




VTT PUBLICATIONS 243

Natural naming in software development and
maintenance

Kari Laitinen

VTT Electronics

Academic dissertation.



ISBN 951–38–4781–0 (soft back ed.)
ISSN 1235–0621 (soft back ed.)
ISBN 951–38–6249–6 (URL: http://www.vtt.fi/inf/pdf/)
ISSN 1455–0849 (URL: http://www.vtt.fi/inf/pdf/)
Copyright © VTT Technical Research Centre of Finland 1995

JULKAISIJA – UTGIVARE – PUBLISHER

VTT, Vuorimiehentie 5, PL 2000, 02044 VTT
puh. vaihde (09) 4561, faksi (09) 456 4374

VTT, Bergsmansvägen 5, PB 2000, 02044 VTT
tel. växel (09) 4561, fax (09) 456 4374

VTT Technical Research Centre of Finland, Vuorimiehentie 5, P.O.Box 2000, FIN–02044 VTT, Finland
phone internat. + 358 9 4561, fax + 358 9 456 4374

VTT Elektroniikka, Kaitoväylä 1, PL 1100, 90571 OULU
puh. vaihde (08) 551 2111, faksi (08) 551 2320

VTT Elektronik, Kaitoväylä 1, PB 1100, 90571 ULEÅBORG
tel. växel (08) 551 2111, fax (08) 551 2320

VTT Electronics, Kaitoväylä 1, P.O.Box 1100, FIN–90571 OULU, Finland
phone internat. + 358 8 551 2111, fax + 358 8 551 2320

This doctoral thesis was accepted in 1995 at the University of Oulu,
Finland. What I have said on the pages of this document, is still valid.
Nowadays, I write books that teach computer programming in the most
natural way. You can find more information  about my books at

www.naturalprogramming.com

The only thing that I do not like in this thesis is the small example of a
computer program of which I show many versions. The program checks
the validity of a customer number. As I am now more experienced in
writing  simple textbook examples of computer programs, I could produce
a better example program for this thesis. So, when you read this thesis,
please forgive me that the example program is somewhat artificial
although it fulfils its purpose in showing different programming styles.

Oulu, Finland, October 12, 2003. Kari Laitinen

Technical editing Leena Ukskoski

VTT OFFSETPAINO 1995



3

ABSTRACT

The understandability of source programs and other types of software docu-
ments is important for several reasons. Software developers have to read
documents written by their colleagues, and software maintainers often need
to study old source programs about which they have no previous knowledge.
Naming is one important factor that affects how understandable source
programs are. In general, natural naming means avoiding abbreviations in
software documentation. In the context of source programs, natural naming
means that program elements such as variables, constants, tables, and
functions should be named using whole natural words of a natural language
with respect to the grammatical rules of the same natural language.

This thesis introduces methods and tools to facilitate the use of natural
naming in software development and maintenance. To support the use of
natural naming in programming, source program elements are classified and
specific naming rules provided for different program elements. An
analytical name creation method is provided to make natural names in
source programs consistent with written text in other types of software
documents.

Commonly used programming languages do not require any specific
naming rules to be followed. For this reason, an experimental programming
language is introduced in this thesis. The language is designed to support
the use of natural naming. Existing source programs usually contain many
abbreviated names. To make existing programs more maintainable,
intelligent disabbreviation tools have been developed as part of this study.
Disabbreviation means replacing abbreviated names with natural ones in
existing source programs.

The naming methods and tools have been evaluated by testing them in
laboratory experiments and in practical software development and
maintenance situations. The natural naming principles have been taught to
software developers in different organizations. According to feedback
received from users and the data collected in the experiments, natural
naming is a promising approach to increase the understandability of
software documents, and the methods and tools introduced in this thesis
facilitate the use of this naming approach.

Laitinen, Kari. Natural naming in software development and maintenance. Espoo 1995, Technical
Research Centre of Finland, VTT Publications 243. 99 p. + app. 70 p.

UDC 681.3:681.3.06
Keywoords computer  systems  programs,  computer  programs, computers, programming, 

software development,  software documentation,  maintenance,  naming, natural
languages,  human factors engineering,  documents



4

PREFACE

PERSONAL HISTORY

In 1978, I started studying electrical engineering at the University of Oulu
in Finland. The first programming course at the university introduced
Fortran. That was a shock to me because I understood virtually nothing
about it. Only after studying the textbook by Hakalahti et al. (1978) a couple
of years later, did I start to understand the secrets of computing. Actually, I
learned so much from that book that I decided to orient my studies towards
computers and software. I was then, and still am, interested in writing. I
thought that computers were an interesting field because they can be
commanded through writing.

After my studies I worked at a company called Oy Edacom Ab (now part of
ICL Edacom Oy) as a software developer for cash terminal systems. I
participated in many software projects, learned several programming
languages, and developed many kinds of source programs ranging from
database management to communications software. The work also involved
software maintenance. I consider that I got a very good overview of
software development while I was working at Edacom. That company also
provided me the opportunity to work abroad at other companies which were
developing software for Edacom cash terminals.

In September, 1988, I had been working about one and half years at the
Dutch Edacom representative, Computercentrum C. van de Velden in
Arnhem, The Netherlands. Then, in the morning of September 21, 1988, I
wanted to write one piece of source code that would enhance the system we
had been developing about half a year. When I wrote that program, I
decided not to use any abbreviations in the names I used in the program. It
turned out to be possible to write such a program, and that particular
program turned out to work very well. (Part of that program is shown in
Figure 3 in this thesis.) I cannot tell exactly why I tried this kind of naming
style. I had already been using quite long names earlier, but perhaps living
in the liberal Dutch society made me willing to try new programming styles.
Anyway, I have used this naming style, which I now call natural naming,
ever since.

I was able to continue the practical experiments with natural naming when I
later worked at the British Edacom representative, Edacom Data Systems in
Stansted, England, during the winter and spring of 1989. At Edacom Data
Systems I wrote a manual entitled "Suggestions for Software Production
and Documentation". That manual includes some rules for natural naming.

In June 1989, I started to work at the Computer Technology Laboratory of
the Technical Research Centre of Finland (VTT). The same organization is
now part of VTT Electronics. This doctoral thesis is a document that



5

describes most of my work at VTT. My first project at VTT was a
technology transfer project called SULATEK. In this project I was able to
further develop my ideas about natural naming.

VTT also provided a possibility to go to work abroad. This time I wanted to
explore the new world, and I spent the year 1993 at the U. S. Naval
Postgraduate School in Monterey, California. There my main research
subject was to study how programming languages could be enhanced to
make them more suitable for natural naming.

After returning to VTT from the U.S.A. I started working in an ESPRIT III
project called AMES, Application Management Environments and Support.
This doctoral thesis was completed while I was working on the AMES
project. A software maintenance tool called InName was the main result of
my work in AMES.

During the time I have been working at VTT, I have simultaneously carried
out postgraduate studies at the University of Oulu. These studies have
resulted in this doctoral thesis. Although I originally studied electrical
engineering, I have carried out my postgraduate studies in the Department
of Information Processing Science of the University of Oulu. The reason
that I switched to another department within the university is that my
subject is rather far from electrical engineering.

ACKNOWLEDGMENTS

Prof. Veikko Seppänen, currently the head of VTT Electronics / Embedded
Software, has greatly contributed to my work as he has read nearly all
scientific texts I have written. He has a superb ability to give comments,
make remarks, and suggest improvements in papers he reads.

Prof. Pentti Kerola from the University of Oulu has served as the supervisor
of my postgraduate studies. I have had many encouraging and interesting
discussions with Prof. Kerola. He has been especially helpful in increasing
my knowledge about methodological aspects of scientific work.

Prof. Neil C. Rowe from the U. S. Naval Postgraduate School responded
positively to my request to work abroad. He has been very important for this
thesis particularly because he showed me how texts can be manipulated
with Prolog, and he made the first disabbreviation tool.

Mr. Jorma Taramaa provided me the chance to work in the AMES project,
and develop a better disabbreviation tool. Mr. Markku Heikkilä did
excellent work while we were developing this tool.

Dr. Cornelia Boldyreff from the University of Durham, U. K., and Prof.
Jorma Sajaniemi from the University of Joensuu, Finland, have served as



6

the official reviewers of this thesis. They have provided me important
feedback, and suggested clarifying improvements into this thesis.

Mr. Douglas Foxvog has checked the language in this thesis and in most of
my scientific texts. In addition to advice in English, he has given many
comments on the content as well. Mr. Adth van Bale has proofread the
Dutch language in Figure 8(a).

I wish to express my deepest and warmest gratitude to all the people I have
mentioned above.

In addition, I would like to thank the following people: Mr. Derek
Alexander, Ms. Aria Arai, Mr. Juhani Eskelinen, Prof. Hannu Hakalahti,
Mr. Kari Hakkarainen, Mr. Seppo Huotari, Dr. Ahmad M. Ibrahim, Mr.
Ilkka Kallio, Mr. Daniel Keller, Mr. Kari Kumpulainen, Mr. Raino
Lintulampi, Mr. Ilkka Marjomaa, Mr. Timo Mukari, Ms. Minna
Mäkäräinen, Dr. Tapio Pietikäinen, Prof. Petri Pulli, Mrs. Heli Puustinen,
Dr. Bengt-Olof Qvarnström, Prof. Samuli Saukkonen, Prof. Timothy
Shimeall, Ms. Carla Stiff, Dr. Shorei Takada, Mr. Aarne Taube, Ms. Eija
Tervonen, Mr. Matias Vierimaa, Dr. Seppo Visala, Prof. Dennis Volpano,
and Dr. Matti Weckström. These people have helped me in various ways:
some have expressed especially positive attitudes towards my work, some
have commented my working papers, some have expressed interesting
opinions and ideas, some have helped to make this thesis, etc. I would also
like to express my thanks to the people working in the AMES project, and
to my colleagues at VTT with whom I have worked over the years.

Finally, I would like to thank the organizations which have funded my
research. This work has been supported by the Technical Research Centre
of Finland (VTT), the Technology Development Centre of Finland
(TEKES), the companies which participated in the SULATEK project
during the years from 1989 to 1992 (Nokia Mobile Phones Oy, TH-
Engineering Oy, Prosoft, Elektrobit Oy, Polar Electro Oy, Pohjois Piiri Oy,
and Oy Edacom Ab), the Defense Advanced Research Projects
Administration as part of the I3 Project under AO 8939, and the Finnish
foundations Jenny ja Antti Wihurin rahasto and Tauno Tönningin säätiö.

Oulu, Finland, August 1995

Kari Laitinen



7

LIST OF INCLUDED PUBLICATIONS

This thesis includes six papers which have been accepted in proceedings of
international conferences and scientific journals. These papers are used here
with the permission of their original publishers. The included publications
are the following (NOTE: The papers are not included in this pdf version.):

I Laitinen, K. and Seppänen, V. 1990. Principles for Naming Program
Elements, A Practical Approach to Raise Informativity of Program-
ming. In: Part I of Proceedings of InfoJapan'90 International Confer-
ence. Tokyo: Information Processing Society of Japan. Pp. 79–86.

II Laitinen, K. and Mukari, T. 1992. DNN-Disciplined Natural Naming,
A Method for Systematic Name Creation in Software Development.
In: Proceedings of 25th Hawaii International Conference on System
Sciences, Vol. II: Software Technology. Los Alamitos, California:
IEEE Computer Society Press. Pp. 91–100.

III Laitinen, K. 1994. Pacific: A Programming Language Based on the
Idea of Natural Naming. In: Baeza-Yates, R. (editor) Computer
Science 2: Research and Applications. New York: Plenum Press. Pp.
529–540.

IV Rowe, N. C. and Laitinen, K. 1995. Semiautomatic Disabbreviation of
Technical Text. To appear in Information Processing and Manage-
ment.

V Laitinen, K., Taramaa, J., Heikkilä, M. and Rowe, N. C. 1995.
Enhancing Maintainability of Source Programs through Disabbrevia-
tion. To appear in the Journal of Systems and Software.

VI Laitinen, K. 1995. Natural Naming in Software Development:
Feedback from Practitioners. In: Proceedings of 7th International
Conference on Advanced Information Systems Engineering
(CAiSE*95). Lecture Notes in Computer Science, Vol. 932. Berlin:
Springer Verlag. Pp. 375–388.

The author of this thesis is the principal author of all the included papers
except PAPER IV. Dr. Veikko Seppänen helped in finding an appropriate
structure for PAPER I. Mr. Timo Mukari provided the idea of object-
oriented naming for PAPER II. PAPER IV has been mainly written by Prof.
Neil C. Rowe, while the author participated in the research and provided
some paragraphs, references, and suggestions to improve the paper. Mr.
Jorma Taramaa and Prof. Neil C. Rowe provided suggestions and insights
for PAPER V. Mr. Markku Heikkilä participated in the research described
in PAPER V.



8

CONTENTS

ABSTRACT...................................................................................................3

PREFACE ......................................................................................................4
Personal history ...................................................................................4
Acknowledgments ...............................................................................5

LIST OF INCLUDED PUBLICATIONS......................................................7

CONTENTS...................................................................................................8

1  INTRODUCTION....................................................................................10
1.1  Software development: a short history .......................................10
1.2  Software development as a documentation process ...................13

1.2.1  Source programs and other software documents...........13
1.2.2  Documents in the development process ........................15
1.2.3  Documents vs. knowledge.............................................17
1.2.4  Documents in software maintenance.............................18

1.3  The idea of natural naming .........................................................20
1.4  Outline of the thesis ....................................................................24

2  PROGRAMMING AND NAMING STYLES.........................................25
2.1  The concept of programming style .............................................25
2.2  Different naming styles...............................................................31
2.3  Justifying the use of natural naming...........................................34

3  RESEARCH PROBLEM .........................................................................39
3.1  Problem definition and research activities..................................39
3.2  Research methods .......................................................................41
3.3  Justifying the methodological approach .....................................44

4  RELATED WORK ..................................................................................48
4.1  Introduction to related work .......................................................48
4.2  Approaches to increasing understandability of source

programs ....................................................................................49
4.2.1  Guidelines for naming and programming style.............49
4.2.2  Program visualization tools...........................................52
4.2.3  Literate programming....................................................54
4.2.4  Easy-to-read programming languages: COBOL and

SNAP ............................................................................57
4.3  Tools to aid in software maintenance .........................................59
4.4  Fields outside software domain: Linguistics, semiotics,

and philosophy...........................................................................62
4.5  Discussion of related work .........................................................68

5  INTRODUCTION TO THE INCLUDED PAPERS ...............................70
5.1  Paper I: Guidelines for natural naming.......................................70
5.2  Paper II: A method for initial name creation ..............................72
5.3  Paper III: A programming language to support natural

naming........................................................................................75



9

5.4  Paper IV: Disabbreviation of technical text................................78
5.5  Paper V: Disabbreviation of source programs............................79
5.6  Paper VI: An empirical study of the use of natural naming .......81

6  CONCLUDING DISCUSSION...............................................................84
6.1  Research summary and evaluation .............................................84
6.2  Possibilities for further research .................................................87

REFERENCES.............................................................................................90

PAPERS

(Note: The papers are not included in the .pdf version of the thesis.)



10

1  INTRODUCTION

1.1  SOFTWARE DEVELOPMENT: A SHORT HISTORY

Now, in 1995, we can say that modern electronic computers are about half a
century old. Although computer-like devices were constructed even earlier
(e.g. by Charles Babbage), only during the last five decades has the
technology of computing equipment been steadily improving.

An important mathematical model for present-day computers was published
nearly sixty years ago by Alan Turing (1937a). He imagined a machine
which could store and read information from a memory device, a tape, and
showed that this imaginary machine could solve mathematical problems.
Later, about fifty years ago, Alan Turing, John von Neumann, and other
scientists and engineers were already building the first real programmable
computers (Hodges 1983). Like modern computers, the early computers
could be programmed to perform different kinds of computations. Early
programming was done by designing the machine code of an application by
hand. Mathematics was used as an aid in the creation of the machine code.
Alan Turing, for instance, used base-32 arithmetic when he was designing
calculation operations for an early computer. Other people had difficulties
in understanding what Alan Turing was doing (Hodges 1983).

From the very beginning, computer programming was seen to be a difficult
task. Therefore, different means to aid program construction were
developed. These means involved inventing program description rules
which made it possible to use other symbols than just numbers to describe
the operations of a computer, and to use the computer itself to produce its
own machine code for the designed computation. Program description rules
which allow machine processing are called programming languages. Simple
programming languages, which allow machine instructions and memory
locations to be described with symbols, are called assembly languages.
More advanced languages, which allow, for instance, the use of
mathematical and logical symbols in programs, are called high-level
programming languages. The first high-level language, Fortran, was
introduced about forty years ago. Other more advanced, and more or less
popular, languages have emerged afterwards (Sammet 1972, MacLennan
1983, Horowitz 1987). Although programming with high-level languages
was first considered as "automatic programming" (Balzer 1985) and new
programming languages have been steadily emerging, programming still
seen as a difficult task.

Nowadays it is common to use the terms software development and
software engineering instead of programming. Developing an application
for a computer is thus seen to comprise many activities other than just
writing a program. Software is also a better word than program, because
computer applications are not just single programs these days. One



11

application may consist of hundreds or thousands of separate programs.
Although there are definitions for the term software (ISO 9000-3 1991,
Laitinen 1992), the term is widely used to denote the opposite of hardware.
Hardware is easier to define, because it can be touched and seen, whereas
software is hard to visualize. As we speak of software development these
days, we also speak about more serious difficulties than programming
problems. The difficulties of software development have been often labeled
with the term "software crisis". That term is more than a quarter of a century
old (Tichy et al. 1993). It means the fact that, although hardware technology
and production have been evolving rapidly, software producers cannot
satisfy the demand for high-quality software as needed. Typical problems of
software development include development cost overruns, delays in
delivery, and errors in delivered software products.1

Despite the difficulties, computers and different kinds of software systems
have become enormously popular in today's society. During the first
decades of computers they were used for pure mathematical and
commercial computing purposes, but nowadays computers control, for
instance, air traffic, nuclear power plants, and electronic equipment such as
televisions and portable phones. It is possible that our society utilizes
computers and software to such an extent that it could not function without
them any more. As computers have become popular, the number of people
who develop software has grown equally. There are hundreds of thousands,
if not millions, of software developers working in the industry today. It is
quite a difference, if we think that fifty years ago there were only Alan
Turing and other clever mathematicians. Alan Turing did predict that
utilization of computers will require many mathematicians (Hodges 1983),
but he probably did not imagine that the future software developers would
not identify themselves as mathematicians.

To tackle the problems of software development, the research community
and industry have produced, in addition to many programming languages,
various models for the software development process (e.g. Boehm 1988),
methods to analyze and design software systems (e.g. Ward and Mellor
1985, Page-Jones 1988, Yourdon 1989, Coad and Yourdon 1990,
Rumbaugh et al. 1991, Booch 1991), and many kinds of tools to help
software developers in their work. Software development tools are often

                                             

1We started this thesis by referring to Alan Turing's classic paper (Turing 1937a) which can be
said to describe one kind of a software system. We cannot help noting also that the paper seems to
describe a really typical software system as the first version of the paper contained some errors,
which Alan Turing later "patched" with a separate note (Turing 1937b).

With this note we do not want to anyhow neglect the importance of Alan Turing's excellent work,
his ideas, or his contributions to this field. The fact that there were mistakes in his classic paper is,
in our view, one indication about how complex software systems usually are. Even the most
capable brains fail to manage all the complexity.



12

designed to support certain development methods. Although software
development requires appropriate methods and tools, it is still work in
which humans need to co-operate and the success of the work depends on
human abilities and skills. For this reason, human factors and psychological
aspects of software development have been important research topics
(Weinberg 1971, Curtis 1984, Curtis 1985, Hoc et al. 1990).

As the research community is constantly producing new methods and tools
for software development, researchers obviously believe that software
development indeed can be made more efficient and productive. Brooks
(1987), however, has expressed rather pessimistic opinions regarding this
matter. He has argued that software systems are inevitably complex
products which are hard to visualize. Therefore, developing these systems
will remain a difficult task. Harel (1992), on the other hand, is convinced
that by using graphical visualization techniques the complexity of software
systems can be managed. One problem related to software development
methods and tools is also that measuring the efficiency of software
development is hard. Fenton (1993) and Fenton et al. (1994) have pointed
out that practically none of the existing software development methods have
been proved to be more efficient than some other particular methods. Potts
(1993) has expressed similar opinions. Glass (1994) has described this
situation as the software-research crisis. Jackson (1994) has said that we do
not yet understand the nature of software development well enough.

It is obviously very difficult to measure the efficiency of software
development as a whole. Otherwise, to this date, researchers would certainly
have produced more convincing results. Only a few specific aspects of
software development, like the effects of some documentation styles (Curtis
1985), have been measured. These measurements have usually been carried
out outside real software development situations. It is possible that
measuring the efficiency of software development methods and tools will
remain a hard task. We have to live with this possibility.

Despite all the difficulties related to software development, we have to
continue seeking new ways to facilitate software development as a human
activity. We have already seen many software-based innovations which help
people in their work or during their leisure time. This thesis assumes that
much more can be done with software and even more clever innovations
will be made, if the nature of software development can be better
understood and if it can be carried out in more organized manner.



13

1.2  SOFTWARE DEVELOPMENT AS A DOCUMENTATION
PROCESS

1.2.1  Source programs and other software documents

In its executable form software is a list of numerical instructions which can
be directly interpreted by a processor. When executable software is
generated using a programming language, a source program is written
according to the rules of the programming language. Then, the source
program is transformed into an executable form with a compiler. During the
transformation process, known as compilation, source programs are
transformed from a human-understandable form into a machine-executable
form.  Machine code is not, in the conventional sense, understandable to
humans. This is the reason why programming languages have been
invented. High-level programming languages free software developers from
thinking about machine instructions or memory locations. Instead, they can
concentrate on arithmetic operations, logical decisions, iterations, etc.

Source programs serve a dual purpose in software development activities.
On the one hand, they are inputs for software development tools (i.e.
compilers), and, on the other hand, they are descriptions which are written,
read, and studied by humans. Because of the latter purpose source programs
can be considered as documents. All people working in the field of software
development do not necessarily have this view of source programs. For
instance, Tausworthe (1992) mentions documents and code separately,
although he considers both to be the same type of information products. We
can, however, treat source programs as documents, because they exist to
convey information to people. The importance of the documentary aspect of
source programs has been emphasized by Brooks (1978) and Green (1990).
In his famous book Weinberg (1971) has stressed that programs are objects
which we read and write in order to learn. Also the facts that many software
development organizations have documentation rules for source programs
and software development standards (e.g. ISO 9000-3 1991, ESA 1991)
require these documentation rules suggest that it is important to treat source
programs as documents.

Before source programs are written, a typical software development project
may produce other types of software documents such as requirements
descriptions and various design documents. If we compare all these
documents, we can find certain similarities between them. To discuss this
matter, let us imagine a situation that a software development project first
produces a requirement description document written in English, then a
Structured Analysis (SA) model of the system (e.g. Yourdon 1989), and
finally source programs written with the C programming language.
Examples of the symbols that these software documentation practices
employ are listed in Table 1.





15

as well as English words in comments. Textual symbols are similar in all
types of documents and that makes all documents similar. What makes the
difference between the document types in Table 1 are the technical symbols.
In English texts, technical symbols are the conventional punctuation
symbols, while the structured methods employ graphical symbols such as
arrows and circles, and the C programming language has many special
arithmetic and logical symbols as well as reserved words.

Although Table 1 is just an approximation about what kinds of symbols
may appear in software documents, it displays the real fact that various
textual symbols usually exist in every type of software document. On this
basis, we can treat source programs as documents which are comparable
with other documents produced in software development.

1.2.2  Documents in the development process

Software development activities can be perceived in different ways,
depending on the viewpoint. The fact that so much research effort has been
put to developing various tools for software development suggests that
many people see software development as a technical process which is
largely dependent on the tools used. Perhaps the extreme of this view is to
consider software development organizations as factories which need
factory-like tools (Matsumoto 1987, Cusumano 1989).

We are not claiming that considering software development a technical
process would be a mistake, but there are also non-technical aspects in
software development. Curtis et al. (1988) have pointed out that software
development must be treated, at least partly, as a communication and
learning process. We will favor this view in this thesis. People need to study
and communicate with other people in order to learn. Documents form an
important basis for communication in software development. By studying
documents people learn as well. As documents are important in
communication and learning, their understandability is an essential factor
for the effectiveness of software development.

When considering software development as a learning and communication
process we can see it as a documentation process. The documentary view of
software development can be characterized as follows:

• Emerging documents are an indication that software developers
communicate and learn in their work.

• As the development work proceeds, it produces more and more
elaborate documents describing the software system being
developed.



16

• The final stage of software development must result in
documents from which the executable form of software can be
transformed. We call these documents transformable.
Regardless of what documents have been produced earlier,
transformable documents must be produced in every software
development project. Transformable documents are usually
source programs.

• Software development is completed when correct transformable
documents (e.g. source programs) have been created.

• The efficiency of software development depends on how
quickly the developers can produce correct documents. The
capability of producing correct documents is constrained by the
learning abilities of the developers.

The documentary view is the basis of this thesis. A similar approach to
software development has been taken by Welsh and Han (1994). This view
has been described in the context of document classification by Laitinen
(1992). Parnas and Clements (1986) have stressed the importance of correct
documentation in software development.

In this thesis, we assume that software development always produces source
programs as final documents. Because software development practices
change rather slowly (Raghavan and Chand 1989), this form of software
development will most likely remain a living practice for a long time.
However, we must mention that there are software development tools which
generate source programs automatically (e.g. ReaGeniX 1994). When these
tools are utilized, software developers write descriptions for the program
generator which then produces source programs according to the
descriptions. In these cases, the final documents of software development
are the input descriptions for the generator.

We can identify the following advantages of having the documentation-
oriented view of software development:

• Studying the software development process is simpler when we
concentrate only on documents. We do not have to worry about
the executable machine code, because that can be regarded as a
by-product which can always be generated in the development
environment when we have the correct documents available.

• Software development can always be treated in the same way
regardless of which development methods or tools are used. We
can assume that the development methods and tools produce
some sort of documents.



17

• The documentary view of software development is valid with
all development models (e.g. the waterfall and spiral models
(Boehm 1988)). There are concerns that software development
cannot be divided into clearly distinguishable phases in practice
(Swartout and Balzer 1982). By concentrating on the
documentary outputs of the development process, we can live
with the possibility that the phases of software development
would always be intertwined in reality.

1.2.3  Documents vs. knowledge

Software developers need to use knowledge from various domains in their
work. For this reason we have to specify how knowledge relates to our
documentation-oriented approach. The concept of knowledge domain has
been popular in research related to software reusability (Seppänen 1990,
Prieto-Diaz and Arango 1991).  The idea of knowledge domain is in
harmony with the approach of considering software development a
documentation process. Software development is a process during which the
developers learn and integrate knowledge from different domains and
incorporate the knowledge they consider necessary into different types of
software documents. A similar view of software development has been
proposed by Tausworthe (1992) who suggests that people develop software
by producing and interacting with information. Program understanding has
also been modeled as a process in which software developers use
knowledge from various domains (Brooks 1978, Brooks 1983).

As knowledge is an abstract concept which is difficult to measure in exact
quantities, it is also hard to give an exact definition for the concept of a
knowledge domain. Knowledge can be regarded as existing in peoples'
minds (Suitiala 1993), whereas different forms of information (e.g. speech,
gestures, and all kinds of written documents) can be regarded as
representations of the knowledge in some peoples' minds. By a knowledge
domain we mean knowledge related to particular objects or phenomena in
the world. In software development, a knowledge domain can be, for
instance, knowledge related to a certain communications chip or knowledge
of a particular programming language. In order to be able to write programs,
one needs to possess knowledge of at least one programming language
domain. A person who writes, for example, a program that controls a
communications chip, has to integrate knowledge from, at least, two
domains: the communications chip domain and a programming language
domain. The resulting source program is information that represents at least
these two knowledge domains.

Figure 1 illustrates the integration of different knowledge domains in
software development. On the left side of the figure various knowledge
domains are represented. From these domains information is extracted and
transformed into different kinds of software documents shown on the right



18

side of the figure. In order to construct different types of software
documents, we need domains for knowledge representation, which are
illustrated in the middle of the figure.

According to Figure 1, there is no exact relation between documents and
knowledge domains. What kind of knowledge a document represents
depends on the writer of the document. However, high-level documents
(e.g. requirements descriptions) usually represent fewer knowledge domains
than low-level documents (e.g. source programs). High-level documents do
not deal with implementation details. Therefore, they do not have to
represent the knowledge of implementation domains (e.g. programming
languages or communications chips).

1.2.4  Documents in software maintenance

Potts (1993), for instance, has noted that the border between software
development and maintenance is vague. People start speaking about
software maintenance when a software system is being modified after it has
been delivered to customers. However, if an error needs to be corrected in a
software system, the work to be done is in most cases the same regardless to
whether it is done before or shortly after the delivery of the system. When a
system is modified a rather long time after its delivery, the situation is
different, because the original developers of the system may not be
available.

Bennett et al. (1991) discuss four different types of software maintenance:
(1) corrective maintenance means correcting evident errors in a software
system; (2) perfective maintenance aims at developing new features for an
existing system; (3) adaptive maintenance is being done when a software
system is modified to comply with an external interface (e.g. different
operating system); and (4) preventive maintenance means that an existing
system is modified to make it more maintainable, i.e., to make it more
amenable to future maintenance activities.

Any of the maintenance types listed above requires that software
maintainers need to study and understand software documents. A common
problem in software maintenance is that maintainers cannot be sure whether
all software documents are up to date. For this reason, source programs are
often the only reliable documents for industrial software maintainers
(Bennett et al. 1991, Suitiala 1993). Although comment lines in source
programs may not always be up to date, the actual source code lines must be
correct because the machine code is generated from them.



19

D
om

ai
ns

 fo
r 

kn
ow

le
dg

e 
pr

es
en

ta
ti

on
V

ar
io

us
 a

pp
lic

at
io

n 
an

d
im

pl
em

en
ta

ti
on

 d
om

ai
ns

 o
f 

kn
ow

le
dg

e
D

oc
um

en
ts

 d
es

cr
ib

in
a 

so
ft

w
ar

e 
sy

st
em

E
ng

li
sh

 g
ra

m
m

ar

E
ng

li
sh

 w
or

ds

A
pp

ro
pr

ia
te

 w
ri

tin
g 

st
yl

e

T
ex

t p
ro

ce
ss

in
g 

sy
st

em

G
ra

ph
ic

al
 n

ot
at

io
n

N
am

es
 f

or
 m

od
el

 e
le

m
en

ts

A
pp

ro
pr

ia
te

 d
ra

w
in

g 
st

yl
e

G
ra

ph
ic

al
 e

di
to

r

Pr
og

ra
m

m
in

g 
la

ng
ua

ge
 s

yn
ta

x

N
am

es
 f

or
 p

ro
gr

am
 e

le
m

en
ts

A
pp

ro
pr

ia
te

 p
ro

gr
am

m
in

g 
st

yl
e

Pr
og

ra
m

 e
di

to
r

W
ri

tt
en

R
eq

ui
re

m
en

ts
D

es
cr

ip
ti

on

G
ra

ph
ic

al
-

T
ex

tu
al

M
od

el

So
ur

ce
Pr

og
ra

m
s

S
ta

nd
ar

ds

A
cc

ou
nt

in
g 

th
eo

ry

T
ax

 c
al

cu
la

ti
on

M
S

-D
O

S

L
aw

s

S
to

ck
-k

ee
pi

ng

S
cr

ee
n 

la
yo

ut
s

B
SC

-p
ro

to
co

l

68
01

0

In
te

rr
up

ts

O
S

I 
la

ye
rs

. .
 . 

. .
 . 

. .
 . 

. .
 . 

et
c.

et
c.

F
ig

ur
e

1
In

te
gr

at
io

n
of

kn
ow

le
dg

e
do

m
ai

ns
in

so
ft

w
ar

e
de

ve
lo

pm
en

t

Figure 1. Integration of knowledge domains in software development.



20

1.3  THE IDEA OF NATURAL NAMING

Source programs are important software documents for the following
reasons:

• If we assume that software is being developed using
programming languages for implementation, source programs
need to be written during software development regardless of
what other software documents are written before them.

• Source programs describe a software system completely and
exactly as it is, because the executable machine code is
generated from them.

• Source programs are, for sure, reliable documents for software
maintainers. (We exclude here the possibility that the machine
code has been patched.)

For these reasons, this thesis focuses primarily on source programs and
secondarily on other software documents. This does not mean that we
would not consider the higher-level documents important. On the contrary,
we agree that the first phases of software development, and therefore the
corresponding documents, are crucial for the success of software
development (Jokela 1991). Our primary interest is in source programs,
because they are usually the most complex and the least understandable
documents in software development.

Figure 2 illustrates two example procedures from a real software system.
Those procedures are written with the PL/M programming language provided
by Intel Corporation. By studying the program text in Figure 2, we can see
that it differs from conventional writing at least in two ways: the text contains
special short symbols (e.g. "+", ">=", and "=") as well as special textual
symbols (e.g. "NXTBLO", "SEQTBL", and "WLEN2"). At first sight, the
text in Figure 2 appears rather incomprehensible. If we study the program text
in Figure 2 more carefully, we can note that the textual symbols consist of
abbreviations. For instance, the textual symbol "NXTBLO" is obviously an
abbreviation of "NEXT BLOCK". If we compare the text in Figure 2 to some
more conventional texts like newspapers, novels, and the text in this
paragraph, the text in Figure 2 appears to be much less readable and
understandable than conventional texts.

The use of different kinds of abbreviations is one factor which makes the
text in Figure 2 differ from conventional texts. Figure 2 is, although the
program is about ten years old, a typical example of a computer program.
Textbooks and research papers as well as real software systems contain
similar programs which are written with many abbreviations. There seem to
be no strict rules about how to write source programs. We say that the
program in Figure 2 is correct because it works and it can be successfully



21

compiled. It is not usually considered an error in writing if a program
contains strangely written words such as "NXTBLO". In contrast, the
correctness of texts written in English can be judged in terms of the spelling
rules and grammar of English. Having these rules in mind, we are able to
quickly perceive the tiniest spelling mistakes when reading, for example, a
newspaper.2

The use of abbreviations in source programs and other software documents
will be our concern in this thesis. Abbreviations harm the readability and
understandability of source programs. Figure 3 shows another program
example in which abbreviations are not so widely used. We claim that the
text in Figure 3 is more understandable than the text in Figure 2 because
abbreviations have been avoided in Figure 3.

The textual symbols of source programs are called names. For this reason,
we use the term "natural naming" to refer to the idea of avoiding
abbreviations. The word "natural" is used to emphasize that instead of
abbreviations we should use names that consist of natural words. Giving an
accurate definition for natural naming is difficult, because the term "natural
word" is somewhat inaccurate. New words constantly enter natural
languages (Fromkin and Rodman 1988) and even some abbreviations
belong to natural languages. For instance, the abbreviations "MAC" and
"IDU" are used in a comment and in some names in Figure 3, because these
abbreviations are generally used terms in the application domain of the
program in Figure 3.

By using natural names in source programs we aim at increasing program
understandability, which in turn facilitates software development and
maintenance. Having natural words in source programs brings these
documents terminologically closer to other types of software documents
such as written English texts and graphical-textual models. Natural names in
source programs should thus make the entire software documentation
simpler.

                                             

2If this paragraph were written in the same way as source programs usually are, the text could look
like the following:

The use of diff knds of abbr is one factor which mks the txt in Fig 2 diff from conv txts. Fig 2 is,
althg the progr is abt ten yrs old, a typcal exmpl of a comp progr. Txtbks and rsrch papr as well as
softw syst cntn smlr progrs whch are writn with many abbr. There seems to be no stct rules abt
how to writ src progrs. We say that the progr in Fig 2 is corr bse it wrk and it can be succful comp.
It is no uslly consrd an err in writ if a progr cont stngly writ wrd such as "NXTBLO". In contr, the
cornss of txt writ in Engl can be jdgd in trms of the spellg rules and gramm of Engl. Having these
rules in mnd, we are able to qckly percve the tniest spllng mstks when readng, for exmpl, a
npaper.



22

    $EJECT

    /*********************************************************************/

    /*                                                                   */

    /*  NXTBLO : READ NEXT BLOCK                                         */

    /*                                                                   */

    /*********************************************************************/

    NXTBLO : PROCEDURE(FILE);

    DECLARE FILE BYTE;

    CALL BUBWRI(SEQTBL(FILE).LNRBLO,.BWORK0);

    IF SEQTBL(FILE).LNRBLO = SEQTBL(FILE).LSTBLO

       THEN SEQTBL(FILE).LNRBLO = SEQTBL(FILE).FSTBLO;

       ELSE SEQTBL(FILE).LNRBLO = SEQTBL(FILE).LNRBLO + 1;

    CALL BUBRED(SEQTBL(FILE).LNRBLO,.BWORK0);

    END NXTBLO;

    $EJECT

    /*********************************************************************/

    /*                                                                   */

    /*  WRIMOV : MOVE DATA FROM WORK BUFFER TO THE BUBBLE BUFFER         */

    /*                                                                   */

    /*********************************************************************/

    WRIMOV : PROCEDURE(FILE,WRILEN,BUFPOI);

    DECLARE FILE BYTE,WRILEN ADDRESS,BUFPOI ADDRESS,

            BUFFER BASED BUFPOI(1)BYTE,WLEN1 ADDRESS,WLEN2 ADDRESS;

    IF (WRILEN + SEQTBL(FILE).LNRBYT) >= BLOLEN

       THEN DO;

          WLEN1 = BLOLEN - SEQTBL(FILE).LNRBYT;

          WLEN2 = WRILEN - WLEN1;

          IF WLEN1 > 0

              THEN CALL ZMOVE(.BWORK0(SEQTBL(FILE).LNRBYT),.BUFFER,WLEN1);

          CALL NXTBLO(FILE);

          IF WLEN2 > 0

              THEN CALL ZMOVE(.BWORK0,.BUFFER(WLEN1),WLEN2);

       END;

       ELSE CALL ZMOVE(.BWORK0(SEQTBL(FILE).LNRBYT),.BUFFER,WRILEN);

    END WRIMOV;

Figure 2. Examples of procedures of a real software system.3

                                             

3This program is printed here with the permission of its writer. We use this program as an example
in which abbreviated names are used. We are not criticizing the quality of the program or the
writer of the program. This program has been proved to work reliably in real environments.



23

    /*------------------------------------------------------------------*/

    GENERAL_MAC_GENERATOR: PROCEDURE( MESSAGE_POINTER,

                                      MESSAGE_LENGTH_WORD )  BYTE PUBLIC;

    /*------------------------------------------------------------------*/

    /*  This procedure shall be called before the message is sent to bank

        with the send_message_to_bank - program.

        First the procedure constructs a message and sends it to the IDU.

        The IDU responds with a message which contains the MAC.

        The MAC is joined to the message to be sent to the bank host.

    */

        DECLARE   MESSAGE_POINTER   POINTER,  MESSAGE_LENGTH_WORD   WORD;

        DECLARE   RETURN_CODE       BYTE;

        DECLARE   MESSAGE_INDEX     BYTE,     BINARY_MESSAGE_TYPE   WORD;

        DECLARE   READY             BYTE;

        DECLARE   MESSAGE_DATA  BASED  MESSAGE_POINTER   ( 1 )   BYTE;

        DECLARE   NUMBER_OF_ITEMS_TO_COMPRESS     BYTE;

        DECLARE   MAC_CALCULATION_STATUS          BYTE;

        DECLARE   IDU_MESSAGE_TRAILER_POINTER     POINTER ;

        DECLARE   IDU_MESSAGE_TRAILER BASED  IDU_MESSAGE_TRAILER_POINTER

            STRUCTURE(

            MESSAGE_SEPARATOR           BYTE,

            NUMBER_OF_ITEMS_TO_COMPRESS          BYTE,

            START_POSITION_OF_FIRST_ITEM   ( 3 ) BYTE,

            LENGTH_OF_FIRST_ITEM           ( 3 ) BYTE,

            START_POSITION_OF_SECOND_ITEM  ( 3 ) BYTE,

            LENGTH_OF_SECOND_ITEM          ( 3 ) BYTE,

            MESSAGE_TERMINATOR          BYTE  ) ;

Figure 3. Variables declared using natural names.

The main reason why natural naming has not traditionally been used is that
the early compilers of programming languages had restrictions on name
lengths. Because programmers could use only names that did not exceed a
certain number of characters (e.g. six characters in Fortran), they had to use
abbreviations. During the early days of computing, there was a need to
abbreviate all data that were stored in the memories of computers (Bourne
and Ford 1961), because memories were expensive and their capacity was
small. By putting limits on name lengths, the designers of the early
programming languages could save the memory needed in compilation.
These reasons for using abbreviations are no longer valid because memory
technology is not expensive today and longer names are now permitted.



24

Another reason for using abbreviations in source programs is probably that
programming has its roots in mathematics. Fortran – the first high-level
programming language – was designed mainly for mathematical
calculations (MacLennan 1983). The first ideas of computing were
presented by applying them to a mathematical problem (Turing 1937a). The
first computers were used mainly to solve mathematical problems (Hodges
1983). Because mathematicians have traditionally used short symbols, they
took this tradition to computer programming as well.

We see no reason not to try to break the tradition of using abbreviations.
This tradition may be so strong partly because it is often hard to invent
descriptive names for a source program, and because it takes more time to
type longer names. It is possible that there are programs (e.g. in
mathematical software) in which abbreviations are useful. During the time
when people started the tradition of using abbreviations in source programs,
software systems were much smaller than today. Considering that the source
programs of large software systems may contain more than one thousand
different names, it cannot be a bad idea to try to distinguish these names as
clearly as possible.

1.4  OUTLINE OF THE THESIS

In the second chapter of this thesis we discuss the structure of source
programs more thoroughly. The term programming style is used to denote
various factors which affect the understandability of source programs. We
show that naming is one of the most important programming style factors.
We also justify the use of natural naming.

In the third chapter we present the research problem of this thesis. Basing
on the presented problem, appropriate research activities and methods will
be defined. The methodological approach will be justified.

Chapter Four discusses related work. We focus on other approaches to
increase understandability and maintainability of source programs. Because
naming is using a natural language, we will discuss other scientific fields
such as linguistics and philosophy.

The fifth chapter is an introduction to the previously-published papers
which are included in this thesis. Each paper is a description of one research
activity defined in the third chapter.

In the concluding sixth chapter, we evaluate the results of this work, and
discuss possibilities for further work.



25

2  PROGRAMMING AND NAMING STYLES

2.1  THE CONCEPT OF PROGRAMMING STYLE

When we consider source programs in a purely technical sense, i.e. from the
viewpoint of compilation, they can be treated as lists of coded characters
which are processed by a compiler (Aho et al. 1986). Different characters
and character combinations have a clearly defined meaning to the compiler.
For example, in the case of the C programming language, the equal sign "="
is an assignment operator, and two adjacent equal signs "==" mean a logical
operator to compare equality. Because compilers set only technical rules for
writing source programs, programs can be written in many ways which are
all equally acceptable in the technical sense. The issue here, however, is that
different ways of writing source programs are not equally readable and
understandable to humans.

The factors that affect the readability and understandability of source
programs are denoted by the concept of programming style. Oman and
Cook (1991) classify programming style factors into the following major
categories:

• General programming practices, defined as rules and guidelines
pertaining to the programming process that directly affect the
style of the software product.

• Typographic style, defined as style characteristics affecting
only the typographic layout and commenting of source code.

• Control structure style, defined as style characteristics
pertaining to the choice and use of control flow constructs, the
manner in which the program or system is decomposed into
algorithms, and the method in which the algorithms are
implemented. Control structure style excludes data structure
aspects.

• Information structure style, defined as style characteristics
pertaining to the choice and use of data structure and data flow
techniques, i.e., to the manner in which information is
manipulated throughout the program or system.

As shown in Figure 4, the major style categories can be divided further into
macro and micro style concerns. Macro concerns are those pertaining to a
set of source program modules of a system, while micro concerns are those
relative to a single program module or statement. Programming style can be
considered analogous to "writing style" which means that programming
style researchers are interested in the written outputs of the programming
process, the source programs, and not in the programming process itself.





27

Although different programming styles affect the understandability of
source programs, understandability is hard to measure in exact quantities. If
a person tries to read and understand a source program, his or her
background determines how well he or she is able to succeed in this task.
Understandability is also a very subjective matter: what is considered easily
understandable by one person may be poorly understandable for another.
Typically, educational as well as professional experience affect how well a
person can understand a particular source program. We can say that
specialized people with appropriate education or experience can understand
computer programs, but we find it difficult to judge how well a particular
specialized person can understand a particular source program. Due to the
obvious abstractness of the concept "understandability" we will not attempt
to define or measure it explicitly. Rather, we will study the appearance of
example source programs and discuss their visual understandability.

To demonstrate that a source program may have forms which are different
in terms of understandability and the same in terms of functionality, three
program examples are illustrated in Figure 5. A compiler produces
identically functioning outputs from any of these program versions.
However, the program versions visually appear quite different and they may
evoke different kinds of intuitions about their functionality when an
observer studies them. To a literate observer, the program version (a) in
Figure 5 contains familiar characters and numbers, but the characters form
no familiar words, whereas the program version (b) contain strings of
characters that at least resemble English words. The program version (c)
incorporates many English words which, if the observer is familiar with
computer programming, should enable him or her to learn quite much about
the program's functionality and purpose. Figure 6 shows more functionally
equivalent versions of the same program as is used in Figure 5. In Figure
6(a) the program contains exactly the same English words as the program in
Figure 5(c), but the visual appearance is different because of different
organization of English words and special characters. The program in
Figure 6(b) is a commented version of the program in Figure 5(b) and
Figure 6(c) presents the program from Figure 5(b) in a visually different
form. From these examples we see that there is a great variety of
possibilities how we can organize a program.

We thus conclude that if there are two versions of a functionally equivalent
source program and these versions have different visual appearance, it is
very likely that the versions evoke different processes in an observer's mind
and the observer understands the two versions in somewhat different
manner. The understandability of the programs can then be different, and
one version of a program can be more understandable than another.
Experiments with human subjects support this (Shneiderman 1980, Curtis
1985).



28

#define   C0001       13
#define   C0002       0
#define   C0003       1

/*-----------------------------------------*/

f0001 (  char  s0001 [],

         int  *i0001  )

/*-----------------------------------------*/
{
    int   i0002,   i0003 ;

    *i0001  =  C0002  ;

    i0003  =  strlen ( s0001 ) ;

    if ( i0003  >  C0001 )
    {
        *i0001  =  C0003 ;
    }
    else
    {
       for (i0002 = 0; i0002<i0003; i0002++)
       {
          if(( s0001[ i0002] < '0') ||
             ( s0001[ i0002] > '9') )
          {
             *i0001  =  C0003 ;
          }
       }
    }
}

#define   CNUMMAX   13
#define   VALID     0
#define   NVALID    1

/*----------------------------------------*/

isvalid (  char  cnumbr [],

           int  *rcode  )

/*----------------------------------------*/
{
    int   i,   len ;

    *rcode  =  VALID  ;

    len  =  strlen ( cnumbr ) ;

    if ( len  >  CNUMMAX )
    {
        *rcode  =  NVALID ;
    }
    else
    {
       for  ( i=0 ; i<len ; i++ )
       {
          if (( cnumbr[ i] < '0') ||
              ( cnumbr[ i] > '9') )
          {
             *rcode  =  NVALID ;
          }
       }
    }
}

Figure 5 (a) Figure 5 (b)

#define   MAXIMUM_CUSTOMER_NUMBER_LENGTH       13
#define   CUSTOMER_NUMBER_IS_VALID              0
#define   CUSTOMER_NUMBER_IS_NOT_VALID          1

/*------------------------------------------------------------------------*/

check_customer_number_validity (  char  possibly_valid_customer_number [],

                                  int  *success_code  )

/*------------------------------------------------------------------------*/
{
    int   customer_number_index,   customer_number_length ;

    *success_code  =  CUSTOMER_NUMBER_IS_VALID  ;

    customer_number_length  =  strlen ( possibly_valid_customer_number ) ;

    if ( customer_number_length  >  MAXIMUM_CUSTOMER_NUMBER_LENGTH )
    {
        *success_code  =  CUSTOMER_NUMBER_IS_NOT_VALID ;
    }
    else
    {
       for  (  customer_number_index  =  0  ;
               customer_number_index  <  customer_number_length ;
               customer_number_index  ++    )
       {
          if(( possibly_valid_customer_number[ customer_number_index] < '0') ||
             ( possibly_valid_customer_number[ customer_number_index] > '9') )
          {
             *success_code  =  CUSTOMER_NUMBER_IS_NOT_VALID ;
          }
       }
    }
}

Figure 5 (c)

           Figure 5. Functionally equivalent versions of the same program.



29

#define MAXIMUM_CUSTOMER_NUMBER_LENGTH 13
#define CUSTOMER_NUMBER_IS_VALID 0
#define CUSTOMER_NUMBER_IS_NOT_VALID 1
check_customer_number_validity_(
char possibly_valid_customer_number[],int*success_code)
{int customer_number_index,customer_number_length;
*success_code=CUSTOMER_NUMBER_IS_VALID;customer_number_length
=strlen(possibly_valid_customer_number);if(customer_number_length
>MAXIMUM_CUSTOMER_NUMBER_LENGTH){*success_code=CUSTOMER_NUMBER_IS_NOT_VALID;
}else{for(customer_number_index=0;customer_number_index
<customer_number_length;customer_number_index++){if((
possibly_valid_customer_number[customer_number_index]<'0'
)||(possibly_valid_customer_number[customer_number_index]
>'9')){*success_code=CUSTOMER_NUMBER_IS_NOT_VALID;}}}}

Figure 6 (a)

/*  A program to check the validity of the customer number. */

#define   CNUMMAX   13   /* Maximum length of customer numer  */
#define   VALID     0    /* Code for valid customer number */
#define   NVALID    1    /* Code for invalid customer number */

/*--------------------------------------------------------------*/

isvalid_ ( char  cnumbr [],    /*  Customer number string  */

           int  *rcode  )      /*  Return code for caller  */

/*-------------------------------------------------------------*/
{
    int   i ;      /*  Index to access the customer number */
    int   len ;    /*  customer number length  */

    *rcode  =  VALID  ;   /*  Assume that customer number is valid. */

    len  =  strlen ( cnumbr ) ;   /*  Get the lenght of string. */

    if ( len  >  CNUMMAX )
    {
        *rcode  =  NVALID ;       /*  String too long. Not valid. */
    }
    else
    {
       for  ( i=0 ; i<len ; i++ )
       {
          if (( cnumbr[ i] < '0') ||   /* Are there just numerical */
              ( cnumbr[ i] > '9') )    /* digits in the string ?   */
          {
             *rcode  =  NVALID ;       /* No. */
          }
       }
    }
}

          Figure 6 (b)

#define CNUMMAX 13
#define VALID 0
#define NVALID 1
isvalid__(char cnumbr [],int *rcode){int i,len;*rcode=VALID;len
=strlen(cnumbr);if(len>CNUMMAX){*rcode=NVALID;}else{for(i=0;
i<len;i++){if((cnumbr[i]<'0')||(cnumbr[i]>'9')){*rcode=NVALID;}}}}

Figure 6 (c)

Figure 6. More equivalent versions of the program in Figure 5.



30

#define             13
#define             0
#define             1

--------------------------------------------

        (  char         [],

           int  *       )

--------------------------------------------
{
    int    ,       ;

    *       =         ;

         =  strlen (        ) ;

    if (      >          )
    {
        *       =         ;
    }
    else
    {
       for  (  =0 ;  <    ;  ++ )
       {
          if ((       [  ] < '0') ||
              (       [  ] > '9') )
          {
             *       =         ;
          }
       }
    }
}

          CNUMMAX
          VALID
          NVALID

isvalid          cnumbr

                 rcode

          i    len

     rcode     VALID

    len              cnumbr

         len     CNUMMAX

         rcode     NVALID

              i     i len   i

                cnumbr  i
                cnumbr  i

              rcode     NVALID

Figure 7. Names separated from a program.

Considering that there are so many programming style factors that may
affect the understandability of programs, we are confronted with the
question: what is the programming style factor that bears the most
significant correspondence with understandability? Because understand-
ability is such a subjective and largely unmeasurable concept, and because
different programming style factors may not be completely separable, we
will not attempt to give a justified answer to that question. Rather, it is
assumed that naming is one of the most important programming style
factors, and, therefore, we focus our attention on it. The examples of
differently written programs in Figures 5 and 6 illustrate the importance of
naming style.

As shown in Figure 5, different naming styles greatly affect the physical
appearance of the program. There is also some empirical evidence that
naming may contribute most to the understandability of programs.
Gellenbeck and Cook (1991) have found that the meaningfulness of names
in programs affect the understandability more than such typographic signals
as different fonts for different kinds of program elements. The importance
of naming can be perceived rather well in an intuitive observation. In Figure
7 the program version (b) from  Figure 5 is shown in two different forms. In
the left-hand part the names have been removed from the program and the
right-hand part presents only the names of the program in their relative
positions. We can easily perceive that there is not much "meaning" left in a
typical program when its names are taken away. On the other hand, we see



31

that neither do the names alone make much sense, although they display
some details of the functionality of the program.

2.2  DIFFERENT NAMING STYLES

Names in source programs are strings of letters and numbers which are
uniquely identified by the compiler. Some compilers make a distinction
between uppercase and lowercase letters while others do not. Usually, a
name must start with a letter, but the subsequent characters may be also
numbers. Many compilers allow also underscore characters "_" in names.
Underscores can be used as word separators when a name consists of more
than one word.

Naming in programming means giving names to different source program
elements such as variables, constants, tables, functions, and procedures.
Different programming languages may have different kinds of elements
which need names. As shown in Figure 4, naming is part of the typographic
style. Naming does not deal with the functionality of programs, since the
typographic style only dictates how a source program appears to an
observer. Figure 4 makes a distinction between the macro typographic
concern "naming conventions" and the micro typographic concern "naming
characteristics". Naming characteristics deal with issues such as should we
use an underscore "_" or a capital letter to separate words of a single name.
Because naming characteristics play a minor role in making the names
understandable, we are mainly interested in naming conventions.

As compilers set only technical constraints for naming, a programmer is
free to use many kinds of names. Figure 5 above shows some possibilities:

• The names in Figure 5(a) are made of a single letter which
identifies the type of the name. The names are made unique by
adding sequentially different numbers after the first letter.

• Most of the names in Figure 5(b) are abbreviations of one or
more English words. The name "VALID" is a single English
word. The name "i", which is used as an index variable, is a
symbol commonly used in mathematics.

• Figure 5(c) contains natural names which consist of several
natural English words.

Intuitively, natural names such as the ones in Figure 5(c) appear to be the
most understandable. Therefore we will study this naming approach.
Natural names can also be formed in different ways. Figure 8 illustrates two
different ways for constructing natural names:



32

• The names in Figure 8(a) are about the same as the names in
Figure 5(c), but they are written in Dutch. The reader should be
competent in this language in order to properly understand the
program in Figure 8(a).

• Figure 8(b) has natural names written in English, but these
names are arbitrarily chosen expressions which do not relate
rationally either to each other or to the functionality of the
program.

Basing on the examples in Figure 8, we can clarify the concept of natural
naming with two amendments:

• When natural names are used, a decision must be made about
which natural language to use as the naming language. English
is usually a good basis for naming, because programs usually
contain other items, such as reserved words, which are English
words.

• Natural names used in source programs should describe the
functionality of the program.

Names in source programs can denote various matters depending on the
programming language in question. In procedural programming, names are
needed to refer to certain locations in the memory of a computer (e.g. the
name of a variable refers to the memory location reserved for that variable
and the name of a procedure refers to the memory location in which the
machine code of the procedure starts). The terms "symbol", "identifier", and
"label" are sometimes used instead of the term "name" in the literature. For
instance, the table into which a compiler collects all the names found in a
source program is called a "symbol table" (Aho et al. 1986).

When the meaningfulness and understandability of names are discussed in
the literature, the term "mnemonic name" is often used (e.g. Sheppard et al.
1979, Shneiderman 1980). Mnemonicity should help memory (Webster's
1989), but the mnemonicity of names is hard to define explicitly. Obviously
names like those in Figure 5(a) cannot be considered mnemonic. When
Sheppard et al. (1979) wanted to use non-mnemonic names in psychological
experiments, they made them of two randomly chosen characters. On the
other hand, abbreviations consisting of a few letters can be mnemonic. For
instance, three-letter instructions of some assembler languages (e.g.
"MOV", "LDA", and "STA") are called mnemonics (Intel 1979). To make a
distinction between mnemonic and natural names, we can conclude that
mnemonicity of names is a different concept than naturalness of names,
since natural names have to be formed using natural words.



33

#define   GROOTSTE_CLIENT_NUMMER_LENGTE       13
#define   CLIENT_NUMMER_IS_GOED               0
#define   CLIENT_NUMMER_IS_NIET_GOED          1

/*------------------------------------------------------------------------*/

is_client_nummer_goed (  char  mogelijk_goed_client_nummer [],

                         int  *success_code  )

/*------------------------------------------------------------------------*/
{
    int   client_nummer_index,   client_nummer_lengte ;

    *success_code  =  CLIENT_NUMMER_IS_GOED  ;

    client_nummer_lengte  =  strlen ( mogelijk_goed_client_nummer ) ;

    if ( client_nummer_lengte  >  GROOTSTE_CLIENT_NUMMER_LENGTE )
    {
        *success_code  =  CLIENT_NUMMER_IS_NIET_GOED ;
    }
    else
    {
       for  (  client_nummer_index  =  0  ;
               client_nummer_index  <  client_nummer_lengte ;
               client_nummer_index  ++    )
       {
          if(( mogelijk_goed_client_nummer[ client_nummer_index] < '0') ||
             ( mogelijk_goed_client_nummer[ client_nummer_index] > '9') )
          {
             *success_code  =  CLIENT_NUMMER_IS_NIET_GOED ;
          }
       }
    }
}

Figure 8(a). Natural names written in Dutch.

#define   ALL_WORK_NO_PLAY              13
#define   BREAD_IS_HEALTHY              0
#define   SMALL_BABIES_SLEEP_A_LOT      1

/*------------------------------------------------------------------------*/

are_sundays_really_boring (  char  breakfast_is_an_important_meal [],

                             int  *war_and_peace  )

/*------------------------------------------------------------------------*/
{
    int   michael_jordan_and_carl_lewis,   this_silence_is_ ;

    *war_and_peace  =  BREAD_IS_HEALTHY  ;

    this_silence_is_  =  strlen ( breakfast_is_an_important_meal ) ;

    if ( this_silence_is_  >  ALL_WORK_NO_PLAY )
    {
        *war_and_peace  =  SMALL_BABIES_SLEEP_A_LOT ;
    }
    else
    {
       for  (  michael_jordan_and_carl_lewis  =  0  ;
               michael_jordan_and_carl_lewis  <  this_silence_is_ ;
               michael_jordan_and_carl_lewis  ++    )
       {
          if((breakfast_is_an_important_meal[michael_jordan_and_carl_lewis]<'0')||
             (breakfast_is_an_important_meal[michael_jordan_and_carl_lewis]>'9'))
          {
             *war_and_peace  =  SMALL_BABIES_SLEEP_A_LOT ;
          }
       }
    }
}

Figure 8(b). Natural names not referring to the functionality of the
program.



34

2.3  JUSTIFYING THE USE OF NATURAL NAMING

In the program examples above we have shown that naming is an important
programming style factor. Naturally named programs appear to be more
understandable than programs containing abbreviated or completely non-
mnemonic names. The concept of natural naming can thus be defined as
follows:

Natural naming means that all kinds of names needed in source
programs should be formed by using, preferably several, natural
words of a natural language so that the grammatical rules of the
used natural language are respected, and the names describe the
functionality of the program.

This definition is somewhat vague because the term "natural word" is
vague. We argue, however, that it is hard to give much more accurate
definitions for natural naming. It is a known linguistic fact that natural
languages have changed during the history and they are changing all the
time (Fromkin and Rodman 1988). Therefore, it is possible that new words
and even new grammatical rules can be invented, and new meanings can be
assigned to existing natural words. Natural naming is against the use of
abbreviations, but it is a fact that many abbreviations are already accepted
as symbols in our natural languages. Because it is not always clear what is a
known natural word, the definition of natural naming given above has its
limitations.

It is also hard to say when a name is meaningful enough. The definition
above suggests that more than one word should be used to make a name
meaningful, but it is difficult to set an upper limit for the number of words.
For instance, all the following names could represent the same variable:

(1) n
(2) nbytes
(3) bytes
(4) byte_count
(5) number_of_bytes
(6) number_of_bytes_in_buffer
(7) number_of_bytes_in_reception_buffer
(8) current_number_of_bytes_in_buffer

The names (1) and (2) are not acceptable as natural names, because they do
not consist of natural words. The name (3) is not very descriptive because it
is a single word. The rest of the names from (4) to (8) can all be considered
natural although they are much different from each other. It depends on the
context in which a name is used and also on the observer's personal taste
which natural name can be considered to be suitably long and meaningful.
Newsted (1979) has pointed out that personal taste affects which names are
considered appropriate.



35

Although the concept of a natural name is somewhat vague, we can justify
this research by the fact that in software documentation it is very common
to use non-natural and abbreviated names which are hard to understand. The
following points can be seen to support the use of natural naming:

• Terminology control in software documentation is important
(Boldyreff et al. 1990). Higher-level software documents (e.g.
requirements descriptions) are usually written using natural
words and a natural language. If source programs also contain
natural names, they are terminologically closer to higher-level
software documents, and thereby more understandable. As
higher-level software documents are usually read by other
people than software developers (customers, end users, sales
personnel, etc.), we can assume that software developers can
more easily communicate with non-experts when the same
terminology is used in every software document.

• Natural names are commonly used in the graphical-textual
descriptions which need to be written when certain software
development methods are used. For instance, the data-flow
diagrams shown by Ward and Mellor (1985) and by Yourdon
(1989), and the various object diagrams shown by Coad and
Yourdon (1990) contain names which consist of natural words.
It is possible that the use of natural names in these diagrams is
one reason why they are considered useful in software
development. Figure 9(a) illustrates a typical data-flow diagram
with natural names. The diagram in Figure 9(b) is less typical
and it appears to be less understandable.

• Several writers recommend that computer programs should be
described with a language close to a natural language before
they are written with a programming language. Caine and
Gordon (1975) recommend the use of structured English which
is a language using the English vocabulary together with a
syntax of a structured programming language. Some software
development methods (e.g. Page-Jones 1988, Yourdon 1989)
recommend the use of so-called pseudo-coding, which means
describing programs with a language that is somewhere in
between a natural language and a programming language.
When natural naming is used in programming, source programs
themselves become descriptions which are close to a natural
language.



36

Figure 9(a). An example of a data-flow diagram

Figure 9(b). The same diagram with less informative names.

Figure 9. Data-flow diagrams with different naming styles.

• Some researchers have stressed the importance of having
specifications of software systems written in a natural language,
and they provide methods to transform the natural language
specifications into more elaborate descriptions (Abbott 1983,
Saeki et al. 1989, Yonezaki 1989). Using documents written in
pure natural language is thus seen to be advantageous in
software development. If we assume that specifications are
written with natural language, the use of natural names in
source programs should narrow the gap between specification
and implementation.

• Tests with the users of an interactive text editor suggest that it is
easier to control an interactive system with longer natural
commands than with short abbreviated commands (Ledgard et al.
1980). In many software tools, natural words in user interfaces
are becoming popular. For instance, in graphical operating



37

systems for personal computers and workstations, the operating
systems are being controlled by using the mouse to select natural
language expressions from various menus. In older operating
systems, we need to remember and type short abbreviated
commands on the command line. The use of abbreviations seems
thus to be decreasing in the context of modern graphical
operating systems. This gives us a reason to consider reducing
the use of abbreviations in other contexts as well.

• The use of abbreviations has been criticized in other contexts
than software documentation. Some guides for technical
writing warn against the overuse of abbreviations (Kauranen et
al. 1993). Ibrahim (1989) criticizes acronyms and Logsdon and
Logsdon (1986) show that acronyms neither shorten texts nor
make them more readable.

• It is possible to formulate a philosophic-linguistic theory to
support the use of natural naming (Laitinen and Taramaa 1994,
Laitinen 1995), although this theory has not (yet) acquired
wider acceptance.

Several authors (Weissman 1974, Curtis et al. 1979, Sheppard et al. 1979,
Shneiderman 1980, Teasley 1994) describe experiments in which the effect
of different naming styles, among other programming style factors, has been
tested with human subjects. Students have been the usual subjects in these
experiments in which different groups of people have been asked to study
source programs written with different programming styles. The under-
standability of different versions of source programs has been evaluated by
letting the subjects modify or memorize the programs or by asking them
questions about the programs.

Although the mentioned experiments have revealed that some programming
style factors affect significantly the understandability of source programs, the
effect of naming is still somewhat obscure. Usually, the subjects who have
been exposed to programs containing mnemonic or natural names have had a
better performance than the subjects who have studied the same programs
with less clear names. The problem is, however, that the results of the
experiments have not always been statistically significant. It thus seems that it
is hard to measure how different naming styles affect understandability.

Despite the fact that the mentioned experiments have not been able to
convincingly prove the usefulness of having mnemonic or natural names in
source programs, our working hypothesis remains that the natural naming
approach is useful in practical work. The mentioned experiments were
carried out by using small examples of source programs which were quickly
studied by students. Practical software development work differs
substantially from these kinds of experimental arrangements. Industrial



38

software developers and maintainers study programs which may contain
hundreds of names, they may have to spend days to understand a certain
problem in a software system, and they may have to study and modify the
same programs several times during a longer time period. It is likely that
natural names are helpful in real software development situations. Teasley
(1994) also points out that it is possible that such a programming style
factor as naming could have a greater impact in practical software
development work than it has in classroom experiments.

The reason why controlled understandability tests have been carried out
only in classrooms is obviously that it is not easy to do controlled
experimentation with staff employed in practical software development
projects. Theoretically, we could let two groups of software developers
build the same software system using different documentation practices
(e.g. using abbreviations vs. natural names), and then we could compare the
performance of the groups by observing which group get the job done in
shortest time. However, if we had only two groups to compare, it would be
impossible to get statistically significant results. For statistical reasons, we
should have many more groups performing the same job. It is hard to
imagine that somebody could provide funds for this kind of experimentation
where many groups of expert people would be doing the same real-size
software projects.4

Because controlled experimentation with practical software development
projects may be infeasible, we do not aim to unambiguously prove that the
use of natural naming really makes software development and maintenance
more effective. As explained above, there are sufficient grounds to believe
that natural naming has the potential of easing the cognitive tasks of
software developers.

                                             

4We have actually done this kind of experimentation in small scale with non-experts. During the
fall 1990, we organized a  test with two groups of students. Both four-member groups had to build
the same software system. These software development projects were part of a course given at the
University of Oulu in Finland. We gave a course on natural naming to one student group and told
nothing about the subject to the members of the other group. It turned out that the student group
which was taught and used natural naming in their work finished their software project earlier than
the other group. However, because we had only two samples of performance, we cannot be sure
whether the use of natural naming was the only reason why the first group was more successful. It
is possible that the members of the better group were simply more clever and co-operative than the
people in the other group.



39

3  RESEARCH PROBLEM

3.1  PROBLEM DEFINITION AND RESEARCH ACTIVITIES

We suppose in this thesis that by the use of natural naming, source
programs and other software documents can be made more understandable,
which facilitates software development and maintenance. The poor under-
standability of source programs is thus the underlying problem considered
in this work. Poor understandability is a non-desirable aspect. Therefore, it
can be considered as a problem. Thinking this way, natural naming can be
regarded as one solution to alleviate the problem of poor understandability.
It can also be seen as a means of eliminating the risks of misunderstanding.

The understandability of source programs and other software documents is
important when we consider software development as a documentation
process. It seems that the importance of having understandable documents is
increasing as software quality systems require that software documents need
to be read and inspected formally (Ackerman et al. 1989, ISO 9000-3 1991).
Understandability of documents is perhaps the most important in software
maintenance which comprises a sizeable proportion of the entire software
business (Parikh and Zvegintzov 1983, CSTB Workshop Report 1990,
AMES 1993, Taramaa and Oivo 1993).

As we explained in the previous chapter, it may be quite hard to empirically
prove that using natural naming is advantageous in every application. Still
we have sufficient reasons to believe that this naming approach is useful in
practice. Moreover, even if we could empirically show that it is usually
advantageous to use natural naming, we would not have much practical use
of this knowledge as we had little experience of using it in practice. For this
reason, we consider that it is more important to gain practical experience in
the use of natural naming, rather than trying unambiguously to prove its
advantage. We thus define our research problem as follows:

How can we facilitate the use of natural naming in
software development and maintenance?

The purpose of this thesis is to find means for making natural naming more
attractive and easy-to-use for people doing practical software development
and maintenance work. We define the following research activities to
produce solutions to the research problem defined above:



40

(a1) Because the basic idea of natural naming is rather simple (i.e.
avoiding abbreviations), produce more detailed principles for
using natural naming in source programs.

(a2) Natural names used in source programs should be similar to
textual expressions used in other software documents. For this
reason, formulate a method which enables the creation of
names at an early stage of the development process, in such a
way that the names used in programs correspond with the
names and textual expressions in other types of software
documents (e.g. requirement descriptions).

(a3) Because the habit of using abbreviations is the most common in
source programs, and because existing programming languages
have not been specifically designed for the use of natural
names, investigate how we could redesign programming
languages to be more suitable for the use of natural naming.

(a4) Because hard-to-understand source programs pose a difficult
problem for software maintainers, investigate how already
abbreviated names could be replaced with natural ones in
existing source programs which need maintenance.

(a5) To encourage the use of natural naming, seek to produce more
practical evidence of the usefulness of natural naming.

Natural naming can be applied by using existing software development
practices and tools. The only requirements for using natural naming in
programming are that the compiler in use must be able to distinguish
relatively long (e.g. at least 30 characters in length) names, and that separate
words in a name be distinguishable. Because using natural naming does not
require any especially modern tools, we will concentrate in commonly used
software development practices in this work. Natural naming will be studied
mostly in the context of procedural programming. Although object-oriented
programming is gaining popularity, we can assume that procedural
programming will still remain important. Because we are also interested in
software maintenance, it is relevant to concentrate on procedural programs,
which are usually the ones being maintained.

At least theoretically, any written natural language can be exploited as the
basis for natural naming. Because there are about 6000 different spoken
languages in the world (Fromkin and Rodman 1988), there are hundreds if
not thousands of natural languages for which a writing system has been
invented. As it would be rather hard to study all written languages as
potential software documentation languages, this study will limit its concern
to English, which is probably the most common natural language used in
software documentation.



41

3.2  RESEARCH METHODS

This work can be characterized as constructive research which involves
studying existing source programs and other software documents and
interacting with people who are doing practical software development work.
We will justify this research approach more profoundly in the subsequent
section. For each research activity from (a1) to (a5) defined in the previous
section, we describe a set of steps to be followed. These steps form the
methods for the research activities. Although the research described in this
thesis has been carried out by following the steps below, we will not
explicitly describe the execution of every step.

The method for research activity (a1) consists of the following steps:

• Analyze existing source programs in order to capture the
knowledge of what kinds of names are usually needed.

• Develop naming principles for each type of name found
through the above analysis in accordance with commonly used
naming conventions.

• Apply the naming principles in practical software development
tasks and refine the principles as appropriate in light of
practical experience.

• Let expert software developers review the naming principles;
refine the principles according to their comments.

The method for research activity (a2) consists of the following steps:

• Having done (a1), analyze the naming principles and consider
which types of names can exist in source programs as well as in
other types of software documents.

• Develop name derivation rules for those names that can appear
both in source programs and in other types of software
documents.

• Consider systematic ways for applying the name derivation
rules in practical application domains and develop a systematic
name creation method.

• Let expert software developers review the name creation
method and refine it as appropriate.



42

The method for research activity (a3) consists of the following steps:

• Apply the natural naming principles in programming with a
commonly used and widely accepted programming language.

• Analyze the resulting naturally named programs and seek ways
for simplifying and improving the programming language so
that the naturally named programs would be more readable.

• Specify a new programming language according to the analysis
in the previous step.

• Implement a prototype compiler for the new programming
language and refine the language to make it suitable for
compilation.

The method for research activity (a4) consists of the following steps:

• Analyze typical abbreviation patterns and information in
comments of existing source programs.

• According to the analysis, define methods for disabbreviating
the names in existing source programs.

• Basing on the disabbreviation methods, develop a computer
tool which can process existing source programs, suggest
natural replacements for the abbreviated names in the
programs, and produce more understandable naturally-named
versions of the source programs.

• Evaluate this tool by using source programs from several
application domains, and, if possible, modify the tool and
disabbreviation methods to increase the efficiency of the tool.

The method for research activity (a5) consists of the following steps:

• Provide educational material and arrange courses on the natural
naming principles for different groups of software developers.

• Let the software developers use the naming principles for
different periods of time.

• Survey the software developers using a formal questionnaire.

• By analyzing the answers from software developers, assess the
usefulness of the naming principles.





44

As the defined research methods indicate, the result of this research is a set
of guidelines, methods, and tools to take natural naming in practical use.
Figure 10 illustrates the results of this work. The methods and tools which
will be produced are in rounded rectangles and the broken-line arrows
symbolize how they affect the software development processes shown as
circles.

3.3  JUSTIFYING THE METHODOLOGICAL APPROACH

In this research we are interested in software development work as it is
being carried out in industrial organizations. Software development is
studied from the viewpoint of individual software developers and
maintainers. We are mostly concerned how easily or effectively a software
developer or maintainer is able to perform in his or her work. Although the
quality of developed software systems is important, we are less directly
concerned about that in this thesis. Here, we are more interested in the
software process than in software products. However, we believe that when
a developer or maintainer can easily understand the software documents
being studied, he or she gains a better understanding about the software
system or product as well.

As our perspective is that of a software developer or maintainer who has to
produce, study, and understand software documents in his or her work, this
research can be described as belonging to the software engineering and
computer science research traditions. We speak about software systems, by
which we mean systems in which software is executed by processors or
computers. Software is considered to mean only computer software. This
distinction is necessary because some manufacturers of electronic
entertainment equipment use the word "software" to mean music on
compact discs and motion pictures on video tapes. Software systems include
all systems for which executable software has been generated from source
programs or from other types of descriptions processed with software
generation tools. The term "software system" can thus be applied to
traditional computer systems such as accounting or text processing systems,
as well as to less traditional systems such as portable telephones and factory
automation systems.

Iivari (1991) lists software engineering research as one research paradigm
for information systems development. This work could thus be considered
as research related to information systems. However, this is not the main
emphasis of this work. Information systems research is usually concerned
about much higher-level issues, such as efficiency of an organization which
is using an information system. An information system can be seen as a
much wider concept than our concept of a software system. Development
models for information systems cover many human and organizational
aspects that traditional software engineering methods do not deal with
(Kerola and Freeman 1981). Information systems are human systems. They



45

do not necessarily even include software systems. Because studying natural
naming in the context of information systems would widen the scope of this
research tremendously, we will speak about software systems and follow the
software engineering research tradition.

Then, why do we want to do constructive research while studying the
problems related to natural naming? Why are we constructing a new reality
by introducing guidelines and methods for natural naming, and providing
experimental tools to facilitate the use of natural naming in software
development and maintenance? First, we would like to note that the
constructive approach is the traditional research method used in the
software engineering research tradition (Iivari 1991). Moreover, we point
out the following rather practical reasons:

• Because using abbreviations is a tradition in programming and
software development, we could not explain the ideas and
potential benefits of natural naming without constructing
material in which natural naming is used. To provide
appropriate material about natural naming, we need to apply
natural naming in a systematic manner. This requires
constructing some guidelines and methods for natural naming.

• It is unlikely that people could improve their software
documentation practices without being taught through practical
examples and methods. In the case of naming and other
programming style factors, some people seem to be somewhat
blind to what they are doing. For example, before starting to
use natural naming on September 21, 1988, the author of this
thesis, who now claims to be an expert in avoiding
abbreviations, had been using abbreviations in programming
for about eight years without clearly realizing that he was using
abbreviations.

• In the beginning of this research, we had only the idea of natural
naming, and we had been using natural names in practical
software development work for about half a year. We had seen
that natural names simplify software documentation, but we were
unsure about all possible consequences of the idea. Doing
constructive research was a way to explore this new idea.

• In the previous chapter we explained that other researchers
have failed to prove whether different naming styles
significantly affect the understandability of source programs.
For this reason, it is the author's belief that it is important to
first lay firm grounds for the use of natural naming. After
constructing an "infrastructure" for natural naming, it will be



46

possible to gain more knowledge of the practical application of
natural naming to assess its real effect on understandability.

Constructive research is the main characteristic of this work, but we are not
claiming that this is purely constructive. We can find traits of several other
research approaches in this work (Järvinen and Järvinen 1993):

• Explorative research means studying a phenomenon about
which little or no previous knowledge exists. This work can be
seen to be explorative, because in the beginning of this research
natural naming was a new idea which had not been
systematically used in software development.

• The research method for activity (a5) defined in the previous
section can be seen as a field study, as we are asking the
opinions of software developers after they have been exposed
to the ideas of natural naming. With the field study we try to
find more evidence to support the use of natural naming.

• In action research a researcher participates in the process which
is the research subject. In this work, software development and
maintenance are the processes being studied. Because the
author of this thesis has about five years of previous experience
on software development in commercial organizations, there
are certainly some aspects of action research involved here.

Kuhn (1962) introduced the concept "scientific paradigm" which can be
characterized as a certain way of thinking among the members of a
scientific community. Kuhn sees science, and especially such natural
sciences as physics and chemistry as processes in which revolutionary
discoveries are made from time to time. The scientific revolutions change
the thinking of entire scientific communities: people start communicating
with new concepts, measuring new things in the world, studying new
problems, etc. Scientific revolutions are changes in scientific paradigms.

There are also other interpretations for the word "paradigm" (Iivari 1991)
which is one reason why we would not like to place this work under a
certain paradigm. Another reason is that it is possible that the Kuhnian
paradigms are not so relevant in research related to software systems.
Although attitudes in the software engineering community have changed
and new research trends emerged during the short history of computers, we
cannot say that this research community has reached stable agreements
about the nature of software development. The recent papers by Jackson
(1994) and Glass (1994) indicate that no strong paradigms in the Kuhnian
sense exist in our community. Jackson (1994) has the opinion that the nature
of software development work is not yet profoundly understood. Moreover,
Glass (1994) has said that our research community is in crisis, largely
because researchers are not able to measure the real efficiency of software



47

development methods and tools (Potts 1993, Fenton 1993, Fenton et al.
1994).

We consider that this research can be done without bothering about
paradigms in strict sense. Much of this work (e.g. developing natural
naming principles for programming) could have been done much earlier,
even when the first high-level programming languages were introduced.
This is a third reason not to tie this with time-dependent paradigms.
Feyerabend (1975) has recommended prejudiceless attitudes towards
scientific work. We take this attitude by not tying ourselves to paradigms.



48

4  RELATED WORK

4.1  INTRODUCTION TO RELATED WORK

When we are interested in finding ways for making source programs and
other software documents more understandable to people (e.g. through
natural naming), we can find many connections between our research and
other research carried out in the field of software engineering. Although the
word "understandability" is not always explicitly mentioned, most software
engineering research aims at helping software developers to understand user
needs, market requirements, technical limitations, technical possibilities,
etc. more easily, and thereby to develop more satisfactory software systems
in a cost-effective manner. We could thus cover quite a large number of
related works, but in the following we will only discuss work which is most
closely and interestingly related to our research.

As the use of natural naming has the greatest impact on source programs,
we will discuss other approaches to make source programs more
understandable. These approaches include various programming guidelines;
tools which can show source programs in different format than conventional
editors and produce high-quality listings; and programming languages
which are designed to be easy to read.

The use of natural naming should make source programs more
maintainable. For this reason, we will discuss tools built to increase
maintainability of programs or to help in understanding source programs in
software maintenance.

Names in source programs, regardless of whether they are abbreviated or
natural, are constructed using the elements of natural languages (e.g. natural
words, abbreviated natural words, and letters used to form the words of
natural languages). Research on naming means studying the use of natural
languages in software documentation. Therefore, we will discuss other
research areas related to natural languages. Natural languages and their use
are addressed in many other scientific fields. These include linguistics,
semiotics, and subfields of philosophy. As the essential idea in natural
naming is to avoid abbreviations, we will discuss how the use of
abbreviations has been taken into account in the above mentioned scientific
fields.



49

4.2  APPROACHES TO INCREASING UNDERSTANDABILITY
OF SOURCE PROGRAMS

4.2.1  Guidelines for naming and programming style

Several programming guidelines have been published for enhancing the
understandability of source programs (e.g. Ledgard and Tauer 1987, Plum
1984). As well as public guidelines, written internal programming style
guidelines exist in many software development organizations. In addition to
aiming at understandable source programs, the published programming style
guides aim at enhancing portability and efficiency of source code. In many
cases these issues seem to be considered more important than
understandability. Oman and Cook (1991) have carried out an extensive
study on published programming style rules. They have found that there
exist many contradictory rules, which indicates that many of the rules are
personal opinions of individuals, and more research effort should be
devoted to programming style issues.

Naming in programming is, however, a subject that has not been widely
addressed by the software engineering research community. Rowe (1985)
has published a rather general article dealing with the issue, but he does not
provide practical solutions to the problems. Neither have Oman and Cook
(1991) been able to find very accurate naming rules from the literature.
Usually, programming style guidelines as well as textbooks for
programming and software engineering suggest that clear and descriptive
names should be used, but they do not advise how the names can be made
descriptive.

It is hard to know why naming has received so little attention, although it is
obviously one of the most important factors that contributes to the
understandability of programs (Gellenbeck and Cook 1991). One reason
may be the amazing pace with which computers and programming
languages evolve. As there are so many interesting things to be researched
in the evolution of technology and in the social impact that computers have
made, such things as the names in programs are easily forgotten.

Many researchers are interested in the syntactic and notational matters in
programming languages, but pay less attention to the syntax and semantics
of names. These are traditionally considered to be outside of the syntax and
semantics of programming languages. The meaning of names is important
to humans, but in compiler theories there do not exist such concepts as
syntax and semantics of names (Aho et al. 1986). It is well known that
compilers treat all kinds of names similarly without caring about how
understandable the names are. Many of the people who have been involved
in defining and developing programming languages possess a
mathematician's background. Therefore, they are inclined to favor short
notations, and different approaches, such as natural naming, do not



50

necessarily attract them. Similarly, many people carrying out practical
software development have a technical background, and their education  has
not paid much attention to human issues, such as the understandability of
documentation.

Although naming as a research subject has not attracted many, there are,
nevertheless, publications that deal with naming in programming. Keller
(1990) published natural naming rules at the same time that Paper I of this
thesis was in press. Although both publications contain quite similar ideas
and their objectives are the same, they were written totally independently.
Keller does not provide as deep a classification of program elements as we
have done in Paper I.

Some naming rules and general discussion about the subject have been
published by Anand (1988), Carter (1982), Johnson (1987), and Marca
(1981). An interesting notion expressed by Carter (1982) is that the number
of different words that we need for constructing the names in the programs
of a large software system is likely to be calculated in hundreds rather than
in thousands.

Table 2 provides a comparison between the natural naming principles
presented in this thesis and the naming rules which are given in the
publications which are mentioned above. As can be seen by studying Table
2, the most essential difference between this thesis and other publications is
that we clearly consider the overuse of abbreviations harmful. For this
reason, we do not provide any rules for abbreviating.

Commenting is a form of documentation that uses the same means to
express information as the names in programs, namely the letters and words
of a natural language. An essential finding in this thesis, also made by
Keller (1990), is that some comments become superfluous when natural
names are used. This proves that comments and names are closely related
programming style factors. Both appropriate commenting and naming aim
at enhancing the understandability of programs. Therefore, publications that
deal with commenting are related to the subject of this thesis. However,
there is no clear consensus about appropriate commenting. Many published
commenting rules have been found contradictory (Oman and Cook 1991),
and varying opinions and ideas about appropriate commenting have been
expressed (e.g. Grogono 1989, Kaelbling 1988).





52

4.2.2  Program visualization tools

At present, electronic forms of source programs are usually stored as ASCII
files which may contain only the basic set of ASCII coded symbols. Source
programs that are accepted by commercial compilers may not contain any
special information, such as graphics or information about fonts and colors.
However, there are experimental systems that allow source programs to be
stored, viewed, and printed in visually more appealing forms. Baecker and
Marcus (1990) present this kind of a system which brings similar features
into program editing as we have in the present systems for text processing.

The following are the essential features in the program visualization system
introduced in Baecker and Marcus (1990):

• A program can be viewed, edited, and printed in a
typographically readable form from which the compilable
source code form can be automatically derived.

• Different fonts can be used for different kinds of elements in
programs, e.g., function names can be boldface Helvetica and
function arguments small Helvetica.

• There can be different kinds of comments (e.g. external and
internal) and they can be highlighted in various ways, e.g., by
using boxes or gray shading around comments.

• Special marginal comments can be added beside the actual
source code.

• Advanced text processing features, such as page headers, are
available to make source programs more document-like.

The programs created with program visualization systems could look like
the one in Figure 11 (see (Baecker and Marcus 1990) for better examples.)
It is very likely that programming environments will develop to allow
different kinds of fonts, colors, etc. to be exploited in order to make
programs more readable. This kind of development is merely technical,
whereas the natural naming approach is human-oriented. We emphasize that
programmers need to have human abilities to make their programs
understandable and we have created naming principles for programmers to
enhance their documentation abilities. Neither a fully automatic tool nor
another person can make someone else's programs understandable, since the
program writers are the best experts who understand their own work
completely. Hence, they are the right people to take the responsibility of
making their programs understandable to others.



53

Customer number string.

Return code for validation.

Index for string access.

Length of the customer number.

Checking for appropriate length.

Checking that the string

contains only digits.

A program to validate a customer number.

#define   CNUMMAX   13

#define   VALID     0

#define   NVALID    1

_________________________

isvalid (

char  cnumbr [],
int     *rcode  )

_________________________

{

    int   i ;

    int   len ;

    *rcode  =  VALID  ;

    len  =  strlen ( cnumbr ) ;

    if ( len  >  CNUMMAX )

    {

        *rcode  =  NVALID ;

    }

    else

    {

       for  ( i=0 ; i<len ; i++ )

       {

          if (( cnumbr[ i] < '0') ||

              ( cnumbr[ i] > '9') )

          {

             *rcode  =  NVALID ;

          }

       }

    }

}

Figure 11. A program with enhanced typographic style.

Gellenbeck and Cook (1991) have carried out empirical studies which
indicate that the meaningfulness of names and the existence of appropriate
comments contribute more to the understandability of programs than
certain typographic signals, such as different fonts. On this basis, naming
seems to be more important than different fonts. However, developing such
systems as the one by Baecker and Marcus is important, since we should
consider all possible aids to make the usually complex source programs
more friendly for human eyes.



54

4.2.3  Literate programming

A famous approach to enhance the readability and understandability of
programs is literate programming introduced by Knuth. In his introductory
article about the approach he expresses deep enthusiasm about the invention
(Knuth 1984). A central idea in literate programming is that programs
should not be considered just inputs for compilers, but they should be
regarded as writings, comparable to the works of literature. Then, the
activity of programming should be regarded as a writing process in which
style issues play an important role. The task of a programmer is thus to
produce descriptions which are meant to be read by humans, and
compilation is a secondary issue.

The objectives of literate programming are clearly the same as those of this
thesis. We have stressed that it is important to regard source programs as
documents. We have personally experienced that when we concentrate on
writing programs with a style such that we spend time in choosing
appropriate words for names and carefully comment the entire program
module, we manage to produce programs with enhanced quality which
contain few errors and need little time for debugging.

Literate programming is based on special literate programming
environments which have tools that support the approach such that
programs are created together with their documentation. Literate source
programs are written with a special notation which allows natural language
texts and statements written with a programming language to be mixed into
a single file. This literate source program can then be processed with special
tools which produce the actual compilable source program and a separate
literate program document. Figure 12(a) is an imaginary example of a
literate source program made with similar notation as used by Cordes and
Brown (1991). Figure 12(b) shows the corresponding literate program
document generated automatically from the program in Figure 12(a).



55

@* Check customer number.
This program checks the validity of a customer number.

@* Routine for customer number validation.
@d
@<Constant definitions of the program@>
@c
isvalid ( char  cnumbr [],
          int  *rcode  )
{
   @<Internal variables for the program@>
   @<Check customer number validity@>
}
@* Constants.
The following constants are defined:
   Maximum length for the customer number,
   return code when customer number is valid, and
   return code when customer number is not valid.

@<Constant definitions of the program@>=

   #define   CNUMMAX      13
   #define   VALID        0
   #define   NVALID       1

@* Variable declarations.
An index for the customer number string and a variable
  to store the length of the customer number are
  declared as internal variables.

@<Internal variables for the program@>=

  int i,  len  ;

@* Actual program code.
The validity of the customer number is checked
  according to the following criteria: The length of
  the customer number may not exeed the maximum limit
  and it may contain only numerical digits.

@<Check customer number validity@>=

   @<Initialization of the variables@>

   if ( len > CNUMMAX )
   {
      @<Customer number is not valid@>
   }
   else
   {
      @<Check that string contains numerical digits@>
   }

@<Check that string contains numerical digits@>=
    for  ( i=0 ; i<len ; i++ )
    {
       if (( cnumbr[ i] < '0') ||
           ( cnumbr[ i] > '9') )
       {
          @<Customer number is not valid@>
       }
    }

@* Setting values for variables.

@<Initialization of the variables@>=
    *rcode  =  VALID ;
    len     =  strlen( cnumbr ) ;

@<Customer number is not valid@>=
    *rcode  =  NVALID ;

Figure 12(a). An example of a literate source program.

Several experimental literate programming environments have been built.
However, the programming community has not widely accepted the literate
programming approach. Cordes and Brown (1991) discuss the reasons why
literate programming has not gained wide popularity. One obvious reason is
that, although a literate programming environment aims to help in software
documentation, it also brings extra complexity to the programming work.
Literate programmers have to learn to manage a literate programming
language, in addition to an ordinary programming language.

Cordes and Brown (1991) point out that it is usually not the lack of text
processing skills or tools that makes software documentation difficult, but
merely the general difficulty in finding words to explain what a source
program does and the difficulties in organizing one's thoughts into an
intelligible form. One can create programs which are badly documented
even in a literate programming environment. It seems thus quite obvious
that special tools cannot automate software documentation. Tools can only
help to overcome some practical difficulties, but the real origins for
understandable programs are human skills. For example, in Figure 12(b) we
can see that a literate programming environment automatically produces a
document in which the program is organized into numbered sections. But,
however, it is the responsibility of the person who writes the real program,
like the one in Figure 12(a), to decide the appropriate division of the
program.



56

Table of contents

Check customer number ................. Section 1 Page 1
Routine for customer number validation  Section 2 Page 1
Constants ............................. Section 3 Page 1
Variable declarations ................. Section 4 Page 1
Actual program code ................... Section 5 Page 1
Setting values for variables .......... Section 6 Page 1

Source code

1. Check customer number

This program checks the validity of a customer number.

2. Routine for customer number validation.

<Constant definitions of the program>

isvalid ( char  cnumbr [],
          int  *rcode  )
{
   <Internal variables for the program>
   <Check customer number validity>
}

3. Constants.

The following constants are defined:
   Maximum length for the customer number,
   return code when customer number is valid, and
   return code when customer number is not valid.

<Constant definitions of the program>=

   #define   CNUMMAX      13
   #define   VALID        0
   #define   NVALID       1

   This code is used in section 2.

4. Variable declarations.

An index for the customer number string and a variable
  to store the length of the customer number are
  declared as internal variables.

@<Internal variables for the program@>=

  int i,  len  ;

  This code is used in section 2.

5. Actual program code.

The validity of the customer number is checked
  according to the following criteria: The length of
  the customer number may not exeed the maximum limit
  and it may contain only numerical digits.

<Check customer number validity>=

   <Initialization of the variables>

   if ( len > CNUMMAX )
   {
      <Customer number is not valid>
   }
   else
   {
      <Check that string contains numerical digits>
   }

<Check that string contains numerical digits>=
    for  ( i=0 ; i<len ; i++ )
    {
       if (( cnumbr[ i] < '0') ||
           ( cnumbr[ i] > '9') )
       {
          <Customer number is not valid>
       }
    }

    This code is used in section 2.

6. Setting values for variables.

<Initialization of the variables>=
    *rcode  =  VALID ;
    len     =  strlen( cnumbr ) ;

<Customer number is not valid>=
    *rcode  =  NVALID ;

    This code is used in section 5.

Variable index

cnumbr    2, 5, 6
CNUMMAX   3, 5
i         4, 5
isvalid   2
len       4, 5, 6
NVALID    3, 6
rcode     2, 6
VALID     3, 6

Section index

<Constant definitions of the program 3> Used in 2.
<Internal variables of the program 4> Used in 2.
<Check customer number validity 5> Used in 2.
<Check that string contains numerical digits 5>
<Initialization of the variables 6> Used in 5.
<Customer number is not valid 6> Used in 5.

Figure 12(b). An example of a generated literate program document.

In our view, the essential difference between conventional and literate
programming is that in literate programming the words and sentences of a
natural language can be treated in a different manner. A literate
programming environment allows a program writer to arrange natural words
and sentences according to a different notation than that of a conventional
programming language. The literate program in Figures 12(a) and 12(b) is
the same as the naturally named program in Figure 5(c). By comparing
these versions of the same program, it can be noticed that by using long
natural names we can similarly put long sentences into a program as can be
done in a literate programming environment.



57

For example, in Figure 5(c) we have a name

check_customer_number_validity

which is uniquely distinguished by the compiler, and in Figure 12(a) there is
the expression

<Check customer number validity@>

which could be uniquely distinguished in a literate programming
environment. Moreover, many of the written texts that are in the literate
program in Figure 12(a) could be put into comments in a conventional
program. Thus, although literate programming environments offer many
features which help software documentation, we can claim that literate
programs can also be written by using appropriate comments and long
natural names with conventional programming tools.

The literate programming approach is important for the research related to
software documentation, though the approach has not, at least to date,
become especially popular. It is essential to stress that source programs are
writings that need to be studied by humans, and, therefore, an appropriate
program writing style is important.

4.2.4  Easy-to-read programming languages: COBOL and SNAP

The difficulty of computer programming was realized during the early
decades of the history of computers. Only specialized people could write
computer programs and people who would benefit from the programs could
not know for sure whether the programs were doing correct computations.
Because of these problems the widely-used programming language COBOL
(Common Business-Oriented Language) was defined in the late fifties
(Sammet 1981). That language tried to bring features of natural languages
into computer programming. SNAP (Stylized Natural Procedural Language)
was another language, although not widely known, which tried to make
computer programming resemble writing in a natural language (Barnett
1969). Because natural naming also attempts to make computer programs
more readable, the mentioned programming languages are related to this
work. It is also interesting to note that during the first decades of computing
there were discussions about using a pure natural language to dictate the
behavior of computers (Sammet 1966).



58

COBOL is a programming language that has its origins in the fifties and has
been very widely used since the late sixties. COBOL is intended to be used
in business-oriented applications and the motivations for its definition
involve the following (Sammet 1981):

• Due to the time and cost of programming, there was a need for
a language that would be easy to learn and use.

• There was a need to broaden the base of those that can state
problems to computers.

• There was a desire for people without a programmer's
education to be able to read and write computer programs. It
should also be possible for managers to be able to read
programs in order to check that various kinds of financial
calculations are performed correctly.

• There was a need to have programs that could be run on
computers from different manufacturers.

The developers of COBOL responded to the needs listed above by defining
a language which is in many ways close to natural English. The solution is
thus related to the principle of natural naming.

The natural features of COBOL include such aspects as having keywords
ADD, SUBTRACT, MULTIPLY, and DIVIDE instead of short
mathematical symbols such as "+", "-", "*", and "/". Using natural words
instead of mathematical symbols raised many disputes among computer
scientists, and, therefore, COBOL variations allowing the use of
mathematical symbols also exist.

Many documentation-related aspects were considered when COBOL was
defined. The first official version of the COBOL definition included the
feature that names could be long and natural names were intended to be
used. A COBOL program is intended to be a document itself. The language
has documentation related keywords such as AUTHOR, DIVISION, and
SECTION which should help the program writer to incorporate relevant
documentary information and to divide a program into logical parts.

COBOL has been widely used, although it has been neglected by many
computer scientists (Shneiderman 1985). Whether or not COBOL has
succeeded in being a language that yields readable and understandable
programs is too difficult to be answered here. In our opinion, the writing
skills of programmers are still needed to achieve appropriate under-
standability of programs. Of course, COBOL programs can be made
difficult to read and abbreviated names have been used in programming
with COBOL.



59

SNAP is another programming language which tries to imitate natural
languages. SNAP is similar to COBOL in the sense that it includes a large
repository of reserved words borrowed from English. As listed by Barnett
(1969), the objectives in the development of SNAP were largely the same as in
the development of COBOL. SNAP did not, however, become a widely-used or
well-known language. Probably the language never had commercially-available
compilers; it was used mainly by students. SNAP was designed for applications
involving mainly text processing, file reading, and printing. Its narrow
applicability is one reason why it was only used in small circles.

Obviously, the developers of COBOL and SNAP thought that by
incorporating many reserved words from a natural language into the
programming language, the programs written in that programming language
become easy-to-read and understand. Using abbreviations has been and still
is common in COBOL programming. The SNAP programs shown by
Barnett (1969) contain many abbreviations. Therefore, the approach of
making programs understandable is different in the case of these languages
than in the case of using natural naming. Having many reserved words
borrowed from natural languages does not necessarily make source
programs more understandable. Reserved words are symbols which need to
be repeated over and over again in source programs, and they are the same
in every program. For this reason, it should not really harm if short special
symbols (e.g. "+" and "-") are used instead of longer reserved words (e.g.
ADD and SUBTRACT), because these symbols have to be used very often
and need therefore to be kept in mind. Names, on the other hand, are unique
in every program. They are more likely to show how a program differs from
other programs.

It is certain that most programming languages have been designed to make
computer programming easier in some way. It is impossible to think that
somebody would have created a programming language which he or she
would not have thought to be better in some fashion than some existing
languages. Because there exist hundreds of programming languages
(Sammet 1972), we cannot discuss all of them here. However, to our
knowledge, there is no programming language which has been specifically
designed to incorporate the use of natural naming.

4.3  TOOLS TO AID IN SOFTWARE MAINTENANCE

In the previous section we discussed techniques for making source
programs more understandable and thereby more maintainable. In this
section we will introduce slightly different techniques which help to
maintain different source programs and other software documents which
have been found hard to maintain. Here too, we will mostly concentrate on
source programs, because they are usually the most reliable documents for
software maintainers (Bennett et al. 1991).



60

Perhaps the simplest tools to make source programs more maintainable are
so-called prettyprinters which can produce program listings in which
different text fonts are used and reserved words of the programming
language are printed with different fonts than the rest of the program text.
The term is also used for tools which can adjust alignment and indentation
in source programs.

More advanced systems are browsing tools which can be used to study a set
of source programs for detecting dependencies between different source
program files. A browsing tool can, for example, find all places in all source
files where a certain function or procedure is being called or a certain
variable used. With a browsing tool a software maintainer can easily jump
from one source program to another to study interdependent parts of an
application. An example of a browsing tool is Sbrowse by Computer
Enterprises. Suitiala (1993) introduces another browsing tool.

In addition to these tools there are more complex reverse engineering tools
used to make existing applications more maintainable. These are discussed
for example in IEEE Software (Vol. 7, No. 1), in the proceedings of
software maintenance conferences (e.g. ICSM 1994), and in the proceedings
of workshops related to program comprehension (e.g. WPC 1993). As there
are many both experimental and commercial tools available, we will discuss
them according to a known taxonomy. Chikofsky and Cross (1990) classify
the reverse engineering activities and tools as follows:

• Reverse engineering tools and techniques aim at producing a
higher-abstraction-level description of an existing system.
Practical reverse engineering tools can, for example, produce
graphical-textual descriptions, such as data flow diagrams, from
existing source programs. Reverse engineering is a process of
examination and it does not include modifying an existing
system.

• Design recovery is a special case of reverse engineering.
Design recovery produces higher-level abstractions from
existing systems, but it also adds external knowledge to the
higher-level abstractions being produced. Biggerstaff (1989)
has written an important article of design recovery.

• Restructuring means renovating an existing application without
changing its external behavior. Restructuring does not switch
from one abstraction level to another. In practice, restructuring
can be, for example, modifying source programs so that goto
statements are no longer needed.

• Redocumentation means changing a system's documentation
without making any functional changes to the software system.



61

We see redocumentation as a special case of restructuring,
although Chikofsky and Cross (1990) have listed it as the
simplest form of reverse engineering. Replacing abbreviated
names with natural ones is one possible form of
redocumentation.

• Reengineering is the process in which a system is modified
after having been reverse engineered.

Chikofsky and Cross (1990) admit that some of the above-mentioned terms
can be vague in some cases, but those terms are certainly important for
clarifying different activities and tools used to make existing systems more
maintainable. The existence of reverse engineering tools is an indication
that source programs being maintained are usually hard to understand.

New kinds of tools to help in software maintenance are being developed in a
project called Application Management Environments and Support (AMES
1993). The research activity (a4) defined in Section 3.1 above was partly
carried out in the AMES project. Software maintenance is included in a
wider concept called application management in the AMES project
(Boldyreff et al. 1994). The project is producing tools which use a special
database containing information about the application being maintained.
The new kinds of tools are the following (AMES 1993):

• Impact analysis tools try to show a software maintainer which
other documents need to be modified if a certain modification
takes place in one software document.

• Navigation and display tools allow a user to navigate among a
set of software documents which can be documents other than
source programs. Above, we discussed browsers which can be
used to view dependencies among source program files.
Navigation and display tools can be characterized as browsers
which allow other documents in addition to source programs.

• Application understanding tools aim at forming a combined
representation of different types of software documents.
Through the use of application understanding tools, a user
should be able to view documentation of a software system
from different points of view.



62

4.4  FIELDS OUTSIDE SOFTWARE DOMAIN: LINGUISTICS,
SEMIOTICS, AND PHILOSOPHY

Although linguists, semioticians, and philosophers have not directly studied
how natural languages should be used in software documentation, we shall
briefly discuss their fields here because our research is related to natural
languages. Linguists study natural languages. Semioticians study the
symbols of natural languages among other symbols used in human
communication. Philosophers have also been interested in how natural
languages correspond with the reality around us. As the main idea in natural
naming is to avoid abbreviations, we will try to find out what has been said
about abbreviations in these fields.

An excellent textbook of basic linguistics has been written by Fromkin and
Rodman (1988). The field of linguistics studies the syntax and semantics of
languages, as well as word formation (morphology), the sounds of language
(phonology), and sound production (phonetics). The history of natural
languages and their role in society are also linguistic subjects. Because
natural languages have first had a spoken form with writing systems having
been invented later, linguistics is in many ways more concerned with
spoken languages. In software documentation, we are more interested in
written languages.

Linguists admit that the nature of our natural languages is not yet fully
discovered and it perhaps never will be (Fromkin and Rodman 1988).
Natural languages are indeed very complex, although some similarities can
be found between all human languages. Due to the complexity of languages,
it is natural that there are several schools of linguistics. Traditional
linguistics has been criticized by Yngve (1986) who thinks that languages
should be studied merely as a result of human activities, not as objects per
se. Traditional linguistics tends to view languages without referring to
human activities behind the languages.

Although linguistics sees abbreviating as one way to coin new words in
natural languages, we have not been able to find opinions or data about the
usefulness of abbreviations in linguistic publications. It is well known that
some abbreviations have been used about two thousand years (Hall-Quest
1979), but the benefits or disadvantages of their use have not been widely
discussed. In fact, we have found the only articles dealing with
abbreviations and efficiency of communication in the field of "technical
linguistics", namely in the publications of IEEE Professional
Communication Society (Logsdon and Logsdon 1986, Ibrahim 1989).
Neither of these publications refer to any other articles which dealt with the
use of abbreviations in communication. Thus, we have good reason to
believe that the use of abbreviations has not been a popular research topic. It
is seen as a problem only in the fields of technical documentation and
communication.



63

To find articles dealing with abbreviations and communication, we have
conducted extensive searches in databases containing abstracts of articles
from linguistics, informatics, and several other fields. The results of the
searches were interesting, though we did not find any material which could
be strongly related to this thesis. Concerning the use of abbreviations, we
found articles which, for example, reported that the growing popularity of
abbreviations causes problems in teaching foreign languages (Ching 1983),
and that one of the hardest word types for people to understand are
abbreviations (Smith and Taffler 1992).

Although linguistics has not provided answers to the question whether
abbreviations are useful or not, there is one linguistic finding which is
valuable for this research. The finding is that all human languages have
changed during the history of mankind (Fromkin and Rodman 1988). Our
languages are not stable. They are changing all the time. Perhaps the most
obvious change is that new words emerge within our languages. It is
assumed that new words emerge partly because new technological
innovations are being made. Words like "microprocessor", "Prolog", and
"mainframe" did not exist before computers were invented. To
communicate about computers and software, many popular abbreviations
have been coined: RISC, PC, WWW, etc. The abbreviations in source
programs and other software documents can also be seen as new symbols in
our languages. In this thesis we thus consider that the overuse of previously
unknown abbreviations changes our languages too rapidly and in an
uncontrolled way, and can therefore be considered harmful.

As we are concerned about the overuse of abbreviations in software
documentation, we are interested in the change and the future of our
languages. The language of software documentation is, in our opinion,
developing in the wrong direction because too many abbreviations are
entering the language. This is the essential difference between this thesis
and linguistic research. Linguists are more interested in the history and
present state of natural languages. The historical change of languages has
been an important research subject in linguistics. It is understandable that
linguists have not studied the usage of natural languages in technical
documentation, because in order to do that one needs to be at least a partial
expert in the technical field in question.

Benjamin Lee Whorf is a linguist who deserves to be mentioned here. He
has proposed a famous hypothesis which states that the natural language we
use dictates how we can think and how we perceive the world around us
(Carroll 1956). Whorf concluded this after studying the languages of
American Indians, and comparing their languages to the Indo-European
languages. Soloway (1986) has also noted the Whorfian hypothesis while
studying the mental processes of programmers. Subjectively, we have found
that, compared to using abbreviations, using natural names in programming
helps a programmer to think about the problems being solved. This supports



64

the Whorfian hypothesis, if we consider that abbreviations are symbols of
one language and natural names are symbols of another language.

Semiotics is a scientific field that includes linguistics. Semiotics also studies
symbol systems other than just natural words. Non-linguistic symbols which
have meanings to people include, for example traffic signs and lights,
music, and paintings. Even buildings can be considered to transfer
meanings. Because the semiotic world includes so many potential research
subjects, some people are doubtful whether semiotics can be considered a
science (Tarasti 1990). An influential person in the field of semiotics is
Umberto Eco. His books about semiotics (e.g. Eco 1984, Eco 1990) provide
numerous references to philosophy, which indicate that natural languages
have been subjects of interest to people who have been pondering the most
fundamental questions about living as a human being in this world.

It seems that semioticians have not studied the problems related to
abbreviations either. The situation is the same as in linguistics. Semiotics
deals with existing symbols and how these symbols relate to the human
behavior. To our knowledge, semioticians have not studied whether it is
useful, or not, for efficient communication to form new symbols by
abbreviating existing natural words, or to construct acronyms from the first
letters of a list of natural words. Andersen (1990) presents a specific theory
for computer semiotics, but he does not deal with the goodness of symbols.
Andersen's semiotic theory is directed towards using a computer and
making computers more user-friendly, not towards documenting computer
software. Therefore, he does not specifically address the problems of
software documentation.

A central question related to languages is how the elements of languages
(e.g. words) actually relate to the real world around us. Nelson (1992) writes
that we actually know as little about these matters as was known by the
philosophers of ancient Greece. Nelson (1992) surveys many different
theories of linguistic reference. His study shows that there is little consensus
in regard to these matters. One question in this research is that what does a
name in a software document mean or refer to. Our claim is that a name like
"customer_number" refers more effectively than a name like "cnumbr" in a
source program. But if the name "customer_number" refers well, where
does it refer to? If it refers to a location in a computer's memory where a
customer number is stored, what does the customer number indicate? If
each customer has a number, what does that number mean? Why do
customers have numbers? Why aren't they just called by their names?

These are difficult questions. Answering them would require much
knowledge about the software system in which the customer numbers are
used. The referent of a name depends on the context, i.e. on the software
system in question. However, if we use the name "customer_number", that
name is in its textual appearance closer to the question "What is a customer



65

number?" than an abbreviated name like "cnumbr" would be. To clarify this
matter, let us imagine two discussions between A and B. The discussion
with an abbreviated name could be:

A: "What is cnumbr?"
B: "It is an abbreviation for customer number."
A: "What does the customer number mean?"
B: "Well, in this particular application the customer number ..."

The discussion with a natural name could go as follows:

A: "What is customer_number?"
B: "Well, in this particular application the customer number ..."

From these imaginary discussions we can see that, although the actual
meaning of a name may be difficult to explain, it is possible that the
discussion is at least one question shorter when natural names are in use.

It is a complex philosophical question how a language relates to the real
world. What are the meanings of the words and other symbols? Can the
meanings be explained? The philosopher Ludwig Wittgenstein has provided
an answer to the latter question. According to Wittgenstein (1953), the
meanings of words and other symbols become evident in the situation in
which they are used. Some words have quite stable and usual meanings, but
the meanings of some less frequently used words depend much on the
context of usage. Wittgenstein (1953)  uses the term "language game" to
denote the process in which we associate meaning to words and other
symbols. Therefore, a name like "customer_number" in some source
program means something specific in that program or in the larger software
system in which the program is used. Developing a software system can, in
the Wittgensteinian sense, be regarded as playing a language game in which
certain names and word combinations gain a special meaning. We can
exploit Wittgenstein's theory to support the use of natural naming by noting
that the language game of a software system becomes more complex when
too many abbreviations are in use.

To our knowledge, Ludwig Wittgenstein is a philosopher who has worked
more on the philosophy of languages than other philosophers. He has also
been noted by other writers in the field of computer science (e.g. Zemanek
1974, Sowa 1990). In some ways, Wittgenstein's life and work can be seen
as a proof about the complexity of human languages. He was a rather
radical and extraordinary person (Jarman 1993). During his younger years,
he published a well-known theory related to logic and languages
(Wittgenstein 1921). Having invented this theory he considered that he had
solved the essential problems of philosophy, and he therefore abandoned
philosophical work for years. Later, however, he discovered that his earlier
theory did not match with the real world and natural languages. He returned
to philosophy, but, according to the preface of Wittgenstein (1953), he was



66

disappointed that he was unable to formulate a clear and elegant theory
about languages.

It seems that the meanings of all textual symbols cannot be exactly
described. The meanings of some symbols become evident from the way
they are used (Wittgenstein 1953). To still investigate the problems of
meaning, let us take a look at the cartoon in Figure 13. Although that
drawing was not intended for serious study, it is interesting for us. The man
in the figure is using paint and a paintbrush to mark the objects in his
environment with their appropriate names. There is, however, something
essential in the figure that the man cannot mark with its name. It is hard to
write on air or on the sky. Even the paintbrush is hard to mark, but on the
paint itself the man cannot write anything. Paint is a special object because
it is used to mark the other objects. Paint shows us the names of the other
objects, but its own meaning we can only guess.

One could also ask whether the marked things are clear in Figure 13. We
answer that things can always be made clearer, but they never become
completely clear. Something is always left unexplained and is considered
evident. The man in the figure supposes that everybody knows what the
word "house" means. To make things even clearer, the man could, for
example, write on the wall that the word "house" means "a building for a
person or a family to live in" (Webster's 1989). He could continue by telling
more about the meanings of the words "building", "person", and "family".
He could write a really long story about what the verb "to live" means.
Actually, he could spend the rest of his life explaining the nature of the
objects which he has just marked with paint. The problem whether the
things are clear in the figure is the same as whether natural names are clear
enough. In Section 2.3 we said that it largely depends on the context which
natural names can be considered sufficiently informative. In this sense, we
can say that things are certainly clear enough in Figure 13. Normally we can
recognize houses and trees even if they are not marked as in the figure.



67

Figure 13. A man who made things clear.

The original thesis has a Gary Larson's drawing on this page. Because of
copyright reasons the drawing is not included in the .pdf version of thesis.
In the drawing there is a man who has written "THE DOG", "THE CAT",
"THE HOUSE", "THE TREE", etc. on the corresponding objects in his
environment. To find more information of Gary Larson`s drawings, please
visit www.thefarside.com



68

4.5  DISCUSSION OF RELATED WORK

To summarize the previous sections of this chapter, we state the following:

• There are many approaches to increasing the understandability
and maintainability of source programs and other software
documents, but the issue of naming has not been explicitly
taken into account in most cases.

• In the same way as natural naming, the other approaches to
increasing understandability lack hard evidence about their
usefulness. For this reason, it is difficult to compare this thesis
and the related research. This is a common problem in our field.
Glass (1994) describes this type of research as "advocacy
research".

• Considering the discussion on linguistics, semiotics, and
philosophy, our main conclusion is that the researchers inn
those fields are mostly addressing different problems than we
are. The researchers outside the domain of computers are
interested in the history and present state of languages, whereas
we are interested in the future of languages. The use of
abbreviations in software documentation can be seen to change
the natural language of software documentation. If too many
abbreviations are used, that may cause future understandability
problems for the readers of that documentation.

This thesis deals with the understandability of source programs and other
software documents, and with the use of natural languages in software
documentation. Although natural languages and understanding are
important research issues in many branches of computer science and
software engineering, most research regarding these issues is not very
closely related to this thesis. Below, we discuss two of these research
branches and explain how they differ from this work:

• Special techniques have been developed to make computers
understand natural languages (Allen 1987, Smeaton 1992). If
these techniques became popular in practical applications, it
would certainly make computers even more useful to mankind.
Natural language understanding techniques can be applied, for
instance, in multimedia systems (Rowe and Guglielmo 1993).
Computerized natural language understanding is not related to
our work, because these techniques are not used in the case of
software documentation.

• Different kinds of models for human mental activities in
program understanding have been proposed (Curtis 1985, Hoc



69

et al. 1990). Perhaps the most famous work in this area has
been done by Soloway and Ehrlich (1984)  who have shown by
empirical human experiments that professional programmers
possess certain kind of mental programming plans, according to
which they develop and understand source programs. It is very
important to do this kind of psychological research. However,
we do not consider much of this research on mind models
closely related to our work, because the researchers have not
specifically studied how different styles of natural language
usage affect the working of the human mind.



70

5  INTRODUCTION TO THE INCLUDED PAPERS

Six papers, which have been accepted in scientific journals and conference
proceedings during a five-year period, are included in this thesis.5 The
papers provide solutions to the research activities which we defined in
Section 3.1. The papers correspond with the defined research activities as
shown in Table 3.

Table 3. Relations between research activities and included papers.

Research
activity
code

Description of the research activity Number
of paper

Publication
year

(a1) Produce detailed naming principles. I 1990

(a2) Formulate a method for early name creation. II 1992

(a3) Investigate how programming languages
could be made more suitable for the use of
natural naming.

III 1994

(a4) Investigate how already abbreviated names
could be replaced with natural ones in
existing source programs.

IV, V 1995, 1995

(a5) Produce evidence of the usefulness of
natural naming.

VI 1995

5.1  PAPER I: GUIDELINES FOR NATURAL NAMING

This paper introduces a set of natural naming principles for programming
with the C programming language, though most of the naming principles
are applicable to other procedural programming languages as well. The
essential idea in the paper is the principle of natural naming. That principle
is derived from the notion that it is useful to avoid abbreviations in order to
minimize the risk that something is misunderstood. The ultimate goal is the
avoidance of abbreviations all together, and thus we have the principle of
natural naming. The term "natural naming" is, however, not used in Paper I.
That term was first used by Keller (1990), at the time when Paper I was in
press.

The natural naming principles presented in Paper I are meant to guide
programmers rather than provide absolute naming rules which programmers
should follow. It is pointed out that natural naming principles cannot be
very strict, because natural languages are informal and not always accurate
means for presenting information. To exploit the naming principles in

                                             

5To inform non-Finnish readers, we would like to point out that it is common in Finland, and in
some other northern European countries, to construct a doctoral thesis of papers which have been
accepted in conference proceedings and journals. This thesis is of this type.



71

practical work, one should use a compiler that can distinguish rather long
names, preferably at least 30 characters in length.

Section 2 of Paper I presents the naming principles. As the principles are
based on a natural language, some characteristics of natural languages are
discussed as an introduction. The names needed in programs are classified
into two fundamentally different categories: names that represent
information and names that represent action in programs. The most
important names in the latter category are the names of functions and
procedures. The names of macros and labels also represent action, but they
are given little attention in Paper I. The names that represent information
include constants and variable data (variables, tables, structures, etc.). The
essential difference between these two types of names that represent
information is that information expressed by the names of constants is fixed
during the process of programming, whereas the information expressed by
the names of variable data can change during the process of program
execution.

Separate name tables for constants, variable data, and functions are
presented in Section 2. In fact, each table provides a low-level classification
of program elements in its main category. For instance, variable data is
broken down into indexing variables, statuses, counters, etc. The name
tables provide keywords as well as example names for each low-level class
of program elements. Keywords are recommended to be used in name
formation and their usage is guided by a rule that a keyword should be
either the first or the last word in a name. Keywords for function names are
verbs which should be used as the first words of the names.

Programs often include variables that contain the same information but are
used in different contexts. They may also include functions that are
performing similar actions but differ in some aspects. For these reasons,
there has to be means for constructing related names in programs so that
their relatedness is evident and their difference as clear as possible. For this
purpose, Paper I presents attributes which can be characterized as name
refining words. Attributes are classified according to which properties they
express or in what kinds of situations they are used.

Section 2 includes a program example in which the natural naming
principles are followed. A program to evaluate and print prime numbers is
used for this purpose.

The third section of Paper I is devoted to discussion of the historical
background of naming, the benefits of natural naming, and the difficulties in
the use of natural naming. It is evident that the use of natural naming affects
the entire program module documentation. Obviously, it makes the
documentation as a whole simpler by reducing the need to use other forms
of documentation, such as commenting and pseudo-coding. The need to



72

have in-line comments is reduced, since natural names usually provide the
same information that traditionally has been shown by comments (e.g. a
variable definition does not need to be accompanied with a comment in the
same line to explain what the variable is used for). Pseudo-code for a
program can be characterized as structured natural language. Its under-
standability is between that of a programming language and a natural
language. As the use of natural naming brings source programs closer to a
natural language, the need to have an intermediate pseudo-code is reduced.

Being able to simplify program module documentation is one of the most
important advantages of natural naming. Other advantages, such as easier
pronunciation and ease in remembering the names, are mentioned in Section
3, but they are less obvious. The difficulties which may be involved in the
use of natural naming include the facts that some software development
tools still limit the lengths of names and the syntax of a typical
programming language is designed for short names. Another difficulty is
that software developers have to learn to invent names, to spend time in
choosing appropriate names, and to write with a style that allows long
names to be fitted conveniently on screen and on paper.

Paper I ends with the following paragraph which concisely summarizes the
message of the paper:

The basic purpose of informative naming is that the documentary value of
programs would increase. This has the practical benefit of raising the
quality and understandability. Programs are information. Success in our
current information society depends much on how effectively information
will be transferred, understood, and learned.

5.2  PAPER II: A METHOD FOR INITIAL NAME CREATION

When software systems are developed in a disciplined manner, the
implementation phase is usually preceded by other development phases
which also involve writing documents that describe the system under
development. These high-level documents can be, for example, written
requirement descriptions or graphical-textual models such as data flow
diagrams and state transition diagrams. Obviously, all types of documents
that describe the same system must be written using the same concepts
related to the system under development. For example, a requirement
description  may define that customers must be identified by a "customer
number", and a source program must have a corresponding variable in
which the customer number is stored. When the same concepts are used in
different types of documents, they should have the same names so that the
entire documentation of a system would be understandable. Thus, a concept
which is "customer number" in a requirement description document should
be called with the same word combination in other documents including



73

source programs. It should not, for example, be called "c_number", "cnbr",
or "customer code".

In order to ensure that all software documents have the same names for the
same concepts, we should be able to create the names before any software
documents are written. Paper II provides a solution to this problem by
introducing a method called Disciplined Natural Naming (DNN). The DNN
method should be used prior to the actual software development to create a
repository of names that are acceptable in various types of software
documents.

The DNN method uses DNN tools in a systematic name creation process.
Section 2 of Paper II introduces the DNN tools, which are naming
principles, name creation tables, name creation templates, and reference
name tables. The essential naming principle is the idea of natural naming.
Some of the principles presented in Paper I are briefly discussed.
Additionally, a new alternative naming approach for functions, "object-
oriented naming", is explained. A simple name shortening rule is given.

Name creation tables contain applicable final words to be added in the end
of existing names in order to derive new names. There exist name creation
tables to create attribute names, event names, and state value names. For
each name creation table an example of its usage is given. For instance, if
one needs to create event names that can be associated to the object
"customer", one uses the relevant name creation table with appropriate final
words yielding the event names

 "customer_introduction",
"customer_removal",
"customer_entering", and
"customer_leaving".

Name creation templates are similar to name creation tables, except that the
templates also provide name refining words to be added in the beginning of
existing names. There exist name creation templates for event-related and
constraining names. A typical constraining name is one which limits the
properties of a certain object or attribute, for example,

 "maximum_customer_number_length"

describes the limits of "customer_number". A typical event-related name is

 "customer_entering_time"

which can be used to describe temporal properties related to the event
"customer_entering".



74

Reference name tables provide final words to implement data structures and
single data items, verbs to implement functions, and some general constants
to be used to describe state information. Reference name tables are not used
in equally systematic way as the other DNN tools. They may be referred to
whenever needs to find new names emerge.

The third section of Paper II introduces the DNN name creation process in
which the DNN tools – name creation tables and name templates – are used
in certain order. Name creation is a stepwise process, involving twelve
steps, in which the name creator applies a name creation tool, analyzes the
derived candidate names, and makes decisions whether the candidate names
represent essential concepts of the application domain. According to the
name creator's decisions, the candidate names are accepted, rejected, or
modified. Those candidate names which are accepted as such, or after
modification, become potential names, which means that they might be
needed in the documentation of the system to be developed. The stepwise
name creation process is demonstrated using an example. The created
names are then used in some example software documents.

The fourth section of Paper II is devoted to discussion about the benefits and
weaknesses of the DNN method. The essential benefit of the method is the
same as that of the principle of natural naming in general: the
understandability of source programs is improved. As software development
is partly a communication and learning process, fixing the names early should
help software developers communicate efficiently with each other as well as
with different interest groups for the system being developed. Software
developers need to communicate with such interest groups as end users,
marketing people, and service personnel who are usually not familiar with
software development. A benefit is that it is likely that the communication
activities are efficient when software developers can communicate with the
same natural words and names which they use in the entire software
documentation. Additional plausible benefits of the DNN method include
simplified software documentation and easier search activities for finding
specific locations in source programs and other documents.

Use of the DNN method results in a repository of names which should be
used in all software documents of a system. Having such a name repository
means, in fact, regulating how a natural language should be used in software
development work. Because natural languages are complex and natural
words can be used in so many ways, it is difficult to control the usage of
natural languages. This is seen to be the most essential weakness of the
DNN method. Another weakness is that the practical use and maintenance
of a name repository may turn out to be difficult.

The last part of Section 4 surveys related research. Although the problems
of naming in programming have been scarcely addressed by the research
community, several research papers have been published in which naming



75

or the use of natural languages has been discussed from different points of
view (e.g. in the context of requirement specification and reverse
engineering).

Paper II concludes by stressing the importance of naming to achieving
appropriate readability and understandability of software documents.
Although the DNN method needs more testing in practical software
development situations, the paper has demonstrated that pre-development
name creation is possible.

5.3  PAPER III: A PROGRAMMING LANGUAGE TO SUPPORT
NATURAL NAMING

Because natural naming has not been widely used in programming, we
presume that none of the existing programming languages has been designed
to be especially suitable for programming with natural names. Natural names
themselves contain much information. When conventional programming
languages are used, software developers have to double-specify many things
in source programs if they use natural names. For example, the naming
guidelines in Paper I recommend that counting variables should be ended
with the word "counter". However, counting variables are normally always
integers. When we define a counting variable such as

int  character_counter ;

we actually double-specify that it is an integer variable. Both the reserved
word "int" and the word "counter" indicate that here is an integer variable in
question. A compiler could be made to infer solely from the word "counter"
that the type of the variable is integer.

The variable definition above is one example which indicates that
programming languages could be different when natural names are used.
Because programming languages are fundamental tools in software
development, we decided to investigate how existing procedural
programming languages could be improved to make them more suitable for
programming with natural names. The method in this study was that we first
examined existing naturally named programs, and made decisions on how
the constructs of the programming language could be improved to:

• decrease redundant information in naturally named source
programs,

• make the usually-long natural names more easily fit in the
programs,

• make source programs look more like documents, and



76

• encourage software developers to produce better software
documentation.

We tested the ideas by implementing them in an experimental programming
language called Pacific. Section 2 of Paper III describes the characteristics
of this programming language.

Because we consider that names are among the most important means for
making source programs understandable, the syntax of the Pacific language
was designed to highlight names in source programs. To achieve this, we
tried to minimize the use of special characters (e.g. ;, (, ), [, ], {, and }) as
syntactic elements in the language. The assumption was that if programs
contained many special characters, that would disturb the reader from
focusing attention on the names. More about Pacific's general characteristics
can be read in Subsection 2.1 of Paper III.

An essential feature in Pacific is to use the natural words in names to infer
what type of information a name represents. The Pacific type system is thus
unique. The compiler uses a few natural words to detect some frequently
used information constructs. For instance, names ending with the word
"index" are considered to be integers, and names ending with "record" are
considered to be records. All defined names in a Pacific program can also
serve as data type specifications for other names. A name can inherit the
type of another name when there is enough similarity in the wording of the
two names. For example, the name "new_customer_number" can inherit the
type of the previously defined name "customer_number", because both
names are ended with the same word combination. The Pacific type system
is described in more detail in Subsection 2.2 of Paper III.

The Pacific compiler checks all natural words used in the names. Only those
words are accepted which are found in the lexicon of the compiler. If
special terms from the application domain are needed, they must be inserted
into the lexicon. Software developers must thus document their programs by
using a controlled vocabulary. Having a lexicon embedded into a compiler
allows the introduction of a new variable type in the programming
language. In Pacific, these variables are called text variables and they make
it easier to incorporate naturally written phrases into source programs. Text
variables are explained in Subsection 2.3 of Paper III.

The Pacific language includes some special control structures. Its
procedures are special in the sense that they can always return textual status
information when called. These features are discussed in Subsections 2.5
and 2.6 of Paper III.

To summarize the features of Pacific, we point out that the following
features most directly support the use of natural naming:



77

• The Pacific lexicon, when maintained appropriately, provides a
standard vocabulary for software documentation.

• The type system encourages the use of natural naming as a set
of natural words are used to indicate the types.

• The text variables make it easy to present state information as
textual phrases.

Some of the features in Pacific support natural naming only indirectly. For
example, the special control structures reduce the need to repeat names in
source code, and the syntax in which the use of special characters is
minimized aims at highlighting names in source code. Pacific's mechanism
for handling global data cannot be considered to be specifically related to
the use of natural naming, but it is a feature which should be useful when a
software system consists of many source program files.

Section 3 of Paper III provides a qualitative evaluation of the Pacific
language. The main conclusions are the following:

• Writing naturally named programs with Pacific usually results
in shorter programs than with other programming languages.

• Because Pacific programs resemble pseudo-code in many ways,
their readability should be better than other programming
languages.

• Using a lexicon for officially acceptable words should bring
more discipline into software documentation, although we have
no practical experience with using a lexicon in multi-person
projects.

• Pacific is slightly slower than other procedural languages. It
may not be suitable for time-critical programming.

The main objective in implementing an experimental compiler for the
Pacific programming language was to demonstrate the ideas for making
source programs more understandable. Pacific could still be improved. As
explained in Subsection 3.2, natural language understanding techniques
could be further studied for programming language design.



78

5.4  PAPER IV: DISABBREVIATION OF TECHNICAL TEXT

We use the word "disabbreviation" to mean the process of replacing
abbreviations with more natural expressions. The word is also used to
denote a replacement for an abbreviation. Paper IV, in which the author of
this thesis is the second writer, describes an experimental tool designed to
look for abbreviations in technical documents, suggest replacements for
abbreviations, and ask the user of the tool to choose the best replacement for
each abbreviation. The tool is called a "disabbreviator".

As it is assumed in this thesis that abbreviations are harmful for
understandability, it is important to find ways for getting rid of existing
abbreviations in documents which need to be used for a long time. Because
replacing abbreviations with natural substitutions is quite a mechanical
process, it can be carried out with a computer tool. The disabbreviator tool
discussed in Paper IV can be used to disabbreviate various kinds of
technical documents, including source programs.

In order to examine electronic documents and decide which character
patterns are acceptable, the disabbreviator tool has a stored dictionary
containing acceptable English words. Subsection 2.1 of Paper IV discusses
various data structures needed in the disabbreviation process. In addition to
a general dictionary, the tool needs lists of reserved words of programming
languages and operating systems, and pairs of commonly used abbreviations
and their natural counterparts. The disabbreviator tool can also use domain-
specific dictionaries and lists of known disabbreviations which have been
created when the tool has been used.

The disabbreviation process has three phases. First, the tool checks the text
of the entire document and stores all unknown words in a database. In the
second phase, the tool interacts with the user, who it asks to give a
replacement for each unknown word. Whenever possible, the tool suggests
replacements for the unknown words. In the third phase of the
disabbreviation process, the selected unknown words are replaced with the
expression chosen by the user.

The disabbreviator tool is intelligent as it can suggest replacements for
unknown words. While inventing replacements, the tool uses special
disabbreviation methods which are based on commonly used abbreviations
and certain disabbreviation rules. The tool uses also knowledge about
previous disabbreviations when it deduces new disabbreviations. i.e., when
it tries to find possible replacements for an unknown word. The tool is thus
able to become more clever as it is being used. The disabbreviation methods
and process are explained in Section 2 of Paper IV.

Section 3 of the paper describes experiments done with the disabbreviator
tool. Both source programs and other kinds of technical texts were used as



79

test material. It seems that disabbreviating the names in compiled source
programs is somewhat easier than disabbreviating other kinds of technical
documents, because the names in source programs are already found
"correctly spelled" in compilation. The results of the experiments with
various texts indicate that the performance of the tool is appropriate in most
cases. For instance, for more than half of the unknown names in source
programs the tool could propose acceptable substitutions.

One of the experiments described in Paper IV is an understandability test in
which students had to respond to questions about examples of source
programs. Half of the students were studying source programs containing
abbreviated names. The other half of the students studied the same source
programs which had natural names created with the disabbreviator tool.
Both groups had to respond to the same questions. The performance of the
student group which studied naturally named programs was significantly
better when compared to the other group which studied the same programs
containing abbreviated names.

5.5  PAPER V: DISABBREVIATION OF SOURCE PROGRAMS

Paper V is continuation of the work discussed in Paper IV. Because source
programs are rather special kinds of technical texts, their proper
disabbreviation requires a tool which is tailored for disabbreviating source
programs written with a certain programming language. For this reason,
another experimental disabbreviation tool was built. This tool, which is
partly based on the general disabbreviation tool introduced in Paper IV, is
discussed in Paper V. The reasons for having a special tool to disabbreviate
names in existing source programs can be summarized as follows:

• When a tool disabbreviates names in source programs, it must
be able to treat each name as a unique whole. Therefore, it must
be able to first decompose a name into separate words
according to commonly used naming conventions, then
disabbreviate the distinct words, and finally put the words
together to make a replacement for the original unknown name.

• The terminology used in source programs is unique. For this
reason, the dictionary and other data structures of a
disabbreviation tool should contain words which are typically
used in programming.

• Source programs are disabbreviated to make them more
maintainable. A disabbreviation tool for source programs
should, therefore, be able to work in harmony with other
software maintenance tools.



80

• Source programs usually contain natural words in comments.
The information in comments should be exploited in the
disabbreviation methods.

Section 3 of Paper V introduces a disabbreviation tool called InName to
disabbreviate names in C source programs. C is a rather popular
programming language these days and there exist many applications written
in C which are currently being maintained. Although the InName tool is
specifically tailored to process C programs, the disabbreviation methods are
largely independent of the programming language in use because the names
are first extracted from the source programs and then they are
disabbreviated in a separate phase. The following features of the InName
tool are discussed in Section 3 of Paper V:

• The tool uses a special grammar to decompose names found in
source programs into separate words. The grammar finds
separate words when underscores or capital letters are used as
word separators. For example, the names "prev_pos" and
"DispBuff" are decomposed into words "prev", "pos", "Disp",
and "Buff", which are then compared to the words in the stored
dictionaries.

• The general dictionary of the InName tool is rather small,
containing only about 1300 words commonly found in names in
source programs. By analyzing the names in existing source
programs, we have discovered that the number of words needed
in names of a software system is usually much less than one
thousand words. A disabbreviation tool is faster and produces
less silly disabbreviations when its general dictionary is small.

• Disabbreviation methods include using lists of commonly used
abbreviations and their natural counterparts, deducing possible
disabbreviations from user-given name substitutions, and
testing whether word combinations found in comments can be
used as replacements for unknown names. For example, the
tool is able to make the following suggestions:

Unknown names: Suggested replacements:

tmpnamelen temporary_name_length
currwinheight current_window_height

when its internal abbreviation lists include the information that
the strings "tmp", "len", "curr", and "win" are commonly used
abbreviations for "temporary", "length", "current", and
"window", respectively. When a source program contains a
variable declaration such as:



81

int  nbyte ;  /* number of bytes in buffer */

the tool will suggest that the name "nbytes" should be replaced
with the name "number_of_bytes_in_buffer".

The third section of Paper V also discusses the phases of the disabbreviation
process and the graphical user interface of the InName tool. The three
phases of the disabbreviation process could be called the name inspection
phase, the interactive disabbreviation phase, and the source program
modification phase. The graphical user interface is used in the interactive
disabbreviation phase, when the tool displays the source program to the user
together with unknown names and possible substitutions.

The InName tool has been evaluated by using it to disabbreviate the source
programs of several existing applications. One of the test-case applications
is being developed further after being disabbreviated. In the case of each
application the tool was used by a different person. The results of the tests
with different applications are presented in Section 4 of Paper V. About
40% of the name substitutions suggested by the tool were acceptable in the
tests. Learning to use the tool does not require much effort, and one
application can be disabbreviated within a few days.

5.6  PAPER VI: AN EMPIRICAL STUDY OF THE USE OF
NATURAL NAMING

The natural naming principles introduced in Paper I have been taught in
several courses. A naming course has usually been combined with a general
programming style course in which such issues as appropriate program
module layouts, indentation practices, and formulation of different types of
program statements have been taught. Also, a naming handbook has been
compiled on the basis of the principles explained in Paper I. The naming
handbook contains several detailed examples and gives advice on how to
arrange long names in programs.

During a five-year period, about fifty people have been given a naming
course and at least as many have been given a naming handbook. The
software developers taught to use the natural naming principles come from
different organizations and have various backgrounds. Courses have been
given and handbooks delivered to university students, several groups of
software developers in industrial organizations, and software developers in
a research institute.

To assess the usefulness of the natural naming approach and to explore the
viewpoints of software practitioners, several empirical investigations have
been carried out. Some of the software developer groups who have been
given a naming course or who have studied the naming handbook have been



82

questioned by presenting them a form on which they have had to respond to
questions. Paper VI presents the results from one such empirical study.

The second section of Paper VI discusses related work on naming and the
difficulties in measuring the effects of different naming styles. Section 3
briefly explains what is included in the naming handbook, what has been
taught in the naming courses, and how the questioning of the groups was
arranged in practice. Altogether 52 software developers responded to the
inquiries. One group of respondents was classified as less experienced
software developers from industry, two groups represented experienced
developers from industry, and one group was software developers from a
research institute.

The inquiry forms presented to the respondents contain 25 statements, such
as "The time required to write long names slows down software
development". The subjects had to judge the relevance of each statement by
answering "completely disagree", "partially disagree", "no opinion",
"partially agree", or "completely agree". All the statements have been listed
in a table, together with statistical data of the responses. Some of the
statements deal with practical matters, some with communication and
learning during the process of software development, some with
understandability of programs, some with problem solving through judging
suitable names, and the final two statements deal with typing.

The fourth section of the paper contains an analysis of the responses given
to the inquiries. The responses are analyzed both by combining all
responses together and by identifying different groups of respondents. In
addition to the natural organizational division of groups, specific groups are
formed by combining those respondents who reacted to a certain question in
the same way.

The responses are analyzed from several points of view and many
observations are made, including observations related to program
understanding and communication, observations on the thinking process
during programming, observations on practical matters, and observations
related to writing of programs. In addition, different respondent groups are
compared to each other. The following are the most interesting results of the
analysis:

• The natural naming approach can be considered useful in
software development. We could find nothing that would
prevent us from recommending the use of the natural naming in
practical work.

• Experienced software developers in industrial organizations
were more enthusiastic about natural naming than less



83

experienced developers or the software developers at the
research institute.

• Compared to using abbreviations, the respondents believe that
using natural names facilitates their thinking process. Trying to
invent descriptive names is obviously an important means for
problem analysis in software development.

• The understandability of programs is hard to assess, since the
respondents did not give clear opinions whether natural naming
facilitates communication or had improved the understand-
ability of source programs.

The concluding section of Paper VI contains discussion about the
implications of the results of the study. As the natural naming approach
seems to be useful in practice, both software development organizations and
the research community should focus more attention on the subject.



84

6  CONCLUDING DISCUSSION

6.1  RESEARCH SUMMARY AND EVALUATION

This thesis describes constructive research which involves some
empiricism. The purpose has been to investigate how we could facilitate the
use of natural naming in software development and maintenance. The
research has resulted in guidelines, methods, and experimental tools. Now,
the question is how well we have succeeded in this work.

The usual problem of software-engineering research also concerns this
work, as we can only provide a soft evaluation of what has been done. It is
usually difficult to provide hard and unambiguous evidence about the
usefulness of software engineering methods and tools. Fenton (1993),
Fenton et al. (1994), and Glass (1994) have noted that we have practically
no hard evidence about how good commonly-used software engineering
methods and tools are. We believe that the reason for this "software-
research crisis" is not solely that researchers were too lazy and reluctant to
provide practical evidence, but a partial reason is that it is hard to make
quantitative measurements when software development and maintenance
work is proceeding. If some measurements can be done in certain cases, it is
difficult to be sure that a certain method or tool has caused the mentioned
effect. Because of these reasons we have not tried to unambiguously show
that natural naming is always useful in software development. The
appropriateness of the natural naming approach is merely a hypothesis in
this thesis, though we have produced some positive empirical evidence.

Naming in programming and the use of natural languages in software
documentation are research subjects which have not attracted many
researchers. To our knowledge, this thesis is the most extensive publication
which deals with problems of naming in software documentation. Because
these problems have not been widely addressed by others, we wanted to
study them with a wide perspective, both in software development and
maintenance. The breadth of the research area has been an advantage for
this work. Because it is often difficult to explicitly separate software
development from maintenance, it is better to study them both in the same
research.  We noted earlier that the reasons for using abbreviations are
partly historical. Therefore, part of this work could have been performed
during the time when the first high-level programming languages were
invented, when there was only one wide computer research area. This also
is a good reason for having a wide research area in this thesis.

The research reported in this thesis has been evaluated in the included
papers. Below, we briefly discuss how well we have succeeded in each of
the research activities from (a1) to (a5) which were defined in Section 3.1:



85

(a1) The naming principles (Paper I) which were developed based
on the idea of natural naming have been received with much
interest by the software developers who have participated in the
naming courses, and who have been equipped with a naming
handbook. Therefore, we consider to have succeeded well in
this research activity. In one company, for example, the name
tables presented in Paper I have been hung on the walls close to
the desks of the software developers.

(a2) Paper II introduces a method to create a name repository prior
to the actual software development process, and thereby to
assure that all software documents would contain the same
names for the same concepts. The most significant contribution
of Paper II is that it explicitly shows that pre-development
name creation is possible, and the created names can be used in
software documents. Name creation is also an analytical
process which provokes the name creator to consider the
problems of the application domain. The name creation process
can thus be perceived as a domain analysis task.

The DNN method presented in Paper II has not been tested
extensively. The method is introduced in the context of one
application domain, that of library automation. We have tried to
use the DNN method in several other application domains, but
it has not always been successful. Fyson (1995) reports similar
experiences while working with the method. To make the
method more applicable over a wider range of application
domains, it should be refined in some way. It might be possible
to enlarge the name tables which are used during the first steps
of the name creation process. However, because applying the
DNN method is not time consuming, it can always be tried in
cases of new application domains. If it does not seem to
produce good results, other ways for terminology control
should be considered.

(a3) With the programming language presented in Paper III, we
have shown that there are possibilities of improving existing
programming languages by making them friendlier towards
natural naming. The advantages and weaknesses of the new
language are discussed in Paper III. However, it is hard to
prove that one programming language is better than another
language. Sammet (1972) notes that the reasons why some
programming languages become popular are not always
technical or scientific. The history of programming languages
has examples of this. Algol is considered a scientifically
excellent language, but it never became widely used in practice.
COBOL has not been favored by many scientists (Shneiderman



86

1985), but it is one of the most widely used languages in the
world. For these reasons, it is hard to say whether the Pacific
programming language would become popular if it were
developed as a commercial product.

Nevertheless, Pacific has features not found in other languages.
The most unique feature in the Pacific language is its type
system according to which type information is encoded in
names. In most other programming languages, names are
supposed to contain no information that can be exploited in
compilation. Having type information encoded in names
decreases redundant information in source programs.

(a4) Papers IV and V describe tools to convert abbreviated names
into natural ones in existing source programs. The InName tool
discussed in Paper V is specifically tailored for disabbreviating
source programs. We consider to have succeeded well in
finding ways to disabbreviate existing programs. The InName
tool has been successfully used to process programs from
various application domains. In a subjective evaluation, the
usefulness of the tool can be considered obvious, although we
cannot measure its performance explicitly. Using InName can
also be seen as a way for learning a previously unfamiliar
application that needs to be maintained.

(a5) This research activity aimed at finding more evidence of the
usefulness of natural naming. We formally questioned software
developers who had been given a handbook of natural naming,
or who had attended a course on natural naming, and described
the results in Paper VI.

We did achieve results in support of the use of natural naming.
One of the interesting findings was that experienced software
developers in industrial organizations were more enthusiastic
about natural naming than younger software developers or
people working in a research institute.

Considering the methodological approach, it is hard to consider that such an
issue as naming could be profoundly studied without trying to construct
something. When a researcher is trying to construct something (e.g. a
programming language or a tool) which should support something else (e.g.
natural naming), he or she learns more about that "something else". Doing
constructive research allowed us to get more personal experience in the use
of natural naming in practical software development work. While
developing the Pacific compiler and the InName tool, we used natural
naming in programming. We had only positive experiences in using it.



87

Because natural naming means using a natural language in software
documentation, our research is related to other fields studying natural
languages. These fields include linguistics, semiotics, and some areas of
philosophy. As discussed in Chapter 4, we could not find anything in these
fields which would cast doubt on the ideas presented in this thesis. In the
field of technical communication we found support for the idea of avoiding
abbreviations (Logsdon and Logsdon 1986, Ibrahim 1989). The fact that
this work can be related to some philosophical works indicates the
complexity of our research subject. Doing research related to natural
languages is difficult, because we cannot study languages very objectively.
To do that, we should perhaps step outside the domain of natural languages,
or stop using natural languages which is humanly impossible. Even this
thesis is written using a natural language. As we are interested in natural
languages in this thesis, we could even say that we have described this
research by using our research subject as a description tool.

6.2  POSSIBILITIES FOR FURTHER RESEARCH

More attention should be focused on the use of natural languages in
software documentation. The software developers who were questioned in
the inquiry described in Paper VI have the opinion that naming is a too
much neglected issue in software documentation. A natural language is an
essential component in most types of software documents (e.g. written
documents, data flow diagrams, and object diagrams). When studying
natural languages in software documentation, we should keep in mind that
natural languages are not static, but dynamic. They are changing all the time
(Fromkin and Rodman 1988). Technical development, including
development and introduction of new software systems, is one reason why
languages change. The most obvious way in which languages are changed
by technical development is the emergence of new words (see Figure 14).
Because technical development is accelerating rather than slowing down,
we have to take care that our languages are developing in the right direction.
Natural naming means taking care that the languages of software
documentation do not contain too many abbreviations.

Setting technical and language development processes in parallel as in
Figure 14 raises interesting philosophical questions. Did a microprocessor
exist before or only after it was given the name "microprocessor"? Was the
microprocessor invented at the moment when somebody called it for the
first time by that name? How much of the development is actually language
development? Although questions like these are difficult ones, they need to
be considered, at least in the case of software development, which results in



88

F
ig

ur
e 

14
. T

ec
hn

ol
og

ie
s 

an
d 

la
ng

ua
ge

s 
de

ve
lo

pi
ng

 in
 p

ar
al

le
l.

TECHNICAL DEVELOPMENT:

New technical innovations
emerging into the world

LANGUAGE DEVELOPMENT:

New words and word combinations
emerging into natural languages

ho
rs

e

do
m

es
ti

c 
an

im
al

m
ov

e

st
al

li
on

sa
dd

le ca
va

lr
y

ve
hi

cl
e

tr
ac

to
r

dr
iv

e
m

ot
or

 v
eh

ic
le

br
ak

e 
pe

da
l

ho
rs

ep
ow

er M
as

se
y-

Fe
rg

us
on

m
ic

ro
pr

oc
es

so
r

bi
t

by
te

ca
ch

e 
m

em
or

y

ad
dr

es
s 

bu
s pr

oc
es

so
r 

fa
m

ily

m
ac

hi
ne

 c
yc

le

di
sk

et
te

w
or

d 
pr

oc
es

si
ng

in
te

rn
et

de
bu

gg
in

g

so
ft

w
ar

e 
cr

is
is

. .
 .

. .
 .

T
IM

E



89

products that are merely conceptual than physical. A possible step towards
this kind of research would be to include the language change into the
theories about mental mechanisms of software development (Curtis 1985,
Hoc et al. 1990, Detienne and Soloway 1990).

Because this thesis has focused mostly on conventional procedural
programming, it could be fruitful to study natural naming with other styles
of software. As object-orientation is gaining popularity these days, natural
naming could be studied in object-oriented programming which may need
some specific naming principles. We believe, however, that it is not a
problem to use this naming approach in the context of other programming
paradigms, because we applied natural naming in logic programming with
Prolog while developing the InName tool.

One way to continue research related to natural naming is to use naturally
named programs in teaching. This is what the author of this thesis is going
to do. Although it is hard to measure how effectively people learn, it is
important to try to investigate the reactions of students when they are
exposed to programs which contain more natural words than conventional
examples of computer programs. Software development is also a learning
and communication process (Curtis et al. 1988). The process is already
active when software developers are learning the subjects of their profession
while studying in schools, colleges, and universities.



90

REFERENCES

Abbott, R. J. 1983. Program Design by Informal English Descriptions.
Communications of the ACM, Vol. 26, No. 11, pp. 882–894.

Ackerman, F. A., Buchwald, L. S. and Lewski, F. H. 1989. Software
Inspections: An Effective Verification Process. IEEE Software, Vol. 6, No.
3, pp. 31–36.

Aho, A.V., Sethi, R. and Ullman, J. D. 1986. Compilers: Principles, Tech-
niques, and Tools. Reading, Massachusetts: Addison–Wesley. 796 p.

Allen, J. 1987. Natural Language Understanding. Menlo Park, California:
The Benjamin Cummings Publishing Company. 574 p.

AMES. 1993. ESPRIT III Project no. 8156: Application Management
Environments and Support. Technical Annex. Grenoble, France: Cap
Gemini Innovation. 122 p.

Anand, N. 1988. Clarify Function! ACM SIGPLAN Notices, Vol. 23, No. 6,
pp. 69–79.

Andersen, P. B. 1990. A Theory of Computer Semiotics. Cambridge, United
Kingdom: Cambridge University Press. 416 p.

Baecker, R. M. and Marcus, A. 1990. Human Factors and Typography for
More Readable Programs. Reading, Massachusetts: Addison–Wesley. 348 p.

Balzer, R. 1985. A 15 Year Perspective on Automatic Programming, IEEE
Transactions on Software Engineering, Vol. SE-11, No. 11, pp. 1257–1268.

Barnett, M. P. 1969. Computer Programming in English. New York:
Harcourt, Brace & World, Inc. 260 p.

Bennett, K., Cornelius, B., Munro, M. and Robson, D. 1991. Software
Maintenance. In: McDermid, J. A. (ed.) Software Engineer's Reference
Book. Oxford, United Kingdom: Butterworth-Heinemann. Chapter 20. 18 p.

Biggerstaff, T. J. 1989. Design Recovery for Maintenance and Reuse.
Computer, Vol. 22, No. 7, pp. 36–49.

Boehm, B. W. 1988. A Spiral Model of Software Development and
Enhancement. Computer, Vol. 21, No. 5, pp. 61–72.

Boldyreff, C., Elzer, P., Hall, P., Kaaber, U., Keilmann, J. and Witt, J. 1990.
PRACTITIONER: Pragmatic Support for the Reuse of Concepts in Existing



91

Software. Proceedings of Software Engineering '90 (SE90). Cambridge,
United Kingdom: Cambridge University Press. Pp. 574–591.

Boldyreff, C., Burd, E. L. and Hather, R. M. 1994. An Evaluation of the
State of the Art for Application Management. Proceedings of the
International Conference on Software Maintenance. Los Alamitos,
California: IEEE Computer Society Press. Pp. 161–169.

Booch, G. 1991. Object-Oriented Design with Applications. Menlo Park,
California: The Benjamin Cummings Publishing Company. 565 p.

Bourne, C. P. and Ford, D. F. 1961. A Study of Methods for Systematically
Abbreviating English Words and Names. Journal of the ACM, Vol. 8, pp.
538–552.

Brooks, F. P. 1987. No Silver Bullet: Essence and Accidents of Software
Engineering. IEEE Computer, Vol. 20, No. 4, pp. 10–19.

Brooks, R. 1978. Using a Behavioral Theory of Program Comprehension in
Software Engineering. Proceedings of 3th International Conference on
Software Engineering. Los Alamitos, California: IEEE Computer Society
Press. Pp. 196–201. Also in (Parikh and Zvegintzov 1983. Pp. 109–114).

Brooks, R. 1983. Towards a Theory of the Comprehension of Computer
Programs. International Journal of Man-Machine Studies, Vol. 18, No. 6,
pp. 543–554.

Caine, S. H. and Gordon, E. K. 1975. PDL – A Tool for Software Design.
In: Freeman, P. and Wasserman, A. I. (eds.) 1983. Tutorial on Software
Design Techniques. 4th ed. Los Alamitos, California: IEEE Computer
Society Press. Pp. 485–490.

Carroll, J. B. (ed.) 1956. Language, Thought, and Reality: Selected Writings
of Benjamin Lee Whorf. Cambridge, Massachusetts: The M.I.T. Press. 278 p.

Carter, B. 1982. On Choosing Identifiers. ACM SIGPLAN Notices, Vol. 17,
No. 5, pp. 54–59.

Chikofsky, E. J. and Cross, J. H. 1990. Reverse Engineering and Design
Recovery: A Taxonomy. IEEE Software, Vol. 7, No. 1, pp. 13–17.

Ching, E. 1983. Problems Caused by the Neologism in Teaching Chinese.
Annual Meeting of the American Council on the Teaching of Foreign
Language. San Francisco, California, November 24–26, 1983. 12 p.

Coad, P. and Yourdon, E. 1990. Object Oriented Analysis. Englewood
Cliffs, New Jersey: Prentice-Hall. 223 p.



92

Cordes, D. and Brown, M. 1991. The Literate-Programming Paradigm.
Computer, Vol. 24, No. 6, pp. 52–61.

CSTB (Computer Science Technology Board). 1990. Scaling Up: A
Research Agenda for Software Engineering. Communications of the ACM,
Vol. 33, No. 3, pp. 281–293.

Curtis, B., Sheppard, S. B., Milliman, P., Borst, M. A. and Love, T. 1979.
Measuring the Psychological Complexity of Software Maintenance Tasks
with the Halstead and McCabe Metrics. IEEE Transactions on Software
Engineering, Vol. SE-5, No. 2, pp. 96–104.

Curtis, B. 1984. Fifteen Years of Psychology in Software Engineering:
Individual Differences and Cognitive Science. Proceedings of 7th
International Conference on Software Engineering. Los Alamitos,
California: IEEE Computer Society Press. Pp. 97–106.

Curtis, B. (ed.) 1985. Tutorial: Human Factors in Software Development.
2nd ed. Los Alamitos, California: IEEE Computer Society Press. 730 p.

Curtis, B., Krasner, H. and Iscoe, N. 1988. A Field Study of Software
Design Process for Large Systems. Communications of the ACM, Vol. 31,
No. 11, pp. 1268–1287.

Cusumano, M. A. 1989. The Software Factory: A Historical Interpretation.
IEEE Software, Vol. 6, No. 3, pp. 23–30.

Detienne, F. and Soloway, E. 1990. An Empirically-Derived Control
Structure for the Process of Program Understanding. International Journal
of Man-Machine Studies, Vol. 33, No. 3, pp. 323–342.

Eco, U. 1984. Semiotics and the Philosophy of Language. London:
Macmillan Press. 241 p.

Eco, U. 1990. The Limits of Interpretation. Bloomington: Indiana
University Press. 296 p.

ESA. 1991. PSS-05-0 Issue 2. ESA Software Engineering Standards, Issue
2. Noordwijk, The Netherlands: European Space Agency. 130 p.

Fenton, N. 1993. How Effective Are Software Engineering Methods?
Journal of Systems and Software, Vol. 22, No. 2, pp. 141–146.

Fenton, N., Pfleeger, S. L. and Glass, R. L. 1994. Science and Substance: A
Challenge to Software Engineers. IEEE Software, Vol. 11, No. 4, pp. 86–95.

Feyerabend, P. 1975. Against Method: Outline of an Anarchistic Theory of
Knowledge. London: New Line Books. 339 p.



93

Fromkin, V. and Rodman, R. 1988. An Introduction to Language. 4th ed.
New York: Holt, Rinehart and Winston, Inc. 460 p.

Fyson, J. 1995. An Investigation into Methods of Improving Program
Comprehension through Better Documentation. Project Report. Durham, United
Kingdom: University of Durham, Department of Computer Science. 78 p.

Gellenbeck, E. M. and Cook, C. R. 1991. Does Signaling Help Professional
Programmers Read and Understand Computer Programs? Technical Report
91-60-3. Corvallis, Oregon: Oregon State University, Computer Science
Department. 20 p.

Glass, R. L. 1994. The Software-Research Crisis. IEEE Software, Vol. 11,
No. 6, pp. 42–47.

Green, T. R. G. 1990. The Nature of Programming. In: Hoc, J. M., Green, T.
R. G., Samurcay, R. and Gilmore, D. J. (eds.) Psychology of Programming.
London: Academic Press. Pp. 21–44.

Grogono, P. 1989. Comments, Assertions, and Pragmas. ACM SIGPLAN
Notices, Vol. 24, No. 3, pp. 79–84.

Hakalahti, H., Lappalainen, P. and Tervonen, M. 1978. Minitietokoneet
[Minicomputers]. Oulu, Finland: Sähköinsinöörikilta ry., Oulun Yliopisto.
431 p. (In Finnish.)

Hall-Quest, A. L. 1979. Abbreviations. In: Collier's Encyclopedia. Volume
1. New York: Macmillan. Pp. 13–14.

Harel, D. 1992. Biting the Silver Bullet, Toward a Brighter Future for
System Development. IEEE Computer, Vol. 25, No. 1, pp. 8–20.

Hoc, J. M., Green, T. R. G., Samurcay, R. and Gilmore, D. J. (eds.) 1990.
Psychology of Programming. London: Academic Press. 290 p.

Hodges, A. 1983. Alan Turing: The Enigma. New York: Simon and
Schuster. 571 p.

Horowitz, E. (ed.) 1987. Programming Languages: A Grand Tour. 3rd ed.
Rockville, Maryland: Computer Science Press. 583 p.

Ibrahim, A. M. 1989. Acronyms Observed. IEEE Transactions on
Professional Communication, Vol. 32, No. 1, pp. 27–28.

ICSM. 1994. Proceedings of International Conference on Software
Maintenance. Los Alamitos, California: IEEE Computer Society Press. 449 p.



94

Iivari, J. 1991. A Paradigmatic Analysis of Contemporary Schools of IS
Development. European Journal of Information Systems, Vol. 1, No. 4, pp.
249–272.

Intel. 1979. MCS-80/85 Family User's Manual. Santa Clara, California:
Intel Corporation.

ISO 9000-3. 1991. Quality Management and Quality Assurance Standards -
Part 3: Guidelines for the Application of ISO 9001 to the Development,
Supply and Maintenance of Software. Geneva, Switzerland: International
Organization for Standardization. 15 p.

Jackson, M. 1994. Problems, Methods, and Specialization. Software
Engineering Journal, Vol. 9, No. 6, pp. 249–255. (A slightly condensed
version of the paper is in: IEEE Software, Vol. 11, No. 6, 1994, pp. 57–62.)

Jarman, D. 1993. Wittgenstein (motion picture). London: Channel Four and
British Film Institute. 75 minutes.

Johnson, W. L. 1987. Some Comments on Coding Practice. ACM
SIGSOFT Software Engineering Notes, Vol. 12, No. 2, pp. 32–35.

Jokela, T. 1991. A Modeling Method for Early Validation of Embedded
Systems. Licentiate Thesis. Oulu, Finland: University of Oulu, Department
of Electrical Engineering. 80 p.

Järvinen, P. and Järvinen, A. 1993. Tutkimustyön metodeista [On Methods
in Research Work]. Tampere, Finland: University of Tampere, Department
of Information Processing Science. 121 p. (In Finnish with English
Abstract.)

Kaelbling, M. J. 1988. Programming Languages Should NOT Have Comment
Statements. ACM SIGPLAN Notices, Vol. 23, No. 10, pp. 59–60.

Kauranen, I., Ropponen, P. and Aaltonen, M. 1993. Tutkimusraportin
kirjoittamisen opas [A Guide for Writing Research Reports]. Espoo,
Finland: Helsinki University of Technology. 113 p. (In Finnish.)

Keller, D. A. 1990. Guide to Natural Naming. ACM SIGPLAN Notices,
Vol. 25, No. 5, pp. 95–102.

Kerola, P. and Freeman, P. 1981. A Comparison of Lifecycle Models.
Proceedings of the 5th International Conference on Software Engineering.
Los Alamitos, California: IEEE Computer Society Press. Pp. 90–99.

Knuth, D. E. 1984. Literate Programming, The Computer Journal, Vol.27,
No. 2, 1984, pp. 97–111.



95

Kuhn, T. S. 1962. The Structure of Scientific Revolutions. International
Encyclopedia of Unified Science. Volume II. Number 2. Chicago, Illinois:
The University of Chicago Press. 172 p.

Laitinen, K. 1992. Document Classification for Software Quality Systems.
ACM SIGSOFT Software Engineering Notes, Vol. 17, No. 4, pp. 32–39.

Laitinen, K. and Taramaa, J. 1994. A Theory to Support the Use of Natural
Naming in Software Documentation. Working papers series B33. Oulu,
Finland: University of Oulu, Department of Information Processing
Science. 27 p. ISBN 951-42-3967-9.

Laitinen, K. 1995. Estimating Understandability of Software Documents.
Working Paper. Oulu, Finland: VTT Electronics. 12 p. To appear in ACM
SIGSOFT Software Engineering Notes in January or April 1996.

Ledgard, H., Whiteside, J. A., Singer, A. and Seymour, W. 1980. The
Natural Language of Interactive Systems. Communications of the ACM,
Vol. 23, No. 10, pp. 556–563.

Ledgard, H. and Tauer, J. 1987. Professional Software. Volume II.
Programming Practice. Reading, Massachusetts: Addison–Wesley. 220 p.

Logsdon, D. and Logsdon, T. 1986. The Curse of the Acronym. In:
Proceedings of the International Professional Communications Conference.
Washington D.C: IEEE. Pp. 145–152.

MacLennan, B. J. 1983. Principles of Programming Languages: Design,
Evaluation, and Implementation. New York: Holt, Rinehart and Winston.
544 p.

Marca, D. 1981. Some Pascal Style Guidelines. ACM SIGPLAN Notices,
Vol. 16, No. 4, pp. 70–80.

Matsumoto, Y. 1987. A Software Factory: An Overall Approach to
Software Production. In: Freeman, P. (ed.) Software Reusablity. Los
Alamitos, California: IEEE Computer Society Press. Pp. 155–178.

Nelson, R. J. 1992. Naming and Reference. London: Routledge. 297 p.

Newsted, P. R. 1979. Flowchart-Free Approach to Documentation. Journal
of Systems Management, Vol. 30, No. 4, pp. 18–21.

Oman, P. W. and Cook, C. R. 1991. A Programming Style Taxonomy. The
Journal of Systems and Software, Vol. 15, No. 3, pp. 287–301.

Page-Jones, M. 1988. The Practical Guide to Structured Systems Design.
2nd ed. Englewood Cliffs, New Jersey: Prentice Hall. 249 p.



96

Parikh, G. and Zvegintzov, N. (eds.) 1983. Tutorial on Software Maintenance.
Los Angeles, California: IEEE Computer Society Press. 359 p.

Parnas, D. L. and Clements P. C. 1986. A Rational Design Process: How
and Why to Fake It. IEEE Transactions on Software Engineering, Vol. SE-
12, No. 2, pp. 251–257.

Plum, T. 1984. C Programming Guidelines. Englewood Cliffs, New Jersey:
Prentice Hall. 146 p.

Potts, C. 1993. Software-Engineering Research Revisited. IEEE Software,
Vol. 10, No. 5, pp. 19–28.

Prieto-Diaz, R. and Arango, G. 1991. Domain Analysis and Software
System Modeling. Los Alamitos, California: IEEE Computer Society Press.
312 p.

Raghavan, S. A. and Chand, D. R. 1989. Diffusing Software-Engineering
Methods. IEEE Software, Vol. 6, No. 4, pp. 81–90.

ReaGeniX. 1994. ReaGeniX: Real-Time Application Generator - User's
Manual. Oulu, Finland: VTT Electronics. 32 p.

Rowe, N. C. 1985. Naming in Programming. Computers in Schools, Vol. 2,
No. 2–3, pp. 241–253.

Rowe, N. C. and Guglielmo, E. J. 1993. Exploiting Captions in Retrieval of
Multimedia Data. Information Processing and Management, Vol. 29, No. 4,
pp. 453–461.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorensen, W. 1991.
Object Oriented Modeling and Design. Englewood Cliffs, New Jersey:
Prentice Hall. 538 p.

Saeki, M., Horai, H. and Enomoto, H. 1989. Software Development Process
from Natural Language Specification. Proceedings of the 11th International
Conference on Software Engineering. Los Alamitos, California: IEEE
Computer Society Press. Pp. 64–73.

Sammet, J. E. 1966. The Use of English as a Programming Language.
Communications of the ACM, Vol. 9, No. 3, pp. 228–230.

Sammet, J. E. 1972. Programming Languages: History and Future.
Communications of the ACM, Vol. 15, No. 7, pp. 601–610.

Sammet, J. E. 1981. The Early History of COBOL. In: Wexelblat, R. L. (ed.)
History of Programming Languages. London: Academic Press. Pp. 199–243.



97

Seppänen, V. 1990. Acquisition and Reuse of Knowledge to Design
Embedded Software. VTT Publications 66. Espoo, Finland: Technical
Research Centre of Finland (VTT). 216 p. + app. 10 p.

Sheppard, S. B., Curtis, B., Milliman, P. and Love, T. 1979. Modern Coding
Practices and Programmer Performance. Computer, Vol. 12, No. 12, pp. 41–
49.

Shneiderman, B. 1980. Software Psychology: Human Factors in Computer
and Information Systems. Cambridge, Massachusetts: Winthrop Publishers.
320 p.

Shneiderman. B. 1985. The Relationship between COBOL and Computer
Science. In: Horowitz, E. (ed.) Programming Languages: A Grand Tour. 3rd
ed. Rockville, Maryland: Computer Science Press. Pp. 417–421. Also in:
Annals of the History of Computing, Vol. 7, No. 4. Reston, Virginia:
AFIPS.

Smeaton, A. F. 1992. Progress in the Application of Natural Language
Processing to Information Retrieval Tasks. The Computer Journal, Vol. 35,
No. 3, pp. 268–278.

Smith, M. and Taffler, R. 1992. Readability and Understandability:
Different Measures of the Textual Complexity of Accounting Narrative.
Accounting & Accountability Journal, Vol. 5, No. 4, pp. 84–98.

Soloway, E. and Ehrlich, K. 1984. Empirical Studies of Programming
Knowledge. IEEE Transactions on Software Engineering, Vol. SE-10, No.
5, pp. 595–609. Also in (Curtis 1985).

Soloway, E. 1986. Learning to Program = Learning to Construct
Mechanisms and Explanations. Communications of the ACM, Vol. 29, No.
9, pp. 850–858.

Sowa, J. F. 1990. Finding Structure in Knowledge Soup. In: Part II of
Proceedings of InfoJapan'90 International Conference. Tokyo: Information
Processing Society of Japan. Pp. 245–253.

Suitiala, R. 1993. Work-Oriented Development of Interactive Software
Tools. Understanding the Work of Software Maintainers and Making an
Interactive Tool for Them. VTT Publications 139. Espoo, Finland:
Technical Research Centre of Finland (VTT). 176 p. + app. 10 p.

Swartout, W. and Balzer, R. 1982. On the Inevitable Intertwining of
Specification and Implementation. Communications of the ACM, Vol. 25,
No. 7, pp. 438–440.



98

Taramaa, J. and Oivo, M. 1993. Evaluation of Software Maintenance of
Embedded Computer Systems. Proceedings of International Symposium on
Engineered Software Systems. Singapore: World Scientific Publishing Co.
Pp. 193–203.

Tarasti, E. 1990. Johdatusta semiotiikkaan [An Introduction to Semiotics].
Helsinki, Finland: Gaudeamus. 317 p. (In Finnish.)

Tausworthe, R. C. 1992. Information Models of Software Productivity:
Limits on Productivity Growth. Journal of Systems and Software, Vol. 19,
No. 2, pp. 185–201.

Teasley, B. E. 1994. The Effects of Naming Style and Expertise on Program
Comprehension. International Journal of Human-Computer Studies, Vol.
40, No. 5, pp. 757–770.

Tichy, W. F., Habermann, N. and Prechelt, L. 1993. ACM SIGSOFT
Software Engineering Notes, Vol. 18, No. 1, pp. 35–48.

Turing, A. M. 1937a. On Computable Numbers, with an Application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society,
Ser. 2, Vol. 42, pp. 230–265. Reprinted in: Davis M. (ed.) 1965. The
Undecidable: Basic Papers on Undecidable Propositions, Unsolvable
Problems and Computable Functions. Hewlett, New York: Raven Press. Pp.
116–151.

Turing, A. M. 1937b. On Computable Numbers, with an Application to the
Entscheidungsproblem. A Correction. Proceedings of the London
Mathematical Society, Ser. 2, Vol. 43, pp. 544–546. Reprinted in: Davis M.
(ed.) 1965. The Undecidable: Basic Papers on Undecidable Propositions,
Unsolvable Problems and Computable Functions. Hewlett, New York:
Raven Press. Pp. 152–154.

Ward, P. T. and Mellor, S. J. 1985. Structured Development for Real-Time
Systems, Vol. 1–3. New York: Yourdon Press. 509 p.

Webster's. 1989. Webster's Dictionary of the English Language. New York:
Lexicon Publications. 1149 p.

Weinberg, G. M. 1971. The Psychology of Computer Programming. New
York: Van Nostrand Reinhold Company. 288 p.

Weissman, L. M. 1974. A Methodology for Studying the Psychological
Complexity of Computer Programs. Ph.D. Thesis. Toronto: University of
Toronto, Department of Computer Science. 231 p.

Welsh, J. and Han, J. 1994. Software Documents: Concepts and Tools.
Software – Concepts and Tools, Vol. 15, No. 1, pp. 12–25.



99

Wittgenstein, L. 1921. Tractatus Logico Philosophicus. London: Routledge.
207 p.

Wittgenstein, L. 1953. Philosophical investigations. Oxford, United
Kingdom: Basil Blackwell. 250 p.

WPC. 1993. Proceedings of the Second Workshop on Program
Comprehension. Los Alamitos, California: IEEE Computer Society Press.
193 p.

Yngve, V. H. 1986. Linguistics as a Science. Indianapolis: Indiana
University Press. 120 p.

Yonezaki, N. 1989. Natural Language Interface for Requirements
Specification. In: Matsumoto, Y. and Ohno, Y. (eds.) Japanese Perspectives
in Software Engineering. Singapore: Addison-Wesley. Pp. 41–76.

Yourdon, E. 1989. Modern Structured Analysis. Englewood Cliffs, New
Jersey: Prentice-Hall. 717 p.

Zemanek, H. 1974. Formalization: Past, Present, and Future. In: Shaw, B.
(ed.) Formal Aspects of Computing Science: Proceedings of Joint IBM
University of Newcastle upon Tyne Seminar. Pp. 177–197. Also in: Lecture
Notes in Computer Science 23: Programming Methodology. Berlin:
Springer-Verlag, 1975.



Published by Series title, number and
report code of publication

VTT Publications 243
VTT–PUBS–243

Author(s)
Laitinen, Kari
Title

Natural naming in software development and maintenance
Abstract
The understandability of source programs and other types of software documents is important for
several reasons. Software developers have to read documents written by their colleagues, and
software maintainers often need to study old source programs about which they have no previous
knowledge. Naming is one important factor that affects how understandable source programs are.
In general, natural naming means avoiding abbreviations in software documentation. In the context
of source programs, natural naming means that program elements such as variables, constants,
tables, and functions should be named using whole natural words of a natural language with
respect to the grammatical rules of the same natural language.
This thesis introduces methods and tools to facilitate the use of natural naming in software
development and maintenance. To support the use of natural naming in programming, source
program elements are classified and specific naming rules provided for different program
elements. An analytical name creation method is provided to make natural names in source
programs consistent with written text in other types of software documents.
Commonly used programming languages do not require any specific naming rules to be followed.
For this reason, an experimental programming language is introduced in this thesis. The language
is designed to support the use of natural naming. Existing source programs usually contain many
abbreviated names. To make existing programs more maintainable, intelligent disabbreviation
tools have been developed as part of this study. Disabbreviation means replacing abbreviated
names with natural ones in existing source programs.
The naming methods and tools have been evaluated by testing them in laboratory experiments and
in practical software development and maintenance situations. The natural naming principles have
been taught to software developers in different organizations. According to feedback received from
users and the data collected in the experiments, natural naming is a promising approach to increase
the understandability of software documents, and the methods and tools introduced in this thesis
facilitate the use of this naming approach.

Keywords
computer systems programs, computer programs, computers, programming, software development, software
documentation, maintenance, naming, natural languages, human factors engineering, documents

Activity unit
VTT Electronics, Kaitoväylä 1, P.O.Box 1100, FIN–90571 OULU, Finland

ISBN Project number
951–38–4781–0 (soft back ed.)
951–38–6249–6 (URL:http://www.vtt.fi/inf/pdf/)

Date Language Pages Price
September 1995 English 99 p. + app. 70 p. D

Name of project Commissioned by

Series title and ISSN Sold by
VTT Publications
1235–0621 (soft back ed.)
1455–0849 (URL: http://www.vtt.fi/inf/pdf/)

VTT Information Service
P.O.Box 2000, FIN–02044 VTT, Finland
Phone internat. +358 9 456 4404
Fax +358 9 456 4374




	ABSTRACT
	PREFACE
	ACKNOWLEDGMENTS
	LIST OF INCLUDED PUBLICATIONS
	CONTENTS
	1 INTRODUCTION
	1.1 SOFTWARE DEVELOPMENT: A SHORT HISTORY
	1.2 SOFTWARE DEVELOPMENT AS A DOCUMENTATION PROCESS
	1.2.1 Source programs and other software documents
	1.2.2 Documents in the development process
	1.2.3 Documents vs. knowledge
	1.2.4 Documents in software maintenance

	1.3 THE IDEA OF NATURAL NAMING
	1.4 OUTLINE OF THE THESIS

	2 PROGRAMMING AND NAMING STYLES
	2.1 THE CONCEPT OF PROGRAMMING STYLE
	2.2 DIFFERENT NAMING STYLES
	2.3 JUSTIFYING THE USE OF NATURAL NAMING

	3 RESEARCH PROBLEM
	3.1 PROBLEM DEFINITION AND RESEARCH ACTIVITIES
	3.2 RESEARCH METHODS
	3.3 JUSTIFYING THE METHODOLOGICAL APPROACH

	4 RELATED WORK
	4.1 INTRODUCTION TO RELATED WORK
	4.2 APPROACHES TO INCREASING UNDERSTANDABILITY OF SOURCE PROGRAMS
	4.2.1 Guidelines for naming and programming style
	4.2.2 Program visualization tools
	4.2.3 Literate programming
	4.2.4 Easy-to-read programming languages: COBOL and SNAP

	4.3 TOOLS TO AID IN SOFTWARE MAINTENANCE
	4.4 FIELDS OUTSIDE SOFTWARE DOMAIN: LINGUISTICS, SEMIOTICS, AND PHILOSOPHY
	4.5 DISCUSSION OF RELATED WORK

	5 INTRODUCTION TO THE INCLUDED PAPERS
	5.1 PAPER I: GUIDELINES FOR NATURAL NAMING
	5.2 PAPER II: A METHOD FOR INITIAL NAME CREATION
	5.3 PAPER III: A PROGRAMMING LANGUAGE TO SUPPORT NATURAL NAMING
	5.4 PAPER IV: DISABBREVIATION OF TECHNICAL TEXT
	5.5 PAPER V: DISABBREVIATION OF SOURCE PROGRAMS
	5.6 PAPER VI: AN EMPIRICAL STUDY OF THE USE OF NATURAL NAMING

	6 CONCLUDING DISCUSSION
	6.1 RESEARCH SUMMARY AND EVALUATION
	6.2 POSSIBILITIES FOR FURTHER RESEARCH

	REFERENCES



