron beam lithography. The first type
of sample used one step of lithography and aligned the
device with a ground plane as shown in fig. 1(a). Large
pads ensured capacitive coupling between the device and
the ground plane, strongly suppressing environmental

noise [14,20]. These large pads are marked ground plane
couplers (GPC) and are electrically isolated from the
ground plane by atomic layer deposition (ALD) grown
aluminum oxide. This device design allows simple single
sample fabrication but is difficult to parallelize. A single
gate line is used as both a DC gate and an RF gate.
A scanning electron microscope (SEM) micrograph of the
first type of sample is shown in fig. 1(b).
The second type of sample involves multiple steps of

lithography as shown in fig. 1(c). In the first step, a ground
plane is patterned to allow device fabrication on top of
it. The turnstile sits in the patterned gap in the ground
plane and only the leads are directly above it. Patterning
the ground plane in this manner prevents formation of
short circuits when wire bonding. After lithography, an
insulating layer of silicon oxide is deposited by plasma-
enhanced chemical-vapor deposition (PECVD). A second
step of lithography is performed to form the turnstiles and
individual DC gates for each turnstile. The lithography
used a three layer mask with a hard germanium layer
which allowed smaller features than the two-layer PMMA
patterning used for the first type. The advantage of this
fabrication method is that the separate DC gates enables
parallelization. Parallelization is essential for metrological
purposes as it is difficult to get large enough currents from
a single device [22]. A SEM micrograph of the second type
of sample is shown in fig. 1(d).
Measurements are done at a base temperature of

approximately 70mK. A typical current vs. voltage
envelope measurement reveals the superconducting gap
and single-electron transistor behavior of the turnstile as
shown in fig. 2(a). To measure the pumped current of
the turnstile, a fixed bias voltage is applied to one of the
turnstile’s bias leads while current is measured on the
other lead. A sine wave of amplitude VAC (resulting in a
normalized amplitude Ag =CgVAC/e) with a frequency f
is applied to the RF gate. As Ag increases past a threshold
value, the likelihood of transporting one electron through
the turnstile in a single cycle approaches unity, giving rise
to a quantized current plateau.
We observe current quantization as shown in fig. 2(b).

Zooming in on the current plateau reveals characteristic
excess current above the expected I = ef behavior due
to Andreev tunneling. For samples with small charging
energy (EC <Δ), as shown in fig. 2(c), the current plateau
is enhanced above the expected value particularly for low
Ag values in the plateau. These deviations are suppressed
for samples with large charging energies (EC >Δ), as
shown in fig. 2(d). Amplifier gain is corrected on the
10−3 level to match the simulated plateaus. This does not
influence the interpretation of excess current on the 10−2

level. Qualitatively, as Ag is increased for the situation
EC <Δ, we encounter an energy threshold that permits
Andreev tunneling before the single-electron tunneling
threshold is encountered, allowing enhanced current flow
for low charging energy samples. This charging energy
dependence is indicative of the Andreev effect [20,23].
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Fig. 2: (Colour on-line) 10MHz sine wave current pumping
with simulations. (a) DC current vs. voltage envelope measure-
ment for sample S1 (green points). The red and blue lines are
simulations of the measurement. (b) Current pumping plateaus
for low-charging-energy sample S1 with a 10MHz sine wave.
(c) Close-up of (b) showing the Andreev tunneling. (d) Close-
up of current pumping plateaus of sample S3 (high charging
energy, low resistance) with a 10MHz sine wave showing the
absence of Andreev tunneling due to higher charging energy.
Bias voltages are: 160μV (blue), 240μV (red) and 320μV
(green) with a magenta dotted line at I = ef and simulations
shown as black dashed lines in figures b-d.

Figure 3 shows close-ups of the current pumping
plateaus for a different conditions. In fig. 3(a), pumping of
sample S1 with a 10MHz sine wave at a different range of
biases than fig. 2 is shown. In fig. 3(b) the pumping curves
for the high-charging-energy, high-resistance sample S2
show a reduction below the expected I = ef due to single-
electron back tunneling. This increased back tunneling at
high pumping amplitude is a first-order effect, which is
due to the larger resistance of the high-charging-energy
sample S2 compared to S3 [24]. Figures 3(c) and (d) show
sample S1 pumped with a 10MHz square wave and a
50MHz sine wave.
The Andreev effect is visible in a wide range of biases

as shown in figs. 2(b) and (c) and 3(a) with no visible
dependence on bias voltage. Although the exact position
of the plateau depends on bias, there is no separation
of the plateaus due to bias dependence indicating this is
not an environmental activation effect [14]. By fabricating
high-charging-energy samples with low resistance, we can
limit both the Andreev and back tunneling effects in
the turnstiles as shown in figs. 2(d). This requires small
junctions with highly transparent tunnel barriers i.e.
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Fig. 3: (Colour on-line) Close-ups of frequency and waveform
dependence of current pumping plateaus. (a) Pumping sample
S1 with a 10MHz sine wave showing the enhanced tunneling
caused by the Andreev process. (b) Pumping of sample S2
(high charging energy, high resistance) with a 10MHz sine wave
showing the suppression of the enhanced Andreev tunneling.
At high pumping amplitude, there is increased back tunneling
compared to sample S3 due to the higher resistance of the
junctions. (c) Pumping sample S1 with a 10MHz square wave
showing the different character of enhanced Andreev tunneling
with a square wave drive. (d) Close-up of current pumping
plateaus of sample S1 with a 50MHz sine wave showing the
smaller relative error at higher pumping frequency. The vertical
scale has been changed compared to previous close-ups for
clarity. The vertical scale in figures a-c are identical. The
horizontal scale is not identical since the exact amplitude of
RF drive applied to an individual device is not important. Bias
voltages are: 180μV (blue), 220μV (red) and 260μV (green)
with a magenta dotted line at I = ef and simulations shown as
black dashed lines in all four figures.

junctions with low RC product as have been fabricated
previously [24,25].
It should be noted that for device S3 with optimized

tunnel barriers for suppressing Andreev and single-
electron back tunneling there is still significant structure
visible at the 10−3 level. The exact origin of this structure
is not yet clear. It is possibly due to quasi-particle
relaxation in the aluminum leads or noise still penetrating
the filtering system. Preliminary simulations indicate
that this structure can be accounted for if we consider
overheated superconducting leads but future research is
needed in this area. The focus here was to demonstrate
control over the Andreev error process. SINIS pumps are
theoretically predicted to achieve an accuracy of 1 part in
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108 with a current of 30 pA for a single pump [26]. The
experimentally measured accuracy level to date is on the
10−3 level i.e. 1 part in 103.

Theory. – For the simulations shown in figs. 2 and 3,
we calculate the average current flowing through the
turnstile by numerically solving a master equation. The
current through the left barrier (which is equal to the
current through the right barrier in the steady state) is
given by

I = e
∑

n

[ΓLI(n)−ΓIL(n)]P (n, t), (1)

where P (n, t) is the probability for finding n electrons
on the central island at time t. The tunneling rate from
the left lead to the island is ΓLI(n) = ΓSN (E

+
L (n))+

2ΓAR(E
++
L (n)) and the tunneling rate from the island to

the left lead is ΓIL(n) = ΓNS(E
−
L (n))+ 2ΓAR(E

–
L(n)). The

factor of two in front of the Andreev rate ΓAR, compared
to the single-electron rates ΓNS,SN , is to account for the
Andreev process transporting two electrons. The energy
required to add or remove a single electron to/from the
island (denoted by + or −) from the left or right lead
(denoted by L or R) is given by E±L,R =±2EC(n−ng ±
1/2)± eVL,R where EC = e2/2C is the charging energy
with C being the total capacitance of the island, n is
the number of excess electrons on the island and ng =
CgVg/e is the normalized offset charge (the effective
charge induced by applying a voltage Vg to the gate
with capacitance Cg) [27]. The energy required to add
or remove two electrons to/from the island (denoted by
++ or −−) in the Andreev process is given by E±±L,R =
±4EC(n−ng ± 1)± 2eVL,R.
The time dependence of the probability is given by the

master equation [27,28]:

dP (n, t)

dt
= −Γn,nP (n, t)
+Γn−1,nP (n− 1, t)+Γn+1,nP (n+1, t)

+Γn−2,nP (n− 2, t)+Γn+2,nP (n+2, t), (2)

where

Γn−1,n = ΓSN (E
+
L (n− 1))+ΓSN (E

+
R (n− 1)),

Γn+1,n = ΓNS(E
−
L (n+1))+ΓNS(E

−
R (n+1)),

Γn−2,n = ΓAR(E
++
L (n− 2))+ΓAR(E

++
R (n− 2)), (3)

Γn+2,n = ΓAR(E
−−
L (n+2))+ΓAR(E

−−
R (n+2)),

Γn,n = Γn,n−1+Γn,n+1+Γn,n−2+Γn,n+2.

Equation (2) tracks the flow of the probability. The
higher-order Andreev tunneling effects are included by
considering state changes from n to n± 2 [26]. The rate
at which single electrons tunnel from superconductor to
normal metal ΓSN , or the rate at which single electrons
tunnel from the normal metal to the superconductor ΓNS ,
are obtained using first-order perturbation theory [29,30].

Table 1: Sample parameters.

Name EC/Δ RT (kΩ) Δ (μeV) ACH (nm2)
S1 0.63 160 220 30
S2 2.2 1400 210 N/A
S3 1.4 430 210 N/A
S4 0.75 110 210 30

The Andreev tunneling rates ΓAR, are given in eq. (3)
in ref. [26] using second-order perturbative calculations.
These rates depend on the charging energy EC , the super-
conducting gap Δ, and the tunneling resistanceRT . Values
for these parameters are obtained from DC current vs.
voltage envelope measurements (see inset of fig. 1) which
depend only on ΓNS,SN . ΓAR has an additional fitting
parameter since its magnitude is controlled by the quan-
tity (�/RT e

2)/N , where N is the effective number of
conduction channels, N =A/ACH [26]. A is the cross-
sectional area of the junction estimated by scanning elec-
tron microscope (SEM) imaging (see fig. 1 for relevant
images and area estimates) and ACH is the effective area
of a conduction channel used as a fitting parameter. Theo-
retically, ACH ≈ 2 nm2 though fitted values are typically
much larger than this value and are interpreted as result-
ing from inhomogeneities in the thickness of the oxide in
the junctions [20]. In table 1, the fitting parameters EC
(in units of Δ), RT , Δ and ACH are listed for each of the
samples simulated. Note that Andreev rate fitting parame-
ters can not be determined for the high-charging-energy
samples S2 and S3, since the Andreev effect is suppressed
below the measurement noise.
The simulated probability evolution during charge

pumping is shown in fig. 4(a) for various charge states.
The corresponding rates of tunneling weighted by the
occupation probabilities are shown in fig. 4(b). These plots
are for simulations of sample S1 with VL−VR = 200μV,
Ag = 0.74 and f = 10MHz. Only forward tunneling is
relevant here. In figs. 4(c) and (d), we show the calculated
stability diamonds for samples S1 and S2, respectively.
The minimal pair breaking energy for 1e-tunneling is
Δ so the threshold for tunneling is E±L,R =Δ which is
shown as the blue line. For the Andreev tunneling, this
pair breaking is avoided so the threshold for tunneling is
E±±L,R = 0 and is shown by the red dashed line.

Results and discussion. – In figs. 4(a) and (b),
the probabilities and tunneling rates during one pumping
cycle are shown for sample S1. As the transition rate from
n= 0 to n= 1 grows, the probability for being in state
n= 0 quickly drops in the beginning of the cycle and is
replaced with a probability for being in state n= 1. At
the same time, there is a detectable Andreev tunneling
rate for going from state n= 0 to n= 2 after which the
n= 2 state quickly relaxes to n= 1 by single-electron
tunneling. The low level occupation of the state n= 2 is
also detectable. Likewise, the opposite process where an
electron leaves the turnstile is observable in the second
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Fig. 4: (Colour on-line) (a) Probability evolution during charge
pumping. The probability P (n, t) is shown for different values
of n: n= 0 (green), n= 1 (blue), n= 2 (dotted black) and
n=−1 (dotted red). (b) Rates of tunneling weighted by
probabilities of occupation. The single-electron tunneling rate
through the left junction from n= 0 to n= 1 is shown in solid
green. The Andreev tunneling rate from n= 0 to n= 2 is shown
in dotted green and is on top of the relaxation rate from
n= 2 to n= 1 via single-electron tunneling through the right
electrode (thick black). Likewise, the single-electron tunneling
rate through the right junction from n= 1 to n= 0 is shown in
solid blue, the Andreev rate n= 1 to n=−1 is shown in dotted
blue and is on top of the relaxation rate from n=−1 to n= 0
through the left junction (thick red). (c) Stability diagram of
sample S1. The blue diamonds are the thresholds for single-
electron tunneling, the red diamonds are the thresholds for
Andreev tunneling and the thick black line is the pumping cycle
used in (a) and (b). (d) Stability diagram of sample S2. The
diamonds are reversed in order because of the higher charging
energy of sample S2.

part of the pumping cycle. As before, when the rate from
n= 1 to n= 0 grows, the most likely state becomes n= 0.
The transition for n= 1 to n=−1 by Andreev tunneling
is also seen whereafter the n=−1 state quickly relaxes to
n= 0 state by single-electron tunneling.
In figs. 2(b), 2(c) and 3(a), the pumping plateaus

for six different biases and the corresponding fits are
shown for the low-charging-energy (EC <Δ) sample S1.
There is excellent agreement between the fits and the
data. By looking at the stability diagram shown in
fig. 4(c), we can qualitatively understand the observed
effect. The stability diagram shows tunneling thresholds
vs. normalized bias voltage, V , and momentary gate
charge, ng. Starting in the diamond on the left, as the
gate amplitude, Ag, is gradually increased, the Andreev
threshold (shown as a red dotted line) is encountered
first. Thus the Andreev process is most noticeable at low

Ag. As Ag is increased further, we encounter the single-
electron tunneling threshold and this process quickly
dominates, obscuring the Andreev effect. This results
in the enhanced current pumping plateau in figs. 2(c)
and 3(a). For comparison, as can be seen in fig. 4(d),
the high-charging-energy (EC >Δ) sample, S2, encounters
the single-electron tunneling threshold before the Andreev
threshold. The Andreev effect is not observed as the
electron has already tunneled before it enters the Andreev
regime. Thus the plateau in figs. 3(d) and 2(d) is flat with
no evidence of the enhanced tunneling effect.
The lack of dependence on bias seen in figs. 2(c) and 3(a)

can similarly be explained by looking at the stability
diagram. Changing the bias corresponds to changing the
horizontal level of the black line in fig. 4(c). However, the
Andreev tunneling thresholds run parallel to the single-
electron tunneling thresholds so this has a very small effect
on the observed current.
In fig. 3(c), the results from pumping with a 10MHz

square wave for sample S1 are shown. The square wave is
modeled with an exponential rise to the applied voltage
with risetime 2.5 ns. Compared to the sine wave pumping
of the same frequency, the enhanced current for the square
wave is more peaked and dies away more quickly. At an
amplitude of Ag = 0.75, the square wave pumped plateau
is almost flat with a current less than 1.005ef (i.e. closer
to the ideal value of I = ef) while sine wave pumping
with the same frequency and bias voltage has a plateau
with significant slope at Ag = 0.75 with a current greater
than 1.005ef . This behavior can also be qualitatively
understood from the stability diagram. The square wave
goes more immediately to the final Ag value thus spending
less time in the vulnerable regions of the stability diagram.
When we first encounter the Andreev threshold but before
the single electron threshold is encountered, the Andreev
process dominates and we see the sharp peak in current
shown in fig. 3(c). As Ag is increased, we encounter the
single-electron tunneling process threshold and the escape
process is dominated by it. There is only a small possibility
for the Andreev tunneling enhancement to occur since
the square wave sweeps through that vulnerable region
quickly. Thus the Andreev effect in the pumping plateau
dies away more quickly for the square wave than for the
sine wave.
In figs. 3(d), the pumping plateaus for a 50MHz sine

wave are shown with the Andreev effect visible for the
low-charging-energy sample, S1. With higher frequency,
more electrons are pumped per unit time producing
a higher current. Thus the relative accuracy improves
compared to the lower frequency 10MHz sine wave shown
in fig. 3(a) since the absolute value of the excess Andreev
current remains roughly the same. The Andreev tunneling
contribution to the current remains roughly unchanged
because the same process as described for the lower
frequency sine wave takes place. This results in the more
flat slope of the 50MHz pumping seen in fig. 3(d) but
the Andreev process is still detectable. It should be noted
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that the same sample parameters listed in table 1 were
used for simulating 10MHz sine wave, 10MHz square wave
and 50MHz sine wave current pumping demonstrating the
robustness of the simulation.
From the simulations, we extract an effective channel

area on the order of 30 nm2 for the pumping (the effective
channel area is difficult to determine precisely so the
values are rounded to the nearest 10’s of nm2). This was
consistent for both samples S1 and S4 shown in fig. 1. For
clarity of presentation, only the data and fits from sample
S1 are shown in figs. 2 and 3. Samples S2 and S3 do not
have a discernible Andreev parameter as it is suppressed
by their high EC . This is in general agreement with the
effective area of 30 nm2 found in earlier work [20]. These
values are approximately one order of magnitude larger
than the theoretical channel area of approximately 2 nm2,
indicating that roughly only one tenth of the effective
area of the junction is active in agreement with previous
results [31,32].
We have shown that the enhanced current is depen-

dent on EC , pumping amplitude and pumping waveform
shape but independent of pumping frequency and bias
voltage. These are all characteristic signatures of Andreev
tunneling that can be well accounted for by our theoretical
model.

Conclusion. – We have observed the Andreev tunnel-
ing process in current pumping with a single-electron
turnstile. This error process can be effectively suppressed
with high charging energy leading us one step closer to a
quantum current standard and completing the quantum
metrological triangle. Andreev reflection as an error
process can be fully eliminated with proper choice of EC
as demonstrated by these experiments.
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Vanishing quasiparticle density in a hybrid Al/Cu/Al single-electron transistor
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The achievable fidelity of many nanoelectronic devices based on superconducting aluminum is limited by
either the density of residual nonequilibrium quasiparticles nqp or the density of quasiparticle states in the
gap, characterized by Dynes parameter γ . We infer upper bounds nqp < 0.033 μm−3 and γ < 1.6× 10−7 from
transport measurements performed on Al/Cu/Al single-electron transistors, improving previous results by an
order of magnitude. Owing to efficient microwave shielding and quasiparticle relaxation, a typical number of
quasiparticles in the superconducting leads is zero.

DOI: 10.1103/PhysRevB.85.012504 PACS number(s): 74.78.Na, 74.45.+c, 74.81.Fa, 85.35.Gv

I. INTRODUCTION

Active research and debate on the origin and density of
residual quasiparticles in aluminum-based superconducting
quantum circuits prevails currently.1,2 Aluminum is a widely
used metal in the field of low-temperature mesoscale elec-
tronics due to its superconducting properties and its tendency
to form a native oxide that can be employed as a tunnel
barrier. The practical performance of superconducting devices
is often degraded by excess quasiparticle processes that do not
follow from the assumption of full thermal equilibrium and
Bardeen-Cooper-Schrieffer (BCS) form for the quasiparticle
density of states of the superconducting electrodes. The figures
of merit that we will address in this work are the density of
nonequilibrium quasiparticles nqp and the Dynes parameter
γ for the normalized density of quasiparticle states in the
gap. These parameters are presently major limiting factors for
the coherence time of Josephson junction qubits,2–4 relaxation
time of highly sensitive radiation detectors,5 the ultimate
temperature reachable by normal-insulator-superconductor
(NIS) junction refrigerators,6 and potentially for the accuracy
of the SINIS turnstile,7 a contender for the realization of a
metrologically accurate source of quantized electric current.

The lowest values for γ that have been obtained from
subgap conductance measurements of NIS junctions and
SINIS single-electron transistors (SETs) are 2× 10−5 and 1×
10−6, respectively.7 Subgap conductance of defect-free NIS
junctions is dominated by two-particle Andreev tunneling.8

For nqp, studies on superconducting qubits2,3 and resonators5

have reported a low-temperature saturation to 10–55 μm−3

due to an unidentified excitation mechanism. Recently, a
significantly improved result nqp < 1 μm−3 has been obtained
by a transmon qubit realization.9 A similar number can be
inferred from the quasiparticle tunneling rates reported in
Ref. 10 for a superconducting single-electron transistor (SET)
design with normal-metal quasiparticle traps. In this work, we
present quasiparticle transport measurements of Al/AlOx /Cu
SETs combining carefully implemented shielding against
external blackbody radiation and quasiparticle traps. The
results yield unprecedented upper bounds nqp < 0.033 μm−3

and γ < 1.6× 10−7.
The experiment was performed on samples similar to

that pictured in Fig. 1. We monitored the charge state on
the central island of a hybrid, i.e., SINIS-type, SET using

another hybrid SET as an electrometer. The electrometer
current Idet was read out using a room-temperature current
amplifier in the so-called DC-SET configuration. Most of the
capacitive coupling between the SETs was provided through
a 7 μm long Cr wire galvanically isolated from the SET
metal layers. Following the technique introduced in Ref. 7,
all electrical leads of the 1× 1 mm2 pattern on the chip
from the bonding pads to the active region were capacitively
shunted by a conducting ground plane that was electrically
isolated from the leads by the 25 nm AlOx layer. Pathways
for quasiparticle trapping from the aluminum electrodes are
provided by the overlap through the tunnel barrier oxide to the
copper electrodes extending to within a few hundreds of nm
of the tunnel junctions, and the ohmic contact between Al and
Au films beginning 10 μm away from the junctions. We also
fabricated and measured a reference sample without the ohmic
Al/Au contact, but having an otherwise equivalent design.

II. THEORETICAL DESCRIPTION
OF SINGLE-ELECTRON PROCESSES

The basis of our theoretical modeling of the charge transfer
is the golden rule expression for the first-order tunneling rate,

�1e(E) = 1

e2RT

∫ ∞

−∞
dE1

∫ ∞

−∞
dE2nS(E1)fS(E1)

× [1− fN (E2)]P (E1 − E2 + E), (1)

where nS(E) = |Re E√
E2−�2 | is the quasiparticle density of

states in the superconducting electrode, fS (fN ) is the occu-
pation factor in the superconducting (normal) electrode, and
P (E) is the probability to emit energy E to the electromagnetic
environment during the tunneling. The occupation factors are
taken to be Fermi functions at temperature TN (TS), i.e.,
fN,S(E) = [1+ exp(E/kBTN,S)]−1. The golden rule formula
with P (E) = δ(E), equivalent to a zero-impedance environ-
ment, has been successfully used to describe a wide range of
charge and energy transport phenomena in SINIS structures11

in the range E � �. Next, we will consider theoretically the
mechanisms that can cause excess quasiparticle processes in
the subgap range E < �.

(i) Even if charge transport is completely described by the
above model, quasiparticle thermalization in both the N and
S electrodes can be nontrivial at sub-kelvin temperatures due

012504-11098-0121/2012/85(1)/012504(4) ©2012 American Physical Society
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(a) (b)

µ

FIG. 1. (Color online) (a) Large scale electron micrograph of a
sample showing the electrical connections to the active region in the
middle. Portions of the ground plane, covered by an insulating AlOx

layer of 25 nm thickness, are also visible. (b) Active area of one of
the measured samples, consisting of two Al/AlOx /Cu/AlOx /Al SETs
that are coupled capacitively by a Cr wire located underneath the
insulating layer. Arrows illustrate the monitored in- and out-tunneling
events at the lower SET (green and red, respectively), and the
macroscopic electrometer current (yellow) in a configuration where
the upper SET is used as the electrometer. Shadow-evaporated leads
terminate at ohmic Au/Al contacts beginning 10 μm away from the
junctions (not shown).

to strongly suppressed electron-phonon coupling. In a later
section, we demonstrate that quasiparticle temperature TN

does not deviate significantly from the bath temperature T0 at
temperatures above 50 mK. On the other hand, we characterize
excess quasiparticle excitations in the superconductor by the
density of nonequilibrium quasiparticles,

nqp = 2D(EF )
∫ ∞

�

dEnS(E)fS(E), (2)

where D(EF ) denotes the density of states at the Fermi energy.
We use the literature value10 D(EF ) = 1.45× 1047 m−3J−1.
At base temperature, we have �/(kBTN ) ∼ 50, and hence the
induced quasiparticle tunneling in the gap assumes a bias-
independent rate,

�1e
nqp =

nqp

2e2RT D(EF )
. (3)

(ii) Experimentally observed finite subgap conductance in
NIS junctions is often modeled by introducing the lifetime
broadened Dynes density of states12 for the quasiparticle
excitation spectrum of the S electrode,

nS(E) =
∣∣∣∣Re

E/�+ iγ√
(E/�+ iγ )2 − 1

∣∣∣∣, (4)

where parameter γ effectively expresses the quasiparticle
density of states in the middle of the gap as a fraction of
the density in the normal state. Equation (4) may not be valid
far from the gap edges,13 and we stress that in the present work
the Dynes model is only used as a tool to assess the effect of
subgap states on quasiparticle tunneling.

(iii) The P (E) function appearing in Eq. (1) can be calcu-
lated from the autocorrelation function of phase fluctuations
over the junction.14 In previous work,15 it has been explicitly
demonstrated that photon assisted tunneling (PAT) due to

microwave irradiation (f � �/h = 50 GHz) originating from
outside the sample stage can be a dominant factor in the
dynamics of metallic single-electron devices. In the present
experiment, a known source of harmful phase fluctuations
is the high-frequency component of detector back-action. It
originates from the switching noise that results from loading
and unloading the detector SET island as the probe current
is transported through. In addition, blackbody radiation from
higher-temperature stages of the cryostat can reach the junction
due to insufficient filtering of the signal lines or leaks in the
radiation shields enclosing the sample. The approximation
P (E) = πSV (|E|/h̄)

RKE2 , valid for E < 0 and sufficiently weak SV ,16

gives a straightforward relation between the absorptive part of
the P (E) and the power spectrum SV (ω) of the voltage noise
over the junction. The above-described detector back-action
is an instance of random telegraph noise (RTN), for which
the relevant high-frequency part of the power spectrum can
be written as Sdet

V (ω) = ( ξ (ω)κe

2Cdet



)2 |Idet|
πeω2 , where κ is the fraction

of island charge coupled from the device under test (DUT) to
the detector, Cdet


 is the total capacitance of the detector SET
island, and ξ (ω) describes high-frequency attenuation of the
Cr wire.17

(iv) Certain higher-order processes could appear in the
experimental detector traces as single-electron processes. The
processes in question are Andreev tunneling of a Cooper pair
into the island followed by a rapid relaxation of a single
quasiparticle through one-electron tunneling, and Cooper
pair-electron cotunneling, which changes the charge on the
island by one electron. Theoretical predictions for the rates
can be made based on the results of Ref. 18 using the known
sample parameters and a value g/N = 10−5 for the nor-
malized conductance per channel.19,20 Predicted higher-order
rates are orders of magnitude smaller than the experimental
observations for bias voltages |Vds| < 100 μV.

III. EXPERIMENTAL METHODS

To determine experimentally the single-electron tunneling
rate for a fixed bias voltage Vds, the gate voltages were adjusted
so that the detector was at a charge sensitive operating point,
while the DUT was at charge degeneracy. At degeneracy,
owing to sufficient Ec of the DUT, only the two degenerate
charge states have a nonvanishing population. Hence the
expected electrometer signal is RTN, and the transition rate
is given by � = �1e(eVds/2)+ �1e(−eVds/2), where two
identical junctions have been assumed. The state transitions
were identified from the recorded electrometer traces by digital
low-pass filtering followed by a threshold detector. We used
the analytical model of Ref. 21 to compensate for missed
transitions due to finite detector bandwidth.

To test the coupling of microwave radiation to the junctions,
we repeated the experiments in several cryostats equipped
with different wiring and shielding solutions. Two independent
setups, henceforth denoted by PDR1 and PT, yield the
lowest tunneling rates, suggesting that the external microwave
radiation was suppressed to a negligible level. In both setups,
standard solutions were used for the microwave filtering of the
signal lines: 1 m of Thermocoax in PDR1 and a combination
of Thermocoax and powder filters in PT. However, similar to
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other recent works,22 the sample chip was protected against
radiation shining from the higher-temperature parts of the
cryostats by two nested rf-tight shields. The microwave shields
were attached to the sample stage body by either threads sealed
with indium (PDR1), or by screws (PT). For illustration, we
present data also from setup PDR2 that is similar to PDR1, but
in which the Thermocoax lines terminate to a connector that
was not sufficiently rf-tight.

IV. RESULTS AND CONCLUSIONS

Our main experimental data, the measured transition rates
as a function of the device bias Vds, are presented in Fig. 2.
A saturation temperature below which the observed rates
did not decrease was found around 80 mK. Using the value
RT = 1.1 M� (2.0 M� and 25.0 M� for the junctions of
the more asymmetric reference sample) obtained from device
I -V characteristic measured with an ordinary ammeter, we
determined the value � = 210 μV by fitting the 158 mK data
to the thermally activated (TA) rates assuming TN = TS = T0.
The large scale I -V characteristic is consistent with this value.
Data obtained at 131 mK agrees with TA predictions for
135 mK except in the range |Vds| < 25 μV, where the TA
rates become comparable to the saturation floor. In contrast,
the theoretical TA rates for 50 mK are below 0.01 Hz in the
Vds range that was accessible in the counting experiment.
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FIG. 2. (Color online) Bandwidth-corrected single-electron tun-
neling rates as a function of Vds at charge degeneracy measured
in different setups at base temperature: PT (18 mK, open upward
triangles), PDR1 (50 mK, open circles), and PDR2 (50 mK, open
squares). For PDR1, data from higher temperatures is also given:
131 mK (filled stars) and 158 mK (filled diamonds). All these
measurements were performed with the same sample employing
Au/Al contacts for quasiparticle trapping. The two thin solid lines
represent thermally activated rates calculated for the known sample
parameters at 158 mK and 135 mK. The dashed line is the theoretical
rate for γ = 1.6× 10−7 at TS = TN = 50 mK, and the horizontal
thick line represents the rate induced by nqp = 0.033 μm−3. Open
downward triangles: Base temperature data from a reference sample
without Al/Au contacts measured in PDR1. For ease of comparison,
tunneling rates from the reference sample have been scaled by the
ratio of junction conductances GL+GR
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FIG. 3. (Color online) (a) Measured width of the Coulomb
staircase steps as a function of bath temperature for different bias
voltages of the DUT. (b) Observed zero-bias tunneling rates at base
temperature for different detector currents, and a linear fit to the data.
The plotted current is the mean value of the detector trace from which
the transition rate was determined.

In order to aid the analysis of the base temperature
results, we present two auxiliary results ruling out plausible
explanations for the observed low-temperature saturation.
First, to demonstrate the thermalization of the normal-metal
island to 50 mK, we study the width of the transition between
two charge states as the gate charge of the DUT is swept
past a degeneracy point, following the procedure of Ref. 15.
The obtained step widths in PT cryostat are presented in
Fig. 3(a). For bias voltages far below the gap edge, anomalous
broadening of the step at low temperatures is a clear indication
of nonthermal processes. However, at the highest studied bias
voltage Vds = 350 μV, the linear TA regime extends down to
50 mK. Biasing of the DUT does not affect the temperature
of the normal-metal island as the electronic cooling power for
|Vds| � 350 μV is negligible.6

Secondly, we studied experimentally the influence of
detector back-action by measuring zero-bias rates at the base
temperature at different operating points of the detector. A
linear dependence of � on Idet can be observed in the data
from PDR1 cryostat presented in Fig. 3(b) as predicted by
the P (E) theory for the small detector currents employed
here (Idet � e�/h). By extrapolating to zero detector current,
we deduce that for the typical detector current of 30 pA in the
time traces on which Fig. 2 is based, the contribution from
detector back-action is 2-3 Hz, which is a significant but not a
dominating fraction.

The tunneling rate data from the reference sample without
Al/Au contacts shown in Fig. 2 displays a clear plateau
consistent with a quasiparticle density of nqp = 0.69 μm−3.
For this sample, the dominant quasiparticle relaxation channel
at base temperature is tunneling through the oxide barrier to the
normal-metal shadow. This allows us to infer a homogenous
injection rate of rqp = 3× 105 s−1 μm−3, presumably due to
external radiation. Applying the quasiparticle diffusion model
of Ref. 2 with a thermal energy distribution, the Al/Au contacts
are expected to bring about a 100-fold reduction in nqp at the
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junctions. From the observed rates in PDR1 and PT setups, we
can infer the previously stated upper bound nqp < 0.033 μm−3

for the sample with Al/Au contacts as illustrated in the figure,
i.e., a 20-fold reduction. Given the nominal thickness of 30 nm
for the aluminum film, we find that the expected number of
quasiparticles in the total volume of one of the aluminum
leads is less than 0.1, i.e., the superconductors are nearly free
of quasiparticles in a time-averaged sense.

However, based on the absence of a flat plateau in
experimental bias dependence, nonequilibrium quasiparticles
cannot account for a majority of the observed base temperature
tunneling events. The curve for Dynes model with γ =
1.6× 10−7 is a better match to the experimental results in the
range |Vds| < 100 μV, more so for the data from PT cryostat,
but the present amount of data does not allow one to make a
definite statement about the presence of subgap states at the
γ ∼ 10−7 level.

Finally, it should be noted that the base temperature tun-
neling rate at zero bias is four times higher in the imperfectly
shielded PDR2 setup compared to those achieved in PDR1
and PT setups. Elevated rates in PDR2 are caused by PAT due
to stray blackbody radiation. The results from PDR1 and PT
are very similar, and part of the discrepancy between them
can be attributed to uncertainty in the detector bandwidth
compensation (in the notation of Ref. 21, �det = 2000 Hz for

PDR1 and 125 Hz for PT) and different probing current. Also,
for the high base temperature tunneling rates in bias range
100–200 μV, we find PAT to be a plausible explanation. The
observed rates can be reproduced by assuming a microwave
noise spectrum with an exponential high-frequency cutoff
corresponding to an effective temperature of 175 mK, and
a spectral density of the order of 1 pV/

√
Hz at f = 50 GHz.

In conclusion, we have demonstrated that microwave
shielding and enhanced quasiparticle relaxation play a key
role in achieving the highest possible performance of super-
conducting aluminum based devices. The possibility to employ
these techniques in future realizations of quantum information
processing devices presents exciting prospects.
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We investigate the behavior of quasiparticles in a hybrid electron turnstile with the aim of

improving its performance as a metrological current source. The device is used to directly probe

the density of quasiparticles and monitor their relaxation into normal metal traps. We compare

different trap geometries and reach quasiparticle densities below 3 lm�3 for pumping frequencies

of 20 MHz. Our data show that quasiparticles are excited both by the device operation itself and by

the electromagnetic environment of the sample. Our observations can be modelled on a

quantitative level with a sequential tunneling model and a simple diffusion equation. VC 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4730407]

Applications of superconductors generally rely on the

fact that electronic excitations can be generated only if

energy higher or equal to the gap energy D is available.

Hence the number of the excitations is ideally exponentially

small at low temperatures and the properties specific for

superconductors appear. If the number of excitations, typi-

cally characterized by the density of quasiparticles,

increases, the superconducting features degrade. Such an

effect has been studied in several devices such as supercon-

ducting qubits,1–4 superconductor-insulator-normal metal-

insulator-superconductor (SINIS) microcoolers,5–8 and

kinetic inductance detectors.9,10 In this letter, we focus on

the effects of quasiparticles on a hybrid single-electron tran-

sistor. We use the Coulomb blockaded transistor for direct

and simple probing of the quasiparticle excitation density.

The device operates as a charge pump and is a promising

candidate for the realization of a metrological current

source.11 We show experimentally that the quasiparticle

excitations limit the current quantization. By optimizing the

quasiparticle relaxation, however, we estimate that it is pos-

sible to reach metrological accuracy.

In order to observe how quasiparticles influence the per-

formance of the turnstile, we designed samples (type A)

where the quasiparticle relaxation in normal metal traps was

purposefully delayed by extending the bare superconducting

lines that connect the junctions to the traps. The beginning of

this isolated superconducting line can be seen in the scanning

electron microscope image of the turnstile in Fig. 1(a), where

it connects to the normal metal island via oxide junctions

that appear as lighter areas. Its extension is visible in (c) all

the way through to the wide traps of overlapping supercon-

ductor and normal metal separated by an oxide layer. The

sample shown in (b) (type B) has wide leads with normal

metal traps close to the junctions to enable efficient quasipar-

ticle evacuation. The samples were fabricated with the stand-

ard electron-beam lithography and shadow mask

technique.12 We compare the behaviour of quasiparticles in

SINIS turnstile samples with different geometries. The

length of the isolated superconducting line (given by the

separation of the transistor junction from the trap) was varied

between l¼ 200 nm and l¼ 20 lm. Measurements were per-

formed in a dilution refrigerator at a base temperature of

approximately 60 mK.

Figure 1(d) shows the current-voltage characteristics of

the turnstile sample presented in (a) and (c). The black line

shows the current through the turnstile when the bias voltage

Vb is swept across the superconducting gap and the gate

potential Vg is varied between the gate open (ng ¼ 0:5) and
the gate closed (ng ¼ 0) states. Simulations based on sequen-

tial tunnelling are fitted to the data in order to extract the pa-

rameters of the superconducting gap D ¼ 216 leV, the

charging energy of the island Ec ¼ 0:74D, and the tunnelling

resistance of the junction RT ¼ 91 kX, specific to each sam-

ple (see Table I for parameters of all samples measured).

These simulations are shown in blue for the gate open and

red for the gate closed state. On this coarse level, the heating

FIG. 1. (a) Scanning electron micrograph of the l¼ 20lm type A SINIS20

turnstile showing the superconducting Al leads connected to the Cu metal

island via AlO2 barrier junctions and the gate electrode used to regulate the

potential of the island. (b) shows the type B SINISopen geometry sample

where the normal metal traps are within 200 nm of the junctions and the

leads open up straight from the junction. In (c), the full length l of the super-
conducting line of sample SINIS20 between the junction and the trap is visi-

ble as well as the quasiparticle traps formed by overlapping Cu and Al

shadows. A sketch of the basic measurement circuitry is depicted and (d)

shows the IV characteristics of the turnstile.
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of the superconducting leads does not make a significant

contribution and can be neglected. The overheating of

the normal metallic island (thickness 30 nm) is taken into

account by considering the electron-phonon coupling

with material parameter value of R ¼ 2� 109 WK�5m�3

which is consistent with values obtained in previous experi-

ments.13,14 In the subgap and pumping experiments, we have

the opposite situation: the island does not heat since the sig-

nals are much smaller but as we look at small differences,

the overheating of the superconductor starts to have an

effect.

We now investigate the current of the turnstile more

closely for bias voltages within the superconducting gap.

These measurements allow the direct probing of the quasi-

particle density. This is not possible with voltage biased NIS

junctions that probe the excitations more indirectly5–8,15 and

correspond to the gate open case in these experiments. Fig-

ure 2(a) shows the current as a function of Vb and Vg. With

no quasiparticles present, we would expect zero current for

low biases. However, we observe a current pattern periodic

in Vg within the gap with currents rising up to 10 fA. We

find that we can reproduce the measured current pattern with

a simulation shown in panel (c) using a high superconductor

temperature TS that gives rise to a quasiparticle population

above the gap. We compute the average current through the

left junction via I ¼ e
P

nðCLIðnÞ � CILðnÞÞPðn; tÞ, where

CLIðILÞ is sequential tunnelling rate to (from) the island

through the left junction and P(n,t) is the probability of the

system being in the charge state n of the island. The tempera-

tures used to fit these data are TS ¼ 205mK and the normal

metal temperature TN ¼ 92mK. The current-voltage charac-

teristics are surprising: At degeneracy (half integer ng) no

net current flows, whereas in Coulomb blockade (integer ng)
we obtain a finite current. The simulations give us an insight

into the on-going processes: at degeneracy the hot quasipar-

ticle excitations lying at high energies are able to tunnel in

both directions equally; hence, there is no net current. In

Coulomb blockade, the tunneling of a quasiparticle excita-

tion is followed by a fast relaxation to the lowest lying

charge state. The relaxation always happens in the forward

direction given by Vb and leads to a net current through the

device. These features are a strong indication of having qua-

siparticle excitations as the source of the sub-gap current in

the device.

We measured the same sample in two different sample

stages. Instead of having an enclosed stage with one metallic

cover as in the measurement displayed in Fig. 2(a), we also

used an indium sealed double hermetic metallic sample

stage. In the latter case, the radio frequency (RF) line had an

additional 20 cm thermocoax cable to enhance the sample

shielding. This was not included in the wiring of the single

cover stage. However, as the RF line is not electrically con-

nected to the turnstile, we do not expect this to influence the

direct heat conduction to the sample. The dc wiring of the

two setups was similar made of approximately 2m of ther-

mocoax cable. The two sample stages are thermalized to the

cryostat base temperature in an identical way and the sole

purpose of this sealing is to create an RF shield to the sam-

ple. The result is shown in panel (b). In this case, no sub-gap

current can be resolved. This behavior was fitted with

temperatures of TS � 167mK and TN ¼ 72mK, which we

present in Fig. 2(d). The inset in Fig. 2(d) displays

the quasiparticle density nqp inferred from the relation nqp ¼
2DðEFÞ

Ð1
0

nSðEÞe�bE dE ¼ ffiffiffiffiffiffi
2p

p
DðEFÞD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT = D

p
e�D=kBT

which is valid at low temperatures kBTS � D for three

different samples with varying distance to the trap and meas-

ured with the poorly filtered sample stage. We use

DðEFÞ ¼ 1:45� 1047m�3J�1 as the normal state density

of states at the Fermi energy.16 We observe a monotonous

increase in nqp with increasing distance of the trap from

the junction. We deduce that the presence of environmen-

tally excited quasiparticles is determined by both the trap

relaxation rate and the diffusion rate through the super-

conducting line.

Next, we turn to the dynamic case of the turnstile opera-

tion. In addition to environmental excitation, quasiparticles

are now injected to the superconducting leads once in every

pump cycle. The pumping frequency thus allows us to con-

trol the injected power and the number of quasiparticles. Fig-

ure 3 shows current plateaus measured on type A SINIS20

sample. Three bias voltages were chosen around the opti-

mum operation voltage of eVb ¼ D (Ref. 17) ranging from

0:8D=e to 1:6D=e. Two main effects were observed: a slight

overshoot for the highest bias voltage at the beginning of the

plateau and a spreading of the plateau value for different Vb.

FIG. 2. (a) and (b) show the normalized current through the oxide trap turn-

stile of geometry l¼ 20lm smoothed over 5 data points as a function of Vb

for gate voltages varying between ng ¼ 0 and ng ¼ 0:5. The charge stability
measurement plotted in (a) was performed in a sample stage with a single

cover; (b) shows measurements of the same sample in an indium sealed two-

cover stage. In (c) and (d), we plot the normalized current computed with a

simulation based on sequential tunneling for the situations of (a) and (b),

respectively. The inset of (d) shows the quasiparticle density nqp inferred

from the temperature reproducing the measured current inside the supercon-

ductor gap as a function of the length l of the isolated superconducting line.

TABLE I. Sample parameters.

Sample Ec=D RT (kX1) l (lm) w1 (nm) w2 ðlmÞ rT ððXm2Þ�1Þ

SINIS20 0.74 91 21 120 5 2.3 �109

SINIS5 0.7 81 5.4 120 5 2.7 �109

SINIS1 0.7 85 1.1 160 5 9.5 �108

SINISopen 1.2 170 – – – 1.0 �109
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Simulations including single electron and two-electron

Andreev processes were used to model the process. The peak

at the beginning of the plateau can be reproduced by allow-

ing for an Andreev current with a conduction channel area of

30 nm2. This value is taken from previous experiments with

similar samples.18,19 The spreading of the plateaus in Vb is

caused by quasiparticle excitations and follows the expected

behaviour with respect to variations in geometry and pump-

ing operation as described below.

The spread increases with the pumping frequency f from
DI ¼ 8 fA for 1 MHz (panel (a) of Fig. 3) to DI ¼ 15 fA for

10MHz (panel (b)). The injected power Pinj increases with f
and we model this increase in mean number of quasiparticles

in the superconductor by raising its temperature TS. The

bias-dependence of current on the plateau is not influenced

by Andreev currents and we can thus fit it simply by ascribing

it to the quasiparticle number. The black lines correspond to

simulations with quasiparticle densities of nqp ¼ 41:1 lm–3 at

1MHz and nqp ¼ 82:6 lm–3 at 10MHz.

To demonstrate that the quantization can be improved

by enhancing the quasiparticle relaxation, we measured the

pumping plateaus of a sample with broader leads, see Fig.

1(b). Panels (c) and (d) in Fig. 3 show the comparison of

poor and good quasiparticle trapping, respectively. The cur-

rent quantization improves by two orders of magnitude when

using leads with enhanced quasiparticle relaxation.

To model the relaxation of the quasiparticle excitations,

we consider their diffusion in a thin superconducting line.

The heat diffusion equation is

r � ð�jSrTÞ ¼ �ptrap; (1)

where the thermal conductivity of the superconductor is

jS ¼ 6
p2

D
kBT

� �2

e�D=kBTL0T=qn, with the Lorentz number L0

and the normal state resistivity qn.
20,21 The heat is removed

from the superconductor by a normal metallic trap to which

it is tunnel coupled. The trap removes the heat ptrap
¼ 2rT

e2d

Ð1
0

EnSðEÞðfNðEÞ � fSðEÞÞ dE per unit area, where rT
is the conductance of the trap per unit area and d¼ 22 nm

is the thickness of the superconducting film. The power

Pinj injected into the line during turnstile operation sets a

boundary condition to the beginning of the line:

Pinj ¼ A � ð�jSrTÞ, where A¼wd is the cross-sectional

area of the lead with width w. We rewrite Eq. (1) in

terms of quasiparticle density nqp by considering only the

strong exponential dependencies on T to obtain

r2nqp ¼ k�2ðnqp � nqp0Þ; (2)

where k2 ¼
ffiffi
2

p
dffiffi

p
p

qnrT
kBT
D

� �1=2
and nqp0 is the quasiparticle den-

sity of the superconductor when it is fully thermalised to the

normal metal. Next, we solve Eq. (2) for three different sec-

tions of the bias line for type A samples. In the first part, we

treat the bare aluminium line of length l and constant width

w1 with no quasiparticle trapping (ptrap ¼ 0). The next part

deals with the widening of the lead from w1 to w2, where we

also neglect quasiparticle trapping since its contribution in

this section of the lead is small for our samples. Then, in the

last part, the lead continues with a constant cross section of w2

and is in contact with the quasiparticle trap: ptrap 6¼ 0. As a

result, we obtain the quasiparticle density at the junction to be

nqp ¼
ffiffiffi
p

p
e2DðEFÞqnffiffiffiffiffiffiffiffiffiffiffiffiffi
2DkBT

p Pinj

wd
lþ w1log

w1

w2

� �
þ k

w1

w2

� �
: (3)

The first term is the diffusion in the bare aluminium wire, the

second term is the spreading to the wider line, and the last

term arises from the relaxation to the trap. Similarly, we can

solve the diffusion for the type B sample with opening bias

lines. Here, we assume that the line starts at radius r0 and the

injected power is distributed evenly to all directions. We

take r0 ¼ 70 nm so that the area the power is injected into,
p
2
r0d ¼ ð50 nmÞ2, matches the junction area of the sample.

The quasiparticle density at the junction is then

nqp ¼
ffiffiffi
p

p
e2DðEFÞqnffiffiffiffiffiffiffiffiffiffiffiffiffi
2DkBT

p Pinj

hr0d
K0ðr0=kÞ
K1ðr0=kÞ ; (4)

where Kn is the modified Bessel function of second kind and

h the opening angle of the line.

We now compare the quasiparticle relaxation in differ-

ent sample geometries. From fits to measurements similar to

those shown in Fig. 3, we extract nqp as a function of f. These
values are displayed as dots in Fig. 4 for the SINIS20 (blue),

the SINIS5 (green), and the SINISopen samples (red). Using

the diffusion model described above, we calculate nqp as a

function of f corresponding to an injection power on the pla-

teau given by Pinj ¼ efD (solid lines). The injected heat cal-

culated from the simulations deviated less than 10% from

this power even at the highest frequencies measured. We

used qn ¼ 31 nXm as the normal state resistivity for all sam-

ples. Individual sample parameters used in the simulations

are listed in Table I. The measured densities clearly show a

linear behavior with increasing f as predicted by the model

(see Eqs. (3) and (4)). As indicated by the slopes for increas-

ing length l of the isolated line, the further the quasiparticle

FIG. 3. Current plateaus under pumping. Current through the turnstile as a

function of the gate modulation amplitude measured on the type A SINIS20

sample at (a) 1MHz, (b) 10MHz, and (c) 20MHz sinusoidal Vg modulation

frequency and on the type B sample SINISopen in (d) at 20MHz. The pump

was operated at bias voltage values of eVb ¼ 0:8D (blue dots), eVb ¼ 1:2D
(green dots), and eVb ¼ 1:6D (red dots). Fits from simulations including

two-electron Andreev processes are displayed as solid black lines; dashed

black lines are simulations only including single electron processes.
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trap lies from the oxide junction and the thinner the connect-

ing line is, the slower the relaxation process is and the more

the superconductor is heated. For the samples SINIS20 and

SINIS5, a finite quasiparticle density is observed even in the

absence of injected power. This density is of the same order

of magnitude as the leakage currents shown in Fig. 2 and it

points towards interactions with electromagnetic radiation

from the environment. The SINISopen sample clearly shows

the most efficient quasiparticle relaxation with only a few

quasiparticles per lm�3 at 50MHz driving frequency.

We have investigated the process of quasiparticle relax-

ation in hybrid SINIS turnstiles for various geometries. Both

direct current and gate-driven pumping measurements can be

well understood and simulated using models based on first

and second order tunnelling processes. We were also able to

model the relaxation of the excitations by a simple diffusion

model. We find that the main sources for quasiparticles in

the single electron transistor are those injected above the

superconducting band gap during turnstile operation and

those excited by radiation from a hot environment. In the

best structure studied in this letter, we reached an accuracy

dI=I of the order of 1 � 10�4. We estimate that accuracy

better than 10�6 at 50MHz would be obtained with the fol-

lowing improvements: The aluminum should be made an

order of magnitude thicker and the trap ten times more

transparent. Alternatively, the bias leads can be extended to

the third dimension. The resistance of the junctions should

be increased by a factor of four and charging energy to

Ec > 2D. Finally, the density of environmentally activated

quasiparticles needs to be reduced to a level nqp � 0:1 lm�3

which has been demonstrated experimentally in a recent

work.22 With these realistic modifications, we expect to

reach metrological accuracy in turnstile operation.
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3A. D. Córcoles, J. M. Chow, J. M. Gambetta, C. Rigetti, J. R. Rozen, G. A.

Keefe, M. B. Rothwell, M. B. Ketchen, and M. Steffen, Appl. Phys. Lett.

99, 181906 (2011).
4P. J. de Visser, J. J. A. Baselmans, P. Diener, S. J. C. Yates, A. Endo, and

T. M. Klapwijk, Phys. Rev. Lett. 106, 167004 (2011).
5J. P. Pekola, D. V. Anghel, T. I. Suppula, J. K. Suoknuuti, A. J. Manninen,

and M. Manninen, Appl. Phys. Lett. 76, 2782 (2000).
6S. Rajauria, H. Courtois, and B. Pannetier, Phys. Rev. B 80, 214521

(2009).
7G. C. O’Neil, P. J. Lowell, J. M. Underwood and J. N. Ullom, e-print

arXiv:1109.1273v1.
8K. Y. Arutyunov, H.-P. Auraneva, and A. S. Vasenko, Phys. Rev. B 83,
104509 (2011).

9P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas,

Nature 425, 817 (2003).
10R. Barends, J. J. A. Baselmans, S. J. C. Yates, J. R. Gao, J. N. Hovenier,

and T. M. Klapwijk, Phys. Rev. Lett. 100, 257002 (2008).
11J. P. Pekola, J. J. Vartiainen, M. Möttönen, O.-P. Saira, M. Meschke, and
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FIG. 4. Quasiparticle density as a function of the driving gate voltage f. Fits
to measurements including first and second order tunnelling processes are

displayed as dots and quasiparticle densities derived from the diffusion

model are displayed as solid lines. We compare two type A samples with

delayed relaxation, SINIS20 (blue) and SINIS5 (green) and one type B sam-

ple SINISopen (red). Diagrams of the sample geometries are displayed in

the upper part of the figure, dark colours representing quasiparticle traps,

lighter areas the isolated superconducting lines, and the small black bulks

the normal metal islands. Below, a diagram shows the two pathways to qua-

siparticle excitation, during pumping via the normal metal island and

through interactions with the electromagnetic environment.
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The control of electrons at the level of the elementary charge e was demonstrated experimentally

already in the 1980s. Ever since, the production of an electrical current ef, or its integer multiple, at a

drive frequency f has been a focus of research for metrological purposes. This review discusses the

generic physical phenomena and technical constraints that influence single-electron charge transport

and presents a broad variety of proposed realizations. Some of them have already proven experimen-

tally to nearly fulfill the demanding needs, in terms of transfer errors and transfer rate, of quantum

metrology of electrical quantities, whereas some others are currently ‘‘just’’ wild ideas, still often

potentially competitive if technical constraints can be lifted. The important issues of readout of single-

electron events and potential error correction schemes based on them are also discussed. Finally, an

account is given of the status of single-electron current sources in the bigger framework of electric

quantum standards and of the future international SI system of units, and applications and uses of

single-electron devices outside the metrological context are briefly discussed.
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I. INTRODUCTION

The future definition of the ampere is foreseen to be based
on manipulating the elementary charge e. Its most direct
realization would be the transport of a known number of
electrons. Over the past quarter of a century, we have wit-
nessed progress toward ever better control of individual
electrons. Since single-electron tunneling is by now a well-
established subject, several reviews of its different aspects
exist in the literature (Averin and Likharev, 1991; Averin and
Nazarov, 1992a; Sohn, Kouwenhoven, and Schön, 1997; van
der Wiel et al., 2002; Durrani, 2009).

Several milestones have been achieved in the progress
toward a single-electron current source since the initial pro-
posals of the single-charge oscillations (Averin, Zorin, and
Likharev, 1985) and of the metrological triangle in the mid-
1980s (Likharev and Zorin, 1985). The single-electron am-
pere is based on transporting an electron with charge e, or
rather a known numberN of electrons Ne in each operation of
a control parameter that is cyclically repeated at frequency f,
so that the output dc current is ideally equal to Nef. The
needs of precision metrology generally state that this opera-
tion has to be performed at a relative error level not larger

than 10�8 and at the same time the current level needs to be

several hundreds of picoamperes (Feltin and Piquemal,
2009). Just a few years after the initial theoretical proposal

of controlled single-electron tunneling (Averin and Likharev,
1986), the first metallic (Geerligs et al., 1990; Pothier, 1991;

Pothier et al., 1992) and semiconducting (Kouwenhoven
et al., 1991a) single-electron turnstiles and pumps demon-

strated currents I ¼ Nef with an error of a few percent, still
orders of magnitude away from what is needed. As often in

precision metrology, the pursuit of higher accuracy has been a

pacemaker for understanding new physics, since the errors
that need to be suppressed are often a result of interesting

physical phenomena. For instance, quantum multielectron
processes and nonequilibrium phenomena have been inten-

sively studied in order to improve the performance of single-
electron sources. In five years, the accuracy of single-electron

pumps was remarkably improved by another 5 to 6 orders of
magnitude (Keller et al., 1996) by effectively suppressing the

so-called cotunneling current, but at the expense of signifi-

cantly increased complexity of the device and reduced overall
magnitude of the output current (a few picoamperes) of the

pump. Alternative ideas were to be found. At the same time,
single-electron conveyors in semiconducting channels using

surface-acoustic wave (SAW) driving yielded promising
results, in particular, in terms of significantly increased

current level (Shilton, Talyanskii et al., 1996). Yet likely
due to overheating effects in the channel, it may turn out to

be difficult to suppress thermal errors to the desired level

using this technique.
Interestingly there was a decade of reduced progress in the

field, until in the 2000s several new proposals and imple-

mentations were put forward. The most promising of these
devices are undeniably the sources based on a quantum dot

(QD) (Blumenthal et al., 2007), with a single-parameter
ac control (Kaestner, Kashcheyevs, Hein et al., 2008),

and a superconductor-insulator–normal metal–insulator-
superconductor (SINIS) turnstile (Pekola et al., 2008), which

is a basic single-electron transistor with superconducting
leads and normal-metal island. These simple devices promise

high accuracy and a possibility to run many of them in

parallel (Maisi et al., 2009). At around the same time, other
promising ideas came out, for example, a quantum-phase-slip

(QPS) based superconducting current standard (Mooij and
Nazarov, 2006). Quantum phase slips provide the mechanism

for the existence of the Coulomb-blockade (CB) effects in
superconducting wires without tunnel barriers (Astafiev et al.,

2012) and could potentially lead to current standards produc-
ing larger currents. Currently we are definitely witnessing a

period of intense activity in the field in a well-founded

atmosphere of optimism.

II. PRINCIPLES OF MANIPULATING SINGLE

ELECTRONS

A. Charge quantization on mesoscopic conductors

We begin by summarizing the essential concepts of

single-electron device physics, with the emphasis on the topics

needed for the subsequent discussion of the quantized current
sources. We focus mostly on metallic devices since those have
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an elaborated theory based on first principles. A brief discus-
sion of how and to what extent the main concepts can be
adapted to semiconductor structures is given in Sec. II.E.

As is well known from the elementary treatments of the
Bohr model in quantum mechanics, the electrostatic energy
of an electron in the hydrogen atom is roughly equal to the
kinetic energy of its confinement in the atomic orbitals.
The fact that the characteristic energy separation of levels
in the confinement energy spectrum decreases much more
rapidly than the electrostatic energy with the size of the
confining region ensures then that in mesoscopic conductors
which are large on the atomic scale, the electrostatic energy
of individual electrons can be large even in the regime where
the separation of the individual energy levels associated with
quantum confinement of electrons is negligible. As a charac-
teristic estimate, the electrostatic energy of charge e of one
electron on a micrometer-size conductor is on the order of a
milli-electron-volt, or 10 K in temperature units, and is many
orders of magnitude larger than the energy separation �E of
electron confinement levels in the same conductor, which
should be about 1 neV, well below all practical temperatures.
As a result, at low but easily reachable temperatures in the
kelvin and subkelvin range, the properties of mesoscopic
conducting islands are dominated by the electrostatic energy
of individual electrons, while small �E provides one of the
conditions that makes it possible to use macroscopic capaci-
tances to quantitatively describe electrostatics of these con-
ductors even in this ‘‘single-electron’’ regime. The charging
energy U of a system of such conductors can be expressed
then as usual in terms of the numbers nj of excess electrons

charging each conductor and the capacitance matrix C
[see, e.g., Landau and Lifshitz (1980a)]:

UðfnjgÞ ¼ e2

2

X

i;j

½C�1�i;jninj; (1)

where the sum runs over all conductors in the structure.
The electrostatic energy (1) creates energy gaps separating

different charge configurations fnjg which provide the possi-

bility to distinguish and manipulate these charge configura-
tions. Historically, one of the first observations of distinct
individual electron charges occurred in Millikan’s experi-
ments on motion of charged micrometer-scale droplets of
oil, which produced the evidence that ‘‘all electrical charges,
however produced, are exact multiples of one definite, ele-
mentary, electrical charge’’ (Millikan, 1911). In those experi-
ments, the oil droplets were, however, charged randomly by an
uncontrollable process of absorption of ions which exist nor-
mally in air. By contrast, in mesoscopic conductors, the charge
states nj can be changed in a controllable way. Besides the

charging energy (1), such a process of controlled manipulation
of individual charges in mesoscopic conductors requires two
additional elements. First are the tunnel junctions formed
between the nearest-neighbor electrodes of the structurewhich
enable the electron transfer between these electrodes, and the
second is the possibility to control the electrostatic energy
gaps by continuous variation of charges on the junctions
(Averin and Likharev, 1986). The simplest way of varying
the charges on the tunnel junctions continuously is by placing
the electrodes in external electrical fields (Büttiker, 1987)
that create continuously varying potential differences between

the electrodes of the structure. Externally controlled gate
voltages produced in this way can be used then to transfer
individual electrons in the system of mesoscopic conductors.

A simple model of the sources of continuously varying
external voltages is obtained by taking some of the electrodes
of the structure described by the energy (1) to have very large
self-capacitance and carry large charge, so that the tunneling
of a few electrons does not affect the potentials created by
them. For instance, the most basic single-electron structure,
the single-electron box (SEB) (Lafarge et al., 1991), can be
simplified to two electrodes, one main island carrying the
charge en, and the electrode with the charge eðN � nÞ creat-
ing the gate voltage Vg (see Fig. 1). Quantitatively, the

structure in Fig. 1 is characterized by the capacitance matrix

C ¼ C0 �Cm

�Cm C�

 !

; (2)

where Cm > 0. In the limit N, C0 ! 1, with eN=C0 ¼ Vg,

C0 and C� have the meaning of the total capacitances of the
gate electrode and the island, respectively, and the energy (1)
of the charges shown in Fig. 1 reduces for the capacitance
matrix (2) to

U ¼ U0 þ ECn
2 � e2nng=C�: (3)

In this equation, U0 is the n-independent energy of creating
the source of the gate voltage, U0 ¼ e2N2=2C0 in this case,
EC � e2=2C� is the charging energy of one electron on the
main electrode of the box, and eng � CgVg is the charge

induced on this electrode by the gate voltage Vg through the

gate capacitance Cg ¼ C� � Cm. As one can see from

Eq. (3), the gate voltage Vg indeed controls the energy gaps

separating the different charge states n of the main island and
therefore makes it possible to manipulate individual electron
transitions changing the island charge en.

Figure 2(a) shows a scanning electron micrograph of a
realistic box structure, in which, in contrast to the schematic
diagram of Fig. 1, one pays attention to satisfying several
quantitative requirements on the box parameters. First, the
capacitance C� needs to be sufficiently small to have signifi-
cant charging energy EC, while the gate capacitance Cg

Electron
tunneling

FIG. 1 (color online). Schematic diagram of the basic circuit

for manipulating individual electrons, the single-electron box

(SEB): a conducting island carrying electric charge en, and

an electrostatically coupled external electrode with the charge

eðN � nÞ producing the gate voltage Vg.
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remains not very small in comparison to C�, to be able to

manipulate the charge en more easily and also to measure it.

To satisfy this requirement, the box in Fig. 2(a) is composed

of two relatively large similar-size islands with very small

overlap between them. Its equivalent electric circuit is shown

in Fig. 2(b). The charging energy of the box is described by

the same expression (3), with en being the charge transferred

from the left to the right island, and C� the total mutual

capacitance between the two islands, C� ¼ Cþ Cg, where

C�1
g ¼ C�1

L þ C�1
R . Connecting the box islands to the source

of gate voltage Vg through the capacitances CL;R on both

sides serves the additional purpose of reducing coupling to

parasitic voltage fluctuations in the electrodes of the struc-

ture, responsible for environment-induced tunneling dis-

cussed below. Generally, a practical geometric structure of

the box islands is determined by the fact that the main

contribution to the capacitance C� comes from the tunnel

junction formed in the area where the ‘‘arms’’ of the islands

[see Fig. 2(a)] overlap. The size of this area should be

minimized to increase EC. At the same time, the islands

themselves can be made much larger than the junctions, to

increase the gate capacitance Cg without strongly affecting

the total capacitance C�. Besides increasing the coupling

to the gate voltage created by the two outside horizontal

electrodes in the box structure shown in Fig. 2(a), a larger

size of the box islands also increases the coupling to the

single-electron transistor (discussed in more detail below)
which measures the charge of the box and can be seen in
the upper right corner of Fig. 2(a).

The main qualitative property of the SEB is that it allows
one to manipulate individual electrons through variation of
the gate voltage Vg. Indeed, at low temperatures T � EC=kB,

the box occupies the ground state of the charging energy (3).
For a given gate-voltage-induced charge ng, the minimum is

achieved when the number n of extra electrons on the island
equals ng rounded to the nearest integer. This dependence of

n on ng means that one electron is added or removed from the

box island, changing n by �1, whenever ng passes through a

degeneracy point, i.e., ng ¼ 1=2 modulo an integer, at which

point the charging energies (3) of the two charge states that
differ by one electron transition, �n ¼ 1, are equal. If the gate
voltage increases monotonically, the dependence nðngÞ has
the shape of the ‘‘Coulomb staircase’’ (Lafarge et al., 1991),
with each step of the staircase corresponding to the addition
of one electron with gate-voltage increase by �ng ¼ 1. If the

gate voltage oscillates in time around the degeneracy point
ng ¼ 1=2, as in Fig. 2(c), with an appropriate amplitude

(�ng � 1), it induces back-and-forth electron transitions be-

tween the two charge states separated by one electron charge,
which can be seen in Fig. 2(c) as the two-level telegraph
signal of the detector measuring the box charge. Thus,
Fig. 2(c) gives a practical example of manipulation of an
individual electron transition in the SEB.

One of the most interesting dynamic manifestations of
the manipulation of individual electrons in a system of
mesoscopic conductors is the possibility to arrange the
system dynamics in such a way that electrons are transferred
through it one by one, in a correlated fashion. This can be
achieved, for instance, if the gate voltage Vg of the SEB

grows in time at a constant rate such that effectively a
constant dc ‘‘displacement’’ current I ¼ e _ng is injected in

the box junction. The same dynamic would be obtained if real
dc current I flows into a mesoscopic tunnel junction. In this
case, correlated successive transfer of electrons one by one
through the junction gives rise to ‘‘single-electron tunneling’’
oscillations (Averin and Likharev, 1986; Bylander, Duty,
and Delsing, 2005) of voltage on the junction, @U=@ðenÞ¼
eðn�ngÞ=C�, with frequency f related to the current by the

fundamental equation

I ¼ ef: (4)

More complex structures than a SEB or an individual tunnel
junction, such as single-electron turnstile (Geerligs et al.,
1990) and pump (Pothier et al., 1992; Keller et al., 1996)
discussed below, make it possible to ‘‘invert’’ this relation and
transfer one electron per period of the applied gate-voltage
oscillation with frequency f. The above discussion of the
manipulation of individual electrons in the SEB shows that
the charge states n, while controlled by the gate voltage Vg,

remain the same in a range of variation of Vg. Physically, such

‘‘quantization of charge’’ results from the fact that an isolated
conductor can contain only an integer total number of
electrons, with the charging energy producing energy gaps
separating different electron number states. Charge quantiza-
tion enables one to make the accuracy of manipulation of

(a)
(b)

(c)

FIG. 2 (color online). Practical SEB. (a) Scanning electron micro-

graph of a realistic box structure, (b) its equivalent electric circuit,

and (c) single-electron transitions in the box illustrating the ‘‘charge

quantization’’: a time-dependent gate voltage VgðtÞ (sinusoidal

curve) of an appropriate amplitude drives individual electron tran-

sitions changing the box state between the two discrete charge

configurations, the electron on the left or on the right island. These

two charge states are detected via the detector shown in the upper

right corner of (a), whose two-level output current is synchronous

with the oscillating VgðtÞ. Adapted from Saira et al., 2010 and Saira,

Yoon et al., 2012.
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individual electron charges in structures such as SEBs
very high, in principle approaching the metrological level.
Potentially metrological accuracy also extends to the trans-
port in turnstiles and pumps, making the current sources
based on single-electron tunneling promising candidates for
creation of the quantum standard of electrical current.

B. Sequential single-electron tunneling

One of the key elements in manipulating individual elec-
trons in systems of mesoscopic conductors is a tunnel junc-
tion, which provides the means to transfer electrons along the
system, thus creating the dc current I through it. A tunnel
junction (Giaever, 1960) is a system of two conductors
separated by a layer of insulator that is sufficiently thin to
allow electrons to tunnel between the conductors (see Fig. 3).
For normal conductors, the current through the junction at
small applied voltages depends linearly on the voltage and is
characterized by the tunnel conductance GT � 1=RT . In
single-electron devices, GT should satisfy two contrasting
requirements. To increase the current I driven through the
structure, e.g., to increase the allowed range of frequencies f
for which Eq. (4) is satisfied accurately, one should maximize
GT . On the other hand, charge quantization on the electrodes
of the structure requires that they are well isolated from each
other, i.e., GT should be small. The latter condition can be
formulated more quantitatively requiring that the character-
istic charging energy EC of the localized charge states is well
defined despite the finite lifetime of these states �GT=C,
where C is the typical junction capacitance in the structure
EC � ℏGT=C. This condition can be expressed as GT �
1=RK, where RK � h=e2 ’ 25:8 k� is the characteristic
‘‘quantum’’ resistance. When this condition is satisfied, the
localized charge states provide an appropriate starting point
for the description of a single-electron structure, while elec-
tron tunneling can be treated as a perturbation. In what
follows, we mostly concentrate on such a regime of ‘‘strong
Coulomb blockade’’ which is necessary for implementation
of precise transport of individual electrons as required for
quantized current sources.

The majority of practical metallic structures employ tunnel
junctions based on barriers formed by either thermal or

plasma oxidation of aluminum. The main reason for this
are the superior properties of the aluminum oxide layer, in
terms of its uniformity and electrical and noise properties.
A typical barrier structure is shown in Fig. 3 that includes a
high-resolution transmission-electron-microscopy (TEM)
image of a cross section of an aluminum-based junction
with amorphous AlxOy tunnel barrier. From the point of

view of the Landauer-Büttiker formula for electric conduc-
tance of a mesoscopic conductor, the junction tunnel con-
ductance can be expressed as GT ¼ ð2=RKÞ

P

jTj, where the

sum is taken over spin-degenerate electron transport channels
propagating across the junction, and Tj is the quantum me-

chanical transmission coefficient of the insulator barrier for
electrons in the jth channel. The condition of the strong
Coulomb blockade GT � 1=RK implies that all individual
transmission coefficients are small, Tj � 1. Although the

transmission coefficients Tj are sensitive to the atomic-scale

structure of the junction, the fact that the aluminum oxide

layer is relatively uniform on an intermediate space scale
larger than the individual atoms (Greibe et al., 2011) allows
transport properties to be estimated semiquantitatively from
the ‘‘bulk’’ properties of the barrier.

Since the tunnel current depends exponentially on the
barrier parameters, the measured electron tunneling rates in

high-resistance junctions and over the large voltage range
allow one to estimate parameters of the aluminum oxide
barrier [see, e.g., Tan et al. (2008)]: they yield a barrier height
U ’ 2 eV and effective electron mass meff ’ 0:5me in terms
of the free electron mass me. While the dimensions of the
typical tunnel junctions need to be small [on the order of
�100 nm, also cf. Fig. 2(a)] in order to make the junction
capacitance sufficiently low, they are still quite large on the
atomic scale. In this regime, discreteness of the spectrum of
the transverse modes j is negligible, and the tunnel conduc-
tance GT is proportional to the junction area A. For the value
of specific junction resistance A=GT � 10 k��m2 typical
for the tunnel junctions, estimates using the barrier parame-
ters and the simplest assumption of ballistic transport in the
junction give for the barrier transparency T � 10�6 corre-
sponding to barrier thickness close to 2 nm (cf. Fig. 3).
A barrier with this thickness effectively transmits only the
electrons impinging on it orthogonally. This ‘‘focusing’’
effect means that the tunnel conductance can be expressed
in terms of one maximum value of the transmission coeffi-
cient GT ¼ N T=RK, where the effective number N of the
transport channels in the junction is not determined directly
by the density of states (DOS) in the electrodes, but depends
also on the characteristic ‘‘traversal energy’’ �0 of the barrier,
which gives the energy scale on which the barrier transpar-
ency changes with energy: N ’ Am�0=2�ℏ2. For the
parameters of the aluminum oxide barrier mentioned, this
gives for the area per transport channel A=N ’ 1 nm2. As

will be discussed in Sec. II.C, some of the higher-order
transitions in the single-electron structures, e.g., Andreev
reflection (AR), depend separately on the barrier transmission
coefficients Tj and on the number N of the transport modes.

In contrast to this, the lowest-order electron tunneling
depends only on the total junction conductance GT .

The most straightforward approach to the description
of tunneling in the single-electron structures in the

AlOx

top Al

bottom Al

FIG. 3. High-resolution TEM image of a cross section of an

aluminum oxide tunnel junction. From Prunnila et al., 2010.
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strong Coulomb-blockade regime is based on the tunnel
Hamiltonian method (Cohen, Falicov, and Phillips, 1962),
in which the junction is modeled with the following
Hamiltonian:

H¼H1þH2þHT; HT¼
X

k;p

½Tkpc
y
k cpþH:c:�: (5)

Here H1;2 are the Hamiltonians of the junction electrodes, HT

is responsible for tunneling, with ck and cp denoting the

electron destruction operators in the two electrodes, respec-
tively, and Tkp are the tunneling amplitudes. In a typical

metallic mesoscopic conductor, when discreteness �E of
the single-particle electron states is negligible, these states
form a continuum with some density of states which in a
normal metal, is constant on a small energy scale of interest
for single-electron transport. In this case, one can treat HT

using Fermi’s golden rule to obtain the rate �ðEÞ of a tunnel-
ing process that changes the charge configuration fnjg on the

system of mesoscopic conductors by transferring one electron
through a tunnel junction between the two conductors. For the
process that changes the electrostatic energy (1) by an amount
E ¼ Uðfnj;ingÞ � Uðfnj;fingÞ, where fnj;ing is the initial and

fnj;fing is the final charge configuration, we obtain

�ðEÞ¼GT

e2

Z

d�fð�Þ½1�fð�þEÞ��1ð�Þ�2ð�þEÞ: (6)

In this expression, fð�Þ is the equilibrium Fermi distribution
function, and �jð�Þ is the density of the single-particle

states in the jth electrode of the junction, j ¼ 1, 2, in units
of the normal density of states �j, which together with

the average of the squares of the tunneling amplitudes deter-
mine the tunnel conductance GT ¼ 4�e2hjTkpj2i�1�2=ℏ.
Equation (6) assumes that the energy E� EC is much smaller
than all internal energies of the junction in the normal state, in
particular, the traversal energy �0, a condition very well
satisfied for practical metallic structures in which EC �
1 meV, while �0 � 1 eV. Using the standard properties
of the Fermi distribution functions, one can see directly that
the rate (6) of tunneling between the two equilibrium elec-
trodes satisfies the necessary detailed balance condition
�1!2ð�EÞ ¼ e�E=kBT�2!1ðEÞ. If, in addition, the densities
of states are symmetric with respect to the chemical potentials
of the electrodes, the tunneling rate is also symmetric,
�1!2ðEÞ ¼ �2!1ðEÞ, and the detailed balance condition
simplifies to �ð�EÞ ¼ e�E=kBT�ðEÞ. The detailed balance
condition makes it possible to express the tunneling rate (6)
in terms of the current-voltage characteristic IðVÞ of the
junction at fixed bias voltage V:

�ðEÞ ¼ IðE=eÞ=eð1� e�E=kBTÞ: (7)

For normal metal–insulator–normal metal (NIN) junctions,
when both electrodes are in the normal (N) states, �jð�Þ � 1,

Eq. (6) gives, in agreement with Eq. (7), for the tunneling rate

�ðEÞ ¼ GT

e2
E

1� e�E=kBT
: (8)

Tunneling of individual electrons with the rate (8) is an irre-
versible dissipative process which converts the electrostatic

energy change E into internal energy of the electron
gas inside the junction electrodes. In accordance with this
understanding, at small temperatures T, the rate (8) vanishes
as eE=kBT for energetically unfavorable transitions with E < 0,
when the energy for the transition is taken from the
thermal fluctuations of the electron reservoirs. In the regime
of allowed transitions E� EC > 0, the magnitude of the typi-
cal transition rate ��GT=C for the realistic values of the
parametersGT � 1 M�, C� 10�16–10�15 F is quite high, in
the gigahertz range.

In superconductor-insulator–normal metal (SIN) junctions,
when one of the junction electrodes is a superconductor (S),
the BCS density of states �1ð�Þ ¼ j�j=ð�2 � �2Þ1=2 for
j�j> �, and vanishing otherwise, implies that at tempera-
tures well below the superconducting energy gap �, the
tunneling rate (6) is strongly suppressed and can be reduced
into the kilohertz and even hertz range. Indeed, evaluating
the integral in Eq. (6) for the SIN junction assuming kBT,
E � �, one gets

�ðEÞ ¼ GT

e2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2��kBT
p

e��=kBT
sinhðE=kBTÞ
1� e�E=kBT

: (9)

Figure 4 shows the tunneling rate (9) measured in an
SIN junction in the configuration of a ‘‘hybrid’’ SEB [see
Fig. 2(a)], in which one of the islands of the box is a super-
conductor (aluminum), the other one being normal metal
(copper). The electrostatic energy change E in the case of
the box follows from Eq. (3) as E¼Uðn¼0Þ�Uðn¼1Þ¼
2ECðng�1=2Þ, i.e., is proportional to the deviation of the

gate voltage of the box from the degeneracy point ng ¼ 1=2.

The measurements can be described well by Eq. (9) with
reasonable values of parameters including the superconduct-
ing energy gap � of aluminum.

Since the tunneling transitions described quantitatively by
the rates (6)–(9) are inherently random stochastic processes,
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FIG. 4 (color online). (a) Measured thermally activated rates of

forward �ðEÞ and backward �ð�EÞ tunneling in a ‘‘hybrid’’ SIN

single-electron box at different temperatures as a function of the

gate-voltage offset from the degeneracy point related to the energy

change E in tunneling as E ¼ 2ECðng � 1=2Þ. Solid lines are the

theory prediction according to Eq. (9) with fitted parameters EC ¼
157 �eV, � ¼ 218 �eV, and 1=GT ¼ 100 M�. (b) The tunneling

rate at degeneracy E ¼ 0 as a function of temperature (squares), and

best fit (solid line) to Eq. (9). Adapted from Saira, Yoon et al., 2012.
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dynamics of the structures in the strong Coulomb-blockade
regime and electron transport properties including the dc
current I, current noise, or even full statistical distribution
of the transferred charge, can be obtained from the time
evolution of the probabilities pðfnjgÞ of various charge con-

figurations fnjg governed by the standard rate equation for the
balance of the probability fluxes. The most basic single-
electron system that allows for the flow of dc current through
it and gives an example of such an equation is the single-
electron transistor (SET) (Averin and Likharev, 1986; Fulton
and Dolan, 1987; Likharev, 1987). The transistor can be
viewed as a generalization of the SEB and consists of a
mesoscopic conducting island connected by two tunnel junc-
tions to the bulk electrodes that provide the transport voltage
V across it. The island is also coupled capacitively to the
source of the gate voltage Vg which controls the flow of

current I through the transistor between the two electrodes.
An equivalent circuit of the transistor is shown in Fig. 5, and
an example of its geometric structure can be seen in the upper
right corner of Fig. 2(a), where it is used to measure the
charge state of the SEB. The charge configuration of the
transistor is characterized simply by the number n of extra
electrons on its central island, and accordingly, the rate
equation describing its dynamics is

_pðnÞ ¼ X

j;�
½pðn� 1Þ�ð�Þ

j ðn� 1Þ � pðnÞ�ð�Þ
j ðnÞ�; (10)

where pðnÞ is the probability distribution of the charge en on

the central island of the transistor, and the rates �ð�Þ
j ðnÞ

describe the tunneling processes in junction j with the tunnel
conductance Gj out of the state n in the direction that

increases (þ) or decreases (�) n by 1. The rates are given
by Eq. (8) or (9), or their generalizations, depending on the
nature of the transistor electrodes. They depend on the indices
of �’s in Eq. (10) through the change E of the charging
energy U of the transistor, which is a function of all these
indices. The transistor energy U consists of two parts, one
that coincides with the charging energy (3) of the SEB in
which C� ¼ C1 þ C2 þ Cg, and the other UV that is created

by the transport voltage V:

UV ¼ �eNV � enVðC2 þ Cg=2Þ=C�: (11)

Here N is the number of electrons that have been transferred

through the transistor. Both the dc current I through the

transistor (Averin and Likharev, 1991) and the current noise
(Korotkov, 1994) can be calculated starting from Eq. (10).

The main physical property of the transistor transport char-

acteristics is that they depend periodically on the gate voltage,

in particular, Iðng þ 1Þ ¼ IðngÞ. This dependence of the

transistor current on the charge eng induced on its central

island makes the SET a charge detector, with subelectron

sensitivity approaching ð10�5–10�6Þ e=Hz1=2 (Zimmerli

et al., 1992; Krupenin, 1998; Roschier et al., 2001). As a

result, the SET is the most standard charge detector for

measurements of, e.g., individual electron dynamics in other
single-electron structures [cf. Fig. 2(a)].

ThehybridSINISornormalmetal–insulator-superconductor-

insulator–normal metal (NISIN) transistors have an additional

important feature that distinguishes them from the SETs with

normal electrodes. They provide the possibility to realize the
regime of the quantized current I [Eq. (4)], when driven by an ac
gate voltage VgðtÞ of frequency f (Pekola et al., 2008). This

property of the hybrid SETs is one of the main topics of this

review and is discussed in detail below.
The basic expression (6) for the tunneling rates assumes that

the electrodes of the tunnel junction are in equilibrium at

temperature T, with the implied assumption that this tempera-
ture coincides with fixed temperature of the whole sample.

Since each electron tunneling event deposits an amount of heat

�U into the electron system of the electrodes, this condition

requires that the relaxation processes in the electrodes are

sufficiently effective to maintain the equilibrium. The relaxa-
tion rates decrease rapidly with decreasing temperature, e.g.,

proportional to T5 for electron-phonon relaxation in an ordi-

nary metal; see, e.g., Giazotto et al. (2006). This makes the

relaxation insufficient and causes the overheating effects to
appear at some low temperature, in practice around 0.1 K.

Therefore, the overheating sets a lower limit to the effective

temperature of the transitions, in thisway limiting the accuracy

of control over the individual electron transport.
One more assumption underlying Eq. (9) for the tunneling

rate in SIN junctions is that the electron distribution function

is given by the Fermi function fð�Þ. As known from statistical

mechanics, even in equilibrium, this requires that the total

effective number of particles that participate in forming this

distribution is large. In normal-metal islands, this requirement
is satisfied at temperatures much larger than the single-

particle level spacing, T � �E=kB, as is the case for practi-

cally all metallic tunnel junctions. In contrast to this, in

superconducting islands, this condition can be violated at

temperatures below the superconducting energy gap, T �
�=kB, when the total number of the quasiparticle excitations

in the electrode is no longer large. The temperature scale of

the onset of this ‘‘individual quasiparticle’’ regime can be

estimated from
R1
� d�fð�Þ�ð�Þ=�E� 1. The main qualitative

feature of this regime is the sensitivity of the electron trans-
port properties of a superconducting island to the parity of the

total number of electrons on it (Averin and Nazarov, 1992b;

Tuominen et al., 1992). In particular, the charge tunneling

rate (9) in the SIN junction should be modified in this case
into the rates of tunneling of individual quasiparticles. For

T � �E=kB, these rates are still determined by the sameFIG. 5. Equivalent electric circuit of an SET.
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average hjTkpj2i over many single-particle states of the

squares of the tunneling amplitudes (5) which gives the tunnel
conductance GT , and therefore can be expressed through GT .
In the regime of ‘‘strong’’ parity effects, when T � T	 �
�=kB lnNeff , where Neff ¼ ð2�kBT�Þ1=2=�E is the effective
number of states for the quasiparticle excitations (Tuominen
et al., 1992), an ideal BCS superconductor should reach the
state with no quasiparticles, if the total number N0 of elec-
trons in the superconductor is even, and precisely one
unpaired quasiparticle if N0 is odd. Although many nonequi-
librium processes in realistic superconductors lead to the
creation of a finite density of quasiparticle excitations which
do not ‘‘freeze out’’ at low temperatures [see, e.g., de Visser
et al. (2011)], one can realize the situation with the number of
quasiparticles controlled as in an ideal BCS superconductor,
as, e.g., in Tuominen et al. (1992), Lafarge et al. (1993), and
Saira, Kemppinen et al. (2012). In this regime, the rates of
sequential charge tunneling between the normal-metal elec-
trode and a superconducting island depend on the parity of
the total number N0 of electrons in the island (Schön and
Zaikin, 1994; Maisi et al., 2012). For T � T	, the tunneling
rates both to and from the island are dominated by the one
quasiparticle that exists on the island for odd N0. When this
quasiparticle is equilibrated to the edge of the quasiparticle
spectrum at energy �, the rates of tunneling to and from
the island (i.e., increasing and decreasing the charge en of the
island) coincide, and for jEj � � are independent of the
electrostatic energy change E:

�odd ¼ GT�E

4e2
: (12)

For even N0, when there are no quasiparticles on the island,
tunneling necessarily involves the process of creation of a
quasiparticle, making the tunneling rates dependent on the
energy change E:

�evenðEÞ ¼ �oddNeffe
�ð��EÞ=kBT: (13)

In the hybrid superconductor and normal-metal structures,
these tunneling rates determine the electron transport prop-
erties through a rate equation similar to Eq. (10).

C. Cotunneling, Andreev reflection, and other higher-order

processes

The sequential tunneling discussed previously represents
only the first nonvanishing order of the perturbation theory in
the tunnel Hamiltonian HT (5). In the strong Coulomb-
blockade regime GT � 1=RK, this approximation provides
an excellent starting point for the description of electron
transport, accounting quantitatively for the main observed
properties of these structures. However, a more detailed
picture of the transport should also include the tunneling
processes of higher order in HT , which involve transfers of
more than one electron in one or several tunnel junctions.
Although for GT � 1=RK the rates of these more complex
multistep electron ‘‘cotunneling’’ processes are small in
comparison with the rates of the single-step sequential elec-
tron tunneling, they are frequently important either because
they provide the only energetically allowed transport mecha-
nism or because they limit the accuracy of control of the basic

sequential single-electron transitions. The simplest example
of the cotunneling is the current leakage in the SET in the CB
regime (Averin and Odintsov, 1989; Geerligs, Averin, and
Mooij, 1990), when the bias voltage V is smaller than the CB
threshold and any single-step electron transfer that changes
the charge en on the transistor island by �e (see Fig. 5)
would increase the charging energy (3) and is suppressed. In
this regime, only the two-step cotunneling process that con-
sists of electron transfers in both junctions of the transistor in
the same direction gains the bias energy (11). It achieves this
by changing the number N of electrons transported through
the transistor by 1 without changing the charge en on the
island. Qualitatively, this process represents a quantum tun-
neling through the energy barrier created by the charging
energy. Because of the discrete nature of charge transfer in
each step of the cotunneling, its rate is not suppressed ex-
ponentially as for the usual quantum tunneling, and is smaller
only by a factor GTRK � 1 than the rate of sequential
tunneling processes.

In a hybrid SIN junction, in addition to the charging
energy, the superconducting energy gap � provides an extra
energy barrier to tunneling of individual electrons, suppress-
ing the sequential tunneling rate (9) at low temperatures T �
�=kB. The gap � exists only for individual electrons, while
pairs of electrons with zero total energy and momentum can
enter a superconductor as a Cooper pair, in the process called
Andreev reflection (Andreev, 1964). In tunnel junctions, AR
can be described similarly to the cotunneling, as a perturba-
tive two-step tunneling process, in which the transfer of
the first electron is virtual and only the second electron
transfer makes the process energetically favorable and real.
Quantitatively, the rates of such multistep transitions can be
determined through their higher-order transition amplitudes
constructed according to the standard rules of perturbation
theory [see, e.g., Landau and Lifshitz (1980b)]. For instance,
in the simplest example of a two-step AR process in a hybrid
single-electron box, the elementary amplitude Að�k; �lÞ of the
process that takes two electrons in the normal electrode with
energies �k and �l and transfers them into the superconductor
as a Cooper pair can be written as

Að�k;�lÞ¼
X

p

upvpTkpTlp

�

1

�pþEi��k
þ 1

�pþEi��l

�

:

(14)

The two-step process goes through an intermediate state ob-
tained as a result of the first step of the process. The intermedi-
ate states differ by the order of transfer of the two electrons and
by the single-particle state of energy �p in the superconductor

in which the virtual quasiparticle with excitation energy
�p ¼ ð�2 þ �2pÞ1=2 is created. In addition to �p, the energy

of the intermediate state includes the charging energy barrier
Ei to the transfer of one electron from the normal elec-
trode to the superconductor. The standard BCS factors vp ¼
½ð1 � �p=�pÞ=2�1=2 and up ¼ ½ð1 þ �p=�pÞ=2�1=2 enter

Eq. (14) because vp is the amplitude of state p being empty

in theBCSground state, thus allowing thefirst electron transfer,
while up is the overlap of the doubly occupied orbital state p

with the BCS ground state, which gives the amplitude of return
to the ground state after the second electron transfer. Since no
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trace of the intermediate states is left in the final state obtained
after thewholeARprocess is complete, they should be summed
over coherently, at the level of the amplitude Að�k; �lÞ.
By contrast, the initial states �k and �l of the electrons in
the transition are left empty in the final state and can be used
to distinguish between different transition processes. This
means that they should be summed over incoherently, in the
expression for the tunneling rate �AR. At small temperatures
kBT � �, one can neglect thermal excitations in the
superconductor, obtaining the total AR tunneling rate as

�AR¼2�

ℏ

X

k;l

jAð�k;�lÞj2fð�kÞfð�lÞ�ð�kþ�lþEÞ; (15)

where E is the electrostatic energy change due to the complete
AR tunneling process. The sum over all states p in the super-
conductor in Eq. (14) implies that the contribution of the
individual quasiparticles [which is important in the parity-
dependent transition rates (12) and (13)] is negligible in the
amplitude A, and individual quasiparticles affect �AR only
through the change of the charging conditions for tunneling.

The result of the summation over different single-particle
states in Eqs. (14) and (15) depends on the detailed structure
of the SIN junction. For instance, the quadratic dependence of
the AR amplitude A [Eq. (14)] on the tunneling amplitudes
makes the magnitude of the Andreev reflection sensitive not
only to the total tunnel conductance GT but also to the
distribution of the barrier transmission probabilities. Two
main qualitative features of the aluminum oxide tunnel junc-
tions (see Fig. 3), which are the focus of the main part of this
review, are the relatively thick insulator barrier characterized
by the focusing effect on the tunneling electrons and low
resistance of the junction electrodes. The simplest junction
model that takes into account both features assumes ballistic
electron motion that can be separated into different transport
channels throughout the junction. In this case, the states k
and l in Eq. (15) belong to the same transport channel, and
summation over different channels can be done directly and
gives the effective number N of the channels which, as
discussed in Sec. II.B, is limited by the angular dependence
of the barrier transmission probabilities [see, e.g., Averin and
Bardas (1995)]. In the ballistic approximation, Eqs. (14) and
(15) give for the AR tunneling rate (Hekking et al., 1993;
Averin and Pekola, 2008)

�AR ¼ ℏG2
T�

2

16�e4N

Z

d�fð�� E=2Þfð��� E=2Þ



�
�
�
�
�
�
�
�

X

�
að��� Ei � E=2Þ

�
�
�
�
�
�
�
�

2

; (16)

where

að�Þ � ð�2 � �2Þ�1=2 ln

�

�� �þ ð�2 � �2Þ1=2
�� �� ð�2 � �2Þ1=2

�

:

Equation (16) is well defined if the relevant energies
in the amplitude að�Þ do not approach the edge of the
superconducting energy gap � ’ �, which gives a logarithmi-
cally divergent contribution to �AR. This singularity can be
smeared by many mechanisms, e.g., the nonuniformity of the
gap � or finite transmission probability of the barrier. In the
single-electron tunneling regime, one of the main broadening

mechanisms should be the lifetime of the intermediate charge

state in the AR process and can be accounted for by replacing

in Eq. (14) the energy Ei with Ei � i�=2, where � is the rate

of sequential lowest-order tunneling out of the intermediate

charge configuration.
Experimentally, individual AR processes can be observed

directly in the time domain in the hybrid SEB (Maisi et al.,

2011). This observation allows one to extract the rates of AR

tunneling shown in Fig. 6 as a function of the normalized gate

voltage ng which determines the energies Ei and E of the

transition. Figure 6 also shows the theoretical fit based on

Eq. (16). One can see that Eq. (16) describes very well the

shape of the curves. The fit requires, however, a considerably

smaller (roughly by a factor 15) effective number N of the

transport channels to describe stronger AR tunneling pro-

cesses. In practice, the fact that the magnitude of AR tunnel-

ing rates is larger by roughly a factor of 10 than the

theoretical expectation for a given tunnel conductance GT

is a usual feature of the tunnel junctions [see also, e.g.,

Pothier et al. (1994) and Greibe et al. (2011)], and in principle

can be qualitatively accounted for by the variation of the

barrier thickness over the junction area. Unfortunately, there

is so far no quantitative experimental or theoretical evidence

that the barrier nonuniformity is indeed the reason for the

discrepancy between the magnitude of the lowest-order and

AR tunneling.
In the structures without superconducting electrodes, mul-

tistep electron transitions, in contrast to the AR processes,

involve electron transfers in different directions and/or across

different tunnel junctions, since a transfer of the two electrons

in the same junction and the same direction cannot make the

process energetically favorable in the absence of the pairing

gap �. In the simplest example of the normal metal–

insulator–normal metal–insulator–normal metal (NININ)

SET, the two-step cotunneling process in the CB regime

FIG. 6 (color online). Real-time detection of Andreev tunneling in

an isolated SEB shown in the scanning electron micrograph of (a) and

its schematic in (b). The electrometer is used for counting the single-

electron and Andreev tunneling rates. (c) The tunneling rate for AR

shown as dots for forward and backward directions. The lines are

theoretical calculations where the nonuniformity of the tunnel barrier

is taken into account. Adapted from Maisi et al., 2011.
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discussed qualitatively at the beginning of this section con-
sists of two-electron transfers across the two junctions of the
transistor. Quantitatively, the rate of this process is dominated
by the inelastic contribution �in, in which the single-particle
states �p and �q of electrons in the central island of the

transistor involved in the transfers are different (Averin and
Odintsov, 1989). As a result, the occupation factors of these
states are changed, i.e., electron-hole excitations are created
after the process is completed, a fact that implies that con-
tributions to the tunneling rates from different �p and �q
should be summed over incoherently. The elementary ampli-
tude A of this process consists then only of a sum over the two
possibilities, one in which an electron is first transferred onto
the island increasing the charging energy of the intermediate
state by EðþÞ, and the other, in which an electron tunnels first
from the island still increasing the charging energy but by a
different amount Eð�Þ:

A ¼ TkpTql

�

1

�p þ EðþÞ � �k
þ 1

�l þ Eð�Þ � �q

�

: (17)

The total rate �in is given then by the sum of jAj2 over all
single-particle states involved with the appropriate equilib-
rium occupation factors and can be expressed directly
through the junction conductances as

�inðEÞ¼ℏG1G2

2�e4

Z

d�kd�pd�qd�lfð�kÞfð�qÞ½1�fð�pÞ�

½1�fð�lÞ��ðE��pþ�k��lþ�qÞ


�
�
�
�
�
�
�
�

1

�pþEðþÞ��k
þ 1

�lþEð�Þ��q

�
�
�
�
�
�
�
�

2

; (18)

where E ¼ eV is the energy gain due to the transfer of
electron charge e through both junctions of the transistor
(see Fig. 5). Equation (18) shows explicitly that the second-
order electron cotunneling that involves one virtual inter-
mediate stage is indeed smaller than the rate (6) of sequential
single-electron tunneling roughly by a factor RKGT � 1. The
derivation above also makes it clear that the rate of the
multistep electron transitions that go through n virtual inter-
mediate stages with larger n would be suppressed much more
strongly by a factor ðRKGTÞn.

If the energy gain E and thermal energy kBT are smaller
than the charging energy barriers Eð�Þ, Eq. (18) for the
inelastic cotunneling rate can be simplified to

�inðEÞ ¼ ℏG1G2

12�e4

�

1

EðþÞ þ
1

Eð�Þ

�
2 E½E2 þ ð2�kBTÞ2�

1� e�E=kBT
:

(19)

This equation shows that, as a result of creation of excitations
in the process of inelastic cotunneling, its rate decreases
rapidly with decreasing E and T. At very low energies, the
process of cotunneling in the NININ transistor will be domi-
nated by the elastic contribution, in which an electron is
added to and removed from the same single-particle state of
the transistor island, without creating excitations on the
island. Because of the restriction on the involved single-
particle states, the rate of such elastic contribution contains
an additional factor on the order of �E=EC (Averin and
Nazarov, 1990) and can win over �in only at very low

temperatures, practically negligible for the structures
based on the micrometer-scale metallic islands considered in
this review.

The approach to multistep electron transitions in the
single-electron structures illustrated in this section with the
examples of Andreev reflection and electron cotunneling can
be directly extended to other higher-order tunneling pro-
cesses, e.g., cotunneling of a Cooper pair and an electron
(Averin and Pekola, 2008), which together with Andreev
reflection and electron cotunneling limit in general the accu-
racy of control over sequential single-electron transitions.

D. Coulomb blockade of Cooper-pair tunneling

In contrast to the tunneling processes considered previ-
ously, which involve electrons in the normal-metal elec-
trodes, tunneling of Cooper pairs in a junction between two
superconductors is intrinsically a dissipationless process
(Josephson, 1962). As such, it should not be characterized
by a tunneling rate but a tunneling amplitude. A quantitative
form of the corresponding term in the junction Hamiltonian
can be written most directly at low energies kBT, EC � �,
when the quasiparticles cannot be excited in the supercon-
ducting electrodes of the junction, and the tunneling of the
Cooper pair is well separated from the tunneling of individual
electrons. In this regime, a superconductor can be thought of
as a Bose-Einstein condensate of a ‘‘mesoscopically’’ large
number of Cooper pairs which all occupy one quantum state.
Transfer of one pair between two such condensates in the
electrodes of a tunnel junction does not have any non-
negligible effects on the condensates apart from changing
the charge Q ¼ 2en on the junction capacitance by �2e.
Therefore, the part of the Hamiltonian describing the tunnel-
ing of Cooper pairs should contain the terms accounting for
the changes of the charge Q. Using the standard notation
�EJ=2 for the amplitude of Cooper-pair tunneling and in-
cluding the charging energy (3), one obtains the Hamiltonian
of a superconductor-insulator-superconductor (SIS) tunnel
junction or, equivalently, Cooper-pair box in the following
form (Averin, Zorin, and Likharev, 1985; Büttiker, 1987):

H ¼ 4ECðn� ngÞ2 � EJ

2

X

�
jnihn� 1j: (20)

Here n is the number of Cooper pairs charging the total
junction capacitance, and ng is the continuous (e.g., gate-

voltage-induced) charge on this capacitance normalized now
to the Cooper-pair charge 2e. Similarly to the sequential
tunneling rates, the Cooper-pair tunneling amplitude in the
Hamiltonian (20) is a macroscopic parameter which receives
contributions from all Cooper pairs in the condensate and
can be expressed directly through the tunnel conductance GT

of the junction EJ ¼ �GT�=2e (Ambegaokar and Baratoff,
1963), in agreement with the simple fact that the amplitude of
the two-electron tunneling should have the same dependence
on the barrier transparency as the rate of tunneling of one
electron. In the situation of the junction (20) realized with the
actual Bose-Einstein condensates of atoms, such a ‘‘Bose-
Josephson junction’’ can contain a relatively small total
number of particles, and the tunnel amplitude varies then
with the difference n of the number of particles in the two
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condensates; see, e.g., Fölling et al. (2007), Averin et al.
(2008), and Cheinet et al. (2008).

The dependence on the ground state of the Hamiltonian
(20) on the induced charge ng allows for qualitatively similar

control of the individual Cooper pairs as for individual
electrons in the normal-state SEB discussed in Sec. II.B. If
EJ � EC, precisely one Cooper pair is transferred through
the junction, changing n by�1, whenever ng passes adiabati-

cally through a degeneracy point ng ¼ 1=2 modulo an inte-

ger. This leads to the same staircase-like dependence nðngÞ as
in the normal case, but with each step corresponding to the
transfer of one more Cooper pair with the increase of ng by 1.

The main new element of the superconducting situation is
that the SIS junction is intrinsically a coherent quantum
system without dissipation, and if extrinsic sources of deco-
herence can be made sufficiently weak, should exhibit revers-
ible dynamics of a simple quantum system. For instance,
close to the degeneracy point ng ¼ nþ 1=2 the two charge

states with the same electrostatic energy, n and nþ 1, are
coupled by coherent quantum mechanical tunneling of a
Cooper pair, and the junction behaves as a very basic quan-
tum two-state system (Bouchiat et al., 1998; Nakamura,
Pashkin, and Tsai, 1999). Such two-state dynamics and gen-
eral coherent quantum dynamics of the Hamiltonian (20)
serve as the basis for the development of superconducting
quantum information devices; for reviews, see, e.g., Averin
(2000) and Makhlin, Schön, and Shnirman (2001).

Superconducting junctions also exhibit the dynamics
similar to the single-electron tunneling oscillations. If the
induced charge ng grows in time at a constant rate, so that

effectively a dc displacement current I ¼ 2e _ng is injected

into the junction, Cooper pairs are transferred through it in a
correlated manner, one by one, giving rise to the ‘‘Bloch’’
oscillations (Averin, Zorin, and Likharev, 1985) of voltage
across the junction, with frequency f related to the current I:

I ¼ 2ef: (21)

The Hamiltonian (20) and its extensions to multijunction
systems can be used to design time-dependent periodic dy-
namics with frequency f which transfer precisely one Cooper
pair per period and therefore produce a dc current quantized
according to Eq. (21). Although the system dynamics em-
ployed for such Cooper-pair pumping can be of different
kinds [see, e.g., Hoehne et al. (2012)], the most typical is
the adiabatic dynamics (Geerligs et al., 1991), in which the
pumped charge is related (Pekola et al., 1999; Aunola and
Toppari, 2003; Möttönen, Vartiainen, and Pekola, 2008)
to Berry’s phase or (Faoro, Siewert, and Fazio, 2003) its
non-Abelian extensions.

E. Single-electron tunneling in semiconductor structures

One of the main features of metallic conductors used in the
discussion of single-electron tunneling is the large density of
free electrons in them, characterized quantitatively by the
average electron-electron distance r that is not much larger
than the Bohr’s radius a0. In this regime, the electrostatic
screening length � ’ ðra0Þ1=2 at low energies is also small,
i.e., comparable to r. This fact has several simplifying con-
sequences for the discussion of single-electron tunneling.

Most importantly, because of the strong screening, electrons
are effectively noninteracting inside conductors at low
energies relevant to the Coulomb-blockade transport. For
normal metals, this makes it possible to describe the tunnel
junction electrodes as reservoirs of noninteracting electrons—
the model adopted above for the discussion of tunneling.
(For superconducting electrodes, only superconducting pair-
ing correlations are important.) Another consequence of a
short, on the order of interatomic distance, screening length
is that for all practical electrodes large on this scale the
electron-electron interaction energy due to charging of the
conductor as awhole is independent of the electron state inside
the conductor and can be accurately described bymacroscopic
capacitances as was done in Eq. (1).

In the case of semiconductor single-electron structures
based on quantum dots formed in two-dimensional conduct-
ing layers (see Sec. III.C for a brief discussion of the typical
structures), the dot parameters, including carrier (usually,
electron) concentration in the dot, can be controlled through
external bias. Despite this control, and variability of the
carrier concentration with the fabrication parameters, one
can take n� 1012 cm�2 as a typical value of concentration,
which corresponds to r� 10 nm. Although this electron-
electron distance is considerably larger than in a good metal,
the Bohr radius a0 ¼ 4���0ℏ2=e2m is also much larger in the
semiconductors, e.g., gallium arsenide or silicon, used to
fabricate quantum dots, because of the dielectric constant
�� 10 and effective mass m smaller than the free electron
mass. This keeps the parameter rs ’ r=a0 which determines
the strength of interaction effects in an electron gas [see, e.g.,
Mahan (1990)] in the same weak-interaction range rs � 1 and
makes it reasonable to describe a quantum dot in the same
approximation as used previously for metallic islands: non-
interacting electron gas inside the dot with the electron-
electron interaction giving rise to the charging energy UðnÞ
that depends only on the total number n of electrons in the dot
and can be expressed through the constant dot capacitance C�

as in Eq. (3). Since quantum confinement of effectively non-
interacting electrons inside the dot potential produces in
addition an energy spectrum �k of the single-particle states,
the total dot Hamiltonian is then

H ¼ UðnÞ þX

k

�kc
y
k ck; n ¼ X

k

cyk ck: (22)

Although this model of a quantum dot is the same as for the
normal-metal islands, an important difference between the
two situations is created by the difference in the absolute
values of characteristic length scales r and a0 which are much
larger for quantum dots. Because of this, already relatively
‘‘large’’ dots with characteristic dimensions d� 100 nm can
contain a small total number of electrons, starting with n ¼ 1,
and have the single-particle level spacing �E comparable to
the charging energy Ec. This difference has two important
consequences which make a quantitative description of
single-electron transport in quantum dots in general more
involved than in metallic structures. The larger level spacing
�E reduces the number of the single-particle energy levels
participating in the single-electron tunneling transitions
through the dot making the nonequilibrium effects in energy
distribution of electrons in the dot more prominent in the
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regime of nonlinear transport. The small number of levels
involved in transport also creates statistical correlations
between occupation factors of different levels even for elec-
trons that are effectively noninteracting inside the dot, as in
the Hamiltonian (22). Combined, all thismeans that in contrast
to metallic islands, the dynamics of the total charge en on the
dot is not decoupled from the electron dynamics in the dot and
depends more strongly on the relaxation processes and the
structure of the energy spectrum �k, both of which are sensitive
to the effect of disorder on the dot confining potential.

For weak tunneling, a quantitative description of single-
electron transport through a quantum dot, in a structure
similar to a single-electron transistor (see Fig. 3), is based
on a kinetic equation similar to Eq. (10) in the metallic regime
(Averin, Korotkov, and Likharev, 1991; Beenakker, 1991).
As qualitatively discussed previously, in the case of a dot,
this equation cannot be formulated directly in terms of the
probability distribution pðnÞ of the charge on the dot, but
requires the probability pðn; k1; . . . ; knÞ that a given set of n
single-particle states of the dot k1; . . . ; kn is occupied by
electrons. [Since we will not be dealing explicitly with
spin-related phenomena, it is assumed for notational simplic-
ity that k includes the spin index of the single-particle states.
Also note that the order of indices of the occupied states in the
argument of pðn; k1; . . . ; knÞ is irrelevant.] Expressed through
this probability, the kinetic equation reads

_pðn; k1; . . . ; knÞ ¼ Stun þ Srel; (23)

where Stun and Srel are, respectively, the probability flows due
to electron tunneling between the dot and external electrodes
which changes the charge en of the dot by �e, and electron
transitions inside the dot (without changing n) due to
electron-phonon or residual electron-electron interactions
which lead to thermalization and energy relaxation of elec-
trons in the dot. The terms Stun are expressed through the rates
of tunneling between state k in the dot and reservoir j, which
similarly to metallic tunnel junctions (5) can be written as
�k;j ¼ 2�hjTkpj2i�j=ℏ, where h� � �i denotes averaging over

the states p in reservoir j which have density �j. In terms of

these rates,

Stun ¼
X

j

�
X

k�fkig
�k;j½pðnþ 1; k1; . . . ; kn; kÞ


 ð1� fð�k þ Ej;nþ1ÞÞ� pðn; k1; . . . ; knÞ

 fð�k þ Ej;nþ1Þ� þ

X

k2fkig
�k;j½pðn� 1; fkig � kÞ


 fð�k þ Ej;nÞ � pðn; k1; . . . ; knÞ

 ð1� fð�k þ Ej;nÞÞ�

�

; (24)

where Ej;n is the change of the energy Utot ¼ UðnÞ þUV

which consists of the charging energy UðnÞ [Eq. (3)] and the
bias energy UV [Eq. (11)], due to transfer of one electron into
the jth electrode from the dot carrying charge en.

The relaxation term Srel in the kinetic equation can be
written similarly. For instance, in the case of electron-phonon
relaxation

Srel ¼
X

l�fkig

X

k2fkig
½�ð�l � �kÞpðn; fkig � k; lÞ

� �ð�k � �lÞpðn; k1; . . . ; knÞ�; (25)

where �ð�Þ’s are the rates of the phonon-induced transitions
between the electron states in the dot. These equations show
that the general nonlinear single-electron transport through
the dot depends quantitatively on its microscopic structure, in
particular, energy relaxation rates. In general, sensitivity of
the single-particle level structure of the dot to its geometric
shape and the details of the confining potential [for a review,
see, e.g., Reiman and Manninen (2002)] turns precise quan-
titative characteristics of the dot transport almost into the
fingerprints of an individual quantum dot, even in the simplest
situation of effectively noninteracting electrons in the dot. In
addition, at low electron densities, electron-electron correla-
tions inside the dot can become important, leading to
formation of a finite Wigner crystal in effectively both one-
dimensional and two-dimensional dots; see, e.g., Häusler and
Kramer (1993) and Filinov, Bonitz, and Lozovik (2001) and
references therein. From the point of view of electron trans-
port, the main characteristic feature of such a correlated
electron state is additional energy dependence of the electron
tunneling rates into the dot, with tunneling suppressed by
correlations at low energies (Kane and Fisher, 1992; Averin
and Nazarov, 1993; Matveev and Glazman, 1993).

Despite stronger influence of internal microscopic physics
on the quantum-dot transport, the charging energy EC asso-
ciated with individual electrons still remains typically the
dominant energy in comparison, e.g., to the level spacing
�E, in the case of quantum dots as well. Because of this,
semiconductor quantum dots allow for qualitatively similar
manipulation of individual electrons as do metallic structures.
Moreover, semiconductor structures provide an additional
flexibility in this respect, in that the islands and barriers
defining the quantum dots can be tuned or even formed by
applying external voltages to gate electrodes; see Sec. III.C
for details. This is in contrast to metallic systems which are
usually defined solely by the conducting and insulating re-
gions of the fabricated structure. An example of the single-
electron control in a GaAs/AlGaAs semiconductor structure,
two quantum dots monitored with a quantum-point contact
(QPC) operated as a charge detector (Küng et al., 2012), is
shown in Fig. 7. In this system, the QPC detector distin-
guishes different charge states of the two dots and allows one
to detect transitions of individual electrons between the dots
and to or from the source and drain electrodes. The observed
charge dynamics as seen, e.g., in Fig. 7(c), resembles that in
the metallic SEB shown in Fig. 2. Such correlated single-
electron transitions in semiconductor dots, combined with the
possibility of the gate-voltage control of tunnel barriers, make
it possible to pump electrons by direct periodic modulation of
the two barriers of a dot (Kouwenhoven et al., 1991a).

Attempts to increase the magnitude of pumped current lead
naturally to the situation when the barriers become nearly
completely suppressed, and electrons can cross them not only
by quantum tunneling through the barrier but also by classical
motion over the barrier. Coulomb-blockade correlations
among different charge states survive in this regime
(Zimmerman et al., 2004) which should be, in particular,
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relevant for the ‘‘dynamic’’ quantum dots formed and de-
stroyed by rapidly changing gate voltages; see Blumenthal
et al. (2007) and Fricke et al. (2013) and references therein.
The process of electron transfer through the rapidly created or
destroyed barriers can lead to a stochastic uncertainty in
created charge state of the quantum dot, which is described
with a ‘‘decay-cascade’’ model (Kashcheyevs and Kaestner,
2010). Because of the uncertainty in microscopic dynamics
underlying the electron transfer in quantum dots discussed
above, the precise limits which the varying barriers impose
on the accuracy of electron manipulation in dynamic
quantum dots are still not fully understood (Zimmerman
et al., 2004; Blumenthal et al., 2007; Fujiwara, Nishiguchi,
and Ono, 2008; Kashcheyevs and Timoshenko, 2012; Lin and
Zhang, 2012).

F. Influence of environment on tunneling

Tunneling in small junctions is influenced by the electro-
magnetic environment. The tunneling rates are modified by
photon absorption or emission; Fig. 8 schematically depicts a
process where the tunneling rate in a generic junction is
enhanced by absorption of a photon from the environment.

The general theoretical framework of how this happens
was put forward in seminal works by Devoret et al. (1990)
and Girvin et al. (1990), and later expanded by Ingold
and Nazarov (1992). The golden-rule-type tunneling rates
discussed in the earlier sections get modified as

�¼ 1

e2RT

Z 1

�1

Z 1

�1
dEdE0�1ðE��EÞ�2ðE0Þf1ðE��EÞ


 ½1�f2ðE0Þ�PðE�E0Þ; (26)

where �iðEÞ, i ¼ 1, 2 are the normalized DOSs in the two
electrodes, fiðEÞ are the corresponding energy distributions
in the electrodes, and �E is the energy cost in the tunnel-
ing event. The function PðEÞ can be interpreted as the
probability density to emit energy E to the environment,
which becomes a delta function in the special case of a
junction with perfect voltage bias. The PðEÞ can be calcu-
lated as the following transformation using the phase-phase
correlation function JðtÞ:

PðEÞ ¼ 1

2�ℏ

Z 1

�1
exp

�

JðtÞ þ i

ℏ
Et

�

dt: (27)

By modeling the environment by a frequency !=2� depen-
dent impedance Zð!Þ in thermal equilibrium at temperature
Tenv, one obtains

JðtÞ ¼ 2
Z 1

0

d!

!

Re½Zð!Þ�
RK

�

coth

�

ℏ!
2kBTenv

�

ðcos!t� 1Þ

� i sin!t

�

; (28)

where RK ¼ h=e2 is the resistance quantum.
Often one can assume that the unintentional environment

can be modeled as a wideband dissipative source in the
form of an RC circuit. For a purely resistive and capacitive
environment

Re½Zð!Þ� ¼ R=½1þ ð!RCÞ2�; (29)

where R is the resistance of the environment and C is the
total capacitance including the junction capacitance and par-
allel shunt capacitors. This rather simple model has been
successfully applied to explain several experimental observa-
tions; see, e.g., Martinis and Nahum (1993) and Hergenrother
et al. (1995). For a system with intentionally enhanced
capacitance, it could be used to account for experimental
improvement of the characteristics of a normal metal–-
insulator-superconductor (NIS) junction and of a single-
electron turnstile (Pekola et al., 2010). Further improvements
were obtained by Saira et al. (2010) and Saira, Kemppinen
et al. (2012); see Sec. III.B. We show in Fig. 9 an NIS
junction and its current-voltage characteristics under different
experimental conditions.

Focusing on the single-electron sources, the environment
has at least two effects to be considered. (i) The coupling of

FIG. 7 (color online). Single-electron control in a semiconductor

structure consisting of two lateral quantum dots measured with a

quantum-point-contact (QPC) charge detector. (a) Atomic force

microscope image of the structure. (b) The diagram of the equilib-

rium charge states of the two dots, controlled by voltages on the

gates G1 and G2: empty dots (0); left (L), right (R), or both dots (2),

occupied with one electron. (c) Trace of the output signal of the

QPC detector (conductance GQPC) showing random single-electron

transitions between these states driven by thermal fluctuations close

to the degeneracy point, when the charging energies of the states (0),

(L), and (R) coincide. From Küng et al., 2012.

µ1

PHOTON 
ABSORPTION 
and TUNNELING

µ2

FIG. 8 (color online). A simple schematic showing photon ab-

sorption by a generic tunnel junction, and the inelastic electron

tunneling from the left side of the barrier to the right.
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the blackbody radiation of the hot surrounding environment

can induce photon-assisted tunneling. (ii) The intentionally

fabricated on-chip environment in the immediate vicinity of

the single-electron circuit serves as a filter against external

noise. Moreover, it can influence the tunneling rates in a way
that improves the performance (Zorin et al., 2000; Lotkhov

et al., 2001; Bubanja, 2011). Detailed discussion of the error

processes in pumps, including those due to coupling to the

environment, is given further in this review.

G. Heating of single-electron devices

Single-electron circuits operate optimally at low tempera-
tures. The standard condition is that kBT � EC, where EC is
the characteristic charging energy scale. Another condition in
superconductor-based devices is that kBT � �, where � is
the energy gap of the superconductor. Since thermal errors in
synchronized transfer of electrons are typically proportional
to e�ECR=kBT , where ECR is the characteristic energy (in the
previous examples EC or�), it is obvious that the temperature
needs to be more than an order of magnitude below ECR=kB.
At low temperatures the overheating becomes a critical issue
(Giazotto et al., 2006). The energy relaxation between the
electron system and the bath, typically formed by the pho-
nons, becomes increasingly slow toward low temperatures.
Moreover, the various heating rates are typically not scaling
down similarly with decreasing temperature.

Heat is injected to the electron system, first and foremost,
as Joule heating due to the current in a biased circuit. Other
sources of heat include the application of dissipative gate
voltages or magnetic flux injection, thermal radiation
discussed in Sec. II.F, and shot-noise-induced dissipation by
backaction from a charge or current detector. The steady-state
temperature of the electron system is determined by the
balance between the input powers and the heat currents via
different relaxation channels. The injected energy relaxes to
phonons via electron-phonon relaxation, to the leads by heat
transport through the tunnel junctions, and by radiation to
other dissipative elements in the cold circuit. We discuss
these processes in more detail.

Joule heating and cooling: In a biased circuit, the total
Joule power is P ¼ IV, where V is the overall voltage and I is
the current. This power can, however, be distributed very
unevenly in the different parts of the circuit: in an extreme
example, some parts may cool down whereas the others are
heavily overheated. We now focus on dissipation in biased
tunnel junctions. The basic example is a tunneling process in
a junction between two conductors with essentially constant
density of states, which is the case presented by normal
metals. At the finite bias voltage V the tunneling electron
leaves behind a holelike excitation and it creates an excited
electron in the other electrode, i.e., both electrodes tend to
heat up. Quantitatively we can write the expression of the
power deposited in the, say, right electrode as

PR ¼ 1

e2RT

Z

dEE½fLðE� eVÞ � fRðEÞ�: (30)

Here fL;R refer to the energy distributions on the left (L) and
right (R) sides of the junction, respectively. PR ¼ V2=2RT

when fL ¼ fR, i.e., when the temperatures of the two sides
are equal. By symmetry, or by direct calculation, we can
verify that the same amount of power is deposited into the left
electrode in this situation. Thus the total power dissipation
equals P ¼ PL þ PR ¼ V2=RT ¼ IV, as it should.

If one of the conductors is superconducting, the current-
voltage characteristics are nonlinear and the power deposited
into each electrode is given by

PN;S¼ 1

e2RT

Z

dE ~EN=S�SðEÞ½fNðE�eVÞ�fSðEÞ�: (31)

FIG. 9 (color online). NIS junctions influenced by a hot environ-

ment. (a) Geometry of a NIS junction made of aluminum (low

contrast) as the superconductor and copper (high contrast) as the

normal metal. The tapered ends lead to large pads. (b) Typical I-V
characteristics, measured at 50 mK for a junction with RT ¼ 30 k�.

Linear leakage, i.e., nonvanishing subgap current due to coupling to

the environment, can be observed. The dotted line is the corre-

sponding theoretical line from the PðEÞ theory and RC environment

with dissipation R at Tenv ¼ 4:2 K. (c) Measured I-V curves of an

NIS junction with RT ¼ 761 k� on a ground plane providing a

large protecting capacitance against thermal fluctuations (solid

symbols) and of a similar junction with RT ¼ 627 k� without the

ground plane (open symbols). Solid lines present the theoretical

results for capacitance C ¼ 10 and 0.3 pF. The resistance and the

temperature of the environment are set to R ¼ 2 � and Tenv ¼
4:2 K, respectively. The inset shows I-V curves based on the full

PðEÞ calculation as functions of the shunt capacitance C. The

colored lines are reproduced on this graph from the main figure.

Adapted from Pekola et al., 2010.
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Here ~EN ¼ �ðE� eVÞ and ~ES ¼ E, where N and S now
refer to the normal and superconducting leads, respectively.
The overall heating is again given by IV, but in this case,
under bias conditions eV ’ �, PN on the normal side can
become negative [NIS cooling (Giazotto et al., 2006)] and
PS on the superconductor side is always positive, i.e., it is
heated up.

Finally, if both sides are superconducting, the current-
voltage characteristics are highly nonlinear, but due to
symmetry PL ¼ PR ¼ IV=2 ¼ P=2.

Other heating sources: Overheating of a single-electron
circuit can be caused by various other sources. ac gate voltages
or ac magnetic fluxes can induce dissipative currents and heat-
ing due to dielectric losses, and single-electron electrometry or
electrometry by a quantum-point-contact detector can cause
effective heating due to the shot-noise backaction coupling to
the single-electron circuit, just to mention a few possibilities.

Energy relaxation by conduction to leads: If a difference
between the electronic temperatures TL and TR of the left
and right leads exists, �T � TL � TR, heat PL!R can flow
electronically through the tunnel barrier. In the case of a
normal-normal junction, we have

PL!R¼ 1

e2RT

Z

dEE½fLðEÞ�fRðEÞ�¼ �2k2B
6e2RT

ðT2
L�T2

RÞ;

(32)

where in the last step we assume that the junction is not
biased. For a small temperature difference�T about the mean
T ¼ ðTL þ TRÞ=2 of the two temperatures, we can then write
the thermal conductance Gth � PL!R=�T of a NIN tunnel
junction as

Gth ¼ �2k2BT

3e2RT

; (33)

which is the Wiedemann-Franz law for a conductor with
resistance RT . For either an NIS or SIS junction, heat con-
ductance is exponentially small at low temperatures due to �.
Another mechanism for the heat flow is the diffusion in the
leads. It is discussed, in particular, in superconducting leads
in Sec. III.B.3.

Electron-phonon relaxation: Electron-phonon relaxation is
one of the dominant and in many systems one of the best
understood relaxation mechanisms. For a normal-metal
conductor with a uniform temperature T that differs from
the bath phonon temperature T0, one can write quite generally
(Wellstood, Urbina, and Clarke, 1994)

Pe-p ¼ �V ðT5 � T5
0 Þ; (34)

where� is a material constant of the order of 109 WK�5 m�3

(Giazotto et al., 2006), andV is the volume of the conductor.
This equation holds amazingly well at subkelvin tempera-
tures for various metals, irrespective of their dimensions. In
single-electron devices, we typically consider dissipation in a
small Coulomb-blockaded region, whose volume is small,
and thus, according to Eq. (34), the coupling to the phonon
bath is weak. Because of the small dimensions, one typically
assumes a spatially uniform energy distribution on the con-
ductor; moreover, the assumption of overheating with a well-
defined electron temperature is also justified quite generally.

In some cases these assumptions are not necessarily valid.

An important exception is given by superconductors where

energy relaxation via phonon emission becomes extremely

weak due to the energy gap. At low temperatures the relaxa-

tion is limited by the emission of 2� phonons corresponding

to the recombination of quasiparticles into Cooper pairs

(Rothwarf and Taylor, 1967). In the past few years, several

experiments have measured the relaxation rate in this context

[see, e.g., Barends et al. (2008)], and the corresponding

energy release rate was measured recently by Timofeev,

Garcia et al. (2009). According to the latter measurement

the recombination-related heat flux is strongly suppressed

from that given in Eq. (34), being about 2 orders of magnitude

weaker than in the normal state at the temperature T ¼
0:3TC, where TC is the critical temperature of aluminum.

At even lower temperatures the heat current is further sup-

pressed, eventually exponentially as proportional to e��=kBT .

Besides recombination, the diffusive heat conduction is also

strongly suppressed in a superconductor at T � TC. This

means that a superconductor is a poor material as a lead of

a single-electron source, where nonequilibrium quasiparticles

are injected at the rate f. The situation can be improved

by inserting so-called quasiparticle traps into the circuit,

discussed in Sec. III.B.3. Yet a fully superconducting

Cooper-pair pump can be dissipationless ideally.
Heating and cooling by radiation: Coupling of a junction

to the electromagnetic environment is associated with heat

exchange. A hot environment can induce photon-assisted

tunneling as discussed in Sec. II.F. The basic concept of

radiative heat transport in an electric circuit has been known

since the experiments of Johnson (1928) and Nyquist (1928)

more than 80 years ago. Electromagnetic radiation on a chip

has recently turned out to be an important channel of heat

transport at low temperatures (Schmidt, Schoelkopf, and

Cleland, 2004; Meschke, Guichard, and Pekola, 2006;

Timofeev, Helle et al., 2009). If two resistors R1 and R2 at

temperatures T1 and T2 are connected directly to each other in

a loop, the heat exchange between them can be modeled by a

Langevin-type circuit analysis as indicated in Fig. 10 by the

voltage sources producing thermal noise. Assuming an ideal-

ized quantum limit, where the circuit transmits all frequencies

(a) (b)

FIG. 10. (a) Radiative heat flow is caused by the photons which

carry energy between resistors R1 and R2 at temperatures T1 and T2,

respectively. The heat transport can be modeled by having voltage

fluctuations �Vi as shown in (b). Here we have assumed total

transmission. The assumption can be relaxed by adding a nonzero

impedance to the loop.
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up to the thermal cutoff at !th ¼ kBTi=ℏ, the net heat current
between the two resistors is given by

P� ¼ R1R2

ðR1 þ R2Þ2
�k2B
12ℏ

ðT2
1 � T2

2 Þ: (35)

This is an interesting limit which applies for circuits on a chip
where the stray capacitances and inductances are small enough
such that the circuit low-pass cutoff frequency exceeds !th.
Equation (35) has an important limit for the maximum cou-
pling with R1 ¼ R2 and for small temperature differences
jT1 � T2j, namely, Gth¼P�=ðT1�T2Þ¼�k2BT=6ℏ�GQ, the

so-called quantum of thermal conductance (Pendry, 1983).
Equation (35) can also be applied in the case where one of the
resistors is replaced by an NIN tunnel junction with the
corresponding resistance. Another important case is that of
a hot resistor R at temperature Tenv, discussed in Sec. II.F. In
this limit, with RC cut off as discussed in Sec. II.F, one finds
that the heat absorption rate by a resistor or a normal tunnel
junction (at T�Tenv) is given by (Pekola and Hekking, 2007)

P� ¼ kBTenv

RTC
: (36)

III. REALIZATIONS

A. Normal-metal devices

Single-electron tunneling effects provide a means to
transport electrons controllably one by one. In this respect
the obvious choices are metallic single-electron circuits and
semiconducting quantum dots. The metallic ones can be
either in their normal or superconducting state or as hybrids
of the two. The quantum dots, metallic hybrids, and super-
conducting circuits will be discussed in later sections. The
first single-electron source was a metallic (nonsuperconduct-
ing) turnstile with four tunnel junctions and one active gate
(Geerligs et al., 1990). The word ‘‘turnstile’’ refers to a device
that is voltage biased at Vb between the external leads, but
where the transport of electrons is impeded under idle con-
ditions because of an energy gap. Under the active gate
operation, electrons are transported synchronously one at a
time. The finite voltage determines the direction of charge
transport at the expense that the device is also dissipative. We
discuss a more recent version of a turnstile in Sec. III.B.

The most impressive results of the early days of single-
electron sources were obtained by metallic multijunction
pumps, operating in a nonsuperconducting state. A prototype
of them, featuring the main principle, is the three-junction
pump, with two islands and a gate to each of them; see
Fig. 11(a). This kind of pump was successfully operated in
1991 by Pothier et al. (Pothier, 1991; Pothier et al., 1991,
1992). Figure 11(b) demonstrates the stability diagram of a
three-junction pump, which is essentially the same as that of
the more common double-island quantum-dot circuit. The
two axes here are the two gate voltages ng1, ng2 normalized

by the voltage corresponding to charge displacement of one
electron, i.e., ngi ¼ CgiVg;i=e, where Cgi is the gate capaci-

tance of island i. The stability diagram consists of lines
separating different stable charge states on the islands,
indicated by indices ðn1; n2Þ in the figure. The important
property of this stability diagram is the existence of the nodes

where three different charge states become degenerate; these

are the three states with the lowest energy. The pump is

operated around such a node, setting the working point at

this node by applying dc voltages to the two gates. We focus

here on one such node that at ng1 ¼ ng2 ¼ 1=3. Now if the

temporally varying gate voltages with frequency f added to

these dc gate biases are such that the cyclic trajectory en-

circles the node at ng1 ¼ ng2 ¼ 1=3 counterclockwise, one

electron is transported through the pump from left to right.

The simplest implementation of such a cyclic trajectory is a

circle around the node, which is represented by two equal-

amplitude (in ngi) sinusoidal voltages applied to the two

gates, phase shifted by 90�. We take point A as the starting

point of the cycle. There the system is in the charge state

(0, 0). Upon crossing the first degeneracy line, the new stable

charge state is (1, 0), meaning that an electron has to tunnel

from the left lead to island 1, while moving in this part of the

stability diagram. Reversible pumping is achieved when f is

so slow that the transition occurs right at the degeneracy line.

If, however, the pumping frequency is too fast, the tunneling

does not occur before meeting the next degeneracy line, and

the pumping fails. Roughly speaking, the tunneling process is

stochastic, where the decay time of the Poisson process is

determined by the junction resistance (see Sec. II.B), and if

the pumping frequency becomes comparable to the inverse

decay time for tunneling, the desired event can be missed. In

the successful cycle, on the contrary, the system next crosses

the degeneracy line between charge states (1, 0) and (0, 1), and

FIG. 11. A three-junction pump. Schematics shown in (a), where

the pump is biased by voltage V and with gate voltages U1 and U2.

(b) The stability diagram of the three-junction pump on the plane of

the gate voltages at zero bias voltage. For operation of the pump, see

text. From Pothier, 1991.
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under the same conditions, the system transits to the new stable
charge state by an electron tunneling from the left island to the
right one. In the remaining part of the cycle, on crossing the last
degeneracy line, an electron tunnels from the right island to the
right lead, completing the cycle where charge e (one electron)
has been transported from the left lead to the right one. By
cyclically repeating this path at frequency f, an average
current I ¼ ef runs from right to left, and this current can
be read, for instance, by a regular transimpedance amplifier.

One of the advantages of the three-junction pump over the
early turnstiles is that the device can be operated, in principle,
reversibly, since no external bias voltage is needed. It can
pump even against moderate bias. Another difference be-
tween the pump and the turnstile above is that in the pump
there are no unattended islands on which the charge would be
poorly controlled. Yet early realizations using fully normal-
metal conductors in both the turnstiles and pumps suffered
from other error sources which made these devices relatively
inaccurate, on the level of 1%, even at low operation fre-
quencies. A fundamental error source in this case is cotun-
neling, discussed in Sec. II.C. To circumvent this problem, a
pump with a longer array of junctions is desirable: the error
rate due to cotunneling is effectively suppressed by increasing
the number of junctions in the array.

Theoretical analysis of cotunneling in multijunction pumps
in the form of N junctions in series with nonsuperconducting
electrodes was performed by Jensen and Martinis (1992) and
Averin, Odintsov, and Vyshenskii (1993). Thermal cotunnel-
ing errors were analyzed with a focus on the cases N ¼ 4 and
5. The conclusion of the analysis was that under realistic
experimental conditions, the N ¼ 4 pump fails to produce an
accuracy better than about 10�5, insufficient for metrology,
whereas N ¼ 5 should be sufficiently good at low operation
frequencies, as far as cotunneling is concerned. This is
illustrated in Fig. 12, where a relative error of 10�8 was
predicted for an N ¼ 5 pump at the operation frequency
of f ¼ 1:3 MHz, assuming that the pump junctions have

RT¼500k� and C¼0:6fF, and that the working temperature

is T ¼ 50 mK. All these parameters are quite realistic. In

subsequent experiments (Martinis, Nahum, and Jensen,

1994), an error rate of about 0.5 ppm was achieved, which

is still orders of magnitude above the prediction based on

cotunneling for their circuit parameters and experimental

conditions. Next, focus was turned to an N ¼ 7 pump where

further improved results, 15 ppb, were obtained at pumping

frequencies of about 10 MHz (Keller et al., 1996). This

impressive result, depicted in Fig. 13, was proposed to present

a capacitance standard based on electron counting (Keller

et al., 1999) and it still today stands as the best achievement

in this respect. However, one notes that the frequency at

which such a multijunction pump can be operated is very

low, resulting in currents that are too small for a metrological

redefinition of the ampere.
An analysis of the pump accuracy in the framework of the

orthodox theory including cotunneling was presented by

Martinis, Nahum, and Jensen (1994) for the N ¼ 5 pump,

and by Kautz, Keller, and Martinis (1999) for the N ¼ 7
pump. In both cases, the experimental error rates could be

quantitatively explained by a theory in an intermediate

temperature range, where the majority of the errors was due

to thermally activated single-junction tunneling processes.

The observed low-temperature saturation of the error rates

was conjectured to arise from photon-assisted tunneling and

cotunneling, considered in this context theoretically, e.g., by

Martinis and Nahum (1993) and White and Wagner (1993).

Kautz, Keller, and Martinis (2000) explained quantitatively

the error rates observed in the earlier experiments performed

on pumps with N ¼ 4–7 junctions by including photon-

assisted processes in the model. The dominating error mecha-

nism in the experiments was found to be photon-assisted

single-electron tunneling, with negligible contribution from

cotunneling. Jehl et al. (2003) explained error processes in a

voltage-biased N ¼ 7 pump with the same model.
The rate at which photon-assisted events occur is deter-

mined by the spectral density of voltage fluctuations across

the junction at frequencies fph � �E=h, where �E is the

FIG. 12. Predicted relative cotunneling-induced error vs inverse

temperature for multijunction pumps, with N ¼ 4 (circles) and N ¼
5 (squares). The computer simulations (points) and the predictions

of analytic results (lines) are shown. Parameters are RT ¼ 20RK ,

f ¼ 4
 10�4=RTC, and CV=e ¼ �0:15. Adapted from Jensen and

Martinis, 1992.

FIG. 13. The seven-junction pump. (Left) The schematic of the

pump, with six islands, each with a gate. The electrons are pumped

to and from the external island on the top, and the charge on the

island is detected by a single-electron electrometer. (Middle) The

voltage Vp on the external island vs time when pumping �e with a

wait time of 4.5 s in between. (Right) The pumping error vs

temperature of the measurement, demonstrating the 15 ppb accuracy

at temperatures below 100 mK. Adapted from Keller et al., 1996.
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increase in electrostatic energy for a particular tunneling
process. To explain the observed leakage rates, the authors
in the above studies used SVðfÞ ¼ 	=jfj, with the fitting

parameter 	 assuming values from ð5 nVÞ2 to ð50 nVÞ2.
Kautz, Keller, and Martinis (2000) motivated the f�1 fre-
quency dependence of the power spectrum by the ubiquitous
charge noise present in SET electrometers, typically observed

at frequencies below 1 kHz. (Covington et al. (2000) applied a
calibrated amplitude ofmicrowave radiation to one terminal of
the pump, and the resulting tunneling rates were shown to be
described by the theory of photon-assisted tunneling. They
suggested that the origin of the high-frequency photons

responsible for error events in the pumping experiments is
the presence of fluctuating nonequilibrium charges near the
devices. In addition, we note that recent electron-trapping
results reported by Kemppinen et al. (2011) for a two-junction

SNS-type trap with a series resistor measured in an rf-tight
sample stage seem to indicate a much smaller flux of harmful
photons to the junctions than was observed by, e.g., Covington
et al. (2000).

Another successful line of metallic single-electron pumps
relies on a smaller number of junctions (N ¼ 3 or 5) while

employing a resistive on-chip environment to suppress harm-
ful cotunneling and photon-assisted tunneling (Lotkhov et al.,
2001; Camarota et al., 2012). Suppression of cotunneling by a
high-impedance environment was first demonstrated by Zorin
et al. (2000) through SET I-V measurements, motivated by

the earlier theoretical predictions (Golubev and Zaikin, 1992;
Odintsov, Bubanja, and Schön, 1992).

B. Hybrid superconducting–normal-metal devices

1. Operating principles

The hybrid turnstile, originally proposed and demonstrated

by Pekola et al. (2008), is based on a single-electron transistor
where the tunnel junctions are formed between a supercon-
ductor and a normal metal; see Fig. 14, top left. In principle, it
can be realized in either a SINIS or NISIN configuration

(Averin and Pekola, 2008; Kemppinen, Kafanov et al.,
2009). However, it has turned out for several reasons that
the former one is the only potential choice of the two for
accurate synchronized electron transport purposes (Averin
and Pekola, 2008). One reason is that in the NISIN structure

tunneling strongly heats the island due to Joule power and
weak energy relaxation in the small superconducting island,
whereas in the SINIS case the island is of normal metal, better
thermalized to the bath, and under proper operation, it can be

cooled, too (Kafanov et al., 2009). The NISIN turnstile may
also suffer from unpredictable 1e-2e periodicity issues.
Furthermore, a detailed analysis of the higher-order tunneling
processes shows that cotunneling limits the fundamental
accuracy of the NISIN turnstile, whereas uncertainties below

10�8 are predicted for the SINIS version (Averin and Pekola,
2008). Hence we focus on the SINIS turnstile here.

The stability diagram of a conventional single-electron
transistor is composed of Coulomb diamonds on the gate
voltage Vg–drain-source voltage Vb plane; see Fig. 15. Gate

voltages Vg are again written in dimensionless form, normal-

ized by the voltage corresponding to charge displacement of
one electron ng. In this case the adjacent diamonds touch each

other at a single point at Vb ¼ 0, implying that the charge
state is not locked for all gate-voltage values. The operation
of the SINIS turnstile, on the contrary, is based on the
combined effect of the two gaps: the superconducting BCS
gap expands the stability regions of the charge states and the
neighboring regions overlap. The principle of operation of the
turnstile is illustrated in Fig. 15. When the gate charge ngðtÞ
alternates between two neighboring charge states, electrons
are transported through the turnstile one by one. A nonzero
voltage, which yields a preferred direction of tunneling, can
be applied since the idle current is ideally zero in the range
jeVbj< 2� at any constant gate charge value. If the gate
signal is extended to span kþ 1 charge states, one obtains
current plateaus with k electrons pumped per cycle. However,
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FIG. 14 (color online). The hybrid NIS turnstile. Top left:

A scanning electron micrograph of a SINIS turnstile, which is a

hybrid single-electron transistor with superconducting leads and a

normal-metal island. Top right and bottom: Current of a turnstile

under rf drive on the gate at different operation points with respect

to the dc gate position and the rf amplitude of the gate. Adapted

from Pekola et al., 2008 and Kemppinen, 2009.

FIG. 15 (color online). Schematic picture of pumping (a) with a

normal SET, (b) with a hybrid SET with EC ¼ �, and (c) with a

hybrid SET with EC ¼ 2�. The shaded areas are the stability

regions of the charge states n ¼ 0 and 1. The edges of the normal

SET stability regions are drawn in all figures with dashed black

lines. The long shaded lines represent the transition thresholds from

states n ¼ 0 and 1 by tunneling through the left (L) or the right (R)

junction in the wanted forward (F, solid line) or unwanted backward
(B, dashed line) direction. The thick black line corresponds to

pumping with constant bias voltage eVb=� ¼ 1 and a varying

gate voltage. From Kemppinen, 2009.
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the first plateau around the symmetric (degeneracy of
two neighboring charge states) dc position of the gate is
optimal for metrology. Note that if a nonzero bias voltage
is applied across a normal-state SET, a gate span between
different charge states always passes a region where none of
the states is stable and where the current can freely flow
through the device [white region in Fig. 15(a)]. Hence the
normal-state SET cannot act as a turnstile even in principle,
except for an experimentally infeasible gate sequence where
ng jumps abruptly between its extreme values in the

Coulomb-blockaded parts of the stability diagram.
Figure 14 presents data obtained from a basic turnstile

operated under various conditions (Pekola et al., 2008).
Several wide current plateaus with increasing gate amplitude
Ag can be seen. The gate drive is expressed here as ngðtÞ ¼
ng0 þ AgwðtÞ, where ng0 and Ag are the gate offset and drive

amplitude, respectively. The gate wave form of unit amplitude
is denoted by wðtÞ. The optimal gate drive is symmetric with
respect to the two charge states: therefore in later sections we
assume that ng0 ¼ 1=2. In these first experiments, the accuracy

of a synchronized charge transport as I ¼ Nef, with N the
integer index of a plateau, could be verified within about 1%.

A rough estimate for the optimal bias voltageVb is obtained
by considering the dominant thermal errors (Pekola et al.,
2008). The probability of an electron tunneling against bias,
i.e., ‘‘in the wrong direction’’ is given by � expð�eVb=kBTÞ.
This error would lead to no net charge transferred during a
pumping cycle, but it can be suppressed by increasing Vb. On
the other hand, increasing Vb increases the probability of
transporting an extra electron in the forward direction. The
magnitude of this kind of an error can be estimated as
� exp½�ð2�� eVbÞ=kBT�, since there is an energy cost given
by the voltage distance from the conduction threshold at 2�=e.
Combining these conditions, we obtain a trade-off eVb 
 � as
the optimum bias voltage, where the thermal error probability
is� expð��=kBTÞ. The combined thermal error probability is
�10�9 at realistic temperatures of about 100 mK and with the
BCS gap of aluminum �=kB 
 2:5 K. The exact optimum of
the bias close to the value given here depends on many other
processes to be discussed. Experimentally, however, the choice
eVb ¼ � is a good starting point.

The optimal gate drive amplitude Ag lies somewhere

between the threshold amplitudes for forward and backward
tunneling which are, for the optimum bias voltage, Ag;ft ¼
�=4Ec and Ag;bt ¼ 3�=4Ec, respectively. The subgap leak-

age is maximized at the degeneracy point ng0 ¼ 1=2. In this

respect, a square-wave signal is optimal. On the other hand,
passing the threshold for forward tunneling too quickly tends
to heat the island, whereas a sine signal can also cool it.
Hence the optimal wave form is of some intermediate form.

The SINIS turnstile presents the choice of a single-electron
source which is easy to manufacture and operate, and whose
characteristics can be analyzed theoretically into great detail.
It promises high accuracy as discussed in Sec. III.B.2. Its
operation in a parallel configuration is straightforward thanks
to the simple element of a single turnstile, and therefore it can
yield higher currents than the other fixed-barrier single-
electron sources presented in Sec. III.A. Thus it can be
considered as a promising candidate in providing a realization
of the ampere.

2. Higher-order processes

As for the fully normal-metal pumps, the idealized picture
of electron transport based on single-electron tunneling is
disturbed by simultaneous tunneling of several electrons.
Owing to the gap in the quasiparticle excitation spectrum of
a BCS superconductor, elastic cotunneling takes place only
when the bias voltage over the device exceeds 2�=e. The
turnstile operation is achieved with voltages well below this

threshold and hence cotunneling is suppressed, in contrast to
purely normal-metal devices. As a general rule, any process
that leaves behind an unpaired electron on a superconducting
electrode incurs an energy penalty equal to �.

For hybrid structures, the lowest-order tunneling process
where the energy cost of breaking a Cooper pair can be
avoided is Andreev tunneling (Andreev, 1964), i.e., a com-
plete Cooper-pair tunneling through a junction. Andreev tun-
neling has been studied thoroughly with single NIS junctions
(Blonder, Tinkham, and Klapwijk, 1982; Eiles, Martinis, and

Devoret, 1993; Lafarge et al., 1993; Hekking and Nazarov,
1994; Pothier et al., 1994; Rajauria et al., 2008; Greibe et al.,
2011; Maisi et al., 2011) as well as in so-called Cooper-pair
splitters where the electrons of a Cooper pair tunnel to differ-
ent normal-metal regions (Hofstetter, Csonka, and Nygrd,
2009; Herrmann et al., 2010; Wei and Chandrasekhar,
2010). In the case of a SINIS turnstile, Andreev tunneling
manifests itself as two electrons being added to or removed
from the island. Consecutively, increasing the charging energy

of a device makes Andreev tunneling energetically unfavor-
able, suppressing it (Averin and Pekola, 2008; Maisi et al.,
2011). The impact of Andreev tunneling on the accuracy of a
turnstile has been directly observed on the pumped current
(Aref et al., 2011). In Figs. 16(a) and 16(b), stability diamonds
for single-electron and Andreev tunneling are shown for
high-EC and low-EC devices, respectively. The pumping pla-
teau of the high-EC device, shown in Fig. 16(c), is free of

Andreev tunneling whereas the low-EC sample exhibits it as
seen in Fig. 16(d).

For high-charging energy devices where Andreev tunneling
is suppressed, the process limiting the accuracy of the SINIS
turnstile is cotunneling of a Cooper pair and a single electron
(Averin and Pekola, 2008). In this process, the island will be
charged or discharged by a single electron while another
electron effectively passes through the device. The net energy
change is that of the corresponding single-electron process,
plus the energy gained in transporting theCooper pair fromone
electrode to another, which equals 2eVb in the forward direc-

tion. Hence, the process cannot be made energetically unfav-
orable in a working turnstile. However, it can be suppressed
relative to the first-order processes by making the junctions
opaque enough. Ideally, to obtain an accuracy of 10�7, one
needs to limit the speed of an aluminum-based turnstile to a
few tens of pA (Averin and Pekola, 2008). This theoretically
predicted maximum operation speed is expected to slow down
by an additional factor of 3 due to nonuniformity of the tunnel

barriers (Aref et al., 2011; Maisi et al., 2011). Thus 10 pA is
expected to be the optimum yield per aluminum-based turn-
stile. In addition to the Cooper-pair electron cotunneling, the
cotunneling of two Cooper pairs through the device increases
the leakage current (Zaikin, 1994). In optimized devices
discussed above, the Cooper-pair electron cotunneling is
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nevertheless the dominant process limiting the accuracy since
its threshold is exceeded in the turnstile operation and it is of
lower order than the Cooper-pair cotunneling.

3. Quasiparticle thermalization

Single-electron tunneling to or from a superconductor
will generate quasiparticle excitations. Once created, the
excitations carry an energy of �, which enables them to cross
the tunnel barrier to the normal metal if the electrostatic
energy cost is lower than �. Hence, they constitute a potential
source of pumping errors for the hybrid turnstile. Typically
the excitations are injected close to the gap edge. Also, the
quasiparticles relax quickly internally compared to the weak
recombination rate, so that at low temperatures we can
assume them to lie close to the gap edges and have a
temperature Tqp which is higher than the phonon bath tem-

perature of the system. With this assumption, we calculate the
density of the quasiparticle excitations to be

nqp ¼ 2DðEFÞ
Z 1

�
dE�SðEÞe�
E ¼ ffiffiffiffiffiffiffi

2�
p

DðEFÞ� e�
�

ffiffiffiffiffiffiffiffi


�
p ;

(37)

where 
 ¼ 1=kBTqp, and we assumed e�
� � 1 and a neg-

ligible branch imbalance (Clarke, 1972). The tunneling rate
caused by the excitations can be calculated from the orthodox
theory expressions (see Sec. II.B). It depends linearly on the

density and is independent of the biasing at low energies
�qp ¼ nqp=½2e2RTDðEFÞ�. It should be compared to the rate

at which we pump electrons. As discussed, we obtain roughly
10 pA from a turnstile free of higher-order tunneling errors at
an accuracy of 10�7. The tunneling resistance of such a device
is approximatelyRT ¼ 1 M�. To ensure that the quasiparticle
excitations do not cause errors on this level, we require the
tunneling rate to satisfy �qp < 10�7 
 10 pA=e. With

parameter values DðEFÞ ¼ 1:45
 1047 J�1 m�3 and � ¼
200 �eV, we need nqp < 0:04 �m�3. Such a level is demon-

strated in an experiment without active driving of the system
(Saira, Kemppinen et al., 2012) and is sensitive to the filtering
and shielding of the sample. Also, the trapping of quasipar-
ticles was shown to be important in this experiment.

Next we consider the relaxation of the quasiparticles.
In turnstile operation, injection of hot quasiparticles through
the tunnel junction drives the quasiparticle system of the
superconductor actively out of equilibrium. We model the
quasiparticle relaxation in the superconductor in terms of
heat flow and obtain a diffusion equation for nqp. Such an

approach has been used to model several experiments (Ullom,
Fisher, and Nahum, 1998; Rajauria, Courtois, and Pannetier,
2009; O’Neil et al., 2011; Peltonen et al., 2011; Knowles,
Maisi, and Pekola, 2012). The heat flow of quasiparticles J
follows the equation r � J ¼ �p, where p is the power per
unit volume removed from the quasiparticles. We use
Fourier’s law of heat conduction J ¼ ��SrTqp, where

�S ¼ 6

�2

L0Tqp

�n

ð
�Þ2e�
�

is the heat conductivity of a superconductor (Bardeen,
Rickayzen, and Tewordt, 1959). Here L0 is the Lorenz num-
ber and �n is the resistivity in the normal state. By taking the
derivatives only over strong exponential dependences and
using Eq. (37), we obtain a diffusion equation

Dr2nqp ¼ p; (38)

where the coefficient

D ¼
ffiffiffi

2
p ðkBTqp�Þ1=2
ffiffiffiffi

�
p

e2�nDðEFÞ
is assumed to be constant. To write down the source term on
the right side of Eq. (38), we consider the available mecha-
nisms of heat conduction. Electron-phonon coupling is an
inherent relaxation mechanism for quasiparticles inside a
superconductor. However, it is so weak that the resulting
decay length of nqp is usually on the millimeter scale

(Martinis, Ansmann, and Aumentado, 2009; Peltonen et al.,
2011). Typically, to enhance the relaxation, one uses so-
called quasiparticle traps (Pekola et al., 2000; Rajauria,
Courtois, and Pannetier, 2009; O’Neil et al., 2011), which
are normal-metallic regions connected to the superconductor
either directly or via an oxide layer. Once the hot quasipar-
ticles enter the trap, the stronger electron-phonon relaxation
in a normal metal removes their excess energy. A perfect
quasiparticle trap forces the quasiparticle temperature at the
interface to equal the electronic temperature of the normal
metal. In the context of Eq. (38), this can be implemented as a
boundary condition for nqp. The boundary condition at the

FIG. 16 (color online). (a) Stability diamonds for single-electron

tunneling (solid lines) and Andreev tunneling (dotted lines) for a

sample with EC > �. (b) Stability diamonds for EC < �. (c) The
first pumping plateau of the high-EC device as a function of the

gate-voltage amplitude Ag. The solid symbols show pumped current

with f ¼ 10 MHz and three different bias voltages. Dotted lines are

the simulated traces with the corresponding biasing. (d) The same

data as in (c) but now for the low-EC device showing excess current

due to Andreev tunneling. Adapted from Aref et al., 2011.
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junction is obtained by setting the heat flow equal to the
power injected by the quasiparticle current.

When the trap is connected via an oxide barrier, the heat is
carried by quasiparticle tunneling. The orthodox theory result
for the source term in such a configuration is

p ¼ 2�T

e2d

Z 1

�
dEEnSðEÞðe�
E � e�
0EÞ

¼ �T

e2DðEFÞd
ðnqp � nqp0Þ; (39)

which is obtained by setting the chemical potential difference
of the trap and the superconductor to zero and assuming the
diffusion to take place in two dimensions which is well
justified for the thin films typically used in the samples. We
also assumed kBTqp � �. Here �T is the electrical conduc-

tance per unit area of the trap, d is the thickness of the
superconducting film, 
 ¼ 1=kBTqp, and 
0 ¼ 1=kBT0,

where T0 is the temperature of the normal-metal electrons.
We denote by nqp0 the quasiparticle density of a fully

thermalized superconductor, i.e., one where Tqp ¼ T0.

We consider some typical geometries of superconducting
leads used in devices. First take a lead with a constant cross
section as shown in Fig. 17(a). We assume that a heat flow Pinj

is injected at one end of the line, and that the other end is
thermally anchored by a direct trap. For the lead itself, we
assume a trap connected via an oxide barrier to be located on
top. We can solve Eqs. (38) and (39) analytically in one
dimension to obtain

nqpðxÞ¼ 1

D
ffiffiffi

k
p ðe

ffiffi

k
p ð2l�xÞ �e

ffiffi

k
p

xÞðe2
ffiffi

k
p

lþ1Þ�1
Pinj

wd
þnqp0:

Here

k ¼
ffiffiffiffi

�
p

�n�T�
ffiffiffi

2
p ðkBTqp�Þ1=2d

;

and x is the coordinate along the wire starting at the injection
side (x ¼ 0) and ending at the direct trap (x ¼ l). In Fig. 17(c),
we show the quasiparticle density for various values of�T . The
lowest �T corresponds to the case where the quasiparticles
diffuse only through the wire and then relax at the direct
contact. At higher transparencies, the oxide trap starts to
help for the relaxation as well. If we use parameter values
d ¼ 50 nm, w ¼ 100 nm, l ¼ 1 �m, and Tqp ¼ 130 mK,

which are typical for fabricated samples, we see that a typical
injection power ofPinj ¼ 2 fW yields nqp � nqp0 ¼ 10 �m�3

without the oxide trap and even with the highest transparency
�T ¼ ð100 ��m2Þ�1that is possible to fabricate without
pinholes (Brenning, Kubatkin, and Delsing, 2004), we get
only an order of magnitude improvement.

To decrease the quasiparticle density to the acceptable
level discussed, one needs to optimize the lead geometry as
well. Therefore, we consider a lead that widens as shown in
Fig. 17(b). In this case, we can solve a one-dimensional
diffusion equation in polar coordinates. The junction is as-
sumed to be located at radius r ¼ r0, and the direct contact
trap to begin at radius r ¼ rt. Thickness of the lead and the
overlaid trap are as in the previous example. The solution of
Eqs. (38) and (39) can be expressed with modified Bessel
functions I	 and K	 as

nqpðrÞ ¼ nqp0 þ 1

D
ffiffiffi

k
p Pinj


r0d

��

K1ð
ffiffiffi

k
p

r0Þ

þ K0ð
ffiffiffi

k
p

rtÞ
I0ð

ffiffiffi

k
p

rtÞ
I1ð

ffiffiffi

k
p

r0Þ
��1

K0ð
ffiffiffi

k
p

rÞ

þ
�

I1ð
ffiffiffi

k
p

r0Þ þ I0ð
ffiffiffi

k
p

rtÞ
K0ð

ffiffiffi

k
p

rtÞ
K1ð

ffiffiffi

k
p

r0Þ
��1

I0ð
ffiffiffi

k
p

rÞ
�

:

In Fig. 17(d), we show nqpðrÞ for various transparencies of the
oxide trap. The lowest transparencies, again, correspond to a
pure diffusion limit. Note that the quasiparticle density at the
junction depends only weakly on the transparency of the trap:
Because of the logarithmic dependence, changing the trans-
parency by several orders of magnitude makes less than an
order of magnitude difference to nqpðr0Þ. In a widening lead,

heat sinking is made efficient by spreading the heat to a larger
volume, and the area of the trap contact is also increased. By
using realistic parameter values d ¼ 50 nm, 
 ¼ �=2, r0 ¼
50 nm, rt ¼ 5 �m, Tqp ¼ 130 mK, �n ¼ 10 n�m, and

Pinj ¼ 2 fW, we see that it is possible to reach nqp <

1 �m�3 at the junction even without an oxide trap.
Increasing the thickness of the electrode by a factor of 10
would then start to be sufficient for the metrological accuracy
requirements.

Several experiments (Ullom, Fisher, and Nahum, 1998;
Rajauria, Courtois, and Pannetier, 2009; O’Neil et al.,
2011; Knowles, Maisi, and Pekola, 2012) show that the above
diffusion model is valid for quasiparticle densities of the
order of nqp � 10 �m�3. A smaller quasiparticle density

required for metrological applications implies that the abso-
lute number of quasiparticles in the conductors becomes very
small. With a typical volume of a lead 100 nm
 100 �m2,

.
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.
. . . . . .

.

.

.

.

.

.
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(a)

(c) (d)

(b)

FIG. 17 (color online). Two typical geometries for a supercon-

ducting bias lead: (a) A lead having a constant cross section

determined by the thickness d and width w. The length of the

line is l. (b) A sector-shaped lead characterized by an opening angle


, initial radius r0, and final radius rt. For the picture 
 is set to

180�. The colored parts on top denote a quasiparticle trap connected
via an oxide barrier. (c) Quasiparticle density nqp along a constant-

cross-section line with various oxide trap transparencies k, and

(d) along an opening line. In the plots, nqp is scaled by ni ¼
DlPinj=Ai, where the injection area Ai equals wd for (c) and 
r0d

for (d). For the leads in (b) and (d), we also use the notation x ¼
ðr� r0Þ=l with l ¼ rt � r0 and have used values r0 ¼ 20 nm and

rt ¼ 5 �m.
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the quasiparticle number is N < 1 with nqp < 0:1 �m�3. It is

not currently obvious if such a situation can be treated with
the diffusion model or whether a more elaborated theory is
required. Pumping experiments on metrological accuracy can
provide a way to shed light on such a situation.

C. Quantum-dot-based single-electron pumps and turnstiles

In this section, we introduce semiconducting quantum dots
and review their applications as single-electron current
sources, concentrating on the experimental developments.
For an overview of the related theory, we refer to Sec. II.E.

1. Introduction to quantum dots as electron pumps

In contrast to conventional three-dimensional bulk con-
ductors or more exotic two-dimensional conductors such as
quantum Hall systems or graphene, semiconducting quantum
dots can be regarded as zero-dimensional conductors, for
which the electrons are tightly confined in all three spatial
dimensions. Thus quantum dots show truly discrete excitation
spectra that are reminiscent of those of natural atoms. One
of the early key experiments on these artificial atoms
(Kastner, 1993) was the observation of discrete quantum
levels (Reed et al., 1988; Johnson et al., 1992; Su,
Goldman, and Cunningham, 1992) and the shell structure in
the filling of the electron states (Tarucha et al., 1996).

As discussed in Sec. II.E, the conceptual difference be-
tween small metallic islands studied in the previous sections
and quantum dots is that the Fermi level and hence the
conduction electron density in the metallic islands is high,
making the energy spacing between the spatially excited
electron states extremely small. The metallic system can be
typically described by a constant density of states as opposed
to the strongly peaked density of states in quantum dots.
Furthermore, quantum dots can contain a low number of
electrons in the conduction band ranging from zero
(Ashoori et al., 1993; Elzerman et al., 2003; Lim et al.,
2009) to more than hundreds, similar to natural atoms,
whereas the corresponding number is orders of magnitude
higher for metallic systems. In fact, the sharp potential
created by a single donor atom in silicon can also be consid-
ered to be an ultrasmall quantum dot. By connecting such
natural atoms to electron reservoirs, for example, SETs
(Lansbergen et al., 2008; Tan et al., 2010; Fuechsle et al.,
2012) and electron pumps (Lansbergen, Ono, and Fujiwara,
2012; Roche et al., 2012) have been fabricated.

Figure 18 shows different types of quantum-dot architec-
tures. The most conventional quantum dots are based on a
two-dimensional degenerate electron gas (2DEG) that either
forms naturally, for example, at the interface between
AlGaAs and GaAs (Chang, Esaki, and Tsu, 1974) or is
induced at the interface between silicon and silicon oxide
by an external gate (Ando, Fowler, and Stern, 1982).
Alternatively, quantum dots can be fabricated from epitax-
ially grown nanowires (Ohlsson et al., 2002; Fasth et al.,
2007; Nadj-Perge et al., 2010) or from lithographically
defined graphene islands (Connolly et al., 2012). In the
conventional dots, the confinement is very strong in the
direction perpendicular to the interface. Etching techniques,
local anodic oxidation (Held et al., 1997), pattern-sensitive

oxidation (Takahashi et al., 1995), or metallic electrodes
[see Figs. 18(c) and 18(d)] can be employed to provide the
electrostatic potential defining the well for the electrons in the
plane of the interface. The in-plane diameter of this type of
dot can vary from tens of nanometers to several micrometers.
Thus there are plenty of atoms and electrons in the region of
the dot but most of them lie in the valence band and require an
energy of the order of 1 eV to be excited. Since the relevant
energy scales for the spatial excitations and the single-
electron charging effects are orders of magnitude lower, the
occupation of the valence states can be taken fixed.

In the effective mass approximation (Ando, Fowler, and
Stern, 1982), the details of the electrostatic potential and the
effects of the valence electrons in the solid are coarse grained
such that only the electrons in the conduction band are taken
into account, and these electrons are treated as particles in the
smooth potential defining the dot. This description has proved
to reproduce several important experimental findings both
qualitatively and quantitatively (Ando, Fowler, and Stern,
1982), and it provides insight into the single-electron phe-
nomena in quantum dots. In particular, the potential barriers
arising from the gates defining the dot can be visualized just
for the small number of electrons in the conduction band.

2. Pioneering experiments

Although quantum dots hold a much smaller number of
electrons than metallic islands, probably their greatest benefit
is that the tunnel barriers can be formed by electrostatic
potentials and controlled externally by gate voltages. Thus
the height of the potential barrier, through which the electrons
tunnel to the source and drain reservoirs, can be controlled
in situ. This property provides fruitful grounds for electron
pumping since the dependence of the tunneling rate on the
barrier height and hence on the voltage of the gate electrode is
typically exponential.

The first experiments employing quantum dots for
frequency-locked single-electron transport were reported by
Kouwenhoven et al. (1991a, 1991b) [see also Kouwenhoven
(1992)]. Here they used surface-gated GaAs dots as shown in
Fig. 19(a). The negativevoltages on gatesC,F, 1, and 2 deplete
the 2DEG that is located 100 nm below the surface, thus
defining the quantum dot in the center with a radius of about
300 nm and charging energy 2EC ¼ e2=C� ¼ 0:67 meV.
(Gates 3 and 4 are grounded and do not deplete the 2DEG.)

FIG. 18 (color online). (a) Lateral and (b) vertical quantum-dot

arrangements. All quantum-dot pumps and turnstiles discussed are

in the lateral arrangement. The electrons tunnel between the dot and

the source and drain reservoirs. The tunnel barriers between the dot

and the reservoirs are created either by the electrostatic potentials of

nearby gate electrodes or by different materials such as AlGaAs.

The gate arrangement for (c) the accumulation and (d) depletion

mode quantum dots in the lateral arrangement.
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In addition to dc voltages defining the dot, 180�-phase-
shifted sinusoidal rf drive is superimposed on gates 1 and 2,
lowering one barrier at a time. This rf drive induces a turnstile
operation as shown in Figs. 19(b) and 19(c) for negative bias
voltage on the left side of the dot: when the voltage at gate 1 is
high (low tunnel barrier) and low at gate 2 (high tunnel
barrier), an excess electron enters the dot through the left
barrier [see Fig. 19(b)], and when the voltage at gate 1 is low
and high at gate 2, the electron escapes through the right
barrier [see Fig. 19(c)]. Thus the average dc current through
the device in the ideal case is given by Ip ¼ ef, where f is the

operation frequency. For bias voltages greater than the charg-
ing energy jeVj � EC, more than a single electron can be
transported in a cycle yielding ideally Ip ¼ nef, where n is

an integer. Signatures of this type of current quantization
were observed in the experiments (Kouwenhoven et al.,
1991a, 1991b; Kouwenhoven, 1992) and are illustrated in
Fig. 19(d). The current through the device as a function of the
bias voltage tends clearly to form a staircaselike pattern with
the step height ef. This was the first experimental demon-
stration of current quantization in quantum-dot structures.
Note that in addition to the turnstile operation, Fig. 19(d)
also shows the pumping of electrons against the bias voltage
for certain phase differences of the driving signals. The error
in the pumped current is a few percent, falling somewhat
behind the first experiments on metallic structures reported by
Geerligs et al. (1990).

The second set of experiments on single-electron turnstiles
based on quantum dots was published by Nagamune et al.
(1994). Here the quantum dot forms a gallium arsenide 2DEG
that is wet etched into the shape of a 460-nm-wide wire as
illustrated in Fig. 20(a). Two 230-nm-wide metallic gates are
deposited perpendicular to the wire at a distance of 330 nm.
This different barrier gate configuration and the higher charg-
ing energy of 2EC ¼ 1:7 meV resulted in a clear improve-
ment of the staircase structure as shown in Fig. 20(b).
However, they reported that a parallel channel forms due to
the rf operation and the effect of this channel is subtracted
from Fig. 20(b). They estimated the accuracy of their device
to be about 0.4% if the correction from the parallel channel is
taken into account.

In 1997–2001, a series of experiments was carried out
on so-called multiple-tunnel junction devices as electron
pumps (Tsukagoshi et al., 1997; Tsukagoshi, Alphenaar,
and Nakazato, 1998; Altebaeumer and Ahmed, 2001;
Altebaeumer, Amakawa, and Ahmed, 2001). Here the most
common device was based on either �-doped GaAs or
phosphorus-doped silicon that was etched such that a central
region is connected to source and drain reservoirs by narrow
strips as shown in Fig. 21(a). The side gates near the strips are
set to a constant potential and an rf drive on the central side
gate induces a current that depends linearly on frequency as
shown in Fig. 21(b). The explanation of this type of operation
is that the dopants and disorder in the strips function as
Coulomb-blockade devices themselves rather than as single
tunnel junctions, which gives rise to the term multiple-tunnel
junction. Since these experiments were more motivated by
applications in information processing (Ono et al., 2005) with
only a few electrons rather than finding a metrological current
source, the accuracy of the device was not studied in detail.

3. Experiments on silicon quantum dots

The first step toward single-electron pumping in silicon
was taken by Fujiwara and Takahashi (2001) as they pre-
sented an ultrasmall charge-coupled device and demonstrated
that it could be used to trap and move individual holes
controllably at the temperature of 25 K. This device was
fabricated with silicon-on-insulator techniques (Takahashi
et al., 1995) and had two adjacent polysilicon gates acting
as metal-oxide-semiconductor field-effect transistors
(MOSFETs). Subsequently, a rather similar device with
charging energy 2EC ¼ 30 meV shown in Fig. 22(a) was
utilized for electron pumping by Ono and Takahashi (2003)

FIG. 19. The first single-electron current source based on quantum

dots by Kouwenhoven et al. (1991b), 1991a). (a) SEM image of the

device from the top; (b), (c) operation principle; and (d) measured

I-V curves reported. The gate configuration corresponds to the case

in Fig. 18(d). The different I-V curves are measured while driving

the turnstile with different center-gate [gate C in (a)] voltages, rf

amplitudes, and phase differences. The curves are not offset and the

dashed lines show the current levels nef with n ¼ �5; . . . ; 5.

Adapted from Kouwenhoven et al., 1991b, 1991).
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FIG. 20. (a) Schematic illustration of the device and (b) observed

current plateaus during the turnstile operation. From Nagamune

et al., 1994.

FIG. 21. (a) SEM image of the device and (b) pumped current

through it in the experiments by Altebaeumer and Ahmed (2001).

Different values of the current correspond to different dc voltages

VG1 [see (a)]. Adapted from Altebaeumer and Ahmed, 2001.
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at the temperature of 25 K. They obtained an accuracy of the

order of 10�2 up to 1 MHz pumping that was also the

limitation set by the calibration of their measurement equip-

ment. Here the electron pumping was based on two sinusoidal

driving signals that are offset by less than 180�, which causes
the chemical potential of the dot to move during the cycle.

In addition to pumping, Ono et al. (2003) utilized the

device shown in Fig. 22(a) as a single-electron turnstile.

The operational principle is the same as in the pioneering

experiments with GaAs quantum dots described in Figs. 19(b)

and 19(c). Ono et al. (2003) observed current steps of ef up to

f ¼ 1 MHz operation frequencies [see Fig. 23(a)]. The flat-

ness of the plateaus was of the order of 10�2 measured at

25 K. In these experiments, the tunnel barrier was formed by

the combination of the gate voltages and the oxidation pro-

cess developed by Takahashi et al. (1995) limiting the pump-

ing frequencies. The first fully gate-tunable turnstile in silicon

was demonstrated by Fujiwara et al. (2004) at 20 K with

2EC ¼ 16 meV and the relative uncertainty in the pumped

current of the order 10�2 at the maximum applied pumping

frequency 100 MHz. This was a clear improvement in the

speed of quantum-dot electron pumps.
Chan et al. (2011) used metallic aluminum gates to define a

silicon quantum dot in the electron accumulation layer of the

device as shown in Fig. 23(b). Although the relative variation

of the current at the plateau they measured was below 10�3

for a broad range of source-drain voltages [see Fig. 23(c)],

they could not strictly claim lower than 2% relative uncer-

tainty in the current at 60 MHz pumping frequency due to the

inaccurate calibration of the gain of the transimpedance

amplifier employed. These experiments were carried out

with 2EC ¼ 2:8 meV at 300 mK phonon temperature but

the sequential tunneling model used to fit the data by Chan

et al. (2011) suggested that the electron temperature of

the dot rose up to 1.5 K. It is to be studied whether 1.5 K

was due to power dissipated at the surface mount resistors in

the vicinity of the sample or due to the direct heating of the

2DEG from the electrostatic coupling to the driven gate

potentials.
Fujiwara, Nishiguchi, and Ono (2008) introduced a

single-electron ratchet based on a silicon nanowire quantum

dot with two polysilicon gates working as MOSFETs

[Fujiwara et al. (2004) also employed this type of device].

In general, ratchets generate directional flow from a non-

directional drive due to the asymmetry of the device. Here an

oscillating voltage is applied to one of the gates such that an

electron is captured through it near the maximum voltage,

i.e., minimum barrier height, and ejected through the other

barrier near the minimum voltage. In fact, the number of

electrons pumped per cycle depends on the applied dc

voltages and current plateaus up to 5ef were reported.

Furthermore, a nanoampere pumped current was observed

at the 3ef plateau with the pumping frequency f ¼ 2:3 GHz.
The error in the current was estimated to be of the order of

10�2 for the experiment carried out at 20 K temperature.

Whereas in the conventional multiparameter pumps, the

pumping errors arise mostly due to missed or excess tunnel-

ing events in a quasistatic Coulomb-blockade regime, the

errors in the single-parameter pumps are taken to be domi-

nated by a dynamic process, in which electrons tunnel out of

the dot to the source lead.
Recently, Jehl et al. (2012) reported on frequency-locked

single-electron pumping with a small quantum dot formed in

metallic NiSi nanowire interrupted by two MOSFETs con-

trolled by barrier gates. With rf drives on the barrier

FIG. 22. (a) SEM image of the device and (b) observed current

plateaus up to 1 MHz pumping frequency on a silicon quantum dot.

From Ono and Takahashi, 2003.
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FIG. 23 (color online). (a) Measured current plateaus for different

frequencies of the turnstile operation with the device shown in

Fig. 22(a). From Ono et al., 2003. (b) SEM image of the silicon

quantum-dot device and a schematic measurement setup employed

in the experiments by Chan et al. (2011). (c) Measured current

plateaus (solid line) and the corresponding theoretical curve (dashed

line) by Chan et al. (2011). The insets show zooms at the n ¼ 0
(bottom) and n ¼ 1 (top) plateaus. The dashed lines show �10�3

relative deviation from the ideal ef level. From Chan et al., 2011.
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gates, they were able to pump currents beyond 1 nA but the
accuracy of the pump was not studied in detail. The MOSFET
channels in this device had very sharp turn-on characteristics
requiring only about 4.2 mV of gate voltage to change the
conductivity of the channel by a decade, which can be
important in reducing unwanted effects from the gate-voltage
drive such as heating.

The first error- counting experiments in silicon were car-
ried out by Yamahata, Nishiguchi, and Fujiwara (2011) [see
also Nishiguchi et al. (2006)]. In contrast to the pioneering
error-counting experiments by Keller et al. (1996), only a
single silicon nanowire quantum dot was used as the current
source and the electrons were steered into and out of a
quantum dot coupled to a charge sensor. By opening the
MOSFET separating the node from the drain reservoir, it
was possible to use the same device as a dc current source.
The observed pumping error was of the order of 10�2 and was
reported to be dominated by thermal errors at the 17 K
temperature of the experiments. Furthermore, electron-
counting experiments were recently carried out by Fricke
et al. (2013) in a quantum-dot array. Further details of
error-counting schemes are discussed in Sec. III.H.2.

4. Experiments on gallium arsenide quantum dots

After the pioneering experiments discussed in Sec. III.C.2,
the focus on single-electron sources based on gallium arsen-
ide moved toward the idea of using SAWs to drive the single
electrons in a one-dimensional channel—a topic to be dis-
cussed in Sec. III.D. In this section, we focus on gate-
controlled GaAs pumps for dc current. A similar device to
the ones discussed here has also been applied in the search for
an ac-current standard which is the topic of Sec. III.G.1.

The seminal work by Blumenthal et al. (2007) took gate-
controlled GaAs quantum dots a leap closer to a metrological
current source, namely, they reported 547 MHz (87.64 pA)
single-electron pumping with one-standard-deviation (1�)
relative uncertainty of 10�4 (see Fig. 24). However, they
did not report the full dependence of the pumping errors as
functions of all control parameters. As the device, they
employed a chemically etched AlGaAs-GaAs wire with
overlapping metallic gates as shown in Fig. 24. Only
the three leftmost gates L, M, and R were used such that
180�-phase-shifted sinusoidal driving signals were applied to
gates L and R in addition to dc voltages applied to all three
gates. The amplitudes of the rf signals were chosen asym-
metric such that the device can work as a pump rather than a
turnstile. The charging energy of the device was estimated to
be 2EC ¼ 1 meV, and the experiments were carried out at the
bath temperature of 300 mK.

With a similar device architecture as shown in Fig. 24 but
using only two gates instead of three, Kaestner, Kashcheyevs,
Amakawa et al. (2008) demonstrated that frequency-locked
single-electron pumping can be carried out with a single
sinusoidal driving voltage, thus decreasing the complexity
of the scheme. This type of single-parameter pumping with
two gates is employed in the remainder of the works dis-
cussed in this section. Maire et al. (2008) studied the current
noise of a similar single-parameter pump at f ¼ 400 MHz
and estimated based on the noise level that the relative
pumping error was below 4%. Kaestner, Kashcheyevs,

Hein et al., 2008 studied the robustness of the current plateaus
as functions of all control parameters of the pump except the
source-drain bias. They showed that single-parameter pump-
ing is robust in the sense that wide current plateaus appear in
the parameter space but their measurement uncertainty was
limited to about 10�2, and hence a detailed study of the
behavior of the accuracy as a function of these parameters
was not available.

Wright et al. (2008) made an important empirical obser-
vation that the accuracy of the single-parameter pump can
be improved by an application of perpendicular-to-plane
magnetic field [see also Wright et al. (2009) and
Fig. 25(b)]. They applied fields up to 2.5 T and demonstrated
that the n ¼ 1 plateau as a function of the dc voltage on the
nondriven gate widens noticeably with increasing magnetic
field. In further studies by Kaestner et al. (2009) and Leicht
et al. (2011) up to magnetic fields of 30 T, a great widening
on the plateau was observed, but it essentially stopped at
5 T. On the contrary, high-resolution measurements on
the pumped current up to 14 T by Fletcher et al. (2011)
showed a continuous improvement on the pumping accuracy
with increasing field [see also Fig. 25(b)]. This discrepancy
is possibly explained by the different samples used in the
different sets of experiments.

Giblin et al. (2010) employed a magnetic field of 5 T and
reported 54 pA of pumped current with 1� ¼ 15 ppm
relative uncertainty with a single-parameter sinusoidal drive.
They were able to measure at such a low uncertainty with a
room-temperature current amplifier since they subtracted a
reference current from the pumped current and passed less
than 100 fA through the amplifier. Thus the uncertainty in
the gain of the amplifier did not play a role. The reference
current was created by charging a low-loss capacitor and was
traceable to primary standards of capacitance.

To date, the most impressive results on single-electron
pumping with quantum dots have been reported by

FIG. 24. Current plateau in the electron pumping experiments as a

function of the middle-gate voltage at 547 MHz operation fre-

quency. The dashed lines show � ¼ �10 fA uncertainty in the

electrometer calibration. The top left inset shows the device used as

the electron pump. The top right inset shows current plateaus at

1 GHz pumping frequency and the bottom inset shows the pumped

current as a function of the operation frequency. From Blumenthal

et al., 2007.
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Giblin et al. (2012). Compared with the previous results of
Giblin et al. (2010), they made several changes to improve
the results. They used a higher magnetic field of 14 T and an

advanced generation of samples with a lithographically de-
fined place for the quantum dot in both directions in the plane
[see Fig. 25(a)]. Instead of using sinusoidal wave forms, they

also tailored the drive voltage so that the cycle time was
distributed more evenly for the different parts of the cycle. To
make traceable measurements, a reference current was

created by an accurate temperature-controlled 1 G� resistor,
a voltage source, and a high-precision voltmeter. The volt-
meter and the resistor were calibrated through intermediate

steps against the Josephson voltage standard and the quantum
Hall resistance (QHR) standard, respectively. In this work,
Giblin et al. (2012) reported 150 pA pumped current with

relative 1� uncertainty of 1.2 ppm [see Fig. 25(c)]. Most of
the uncertainty, 0.8 ppm, arose from the calibration of the
1 G� resistor. Thus it is possible that the electron pumping

was actually even more accurate, as suggested by fitting the
results to a so-called decay-cascade model (Kashcheyevs and
Kaestner, 2010). However, there can be processes that are

neglected by the model and since there is no experimental
evidence on lower than 1.2 ppm uncertainty, it remains the
lowest demonstrated upper bound for relative pumping errors

for quantum-dot single-electron pumps. Error counting,
as demonstrated in silicon by Yamahata, Nishiguchi, and
Fujiwara (2011) and in aluminum by Keller et al. (1996), is

a way to measure the pumping errors to a very high precision
independent of the other electrical standards and remains to
be carried out in the future for the GaAs quantum-dot pumps.

D. Surface-acoustic-wave-based charge pumping

After the pioneering experiments on single-electron
sources based on GaAs discussed in Sec. III.C.2, the focus

in this field moved toward the idea of using SAWs to drive

single electrons in a one-dimensional channel (Shilton, Mace

et al., 1996). Here the sinusoidal potential created for the

electrons in the piezoelectric GaAs by a SAW forms a moving

well that can trap an integer number of electrons and transport

them in a one-dimensional channel.
The first experiments of this kind of SAW electron pumps

were carried out by Shilton, Talyanskii et al., (1996). They

employed a SAW frequency of 2.7 GHz and observed a

corresponding n ¼ 1 current plateau at 433 pA with the

uncertainty of the order of 10�2 at 1 K temperature.

Talyanskii et al. (1997) carried out more detailed experiments

on similar samples at two different SAW frequencies and

the results were in agreement with the ef scaling law.

Furthermore, several current plateaus were observed as a

function of the gate voltage corresponding to different integer

values of pumped electrons per cycle. However, the experi-

mental uncertainty at the plateau was again of the order

of 10�2 and sharp current peaks were observed at various

gate-voltage values.
After these first experiments, Janssen and Hartland

(2000a, 2000b) studied the accuracy of the SAW pump

and reported a 431 pA current at the center of the plateau

with 200 ppm relative deviation from the ideal value.

Ebbecke et al. (2000) demonstrated SAW pumping up to

4.7 GHz frequencies and with two parallel channels to

increase the current, but the measurement accuracy was

rather limited here. To improve the quality of the plateau

Janssen and Hartland (2001) decreased the width of the one-

dimensional channel, which helps in general. However, they

observed that the required rf power to drive the electrons

increases with decreasing channel width, causing severe rf

heating of the sample. This heating caused the quality of the

plateau to drop and the conclusion was that materials with

lower losses due to rf are needed [see also Utko, Lidelof, and

Gloos (2006)]. In fact, Flensberg, Niu, and Pustilnik (1999)

and Ebbecke et al. (2003) reported that the accuracy of the

SAW current is fundamentally limited in one-dimensional

channels because of tunneling of electrons out from a

moving dot.
To overcome the limitation pointed out by Ebbecke et al.

(2003), the charging energy was increased in the system by

defining a quantum dot with surface gates rather than utilizing

an open one-dimensional channel (Ebbecke et al., 2004).

Thus the applied SAWs modulate both the tunnel barriers

between the dot and the reservoirs and the electrochemical

potential at the dot. With this technique, current plateaus were

observed at a SAW frequency of 3 GHz and the reported

relative deviation from the ideal value was of the order of

10�3. Although the results by Janssen and Hartland (2000a,

2000b) remain the most accurate ones reported to date with

SAW electron pumps, and hence are not valuable for a

metrological current source, single-electron transfer with

SAWs can be useful in other applications. For example,

McNeil et al. (2011) showed that an electron taken by

SAWs from a quantum dot can be captured by another dot

at a distance. This kind of electron transport can potentially

be used to transport single spins working as quantum bits in a

spin-based quantum computer (Hanson et al., 2007; Morello

et al., 2010).

FIG. 25 (color online). (a) SEM image of the device with a

schematic measurement setup. (b) Current plateaus obtained by

using a sine wave drive at different frequencies and magnetic fields.

(c) Relative difference of the pumped current from ef using a sine

wave form and a tailored arbitrary wave form at different frequen-

cies. The rightmost data point denoted by an asterisk shows the

result with the potential of the entrance gate shifted by 10 meV from

the optimal operation point. From Giblin et al., 2012.
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E. Superconducting charge pumps

The envisioned advantage in pumping Cooper pairs instead
of electrons is that the supercurrent produced by the Cooper-
pair pumps is inherently dissipationless and the BCS gap
protects the system from microscopic excitations. Thus the
operation frequency of the pump can possibly be high with
the system still remaining at very low temperature. Another
advantage of the supercurrent is that it can sustain its coher-
ence, and hence be virtually noiseless, in contrast to the
single-electron current that is based on probabilistic tunnel-
ing. Furthermore, since the charge of a single Cooper pair is
2e, single-Cooper-pair pumps yield twice the current com-
pared with single-electron pumps operated at the same fre-
quency. Despite these advantages, the lowest uncertainties in
the achieved Cooper-pair current is at the percent level
(Vartiainen et al., 2007; Gasparinetti et al., 2012). One reason
for this is the low impedance of the device, rendering it
susceptible to current noise.

Two types of Cooper-pair pumps exist in the literature:
arrays of superconducting islands (Geerligs et al., 1991) with
source and drain leads, all separated by single Josephson
junctions with fixed tunnel couplings, and a so-called sluice
(Niskanen, Pekola, and Seppä, 2003; Niskanen et al., 2005)
that is composed of a single island connected to the leads by
two SQUIDs that function as tunable Josephson junctions; see
Fig. 26. As in the case of single-electron pumps, the device
operation is based on Coulomb-blockade effects allowing the
controlled transfer of individual Cooper pairs, which means in
the case of array pumps that the fixed Josephson energies of the
junctions must be much lower than the Cooper-pair charging
energy of the corresponding islands. In the sluice, it is suffi-
cient that the minimum obtainable Josephson energy is much
lower than the charging energy. For the arrays, the thermal
energy kBTmust bemuch lower than the Josephson energy that
defines the energy gap between the ground state and the excited
state of the quantum system at charge degeneracy. For the
sluice, the maximum Josephson energy of the SQUIDs yields
the minimum energy gap of the system, thus relaxing the
constraint on temperature.

The first experiment demonstrating Cooper-pair pumping
was performed by Geerligs et al. (1991). The device is a
linear array of three Josephson tunnel junctions. The two
superconducting islands separated by the junctions are ca-
pacitively coupled to individual gate electrodes. Except in the
vicinity of the charge degeneracy points in the gate-voltage
space, the number of Cooper pairs on these islands is rather
well defined by the gate voltages because the Coulomb-
blockade regime is employed. By biasing the device and
applying sinusoidal ac voltages with appropriate amplitudes
to the gates, one obtains a continuously repeated cycle, during
which a Cooper pair is transferred through the device, i.e.,
Cooper pairs are pumped one by one. Ideally, this yields a dc
current I ¼ 2ef that is proportional to the pumping frequency
f. The driving voltage at each gate should have the same
frequency and a phase difference of �=2. The pumping
direction can be reversed if the difference is changed by �.
Thus the pumping principle is the same as for a normal pump
discussed in Sec. III.A. The height of the measured current
plateau follows rather well the predicted relation I ¼ 2ef at
low pumping frequencies, but deviates strongly at higher

frequencies. This is explained by several mechanisms. The
pumping uncertainty of the device was not assessed in detail

but it seems to lie at least on the percent level with

picoampere currents. One of the error mechanisms is the

Landau-Zener tunneling when the system is excited to the

higher-energy state without transferring a Cooper pair. This

was the dominant mechanism at the high end of the studied
pumping frequencies in the experiment by Geerligs et al.

(1991) thus imposing an upper limit on the operation fre-

quency of the device. Other error sources in the device are the

tunneling of nonequilibrium quasiparticles, photon-excited

tunneling, and relaxation of the excited states produced by

Landau-Zener tunneling. In addition, cotunneling of Cooper
pairs through the two junctions produces a steplike feature

in the current plateaus, thus reducing the pumping accuracy.

Later, a similar three-junction Cooper-pair pump was studied

by Toppari et al. (2004) and essentially the same conclusions

on the pumping accuracy were made. In both experiments,
no 2e periodicity was observed in the dc measurements,

which suggests a substantial presence of nonequilibrium

quasiparticles in the system.

FIG. 26. (a) Scanning electron micrograph of the sluice used in

the experiments by Vartiainen et al. (2007) with a simplified

measurement setup. (b) Magnified view of the island of the device

shown in (a) with four Josephson junctions. (c) Measured pumped

current with the sluice (solid lines) as a function of the magnitude of

the gate-voltage ramp such that n corresponds to the ideal number

of elementary charges e pumped per cycle. The inset shows the

steplike behavior observed in the pumped current. From Vartiainen

et al., 2007.
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The effect of quasiparticles on Cooper-pair pumping was

also observed in the seven-junction Cooper-pair pump

(Aumentado, Keller, and Martinis, 2003). The device is

basically the same as the one used for pumping single

electrons in the earlier experiments in the normal state

(Keller et al., 1996). The pump consists of 6 �m-scale

aluminum islands linked by aluminum-oxide tunnel barriers.

Investigation of this circuit in the hold and pumping modes

revealed that besides 2e tunneling events, there is a significant
number of 1e events associated with the quasiparticle tunnel-

ing. All these experiments show that in order to obtain

accurate Cooper-pair pumping, one must suppress unwanted

quasiparticle tunneling. Leone and Lévy (2008) and Leone,

Lévy, and Lafarge (2008) proposed topological protection in

pumping Cooper pairs. The charge is expected to be strictly

quantized determined by a Chern index. To our knowledge,

this idea has not been tested experimentally.
In order to increase the output dc current and accuracy of a

single pump, the sluice pump was introduced by Niskanen,

Pekola, and Seppä (2003) and Niskanen et al. (2005). In the

pumping cycle, the two SQUIDs separating the single island

work in analogy with valves of a classical pump and the gate

voltage controlling the island potential is analogous to a

piston. At each moment of time, at least one SQUID is closed,

i.e., set to minimum critical current. The gate voltage is used

to move Cooper pairs through open SQUIDs with maximum

critical current. If the pairs are taken into the island through

the left SQUID and out of the island through the right

SQUID, the resulting dc current is ideally I ¼ N2ef, where
the number of pairs transported per cycle N is determined by

the span of the gate-voltage ramp. In practice, the critical

current of the SQUIDs is controlled by flux pulses generated

by superconducting on-chip coils. Since each operation

cycle can transfer up to several hundreds of Cooper pairs,

Vartiainen et al. (2007) managed to pump roughly 1 nA

current with uncertainty less than 2% and pumping frequency

of 10 MHz; see Fig. 26. The investigated high-current

Cooper-pair pump demonstrated steplike behavior of the

pumped current on the gate voltage; however, its accuracy

was affected by the residual leakage in the tunnel junctions

and the fact that the SQUIDs did not close completely due to

unequal Josephson junctions in the structure.
The leakage current in the sluice can be suppressed by

working with a phase bias instead of a voltage bias, as was

applied by Niskanen et al. (2005) and Vartiainen et al. (2007).

The only experiment reported for a phase-biased pump was

carried out by Möttönen, Vartiainen, and Pekola (2008). They

connected a sluice in a superconducting loop with another

Josephson junction. By measuring the switching behavior of

this junction from the superconducting state to the normal

branch with forward and backward pumping, they were able

to extract the pumped current of the sluice. However, this type

of current detection did not turn out to be as sensitive as the

direct measurement with a transimpedance amplifier used in

the case of voltage bias. A potential way to improve the

sensitivity is, instead of the switching junction, to use a

cryogenic current comparator (CCC) coupled inductively to

the superconducting loop. This type of an experiment has not

been carried out to date. Instead, Gasparinetti et al. (2012)

measured a sluice in the vicinity of vanishing voltage bias,

where they demonstrated single-Cooper-pair pumping pla-
teaus in both the bias voltage and dc level of the gate voltage;
see Fig. 27. The quasiparticle poisoning was reported to be
suppressed compared with the previous experiments, and
hence they observed clear 2ef spacing of the current plateaus.

In addition to the above-mentioned pumping schemes,
Nguyen et al. (2007) studied how a superconducting quantum
bit referred to as a quantronium can be used to detect the gate
charge ramp arising from a current bias on the gate electrode
of the island of the device. The accuracy of this technique in
converting the bias current into frequency remains to be
studied in detail. Hoehne et al. (2012) studied another type
of quantum bit, a charge qubit, for pumping Cooper pairs
nonadiabatically. The aim here was to increase the pumping
speed compared to adiabatic schemes but due to the accumu-
lation of the errors from one pumping cycle to another, a
waiting period between the cycles needed to be added.
Furthermore, Giazotto et al. (2011) showed experimentally
how phase oscillations can drive Cooper pairs in a system
with no tunnel junctions. However, this kind of pumping was
found to be very inaccurate in this proof-of-the-concept
experiment.

F. Quantum phase slip pump

There is a proposal to build a source of quantized current
based on the effect of QPSs in nanowires made of disordered
superconductors (Mooij and Nazarov, 2006). Phase slip
events occur in thin superconducting wires where thermody-
namic fluctuations of the order parameter become significant
(Arutyunov, Golubev, and Zaikin, 2008). During the phase
slip, the superconducting order parameter vanishes at a cer-
tain instance and position in the wire, and the phase differ-
ence between the wire ends changes by 2�. This gives rise to
a voltage pulse in accordance with the Josephson relation. If
the phase slips happen frequently, they produce a finite dc
voltage or a finite resistance.

Phase slips caused by thermal activation broaden the tem-
perature range of superconducting phase transitions and
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FIG. 27 (color online). Pumped average charge by Gasparinetti

et al. (2012) for a single pumping cycle of a sluice pump near

vanishing voltage bias as a function of the gate charge offset ng and

span during the pumping cycle �ng. From Gasparinetti et al., 2012.

1448 Jukka P. Pekola et al.: Single-electron current sources: Toward a . . .

Rev. Mod. Phys., Vol. 85, No. 4, October–December 2013



produce a resistive tail below the critical temperature of a
superconductor (Tinkham, 1996). At sufficiently low tem-
peratures quantum fluctuations take over, and the residual
temperature-independent resistivity of a nanowire can be
attributed to the quantum phase slips [see Arutyunov,
Golubev, and Zaikin (2008) and references therein].
Thermally activated phase slips are inherently incoherent.
Quantum phase slips may be coherent provided dissipation
associated with every switching event is suppressed. This can
be achieved in superconductors with strong disorder in which
Cooper pairs localize before the superconducting transition
takes place (Feigel’man et al., 2007). Such a localization
behavior has been observed by scanning tunneling micros-
copy in amorphous TiN and InOx films (Sacépé et al., 2010,
2011), which are believed to be the most promising materials
for the observation of QPSs.

The key parameter describing a nanowire in the quantum
phase slip regime is the QPS energy EQPS ¼ ℏ�QPS, where

�QPS is the QPS rate. Consider a superconducting nanowire of

length L and sheet resistance Rh, and made of a supercon-
ductor with the superconducting transition temperature Tc,
and coherence length � ¼ ð�0‘Þ1=2, where �0 is the BCS
coherence length and ‘ is the electron mean free path
(‘ � �0). Although there is no commonly accepted expres-
sion for �QPS, it is agreed (Mooij and Harmans, 2005;

Arutyunov, Golubev, and Zaikin, 2008) that

�QPS / exp

�

�0:15A
RK

2Rh�

�

;

where A is a constant of order unity and RK ¼ h=e2. Clearly
the exponential dependence of �QPS on the wire resistance on

the scale of �, R� ¼ Rh�, requires extremely good control of

the film resistivity as well as the wire cross-sectional dimen-
sions. For the nanowires to be in the quantum phase slip
regime rather than in the thermally activated regime, EQPS

should exceed the energy of thermal fluctuations kBT. For a
typical measurement temperature of 50 mK, �QPS=2� should

be higher than 1 GHz. Although the exact estimation of R� is

rather difficult, especially in the case of strongly disordered
films, the experimental data presented by Astafiev et al.
(2012) for InOx films agrees with the following values:
�QPS=2� 
 5 GHz, R� ¼ 1 k�, and � ¼ 10 nm.

The first experiment reporting the indirect observation
of coherent QPS in nanowires was performed by Hongisto
and Zorin (2012). They studied a transistorlike circuit con-
sisting of two superconducting nanowires connected in series
and separated by a wider gated segment. The circuit was
made of amorphous NbSi and embedded in a network of on-
chip 30-nm-thick Cr microresistors ensuring a high external
electromagnetic impedance. The NbSi film had a supercon-
ducting transition temperature of 
 1 K and normal-state
sheet resistance of about 550 � per square. Provided the
nanowires are in the regime of QPSs, the circuit is dual to
the dc SQUID. The samples demonstrated appreciable
Coulomb-blockade voltage (the analog of the critical current
of the dc SQUID) and periodic modulation of the blockade by
the gate voltage. Such behavior was attributed to the quantum
interference of voltages in two nanowires that were in the
QPS regime. This is completely analogous to the quantum
interference of currents in a dc SQUID.

An unambiguous experimental evidence of a coherent QPS

was provided in the work by Astafiev et al. (2012). Coherent
properties of quantum phase slips were proven by a spectros-

copy measurement of a QPS qubit, which was proposed
earlier by Mooij and Harmans (2005). The qubit was a loop

that had a 40-nm-wide and about 1-�m-long constriction.
The loop was made of a 35-nm-thick superconducting

disordered InOx film with Tc ¼ 2:7 K and a sheet resistance
of 1:7 k� per square slightly above Tc. The qubit was

coupled inductively to a step-impedance coplanar waveguide
resonator, which was formed due to the impedance mismatch

between an indium oxide strip and Au leads to which it was
galvanically connected. The ground planes on both sides of

the strip were made of Au. At the qubit degeneracy point at a
flux bias ðmþ 1=2Þ�0, where m is an integer, there is an

anticrossing in the qubit energy spectrum with a gap EQPS ¼
ℏ�QPS. At this flux bias, the two quantum states jmi and

jmþ 1i corresponding to the loop persistent currents circu-
lating in the opposite directions are coupled coherently,

which gives a gap EQPS between the lowest-energy bands of

the qubit. With the flux offset �� from degeneracy, the gap

evolves as �E ¼ ½ð2Ip��Þ2 þ E2
QPS�1=2, where Ip is the

persistent current in the loop. This gap was revealed in the

spectroscopy measurements by monitoring the resonator
transmission as a function of the external magnetic field

and microwave frequency. When the microwave frequency
matched the qubit energy gap, a dip in the transmission was

observed. The width of the dip �260 MHz close to the
degeneracy point indicated rather strong decoherence whose

origin is still to be understood.
Based on the exact duality of the QPS and the Josephson

effects, it is argued that it should be possible to build a QPS

electric current standard, which is dual to the existing
Josephson voltage standard (Mooij and Nazarov, 2006).

When biased resistively and irradiated by a high-frequency
signal, QPS junctions exhibit current plateaus, which could

provide the basis for the fundamental standard of the electric
current. When an ac signal of frequency f is applied to a

Josephson junction, Shapiro voltage steps Vn ¼ nðhf=2eÞ,
where n is an integer, are observed. Similarly, when an ac

signal is applied to a QPS junction, an equivalent of Shapiro
steps will occur in the form of plateaus at constant current

levels In ¼ n2ef. One should note, however, that error
mechanisms have not yet been analyzed for this type of

quantized current source: thus it is not clear at the moment
how accurate this source will be.

From a practical point of view, the realization of a QPS
current source looks rather challenging because it requires

fabrication of nanowires with an effective diameter �10 nm
as well as precise control of the sheet resistance Rh of the

nanowire, which is in the exponent of the expression for EQPS.

Various approaches to the nanowire fabrication including the

step decoration technique, sputtering of a superconductor on
a suspended carbon nanotube, trimming of a nanowire by

argon milling, etc. are described by Arutyunov, Golubev, and
Zaikin (2008). Another issue is the overheating of the nano-

wire electron system. Assuming that the phase slip region
becomes normal (which is true, for example, for Ti nano-

wires), for the estimation of the electron temperature,
one can use Eq. (34) for the power transfer from electrons
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to phonons. A nanowire with the cross-sectional dimensions
20
 20 nm2, sheet resistance 1 k� per square, and carrying
a dc current of 100 pA will have the effective electron
temperature of the order of 250 mK, which is high enough
to smear the current plateaus.

One of the first attempts to observe current plateaus on the
current-voltage characteristics of superconducting nanowires
under rf radiation was reported by Lehtinen, Zakharov, and
Arutyunov (2012). The nanowires were made of Ti and had
length up to 20 �m and effective diameter from 40 nm down
to about 15 nm. The nanowire sheet resistance varied from
about 20 � up to 1:9 k� per square. They were biased
through high-Ohmic Ti or Bi leads having total resistance
of 15 k� and 20 M�, respectively. The low-Ohmic samples
biased through 15 k� exhibited a weak Coulomb blockade.
The estimated EQPS was ’ 0:1 �eV only. More resistive

nanowires (Rh ¼ 180 �, effective diameter 
 24 nm)
biased through 20 M� leads had a pronounced Coulomb
blockade with a critical voltage of up to 0.4 mV. The thinnest
nanowires (Rh ¼ 1:9 k�, effective diameter � 18 nm) ex-
hibited a Coulomb gap of a few hundred millivolts with the
largest gap exceeding 600 mV. These gaps did not vanish
above Tc of Ti, from which the authors concluded that some
weak links were unintentionally formed in the thinnest nano-
wires. Despite the fact that the nanowires had large variations
of parameters, all their current-voltage or dV=dI character-
istics exhibited some quasiregular features under the external
rf radiation. Those features were interpreted as being current
steps formed due to the phase locking of intrinsic oscillations
by the external signal.

It is interesting to note that the physics of QPSs in super-
conducting nanowires resembles the physics of QPSs in
Josephson junction arrays (Fisher, 1986). A nanowire can
be modeled as a 1D array of small superconducting islands
connected by Josephson junctions. The formation of isolated
superconducting regions within a nominally uniform disor-
dered film was confirmed experimentally (Sacépé et al.,
2010, 2011). Such a weakly connected array of superconduct-
ing islands is characterized by the junction Josephson energy
EJ and the island charging energy Ec. The phase and charge
dynamics of the 1D array depends on the ratio EJ=Ec. In the
experiment by Pop et al. (2010) EJ=Ec in a SQUID array was
tuned in situ by applying a uniform magnetic flux through all
SQUIDs. The state of the array was detected by an extra shunt
Josephson junction. They deduced the effect of the quantum
phase slips on the ground state of the array by measuring the
switching current distribution of the entire Josephson circuit
as a function of the external magnetic flux for different values
of EJ=Ec,

G. Other realizations and proposals

In this section we cover various ideas that have been
brought up for experimental demonstration. Although their
metrological relevance is still to be proven, we present them
for their complementarity, potential, and for completeness.

1. ac-current sources

The current pumps described in Secs. III.A–III.C can be
considered as single-electron injectors generating dc current.

Coulomb blockade ensures a good control of the electron

number on an island during the charge transfer.
A time-controlled single-electron source generating ac

current was reported by Fève et al. (2007). The source was

made of a GaAlAs/GaAs quantum dot tunnel coupled to

a large conductor through a quantum point contact

(see Fig. 28). A magnetic field B 
 1:3 T was applied to

the sample so as to work in the quantum Hall regime with no

spin degeneracy. The discrete energy levels of the quantum

dot were controlled by the pulse voltage Vexc applied to the

top gate and by the QPC dc gate voltage Vg, which also

controlled the transmission D of a single edge state. The dot

addition energy �þ e2=C 
 2:5 K was determined by the

energy-level spacing � as the Coulomb energy e2=2C was

negligibly small. As proposed by Gabelli et al. (2006), this

circuit constitutes an effective quantum-coherent RC circuit

with the effective quantum resistance R and capacitance C
defined as R ¼ h=2e2 and C ¼ e2ðdN=d"Þ, where dN=d" is

the local density of states of the mode propagating in the dot,

taken at the Fermi energy (Prêtre, Thomas, and Büttiker,

1996).
The single-charge injection was achieved by the applica-

tion of a high-amplitude excitation voltage Vexc � �=e to the

top gate, which leads to the electron escape from the dot at a

typical tunnel rate ��1 ¼ D�=h, where �=h is the attempt

frequency. Typically, the tunnel rates are in the nanosecond

time scales, and this makes single-shot charge detection a

challenging task. To increase the signal-to-noise ratio, a

statistical average over many individual events was used by

repeating cycles of single-electron emission with period T
followed by single-electron absorption (or hole emission) as

shown in Fig. 28. This was done by applying a periodic

square-wave voltage of amplitude 
 �=e to the top gate.
When the charge on the dot is well defined, repeatable

single-electron injection leads to quantization of the ac

FIG. 28 (color online). Schematic of the single-charge injector

and its operation principle. Starting from step 1 where the Fermi

energy level of the conductor lies in between two energy levels of

the dot, its potential is increased by � by moving one occupied dot

level above the Fermi energy (step 2). One electron then escapes

from the dot. After that the potential is brought back to the initial

value (step 3), where one electron can enter the dot, leaving a hole

in the conductor. One edge channel of the quantum RC circuit is

transmitted into the dot, with transmission D tuned by the QPC gate

voltage VG. From Fève et al., 2007.
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current. jI!j as a function of Vexc for two values of the dc dot
potential at D 
 0:2 and D 
 0:9 is shown in Fig. 29. The
transmission D 
 0:2 is low enough and the electronic states
in the dot are well resolved, as shown in the inset of Fig. 29
(left). On the other hand, the transmission is large enough for
the escape time to be shorter than T=2. When the Fermi
energy lies exactly in the middle of the density-of-states
valley (rightmost vertical line in the left inset), a well-
pronounced jI!j ¼ 2ef current plateau is observed centered
at 2eVexc=� ¼ 1. It is claimed that the current uncertainty at
the plateau is 5% due to the systematic calibration error. In
contrast, if, with the same transmission, the Fermi energy lies
on the peak (middle vertical line in the left inset), there is still
a current plateau, but it is not as flat and it is sensitive to
parameter variations. When transmission is increased, the
charge fluctuations become stronger and the plateau gets
narrow and finally nearly vanishes at D 
 0:9 even for the
optimal working point, as seen from Fig. 29 (right). The
experimental results (dots) are compared with the theoret-
ical model, the solid lines [1D modeling of the circuit de-
scribed by Gabelli et al. (2006) was used], showing excellent
agreement between the two.

The device above has been described as an electron analog
of the single-photon gun. It is not a source of quantized dc
current as the dot emitting the electron can be recharged only
though the reverse process of electron absorption. Using a
similar technique of electron emission with fast pulses, but
adding one more lead, one can produce a highly accurate dc
current (Giblin et al., 2012) as described in Sec. III.C.4.
Recent correlation experiments on electron guns have been
reported in Bocquillon et al. (2012).

2. Self-assembled quantum dots in charge pumping

The idea of using self-assembled quantum dots for charge
pumping is based on conversion of optical excitation into
deterministic electric current; see Nevou et al. (2011). In the
experiment of Nevou et al. (2011) a plane of self-assembled
InAs quantum dots is coupled to an InGaAs quantum-well
reservoir through an Al0:33Ga0:67As barrier [see Figs. 30(a)–
30(c)]. The structure is sandwiched between two n-doped
GaAs regions. The device basically works as a strongly
asymmetric quantum-dot infrared photodetector (Nevou
et al., 2010). In the absence of any optical excitation,

electrical conduction is inhibited by the AlGaAs barrier.

When a laser pulse ionizes the quantum dots, a fixed number

of electrons are excited out of the dot and then swept away by

the applied bias voltage, giving rise to a photocurrent. After

that, the dots will be refilled from the electron reservoir by

tunneling through the AlGaAs barrier. If the process is re-

peated at a frequency f, the current will be given by I ¼ nef,
where n is determined by the number of dots and the number

of electrons per dot. To obtain the desired pumping accuracy,

the laser pulse duration time must be much shorter than the

refilling time, and f should not exceed the kilohertz range.

Even with such a low repetition frequency, currents in the

nanoampere range can be generated as the number of dots

running in parallel in a typical device is tens of millions.

There are error sources arising from the uncertainty in the

number of quantum dots contained in one device, as well as

FIG. 29 (color online). ac quantization. jIwj as a function of

2eVexc=� for different dot potentials at D 
 0:2 (left) and D 

0:9 (right). Dots are measured values and lines are theoretical

predictions. Insets schematically show the dot density of states

Nð"Þ. The vertical lines indicate the dot potential for the

corresponding experimental data. From Fève et al., 2007.

FIG. 30 (color online). (a) Schematic layout of the self-assembled

quantum-dot electron pump, (b) transmission electron microscopy

image of the quantum dots, (c) 3D sketch of the conduction band

profile of the structure under zero bias, and (d) saturation current for

two different pump wavelengths (� ¼ 6:7 �m: curve A and � ¼
10 �m: curve B). The difference provides a current plateau that

should be2ef (thick horizontal line). Inset:Variations of themeasured

current with respect to the average value. From Nevou et al., 2011.

Jukka P. Pekola et al.: Single-electron current sources: Toward a . . . 1451

Rev. Mod. Phys., Vol. 85, No. 4, October–December 2013



the variability in the quantum-dot transition energy. These
errors were of the order of 10% of the pumped current in the
experiment of Nevou et al. (2011).

3. Mechanical single-electron shuttles

Besides charge pumps with entirely electronic control,
there is a group of devices in which a mechanical degree of
freedom is involved. They are called mechanical charge
shuttles, because they transfer either single charges (electrons
or Cooper pairs) or portions of charges between the two
electrodes due to the mechanical back-and-forth motion of
a small island between the electrodes. This results in current
flow, either incoherent or coherent. The concept of the me-
chanical electron shuttle was introduced by Gorelik et al.
(1998) and Isacsson et al. (1998).

The proposed device has a small conducting island, which
is mechanically attached to electrical leads with the help of an
elastic insulator. The dc voltage applied between the leads
and elastic properties of the insulator together with charging
and discharging of the island creates instability and makes the
island oscillate; see Fig. 31(a). For the proper operation of
the shuttle, two assumptions were made: the amplitude of the
mechanical oscillations is much larger than the electron
tunneling distance, and the number of electrons on the island
is limited. With these assumptions the island motion and
charge fluctuations become strongly coupled. Depending on
the shuttle details, two regimes can be distinguished: classical
(Gorelik et al., 1998; Isacsson et al., 1998; Weiss and
Zwerger, 1999) and quantum mechanical (Armour and
MacKinnon, 2002; Fedorets et al., 2004; Johansson et al.,
2008; Cohen, Fleurov, and Kikoin, 2009). The shuttle, when
made superconducting, can transfer not only electrons but
also Cooper pairs (Gorelik et al., 2001; Shekhter et al., 2003).

The first experimental realization of a mechanical charge
shuttle that operated due to a shuttle instability was reported
by Tuominen, Krotkov, and Breuer (1999). This was a rather
bulky device even though it was scaled down considerably in
size and operating voltage in comparison to the earlier
electrostatic bell versions. The observed jumps of the current
as a function of the bias voltage as well as hysteresis in the
transport characteristics were the main indications of the
shuttling regime of the device. A nanoscale version of
the instability-based electron shuttle was implemented by
Kim, Qin, and Blick (2010); see Fig. 31(b). The device was
a Si pillar covered on top with a thick gold layer and placed in
the gap between two electrodes, the source and the drain, of
the central line of a coplanar waveguide. For reference, they
also fabricated and measured a similar device without a pillar
in the gap. The samples were measured at room temperature
in vacuum. The pillar was actuated by applying a small rf
signal together with a dc bias voltage across the source and
drain electrodes. A clear frequency dependence was observed
for the sample with a pillar in the gap, with the resonance
frequency of 10.5 MHz and quality factor of about 2.5. It was
estimated that the device shuttles on average 100 electrons
per cycle.

Another realization of the nanoelectronic shuttling device
was reported by Moskalenko et al. (2009a, 2009b). It had the
configuration of a single-electron transistor, whose island was
a gold nanoparticle placed in between the Au source and

drain electrodes by means of an atomic force microscope.

Current-voltage characteristics of the devices were measured

at room temperature, and characteristic current jumps in the

current-voltage curves were observed, which were attributed

to the shuttling effect. They also compared characteristics of

the working shuttle device from which the nanoparticle was

removed. After this procedure, the current through the device

dropped below the noise level.
The effect of the mechanical vibrational modes on charge

transport in a nanoelectronic device was observed in a C60

single-electron transistor (Park et al., 2000). In this device, a

single C60 molecule was placed in the narrow gap between the

two gold electrodes. It was found that the current flowing

(b) 

(c) (d) 

“unloading” of 
2N electrons 

“loading” of 
2N electrons 

- V/2 V/2 
q = Ne 

q =  Ne 

- V/2 V/2 

q = VC + e/2 

q =  (VC + e/2) 

2δq 

δx 

x 

q 

(a) 

FIG. 31 (color online). (a) Model of the shuttle device proposed

by Gorelik et al. (1998)). (Top) Dynamic instabilities occur since in

the presence of a sufficiently large bias voltage V the grain is

accelerated by the electrostatic force toward the first electrode, then

toward the other one. A cyclic change in direction is caused by the

repeated loading of electrons near the negatively biased electrode

and the subsequent unloading of the same charge at the positively

biased electrode. As a result, the sign of the net grain charge

alternates, leading to an oscillatory grain motion and charge trans-

port. (Bottom) Charge variations on a cyclically moving metallic

island. The dashed lines in the middle describe a simplified trajec-

tory in the charge-position plane, when the island motion by �x and

discharge by 2�q occur instantaneously. The solid trajectory de-

scribes the island motion at large oscillation amplitudes. Periodic

exchange of the charge 2q ¼ 2CV þ 1 between the island and the

leads results in the net shuttle current I ¼ 2�qf, where f is the

shuttle frequency Adapted from Gorelik et al., 1998. (b) Scanning

electron micrograph of a nanopillar between two electrodes. From

Kim, Qin, and Blick, 2010. (c) Electron micrograph of the quantum

bell: The Si beam (clapper) is clamped on the upper side of the

structure. ac gates G1 and G2 are used for the actuation of the

clapper C. Electron transport is measured from source S to drain D

through the island on top of the clapper. From Erbe et al., 2001.

(d) A false-color SEM image of the nanomechanical SET. A gold

island is located at the center of a doubly clamped freely suspended

silicon nitride string. The gold island can shuttle electrons between

the source and drain electrodes when excited by ultrasonic waves.

From Koenig, Weig, and Kotthaus, 2008.
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through the device increases sharply whenever the applied
voltage was sufficient to excite vibrations of the molecule.
Although mechanical vibrations were observed in this
structure, they are not related to the shuttling of electrons.

Externally driven resonant shuttles may be easier to imple-
ment in comparison to the instability-based shuttles, because
a much larger displacement amplitude can be achieved.
However, the drawback of using a mechanical resonator is
the discrete set of eigenfrequencies, which are determined by
geometry and materials. Therefore, only a limited number of
frequencies are available for electron transfer. In the experi-
ment performed by Erbe et al. (1998) a Si nanomechanical
resonator was placed in between two contacts. The whole
device, being a scaled-down version of the classical bell, was
functioning as a mechanically flexible tunneling contact
operating at radio frequencies. The contact was driven by
�-shifted oscillating voltages applied on two gates. The
current-frequency dependence of the device contained strong
peaks, which were interpreted as being due to the mechanical
resonances of the beam, indicating that shuttling was occur-
ring. The peaks had low quality factors, ranging from 100 to
15 only. The number of electrons N shuttled per cycle was
estimated from the current peak height I using the N ¼ I=ef.
Below 20 MHz, 103–104 electrons were shuttled in each
cycle. On the 73 MHz peak the number was decreased to
about 130 electrons per cycle.

The same group (Erbe et al., 2001) fabricated a singly
clamped beam with a metal island on its end [see Fig. 31(c)].
It was found at 300 K that there was no detectable current
through the device unless a driving ac voltage (� 3 V) was
applied to the driving gates. Under the external drive, the
current exhibited several peaks, similar to those in the earlier
device (Erbe et al., 1998), which was attributed to the beam
motion. The background current was explained by the ther-
mal motion of the beam. At 4.2 K all the current peaks were
suppressed except one at about 120 MHz with much smaller
height (only 2.3 pA). This corresponded to shuttling on
average of 0.11 electron per cycle.

Koenig, Weig, and Kotthaus (2008) implemented electro-
mechanical single-electron transistors with a metallic island
placed on a doubly clamped SiN beam [see Fig. 31(d)], which
was measured at a temperature of 20 K. The observed reso-
nance features in the SET dc current were attributed to the
mechanical resonances. It was argued that the mechanical
motion of the resonator was strongly nonlinear. This was
imposed by the side electrodes constituting the impacting
boundary conditions. The nonlinear nature of the system
resulted in a shape of the resonance curves different
from Lorentzian. Although the expected steplike dependence
of the SET current on the source-drain voltage was not
observed (because of the high measurement temperature as
compared to the charging energy), they made an optimistic
conclusion that the device may be useful for quantum
metrology.

4. Electron pumping with graphene mechanical resonators

An electron pump based on a graphene mechanical reso-
nator in the fundamental flexural mode was introduced by
Low et al. (2012). The resonator is actuated electrostatically
by a gate electrode. Time-varying deformation of graphene

modifies its electronic energy spectrum and in-plane strain.
Cyclic variation of these two properties constitutes the
scheme for quantum pumping. To have a nonzero pumping
current, spatial asymmetry must be introduced. It is assumed
that the contacts between the graphene layer and the left and
right electrodes are not equivalent, which is modeled by
different densities of states. This can be achieved in the
experiment by using different materials for the two elec-

trodes. It is emphasized that Coulomb-blockade effects will
favor the transfer of an integer number of electrons per cycle,
so that the relation between current and frequency will be
quantized. This is just a proposal and the applicability of this
approach for quantum metrology is still to be verified.

5. Magnetic- field-driven single-electron pump

Another proposal, not implemented though, is based on
using a ferromagnetic three-tunnel-junction device for elec-
tron pumping (Shimada and Ootuka, 2001). Its islands and
leads are made of ferromagnetic metals with different coer-
cive forces. Such a device can be operated as a single-electron
pump if controlled by ac magnetic fields, and not by the gate
voltages. In addition to the charging effects, it makes use of
the magnetic-field-induced shift of the chemical potential and
magnetization reversal in the ferromagnetic electrode.

The proposed device has intrinsic limitations of the pump-
ing speed, which are determined by the physical time con-
straints of the ferromagnet. The pump operation frequency
must be much lower than the characteristic relaxation times.
The prospects of this type of an electron pump for quantum

metrology are still to be understood.

6. Device parallelization

As discussed in Sec. III.A, it is possible to reach precise
electron pumping with a normal-metal single-electron pump
consisting of a sufficiently long array of islands. With six
islands and seven junctions, the accuracy of the pumped
current is at the 10�7 level. However, the maximum current
is limited to a few picoamperes. To get the current scaled up
to the 100 pA level, a requirement for practical metrological
applications (see Sec. IV.D.1), approximately 100 pumps
should be operated in parallel. The main reason why paral-
lelization is impractical for normal-metal devices is the tun-
ing of the offset charges (Keller et al., 1996; Camarota et al.,
2012). Each island has an individual offset charge that has to
be compensated separately. Therefore, a metrological current

source implemented as parallellized normal-metal pumps
would require of the order of 1000 dc lines.

Compared to normal-metal pumps, quantum-dot-based
pumps allow for higher pumping speeds using fewer control

lines thanks to their tunability; see Sec. III.C. Accuracy of
1.2 ppm at an output current of 150 pA has already been
demonstrated with a single quantum dot (Giblin et al., 2012).
Therefore, parallelization of such pumps may not even be
required if the accuracy can be improved without a loss in
speed. Nevertheless, parallelization of semiconducting
pumps has been considered in the literature. With two pumps,
invariance with respect to gate variations has been shown to
be below the 20 ppm level (Wright et al., 2009) with output
current exceeding 100 pA. In this case, all signals were
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individually tuned for each device requiring two dc and one rf
signals per device. However, it is possible to use common

signals for rf drive and for the barrier voltages (Mirovsky
et al., 2010). In this case, only one dc voltage per device
is required for tuning the other barrier and possible

offset charges. The obtainable accuracy, depending on device
uniformity, is still an open question for this approach.

For the hybrid NIS turnstiles, the maximum current per
device is limited to a few tens of picoamperes, as discussed in

Sec. III.B.2. Hence, at least ten devices are to be run in
parallel, which has been shown to be experimentally feasible
(Maisi et al., 2009). In Fig. 32 we show a scanning electron

micrograph of a sample used in that work and the main
experimental findings. The turnstiles in these experiments
suffered from photon-assisted tunneling due to insufficient

electromagnetic protection (see Sec. II.F), and hence the
quantization accuracy was only on the 10�3 level.
Improved accuracy is expected for a new generation of turn-

stile devices (Pekola et al., 2010). For parallel turnstiles, a
common bias voltage can be used as it is determined by the

superconducting gap �, which is a material constant and

varies only very little across a deposited film. Also, the rf
drive can be common if the devices have roughly equal RT ,
EC, and coupling from the rf line to the island. As the error
processes that set the ultimate limit on a single turnstile
accuracy are not yet determined, the exact requirements on
device uniformity cannot be fully resolved.

H. Single-electron readout and error correction schemes

1. Techniques for electrometry

The electrometer used to detect the presence or absence
of individual charge quanta is a central component in
schemes for assessing pumping errors and error correction.
Figure 33(a) introduces the essential components of an
electron-counting setup. In order to observe proper charge
quantization, the counting island is connected to other con-
ductors only via low-transparency tunnel contacts. The elec-
trometer is capacitively coupled to the counting island and
biased in such a manner that the small voltage drop of the
counting island due to change of its charge state by one
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FIG. 32 (color online). (a) Scanning electron micrograph of par-

allel turnstiles. The turnstiles are biased with a common bias Vb and

driven with a common rf gate voltage Vrf . Gate offset charges are

compensated by individual gate voltages Vg;i. (b) Output current I

for ten parallel devices tuned to the same operating point producing

current plateaus at I ¼ 10Nef. The curves are taken at different Vb

shown in the top left part of the panel. From Maisi et al., 2009.
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FIG. 33. (a) Circuit diagram of a charge-counting device. Electric

charge Q on the island on the left is monitored. The island is

coupled to an electrometer island via capacitor Cx and also tunnel

coupled to an external conductor. The single-electron box configu-

ration illustrated here requires only one tunnel junction with ca-

pacitance Cj. In addition, there is capacitance C0 to ground, which

accounts also for gate electrodes and any parasitic capacitances. The

probing current Idet through the detector is sensitive to the charge on

the coupling capacitor, which is a fraction Cx=C� of the total charge

Q, where C� ¼ Cx þ C0. The detector is a single-electron tunneling

transistor based on Coulomb blockade, and hence the total capaci-

tance of the detector island Cdet is of the order of 1 fF or less.

(b) Circuit diagram of a general noisy electrical amplifier that can

also be adapted to describe the electrometers of single-electron

experiments. From Devoret and Schoelkopf, 2000. For the configu-

ration shown in (a), one has for input impedance Zinð!Þ ¼ 1=j!Cin,

where C�1
in ¼ C�1

x þ C�1
det . The input voltage is related to the island

charge Q through Vin ¼ Q=C�. The noise source IN represents

backaction and VN the noise added by the electrometer at the output

referred to the input. The gain of the amplifier is given by G. The

output impedance Zout equals the differential resistance at the

amplifier operation point.
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electron induces a measurable change in the electrical trans-
port through the detector. The readout performance can be
characterized in terms of response time (bandwidth), charge
sensitivity, and backaction to the system under measurement.
In the present context of electron counting, we define
backaction to include all mechanisms by which the presence
of the detector changes the charge transport in the measured
system.

The two basic electrometer realizations providing suffi-
cient charge sensitivity for electron-counting applications are
the SET (Fulton and Dolan, 1987; Kuzmin et al., 1989) and
the QPC (Berggren et al., 1986; Thornton et al., 1986; Field
et al., 1993). From a sample fabrication point of view, it is
convenient when the electrometer and the charge pump can
be defined in the same process; hence, the QPC is the natural
charge detector for quantum dots in semiconductor 2DEGs,
whereas metallic single-electron devices are typically probed
with SETs. Studies also exist where a metallic superconduct-
ing SET has been used as the electrometer for a semiconduc-
tor QD (Lu et al., 2003; Fujisawa et al., 2004; Yuan et al.,
2011; Fricke et al., 2013), and the SET can be realized in the
2DEG as well (Morello et al., 2010).

The charge sensitivity �q is determined by the noise of the
system as a whole (Korotkov, 1994) and is conveniently

expressed in units of e=
ffiffiffiffiffiffi

Hz
p

for electrometry applications.
For metallic SETs, output voltage fluctuations �Vout can be
related to the charge coupled to the electrometer according to
�q ¼ Cg�Vout=ð@Vout=@VgÞ, where Vg is the voltage of the

SET gate electrode and Cg is its capacitance to the SET island

(Kuzmin et al., 1989). Here Cg can be determined reliably in

the experiment from the period of Coulomb oscillations.
Similar calibration cannot be performed for a QPC and hence
the charge sensitivity is expressed in relation to the charge of
the neighboring QD (Cassidy et al., 2007), corresponding
to Q in Fig. 33(a). Variations of Q and q are related as
�q ¼ ��Q, where � ¼ Cx=C� is the fraction of the island
charge that is coupled to the electrometer. For charge-
counting applications, the relevant parameter is �Q. The
rms charge noise for a given detection band is given by

�q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

d!SQout
ð!Þ

q

, which reduces to �q
ffiffiffiffi

B
p

in the white

noise limit, where B is the readout bandwidth. It is possible to
pose the charge detection problem in the language of quan-
tum linear amplifiers as shown in Fig. 33(b) (Devoret and
Schoelkopf, 2000; Averin, 2003; Clerk et al., 2010). When
such a detector is modeled as a linear voltage amplifier, IN
and VN characterize the input and output noise, respectively,
and the quantum theory limit for the spectral density of

fluctuations at signal frequency ! reads
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SVð!ÞSIð!Þp �
ℏ!=2. Information about the electronic backaction is
contained in the correlator h�VinðtÞ�Vinðt0Þi of the induced
voltage fluctuations on the counting island. Denoting the
total capacitance of the counting island by C�, the fluctua-
tions in the output charge signal are given by �Qoutð!Þ ¼
C�VNð!Þ, and the voltage fluctuations on the counting
island by �Vinð!Þ ¼ INð!Þ=j!C�. One thus finds
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SQout
ð!ÞSVin

ð!Þ
q

� ℏ=2 as the quantum limit.

In theory, a quantum-limited operation can be achieved
with normal-state SETs operated in the cotunneling regime
(Averin, 2001), superconducting SETs (Zorin, 1996, 2001),

and QPCs (Korotkov, 1999; Clerk, Girvin, and Stone, 2003;
Averin and Sukhorukov, 2005). In practical devices, however,
the noise spectrum up to 1–100 kHz depending on the setup is
dominated by 1=f-like charge noise that is intrinsic to the
sample but whose microscopic physical origin is still debated
(Starmark et al., 1999; Vandersypen et al., 2004; Buehler
et al., 2005). Above 1 kHz, the charge noise level is usually
set by the preamplifier noise, but studies exist where the
intrinsic shot noise of the electrometer was comparable to
the noise of the readout electronics (Brenning et al., 2006;
Kafanov and Delsing, 2009). For the normal-state SET, sen-

sitivities of the order of 10�7 e=
ffiffiffiffiffiffi

Hz
p

are attainable in theory
with present-day fabrication technology, where the intrinsic
noise is due to stochastic character of the tunneling processes
and includes both shot and thermal noise (Korotkov, 1994;
Korotkov and Paalanen, 1999). The best charge sensitivities
reported to date for a single-electron transistor by Brenning
et al. (2006) were almost identical in normal and supercon-

ducting states, namely, 1.0 and 0:9
 10�6 e=
ffiffiffiffiffiffi

Hz
p

, respec-
tively, at a signal frequency of 1.5 MHz. Xue et al. (2009)
also measured the backaction of a superconducting SET and
the product of noise and backaction was found to be 3.6 times
the quantum limit. For QD charge detection with QPCs,

charge sensitivity of 2
 10�4 e=
ffiffiffiffiffiffi

Hz
p

referred to the QD
charge has been demonstrated (Cassidy et al., 2007). It
appears to be easier to realize large charge coupling fraction
� with metallic SETs than with QPCs (Yuan et al., 2011).

We now discuss the backaction mechanisms in more detail;
see a schematic illustration in Fig. 34. Despite the above
quantum theory result connecting backaction and noise, the
electronic backaction of the electron counter can be addressed
in principle independently of its charge noise, as the readout
bandwidth (at most 100 MHz, see below) is much below the
microwave frequencies that can promote charge transfer errors:
Overcoming even a modest 100 �V energy barrier requires
photon frequencies above 24 GHz if multiphoton processes are
neglected. Nevertheless, voltage fluctuations induced by the
shot noise of the detector usually have a non-negligible spectral
density at microwave frequencies. A fraction � of the voltage
fluctuations of the SET island are coupled back to the counting
node. This mechanism can dominate the equilibrium thermal

Q
SET

or

QPC

-DC bias variation
-high freq: PAT

EM:

Phononic/photonic 
heat conduction

Pump

FIG. 34. Detector backaction mechanisms. The backaction can

originate by direct electromagnetic (EM) coupling either by

variations in pump biasing or by high-frequency photon-assisted

tunneling (PAT). Another source of backaction is via heat conduc-

tion. The detector located in proximity of the device typically heats

up. The heat can then be conducted to the device by either phononic

or photonic coupling.
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noise from resistive components at the sample stage; cf.
Martinis and Nahum (1993). A full quantum calculation of
the backaction of anSETelectrometer on aCooper-pair boxhas
been presented by Johansson, Käck, and Wendin (2002).
Lotkhov and Zorin (2012) measured the effect of photon
irradiation by a nearby SET on the hold time of an electron
trap. They found that the rate of electron escape events was
proportional to the theoretically calculated emission rate of
photons having an energy larger than the energy barrier of the
trap. Saira, Kemppinen et al. (2012) suggest attenuating the
high-frequency backaction by replacing the capacitive
coupling by a lossy wire that acts as a low-pass filter for
microwaves but does not affect the charge signal. For QPCs,
Coulombic backaction can be divided into shot noise, which
can be in principle eliminated by circuit design and fundamen-
tal charge noise (Aguado and Kouwenhoven, 2000; Young and
Clerk, 2010).

The low-frequency part of detector backaction manifests
itself as variation of the dc bias of the pump or turnstile
device. The case of an SET electrometer coupled to a single-
electron box was studied by Turek et al. (2005). In the limit of
small coupling capacitance Cx, the voltage swing on the
counting island due to loading and unloading the detector
island is given by �Vin ¼ �e=Cdet. We note that this is just a
fraction Cx=Cdet < 1 of the voltage swing from loading or
unloading the actual counting island with an electron. Hence,
dc backaction of the detector does not necessarily place an
additional constraint on the design of the electron-counting
circuit.

In addition to the electronic backaction described above,
one needs to consider the phononic heat conduction from the
detector to the charge pump. For reaching the ultimate
accuracy, the charge pumps typically require temperatures
of the order of 100 mK or lower, where small on-chip
dissipation can raise the local temperature significantly due
to vanishing heat conductivity in the low-temperature limit
(Kautz, Zimmerli, and Martinis, 1993; Giazotto et al., 2006);
see also Sec. II.G. The average power dissipated by the
detector is given by P ¼ hIdetVdeti, and it needs to be trans-
ported away by the substrate phonons or electronically via the
leads. Requirement for a sufficiently large charge coupling
coefficient � limits the distance by which the detector and
charge pump can be separated. The temperature increase by
dissipated power has been studied on a silicon substrate by
Savin et al. (2006) and they give

T ¼
�

T4
0 þ

2fP

�r2�v

�
1=4

; (40)

where T is the substrate temperature at distance r from a point
source of heating power P, T0 is the bath temperature, �v ¼
3600 Wm�2 K�4 is the material parameter, and f ¼ 0:72 is a
fitting parameter for their experimental observations. For an
illustrative example, we estimate that the dissipated power at
the electrometer in the original rf-SET paper (Schoelkopf
et al., 1998) was 120 fW based on the published numbers.
According to Eq. (40), this will heat the substrate underneath
nearby junctions (r ¼ 200 nm) to 140 mK, which is high
enough to deteriorate the performance of many single-
electron devices below the metrological requirements.
Sillanpää, Roschier, and Hakonen (2004) coupled the readout

to the Josephson inductance of a superconducting SET in-

stead of conductance, reducing the dissipation by 2 orders of

magnitude. Usually it is possible to assess the severity of

detector backaction effects in the experiment by measuring

the tunneling rates using different values of Idet [see, e.g.,
Kemppinen et al. (2011), Lotkhov et al. (2011), and Saira,

Kemppinen et al. (2012)], so that any variation of the ob-

served rates can be attributed to backaction. The picture is

somewhat different in 2DEG systems due to significantly

weakened electron-phonon coupling. Experimental study of

phononic backaction in 2DEGs is presented by Schinner et al.

(2009) and Harbusch et al. (2010).
The bandwidth of the readout, B, is commonly defined as

the corner frequency of the gain from gate charge to output

voltage (Visscher et al., 1996). The performance require-

ments for the charge readout depend on the particular

charge-counting scheme, but in general the bandwidth B
places a limit on the fastest processes that can be detected

and hence constrains the magnitude of the electric current that

can be reliably monitored. In practice, B is limited by the

inverse RC constant of the electrometer’s differential resist-

ance and the capacitive loading on its outputs. Both the QPC

and SET electrometers have an impedance of the order of

RK ¼ h=e2 
 25:8 k�. For the SET, R * RK is required to

realize strong Coulomb blockade according to the orthodox

theory of single-electron tunneling (Averin and Likharev,

1991; Ingold and Nazarov, 1992). For a QPC, the most

charge-sensitive operation point is around a bias point where

@V=@I ¼ RK, midway between the first conductance plateau

and pinch-off (Cassidy et al., 2007). As the barrier capaci-

tance is of the order of 1 fF or less for the devices, the intrinsic

bandwidth is in the gigahertz range. In practice, the capaci-

tance of the biasing leads and the input capacitance of the

preamplifier dominate. When the preamplifier is located

at room temperature as in the pioneering experiments

(Fulton and Dolan, 1987; Kuzmin et al., 1989), the wiring

necessarily contributes a capacitance of the order of 0.1–1 nF

and henceforth limits the readout bandwidth to the kilohertz

range (Pettersson et al., 1996; Visscher et al., 1996). Readout

by a current amplifier from a voltage-biased SET avoids the

RC cutoff on the gain, but the usable bandwidth is not

substantially altered as current noise increases at high fre-

quencies where the cabling capacitance shorts the current

amplifier input (Starmark et al., 1999).
In order to increase the effective readout bandwidth, the

SET impedance has to be transformed down toward the cable

impedance, which is of the order of 50 �. Bandwidths up to

700 kHz have been achieved by utilizing a high-electron-

mobility transistor (HEMT) amplifier with a low impedance

output at the sample stage (Pettersson et al., 1996; Visscher

et al., 1996). The dissipated power at the HEMT in these

studies was 1–10 �W depending on the biasing, which can

easily result in overheating of the electrometer and/or the

coupled single-electron device. The best readout configura-

tion to date is the rf reflectometry technique, applicable to

both SETs (Schoelkopf et al., 1998) and QPCs (Qin and

Williams, 2006), where the electrometer is embedded in a

radio frequency resonant circuit and the readout is achieved

by measuring the damping of the resonator. A readout band-

width of 100 MHz was achieved in the original demonstration
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(Schoelkopf et al., 1998). They also note that their charge

sensitivity of 1
 10�5 e=
ffiffiffiffiffiffi

Hz
p

yields �q ¼ 0:1e for the full
detection bandwidth, i.e., electron counting at 100 MHz
would have been possible in a scenario where the charge
coupling fraction � was close to unity.

2. Electron-counting schemes

Realization of a current standard based on electron
counting has been one of the key motivators for development
of ultrasensitive electrometry (Schoelkopf et al., 1998;
Gustavsson et al., 2008; Keller, 2009). First we see why
direct current measurement of uncorrelated tunneling events,
like those produced by a voltage-biased tunnel junction,
cannot be used for a high-precision current standard:
Assume a noise-free charge detector that yields the charge
state of the counting island with time resolution � ¼ 1=B, and
that Markovian (uncorrelated) tunneling events occur at the
rate � � B. With probability ��, a single tunneling event
occurs during the time � and is correctly counted by the
detector. With probability ð��Þ2=2, two tunneling events
occur within � and constitute a counting error. Hence, to
achieve a relative error rate p, one needs �< 2pB. Even
with a noiseless 100 MHz rf SET, one could not measure a
direct current greater than 2e=s at metrological accuracy p ¼
10�8 in this manner. Would it be practical to account statis-
tically for the missed events in a manner similar to Naaman
and Aumentado (2006) assuming truly Poissonian tunneling
statistics and a well-characterized detector? The answer is
unfortunately negative: If N tunneling events are observed,
the number of missed eventsM is a Poissonian variable with a

mean of N��=2 and standard deviation �M ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N��=2
p

.
Requiring �M < pN gives N > ��=ð2p2Þ. For � ¼ 1 MHz
and � and p as above, one has to average over N > 5
 1013

events, which is impractical. A more detailed calculation
based on Bayesian inference presented by Gustavsson et al.
(2009) results in the same N dependence.

Charge transport through a 1D array of tunnel junctions can
take place in the form of solitons depending on device pa-
rameters (Likharev, 1988; Likharev et al., 1989). Propagation
of the solitons promotes time correlation in the electron
tunneling events, allowing the accuracy limitations of count-
ing uncorrelated electrons presented above to be lifted.
A proof-of-concept experimental realization has been pre-
sented by Bylander, Duty, and Delsing (2005). The array is
terminated at the middle island of an SET, allowing for unity
charge coupling, and a signal centered around frequency fc ¼
I=e is expected. They claim a possible accuracy of 10�6 based
on the charge sensitivity of their electrometer only. However,
the spectral peaks in the experimental data appear too wide for
an accurate determination of the center frequency. Factors not
included in the accuracy estimate are the instability of the bias
current and SET background charge fluctuations.

Single-electron electrometry can be used to count the much
rarer pumping errors instead of the total pumping current.
Such an approach has been used to study the accuracy of
metallic multijunction pumps that are used in the electron-
counting capacitance standard (ECCS) (Keller et al., 1999;
Keller, Zimmerman, and Eichenberger, 2007). A circuit dia-
gram of an ECCS experiment is shown in Fig. 35. Two
cryogenic needle switches are required to operate the device

in different modes: determining coupling capacitances and
tuning the pump drive signal (NS1 and NS2 closed), operating
the pump to charge Ccryo (NS1 closed, NS2 open), and

comparing Ccryo with an external traceable capacitor (NS1

open, NS2 closed). The SET electrometer is used as part of a
feedback loop that maintains the voltage of the node at the end
of the pump constant. With NS1 open, the pump can be
operated in a shuttle mode: a charge of e is repeatedly pumped
back and forth across the pump at the optimal operation
frequency (which is above the detector bandwidth), and
pumping errors appear as discrete jumps in the electrometer
output.

An error rate of 1:5
 10�8 relative to the used shuttling
frequency of 5.05 MHz was demonstrated in the NIST
ECCS setup (Keller et al., 1996). In this experiment, the
seven-junction pump illustrated in Fig. 13 was used. At
Physikalisch-Technische Bundesanstalt (PTB), a relative
error rate of the order of 10�7 was reported (Camarota
et al., 2012) for a five-junction R pump operated at a shuttling
frequency of 0.5 MHz. Recently, the PTB group improved
their relative error rate to 4:4
 10�8 (Scherer et al., 2012).
They also argued that in order to account for the possibility of
pumping errors in opposite directions to cancel out each
other, the proper measure of the pump accuracy in an

ECCS experiment is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�err=�t
p

=f, where �err is the absolute
rate at which pumping errors occur, �t is the time spent at
charging the capacitor, and f is the pumping frequency.
Using this methodology, they inferred a relative accuracy of
1:5
 10�8 for their pump. A complete ECCS experiment has
not been performed with a semiconducting pump to date.
Yamahata, Nishiguchi, and Fujiwara (2011) described a
single-electron shuttling experiment performed on a Si nano-
wire, but the reported error rates are rather high, at the 10�2

level. In semiconductor realizations, the memory node can be
isolated from the rest of the lead by a FET switch that is
defined with the same lithography process as the pump,
eliminating the need for the needle switch.

Wulf (2012) proposed an error-accounting architecture,
where a few modestly accurate charge pumps are connected

FIG. 35. Circuit diagram of a practical implementation of the

electron-counting capacitance standard. Switches NS1 and NS2

are cryogenic needle switches. From Camarota et al., 2012.
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in series, and electrometers are used to observe the charge on
memory nodes situated in between the pumps. Assuming that
the error rate of the pumps is small in comparison to the
readout bandwidth, the sign of individual pumping errors can
be reliably inferred from the electrometer response. Hence,
the accuracy of the pumped current can then be improved
beyond the accuracy of the constituent pumps.

To date, an error-counting or -accounting algorithm inte-
grated with continuously operating series-connected pumps
has not been demonstrated experimentally. Measurements of
two series-connected semiconductor QD pumps with a QPC
electrometer coupled to a node in the middle were presented
by Fricke et al. (2011), although quantized pumping errors
were not observed. Recently, an initial report of on-demand
single-electron transfer in a device consisting of three QD
pumps and two metallic SET electrometers was presented
(Fricke et al., 2012, 2013). Although no detectable current
was produced in this experiment due to a low repetition rate
of 5 Hz, they were able to distinguish between different types
of pumping errors from the electrometer signature.

I. Device fabrication

Fabrication of charge pumps, regardless of their opera-
tional principle, requires advanced nanofabrication methods.
These include, for example, electron-beam lithography,
various dry etching techniques, and molecular-beam epitaxy
growth of semiconductor heterostructures. In general, pump-
ing devices can have small feature sizes in multiple layers that
must be accurately aligned with each other. We begin with the
description of the fabrication procedure for the metallic
single-electron and Cooper-pair pumps and turnstiles
described in Secs. III.A, III.B, and III.E. Subsequently, we
present the fabrication methods for quantum-dot pumps and
turnstiles, the operation of which is discussed in Sec. III.C.

1. Metallic devices

Metallic single-electron and Cooper-pair pumps and turn-
stiles are typically made by the angle deposition technique,
which was first introduced by Dolan (1977) for the photoli-
thography process and then later adapted by Dolan and
Dunsmuir (1988) for the electron-beam lithography process.
We note that there is a myriad of different ways of fabricating
these devices. Below we describe only a certain fabrication
process for these devices in great detail instead of giving a
thorough study of all possible variations.

The process starts with the deposition of an Au layer on an
Si wafer covered by a native silicon oxide. The Au pattern is
formed by a standard photolithography and lift-off process
using photoresist S1813 and contains contact pads and on-
chip wiring as well as alignment markers for the deposition
of the subsequent layers. Next, a trilayer resist structure
is built (from bottom to top): copolymer/Ge/poly-methyl-
methacrylate (PMMA) with the thicknesses 200, 20, and
50 nm, respectively [see Fig. 36(a)]. The polymer layers are
spin coated on the wafer and baked in a nitrogen oven, and the
Ge layer is deposited in an electron gun evaporator. The wafer
is then cleaved into smaller pieces which are exposed and
processed separately. After the exposure of the top PMMA
layer on one of the pieces in the electron-beam writer,

e.g., JEOL JBX-5FE, the piece is developed at room tempera-

ture in isopropyl alcohol mixed with methyl isobutyl ketone at

a ratio of 3:1. Thus, a desired pattern is formed in the PMMA
layer [see Fig. 36(b)]. The pattern is transferred into the Ge

layer by reactive ion etching in CF4 [see Fig. 36(c)]. The

sample is then placed in an electron cyclotron resonance

(ECR) etcher, in which an undercut is formed by oxygen
plasma. The undercut depth is controlled by the tilt of the

sample stage in the ECR machine. At the same time, the top

PMMA layer is etched away. At this stage, each chip has a Ge

mask supported by the copolymer layer [see Fig. 36(d)]. Some
parts of the mask are suspended, forming the Dolan bridges.

Although we described above a method with three layers, in

many cases a bilayer mask composed of copolymer and

PMMA resists is sufficient.
The chips with masks are placed in an electron gun

evaporator equipped with a tilting stage. Two consecutive

depositions of metal through the same mask are carried out at

different angles to create a partial overlap between the metal

layers [see Fig. 36(e)]. If the surface of the bottom layer
(typically Al) is oxidized by introducing oxygen into the

evaporation chamber, after the deposition of the top electrode,

the sandwich structure composed of the overlapping metal

layers with a thin oxide in between forms small tunnel
junctions [see Fig. 36(f)].

The normal-metal or superconducting charge pumps are

made entirely of Al, which can be turned normal at low

temperatures by an external magnetic field [see Geerligs
et al. (1990, 1991), Pothier et al. (1992), Keller et al.

(1996), and Vartiainen et al. (2007)]. In the case of the hybrid

(a)

(b)

(c)

(d)

(e)

( f )

FIG. 36 (color online). Fabrication of metallic devices.

(a) Buildup of a trilayer resist structure and exposure in the

electron-beam writer; (b) development of the top PMMA layer;

(c) transfer of the pattern formed in the resist into the Ge layer by

reactive ion etching; (d) creation of the undercut in the bottom resist

and removal of the top resist by oxygen plasma; (e) angle deposition

of metals with an oxidation in between; (f) the resulting structure

after the lift-off process.
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structures described in Pekola et al. (2008), Kemppinen,

Kafanov et al. (2009), Kemppinen, Meschke et al. (2009),

and Maisi et al. (2009), the bottom electrode was Al and the

top one was either Cu or AuPd.

2. Quantum dots

The gate structure of the charge pumps based on quantum

dots is also fabricated using electron-beam lithography. The

main differences in the fabrication compared with metallic

devices are the following: Ohmic contacts have to be made

between metallic bonding pads on the surface of the chip and

the 2DEG located typically �100 nm below the surface.

Furthermore, the 2DEG has to be either depleted with

negative gate voltage from the unwanted positions in the

case of GaAs devices [see Fig. 18(d)] or accumulated with

positive gate voltage in the case of MOS silicon devices

[see Fig. 18(c)]. For GaAs, also etching techniques have

been employed to dispose of some parts of the 2DEG leading

to a smaller number of required gates [see Fig. 20(a)]. In

GaAs devices, typically a single deposition of metal through a

monolayer PMMA resist is sufficient to create the gate

structure. For MOS silicon dots, several aligned layers of

gate material are often used. However, only a single layer is

typically deposited with each mask in contrast to metallic

devices employing angle evaporation.
We now describe in detail a fabrication process for

MOS silicon quantum dots. We begin with a high-resistivity

(� > 10 k� cm at 300 K) near-intrinsic silicon wafer.

Phosphorus atoms are deposited on the silicon surface using

standard photolithography and they diffuse to a depth of

roughly 1:5 �m during the growth of a 200-nm-field silicon

oxide on top. All the following process steps involving

etching or deposition have to be aligned with the previous

ones with the help of alignment markers, a routine we do not

discuss separately. Then a window with size 30
 30 �m2 is

opened to the field oxide and replaced by an 8-nm-thick high-

quality SiO2 gate oxide that is grown in an ultradry oxidation

furnace at 800 �C in O2 and dichloroethylene. This thin oxide

window overlaps by a few micrometers with the ends of the

metallic phosphorous-rich nþ regions. The field oxide is

etched selectively above the other ends of the nþ regions

formed in the previous process. The Ohmic contacts and the

bonding pads are made by depositing metal on these etched

regions, forming a connection to the nþ silicon. Subsequent

annealing is employed to avoid the formation of Schottky

barriers.
At this stage, we have bonding pads connected to the

metallic nþ regions that extend some 100 �m away from

the pads to the thin oxide window with the linewidth of 4 �m.

Electron-beam lithography with a 200 nm PMMA resist and

metal evaporation with an electron gun evaporator is em-

ployed to deposit the first layer of aluminum gates inside the

window and their bonding pads outside the window. After the

lift-off, the gates are passivated by an AlxOy layer formed by

oxidizing the aluminum gates by either oxygen plasma or

thermally on a hot plate (150 �C, 5 min). The oxide layer

electrically completely insulates the following overlapping

layers of aluminum gates that are deposited in the same way

with alignment accuracy of �20 nm.

At least one gate has to overlap with areas where nþ
regions extend to the thin oxide window. By applying positive
voltage on these reservoir gates, the electrons from the nþ are
attracted to the Si=SiO2 interface below the reservoir gates,
forming the source and drain reservoirs of the device. For
example, the device shown in Fig. 23(b) is composed of one
or two layers of gates: one top gate that induces the source
and drain reservoir, two barrier gates below the top gate
defining the quantum dot, and a plunger gate in the same
layer with the barrier gates. Finally, a forming gas (95%N2,
5%H2) anneal is carried out for the sample at 400 �C for
15 min to reduce the Si=SiO2 interface trap density to a level
of �5
 1010 cm�2 eV�1 near the conduction band edge.
Silicon quantum dots can also be fabricated with an all-
silicon process, in which the aluminum gates are replaced
by conducting polysilicon gates shown in Fig. 23(a).

IV. QUANTUM STANDARDS OF ELECTRIC QUANTITIES

AND THE QUANTUM METROLOGY TRIANGLE

The ampere is one of the seven base units of the
International System of Units (SI) (Bureau International des
Poids et Mesures, 2006) and is defined as follows: ‘‘The
ampere is that constant current which, if maintained in two
straight parallel conductors of infinite length, of negligible
circular cross section, and placed 1 m apart in vacuum, would
produce between these conductors a force equal to 2
 10�7

newton per meter of length.’’ The present definition is prob-
lematic for several reasons: (i) The experiments required for
its realization are beyond the resources of most of the
National Metrology Institutes. (ii) The lowest demonstrated
uncertainties are not better than about 3
 10�7 (Clothier
et al., 1989; Funck and Sienknecht, 1991). (iii) The definition
involves the unit of newton, kg
m=s2, and thus the proto-
type of the kilogram, which is shown to drift in time (Quinn,
1991). In practice, electric metrologists are working outside
the SI and employing quantum standards of voltage and
resistance, based on the Josephson and quantum Hall effects,
respectively.

A. The conventional system of electric units

According to the ac Josephson effect, V ¼ ðh=2eÞ@�=@t,
the voltage V applied over the Josephson junction induces
oscillations of the phase difference � over the junction
(Josephson, 1962). Phase locking � by a high-frequency
(fJ) signal results in quantized voltage plateaus

VJ � nJfJ
KJ

’ nJ
h

2e
fJ; (41)

which are often called Shapiro steps (Shapiro, 1963). Here nJ
is the integer number of cycles of 2� in which � evolves
during one period of the high-frequency signal. The propor-
tionality between VJ and fJ is denoted by the Josephson
constant KJ. According to theory, KJ ¼ 2e=h, but as dis-
cussed, this assumption is sometimes relaxed in metrology.

The Josephson voltage standards (JVS) have been used in
electric metrology since the 1970s; see, e.g., Kohlmann, Behr,
and Funck (2003) and Jeanneret and Benz (2009) for
reviews. The first standards consisted of a single junction
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and generated voltages only up to about 10 mV. Arrays of
more than 10 000 junctions with the maximum output of 10 V
were developed in the 1980s. They were based on hysteretic
junctions where Shapiro steps with different nJ can exist at
the same bias current. Since the 1990s, the research has
focused on arrays of nonhysteretic junctions where nJ can
be chosen by the applied current bias. Arrays divided in
sections of 2m junctions (m ¼ 0; 1; 2; . . . ) are called program-
mable since one can digitally select any multiple of fJ=KJ up
to the number of junctions as the output voltage (Hamilton,
Burroughs, and Kautz, 1995; Kohlmann et al., 2007). They
are practical for dc voltage metrology, but are especially
developed for generating digitized ac voltage wave forms
up to about 1 kHz, which is an active research topic (Behr
et al., 2005). Voltage wave forms at higher frequencies can be
generated by pulse-driven Josephson junction arrays where
the desired ac wave form is synthesized by the delta-sigma
modulation of fast voltage pulses, each having the time
integral of one flux quantum h=ð2eÞ (Benz and Hamilton,
1996).

The QHR standard consists of a two-dimensional electron
gas, which, when placed in a high perpendicular magnetic
field, exhibits plateaus in the Hall voltage VH ¼ RHI over the
sample in the direction perpendicular to both the field and the
bias current I. Here

RH � RK

iK
’ 1

iK

h

e2
(42)

is the quantized resistance, which is proportional to the
von Klitzing constant RK and inversely proportional to
the integer iK (von Klitzing, Dorda, and Pepper, 1980). As
in the case of the JVS, the theoretical equality RK ¼ h=e2 is
sometimes relaxed in metrology. The plateau index iK can be
chosen by tuning the magnetic field. Usually the best results
are obtained at iK ¼ 2.

Quantum Hall standards based on Si MOSFETs or GaAs/
AlGaAs heterostructures were harnessed in routine metrology
quickly during the 1980s; see, e.g., Jeckelmann and Jeanneret
(2001), Poirier and Schopfer (2009), and Weis and von
Klitzing (2011) and issue 4 of C. R. Physique, Vol. 369
(2011) for reviews. Different resistances can be calibrated
against the QHR by using the CCC. It is essentially a trans-
former with an exact transform ratio due to the Meissner
effect of the superconducting loop around the windings
(Harvey, 1972; Gallop and Piquemal, 2006). Another way
to divide or multiply RH are parallel or series quantum Hall
arrays, respectively, which are permitted by the technique of
multiple connections that suppresses the contact resistances
(Delahaye, 1993). One rapidly developing research topic is ac
quantum Hall techniques, which can be used in impedance
standards to expand the traceability to capacitance and in-
ductance (Schurr et al., 2011). An important recent discovery
is that graphene can be used to realize an accurate and very
robust QHR standard (Zhang et al., 2005; Novoselov et al.,
2007; Tzalenchuk et al., 2010; Janssen et al., 2011).

The most precise measurement of KJ within the SI was
performed by a device called a liquid-mercury electrometer
with the uncertainty 2:7
 10�7 (Clothier et al., 1989). The SI
value of RK can be obtained by comparing the impedance of
the QHR and that of the Thompson-Lampard calculable

capacitor (Thompson and Lampard, 1956; Bachmair, 2009).
The lowest reported uncertainty of such comparison is
2:4
 10�8 (Jeffery et al., 1997). However, both the JVS
and QHR are much more reproducible than their uncertainties
in the SI; see Sec. IV.B. Therefore, the consistency of electric
measurements could be improved by defining conventional
values for RK and KJ. Based on the best available data by
June 1988, the member states of the Metre Convention made
an agreement of the values that came into effect in 1990:

KJ-90 ¼ 483 597:9 GHz=V;

RK-90 ¼ 25 812:807 �:
(43)

Since then, electric measurements have in practice been
performed using this conventional system which is some-
times emphasized by denoting the units by V90, �90, A90,
etc., and where the JVS and QHR are called representations
of the units.

B. Universality and exactness of electric quantum standards

A theory can never be proven by theory, but, as argued by
Gallop (2005), theories based on very general principles such
as thermodynamics and gauge invariance are more convinc-
ing than microscopic theories such as the original derivation
of the Josephson effect (Josephson, 1962). There are rather
strong theoretical arguments for the exactness of the JVS:
Bloch has shown that if a Josephson junction is placed in a
superconducting ring, the exactness of KJ can be derived
from gauge invariance (Bloch, 1968, 1970). Furthermore,
Fulton showed that a dependence of KJ on materials would
violate Faraday’s law (Fulton, 1973). For quantum Hall
devices, early theoretical works argued that the exactness of
RK is a consequence of gauge invariance (Laughlin, 1981;
Thouless et al., 1982). However, it is very complicated to
model real quantum Hall bars, including dissipation, inter-
actions, etc., and thus the universality and exactness of the
QHR has sometimes been described as a ‘‘continuing sur-
prise’’ (Mohr and Taylor, 2005; Keller, 2008). Extensive
theoretical work, e.g., on topological Chern numbers, has
strengthened the confidence in the exactness of RK; see
Avron, Osadchy, and Seiler (2003), Bieri and Fröhlich
(2011), and Doucot (2011) for introductory reviews. Recent
theoretical work based on quantum electrodynamics (QED)
predicts that the vacuum polarization can lead to a magnetic
field dependence of both RK (Penin, 2009, 2010a) and KJ

(Penin, 2010b), but only at the level of 10�20. The case of
single-electron transport has been studied much less and there
are no such strong theoretical arguments for the lack of any
corrections for the transported charge (Gallop, 2005; Stock
and Witt, 2006; Keller, 2008).1

On the experimental side, comparisons between Si and
GaAs quantum Hall bars show no deviations at the experi-
mental uncertainty of �3
 10�10 (Hartland et al., 1991).
Recently, an agreement at the uncertainty of 8:6
 10�11 was
found between graphene and GaAs devices (Janssen et al.,

1A condensed-matter correction of �10�10e for the charge of the

electron was suggested by theory based on QED (Nordtvedt, 1970),

but it was refuted by Hartle, Scalapino, and Sugar (1971) and

Langenberg and Schrieffer (1971).
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2011). This is an extremely important demonstration
of the universality of RK because the physics of the charge
carriers is notably different in graphene and semiconductors
(Goerbig, 2011). Comparisons between the JVSs have been
summarized recently by Wood and Solve (2009). The lowest
uncertainties obtained in comparisons between two JVSs are
in the range of 10�11. Even much smaller uncertainties have
been obtained in universality tests of the frequency-to-voltage
conversion by applying the same frequency to two different
junctions or junction arrays and detecting the voltage
difference by a SQUID-based null detector. Several accurate
experiments have indicated that the conversion is indepen-
dent of, e.g., the superconducting material and the junction
geometry. The lowest demonstrated uncertainty is astonish-
ing: 3
 10�19 (Clarke, 1968; Tsai, Jain, and Lukens,
1983; Jain, Lukens, and Tsai, 1987; Kautz and Lloyd,
1987).

The reproducibility and universality of the quantum stan-
dards are an indication that Eqs. (41) and (42) are exact, but a
proof can be obtained only by comparison to other standards.
Any one of the electric quantities V, I, or R can be compared
to the other two in a quantum metrology triangle (QMT)
experiment (Likharev and Zorin, 1985); see Sec. IV.D. It is a
major goal in metrology, but the insufficient performance of
single-electron devices has to date prevented the reaching of
low uncertainties. However, the exactness of Eqs. (41) and
(42) can also be studied in the framework of the adjustment of
fundamental constants. The most thorough treatment has
been performed by the Committee on Data for Science and
Technology (CODATA). Updated papers are nowadays pub-
lished every four years; see Mohr and Taylor (2000, 2005),
and Mohr, Taylor, and Newell (2008, 2012).2 Karshenboim
(2009) provided a useful overview. We review here the most
accurate (< 10�7) routes to information on the electric quan-
tum standards. They are also illustrated in Fig. 37. Most of the
equations in this section assume that Eqs. (41) and (42) are
exact, but when referring to possible deviations, we describe
them by symbols �J;K;S:

KJ ¼ ð1þ �JÞ 2eh ; RK ¼ ð1þ �KÞ h
e2

;

QS ¼ ð1þ �SÞe:
(44)

In this context, the current generated by the single-electron
current source is IS ¼ hkSiQSf, where hkSi is the average
number of electrons transported per cycle.

There are a number of fundamental constants that are
known with much smaller uncertainties than those related
to electric metrology. Some constants, e.g., permeability,
permittivity, and the speed of light in vacuum, and the molar
mass constant,�0, �0, c, andMu ¼ 1 g=mol, respectively, are
fixed by the present SI. Examples of constants known with an
uncertainty� 10�10 are the Rydberg constant R1 and several
relative atomic masses, e.g., that of the electron ArðeÞ. In the
past few years, there has been tremendous progress in
the determination of the fine structure constant 	. First the
electron magnetic moment anomaly ae was measured with
high accuracy. A separate calculation based on QED gives the
function 	ðaeÞ. Together these results yield a value for 	
with an uncertainty 0:37
 10�9 (Hanneke, Fogwell, and
Gabrielse, 2008). Soon after, a measurement of the recoil
velocity of the rubidium atom, when it absorbs a photon,
yielded a value for 	 with an uncertainty of 0:66
 10�9

(Bouchendira et al., 2011). These two results are in good
agreement. Together they give a validity check for QED
since the first result is completely dependent and the latter
practically independent of that theory.

The fine structure constant is related to RK by the exact
constants �0 and c:

	 ¼ �0ce
2

2h
¼ �0c

2RK

: (45)

This relationship means that when RK is measured with a
calculable capacitor, it also yields an estimate for 	. Thus, a
measurement of RK could also test QED, but in practice, the
atomic recoil measurement is more accurate by about a factor
of 30. A metrologically more important interpretation of this
relation is that a comparison between 	 and the weighted
mean of the measurements of RK yields an estimate of �K ¼
ð29� 18Þ 
 10�9 (Mohr, Taylor, and Newell, 2012). There is
thus no proof of a nonzero �K, but several groups are devel-
oping calculable capacitors in order to determine RK with
uncertainty below 10�8 (Poirier and Schopfer, 2009; Poirier
et al., 2011).

The existing data that yield information on �J are more
discrepant. As described, �J is related to measurements of
gyromagnetic ratios [see Mohr and Taylor (2000) for a de-
tailed description] and to the efforts for the redefinition of the
kilogram (Mohr, Taylor, and Newell, 2008, 2012). The gyro-
magnetic ratio � determines the spin-flip frequency f of a
free particle when it is placed in a magnetic field B: � ¼
2�f=B. The gyromagnetic ratios of a helium nucleus and a
proton are accessible in nuclear and atomic magnetic reso-
nance experiments. These ratios can be related to the gyro-
magnetic ratio of an electron that is linked to 	 and h. There
are two methods to produce the magnetic field: In the low-
field method, it is generated by an electric current in a coil
and determined from the current and the geometry. In the
high-field method, the field is generated by a permanent

FIG. 37. Simplified sketch of the most accurate routes to infor-

mation on �J;K. Direct measurement of RK together with an

independent measurement of the fine structure constant (	) yields
a value for �K . Values for the sum of �J and �K can be obtained

from the combination of the so-called watt balance experiment

(K2
JRK) and a measurement of the Avogadro constant (NA), or

from the combination of 	 and measurements of low-field gyro-

magnetic ratios (�lo). Less accurate information is provided by

measurements of high-field gyromagnetic ratios KJ and the Faraday

constant F ¼ eNA, and by the QMT.

2The adjustments are named after the deadline for the included

data, e.g., CODATA-10 is based on experimental and theoretical

results that were available by 31 December 2010. The values of the

constants and much more information are available at the Web site

physics.nist.gov/constants/.
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magnet and measured from a current induced in a coil. When
the electric current is determined in terms of the JVS and

QHR, the product KJRK ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�0c=h	
p

appears in either the
numerator or the denominator of �, depending on which
method is used. In the low-field method, h cancels out from
the equations of the gyromagnetic ratios, and the experiment
yields a value for 	. The high-field results also depend on 	,
but since it is known much more precisely than h, they
essentially yield a value for h. The high-field results on h
are in good agreement with other experiments, albeit their
uncertainty is not better than about 10�6. However, the
low-field results are discrepant from the CODATA value of
	. By substituting Eqs. (44) into the observational equations
of the low-field data, one obtains the estimate �J þ �K ¼
ð�254� 93Þ 
 10�9 (Cadoret et al., 2011; Mohr, Taylor, and
Newell, 2012). Since the measurements of RK yield a much
smaller value for �K, the gyromagnetic data seem to imply
a significant negative �J. However, as explained below, a
positive �J can be found from measurements aiming at the
redefinition of the kilogram.

There are essentially two candidate methods for the future
realization of the kilogram: the watt balance and silicon
sphere methods. The first, suggested by Kibble (1975), relates
electric power to the time derivative of the gravitational
potential energy:

mgv ¼ V2

R
/ 1

K2
JRK

¼ h=4: (46)

When the mass m, its velocity v, and the gravitational
acceleration g are traceable to the SI, the watt balance yields
a value for h. Watt balance results have already been pub-
lished by four national metrology institutes, and several
devices are under development; see, e.g., Li et al. (2012),
Steiner (2013), and Stock (2013) for reviews. The silicon
sphere approach is so demanding that it is employed only by
the International Avogadro Coordination (IAC). The results
were published in 2011; see Andreas et al. (2011a, 2011b)
and the entire issue No. 2 of Metrologia, Vol. 48 (2011). This
project determines the Avogadro constant NA by fabricating
spheres of enriched 28Si whose mass is compared to the
prototype of the kilogram and whose volume is measured
by laser interferometry. The lattice parameter and the relative
atomic mass of 28Si are measured in different experiments,
and the ratio of the relative and absolute mass densities
yields NA.

Results for h and NA can be compared precisely with the
help of the molar Planck constant

NAh ¼ 	2 ArðeÞMuc

2R1
: (47)

Its uncertainty is only 0:7
 10�9 (Mohr, Taylor, and Newell,
2012) and depends mainly on those of ArðeÞ and 	.
Equation (47) can be derived from the definition of the
Rydberg constant by writing the inaccurate absolute mass
of the electron in terms of its relative mass and NA which
links microscopic and macroscopic masses. The IAC 2011
result resolved the discrepancy of 1:2
 10�6 between watt
balances and the Avogadro constant determined from a
sphere of natural Si that had puzzled metrologists since
1998 (Mohr and Taylor, 2000). Especially after the newest

results by Steele et al. (2012) there is no longer any clear
discrepancy between the two methods, but the two most

accurate watt balances deviate by a factor of 260
 10�9

which is 3.5 times the uncertainty of their difference

(Steiner et al., 2007; Steele et al., 2012). Also the measure-
ments of the isotope ratio of the silicon sphere spread more

than expected (Yang et al., 2012). Nevertheless, by combin-
ing the Planck constants obtained from the watt balance (hw)
and silicon sphere experiments (hAvo), we obtain an estimate
of �J þ �K=2 ’ ðhAvo=hw � 1Þ=2 ¼ ð77� 18Þ 
 10�9. Here
we neglected correlations between experiments. A more de-

tailed analysis on the existence of �J;K can be found from the

CODATA papers of Mohr, Taylor, and Newell (2008, 2012);
see also Keller (2008). They executed the least-squares analy-

sis of fundamental constants several times, allowing either
nonzero �K or �J, and including only part of the data. When

they excluded the lowest-uncertainty but discrepant data,
the remaining higher-uncertainty but consistent data yielded
the conservative estimates �K ¼ ð28� 18Þ 
 10�9 and �J ¼
ð150� 490Þ 
 10�9. Thus the exactness of the quantum Hall
effect is confirmed much better than that of the Josephson

effect.

C. The future SI

Modernizing the SI toward a system based on fundamental
constants or other true invariants of nature has long been a

major goal, tracing back to a proposal by Maxwell in the 19th
century; see, e.g., Flowers (2004) and references therein.

Atomic clocks and laser interferometry permitted such a
revision of the second and the meter. The development of

quantum electric standards, watt balance experiments, the
Avogadro project, and measurements of the Boltzmann con-
stant have made the reform of the ampere, kilogram, mole,

and kelvin realistic in the near future. In particular, sugges-
tions by Mills et al. (2005) launched an active debate among

metrologists (Mills et al., 2006; Becker et al., 2007; Milton,
Williams, and Bennett, 2007). Soon it was agreed that the

SI should not be altered before there are at least three
independent experiments (from both watt balance and
Avogadro constant calculations) with uncertainties � 50

10�9 that are consistent within the 95% confidence intervals,
and at least one of them has the uncertainty � 20
 10�9

(Gläser et al., 2010). There have also been requests to await
better results from single-electron and QMT experiments

(Bordé, 2005; Milton, Williams, and Bennett, 2007), and to
solve the discrepancy of low-field gyromagnetic experiments

(Cadoret et al., 2011).
There is already a draft chapter for the SI brochure that

would adopt the new definitions: BIPM (2010); see also the
whole issue 1953 in Phil. Trans. Royal Soc., A Vol. 369

(2011), especially Mills et al. (2011). In this draft, the whole
system of units is scaled by a single sentence that fixes seven

constants. The most substantial changes are that the base units
ampere, kilogram, mole, and kelvin are defined by fixed
values of e, h, NA, and kB, respectively. The new definition

for the ampere reads ‘‘The ampere, A, is the unit of electric
current; its magnitude is set by fixing the numerical value of

the elementary charge to be equal to exactly 1:602 17X 

10�19 when it is expressed in the units of second and ampere,

1462 Jukka P. Pekola et al.: Single-electron current sources: Toward a . . .

Rev. Mod. Phys., Vol. 85, No. 4, October–December 2013



which is equal to coulomb.’’ The new definitions do not imply
any particular methods for the realizations of the units. They
are guided by mises en pratique, e.g., the ampere could be
realized with the help of the JVS and QHR (CCEM
Collaboration, 2012).

The new SI would significantly lower the uncertainties of
many fundamental constants; see, e.g., Mills et al. (2011) for
evaluations. One should note, however, that choosing the
optimal set of fixed constants is always a trade-off. For
example, since 	 is a dimensionless number and thus inde-
pendent of the choice of units, one can see from Eq. (45) that
fixing e and h would make �0 (and �0) a quantity that is
determined by a measurement of 	. Presently, �0 and �0 are
fixed by the definition of an ampere. However, their uncer-
tainty would be very low, the same as that of 	, which is
0:32
 10�9 (Mohr, Taylor, and Newell, 2012). One alter-
native suggestion is to fix h and the Planck charge qp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2�0hc
p

, which would keep �0 and �0 exact (Stock and Witt,
2006). It is also worth noting that out of h, NA, and the molar
mass of carbon-12, Mð12CÞ ¼ Arð12CÞMu, only two can be
fixed. The suggested SI would release the equality Mð12CÞ ¼
0:012 kg=mol, which has raised criticism. In particular, there
have been claims that the definition of the kilogram based on
h would not be understandable for the wider audience, and a
definition based on the mass of a number of elementary
particles would be better in this respect (Becker et al.,
2007; Milton, Williams, and Bennett, 2007; Leonard, 2010;
Hill, Miller, and Censullo, 2011). Milton, Williams, and
Forbes (2010) studied two alternatives, fixing either NA and
h or NA and the atomic mass constant mu ¼ Mu=NA, and
showed that this choice has little effect on the uncertainties of
fundamental constants, mainly because the ratio h=mu is well
known from atomic recoil experiments.

D. Quantum metrology triangle

Phase-locked Bloch (Averin, Zorin, and Likharev, 1985)
and SET (Averin and Likharev, 1986) oscillations in super-
conducting and normal-state tunnel junctions, respectively,
were proposed as a source of quantized electric current in the
mid-1980s, soon after the discovery of the QHR. Already
Likharev and Zorin (1985) suggested that the quantum cur-
rent standard could provide a consistency check for the
existing two electric quantum standards in an experiment
they named the ‘‘quantum metrology triangle.’’ However,
the quantized current turned out to be a much greater chal-
lenge than the JVS and QHR. Still, after a quarter of a
century, quantum current standards are yet to take their place
in metrology. On the other hand, the progress in knowledge of
KJ and RK has also been rather slow: in CODATA-86 the
uncertainties were 300
 10�9 and 45
 10�9, respectively
(Cohen and Taylor, 1987). These uncertainties are essentially
on the same level as in CODATA-10 if the discrepancy of the
data is taken into account.

The QMT experiment and its impact has been discussed,
e.g., by Piquemal and Geneves (2000), Zimmerman and
Keller (2003), Piquemal (2004), Gallop (2005), Keller
(2008), Keller et al. (2008), Feltin and Piquemal (2009),
and Scherer and Camarota (2012). In this review, we use
the terms QMT setup, experiment, or measurement for any
experimental setups that pursue a metrological comparison

between JVS, QHR, and a quantum current source.
Development of such setups is a challenge in itself and not
necessarily related to any specific single-electron source.
However, as a closure of the QMT, we consider only experi-
ments which include error counting of the single-electron
device. The reason is that they are far more sensitive to errors
than the JVS and QHR. Error counting allows one to separate
the contribution of the average number of transported charge
quanta hkSi from the current of the single-electron source
IS ¼ hkSiQS. Only then can the QMT measurement yield
information on fundamental constants.

The QMT setups can be divided into two categories: those
that apply Ohm’s law V ¼ RI or so-called ECCSs which
utilize the definition of capacitance C ¼ Q=V. They are
sometimes called direct and indirect QMTs, respectively.

1. Triangle by Ohm’s law

Applying Ohm’s law is the most obvious way to compare
the three quantum electric standards. It can be realized
either as a voltage balance VJ � RHIS or as a current
balance VJ=RH � IS. In both cases, substituting Eqs. (44)
into VJ ¼ RHIS yields

nJiK
2hkSi

fJ
fS

’ 1þ �J þ �K þ �S: (48)

The major difficulty in QMT experiments is outlined as
follows. Consider the ideal case where the noise of the
experiment is dominated by the Johnson noise of the resistor.
The relative standard deviation of the measurement result is

�IS
IS

¼
ffiffiffiffiffiffiffiffiffiffiffi

4kBT

tRI2S

s

: (49)

By substituting realistic estimates t ¼ 24 h and T ¼ 100 mK
for the averaging time and the temperature of the resistor,
respectively, and by assuming that R ¼ RK=2 and IS ¼
100 pA, one obtains the uncertainty �IS=IS 
 7
 10�7. In
practical experiments, the 1=f noise and the noise of the null
detection circuit make the measurement even more demand-
ing, but this simple model demonstrates that the magnitude of
the current should be at least 100 pA.

Another problem is that the product RHIS yields a very
small voltage, e.g., 12:9 k�
 100 pA ¼ 1:29 �V.3 Even
the voltage of a JVS with only one junction is typically of
the order of 70 GHz=KJ 
 140 �V. Such low voltages are
also vulnerable to thermoelectric effects. One way to over-
come this problem is to multiply the current of the SET by a
CCC with a very high winding ratio�10 000 as suggested by
Hartland et al. (1991), Sese et al. (1999), and Piquemal and
Geneves (2000); see Fig. 38(a). It allows room-temperature
detection, and that JVS, SET, and QHR can be operated in
different refrigerators. This type of effort has been described
by Piquemal (2004), Feltin and Piquemal (2009), Feltin et al.
(2011), and Devoille et al. (2012). Another approach is to use
a high-value cryogenic resistor that is calibrated against the
QHR with the help of a CCC (Elmquist, Zimmerman, and
Huber, 2003; Manninen et al., 2008). All parts of Ohm’s law

3A quantum voltage standard based on integrating a semiconduct-

ing pump with the QHR was pioneered by Hohls et al. (2011).
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are in the same cryostat which can reduce thermoelectric
effects; see Fig. 38(b). Only the difference current VJ=Rcryo �
IS needs to be amplified. Despite persistent efforts, the
experimental realizations of these approaches have so far
produced only preliminary results. Recently, a promising
outcome was obtained by Giblin et al. (2012) who used a
CCC with high winding ratio to calibrate a precision 1 G�
room-temperature resistor which was used in a QMT setup;
see Fig. 38(c). This experiment benefited from the relatively
large current of 150 pA that was generated by a semiconduct-
ing quantum-dot pump. The uncertainty of the QMT experi-
ment was 1:2
 10�6, but since there was no error counting, it
should be interpreted as a characterization of the electron
pump, not as a closure of the QMT.

2. Electron-counting capacitance standard

The ECCS experiment was first suggested by Williams,
Ghosh, and Martinis (1992). A single-electron current source
is used to charge a cryogenic capacitor Ccryo by a known

number NS of electrons. The generated voltage is compared
to the JVS. The result

Ccryo ¼ NSQS

V
(50)

thus yields a quantum capacitance standard. The ECCS
experiment was pioneered by Keller et al. (1999) [see
Fig. 38(d)], where an uncertainty of 0:3
 10�6 was obtained
for the ECCS capacitance. In this approach, the ECCS was
compared to a calculable capacitor. Then the observational
equation corresponding to Eq. (48),

�0cnJfJC

4	NS

¼ 1þ �J þ �S; (51)

does not include �K. However, calculable capacitors have
been compared to QHR with very low uncertainty, and ac
QHR techniques (Schurr et al., 2011; Camarota et al., 2012)
allow Ccryo to be compared directly against RK. One should

thus obtain an uncertainty of �10�8 before there is any
significant difference between the implications of the two
QMT versions. An important strength of this QMT version is
that the feedback electrometer also allows error counting
through shuttle pumping; see Sec. III.H.2.

A major weakness of the ECCS is that it calibrates Ccryo at

�0:01 Hz, but commercial capacitance bridges that are used
to compareCcryo to the calculable capacitor (and also ac QHR)

operate at �1000 Hz. Zimmerman, Simonds, and Wang
(2006) presented a model for the dielectric dispersion of
insulating films at the surface of the electrodes of the capaci-
tor. They fit this model to measurements of the frequency
dependence and its temperature dependence in the ranges
100–3000 Hz and 4–300 K. The frequency dependence de-
creases at low temperatures. They evaluate that it yields an
uncertainty component of 0:2
 10�6 for the QMT. Keller,
Zimmerman, and Eichenberger (2007) used this estimate to
finish the uncertainty budget of the NIST ECCS experiment
that closes the QMT at the uncertainty of 0:9
 10�6.

Recently, PTB reached the uncertainty of 1:7
 10�6 in an
ECCS experiment (Camarota et al., 2012); see Sec. III.H.2.
PTB presented their result as ‘‘preliminary’’ and planned both
a more detailed uncertainty budget and several improvements
to the experiment. Besides NIST and PTB, the ECCS has
been pursued at METAS (Rüfenacht, Jeanneret, and Lotkhov,
2010).

3. Metrological implications of single-electron

transport and QMT

So far, QMT has been closed with a reasonable uncertainty
(�10�6) only in the ECCS experiments of NIST (Keller,
Zimmerman, and Eichenberger, 2007) and PTB (Camarota
et al., 2012). As shown in Sec. IV.B, an uncertainty of
& 0:02
 10�6 is required to yield information on �K,
and an uncertainty of �0:1
 10�6 would strengthen the
knowledge of �J. Thus, the NIST and PTB results can be
expressed in terms of �S only: �S ¼ ð�0:10� 0:92Þ 
 10�6

and �S ¼ ð�0:3� 1:7Þ 
 10�6, respectively (Keller, 2008).
Milton, Williams, and Forbes (2010) analyzed a scenario

where �J is an adjusted parameter and �S ¼ �K ¼ 0. They
studied the effect of QMTon the uncertainties of fundamental
constants and showed that when the QMT is inaccurate, the
uncertainties of h, e, and mu are mainly determined by the
Avogadro experiment. When the QMT is improved, their
uncertainties will be dominated by those of the watt balance
and the direct measurement of RK.

One problem of the QMT is that it gives only a value for
the sum of the errors of the quantum standards, and, in
principle, they could cancel each other. It is thus useful to
have independent tests for each standard, and those for the
JVS and QHR are discussed in Sec. IV.B. A test for the
current standard only, i.e., an SI value forQS, can be obtained
by combining results from three experiments: QMT, a

FIG. 38. (a)–(c) Variants of Ohm’s law triangles where the quan-

tized current (IS) is compared to resistance (R) calibrated against

QHR and to JVS. (a) The quantized current is magnified by a CCC,

which allows room-temperature null detection of the voltage dif-

ference (�V). (b) Triangle with a high-value cryogenic resistor. The

current balance �I can be determined, e.g., with the help of a CCC.

(c) QMT experiment where the null detection is performed by a

room-temperature transimpedance amplifier. (d) ECCS experiment.

In the first phase (A), the electron pump charges the cryocapacitor

C 
 2 pF. An SET electrometer (E) is used to generate a feedback

voltage (V) that maintains the potential of the island at zero. Hence

all the charge is accumulated to the cryocapacitor and not to the

stray capacitance. The feedback voltage constitutes the third part of

the Q ¼ CV type triangle. In the second phase (B), the cryocapa-

citor is calibrated against the reference Cref which is traceable to a

calculable capacitor. From Keller et al., 1999.
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measurement of RK by a calculable capacitor, and watt
balance (Keller et al., 2008). Applying Eqs. (46) and (50),
and substituting R by 1=!C, one obtains

QS ¼ 1

NS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mgvC

!

s

: (52)

Also the Ohm’s law triangle can be used to yield a similar
result, but in a less direct way. One should note that JVS and
QHR are used here only as transfer standards. Keller et al.
(2008) derived a result based on the NIST ECCS: QS ¼
1:602 176 3
 10�19 � 1:5
 10�25 C. This could be com-
pared to the CODATA value for e, which, however, depends
strongly on h and the exactness of KJ and RK. Instead, it
is better to compare QS to another value of e that is inde-

pendent of JVS and QHR: e ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

	3ArðeÞMu=�0R1NA

p

(Feltin and Piquemal, 2009). Its uncertainty �0:015
 10�6

is dominated by that of NA. Using the NIST ECCS
result and the NRC or IAC values for NA, one obtains
�S ¼ ð�0:2� 0:9Þ 
 10�6.

We note that according to Eq. (51), the QMT also yields a
value for 	 independently of the QHR, which was one of the
early motivations for the ECCS (Williams, Ghosh, and
Martinis, 1992). This fact, however, has little importance
until the uncertainty is competitive with the atomic recoil
experiments (< 10�9Þ. Then the QMT would strengthen the
verification of QED.

Although single-electron transport would be conceptually
themost straightforward realization of the ampere in the future
SI, it is not likely that it would replace the JVS and QHR as the
typical realization in the near future. The exception is naturally
the growing field of metrology for small electric currents,
where single electronics is expected to yield major improve-
ments of uncertainty. On the other hand, when the accuracy of
single-electron transport improves, it can yield vital informa-
tion on other standards and fundamental constants.

V. PERSPECTIVES AND OTHER APPLICATIONS

The quantum-dot pump (Kaestner, Kashcheyevs, Hein
et al., 2008; Giblin et al., 2012) discussed in Sec. III.C has
definitely proven its potential to be the basis of the future
quantum standard of the ampere. The verified uncertainty of
the 150 pA output current on the level of 1 ppm and the
theoretically predicted 0.01 ppm uncertainty of the present
device are truly remarkable figures ofmerit. On the other hand,
a few important questions remain to be answered before one
can realize the ampere with the quantum-dot pump: Superior
device performance depends critically on applying a strong
* 10 T magnetic field on it. This dependence is not fully
understood, and the exact magnetic field characteristics seem
sample dependent. The reproducibility of the highly accurate

pumping results with samples from different fabrication runs
remains to be shown. Importantly, error-counting experiments
on the dot samples have not been carried out, which also
prevents one from studying possible errors of other quantum
standards in the QMT [see, however, recent results in Fricke
et al. (2013)]. Future experiments will likely show whether all
the relevant error processes have been accounted for in pre-
dicting the obtainable accuracy to be on the level of 10�8.
However, even if not in the case of a bare device, the quantum-
dot pump may perhaps be applicable to the realization of the
ampere, if the error correction techniques that were described
in Sec. III.H become feasible experimentally.

Another important development and potential future real-
ization of the ampere is the SINIS turnstile introduced in
Sec. III.B. Although presently inferior to the quantum-dot
pump in the level of current output, and consequently with
less definite assessment of proven accuracy (present verified
uncertainty below 10�4), this device does not suffer from
known obstacles in the way of achieving the required
accuracy. Currently, the main error mechanisms have been
assessed theoretically and experimentally, including photon-
assisted tunneling, Andreev current, cotunneling, residual and
generated quasiparticles, and possible residual density of
states in a superconductor. Positive conclusions can be drawn
from individual experiments with respect to suppressing them
in an optimized device. Sample fabrication and reproducibil-
ity is currently on a high level, and it has been demonstrated
that the requested magnitude of current can be achieved by
running many turnstiles in parallel. For the SINIS turnstile, as
for the quantum-dot pump, the ultimate test would be an
error-counting experiment and the quantum metrological
triangle. Currently, such experiments have not been per-
formed. As a summary of the high-accuracy pumps, we
present Table I where the obtainable output current, the
accuracy, and the possibility for parallelization are compared.

Presently several other new proposals are being pushed
toward critical tests to study their applicability in current
metrology: these include superconducting phase-slip wires,
Josephson junction arrays, and mechanical shuttles, just to
mention a few less conventional ideas. Although it is not on
the horizon at present, it is possible that eventually one of
these devices will beat the present Coulomb-blockade-based
realizations both in current yield and in their robustness
against transfer errors.

Developing ever more accurate current sources has con-
stantly been a driving force for understanding the underlying
physical phenomena. On the other hand, the studies for the
precise control of single electrons and Cooper pairs have
created special expertise that is also applicable in a variety
of other research topics.

In addition to the charge degrees of freedom, the electrons
hold information in their spin states which have been

TABLE I. Summary of high-accuracy single-electron sources. Iexpt is the experimentally achieved
current with uncertainty �Iexpt. �Itheory is a theoretical prediction for the uncertainty.

Name Iexpt (pA) �Iexpt=I �Itheory=I Parallelization

Chain of normal metallic islands 1.5 1:5
 10�8 � 10�8 Not feasible
Quantum-dot pump 150 <2
 10�6 � � � Not needed
SINIS turnstile 3 <1
 10�4 10�8 Possible
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envisioned (Kane, 1998; Hollenberg et al., 2006) to be uti-

lized (Morello et al., 2010) for quantum information process-

ing. Although the electron transport is typically incoherent in

the electron pumps, the spin-encoded information can poten-

tially remain coherent, and hence this information can possi-

bly be transported from the memory cell of the computer to

the qubit-qubit interaction cell and back. The transport cycle

has to be carried out with high accuracy for fault-tolerant

computing to be possible, which creates a close connection to

the metrological electron pumps.
Geometric phases (Shapere and Wilczek, 1989) in quantum

mechanics have been studied extensively due to both funda-

mental scientific curiosity and their applications in geometric

quantum computing (Zanardi and Rasetti, 1999). The simplest

geometric quantum phase, the Berry phase, has already been

measured in the superconducting sluice pump (Möttönen et al.,

2006; Möttönen, Vartiainen, and Pekola, 2008) thanks to the

development of the sluice for metrology. Some theoretical

work on the more complex phases referred to as holonomies

has been put forward in the framework of Cooper-pair pumps

(Pirkkalainen et al., 2010; Solinas, Pirkkalainen, and

Möttönen, 2010) but it remains to be seen if these ideas will

be implemented experimentally. The main obstacle in practice

is perhaps the high level of precision required for the control

signals of thepumps, a problem that canpossibly be solvedwith

the help of the work on the metrological current source.
Detecting single electrons and Cooper pairs by single-

electron transistors and quantum point contacts has been

largely motivated by the need for tests of the charge-transport

errors in metrology. During the past decade, these techniques

have also been successfully implemented, e.g., in experiments

on full counting statistics and noise of charge transport. The

experiments on the full counting statistics of current fluctua-

tions in a semiconductor quantum dot by real-time detection of

single-electron tunneling with a quantum point contact have

been successfully performed for instance by Gustavsson et al.

(2006, 2007). In these experiments, moments of current up to

the fifth and beyond could be reliably measured. Recently,

single-charge-counting experiments have been applied to

study energy fluctuation relations (Evans, Cohen, and

Morriss, 1993; Jarzynski, 1997; Crooks, 1999; Averin and

Pekola, 2011) in statistical mechanics. Experiments in

steady-state nonequilibrium were performed by Küng et al.

(2012), and the Jarzynski and Crooks relations were recently

tested by Saira, Yoon et al. (2012). Single-charge-counting

experiments allow one to test fundamental statistical mechan-

ics and thermodynamics of classical and quantum systems.
The variety of spin-offs from the development of single-

charge current sources for metrology is certainly expanding.

In this way the benefits of this research will be obvious not

only for the community interested in the system of units and

in traceable measurements, but also for other researchers

working in basic and applied sciences looking for new tools

for measurements that need precise control.
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91, 177003.

Nordtvedt, K., 1970, Phys. Rev. B 1, 81.

Novoselov, K. S., Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer,

U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A.K. Geim,

2007, Science 315, 1379.

Nyquist, H., 1928, Phys. Rev. 32, 110.

Odintsov, A. A., V. Bubanja, and G. Schön, 1992, Phys. Rev. B 46,

6875.

Ohlsson, B. J., M. T. Björk, A. I. Persson, C. Thelander, L. R.

Wallenberg, M.H. Magnusson, K. Deppert, and L. Samuelson,

2002, Physica (Amsterdam) 13E, 1126.

O’Neil, G. C., P. J. Lowell, J.M. Underwood, and J. N. Ullom, 2011,

arXiv:1109.1273v1.

Ono, Y., A. Fujiwara, K. Nishiguchi, H. Inokawa, and Y. Takahashi,

2005, J. Appl. Phys. 97, 031101.

Ono, Y., and Y. Takahashi, 2003, Appl. Phys. Lett. 82, 1221.

Ono, Y., N.M. Zimmerman, K. Yamazaki, and Y. Takahashi, 2003,

Jpn. J. Appl. Phys. 42, L1109.

Park, H., J. Park, A.K. L. Lim, E. H. Anderson, A. P. Alivisatos, and

P. L. McEuen, 2000, Nature (London) 407, 57.

Pekola, J. P., D. V. Anghel, T. I. Suppula, J. K. Suoknuuti, A. J.

Manninen, and M. Manninen, 2000, Appl. Phys. Lett. 76, 2782.

Pekola, J. P., and F.W. J. Hekking, 2007, Phys. Rev. Lett. 98,

210604.

Pekola, J. P., V. F. Maisi, S. Kafanov, N. Chekurov, A. Kemppinen,

Y. A. Pashkin, O.-P. Saira, M. Möttönen, and J. S. Tsai, 2010,
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We investigate the dynamics of individual quasiparticle excitations on a small superconducting

aluminum island connected to normal metallic leads by tunnel junctions. We find the island to be free

of excitations within the measurement resolution. This allows us to show that the residual heating, which

typically limits experiments on superconductors, has an ultralow value of less than 0.1 aW. By injecting

electrons with a periodic gate voltage, we probe electron-phonon interaction and relaxation down to a

single quasiparticle excitation pair, with a measured recombination rate of 16 kHz. Our experiment yields

a strong test of BCS theory in aluminum as the results are consistent with it without free parameters.

DOI: 10.1103/PhysRevLett.111.147001 PACS numbers: 74.78.Na, 74.20.Rp, 74.25.Kc, 74.40.Gh

The quasiparticle excitations describing the microscopic
degrees of freedom in superconductors freeze out at low
temperatures, provided no energy exceeding the supercon-
ductor gap � is available. Early experiments on these
excitations were performed typically close to the critical
temperature with large structures so that NS, the number of
quasiparticle excitations, was high [1–9]. Later on, as the
fabrication techniques progressed, it became possible to
bringNS close to unity to reveal the parity effect of electrons
on a superconducting island [10–14]. In recent years, the
tunneling and relaxation dynamics of quasiparticles, which
we address in this Letter, have become a topical subject
because of their influence on practically all superconduct-
ing circuits in the low temperature limit [15–22].

We study the quasiparticle excitations on a small alumi-
num island shown in Fig. 1(a). The island is connected
via a thin insulating aluminum oxide layer to two normal
metallic copper leads to form a single-electron transistor
(SET) allowing quasiparticle tunneling. By measuring the
tunnel current against source-drain bias voltage Vb and
offset charge ng of the island, we first show that the island

can be cooled down to have essentially no quasiparticle
excitations. Then we intentionally inject excitations to the
superconductor and probe electron-phonon interaction, the
inherent relaxation mechanism of a superconductor, down
to a single quasiparticle pair.

The current I through the SET is governed by sequential
tunneling of single quasiparticles and it exhibits Coulomb
diamonds which overlap each other because of the super-
conductor energy gap [23,24], observed for our structure
as a region bounded by the red sawtooths in Fig. 1(b).
In the subgap regime, jeVbj< 2�, the current should be

suppressed if there are no quasiparticle excitations present.
Nonetheless, we observe a finite current which has a period
twice as long in ng as compared to the high bias region, a

unique feature of a superconducting island due to Cooper

FIG. 1 (color online). (a) Scanning electron micrograph of the
sample studied. It is biased with voltage Vb and a gate offset
voltage Vg is applied to a gate electrode (not shown) to obtain a

gate offset charge ng ¼ CgVg=e, where Cg is the gate-island

capacitance. (b) Measured source-drain current I as a function of
bias and gate voltages. (c) Calculated current based on sequential
single-electron tunneling model. (d) Measured current at ng ¼ 0

is shown as black dots. Black line is calculated assuming a
quasiparticle generation rate of 2 kHz, and the red line is
calculated assuming a vanishing generation rate.
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pairing of electrons. The current is caused by a single
electron unable to pair in the condensate and hence remain-
ing as an excitation. This parity effect has been observed in
the past in similar structures [11–13] but typically with
two-electron Andreev tunneling being the main transport
process. We focus on devices where Andreev current is
suppressed by large charging energy,Ec > �, which makes
two-electron tunneling energetically unfavorable compared
to that of a single quasiparticle [24–26]. In this case, the
transport is dominated by single-electron processes allow-
ing simple and direct probing of the quasiparticle excita-
tions without the interfering multielectron tunneling.

For a quantitative description of the transport character-
istics, we performed a numerical simulation of the device
operation shown in Fig. 1(c). To describe simultaneously
the charging of the island with electrons and the excitations
involved in the superconducting state, we assign the proba-
bility PðN;NSÞ for having N excess electrons and NS

quasiparticle excitations on the island. The time evolution
of PðN;NSÞ is described by a master equation

d

dt
PðN;NSÞ ¼

X

N0;N0
S

�N0!N;N0
S
!NS

PðN0; N0
SÞ; (1)

where �N0!N;N0
S
!NS

is the transition rate from N0, N0
S to N,

NS. For N
0 ¼ N, N0

S ¼ NS we insert a rate �N!N;NS!NS
¼

�P

N0;N0
S
�N!N0�N;NS!N0

S
�NS

, which is a sum of all rates out

from the state (N, NS). These rates are set by electron
tunneling between the island and the leads, Cooper pair
breaking, and recombination of quasiparticles.

Tunneling rates are calculated by the standard first order
perturbation theory [23–26]. Electrons tunneling into the
superconducting island to states with energy E>� in the
semiconductor model [27] increase the quasiparticle num-
ber NS and electron number N by one. Electrons tunneling
to states E<�� increase N and decrease NS by one by
filling a hole. Similarly, electrons tunneling out from
E> � decrease both N and NS while electrons from states
E<�� increaseNS and decreaseN. For a detailed descrip-
tion of these rates, see the Supplemental Material [28].

The tunneling rates depend on NS, which is the number
of excited quasiparticle states on the superconducting
island. The nonequilibrium quasiparticle distribution func-
tion fSðEÞ gives the probability that such a quasiparticle
state with energy E is occupied. In general, fS has a
complicated form as a function of energy. However, due
to the fact that quasiparticles are injected close to the gap,
the resulting tunneling and recombination are not sensitive
to the functional form of fS. Because of symmetry, branch
imbalance [3,27] is not created in our system and therefore
we parametrize the quasiparticle number by an effectively
increased temperature TS and a Fermi distribution in the
case of fS. This gives the relation

NS ¼
ffiffiffiffiffiffiffi

2�
p

DðEFÞV
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�kBTS

p

e��=kBTS ; (2)

where DðEFÞ ¼ 1:45� 1047 J�1 m�3 is the density of
states in the normal state [29] and V the volume of the
island. For the normal metallic leads we use Fermi distri-
bution with TN ¼ 60 mK, equal to the base temperature of
the cryostat.
For the steady-state represented by Fig. 1(c), we solve

Eq. (1) with ðd=dtÞPðN;NSÞ ¼ 0 and calculate the current
as an average of the tunneling rates weighted by the
probabilities PðN;NSÞ. The parameter values of sample
A, Ec ¼ 240 �eV, � ¼ 210 �eV, and tunneling resistan-
ces RT1 ¼ 220 k� and RT2 ¼ 150 k� for the two junc-
tions were used in the simulations. They were determined
from measurements in the high bias regime (jeVbj> 2�)
and hence their values are independent of the subgap
features.
The simulation of Fig. 1(c) reproduces the behavior

observed in the experiments. The relaxation rate of a single
quasiparticle excitation in or out from the island via
tunneling is expected to be �qp � �Nþ1!N;1!0 ¼
½2e2RTDðEFÞV��1 ¼ 190 kHz, where we have used the
measured dimensions for V ¼ 1:06 �m� 145 nm�
25 nm. R�1

T is the average of the two conductances R�1
T1

and R�1
T2 . This rate reflects the injection, / R�1

T , in a system

with the number of states per energy being DðEFÞV. From
the fit in the subgap regime, we obtain �qp ¼ 150 kHz,

consistent with the prediction. The value of �qp affects only

the value of current on the light blue plateau of Fig. 1(c),
not the actual form or size of the terrace. As our simulation
based on sequential tunneling reproduces all the features in
the subgap regime, we confirm that the two-electron peri-
odicity originates from single-electron tunneling and the
operation is essentially free of multielectron tunneling
processes. At odd integer values of ng, the characteristic

feature of Andreev tunneling would be a linear-in-Vb cur-
rent at low bias voltages and a subsequent drop [12,30],
which is absent in our data. The leakage current in the
subgap region does not vanish even in the zero temperature
limit but remains essentially the same as presented in Fig. 1.
Therefore, all quasiparticle excitations cannot be sup-
pressed at finite bias voltages by lowering the temperature,
if ng is close to an odd integer. At jeVbj> 2�, incoherent

cotunneling is activated, which we do not consider here.
Also in Fig. 1(b), there is a change of parity,�ng ¼ 1, once

during the measurement due to an unknown reason [12].
At even integer values of ng, we have ideally no current

flow as all electrons are paired. If Cooper pair breaking
would take place on the island with rate �e � �N!N;0!2,

we would obtain two quasiparticle excitations in the su-
perconductor. One of these excitations can then relax by
tunneling to the leads followed by tunneling of a new
excitation to neutralize the offset charge, similarly to the
odd ng case described above. This cycle would continue

until the two quasiparticles recombine to a Cooper pair.
As the recombination rate�rec ¼ �N!N;2!0 ¼ 16 kHz, dis-
cussed below, is slower than the rates in the cycle, we have
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several electrons tunneling through the device for each
broken pair, hence amplifying the signal. The resulting
current through the SET is then I=e¼4�qp�e=ð�recþ�eÞ,
where 4�qp is the tunneling rate of the two quasiparticles

to the forward direction for the two junctions and
�e=ð�recþ�eÞ the probability to be in the state with
NS ¼ 2. Therefore, at low excitation rates, �e � �rec, on
average 4�qp=�rec ¼ 40 electrons tunnel through the device

for each broken pair. With this model, we obtain an upper
bound �e ¼ 2 kHz for the pair breaking rate under our
experimental conditions based on simulations shown in
Fig. 1(d). This rate corresponds to energy absorption at
less than 2�e� ¼ 0:1 aW power on the superconducting
island. It is in agreement with expectations: The SET is
protected against high frequency photons causing pair
breaking with an indium sealed Faraday cage. Also, the
pair breaking caused by phonons is expected to be orders of
magnitude smaller than the determined upper bound.

Under constant biasing conditions, there is at most one
quasiparticle present in the subgap regime at low tempera-
tures. The nontunneling relaxation on the island is then not
possible, since recombination would call for two excita-
tions. Therefore, the static case can be described by pure
tunneling without other relaxation processes. To study
recombination of two quasiparticles into a Cooper pair,
we injected intentionally more quasiparticles to the island.
The injection was done by a periodic drive of the gate
voltage. By changing ng, we change the potential of the

superconducting island and either pull quasiparticle exci-
tations into the island when the potential is lowered or
create hole-type excitations as potential is raised and qua-
siparticles tunnel out. The number of injected quasipar-
ticles and the number of quasiparticles on the island can
then be determined from the resulting current curves with
the help of simulations. In the experiment we approach two
different limits which we will discuss in the following:
When the pumping frequency is high, NS is large. Such a
situation can be described by a thermal model, i.e., by an
increased time-independent effective temperature of the
superconducting island. In the opposite limit of low fre-
quency, NS is small. Then the thermal model fails and we
have to account for the exact time-dependent number of
quasiparticles.

In Fig. 2(a) we show the measured current for three
different values of bias voltage Vb. The gate drive is
sinusoidal around ng ¼ 1=2 with amplitude Ag expressed

in units of e=Cg and frequency f ¼ 1 MHz corresponding

to fast pumping. Without accumulation of quasiparticles to
the island, the current would show quantized plateaus with
spacing ef, similar to the hybrid turnstile [23]. In the
curves of Fig. 2 we show the amplitude region where the
first plateau with I ¼ ef should form. The plateaulike
regime within 0<Ag < 1 corresponds approximately to

the amplitude range of a Coulomb diamond in the stability
diagram of the SET. As the island has a surplus of

quasiparticles, i.e., it is heated up, the current at the plateau
area is substantially higher than ef and even nonmono-
tonic. The nonmonotonic behavior arises as the system
stays part of the cycle, towards large values of Ag, in the

state (N ¼ 2,NS ¼ 0), where no current flows (for the case
Ec ��), or Coulomb blockade forbids quasiparticle re-
laxation by tunneling at certain gate values (for Ec � 2�).
We now use the thermal model where the heat injection to
the island by electron tunneling is balanced by electron-
phonon interaction. The heat flux into the phonon bath is
given by

_Qe-ph ¼ �V

24�ð5Þk5B
Z 1

0
d��3½nð�; TSÞ � nð�; TPÞ�

�
Z 1

�1
dEnSðEÞnSðEþ �Þ

�

1� �2

EðEþ �Þ
�

� ½fSðEÞ � fSðEþ �Þ�; (3)

where � is the material constant for electron-phonon cou-
pling, �ðzÞ the Riemann zeta function, nSðEÞ the BCS
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FIG. 2 (color online). (a),(b) Measured current of sample A
against gate voltage amplitude Ag at f ¼ 4 and 1000 kHz at bias

voltage values Vb ¼ 120, 200, 280 �V shown as blue, red, and
green dots, respectively. Black lines show simulations assuming
an elevated temperature on the superconducting island.
(c) Similar measurement for sample B at f ¼ 1 MHz. (d) The
electron-phonon heat flux in the superconducting state normal-
ized by that in the normal state extracted from the measurements
(black circles). Temperature is expressed with respect to the
critical temperature TC ¼ �=1:76kB. The theoretical result of
Eq. (3) is shown by the black line. Solid and dotted red lines
show the recombination and scattering part of Eq. (3) corre-
spondingly. The open gray symbol is from sample B.
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density of states, and nð�; TÞ ¼ fexp½�=ðkBTÞ� � 1g�1 the
Bose-Einstein distribution of the phonons at temperature
TP. Equation (3) is obtained by kinetic Boltzmann equation
calculations [31,32]. For an alternative derivation, see
Supplemental Material [28]. The simulations based on
the thermal model are shown as black lines in Fig. 2(a).
The electron-phonon coupling constant � ¼ 1:8�
109 WK�5 m�3, used in simulations, was measured in
the normal state, where _Qe-ph ¼ �VðT5

N � T5
PÞ and TN is

the electron temperature [33].
We expect the thermal model to be a good approach if

NS � 1. With the high frequency and large amplitude
drive in Fig. 2(a), we have NS � 10 quasiparticles present
for Ag � 1, suggesting that the thermal model is adequate

for these data. If the frequency is lowered to f ¼ 4 kHz,
shown in Fig. 2(b), the thermal model fails as NS

approaches unity. As a further proof of the overheating,
we repeated the high frequency measurement using sample
B with measured parameter values Ec ¼ 620 �eV,
� ¼ 270 �eV, RT1 ¼ 1800 k�, RT2 ¼ 960 k�, and
V¼800�60�15 nm3. The result is shown in Fig 2(c).
Again, the simulations (black lines) are able to reproduce
all nontrivial features of the measured curves. As a sum-
mary of the thermal model fits, we repeated the measure-
ment of Fig. 2(a) at different frequencies and determined
by numerical simulations the temperature of the super-
conducting island and the heat injected into it based on
the measured current. The results are shown in Fig. 2(d) as
black circles. The results match well with the expected
electron-phonon coupling of the superconductor, Eq. (3),
presented as the solid black line.

Next, we show that a rigorous way to describe a low
number of excitations is to consider them explicitly with
Eq. (1). We measured the characteristics at four frequen-
cies f ¼ 4, 10, 100, and 1000 kHz at Vb ¼ 280 �V and
again at the first plateau region, shown in Fig. 3. The
thermal model is presented now as solid gray lines. In
numerical calculations based on Eq. (1), we keep track of
the number of excitations during the cycle and take into
account the recombination rates. For low temperatures,
TP � TS � �=kB, the heat flux of Eq. (3) decomposes

to recombination terms, proportional to e�2�=kBTS , and

scattering terms, proportional to e��=kBTS , yielding

_Qrec ¼ �V�

3�ð5Þk5B

�

kBTS�
4 þ 7

4
ðkBTSÞ2�3

�

e�2�=kBTS

_Qsc ¼ V�T5
Se

��=kBTS : (4)

Their contributions are presented in Fig. 2(d), and the
leading order terms are consistent with the lifetimes given
in Ref. [5]. Whereas the scattering does not change
the number of quasiparticles NS, recombination leads to
transitions NS ! NS � 2. We account for this process
by including the recombination rate �N!N;NS!NS�2 ¼
_QrecðNSÞ=2� � ��2N2

S=½12�ð5ÞDðEFÞ2k5BV�, NS 	 2,

where the relation between the effective temperature TS

in Eq. (4) and the exact quasiparticle number NS is given
by Eq. (2). The solid black lines of Fig. 3 are calculated
with the same value of � as obtained in the normal state.
Blue dotted lines show similar simulations where electron-
phonon relaxation is disregarded.
With the simulations based on instantaneous quasipar-

ticle number we can reproduce the experimental features
precisely with no free parameters in the calculation. At the
lowest frequency, f ¼ 4 kHz, we have only one quasipar-
ticle present for most of the time. Hence, the curves are not
sensitive to the recombination. As frequency is increased,
the simulations without electron-phonon relaxation deviate
from the experimental data. For f ¼ 10 kHz we probe
the recombination rate of a single qp pair only, �rec ¼
�N!N;2!0 ¼ 16 kHz. We checked this by artificially

changing the recombination rates for NS > 2, without
any significant difference in the curves. At higher frequen-
cies, the recombination for NS > 2 becomes significant as
well. The results of the two models approach each other
and the thermal model becomes valid.
In summary, a small superconducting island at low

temperatures has allowed us to study the dynamics of
single electronic excitations and their relaxation. Under
quiescent conditions we found a vanishing Cooper pair
breaking rate within the measurement resolution: based
on the measurement noise, we obtained an upper limit of
2 kHz for this rate. On the other hand, by periodically

FIG. 3 (color online). Red circles show the measured current
for f ¼ 4–1000 kHz at Vb ¼ 280 �V. Black lines are simula-
tions based on Eq. (1). Recombination rates are taken to match
the heat flux in the regime where the thermal model applies
[Eq. (3)]. Dotted blue lines are calculated with vanishing
electron-phonon relaxation rate and solid gray lines with the
thermal model.
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pumping electrons, we controllably increased the number
of quasiparticles and were able to measure the recombina-
tion rates both in the large quasiparticle number limit
and for a single quasiparticle pair: �N!N;2!0 ¼ 16 kHz.
The recombination rates are in quantitative agreement with
the relaxation measured at higher temperatures and in the
normal state.
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ELECTRON TUNNELING
Within first order, the tunneling rates are given by Fermi golden rule similarly as in Ref. [1]. Now as we consider also
explicitly NS , we need to split the rates so that an electron tunneling into the superconducting island to a state with
energy E > ∆ in the semiconductor model [2], increases the excitation number NS by one and an electron tunneling
into a state E < −∆, decreases it by one as shown in Fig. 1. Likewise, an electron tunneling out from E > ∆ decreases
NS and an electron tunneling out from E < −∆ increases it by one. Hence we obtain rates





ΓN−1→N, NS−1→NS
=

∑

j=1,2

1

e2RT,j

∫ ∞

∆

dE nS(E)(1 − fS(E, NS))fN (E + δEj(N))

ΓN−1→N, NS+1→NS
=

∑

j=1,2

1

e2RT,j

∫ −∆

−∞
dE nS(E)(1 − fS(E, NS))fN (E + δEj(N))

ΓN+1→N, NS−1→NS
=

∑

j=1,2

1

e2RT,j

∫ −∆

−∞
dE nS(E)fS(E,NS)(1 − fN (E + δEj(N)))

ΓN+1→N, NS+1→NS
=

∑

j=1,2

1

e2RT,j

∫ ∞

∆

dE nS(E)fS(E, NS)(1 − fN (E + δEj(N))),

(1)

where RT,j is the tunneling resistance of junction j, nS(E), the BCS density of states, fS(E, NS), occupation proba-
bility for state E on the island if we have NS quasiparticles, and fN (E) occupation probability in the normal metallic
lead at energy E. δEj(N) the energy cost from biasing and charging energy [1]. We assume fN to be a Fermi distribu-
tion with temperature equal to the bath temperature TN = 60 mK. Summing the rates which increase and decrease
NS will lead to the known tunneling rates of a normal metal superconductor tunnel junction where the integration is
performed over all energies [2, 3].

For the superconductor we need to have fS such that the number of excitations equals NS . For the tunneling rates,
as well as for the electron-phonon interaction discussed below, the functional form of the distribution is irrelevant
as long as the excitations are close to the gap edges E ≈ ±∆, where we inject them. We also neglect the branch
imbalance, i.e. assume no chemical potential shift, δµ = 0, because our system is symmetrical with respect electron
injection. Hence we use a Fermi distribution with temperature TS . The relation between NS and TS is then

NS = 2D(EF )V

∫ ∞

∆

dE
E√

E2 − ∆2
fE ≈

√
2πD(EF )V

√
∆kBTSe−∆/kBTS , (2)

where D(EF ) is the normal state density of states at Fermi level and V the volume of the island. The tunneling
current is obtained then as

I = e
∑

N,NS ,±

(
ΓN→N+1, NS→NS±1 − ΓN→N−1, NS→NS±1

)
P (N,NS) . (3)
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Figure 1: (color online). The four different tunneling processes changing N and NS . (a) Electron tunneling out of the island
and removing an excitation. (b) Electron tunneling into the island creating and excitation. (c) Electron tunneling into the
island and removing a hole excitation. (d) Electron tunneling out and creating a hole excitation.

Including higher order tunneling to Eq. (1) of the main article and Eq. (3) is straightforward. For example Andreev
current gives rise to terms ΓN±2→N, NS→NS . These rates are calculated similarly as in Refs. [3–5] since quasiparticle
number NS is not changing. Including Andreev tunneling terms into the calculations in main text, does not change
the results as Ec > ∆. For Ec < ∆, those terms contribute because Andreev tunneling thresholds are exceeded before
the single-electron tunneling thresholds [3–5].

ELECTRON-PHONON INTERACTION
To obtain the recombination rates for Eq. (1) and Eq. (4) of the main article we use Hamiltonian

H = Hs + Hp + He−ph. (4)

Here Hs + Hp is the non-perturbated part and He−ph the perturbation from electron-phonon interaction. The BCS
Hamiltonian of the superconductor is

Hs =
∑

kσ

Ekγ†
kσγkσ, (5)

with Ek =
√

ϵ2k + |∆k|2. The diagonalizing fermionic operators γkσ are connected to the electron operators ck′σ′ by

c†
kσ = v∗

kσγ−(kσ) + ukσγ†
kσ, where we use notation

vkσ =

{
vk if σ =↑
−v−k if σ =↓ ukσ =

{
uk if σ =↑
u−k if σ =↓ . (6)

The coefficients satisfy |uk|2 + |vk|2 = 1 and ∆∗
kvk/uk = Ek − ϵk leading to

|vk|2 = 1 − |uk|2 =
1

2

(
1 − ϵk

Ek

)
. (7)

Similarly, we have for the phonons

Hp =
∑

q

~ωqb
†
qbq. (8)

The coupling of these two systems has the form

He−ph = ν
∑

k,q

ω1/2
q (c†

kck−qbq + c†
kck+qb

†
q). (9)

as in Ref. [6]. The operator of heat flux to the phonons is

Ḣp =
i

~
[H,Hp] =

i

~
[He−ph, Hp] = iν

∑

k,q

ω3/2
q (c†

kck−qbq − c†
kck+qb

†
q). (10)
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By using the Kubo formula in the interaction picture we obtain

⟨
Ḣp

⟩
=

⟨
Ḣp

⟩
0

− i

~

∫ t

−∞
dt′

⟨[
Ḣp(t),He−ph(t′)

]⟩
0

=
1

~
∑

kσq
k′σ′

ω2
q

∫ t

−∞
dt′

{

⟨[
c†
kσ(t) ck−qσ(t) bq(t), c†

k′σ′(t′) ck′+qσ′(t′) b†
q(t

′)
]⟩

0
−

⟨[
c†
kσ(t) ck+qσ(t) b†

q(t), c†
k′σ′(t′) ck′−qσ′(t′) bq(t

′)
]⟩

0

}
.

(11)

Next we use bq(t) = e−iωqtbq and c†
kσ(t) = v∗

kσγ−(kσ)(t) + ukσγ†
kσ(t) with γkσ(t) = γkσe−iEkt/~. As an example, let us

consider the first non-zero term in Eq. (11). We obtain

eiωq(t′−t)ei(−Ekt+Ek−qt−Ek′ t′+Ek′+qt′)/~v∗
kσvk−qσv∗

k′σ′vk′+qσ′

⟨
[γ−(kσ)γ

†
−(k−qσ)bq, γ−(k′σ′)γ

†
−(k′+qσ′)b

†
q]

⟩
0

= eiωq(t′−t)ei(Ek−q−Ek)(t−t′)/~|vkσ|2|vk−qσ|2
⟨
[γ−(kσ)γ

†
−(k−qσ)bq, γ−(k−qσ)γ

†
−(kσ)b

†
q]

⟩
0

= eiωq(t′−t)ei(Ek−q−Ek)(t−t′)/~|vkσ|2|vk−qσ|2
{

(1 − fk) fk−q (nq + 1) − fk (1 − fk−q)nq

}
,

(12)

where we have paired the operators as k = k′ +q. For some of the terms, there exists two different pairing possibilities.
From the second commutator of Eq. (11) we find similarly a term

e−iωq(t′−t)e−i(Ek−q−Ek)(t−t′)/~|vkσ|2|vk−qσ|2
{

(1 − fk) fk−q (nq + 1) − fk (1 − fk−q)nq

}
, (13)

where the dummy summation index has been changed from k′ to k. Now we can combine these two terms and do the
time integration to obtain energy conservation rules as delta functions. By combining all terms similarly, assuming
∆k = ∆eiϕ, where ∆ is real, and changing the summing to integration we obtain from Eq. (11)

Q̇e−ph = πν2N(EF )D(q)

∫ ∞

−∞
dϵk

∫
d3q ω2

q

{

(
1 − ∆2

EkEk−q

) (
(1 − fk) fk−q (nq + 1) − fk (1 − fk−q) nq

)
δ(Ek − Ek−q + ~ωq)+(

1 + ∆2

EkEk−q

) (
(1 − fk) (1 − fk−q) (nq + 1) − fkfk−qnq

)
δ(Ek + Ek−q + ~ωq)+(

1 + ∆2

EkEk−q

) (
fkfk−q (nq + 1) − (1 − fk) (1 − fk−q) nq

)
δ(−Ek − Ek−q + ~ωq)+(

1 − ∆2

EkEk−q

) (
fk (1 − fk−q) (nq + 1) − (1 − fk) fk−qnq

)
δ(−Ek + Ek−q + ~ωq)

}
,

(14)

where N(EF ) is the density of states of the normal state and D(q) = V
(2π)3 the density of states of the phonons. V

is the volume of the system. Now,
∫

d3q = 2π
∫ ∞
0

dqq2
∫ 1

−1
d(cos(θ)) where θ is the angle between k and q. Further

more ϵk = ~2k2

2m , ϵk−q = ~2(k−q)2

2m = ϵk
~2kF

m q cos(θ) and ωq = clq, where cl is the speed of sound. For integrating the
delta functions over cos(θ), we need

∣∣∣∣
dEk−q

d(cos(θ))

∣∣∣∣
−1

=
Ek−q

ϵk−q

m

~2kF q
= nS(Ek−q)

m

~2kF q
, (15)

where we have identified the density of states of the superconductor nS(E) = E
ϵ = E√

E2−∆2
. Therefore we obtain

Q̇e−ph =
ν2V

2π
N(EF )c2

l

∫ ∞

−∞
dϵk

∫ ∞

0

dq q3 m

~2kF
nS(Ek−q)

{

(
1 − ∆2

EkEk−q

)(
(1 − fk) fk−q (nq + 1) − fk (1 − fk−q)nq

)∣∣∣
Ek−q=Ek+~ωq>0

+
(
1 + ∆2

EkEk−q

)(
(1 − fk) (1 − fk−q) (nq + 1) − fkfk−qnq

)∣∣∣
Ek−q=−Ek−~ωq>0

+
(
1 + ∆2

EkEk−q

)(
fkfk−q (nq + 1) − (1 − fk) (1 − fk−q)nq

)∣∣∣
Ek−q=−Ek+~ωq>0

+
(
1 − ∆2

EkEk−q

)(
fk (1 − fk−q) (nq + 1) − (1 − fk) fk−qnq

)∣∣∣
Ek−q=Ek−~ωq>0

}
.

(16)
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Now, we change the integration variables to Ek =
√

ϵ2k + ∆2 and ϵ = ~ωq = ~clq. Hence, we have dϵk = nS(Ek)dEk

and dq = (~cl)
−1dϵ. We can also use notation E = Ek and E′ = Ek−q. Then, equation (16) yields

Q̇e−ph =
mν2V N(EF )

π~6kF c2
l

∫ ∞

0

dE

∫ ∞

0

dϵ ϵ3nS(E)nS(E′)
{

(
1 − ∆2

EE′

)(
(1 − f(E)) f(E′) (n(ϵ) + 1) − f(E) (1 − f(E′)) n(ϵ)

)∣∣∣
E′=E+ϵ>0

+
(
1 + ∆2

EE′

)(
(1 − f(E)) (1 − f(E′)) (n(ϵ) + 1) − f(E)f(E′)n(ϵ)

)∣∣∣
E′=−E−ϵ>0

+
(
1 + ∆2

EE′

)(
f(E)f(E′) (n(ϵ) + 1) − (1 − f(E)) (1 − f(E′)) n(ϵ)

)∣∣∣
E′=−E+ϵ>0

+
(
1 − ∆2

EE′

)(
f(E) (1 − f(E′)) (n(ϵ) + 1) − (1 − f(E)) f(E′)n(ϵ)

)∣∣∣
E′=E−ϵ>0

}
.

(17)

Finally we can change integration variable E and the dummy variable E′ as follows: for first term: no changes, for
second term: change of sign for E′, for third term: change of sign for E and for the fourth term: change of sign for
E and E′. Then, we see that both E and E′ cover both positive and negative values and we obtain

Q̇e−ph =
mν2V N(EF )

π~6kF c3
l

∫ ∞

−∞
dE

∫ ∞

0

dϵ ϵ3nS(E)nS(E + ϵ)×
(
1 − ∆2

E(E+ϵ)

)(
(1 − f (E)) f (E + ϵ) (n (ϵ) + 1) − f (E) (1 − f (E + ϵ)) n (ϵ)

)
.

(18)

With some algebra, we can simplify Eq. (16) to

Q̇e−ph =
ΣV

24ζ(5)k5
B

∫ ∞

0

dϵ ϵ3 (n(ϵ, TS) − n(ϵ, TP ))

∫ ∞

−∞
dE nS(E)nS(E + ϵ)

(
1 − ∆2

E(E + ϵ)

)
(f(E) − f(E + ϵ)) .

(19)

Here we have identified the electron-phonon coupling constant Σ =
24ζ(5)k5

Bmν2N(EF )

π~6kF c3
l

by taking the limit ∆ → 0,

which yields the normal-state result Q̇e−ph = ΣV (T 5
S − T 5

P ). One arrives to Eq. (19) also by using kinetic equations
for the electronic excitations under electron-phonon interaction [7] or by taking the result in normal state [8] and
considering that in superconducting state, BCS density of states and the coherence factor needs to be taken into
account [2]. Equation (19) is also found for example in Ref. [9].

For obtaining the recombination and scattering rates, we identify in Eq. (17) the first and last term to correspond
to scattering and the two middle ones to recombination and pair breaking. Since the heat rate is set dominantly
by the quasiparticle occupation near the gap, we can again parametrize the number of quasiparticles by an effective
temperature TS and the Fermi distribution fE = (exp (E/kBTS) + 1)−1 without any loss off generality. For TP ≪
TS ≪ ∆/kB , satisfied in the experiments, we obtain the recombination and scattering heat fluxes as

Q̇rec(TS) ≈ ΣV

12ζ(5)k5
B

∫ ∞

−∞
dξ

∫ ∞

−∞
dξ′(E + E′)3

[
1 +

∆2

EE′

]
fEfE′

≈ πV Σ

3ζ(5)k5
B

(kBTS∆4 +
7

4
(kBTS)2∆3)e−2∆/kBTS ,

Q̇sc(TS) ≈ ΣV

6ζ(5)k5
B

∫ ∞

−∞
dξ

∫ ∞

−∞
dξ′θ(E − E′)(E − E′)3

[
1 − ∆2

EE′

]
fE

≈ V ΣT 5
Se−∆/kBTS .

Instead of parametrisation with respect to TS , we could also parametrize the effective temperature TS by the quasipar-
ticle number NS with Eq. (2) and ask for the rate ΓN→N,NS+2→NS

entering the master equation for P (N, NS). This
accounts for the transition of NS + 2 to NS quasiparticles, whereas the number of excess electrons N is unchanged.
As the quasiparticles lie close to the gap the energy loss during this process is 2∆ and therefore the rate is given by

ΓN→N,NS+2→NS =
Q̇rec(NS + 2)

2∆
. (20)

In these terms the heat balance then is fully described by the master equation for P (N,NS).
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Leakage current of a superconductor–normal metal tunnel junction connected
to a high-temperature environment
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We consider a voltage-biased normal metal-insulator-superconductor (NIS) tunnel junction, connected to a
high-temperature external electromagnetic environment. This model system features the commonly observed
subgap leakage current in NIS junctions through photon-assisted tunneling which is detrimental for applications.
We first consider a NIS junction directly coupled to the environment and analyze the subgap leakage current
both analytically and numerically; we discuss the link with the phenomenological Dynes parameter. Then, we
focus on a circuit where a low-temperature lossy transmission line is inserted between the NIS junction and
the environment. We show that the amplitude of the transmitted frequencies relevant for the photon-assisted
tunneling is exponentially suppressed as the length � and the resistance per unit length R0 of the line are
increased. Consequently, the subgap current is reduced exponentially as well. This property can not be obtained
by means of lumped circuit elements. We finally discuss our results in view of the performance of NIS junctions
in applications.

DOI: 10.1103/PhysRevB.88.174507 PACS number(s): 74.55.+v, 74.25.F−, 85.25.Am, 72.70.+m

I. INTRODUCTION

The peculiar nature of single-particle electronic trans-
port through a normal metal-insulator-superconductor (NIS)
junction is at the origin of several interesting applications.
Such junctions are widely used in experiments of meso-
scopic physics as a spectroscopic tool,1,2 as a very sensitive
thermometer,3–5 and as a key element in nanorefrigeration.3,6,7

Furthermore, NIS junctions are currently investigated in view
of achieving a high accuracy when controlling the current
through a single-electron SINIS turnstile. Such a device is
one of the interesting candidates for the completion of the
so-called quantum metrological triangle, i.e., it can be used to
obtain a precise realization of current.8,9 These applications are
all based on the existence of the Bardeen-Cooper-Schrieffer
(BCS) energy gap � in the density of states (DOS) of the
superconductor.10 Ideally, one would expect no single-electron
current to flow through a NIS junction at low temperature
as long as the bias voltage V satisfies the inequality −� <

eV < �.
In practice, the subgap current is different from zero.

This is a central problem which limits the performance of
applications based on energy-selective single-particle trans-
port in NIS junctions. The presence of unwanted accessible
states in the subgap region manifests itself as a smearing
of the junction’s current-voltage (I -V ) characteristic as well
as of its differential conductance. Giaever was the first to
experimentally study the NIS junction. He noticed that this
deviation from the ideal behavior was present even if the
junction was kept at a temperature much lower than the
critical one Tc of the superconductor.11 A possible source of
subgap leakage currents is the occurrence of many-electron
tunneling processes, such as Andreev reflection.12–14 However,
these many-electron processes are strongly suppressed if the
tunnel resistance RT of the junction is chosen high enough
and do not account for the observed residual subgap transport
either.

Dynes modified the BCS superconducting DOS introducing
a single phenomenological dimensionless parameter γDynes in
order to fit the behavior of the subgap quasiparticle tunneling
current through a Josephson junction.15 The modified DOS,
normalized to the corresponding normal-state DOS at the
Fermi energy, is given by

N
Dynes
S (E) =

∣∣∣∣∣Re

[
E/�+ iγDynes√

(E/�+ iγDynes)2 − 1

]∣∣∣∣∣ . (1)

It can be seen that γDynes indeed accounts for the broadening
of the DOS around � and the occurrence of states within
the gap. This expression is frequently used in both numerical
and analytical calculations,16 but concerning the microscopic
origin of the Dynes parameter γDynes, for temperatures far
below Tc, relatively little is known. In general, the smearing
of the DOS can be energy dependent.

Recently, it was realized that the exchange of energy
between the NIS junction and its surrounding electromagnetic
environment may be one of the causes of the smearing of
the BCS DOS.17,18 Indeed, under certain conditions, energy
absorption from such an environment enables the crossing of
the tunnel barrier by single electrons even for |V | much less
than �/e. Within this framework, an analytical expression for
γDynes has been obtained in terms of the parameters charac-
terizing the NIS junction’s environment.17 In this particular
case, the Dynes parameter found describes the smearing at
all energies. Following the idea of photon-assisted tunneling
demonstrated in Ref. 17, we generalize the approach here for
an external circuit characterized by an arbitrary impedance
Z(ω), kept at a temperature Tenv that is not necessarily the
temperature Tjun of the NIS junction [see Fig. 1(a)]. We obtain
expressions for the subgap leakage current and the subgap
Dynes parameter γ sub

Dynes, valid for energies smaller than the
gap �. Then, we turn our attention to the circuit depicted in
Fig. 1(b), where we study the effects of the insertion of a

174507-11098-0121/2013/88(17)/174507(9) ©2013 American Physical Society
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R0 , C0 , L0

V
CRT

Tjun

Tenv
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(a) (b)

FIG. 1. Circuit representation of the two configurations studied in this paper. (a) A NIS junction at temperature Tjun is connected in parallel
to its capacitance C and to an impedance Z(ω) which represents the high-temperature environment at temperature Tenv � Tjun. The whole
circuit is biased by the constant voltage V . (b) A transmission line of length � is inserted between the junction and the impedance Z(ω) of
circuit (a). It is described by the parameters R0, C0, and L0, the resistance, the capacitance, and the inductance per unit length, respectively, as
well as by its temperature Tline which is assumed equal to Tjun.

lossy transmission line, meant to act as a frequency-dependent
filter, between the cold junction and the high-temperature
external impedance Z(ω). In particular, we use our results
to understand under which conditions the transmission line
will behave as a filter capable of reducing the photon-assisted
tunneling induced by the high-temperature external impedance
and thus reducing γ sub

Dynes to values that are compatible with
the accuracy requirements for applications such as the SINIS
turnstile.

II. NIS JUNCTION COUPLED TO A
HIGH-TEMPERATURE ENVIRONMENT

A. Single-particle current

We start by considering the basic circuit illustrated in
Fig. 1(a) where a NIS junction is connected in series to
an effective high-temperature impedance Z(ω). The junction
itself is characterized by a tunnel resistance RT in parallel
with a capacitance C. The entire circuit is voltage biased.
This constitutes a minimal model for a junction embedded in
an external electromagnetic environment at temperature Tenv,
which can be much higher than the temperature Tjun of the
junction.

According to the so-called P (E) theory,19 the single-
particle tunneling current through a NIS junction coupled to
an external environment is given by

INS(V ) = 1

eRT

∫
dE

∫
dE′ NS(E′)[1− f (E′)]

×{f (E − eV )− f (E + eV )} P (E − E′). (2)

Here, the energy E refers to the electrons of the normal
metal, E′ is the energy of the superconductor quasiparticles,
NS(E′) is the BCS density of states of the superconducting
wire divided by the normal-metal DOS at the Fermi level,
and f (E) = [eβjunE + 1]−1 is the Fermi-Dirac distribution
with βjun = 1/kBTjun the inverse temperature of the junction.
Expression (2) does not take into account the higher-order
processes in tunneling which will be ignored throughout this
paper. The validity of this assumption will be discussed in
Sec. IV.

The function P (E) in Eq. (2) is the probability density that
the tunneling electron exchanges an amount of energy E with
the environment. This process takes place through the emission

or absorption of photons. It is defined as

P (E) = 1

2πh̄

∫ +∞

−∞
dt eiEt/h̄ eJ (t), (3)

i.e., it is the Fourier transform of the exponential of the
correlation function

J (t) = 2
∫ +∞

0

dω

ω

Re[Ztot(ω)]

RK

×
{

coth

(
1

2
βenvh̄ω

)
[cos(ωt)− 1]− i sin(ωt)

}
. (4)

Here, Ztot(ω) is the total impedance seen by the junction,
resulting from the connection in parallel of C and Z(ω),
RK = h/e2 is the quantum resistance, and βenv = 1/kBTenv.

The function J (t) determines the strength of the coupling
between the NIS junction and the environment. Indeed, if
J (t) = 0, the probability density P (E) is equal to a Dirac
delta δ(E) and the single-particle tunneling current is elastic.
Expression (2) then reduces to the standard expression for
single-particle tunneling in NIS junctions valid in the absence
of environment. The environment-induced inelastic tunneling
processes occur only when J (t) �= 0. In general, the time
intervals where the inelastic effects are important are related
to the energy ranges where P (E) �= 0. The order of magnitude
of J (t) sets the number of photons responsible for the single-
particle tunneling. Depending on this number, the coupling
between the NIS junction and the multimode environment can
be considered weak or strong. Throughout this paper we will
treat both regimes of weak and strong coupling in more detail.

In order to analyze the smearing of the NIS junction’s
I -V characteristic due to the presence of the high-temperature
environment, we will ignore the thermal smearing induced by
finite temperature of the N and S electrodes. This is an adequate
approximation under standard experimental conditions where
Tjun � �/kB . Hereafter, we will set the temperature of
the junction Tjun to zero. Under this assumption, the single-
particle current (2) becomes

INS(V )� 1

eRT

∫ +eV

−eV

dE

∫ +∞

�

dE′ NS(E′) P (E − E′). (5)

We furthermore will focus on the subgap region of the I -V
curve considering |eV | � �. As a result, the integration
variables |E| � E′ in Eq. (5), and we can approximate

174507-2
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P (E − E′) ≈ P (−E′). The resulting integral over E can be
performed immediately to yield

I sub
NS (V ) � γenv

V

RT

, (6)

where the factor γenv is given by the integral

γenv = 2
∫ +∞

�

dE′ NS(E′) P (−E′). (7)

We see that for the parameter γenv[Eq. (7)] and hence the
subgap current given by Eq. (6) to be nonzero, the function
P (E) should be nonzero for energies E � −�. This reflects
the fact that under subgap conditions eV,kBTjun � �, a
nonzero single-particle current occurs only if the tunneling
electrons absorb an energy �� from the environment. For
instance, γenv = 0 for elastic tunneling in the absence of an
environment, when P (E) = δ(E). We also expect γenv to
vanish when the temperature of the environment kBTenv is
much less than the energy gap �. Indeed, due to detailed
balance,19 P (−E) = e−E/kBTenvP (E), the function P (E) is
strongly suppressed for negative energies E < −kBTenv. This
means that the integral in Eq. (7) will vanish unless the
environment is sufficiently hot, kBTenv � �.

In order to make a connection with the aforementioned
approach due to Dynes, we linearize the usual expression for
elastic single-particle tunneling in a NIS junction, using the
Dynes DOS (1) to characterize the superconducting electrode.
One obtains the linear subgap current-voltage relationship

I sub
NS (V ) �

√√√√ γ 2
Dynes

γ 2
Dynes + 1

V

RT

.

Comparing this result with Eq. (6) above, we conclude
that, in the linear regime, γenv can be related to the Dynes
parameter in the subgap region γ sub

Dynes according to γenv =√
γ sub

Dynes
2
/(γ sub

Dynes
2 + 1). We see in particular that the two

parameters coincide γ sub
Dynes = γenv whenever γenv,γ

sub
Dynes � 1.

This shows that fluctuations of a high-temperature electromag-
netic environment constitute a possible microscopic source of
the phenomenological Dynes parameter, at least under subgap
conditions eV,kBTjun � �.

B. Weak and strong coupling

As we have seen above, the strength of the coupling
between the NIS junction and the environment is determined
by the function J (t). Let us assume that this function is small,
in a sense to be detailed in the following. Expanding the
exponential function exp[J (t)] up to the first order in J (t),
Eq. (3) becomes

P (E) � 1

2πh̄

∫ +∞

−∞
dt eiEt/h̄[1+ J (t)]. (8)

The evaluation of the integral over time in Eq. (8) gives

P (E) � δ(E)+ 1

h̄

∫ +∞

0

dω

ω

Re[Ztot(ω)]

RK

×
{[

coth

(
1

2
βenvh̄ω

)
− 1

]
δ

(
E

h̄
+ ω

)

+
[

coth

(
1

2
βenvh̄ω

)
+ 1

]
δ

(
E

h̄
− ω

)

− 2h̄ coth

(
1

2
βenvh̄ω

)
δ(E)

}
. (9)

We see that the function P (E) has an elastic contribution and
an inelastic one involving the exchange of exactly one photon
between the junction and the environment. In fact, the first and
the fourth terms represent the elastic tunneling involving zero
and one virtual photon, respectively. The second and third
terms are related to the process of absorbtion and emission
of one real photon, respectively. We define this one-photon
regime as weak coupling. On the other hand, the coupling
becomes strong whenever the single-photon exchange between
the junction and the environment is no longer the dominant
effect. In this case, the higher-order terms can not be
neglected in the series expansion of exp[J (t)], indicating that
multiphoton processes have to be taken into account.

We proceed by determining the time interval where the
expansion (8) holds. Given the fact that J (t = 0) = 0, we
expect this to be the short-time interval.19 We set Z(ω) = R for
simplicity and introduce the dimensionless time τ = t/RKC

as well as the ratio ρ = R/RK . The quantity exp{Re[J (τ,ρ)]}
decays monotonically with increasing time τ , starting from
unity at τ = 0. The rate at which it decays depends on ρ: the
larger ρ, the faster it decays, in agreement with Ref. 19. We
determine the relevant short-time interval by determining the
characteristic time τ10%, at which the quantity exp{Re[J (τ,ρ)]}
dropped by 10%. Figure 2(a) shows τ10% as a function of
the parameter ρ, keeping Tenv and C fixed. The line τ10%(ρ)
separates the weak coupling regime found at short times from
the strong coupling regimes reached for longer times. As
expected,19 with increasing ρ, the separatrix τ10%(ρ) decreases
as 1/ρ, and then saturates at a value τS ∼

√
h̄/kBTenvRKC for

ρ > ρth ∼ τS. As shown in Fig. 2(b), the curve τ10%(ρ) shifts
up when decreasing the temperature of the environment Tenv,
thereby increasing the time interval where the expansion (8)
holds.

We now return to the inelastic tunneling of single elec-
trons through the NIS junction. Under subgap conditions
kBTjun,eV � �, the energy E relevant for the photon-assisted
tunneling processes is in the interval � � E � kBTenv. The
upper bound corresponds to the largest energy the junction can
absorb from the environment. In time domain, we thus have
to consider the interval τe < τ < τ� where τ� = h̄/�RKC

and τe = h̄/kBTenvRKC. This interval is represented by the
colored strip in Fig. 2(a). Note that on the logarithmic scale
used here, the lower bound τe almost coincides with the
value τS at which the separatrix saturates for large values of
ρ. The intersection between τ� and the 10% curve τ10%(ρ)
defines the characteristic resistance ρ� separating the weak and
strong coupling regimes. When ρ < ρ�, coupling is weak and
only single-photon absorption processes occur (green area);
if ρ ∼ ρ�, both single-photon and multiphoton processes
occur during single-electron tunneling (yellow-orange area);
as soon as ρ � ρ�, multiphoton processes become dominant
(red area). In particular, the two limiting cases ρ � ρ�, ρth

and ρ � ρ�, ρth are equivalent to the conditions R/RK �
�/kBTenv and R/RK � �/kBTenv, respectively.
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FIG. 2. (Color online) Plot of the separatrix τ10%(ρ) as a function of the dimensionless resistance ρ = R/RK , defined as the solution of the
equation exp{Re[J (τ10%,ρ)]} = 0.9 with C fixed. Both plots are in double-logarithmic scale. (a) For a fixed value of Tenv, τ10%(ρ) separates
the weak and strong coupling regions (black thick line). The colored strip indicates the time interval bound by τ� = h̄/�RKC (dark green
dashed line) and τe = h̄/kBTenvRKC (red dashed line). The intersection between τ� and the separatrix τ10%(ρ) defines the resistance ρ�. The
asymptotic expression for τ10%(ρ) valid for ρ → 0 and proportional to 1/ρ is also shown (blue dashed line). Its intersection with the line
corresponding to τS ∼

√
h̄/kBTenvRKC defines the threshold resistance ρth. On the logarithmic scale used here, τS almost coincides with τe.

(b) As the temperature of the environment Tenv is decreased, the curve τ10%(ρ) moves up, thereby increasing the weak coupling region.

C. Subgap leakage current: Weak coupling

We start by dealing with the weak coupling case. Since
we are interested in the subgap region of the I -V character-
istic kBTjun,eV � �, the behavior of the function P (E) at
energies E > −� is irrelevant. Therefore, we can ignore the
elastic contributions in Eq. (9). Evaluating the integral over
frequencies in Eq. (9), the relevant contribution to the function
P (E) for energies E �= 0 reads as

P (E) � 2
Re[Ztot(E/h̄)]

RK

(
1+ n(E)

E

)
. (10)

Here, n(E) = [eβenvE − 1]−1 is the Bose-Einstein distribution
of the photons of the environment.

The probability density (10) can be used to get a limiting
expression for γenv:

γenv = 4
∫ +∞

�

dE NS(E)
Re[Ztot(E/h̄)]

RK

n(E)

E
. (11)

Let us apply this result to the example of a purely resistive
external environment. This model has been used before to
study devices based on tunnel junctions in connection with
experiments.17,20,21 Replacing the external impedance Z(ω) of
the circuit of Fig. 1(a) by a pure resistance R, the real part of
the total impedance is

Re[Ztot(ω)] = R

1+ (ωRC)2
. (12)

Numerical integration of Eq. (11) using Eq. (12) is straight-
forward. Results for RKγenv/R as a function of kBTenv/� are
shown in Fig. 3 for various values of the parameter �RC/h̄.
We see that γenv increases monotonically with temperature.
Also shown is the asymptotic linear temperature dependence
of γenv reached for temperatures kBTenv � �:

γenv � 2π
R

RK

kBTenv

�

[
1− �RC/h̄√

1+ (�RC/h̄)2

]
. (13)

This high-temperature expression is correct up to a con-
stant shift ≈�/kB along the temperature axis [see Fig. 3].

From Fig. 3 we see that as the parameter �RC/h̄ is
increased, the slope characterizing the limiting dependence
decreases: photon-assisted inelastic tunneling is effectively
reduced by increasing the junction capacitance. Note that
in the limit �RC/h̄� 1, the result (13) tends to γ D

env =
2π (R/RK )(kBTenv/�). This formula has been already ob-
tained in Ref. 17 using P (E) theory under similar conditions,
but for any bias voltage, using a high-temperature expansion
for the environment [see also Ref. 22].

Consequently, the subgap parameter γ D
env coincides with

the Dynes parameter γDynes. In other words, within this
limiting case, the thermal energy kBTenv determines the NIS
junction’s I -V characteristic even around the superconducting
gap e|V | ∼ �.

D. Subgap leakage current: Strong coupling

We do not aim to present a general analysis in the strong
coupling limit. In the particular case where Re[Ztot(ω)] is
strongly peaked around ω = 0, the probability density P (E)
can be calculated explicitly19 and results for the parameter γenv

obtained. Let us illustrate this by considering a purely resistive
environment. When the resistance is big, R � RK�/kBTenv
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0.5
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γ

e
n
v
/
R

FIG. 3. (Color online) Plot of the rescaled parameter RKγenv/R

as a function of kBTenv/� for different values of the ratio �RC/h̄.
Solid lines are obtained by a numerical integration of Eq. (11) using
Eq. (12). Dashed lines refer to the asymptotic γenv given by Eq. (13).
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FIG. 4. (Color online) (a) Plot of the parameter γenv as a function of kBTenv/� obtained considering the numerical integration of Eq. (16).
Each curve refers to a certain fixed value of the ratio EC/� (see legend). (b) Numerical plot of the same quantity [Eq. (16)] as a function of
EC/� for different values of the ratio kBTenv/�, as indicated.

(see Sec. II B), the impedance (12) becomes

Re[Ztot(ω)] �
(

π

C

)
δ(ω) . (14)

As a result, the function P (E) is given by

P (E) � 1√
4πkBTenvEC

exp

[
− (E − EC)2

4kBTenvEC

]
. (15)

Here, we defined the charging energy EC = e2/2C. Inserting
the function (15) in Eq. (7), we find

γenv = 1√
πECkBTenv

∫ +∞

�

dE NS(E) exp

[
− (E + EC)2

4ECkBTenv

]
.

(16)

Note that this result depends on R implicitly only, through the
requirement R � RK�/kBTenv. Direct numerical integration
of (16) yields γenv as a function of kBTenv/� and EC/�, as
shown in Figs. 4(a) and 4(b). Some remarks are in order at
this point. First of all, for EC � �, the integral in Eq. (16)
can be evaluated approximately, γenv � e−�2/kBTenvEC . As in
the weak coupling regime, large values of the capacitance lead
to a reduction of the parameter γenv. Upon increasing the ratio
EC/�, γenv will first increase, then it decreases again when
EC/� > 1, which is a manifestation of the Coulomb blockade.
As a function of temperature, γenv increases monotonically,
similarly to the weak coupling limit. However, rather than
reaching an asymptotic linear dependence, γenv saturates at
γenv = 1 for temperatures kBTenvEC � �2: the noise is so
strong that features of the order of the gap � are washed out.

III. NIS JUNCTION COUPLED TO A
HIGH-TEMPERATURE ENVIRONMENT
BY MEANS OF A TRANSMISSION LINE

In the previous section, we have studied the subgap
leakage current in a NIS junction which is directly coupled
to the external environment Z(ω). We have seen that a
reduction of the subgap leakage current is possible when
the capacitance of the junction C is increased and/or the
resistance of the environment R is decreased. Unfortunately,
in real experiments R, and in particular C, can not be
chosen arbitrarily and one needs other means to achieve the

accuracy requirements for the aforementioned NIS junction’s
applications. We therefore consider the circuit of Fig. 1(b)
where the junction is indirectly coupled to the external
environment via a cold, lossy transmission line acting as a
frequency-dependent filter.

A. Voltage fluctuations in the presence of a transmission line

In order to find the correlation function J (t) in the presence
of the transmission line, we follow the method developed in
Ref. 23 to solve the intermediate problem of the propagation
of the noise generated by the high-temperature environment
with impedance Z(ω) through the line towards the junction,
as shown in Fig. 5. The line has a length � and is described by
the parameters R0, C0, and L0, the resistance, the capacitance,
and the inductance per unit length, respectively. We ignore
the thermal noise produced by the impedance ZJ (ω) and by
the line, assuming both components at zero temperature. The
high-temperature element produces current noise δI which in
turn induces voltage noise δV .

To understand how the potential drop δVJ across ZJ (ω) is
connected to δV = Z(ω) δI , we start considering the potential
V (x) and the current I (x) at a given point x along the
transmission line. They satisfy the two partial differential
equations

∂V (x)

∂x
= −I (x)[R0 − iωL0],

∂I (x)

∂x
= iωC0 V (x).

Combining them, one obtains the wave equation

∂2V (x)

∂x2
= −K2(ω) V (x), (17)

δVδVJ δIZJ(ω)

R0 , C0 , L0

Tenv

Z(ω)

x
0

FIG. 5. Sketch of the circuit discussed in Sec. III A.
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where K2(ω) = ω2L0C0 + iωR0C0 is the wave vector squared
of the signal which propagates along the line. A general
solution of Eq. (17) is given by

V (x) = AeiK(ω)x + Be−iK(ω)x. (18)

Consequently, the current along the line is

I (x) = 1

Z∞(ω)
[AeiK(ω)x − Be−iK(ω)x], (19)

with Z∞(ω) = i(R0 − iωL0)/K(ω). The parameters A and B

can be determined by means of the boundary conditions

V (�) = Z(ω)[I (�)+ δI ] = Z(ω) I (�)+ δV,

V (0) = −ZJ (ω) I (0).

As a result, the potential drop δVJ = V (0) = A+ B across
the impedance ZJ (ω) depends on the noise δV according to
the relation

δVJ = T (ω) δV . (20)

In this last equation, we introduced T (ω), the transmission
function

T (ω) = 2 Z∞(ω) ZJ (ω)

[Z∞(ω)+ Z(ω)][Z∞(ω)+ ZJ (ω)]

× 1

e−iK(ω)� − λ1(ω) λ2(ω) eiK(ω)�
, (21)

where

λ1(ω) = Z∞(ω)− Z(ω)

Z∞(ω)+ Z(ω)
, λ2(ω) = Z∞(ω)− ZJ (ω)

Z∞(ω)+ ZJ (ω)

are the reflection coefficients. Assuming that the potential δV

satisfies the quantum fluctuation-dissipation theorem

〈δV (t) δV (0)〉ω = 2h̄ω
Re[Z(ω)]

1− e−βenvh̄ω
,

the spectral density function of the potential (20) is

〈δVJ (t) δVJ (0)〉ω = |T (ω)|2 2h̄ω
Re[Z(ω)]

1− e−βenvh̄ω
. (22)

This expression describes the propagation of the noise from
Z(ω) to the noiseless impedance ZJ (ω) through the noiseless
transmission line. The voltage-voltage correlation function
(22) is in agreement with the general formula given in Ref. 23.

B. Correlation function for the transmission line circuit

We use Eq. (22) to calculate the modified correlation
function JT (t) which appears in Eq. (3). According to Ref. 19,
J (t) is defined as the correlation function

J (t) ≡ 〈ϕJ (t)ϕJ (0)− ϕJ (0)ϕJ (0)〉, (23)

where the phase ϕJ (t) is the time integral of the potential
δVJ (t) across the NIS junction

ϕJ (t) ≡ e

h̄

∫ t

−∞
δVJ (τ ) dτ.

In other words,

〈ϕJ (t) ϕJ (0)〉ω =
(

e

h̄

)2 1

ω2
〈δVJ (t) δVJ (0)〉ω. (24)

Using the fluctuation-dissipation relation (22) in Eq. (24), we
rewrite Eq. (23) as a function of T (ω), Z(ω), and Tenv. Taking
the impedance ZJ (ω) to be the one of a capacitance C, the
modified function JT (t) reads as

JT (t) = 2
∫ +∞

0

dω

ω
|TC(ω)|2 Re[Z(ω)]

RK

×
{

coth

(
1

2
βenvh̄ω

)
[cos(ωt)− 1]− i sin(ωt)

}
.

(25)

Here, TC(ω) is the function T (ω) [Eq. (21)] with ZJ (ω) =
ZC(ω) = −1/iωC. Since the transmission line is considered
noiseless, its temperature Tline should be low, Tline � �/kB .
In what follows, we set Tline = Tjun = 0.

C. Transmission function

In order to understand the effect of the insertion of the
transmission line in the circuit of Fig. 1(a), a discussion
about the general behavior of TC(ω) is necessary. In general,
the modulus squared of the transmission function (21) is
characterized by a series of resonance peaks, whose properties
depend on �, R0, C0, and L0 as well as on the external
impedance Z(ω). To have an idea of the behavior of |TC(ω)|2,
let us consider the case of a purely resistive environment
Z(ω) = R.

Figure 6 illustrates the behavior of |TC(ω)|2 as a function
of ωRC for different values of the dimensionless parameters
z0 =

√
L0/C0/R, c0 = �C0/C, and r0 = �R0/R. Also shown

is the Lorentzian result

|TC(ω)|2 = 1/[1+ (ωRC)2] (26)

found for � = 0, i.e., in the absence of the transmission line. In
other words, Eq. (26) describes the spectrum of the transmitted
signal through a lumped RC low-pass filter. In order for the
line to be an efficient filter, we require |TC(ω)|2 to be below
this Lorentzian curve in the relevant frequency ranges. We see
that both the position and the width of the resonance peaks
are proportional to π/2c0z0: the longer the transmission line,
the denser around zero and the sharper are the peaks. Their
height decreases rapidly as the dimensionless frequency ωRC

is increased. This can be seen in particular when the line has no
losses, r0 = 0 [see Figs. 6(a)–6(d)]. Although the Lorentzian
curve is approached for lossless lines when c0 or z0 is reduced,
we observe no real reduction below it.

A significant reduction of the height of the peaks is possible
if the line which connects the NIS junction and the environment
is lossy, r0 > 0. Indeed, we see from Figs. 6(e) and 6(f) that
the bigger is r0 the smaller are the local maxima of |TC(ω)|2.
Moreover, the transmission function is even much smaller than
1/[1+ (ωRC)2] when the condition r0 � z0 is satisfied, as is
seen in Figs. 6(f) and 7. Therefore, within this particular limit,
the insertion of a resistive transmission line may be convenient.

D. Subgap leakage current: Weak coupling

We expect that the single-photon and multiphoton regimes,
weak and strong coupling, respectively, are strongly related to
the resistance per unit length R0. Let us analyze the situation
proceeding as in Sec.II B. We consider the function τ10%(ρ) for
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FIG. 6. (Color online) Plots of the transmission function |TC(ω)|2 as a function of the dimensionless variable ωRC. Each panel corresponds
to a different set of the parameters z0, c0, and r0: (a) r0 = 0, c0 = 1, z0 = (7,5,4,3); (b) r0 = 0, z0 = 5, c0 = (10,7,5,3); (c) r0 = 0, c0 = 1,
z0 = (0.8,0.6,0.5,0.3); (d) r0 = 0, z0 = 0.7, c0 = (10,7,5,3); (e) z0 = 10, c0 = 1, r0 = (1,2,3,4); (f) z0 = 10, c0 = 1, r0 = (7,9,10,12).

a purely resistive environment. In Fig. 8, we plot τ10%(ρ) as a
function of the dimensionless resistance ρ for different values
of R0. We see that the lossier the transmission line is, the more
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FIG. 7. (Color online) Plot of the transmission function |TC(ω)|2
as a function of the dimensionless variable ωRC for different values
of the parameter r0. The other parameters are c0 = 1, z0 = 0.7. Also
shown is the Lorentzian corresponding to the function |TC(ω)|2 in the
limit �→ 0, given by Eq. (26).

the weak coupling region spreads out. The resistance ρ�, given
by the intersection between τ10%(ρ) and the line corresponding
to the dimensionless time τ� = h̄/�RKC, significantly shifts
towards higher values of ρ as R0 is increased; the lossy
line indeed protects the junction from the high-temperature
external environment. Hereafter, we will therefore focus on a
highly resistive transmission line and only the weak coupling
regime will be treated.

With the help of Eq. (25), the function P (E) for the circuit
of Fig. 1(b) can be obtained in the weak coupling regime.
Proceeding as in Sec. II C, we find

P (E) � 2 |TC(E/h̄)|2 Re[Z(E/h̄)]

RK

(
1+ n(E)

E

)
. (27)

Evaluating the relation (27) for negative energies and inserting
the result into Eq. (7), the parameter γenv can be written as

γenv = 4
∫ +∞

�

dE NS(E)|TC(E/h̄)|2 Re[Z(E/h̄)]

RK

n(E)

E
.

(28)
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FIG. 8. (Color online) Plot of the dimensionless time τ10%(ρ) as
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� � 200 μeV (energy gap of aluminum), Tenv = 5 K, C = 10 fF,
C0 = 6 ε0, L0 = μ0, � = 10 μm.

We next specialize to the case of large resistance per unit
length R0. In order to obtain a limiting expression for |TC(ω)|2
for R0 →∞, let us assume that the inductive properties of
the line are negligible compared to R0. Since the relevant
frequency scale is given by �/h̄, this means that the condition
R0 � L0�/h̄ should hold. Within this RC limit, we find that
the wave vector K(ω) of the signal propagating through the
transmission line has an imaginary part equal to

√
ωR0C0/2.

As a result, the amplitude of the noise is exponentially attenu-
ated along the line [see Eqs. (18) and (19)] being proportional
to exp[−�

√
2ωR0C0]. We see that the bigger � and R0 are,

the smaller is the voltage noise which reaches the junction.
In particular, an exponential suppression of the propagating
signal is achieved when the inequality �

√
2�R0C0/h̄� 1 is

valid as well. This additional condition allows us to write the
equation

|e−iK(ω)� − λ1(ω) λ2(ω) eiK(ω)�|2 � 4 e�
√

2ωR0C0 .

Then, the modulus squared of the transmission function TC(ω)
becomes

|TC(ω)|2 �
∣∣∣∣∣

Z∞(ω) ZC(ω) e−�
√

2ωR0C0/2

[Z∞(ω)+ Z(ω)][Z∞(ω)+ ZC(ω)]

∣∣∣∣∣
2

, (29)

where Z∞(ω) � (1+ i)
√

R0/2ωC0 for a line in the RC limit.
Combining the two conditions used so far, we find that the
approximated function (29) holds when the resistance of the
transmission line �R0 is much bigger than its characteristic
impedance Z∞ =

√
L0/C0.

Increasing the resistance per unit length R0, one also
expects that interference effects become negligible. Indeed,
when R0 is very big, the amplitude of the signal across the
junction is much smaller than its starting value and its reflected
counterpart vanishes rapidly before reaching the noise source
again. In terms of our description of the transmission line given
in Sec. III A, this happens when the reflection coefficients
λ1(ω) and λ2(ω) tend to 1. In fact, in this limit, the potential
drop (18) tends to 0 across the junction and to δV across
the impedance Z(ω). For a purely resistive environment, this
regime is reached when R0 is such that the two inequalities
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FIG. 9. (Color online) Plot of the parameter γenv [Eq. (28)] as a
function of the length of the transmission line �. The red solid line
is obtained by means of the numerical integration of Eq. (28) for a
purely resistive environment. The blue dashed line is the plot of the
asymptotic parameter given by Eq. (31). These two curves are plotted
for different values of the resistance per unit length R0 (�/m) (as
indicated in the graph). All the plots are obtained considering the gap
parameter of the aluminum, � � 200 μeV. The other parameters are
Tenv = 5 K, C = 10 fF, R = 10 �, C0 = 6 ε0, L0 = μ0.

R2 � h̄R0/2C0� and �R0C
2/h̄C0 � 2 hold, in other words,

when the resistance of the environment R is much smaller
than R0C/2C0. Equation (29) then reduces to the asymptotic
expression

|TC(ω)|2 � e−�
√

2ωR0C0

1+ ωR0C2/C0
. (30)

Unlike the lumped RC low-pass filter described by the 1/ω-
decaying Eq. (26), in this case we see that the amplitude of
the transmitted frequencies relevant for the photon-assisted
tunneling is exponentially suppressed as the length � and the
resistance per unit length R0 of the line are increased. By
means of Eq. (30), the integral in Eq. (28) can be evaluated
approximately with the result

γenv � 4
R

RK

1

e�/kBTenv − 1

×
√

π

�
√

2�R0C0/h̄

e−�
√

2�R0C0/h̄

1+�R0C2/h̄C0
. (31)

We notice that also the asymptotic parameter γenv decreases
exponentially in terms of � and R0; the dependence on the
junction capacitance C is rather weak. The insertion of a
highly resistive and noiseless transmission line between the
NIS junction and the high-temperature environment indeed
helps to suppress the subgap leakage current. The plot of
Fig. 9 shows the exponential decay for a set of values of
R0 and � that can be used in real experiments. Particularly
interesting is the region where 108 �/m � R0 � 1010 �/m
and 10 μm � � � 102 μm. A transmission line with these
values of R0 and � allows one to go far below γenv � γ sub

Dynes ∼
10−7, i.e., a value of γenv which guarantees the achievement of
the accuracy requirements for the superconducting gap-based
technological applications of the NIS junction.9

IV. MULTIPARTICLE TUNNELING

Our analysis focuses on the single-particle subgap current
through the NIS junction. We ignore the contribution due

174507-8
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to higher-order processes in tunneling, such as Andreev
reflection.12–14 Hence, in order to establish the validity of
our single-particle tunneling assumption, one has to compare
the parameter γenv characterizing the leakage current with the
dimensionless Andreev subgap conductance gA = GART . In
ballistic junctions, second-order perturbation theory yields the
standard two-particle subgap conductance

GA � RK/
[
R2

T

(
k2
F S

)]
, (32)

where k2
F S is the number of conduction channels in the tunnel

barrier. Two-electron tunneling can be ignored as long as
γenv > RK/RT k2

F S. Typical estimates14 yield RK/RT k2
F S ∼

10−7.
On the other hand, in the diffusive case, the electrons

reflected by the barrier are backscattered by the impurities
randomly situated close to the barrier in the normal metal.
Interference between the electrons in a region characterized
by the coherence length ξN =

√
h̄D/ max {eV,kBTjun}, where

D is the diffusion coefficient, affects the two-particle tunneling
probability.24 As a result, GA is given by

GA � RN/R2
T , (33)

where RN is the resistance of the diffusive normal metal over
a length ξN . General estimates are hard to give in this situation
since the result is strongly geometry dependent; the condition
γenv > RN/RT will be more stringent than the one for the
ballistic case, especially under subgap conditions where ξN

and hence RN can be large.
Should Andreev reflection become dominant, one can

always suppress it efficiently using the Coulomb blockade
feature14 that suppresses two-particle tunneling more strongly
than single-particle tunneling.

V. CONCLUSIONS

In conclusion, we studied the single-particle tunneling
current through a voltage-biased NIS junction. Due to the
presence of the superconducting energy gap � in the BCS
density of states, when the junction is kept at the temperature
Tjun � �/kB , no current is expected to flow within the subgap
region −� < eV < �. Actually, even if the higher-order
tunneling processes are suppressed, a small subgap current is
still measured experimentally. This leakage current limits the
accuracy in applications involving NIS junctions. The origin
of the leakage current is the exchange of energy exceeding the
gap � between the junction and the external high-temperature
environment in which it is embedded. We studied this mecha-
nism analytically and numerically. In particular, we found that
a cold and lossy transmission line inserted between the junction
and the environment reduces exponentially the subgap leakage
current acting as a frequency-dependent filter. This indirect
configuration helps to achieve the required suppression of
noise.
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We employ a single-charge counting technique to measure the full counting statistics of Andreev events
in which Cooper pairs are either produced from electrons that are reflected as holes at a superconductor–
normal-metal interface or annihilated in the reverse process. The full counting statistics consists of quiet
periods with no Andreev processes, interrupted by the tunneling of a single electron that triggers an
avalanche of Andreev events giving rise to strongly super-Poissonian distributions.

DOI: 10.1103/PhysRevLett.112.036801 PACS numbers: 73.23.Hk, 72.70.+m, 74.50.+r

Superconductors are materials that below a critical
temperature lose their electrical resistance and thereby allow
a supercurrent to flow [1]. Inside the superconducting gap
electrons combine into Cooper pairs that carry electrical
charge through the superconductor without dissipation.
The conversion of a Cooper pair into normal-state electrons
(or viceversa) is known as anAndreev process [2]. In a direct
Andreev process, an electron in a normal-state material is
reflected as a hole at the interface with a superconductor
where a Cooper pair is formed. Moreover, with several
normal-state electrodes coupled to the same superconductor,
crossed Andreev reflections may occur where electrons
coming fromdifferent electrodes combine intoaCooperpair.
Cooper pairs consist of highly quantum-correlated elec-

trons and may thus serve as a source of entanglement when
split into different normal-state electrodes [3–5]. The entan-
glement of the spatially separated electrons can be detected
through current noise measurements [5]. Experiments on
superconductor–normal-metal junctions have also revealed a
doubling of the shot noise due to the conversion of Cooper
pairs into normal-state electrons [6]. However, a complete
understanding of the fundamental tunneling processes at a
superconductor–normal-metal interface requires measure-
ments beyond the average current and the noise only.
Higher-order correlation functions are encoded in the full
counting statistics (FCS), which quantifies the probability
pðn; tÞ of observing n charge transfer events during the time
span [0,t]. The FCS of normal-state electrons has been
addressed both theoretically [7–9] and experimentally
[10–21]. In contrast, measurements of the FCS of charge
transfer into superconductors have so far been lacking
despite great theoretical interest [22–31].
In this Letter we report measurements of the FCS of

Andreev events occurring between a normal-metal island
and two superconducting leads. Our measurements of
the FCS allow us to develop a detailed understanding of
the elementary tunneling processes at the superconductor–
normal-metal interfaces. Figure 1(a) shows our SINIS

structure consisting of a normal-state copper island (N)
connected by insulating (I) aluminum-oxide tunnel barriers
(of a few nanometers thickness [32]) to a pair of super-
conducting (S) aluminum leads. The structure was

1µm
Id

S S

N

N SI

(a)

(b)

IS

EF

I

FIG. 1 (color online). SINIS structure and Andreev processes.
(a) A metallic normal-state (N) island (brown) is connected by
insulating (I) tunneling barriers to superconducting (S) leads
(green). The current Id through a separate single-electron
transistor (SET) is sensitive to the charge occupation of the
island and is used to read out the number N of excess charges on
the island. A copper electrode (yellow) increases the capacitive
coupling of the normal-state island to the SET and improves the
detector signal-to-noise ratio. (b) An electron above the Fermi
level of the normal-state island is reflected as a hole and a Cooper
pair is formed in one of the superconductors. Without a voltage
across the SINIS, the Fermi energy EF of the normal-state
material lies in the middle of the superconducting gap 2Δ.

PRL 112, 036801 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

24 JANUARY 2014

0031-9007=14=112(3)=036801(5) 036801-1 © 2014 American Physical Society



patterned on an oxidized silicon chip using standard
e-beam lithography techniques. A copper coupling strip
was first formed and covered with a 50 nm thick aluminum-
oxide layer grown by atomic layer deposition. Gold leads
(not shown) were then patterned, making a direct metallic
contact to the superconducting leads. Finally, the SINIS
structure and the gate leads were formed by e-beam
evaporation at different angles. Tunnel barriers were created
by thermal oxidation in between.
The number of excess electrons N on the island is

discrete and can be controlled by applying a voltage Vg to a
gate electrode below it. We parametrize the offset voltage
by the variable Ng ¼ CgVg=e, where Cg is the gate
capacitance and e the electronic charge. The energy
required for charging the island with N electrons is [33]

E ¼ EcðN − NgÞ2; (1)

where the charging energy Ec ¼ e2=2CΣ contains the total
island capacitance CΣ. The structure was designed to have a
large capacitance, such that the charging energy is smaller
than the superconducting gap Δ of aluminum, thereby
allowing for Andreev processes to occur between the
island and the superconducting leads, see Fig. 1(b). The
charging energy Ec ¼ 40 μeV, the superconducting gap
Δ ¼ 210 μeV, and the tunnel resistance RT ¼ 490 kΩ
were determined by measuring the current-voltage charac-
teristics of the SINIS structure. Measurements were per-
formed in a dilution refrigerator at 50 mK bath temperature.
The charge state of the island was monitored using a nearby
single-electron transistor (SET), whose conductance depends

strongly on the number of excess charges on the island
[12,13,15,17,19,21,34,35].
To illustrate the basic operating principle of our device

we first tuned the offset voltage to Ng ¼ 0.5. Figure 2(a)
shows the energy for different numbers of excess charges.
The states N ¼ 0 and N ¼ 1 are degenerate, while all other
charge states are energetically unfavorable. In this case,
single electrons may tunnel on and off the island from the
aluminum leads with rate Γ. The origin of the single-
electron tunneling is addressed in Ref. [36]. Figure 2(b)
shows a measured time trace of the current Id in the SET
detector, which switches between two values correspond-
ing to N ¼ 0 and N ¼ 1. We count the number of single-
electron tunneling events on and off the island. No voltage
bias is applied. Figure 2(c) displays the measured distri-
bution pðn; tÞ of the number n of single-electron events that
have occurred during the time span [0,t]. The mean number
of events increases with the observation time t and the
distribution grows wider. The single-electron events are
uncorrelated and should be distributed according to a
Poisson distribution

pðn; tÞ ¼ ðΓtÞn
n!

e−Γt (2)

with mean hni ¼ Γt. From this mean value we can extract
the tunneling rate Γ. Figure 2(c) then shows that the FCS of
single-electron events indeed is well captured by the
Poisson distribution above.
We are now ready to measure the FCS of Andreev

events. To this end, we tuned the offset voltage to Ng ¼ 0.
In this case, the charging diagram in Fig. 3(a) is slightly
more involved: The lowest-energy state of the system is the
configuration with N ¼ 0 excess charges. However, a

(a)

(b)

(c)

FIG. 2 (color online). FCS of single-electron events. (a) Charging diagram showing Eq. (1) with Ng ¼ 0.5. The charge states with
N ¼ 0 or N ¼ 1 excess charges on the island are degenerate. The transitions 0⇆1 occur with rate Γ ¼ 49 Hz. Other charge states are
energetically unfavorable. (b) Time trace of the current Id in the SET detector, which switches between two levels corresponding to
N ¼ 0 and N ¼ 1, respectively. (c) Measured FCS of single-electron events for different observation times t ¼ 10, 100, and 1000 ms.
Poisson distributions given by Eq. (2) are shown with full lines.
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single-electron event may bring the system to one of the
excited states with N ¼ �1 excess charges. The excited
states are energetically degenerate and the island can make
transitions between N ¼ −1 and N ¼ 1 through Andreev
processes, where two electrons at a time are converted into
a Cooper pair in one of the superconductors or vice versa.
The Andreev events occur with an average rate ΓA until the
system relaxes back to the ground state through a single-
electron event. The current Id in the SET detector now
switches between three different values corresponding to
N ¼ −1, 0, or 1, see Fig. 3(b). (A fast sequence of single-
electron events, −1 → 0 → 1, may be mistaken for an
Andreev process, −1 → 1, although it is unlikely.) We
count the number of Andreev tunneling events to and from
the island. Figure 3(c) shows the measured FCS of Andreev
events obtained from around 640 000 Andreev processes.
Again, the mean value of Andreev events grows with time;
however, compared to the FCS of single-electron events,
the width of the distributions is surprisingly large and the
FCS is strongly super-Poissonian.
To understand quantitatively the FCS of Andreev events,

we consider the probabilities p0ðn; tÞ and pAðn; tÞ of the
island being in the ground state or in one of the excited
states, where Andreev events are possible. Both probabil-
ities are resolved with respect to the number n of Andreev
eventsthathaveoccurredduringthetimespan[0,t].TheFCSof
Andreev events is pðn; tÞ ¼ p0ðn; tÞ þ pAðn; tÞ, which can
be conveniently expressed as the inner product pðn; tÞ ¼
h~0jpðn; tÞi of the vectors h~0j ¼ ½1; 1� and jpðn; tÞi ¼
½pAðn; tÞ; p0ðn; tÞ�T [37,38]. We also introduce the moment
generating functionMðχ;tÞ¼P∞

n¼0pðn;tÞeinχ¼h~0jpðχ;tÞi

with jpðχ; tÞi ¼ P∞
n¼0 e

inχ jpðn; tÞi. Themaster equation for
jpðχ; tÞi reads

d
dt

jpðχ; tÞi ¼ MðχÞjpðχ; tÞi (3)

with the rate matrix (see also Ref. [39])

MðχÞ ¼
�
HAðχÞ − Γd 2Γu

Γd −2Γu

�
: (4)

Here HAðχÞ ¼ ΓAðeiχ − 1Þ is the generator of uncorrelated
Andreev events occurring in the excited states with rate ΓA.
The rate for exciting the system is 2Γu andΓd is the relaxation
rate back to the ground state, see Fig. 3(a). The tunneling rates
are extracted from the time traces of the SET-detector current
[12,13,15,17,19,21,34,35]. Solving Eq. (3), we find
jpðχ; tÞi ¼ eMðχÞtj0i, where j0i ¼ ½2Γu;Γd�T=ð2Γu þ ΓdÞ
is the stationary probability vector defined by Mð0Þj0i ¼ 0
and h~0j0i ¼ 1. The moment generating function is then
Mðχ; tÞ ¼ h~0jeMðχÞtj0i. Finally, by inverting the moment
generating function for pðn; tÞ we can evaluate the FCS of
Andreev events for different observation times t.
The theoretical predictions agree well with the measure-

ments in Fig. 3(c) using no fitting parameters. Moreover, a
physical interpretation of the nontrivial FCS follows from
an expansion of the cumulant generating function Sðχ; tÞ ¼
logfMðχ; tÞg in the smallest tunneling rate Γu ≪ Γd, ΓA.
At long times, the cumulant generating function is deter-
mined by the eigenvalue of MðχÞ with the largest real part
[40,41]. Importantly, the cumulant generating function for
independent processes is the sum of the cumulant

(a)

(b)

(c)

FIG. 3 (color online). FCS of Andreev events. (a) Charging diagram showing Eq. (1) with Ng ¼ 0. In the ground state, the island is
occupied by N ¼ 0 excess charges. A single-electron event may bring the island to a state with N ¼ �1 excess charges. The excitations
0 → �1 occur with the rate Γu ¼ 12 Hz. Relaxation to the ground state �1 → 0 happens with the rate Γd ¼ 252 Hz. The transitions
−1⇆1 correspond to Andreev events with the rate ΓA ¼ 615 Hz. (b) Time trace of the SET-detector current Id, which switches between
three levels corresponding to N ¼ −1, N ¼ 0, and N ¼ 1, respectively. (c) Measured FCS of Andreev events for different observation
times t ¼ 10, 100, and 1000 ms. Full lines are calculations based on Eqs. (3) and (4). For comparison a Poisson distribution
corresponding to 1000 ms is shown with a dashed line.
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generating functions for the individual processes. To lowest
order in Γu, we find at long times

Sðχ; tÞ ¼ 2Γut
X∞
m¼1

qðmÞðeimχ − 1Þ þOðΓ2
uÞ (5)

with

qðmÞ ¼ Γd

ΓA þ Γd

�
ΓA

ΓA þ Γd

�
m
: (6)

This shows that the FCS can be approximated as a sum of
independent Poisson processes that with rate 2Γu generate
avalanches of m Andreev events. Each Poisson process is
weighted by the probability qðmÞ of observing an ava-
lanche with m Andreev events. In this approximation,
correlations between subsequent avalanches are neglected
together with the duration of the individual avalanches.
These correlations would enter in Eq. (5) as higher-order
terms in Γu, but would not affect the probabilities in Eq. (6).
We note that similar single-electron avalanches have been
predicted in molecular quantum transport [42].
To corroborate this physical picture, we turn to the

number of Andreev events per avalanche. Figure 4 shows
experimental results for the statistics of Andreev events
within a single avalanche. The figure illustrates that
avalanches with more than ten consecutive Andreev events
are possible. This is also evident from the inset showing a
time trace of the detector current Id, which switches 16
times between the two levels corresponding to N ¼ −1 and
N ¼ 1 excess charges, respectively. The agreement
between the experimental results and the probabilities
qðmÞ in Eq. (6) supports the interpretation that avalanches
of Andreev events, triggered by the tunneling of single
electrons, give rise to the strongly super-Poissonian FCS.

In summary, we have measured the FCS of Andreev
events in an SINIS structure which exhibits super-
Poissonian distributions due to avalanches triggered by
individual single-electron tunneling events. Our experiment
opens a number of directions for future research on charge
fluctuations in superconductors. These include experimen-
tal investigations of the statistics of entangled electron pairs
produced in crossed Andreev reflections as well as con-
trollable Cooper pair production and detection for quantum
metrological purposes [43].
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