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1. Introduction

In many practical forecasting tasks, di�erent models are built for di�erent time horizons.

The forecasts produced on the basis of these models are used to help with di�erent types of

decisions. In many cases, it would be advantageous to merge the forecasts for di�erent horizons:

it is reasonable to expect signi�cant accuracy improvement especially in the long term of the

higher sample rate model.

This problem is handled in several methodologies such as combining forecasts (Bunn

1989), temporal disaggretagion (Guerrero 1990), and others.

This paper introduces a method of taking into account the aggregated/lower sample rate

forecasts within the higher sample rate forecasts.

2. Some notation

Let zt, t = : : :� 1; 0; 1; 2; : : : be an in�nite realization of the random process of interest.
The values of zt are known from time instance 1 up to time instant T , and we want to know

them for all time instants in the forecasting interval fT + 1; : : : ; T +Ng
def
= I.

We assume that zt can be modelled in linear regression form:

zt =
mX

k=1

bt(k)xt(k) + at;(1)

where bt(k) are known coe�cients. at is Gaussian noise, not necessarily white; it is assumed to
have the covariance matrix �a. xt(k) are the explanatory variables.

These requirements are ful�lled for, e.g., regression models and ARMA models (where

the regression form condition is ful�lled by converting the model to AR form), and transfer

function models; they are not ful�lled by e.g. exponential smoothing models in general.

On the forecasting interval, we have observations Yi (generated e.g. by making forecasts
with other methods) of some linear combinations of zt, t 2 I:

Yi =
NX

j=1

cijzT+j + ei; i = 1; : : : ; K:(2)

ei is Gaussian noise, and cij are some constants. The cij can be adapted to re
ect di�erent

knowledge about the lower sample rate/aggregated values, such quarterly data in terms of

monthly data, values at speci�c time instants (or even all time instants of interest) obtained
by some other model than the one used, etc. In matrix form,

Y = Cz+ e;(3)

where the vector Y = (Y1; : : : ; YK)
0, C is the matrix whose ith row is (ci1; : : : ; ciN), z =

(zT+1; : : : ; zT+N)
0, e = (e1; e2; : : : eK)

0. The covariance matrix of e is assumed to be �e.



3. The method

This method is based on the observation that both 1 and 2 de�ne multivariate normal

distributions with shared variables. This leads naturally to the thought that information in the

two normal distributions be combined to form a third normal distribution which re
ects the

information from both of the original distributions.

Let us denote the forecasts obtained from 1 alone by ẑ, and the more precise forecasts we

are aiming at by �z. Calculating �z as a result of conditioning the ẑ by Y (see Rao 1973 for the

application of conditional probability to normally distributed variables), we get

�z = ẑ+�aC
T (C�aC

T +�e)
�1(Y �Cẑ)(4)

with error covariance matrix

P = �a ��aC
T (C�aC

T +�e)
�1
C�a:(5)

This approach underlies the Kalman �lter (see, e.g., Anderson and Moore 1979), and indeed

it can be seen as a one-step Kalman �lter. However, it has some advantages over the Kalman

�lter: no state space model needs to be formulated; and the method is applicable even when
the matrix C is such that no meaningful observation matrix of the state space model can be

formulated.
A downside of the method with respect to the Kalman �lter is that it involves larger

matrices. However, with current computing power this should pose no problem with reasonable

forecasting spans.
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FRENCH R�ESUM�E

Notre probl�eme concerne la prise en compte des observations �echantillonn�ees �a faible

fr�equence (trimestriel) quaud on fait des pr�evisions des processes �echantillonn�es �a une fr�equence

�elev�ee (mensuel). Nous proposons une m�ethode base�e sur le conditionnement de la probabilit�e

de distribution de l'�echantillonnage �a fr�equence �elev�ee avec la probabilit�e de distribution de

l'�echantillonnage �a taux faible. La m�ethode est similaire au �ltre de Kalman �a un pas.


