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ABSTRACT

The topics introduced in this thesis are: the Finnish load research project, a
simple form customer class load model, analysis of the origins of cus-
tomer’s load distribution, a method for the estimation of the confidence in-
terval of customer loads and Distribution Load Estimation (DLE) which
utilises both the load models and measurements from distribution networks.

These developments bring new knowledge and understanding of electricity
customer loads, their statistical behaviour and new simple methods of how
the loads should be estimated in electric utility applications. The economic
benefit is to decrease investment costs by reducing the planning margin
when the loads are more reliably estimated in electrc utilities. As the Fin-
nish electricity production, transmission and distribution is moving towards
the de-regulated electricity markets, this study also contributes to the devel-
opment for this new situation.

The Finnish load research project started in 1983. The project was initially
coordinated by the Association of Finnish Electric Utilities and 40 utilities
joined the project. Now there are over 1000 customer hourly load record-
ings in a database.

A simple form customer class load model is introduced. The model is de-
signed to be practical for most utility applications and has been used by the
Finnish utilities for several years. There is now available models for 46 dif-
ferent customer classes. The only variable of the model is the customer’s
annual energy consumption. The model gives the customer’s average hourly
load and standard deviation for a selected month, day and hour.

The statistical distribution of customer loads is studied and a model for
customer electric load variation is developed. The model results in a
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lognormal distribution as an extreme case. The model is easy to simulate
and produces distributions similar to those observed in load research data.
Analysis of the load variation model is an introduction to the further analy-
sis of methods for confidence interval estimation.

Using the `simple form load model´, a method for estimating confidence
intervals (confidence limits) of customer hourly load is developed. The two
methods selected for final analysis are based on normal and lognormal dis-
tribution estimated in a simplified manner. The simplified lognormal esti-
mation method is a new method presented in this thesis. The estimation of
several cumulated customer class loads is also analysed.

Customer class load estimation which combines the information from load
models and distribution network load measurements is developed. This
method, called Distribution Load Estimation (DLE), utilises information
already available in the utility’s databases and is thus easy to apply. The
resulting load data is more reliable than the load models alone. One impor-
tant result of DLE is the estimate of the customer class’ share to the distri-
bution system’s total load.
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SYMBOLS

AFEU Association of Finnish Electric Utilities
APL A Programming Language
DLE Distribution Load Estimation
DSM Demand Side Management
δk condition (0 or 1) if the time of use τk of appliance k exceeds T
(∆τk)i change of τk in step i of a sequence of random changes
∆(WT)i change of WT in step i of a sequence of random changes
d(t) day type at time t
ε, e, v symbols for random error of time, energy, etc.
E{X} expected value of random variable X
ϕ( )X normal distribution density function
F(X) normal distribution function
G a function representing the weighted sum of errors in DLE
g(X) transformation function of sample data
h(t) hour of day at time t
k1, k2 coefficients of Velander’s formula
LNE LogNormal distribution Estimation method for confidence

interval
LNEA LogNormal distribution Estimation method for confidence

interval, variation A
LNEB LogNormal distribution Estimation method for confidence

interval, variation B
Lα model of confidence interval α
�Lα estimated model parameter of confidence interval α, normal

distribution
Lc(m,d,h) ratio of hourly load to annual energy of class c, month = m,

day = d, hour = h
Λ( )X lognormal distribution density function
m(t) season (month) at time t
m1, m2,... distribution parameter, mean: m1 = normal distribution, m2 =

lognormal distribution, m3a and m3b lognormal distribution, m4

= simplified lognormal distribution
NE Normal distribution Estimation method for confidence intervals
N(0,1) normal distribution with µ = 0 (mean) and σ = 1 (standard de-

viation)
Pr{℘} probability of event ℘
P average active power load
P active power load
PN,k installed (nominal) active power of an electric appliance k
Pα α percentile of power Pr{P≤Pα}=α/100
q1 error of α[%] in confidence interval estimation
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q2 error of Lα in confidence interval estimation expressed in [%]
r(Wi) Kapteyn’s reaction function
σ parameter of normal distribution and lognormal distribution
σ{ X} standard deviation of random variable X
s1, s2,.. distribution parameter, standard deviation: s1 = normal distri-

bution, s2 = lognormal distribution, s3a and s3b lognormal distri-
bution, s4 = simplified lognormal distribution

sk(t) state of appliance k
SCADA Supervisory Control And Data Acquisition
SLNE Simplified LogNormal distribution Estimation method for con-

fidence intervals
T time interval of the integration of energy WT consumed in time

T to calculate load P = WT / T
t time (point)
τk time of use of an appliance k (time period)
θ temperature
Uα α percentile of unit normal distribution
w energy
Wa annual energy
ξ parameter of lognormal distribution
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1  INTRODUCTION

The electric load in electricity distribution varies with time and place (See
examples of load variation of three types of customers in Fig.1) and the
power production and distribution system must respond to the customers’
load demand at any time. Therefore modern electricity distribution utilities
need accurate load data for pricing and tariff planning, distribution network
planning and operation, power production planning, load management,
customer service and billing and finally also for providing information to
customers and public authorities.

The load information mostly needed is how a customer or a group of cus-
tomers uses electric energy at different hours of the day, different days of
the week and seasons of the year and what their share of the utility's total
load is and how loads of different customers aggregate in different locations
of a distribution network.

Residential

168144120967248240
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0
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hours

Direct el.heating

168144120967248240
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Industry 1-shift

168144120967248240

300

250

200

150

100

50

0
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hours

Fig. 1. Examples of customer load variation over one week for three differ-
ent types of customers.

This study concentrates on two problems: estimation of customer’s hourly
load using statistics from load research measurements and the distribution
load estimation based both on load models and the direct load measure-
ments from the distribution network.
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2  LOAD INFORMATION IN ELECTRICITY
DISTRIBUTION

2.1  GENERAL

The mission of the electric power utilities is to service the customer’s needs
of electric energy at optimal costs. The most important thing characterising
the service is the load supplied to customers. Other factors are reliability,
number and length of outages, the quality of voltage and mechanical and
electrotechnical security of installations.

The load data is needed for defining the requirements of the network’s
transmission capacity, approximating the transmission losses or estimating
the existing network’s capability to transfer increasing loads. The planning
of new generation capacity or energy purchase requires knowledge of cus-
tomers’ load variation (Fig. 2).

? ? ?? ?

Fig. 2. Load data is needed for planning and dimensioning of electricity
production, transmission and distribution.
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The physical properties of network components are usually far more accu-
rately known than the load, and the accuracy of load estimates and forecasts
is the main factor determining the overall accuracy of several power sys-
tems’ computations. There is a continuous need to improve the knowledge
of loads in electric power systems by collecting and analysing more load
information, developing better load models and developing new applica-
tions utilising all the new information available (Lakervi & Holmes 1995
pp. 209 - 221).

2.2  THE MEANING OF LOAD

The load data may be formulated in several ways according to the require-
ments of applications. The most important specifications for load data are
• System location: customer site, low voltage network, transformer, etc.
• Customer class: industry, service, residential, electric heating, etc.
• Time: time of year, day of week, time of day.
• Dimension: A, kW, cos φ.
• Time resolution of the load recording: 5 min, 15 min, 30 min, 60 min,

etc.

The load influences the distribution network causing energy losses and volt-
age drop. While the voltage U is approximately constant, the current and the
load factor alternate with the load. The relation between load current I, ac-
tive power load P and load factor cos φ is defined in a three phase distribu-
tion system by the equation

P U I= ⋅ ⋅ ⋅3 cosφ ( 1 )

The load current causes thermal losses in electrical components
(conductors, breakers, transformers). The thermal losses are proportional to
the resistance of the component and square of the load current. The heat
causes ageing and damage to the components. In some components, like
power transformers, such phenomena is critical. On the other hand the en-
ergy losses increase the transmission costs in the distribution network.
Transmission losses may grow to over 10 % of the total transmitted energy.

For example, the thermal loss load of a power transformer is defined by
equation ( 2 ) where power loss Pθ is the thermal loss load, PN the thermal
loss in nominal current, IN is nominal current and I is the load current (for
example 500 kVA transformer’s PN = 5 kW):

P P I
IN

N
θ ≈ ( )2 ( 2 )
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The loading capability of a transformer is determined by the thermal ageing
of the transformer’s coil’s insulators. The durability of a transformer can be
estimated when the load of the transformer is known (Erhiö 1991). There-
fore load data is essential in calculations finding the most economical tar-
gets for network reinforcements.

With energy business the pricing of electricity is determined by the cus-
tomer’s energy use at different times and the amount of incremental power
demand the customer causes to the energy selling company’s energy pur-
chase. The planning of the time of day tariffs and seasonal tariffs requires
knowledge of the energy shares for different time/price categories. These
values depend on the customer’s load variation.

The electricity market in Finland calculates energy sales on a one hour ba-
sis.

2.3  FACTORS INFLUENCING THE ELECTRIC LOAD

Usually all the needed load data is not available directly and the load values
must be estimated and forecasted using other available information. The
load calculations for different locations in the radially operated distribution
network are rather straightforward when the customers’ loads are known.

The load modelling and forecasting is based on knowledge of several fac-
tors influencing the customer’s load. The most important factors are:
• Customer factors: type of consumption, type of electric heating, size of

building, electric appliances, number of employees, etc..
• Time factors: time of day, day of week ( + special days) and time of year.
• Climate factors: temperature, humidity, solar radiation, etc.
• Other electric loads correlated to the target load.
• Previous load values and load curve patterns.

The relation of the factors to the electric loads are handled by various mod-
elling techniques. A wide range of research of modelling electric loads by
mathematical methods have been reported. In Finland mathematical model-
ling studies were done in Helsinki University’s System Analysis laboratory
by Karanta & Ruusunen (1991) for electric utility’s total electric load and
Räsänen (1995) for single customers’ loads.

Load modelling and modelling applications for Finnish power companies
have also been studied by Meldorf (1995) who also presents a complete
utility level load modelling application software.
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2.3.1  Customer factors

The customer factors of electricity consumption are primarily the number,
type and size of the electrical equipment of the customer. While the electri-
cal equipment and installations vary from customer to customer there are
recognised types of customers which have similar properties. Such customer
types are for example: residential, electric heating, agriculture, small indus-
try and service.

2.3.2  Time factor

The electric load varies with time depending on human and economic activ-
ity. There is more load in the day time and less load at night. Also the load
varies between week days and usually the load is lower at weekend than on
week days. The cyclic time dependency leads to analysing the loads: on
hour of day basis, day of week basis and time of year basis.

The time factor is important in the Finnish power system because the pro-
duction capacity is limited and the price of the incremental power to maxi-
mum load is sometimes very high. The customer load’s coincidence with
the energy seller’s own purchase is a very important pricing factor.

2.3.3  Climate factors

The weather factors like out-door temperature, wind speed, sun radiation
etc. influence the load. The out door temperature mainly influences custom-
ers with electric heating. The temperature varies over a wide range in the
Finnish winter (about 20 degrees C change in a few days is normal!). This
causes a lot of variation in temperature dependent loads, especially electric
heating.

Temperature is not the only factor, as the demand for heating energy is also
dependent on sun radiation, wind speed and humidity. Also the automatic
control of different heating equipment reacts to the temperature changes in
different ways. However in practice only the out door temperature is taken
into account as knowledge of the values of the other factors is limited.

Although the temperature correlation is obvious for total heating energy use,
the interaction between hourly load and out-door temperature is more com-
plicated (Räsänen 1995). This is because of the automatic thermostat con-
trol of the heating equipment, which among other things, also interacts with
the other uses of electricity. For example, heat storage is designed to store
the heating energy at night and transfer it to day time use.
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2.3.4  Other electric loads

Electric loads are sometimes influenced by each other. A good example is
how the use of other electrical appliances in a building reduces the demand
for electric heating. The use of one appliance also generates the need to use
other appliances. This interaction is not well known and will be analysed
with the analysis of statistical distributions of customer’s electricity con-
sumption in chapter 4.

2.3.5  Previous load values

The electric loads have many periodic patterns. The load variation includes
autocorrelation. When there is knowledge of previous load values e.g. from
the previous day and from the previous hour, the load is usually very easy to
predict with good accuracy. This property has been successfully utilised
with forecasting of the utility’s total load. However the previous load data
recordings are seldom available for a customer or a customer class.

2.4  AVAILABLE DATA IN ELECTRIC UTILITIES

Usually the only measurements from customer loads is the energy con-
sumption from the billing meters. From the bigger customers there might
also be hourly meter recordings or maximum load values. The customer
billing databases usually include some kind of classification and naturally
the pricing information: size of the main fuse and annual energy.

The annual energy is the most important factor used in this study. The an-
nual average load is equal to the annual average hourly loads, and therefore
a reasonable factor explaining the hourly load differences between custom-
ers of the same class.

The new electricity market will promote new metering techniques and the
number of hourly load recordings is growing. However small residential
customers will not be under direct hourly recordings for many years.

2.5  THE SIMPLE FORM CUSTOMER CLASS LOAD MODEL
FOR DISTRIBUTION APPLICATIONS

Most mathematical load models developed for forecasting purposes are so
far too complicated to be directly applied to studies of distribution networks
(See Fig. 3). The number of calculated network nodes is high and the
knowledge from the loads and load measurements is limited. Therefore
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simple form load models are needed which are easy to adminster and use
only such information that is available directly from utilitiy customer billing
systems.

substation feeder

primary substation

distribution feeders

mv-network 1 (open loops)

remotely operated disconnectors
mv-network 2 (radial)
distribution feeder substation

lv-fuse

lv-line

lv-line to customer

main fuses

energy metering

customer

110/21 kV

20/0,4 kV

Fig. 3. For planning and monitoring purposes the electric utility needs to
estimate the loading of the distribution network. The readings from the
customer billing meters are the best and usually the only source of informa-
tion of the customer’s energy use.

In the Nordic countries the traditional method to estimate peak load in dis-
tribution network from customer’s annual energy Wa has been Velander’s
formula ( 3 )

P k W k Wa amax = +1 2 ( 3 )

The coefficients k1 and k2 studied from the load recording data from the
Finnish load research project have been published in the network planning
recommendations by the AFEU.

Velander’s formula has been quite reliable in medium voltage network (mv-
network) load calculations when the number of customers has been large.
However the load estimates of small numbers of customers in low-voltage
networks (lv-network) have been quite unreliable.
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The simple form load model used nowadays in electricity distribution appli-
cations of most Finnish electric utilities represents the customer’s average
hourly load P t( ) and standard deviation sP(t) as a linear function of the an-
nual energy consumption Wa in eq. ( 4 ) .

P t L m t d t h t W

s t s m t d t h t W
c a

P Lc a

( ) ( ( ), ( ), ( ))

( ) ( ( ), ( ), ( ))

= ⋅
= ⋅





( 4 )

m(t), d(t), h(t) are classifying functions resulting in a category where a spe-
cific hour t belongs. Their definition may vary among applications, but in
general:
• The value of m(t) is season, time of year, usually month, but may be a

week or a two week period.
• The value of d(t) is day type, usually day of week or working

day/holiday.
• The value of h(t) is hour 1…24.

The parameters Lc and sLc are estimated from load research data (see chapter
3) from the average and standard deviation of the hourly load recordings
divided by the customer’s annual energy consumption

Lc m d h E
Wh c m d h

Wa c

s m d h
Wh c m d h

Wa c
Lc

( , , )
, ( , , )

,

( , , )
, ( , , )

,

=












=

























σ

 ( 5 )

where Wh,c(m,d,h) is class c customer’s hourly energy in month (season) m,
day (day type) d and hour h. Wa,c is the class c customer’s annual energy.

Examples from the data and how the division by the annual energy affects
the variation of data is shown in the figures in Appendix 4.2.

The several factors affecting the loads (chapter 2.3) are not taken into the
model. Their impact is now cumulated in the mean and the standard devia-
tion of the model. The practical motivation for this simple model is that
there is usually no data or previous load measurements available for calcu-
lations where this model is applied. This simple model is a straightforward
statistic of consumption of electricity of a specific customer class in a spe-
cific time range compared to the customer’s annual energy use.
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2.6  ELECTRICITY DISTRIBUTION APPLICATIONS UTILISING
LOAD MODELS

The Finnish electric utilities now use various applications in network plan-
ning, tariff planning and production planning which use the load models
from the national load research project (Fig. 4).

Load research

Customers

Network applications

Load models Pricing applications

Billing

annual energy Wa

customer class

energy meter readings

P(Wa)

Fig. 4. Load research produces simple load models to be used in applica-
tions where the only available data is the customer’s annual energy use and
customer class. Using the load models the applications can estimate the
load for one year on hourly basis.

Distribution load flow software based on load curves was introduced by
Rossinen (1982). Since the first load models were published in (STYV
1985) more applications for network load computation, network planning
(Juuti et al. 1987), (Kohtala & Koivuranta 1991), (Partanen 1991) and elec-
tricity pricing based on load curve data (Ojala 1992) were introduced.

The Finnish software companies, for example Tekla Oy, Tietosavo Oy and
Versoft Oy, have produced commercial network information systems and
distribution network load flow calculation software products which utilise
the load models from the Finnish load research project.

The model parameters are usually presented in watts [W] when the annual
energy Wa = 10 MWh. The parameter values are also sometimes prepared



21

for every hour of the year and organised as two 365 x 24 matrixes, one for
average Lc and one for standard deviation sLc.

Model ( 4 ) written with dimensions is then:

P t L m t d t h t W
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( 6 )

The number of different seasons m(t) and types of day d(t) may vary ac-
cording to the accuracy required. See Table 1.

Table 1. Different configurations of load models and their applications.

Configuration of a model Application
24 hourly values for 7 days a week
for 12 months a year:
m = 1…12, d = 1…28(29)/30/31, h =
1…24

The most complete form and is used mostly with
pricing applications where the complete year’s
load data in needed. New applications for load
forecasting and network load monitoring require
this model. Specific for one year’s calendar.

24 hourly values for 3 days(working
day, Saturday and Sunday) for 12
months a year:
 m = 1…12, d = 1…3 , h = 1…24

Suitable for simple pricing applications. No spe-
cific calendar.

24 hourly values for 3 days (working
day, Saturday and Sunday) for 26
two-week periods of the year:
m = 1…26, d = 1…3 , h = 1…24

Traditionally used in long term production plan-
ning applications and also network planning and
load flow applications. No specific calendar.

The experience of using the load models has been positive. The distribution
network load flow applications give much better load estimates than the
conventional methods and, for example, utilities have therefore been able to
reduce their investment plans. The wide use of load models and positive
feedback has encouraged the continuation of the study.

2.7  STATISTICAL ANALYSIS OF LOAD MODEL
PARAMETERS

2.7.1  Sampling and classification

The parameters Lc and sLc of the load model are statistically estimated from
the load research data. Because of the large number of customers, sampling
is the only possible way to collect data and estimate the parameters. The
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problem is how the selection and analysis of the sample of customers should
be made to finally get the most accurate load estimates for practical network
calculations. See Fig. 5.

Recordings & background data

Recorded customers c. 1000 

Load models 46 

Results
Index series

Topography

Energy fractions

Figures

Customers c. 2.5 milj. (in Finland)
. . .

Sampling

Recording

Classification

& analysis

Fig. 5. Load research as a process from sampling to final results for appli-
cations. Different types of results are required: relative load index series,
hour/season load topography, energy fractions, figures, etc.

The way to minimise the sample size and research costs is to make stratified
sampling where the population is divided into some strata where the vari-
ance is known to be small compared with the variance between strata
(Pahkinen & Lehtonen 1989). Instead of terms strata and stratification the
terms class and classification are used with the load research.

The utilities’ applications require a set of load models to represent all the
customer classes. Deciding the optimal number of classes and the type of
load model for one class is a complicated problem. The practical criteria for
load data classification are according to experience:

1. The load variance in one class of customers should be as small as
possible.

2. The number of classes should not be too large.
3. The classes should be representative.
4. The classes should be easily linked with the utility’s databases.
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Load research classification has also helped the utilities to classify their
own customers. Because of the many requirements load classification is said
to be more an art than a computation and is best done by an experienced
analyst.

For classification of the load research data, automatic classification meth-
ods, i.e. cluster analysis, were also considered but not completely applied
(Seppälä 1984). During the latest analysis the data was first manually split
to 77 customer classes (Paananen 1991). After verifying the results the clas-
sification finally resulted in the 46 classes presented in Appendix 2 (Seppälä
& Paananen 1992). Räsänen (1995) developed methods for load analysis of
load classification based on the correlation between load curves, but appli-
cation of the method did not change the manual classification.

2.7.2  Generalisation and bias

The application of the model (estimated from a sample) to the whole popu-
lation is called generalisation. Usually the generalisation is done with the
sample ratio, which is the relation of the number of items in the sample to
the number of items in the whole population. For example, assuming a
population of 1000 we study a sample of 100 and find 5 items. Generalising
with the sample ratio of 1000/100 = 10 we expect the total number of items
in a population of 1000 is 50.

With the `simple form load models´ the generalisation is not done with the
number of customers in a sample. The generalisation is done with the an-
nual energy consumption, where the load of a class is estimated by multi-
plying average customer’s load per annual energy consumption with the
whole class’ total annual energy consumption. While there are, no doubt,
many benefits, such an estimation is biased when the customer’s load varia-
tion is different between customers with different annual energy consump-
tion. This problem has been studied by Särndal & Wright (1984) and they
call simple load models ( 6 ) “cosmetic” estimators.

The bias of the simple form load model is an acceptable drawback of a
practical and relatively cheap method. The load models are known to corre-
spond quite reliably to the total load of  the utilities. However, one method
to remove bias from the load models is for each utility to make its own load
models based on sampling from the utility’s own customer population.

Another method to improve the load estimators is to utilise the direct meas-
urements from the network. This method called Distribution Load Estima-
tion (DLE) is introduced in chapter 7.
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3  LOAD RESEARCH

3.1  GENERAL

The method of load research, in general, is to collect and analyse load data
from different locations of the distribution system (usually at the customer’s
energy meters) to support the needs of load data presented in chapter 2.2.
Load research usually requires special metering instruments and human
work when the meterings are done at the customer’s site. Thus load research
is regarded to be expensive.

The benefits of load research come from improved accuracy of the decisions
made in utilities using more reliable load information. Two examples from
electricity production planning and demand side management (DSM) are
analysed in (Gellings & Swift 1988). They give examples where a given
reduction of uncertainty in load data could reduce the total costs of 1000
MW production or a DSM investment by about $40 million.

3.2  HISTORY

In the early days the load data collecting technique was simply to read en-
ergy meters regularly and analyse the information. Devices which automati-
cally printed or plotted the kWh value on paper were also used. These data
collecting methods were expensive, limiting comprehensive studies. On the
other hand the ability to handle and collect large amounts of load research
data was also limited. Anyway, the need for load research was recognised in
the industry and many methods to improve the work were developed (Wolf
1959 pp. 212 - 252).

The first load data analysing methods were mostly numerical simplifications
of the representation of load data. Wolf (1959 pp. 61 - 137) reviews meth-
ods of analysis of symbolic load duration curves. Most of those methods are
trivial for modern calculators or computers and no longer relevant research
topics.

In the 1970's magnetic tape recorders and in the 1980’s low cost electronic
recorders became available to collect load data, making it possible to con-
duct wide range load research covering hundreds of customers. Also the
development of computers made it possible to store and manipulate large
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amounts of data to make comprehensive data-analyses1. UNIPEDE
(International Union of Producers and Distributors of Electrical Energy)
published a book in 1973 (UNIPEDE 1973) where the methods of regres-
sion analysis of load data were reviewed.

Computer based statistical load analysis was first done by the regression
method using measurement data from substations together with total energy
consumption data from customers. This method is described for example in
(UNIPEDE 1973 pp.89-101). Also in Finland at least two such studies are
reported (Puromäki 1959) and (Leino 1974).

Fikri studied the statistical properties of loads and their applications for
network planning in (Fikri 1975). The study was based on some recorded
data and development of calculations assuming that loads were normally
distributed.

Load research projects have been reported in the 70's and 80's from many
countries. Some projects are listed in the UNIPEDE congress report (Kofod
et al. 1988). Load research projects are referenced from Germany, Den-
mark, Spain, France, Norway, Sweden and the United Kingdom. In the
United States load research has had a special position because of the Public
Utility Regulatory Policies Act of 1978 that has set high expectations for the
quality of the statistical data and analysis behind a utility's proposals for rate
increases and system expansion.

Nowadays load research is a normal activity in electric utilities. The collec-
tion and handling of data is no longer a problem. The focus is on analysis
and utilisation of the load research data.

3.3  RECENT LOAD RESEARCH PROJECTS IN SOME OTHER
COUNTRIES

3.3.1  The United Kingdom

In the UK the responsible organisation for load research co-operation is the
Electricity Association (EA). The EA has studied loads in England for a
long time and so far they have produced analyses for 250 customer groups
(Allera 1994). They are also actively reporting their results (EA 1994). In
the EA, load research has been a continuous activity for many years.

                                             
1  For example, hourly load recording over one year produces 8760 measurements. In
four byte memory and approximating some overhead we get 40 kbytes per one year of
recordings. Thus in one megabyte, 25 one year’s recordings can be stored. Modern PC
computers can easily manage over 1000 megabytes data storage.
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3.3.2  Sweden

The Swedish Association of Electric Utilities SEF (Svenska Elverksfören-
ingen) organised a load research project to get load data for network calcu-
lations. About 400 customers were recorded and analysed in 45 categories.
The recordings were done in 15 minute intervals. The results were analysed
and published in (SEF 1991). This analysis differs from others by its way of
adjusting temperature dependent load data with degree-day figures
(graddagtal) to standardise the circumstances of load data from different
locations and temperatures. A software package "Betty" has been developed
to give load values and estimates for single and aggregated loads utilising
the results of load research projects.

3.3.3  Norway

In Norway, load recordings are organised by the Electricity Research Centre
EFI (Electrisitets Forsknings Institutt) in Norway. The report from Feilberg
& Livik (1993) describes how the load research results are integrated into a
software package ”PMAX”. The results are based on 15 minute load re-
cordings from 100 recorders. The results are reported for eight customer
categories.

3.4  THE FINNISH LOAD RESEARCH PROJECT

3.4.1  General

The Finnish electric utilities started to co-operate with load research in
1983. Most of the recordings were done using a specific electronic load data
recorder produced by a Finnish company Mittrix Oy (Fig. 6). Most of the
recordings were done on the customer level. The author was working with
the project at the beginning and the first steps of this project are described
in the author’s M.Sc. thesis (Seppälä 1984).
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Fig. 6. The load research recording system. The portable memory (left) has
been the most used type of recorder. Remote meter reading with telephone
communication (right) is now more popular due to the needs of the electric-
ity market.

About 1000 consumer load recordings have been collected. The latest re-
sults of the analysis were published in 1992 (Seppälä & Paananen 1992).
The results including load models for 46 customer classes were published in
several data formats. For the complete list of publications of the load re-
search project see Appendix 1.

The load research project was originally conducted by the Association of
Finnish Electric Utilities (AFEU) from 1983 to 1994. Since 1994 the re-
search has been VTT Energy's responsibility (Fig. 7). The project has regu-
larly employed one half time employee and, in addition, temporarily two to
three other persons.
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Fig. 7. Load research is a service to collect and analyse load research data
and then deliver the results to be used in the utilities’ applications.

3.4.2  Load research data management

Since the beginning of the load research project the greatest challenge has
been to keep the load data in order and available to the analysis software.
Most of the data analysis and data manipulating software was written during
the project and by the people working with the project (See 8). During the
years from 1983 the platform of load research data storage and manipulation
moved from mainframe computer to a desktop computer.

The data management of load research now utilises modern computer tech-
nology. The load data is stored in a Relational Data Base. The applications
are connected to the database through ODBC (Open Database Connectivity)
using SQL (Structured Query Language). The applications include load data
management, calendar, reporting, import of data from load recorders and
statistical analysis.

Most of the analysis programming is done with APL (A Programming Lan-
guage). APL is an array oriented programming language with a special
mathematical notation. APL was found to be a very suitable tool for calcu-
lations, data manipulation, graphical presentations and creating user inter-
faces for load research.
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Fig.8. Load research utilises modern data management systems. The col-
lected data is stored in a relational database. The calculation software and
graphics is mostly done using the programming language APL.

3.4.3  Years of the Finnish load research project 1983 - 1996

Start 1983
Forty utilities joined the project and ordered a total of 556 load data record-
ers for this research. To read the EPROM memories of the load recorders, a
special data translation and collection computer station was maintained to
feed the load data to the mainframe computer of AFEU.

The selection of customers for the research was the utilities’ responsibility.
The initial classification included five classes of customers and five types of
residential electric heating. The classes were residential, buildings (non-
residential), agriculture, industry and service. The types of electric heating
were direct electric heating, partly storage electric heating, full storage
electric heating, dual heating (electricity and oil/wood), heat pumps and no
electric heating. See Table 2.
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Table 2. The initial classification of customers in the beginning of the load
research project.

Class Recorders
Direct electric heating 79
Partly storage electric heating 77
Full storage electric heating 30
Dual heating 85
Heat pump 48
Residential without electric heating 81
Agriculture 50
Industry 61
Service 62
Total 573

1983 - 1985
The results of the recordings were first analysed by the author and published
in 1985 in the form of so called index series (STYV 1985). The analysis
was done for 18 customer classes following the tradition of the national
production planning applications. See Appendix 2.2.

1986 - 1989
The recorders were transferred to new customers during 1986 - 1988. The
focus was then on industry and service class customers. The study of load
modelling for distribution network planning was done and published by
Härkönen (1987) and in the network planning recommendations of the
AFEU. Also the overall average load curves from various categories were
published in 1988. The study of temperature dependence of electric loads
was published by Siirto (1989).

1989 - 1991
A statistical load model analysis software package LoadLab by System
Analysis Laboratory in the Helsinki University of Technology (Räsänen
1995) was developed. The development work was jointly financed by the
AFEU and Imatran Voima Oy.

1991 - 1992
The data management of load research data was transferred to a relational
database, and load data manipulation software was developed for the PC.
The complete analysis was done with 667 different customer recordings in
46 customer classes. The basics of the computation and the use of LoadLab
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is described in (Paananen 1991). The flow of the estimation process of the
load models is presented in (Fig. 9).

The publication (Seppälä & Paananen 1992) consisted of descriptions for 46
load classes. The data was also made available on data disk in different
formats for uploading to applications software. The files consisted of the
parameters Lc and sLc for the simple form load model ( 4 ).

As an example, graphs of one of the analysed load classes is shown in Fig.
10 - Fig. 12.

The final classifications of the analysis are presented in Appendix 2.

 

Background Recorded 
data

Annual
energy

Temperature

Normalised data

Normalisation and 
filtering

Classified and 
normalised data

Classification using background
data and annual energy

Generating load models (LoadLab)
- models for each month (12)
  and special days (10)
- calculation of temperature correlation
- classification check

Load models for each customer class

data

Fig. 9. Estimation of the load model parameters (Seppälä & Paananen
1992).



32

Average load 2-week periods
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Fig. 10. Example of load representation for one calendar year in two week
periods. Industry 1-shift, annual energy 10,000 MWh. Below: the data in
index form where the average is set at 100.

 Winter 1.11.-31.3., day hours 7-22
Energy fractions

38.5%

7.3%

47.1%

7.1%

 Winter day   

 Winter night   

 Summer day   

 Summer night   

36.4%

9.4%

44.6%

9.6%

 Winter day Mon-Sat   

 Winter night+Sunday   

 Summer day Mon-Sat   

 Summer night+Sunday   
Fig. 11. Example of load representation for one calendar year. Energy
fractions. Winter time 1.11. - 31.3. and day time 7 - 22. Industry 1-shift, an-
nual energy 10,000 MWh.
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Week of peak load: 10 (4123 kW Mo hour 10-11 )
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Fig. 12. Example of load representation: Hourly load curve for the week
where the maximum load value exists. Week nr. 10 Monday 10 - 11 hour
peak 4123 kW. Industry 1-shift, annual energy 10,000 MWh.

1993 -
The continuing work of load research focused on the verification of the pre-
vious results and planning the study for the future. It was clearly seen that
the number of different customer classes was sufficient for most applica-
tions. The greater problem was to determine how reliable these results actu-
ally are. The feedback from utilities was in general positive, but some minor
errors were also reported. Also the possibilities of using remote measure-
ments and other distribution automation data had to be analysed. The load
recordings continued on a small scale, studying some special groups ac-
cording to the utilities’ interests. The preparation of this thesis started. The
goal was to develop the load research to better meet the utilitys’ needs and
make some theoretical basic research.
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3.5  THE EXPERIENCE OF THE FINNISH LOAD RESEARCH
PROJECT

3.5.1  General

Load models are now used in many applications in electric utilities. The
planning staff require simple and easy-to-use methods and they have no re-
sources to handle all the statistical and probabilistic problems involved.
This means more responsibility on the researcher to formulate the results so
that they are easy to use and also easy to understand. This chapter summa-
rises some of the experience from the years of the Finnish load research
program indicating what kind of problems have been encountered and if any
solution was found. In general the experience has been positive.

3.5.2  Temperature standardisation

Experience has shown that, in the applications where the simple form load
models are used, only electric heating has such a degree of temperature de-
pendency that it needs to be taken into account. Temperature standardisation
was made for electric heating in studies (STYV 1985) and (Seppälä &
Paananen 1992). The load models were standardised to a long term average
monthly temperature.

The simple method of temperature standardisation is that a 1 °C change in
outdoor temperature makes, on average, a 4 % change in electric heating
load. This well known rule of thumb was also confirmed when analysing
load research data by Siirto (1989). Applying this rule we can transform the
electric heating load P1 from out-door temperature θ1 to desired temperature
θ2 by the equation

P P2 1 2 11 0 04= ⋅ + ⋅ −( . ( ))θ θ ( 7 )

3.5.3  Unspecified load distribution caused by load control

The loads that are influenced by load management control are not regularly
distributed. This is well seen from the load data from electric storage heat-
ing. Electric storage heaters are coupled from a few 0.5 ... 3 kW resistors
controlled by a clock and thermostat. The resistors themselves have fixed
installed power, but the way the load recorders collect hourly energy con-
sumption lead to load values which are randomly distributed from zero to
maximum demand with high variance.
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3.5.4  Linking the load models with the utility’s customer data

The linking of load models to customer and network data is a critical phase
before most of the calculations can be run. This work is usually done with
the help of the utility’s customer billing system. For each customer a load
model is selected with special linking rules. In these rules the available in-
formation of the customer’s annual energy, tariff and the utility’s own cate-
gorisation is utilised. The rules are specific for every utility.

After each customer has its load model linked, the application to network
information system is straightforward. The identifier of the customer’s point
of delivery joins the network node to customer billing data and load model.

The correspondence of the utility’s customer classification to the categories
of load research depends on how well the utility people understand the
background of each sample of load models. The publication (Seppälä &
Paananen 1992) explaining the background of each customer category is the
handbook for applying the load models in utility applications. The results of
load models linked to some network feeders are presented in the examples
in the end of this section (Chapter 3.5.6).

By verifying the total of the load models with the utility’s total load, the
accuracy of linking of the models with customers can be checked. In the
case of a single feeder the errors caused by wrong network topology or bad
metering data may lead to poor results, but in general the results have been
good.

The utilities’ customer and network computation applications include tools
for designing the linking rules between customer data and load models. To
what extent these rules are similar between utilities is not known, but some
utilities have been co-operating in Finland to develop these rules together.
The overall analysis of these rules and verification with load models should
be further studied.

3.5.5  Problems with seasonal variation in some classes

Some loads have no regular seasonal variation because of the irregular Fin-
nish spring and autumn climate. In practice, in agriculture and in summer
cottages, the beginning and ending of the season may shift one month de-
pending on the weather conditions. Calculating average load from different
years where the seasons vary, results in a flat load profile which does not
correspond to any real year’s load. To find a solution to this problem re-
quires further studies and load recordings.
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3.5.6  Examples of load models compared with network
measurement data

The following four figures (Fig. 13 - Fig. 16) and corresponding tables
(Table 3 - Table 6) are examples of how the simple form load models from
the load research project correspond to some feeder measurements from
substations. The feeder current measurements are transformed from amperes
to active power using cosφ = 0.9 and U = 21 kV. The measurement data was
collected from substations of two Finnish electric utilities Lounais-Suomen
Sähkö Oy and Hämeen Sähkö Oy.

From Lounais-Suomen Sähkö Oy three feeder current measurements from
two substations, Meriniitty and Perniö, are represented here. The customer
classification for each feeder has been collected from the utility’s network
information system. The data is over one year’s period starting from sum-
mer 1993 and ending autumn 1994. Examples of how the models and meas-
urements fit are shown in the following four examples.

The differences between the measurements and load models, according to
these examples, can be quite big. The reasons for the differences between
measurement and model load level can be numerous, for example errors in
scaling of the measurements, incomplete customer data, etc. However the
shape of daily and weekly load variation seem quite similar as seen from the
hourly plotted weeks.

The reader must notice the data presented here are randomly selected exam-
ples from systems that are under continuous development, and these exam-
ples also show one method of checking the accuarcy of the information.

3.5.7  Experience of the Finnish load research project compared
to other countries

In general the load research activity is similar in every country, but there are
also some differences which should be noted here. The organisation of the
Finnish load research project has been very small compared to similar or-
ganisations in bigger countries. Therefore there have been limited resources
to make load analysis. However the several successful applications have
shown that the project has succeeded to serve the utilities’ needs.

The close co-operation between Finnish utilities, application software ven-
dors, universities and research institutes has resulted in advanced load re-
search, load modelling and load model utilisation in electricity distribution.
The applications of load research data in Finnish distribution utilities might
be regarded as one of the most advanced in the world.
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Table 3. Example 1. Data from the Meriniitty Keskusta feeder. For descrip-
tion of classes refer to Appendix 2.1.

Class Nr of cus-
tomers

Wa [kWh/a]

110 12  249060
120 29  425510
220 10  251800
601 38  199960
611 288  500120
1010 13  146880
1020 3  144730
1030 3   55910
810430 5  72850
820430 3  242680
820480 1  680910
910820 18  327240
920622 229 8309180
920623 5  222090
Total 657 11828920
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Fig. 13. Example 1. Measurement and load models for the Meriniitty Ke-
skusta feeder. Average daily load (above) and hourly curves over one week
(below).

The overall daily variation of the models is quite similar with the measure-
ments. The influence of the cold winter of 1994 is seen in the measurements
increasing the difference in the models.
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Table 4. Example 2. Data from the Meriniitty Myllyojantie feeder.

Class Nr of cus-
tomers

Wa [kWh/a]

810430 3 2057920
810480 3 12641310
820430 1 124590
820480 1 145400
920622 1 146310
920623 2 97000
Total 11 15212530
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Fig. 14. Example 2. Measurement and load models for the Meriniitty Myl-
lyojantie feeder. Average daily load (above) and hourly curves over one
week (below).

The daily energies match well, but the measured daily load curve is very
different because of class 810480 with large annual energy use. The indus-
try class 810480 is obviously not 1-shift as it is classified by the utility. Also
the summer holidays do not affect the load as seen in the model. At the end
of the measurement some switching operations have occurred causing a big
error. This shows how the topology of the network is essential for the reli-
ability of the calculations.
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Table 5. Example 3. Data from the Perniö Kirkonkylä feeder.

Class Nr of cus-
tomers

Wa [kWh/a] Class Nr of cus-
tomers

Wa [kWh/a]

120 52 926350 1010 20 274950
120 3 178790 1030 3 58120
220 7 159940 810430 6 42400
300 3 146820 820430 4 55670
520 2 35060 820480 6 63020
601 168 946090 910820 18 742420
611 418 701670 910830 14 572950
612 5 34840 920623 1 10510
612 1 8050 Total 735 5081750
712 1 22960
713 1 6440
733 2 94700
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Fig. 15. The Perniö Kirkonkylä feeder. Average daily load (above) and
hourly curves over one week (below).

The shapes of the daily load curves are very similar, but the energy level is
about 40 % from the measured. This is obviously an error in data collecting
and should be fixed. These kinds of errors are quite common and one must
always check how accurate the information is from different sources.
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Table 6. Example 4. Data from the feeder of the Kulju primary substation.
Note different classification. Refer to Appendix 2.2.

Class Nr of cus-
tomers

Wa [kWh/a]

1 9 120417
3 52 2905894
4 74 1717852
5 87 2842655
6 18 1510319
7 1577 7633621
8 56 1060872
9 77 157594
11 1171 18313903
12 53 636423
13 576 1384983
16 2 32410
17 246 132420
22 37 1100713
Total 4035 39550076

28/02/9401/01/9415/11/9301/09/93

12000

10000

8000

6000

4000

2000

0

kW

d

Week 15/11/93-21/11/93

168144120967248240

12000

10000

8000

6000

4000

2000

0

kW

h
 Measurement     Model   

Fig. 16. Example 4. Total energy measurement from the feeder of the Kulju
substation. Average daily load (above) and hourly curves over one week
(below).The load models are from the alternative classification which in-
cludes 18 different customer classes categories. (See Appendix 2.2). The
shapes of load models are similar although the level is again too low.
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4 DERIVATION OF STATISTICAL DISTRIBUTION
FUNCTIONS FOR CUSTOMER LOAD

4.1  INTRODUCTION

The loads of customers, even of the same type, are not likely to be the same
at the same time. The load of one specific customer is usually different at
different times. The load of a customer can’t be exactly predicted. We say
that the load is a randomly distributed variable or a random variable. The
most usual parameters describing a random variable are mean, standard
deviation and variance.

More information on the probabilities of a random variable is presented in
the distribution of the variable. For most of the computations we need the
distribution function where the probability is approximated as a function of
the variable. In statistics usually, and when there is no knowledge of the
statistical distribution function, the normal distribution is assumed
(Pahkinen & Lehtonen 1989 p. 12). Also with electric loads the most usual
assumption has been normal distribution (Fikri 1975 p. 3.07). Especially
when it comes with cumulated independent loads the Central Limit Theo-
rem states that the distribution function converges to normal distribution.

In a report on statistical methods for load research data analysis the conclu-
sion is that the statistical distribution of electric load variation does not fol-
low any common probability density functions (SRC 1983 p.3 - 47). The
goodness of fit of estimated distributions is in general very low.

The Weibull distribution was fitted to consumer billing data in (Irwin et.al.
1986). The Weibull distribution was found flexible enough to explain the
distribution of customers’ annual energy use in different areas in Northern
Ireland. The analysis covered only  customer billing data and annual energy.

In 1993 Herman & Kritzinger published results from fitting statistical dis-
tribution functions to grouped domestic loads. The distributions tested were
Weibull, normal, Erlang and beta. As a result they propose the use of the
beta distribution function. No applications using the beta function are de-
scribed. The goodness of fit is in general low for all distributions.

The estimation of statistical distribution functions with poor results was also
experienced in the first analysis of the Finnish load research project
(Seppälä 1984 pp. 45 - 60). From the load data we can see, that the loads are
distributed around the mean and in many cases the distribution has a bell
shape. Some loads at some time don’t seem to have any regular distribution



42

at all. This is especially the case with automatically controlled loads, like
loads of storage heating during night hours.

However, looked at another way, two examples of experienced load distri-
butions from the load research data shown in Fig. 17 give some new ideas
for finding the distribution function for hourly electric customer class loads.
These figures were produced by cumulating several hours’ data to one set
by scaling each hour’s sample data between zero and one. We can see the
average distribution over several hours. These figures show a good fit to
normal distribution on day hours (high load) and lognormal distribution on
night hours (low load).
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Fig. 17. Examples of load distributions of one customer class with estimated
normal (left) and lognormal (right) distribution functions. The data is ob-
tained by scaling each hour’s load values between 0 and 1. The maximum
value of each hour gets the value 1 and other values proportionally less
than 1. Customer class is Private Service during January working days.

4.2  NORMAL DISTRIBUTION AND LOGNORMAL
DISTRIBUTION FUNCTIONS

Normal distribution is the limit of distribution of random sums and also it is
the limit distribution of many other distribution functions. A random vari-
able x with density
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is said to have normal distribution with parameters µ (mean) and σ
(standard deviation).

The normal distribution with µ = 0 and σ = 1 is called a unit normal distri-
bution N(0,1). A normal distribution function is defined by the mean and
standard deviation of the population, which makes it easy to estimate.

It is, in many circumstances, possible to determine the function2 g(x) which
will transform the skew distribution into a normal one.
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In practical work the interest is to find a function of the type where g(x)
does not include any unknown parameters. According to Johnson & Kotz
(1970) the only transformation with statistical importance is a logarithm
transformation. The data is said to be lognormal distributed when the loga-
rithm of the data is normally distributed
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ξ and σ can be estimated from the observations by taking the logarithm of
the data and estimating the mean and standard deviation. The distribution
density function of lognormal distribution is
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Some aspects make lognormal distribution interesting in the study of elec-
tric loads. Lognormal distribution is used widely in statistics as a distribu-

                                             
2 In general it holds for all monotony functions of g

Pr Pr{ < } = { ( ) < ( )}x a g x g a
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tion of consumption, and customer electric hourly load can also be regarded
as hourly electric energy consumption. Another interesting point is that the
lognormal density function tends to normal density function when the ratio
between standard deviation and the mean becomes small (Aitchison &
Brown 1957).

4.3  THE PHYSICAL BACKGROUND OF LOAD VARIATION

The variability of electric loads is a result of complicated processes and in-
teractions between electrical appliances, environmental factors and human
behaviour. The origin of load variation within the customer loads in a cus-
tomer class can be split into three categories:
• variation in customer’s human behaviour
• variation in environmental conditions
• variation in electrical appliances and installations.

The customer load is limited between zero and the total power of installed
equipment. Thus the load variation is limited from both directions. The use
of the appliances is connected to each other by wiring or by “logical con-
nection”. The “logical connection” means that the appliances are usually
used together, like kitchen lightning which is usually switched on at the
same time as electric cooking appliances.

Customer’s behaviour is in general the background to the load variation.
The peoples’ daily living rhythm and quite strictly regulated daily working
hours bring a very regular portion to load variation. The variation of the
residential load is a result of people’s varying activities at home. Industry
and service have day/night and workday/holiday schedules which are also
clearly observed in load variation.

We shall now study the properties of electric loads as a result of a physical
random process. Certain processes produce a known statistical distribution.
The most common example is the sum of independent random variables
which results in normal distribution according to the Central Limit Theo-
rem. In the following chapters we develop models of processes which gen-
erate similar distributions as observed in load research data.

We assume the appliances, installations and environmental conditions to be
similar. Thus the variability of electric load is caused by the variability of
human behaviour. The human variability here is approximated as a set or
sequence of small random actions altering the use of the electrical appli-
ances.
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The value of load P is observed from the energy WT used in a time interval
T (typically T = 15, 30 or 60 min).

P
W

T
T= ( 12 )

The length of time T determines how much randomness in the load values is
included. The shorter the interval T is, the more random that load value is.
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Fig. 18. Example of a load over two days observed with different time inter-
vals T. The measurement is the total load of an office building including
different service companies.

In Fig. 18 one customer’s load P measured with different time intervals is
presented. The longer the interval is, the more stable the load is. The time
interval in the Finnish load research project is 60 min.

4.4  DERIVATION OF CUSTOMER LOAD DISTRIBUTION -
BINOMIAL PROCESS

4.4.1  General

The customer is seen here as a system of many appliances switched on or
off (see Fig. 19), which leads us first to study how the load distribution
could be represented as a result of a binomial distribution process. There are
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two possibilities: an additive and a multiplicative binomial process (Hald
1967 p.31 - 33).

If the probability of a certain appliance to be switched on is θ then the prob-
ability of k appliances out of n being switched on is

Pr{ , } ( )n k
n

k
k n k=







 − −θ θ1 ( 13 )

Fig. 19. Customer load as a combination of small loads.

4.4.2  Independent small loads - additive binomial process

We define the random variable as the demand of energy w over a time pe-
riod T. The randomness of w is caused by small random deviations εi added
to w0 in a random sequence wn = w0 + ε1 +...+ εn, where Pr{εi = ε} = θ and
Pr{εi = 0} = 1 - θ. The probability of the value of wn after n steps follows in
Table 7.

Table 7. The probability of deviations of the additive process.

Value of wn Probability
w0 ( )1− θ n

w0+ε n
n

1
11 1






 − −θ θ( )

w0+2ε n
n

2
12 2






 − −θ θ( ) ( )

� �

w0+nε θ n

The distribution tends to become symmetrical, approximating normal distri-
bution when n→∞ (DeMoivre-Laplace theorem) (Papoulis 1965 p. 66). The
distribution of w tends to become normal even if the deviations ( ε ) are not
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the same in every phase, as long as all deviations are of the same order of
magnitude. See also Galton’s distribution machine in Appendix 5.

4.4.3  Interdependent loads - multiplicative binomial process

We assume that the loads are in such a connection that they all react to-
gether. Thus the changes are relative instead of additive and the process is
multiplicative wn = w0 (1 + ε1)...(1 + εn), where Pr{εi = ε} = θ and Pr{εi = 0}
= 1 - θ. Then we have a similar Table 8.

Table 8. Probability of deviations of the multiplicative process.

Value of wn Probability
w0 ( )1− θ n

w0 (1+ε) n
n

1
11 1






 − −θ θ( )

w0 (1+ε)2 n
n

2
12 2






 − −θ θ( ) ( )

� �

w0(1+ε)n θ n

Writing

ln

ln )

w yn n=

( +1 ε δ=




( 14 )

the distribution in Table 8 takes the same form as in Table 7. See Table 9.

Table 9. Logarithm of the multiplicative process.

Logarithm of
wn

Probability

yn ( )1− θ n

yn+δ n
n

1
11 1






 − −θ θ( )

yn+2δ n
n

2
12 2






 − −θ θ( ) ( )

� �

yn+nδ θ n

Thus, the logarithm of the variable is approximately normally distributed.
See also Kapteyn’s skew curve machine in Appendix 5.
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Next we want to get closer to the technical properties of the loads of electri-
cal appliances and develop a more complete load variation model.

4.5  DERIVATION OF CUSTOMER LOAD DISTRIBUTION -
KAPTEYN’S DERIVATION

4.5.1  General

In this chapter the form of load distribution is derived using some selected
simplifying assumptions and Kapteyn’s derivation. The goal of this chapter
is to give background on how a model of process of electrical appliances
leads to lognormal distribution as a special case (Seppälä 1996).

4.5.2  Definition of customer load

The customer load is the total energy WT consumed during a time interval T
of certain length (5, 15, 30, 60 min etc.) (See Fig. 20). The value of the av-
erage power is then

P
W

T
T= ( 15 )

The energy WT is a sum of the energies of the customer’s appliances

W w
k

T Tk= ∑ ( 16 )

where the energy consumed in T by an appliance k is wTk . This energy de-
pends on the fixed nominal power PN,k of the appliance and the time τk the
appliance is used in T

w PTk N k k= ⋅, τ ( 17 )

Also we define the status sk(t) = 1 when an appliance is switched on and
sk(t) = 0 when the appliance is switched off.
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Fig.20. Customer’s total load consists of several appliances, which have
fixed nominal power PN,1, PN,2, PN,3, PN,4, PN,5. The total energy demand
over T varies when the time of use of the distinct appliances varies.

4.5.3  Customer’s random action and reaction of electric
 appliances

The customer’s influence on the electric load is an action changing the time
of use of the appliances by a small random value εi (<< T ).

We assume that an action εi affects the time of use of appliance k by value
∆(τk)i according to the following equation ( 18 ). See also Fig. 21.

∆
∆

( ) ( ) ,

( ) ,

τ ε τ
τ τ

k i k i k

k i k

s t T

T

= ≤ <
= =





0

0
( 18 )
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Fig. 21. The reaction of appliances after the customer alters the time of use
of the appliances by the value εi . Time of use of load PN,1 and PN,2 changes
by the amount of εi . PN,3 remains unchanged (below the thick line).

The assumptions of this model ( 18 ) are
1. The action of εi takes place at a random time t.
2. The influence of this random action to any appliance k depends on the

momentary status sk(t) of the appliance.
3. The appliance’s time of use τk is uniformly distributed over time interval

T.
4. The resulting influence ∆(τk)i is observed only from the varying length of

time the appliance is used. When τk = T the load is at maximum and no
change will be observed.

The expected value of the state of an appliance k is according to the as-
sumption 3.

s t
T

k
k( ) =

τ
( 19 )

Combining the two previous equations ( 18 ) and ( 19 ) we get the expected
change of the time of use of one appliance k
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∆( )τ
τ

ε δk i
k

i k
T

= ( 20 )

where

δ
τ

τk
k

k

when T

when T
=

≤ <
=





1 0

0
( 21 )

δk is the parameter for each appliance according to assumption 4. If the time
of use of appliance k is already T, it can not grow (δk = 0) any more. Then
the appliance is being used to its maximum capacity.

4.5.4  Customer’s random actions and reaction of customer’s
total load

The customer’s total energy use over a time interval T is WT . Substituting
( 16 ) to ( 17 ) we get

W PT k N k
k

= ⋅∑ τ , ( 22 )

The difference of the load ∆(WT)i is a sum of the differences of time of use
of distinct appliances

∆ ∆( ) ( ) ,W PT i k i N k
k

= ⋅∑ τ ( 23 )

And applying the previous result ( 20 )

∆( ) ,W
T

P
k

T i
k

i k N k= ∑ τ
ε δ ( 24 )

To eliminate δk from the equation we assume the value of the average
power to be far lower than the total installed power

P PN
k

<< ∑ ( 25 )

when we can “safely” assume τk < T for almost all k and approximate δk ≈ 1
for all k (No appliance is used at its full capacity). Then the change of load
gets a value
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∆( )W
T

WT i
i

T≈
ε

( 26 )

4.5.5  Definition of the reaction function with low load

Assuming the previous model, the total energy of a customer over an inter-
val T ( for example one hour) is subject to a process which successively al-
ters the load magnitude from the expected value W0 to W1, W2,..Wi.... The
origin of this process is the customer successively varying the time of use of
the electrical appliances. Each step i corresponds to one small random
change (∆τk)i.

Assuming the average load P is far from the maximum so that τk < T for
almost all k, the expected difference between two phases ∆(W)i = Wi - Wi-1

is, applying the previous result ( 26 )

W W W
W

T
r W T P lowi i T i i

i
i i k+ − = = = < =1 ( ) ( ) , , " "∆ ε ε τ ( 27 )

r is reaction function needed in the following Kapteyn’s derivation.

r W
W

T
i

i( ) = ( 28 )

4.5.6  Kapteyn’s derivation of a skew distribution

Now we study how a sequence of small random changes taking place in a
certain order affects the value of W. The sequence of n changes (ε1,…, εn) of
the load W expressed with the help of the reaction function r will be

W W r W

W W r W

W W r Wn n n n

1 0 1 0

2 1 2 1

1 1

= +
= +

= +− −

ε
ε

ε

( )

( )

( )

�
( 29 )

Adding these equations and solving for εi, we get the following result

ε i
i

n
i i

ii

n

w

w
W W

r W

dW

r W
g W

n

=

−

−=
∑ ∑ ∫=

−
≈ =

1

1

11 0
( ) ( )

( ) ( 30 )
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According to the Central Limit Theorem εi
i

n

=
∑

1

will be normally distributed

when n→∞. Also then the function g(W) is normally distributed.

g W T
dW

W
T W W

W

W

n

n

( ) (ln ln )= = −∫
0

0 ( 31 )

The conclusion, according to the assumptions of the model, is that the cus-
tomer load distribution is lognormal when the average load level is “low”
and technical and environmental conditions are similar within the customer
class.

4.5.7  Simulation of the customer load distribution

The simulation of the previous load distribution model ( 18 ) is now studied.
The simulation was done with a computer with APL. The representation of
a system of distinct loads over a time interval T was done using matrices of
bits (bitmaps).

Each row of the bitmap represents one electrical appliance (1...k) and each
column a short fixed slice of time (t1...tn) of length ∆t = t/n . When the ap-
pliance is switched on the corresponding state bit s(t) has the value 1 and
when the appliance is switched off the corresponding bit has the value 0
(see Table 10). The time slices approximate the small time interval εi = ∆t.

Table 10. An example of a bitmap representing the use of appliances at con-
secutive time slices t1,...,tn.

s(t1) s(t2) s(t3) s(t4) ... s(tn)
Appl. 1 1 1 1 0 ... 1
Appl. 2 0 1 0 1 ... 0
Appl. 3 0 0 1 0 ... 0
... ... ... ... ... ... ...
Appl. k 0 0 1 1 ... 1

The total energy is then related to the sum of the elements of the bitmap. If
the corresponding bit is 1 for an appliance at time ti, the next time slice
having value 0 will be turned to 1. If the value at ti is 0 nothing will be
changed. For example the previous table would look like the following if
the increment takes place at t2. Appl. 1 and Appl. 2 are switched on and
their use will be increased by turning the next 0 values to 1 (Table 11).
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Table 11. The increment of use at time t2. The changed values are printed as
bold italic (1).

s(t1) s(t2) s(t3) s(t4) ... s(tn)
Appl. 1 1 1 1 1 ... 1
Appl. 2 0 1 1 1 ... 0
Appl. 3 0 0 1 0 ... 0
... ... ... ... ... ... ...
Appl. k 0 0 1 1 ... 1

4.5.8  An example of the results of the simulation

Frequency histograms of a simulated customer’s load variation are pre-
sented here in Fig. 22.
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Fig. 22. Result of simulation of load variation of an example household with
different load levels and standard deviations.

The customer is assumed to have the following electrical appliances in-
stalled:

Appliance PN/W number
light 60 5
light 100 5
heat 500 4
cook 1000 1
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The maximum hourly load is then 3800 W. Four simulations, where the ex-
pected load is 696 W, 933 W, 1291 W and 2706 W, were calculated.

The result of the simulation confirms that the load distribution remains
lognormal with small average loads. Also we see how the distribution is
close to normal when average load is larger, which confirms the result in
Fig. 17. The fitting of these distributions to distribution functions will be
studied in the next chapter.

The simulation model is interesting also for practical applications because
here the influence and interaction of customers with distinct electrical appli-
ances would be quite easy to define. As we see, with the computation capa-
bility of computers continuously increasing, the simple form of the simula-
tion program makes it attractive to use in applications. The applications of
Demand Side Management (DSM) and customer load control may find this
method useful in studying the influence of the DSM and load control ac-
tions on the customers’ load variation.

4.5.9  Discussion

The previous approach is an application of methods first published in 1903.
These methods were applied to the study of botanical science phenomena.
The question stated by Kapteyn (1916) was why skew distributions exist in
nature? The conclusion was roughly that, causes which are independent of
the size of the individuals, produce normal curves and causes which are de-
pendent on size, produce skew (in special case lognormal) curves.

This also seems natural for electricity demand. The causes changing the
customer’s use of electrical appliances are dependent on the use of the ap-
pliances. It is possible to define the distribution function at least in one spe-
cial case. This leads us to assume that there is a tendency to skew distribu-
tion somewhere between normal and lognormal distribution.

The model of interacting electrical appliances can be explained in many
ways. When the customer’s activity increases or decreases it influences all
the appliances in use (TV, cooking, lightning). In industry the use of the
machines is usually linked together and in offices the use of lightning and
ventilation and computers is related to each other. When the time of use of
one appliance changes, similar changes in the use of other appliances can be
expected.

This model is an approximation of the situation when the load level is far
lower than the maximum load and explains the skewness of the load distri-
bution and the selection of lognormal distribution. When the load P grows
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and some of the appliances are used in maximum capacity, the distribution
obviously becomes closer to normal distribution.

The real interactions between electric loads are much more complicated
than the previous model. The loads may interact with negative correlation
while the increase in use of one appliance decreases the use of another ap-
pliance. However the model is easy to simulate which opens possibilities to
further study the properties of load variations. The generalisation of this
model should be a subject for further study.

Kapteyn’s approach is open to mathematical criticism. Also when these
ideas were published, some mathematicians, especially Pearson, criticised
the conclusions of how transformation of data to normal distribution was
obtained. However this method was appraised by those who found it giving
better insight into the systems which obviously lead to skewed distributions
(Baart de la Faille 1915 and Aitchison & Brown 1957 pp. 20 - 22).

From the older statistical literature ”distribution machines” can be found.
They were simple apparatus to simulate certain distributions based on bi-
nomial processes. One famous one is Galton’s normal curve apparatus from
1889 (Hald 1965 p. 32). A corresponding skew curve machine was made by
Kapteyn (1916 fig 7.) See Appendix 5. The appearance of these apparatus
may help also the modern reader to understand the physical origins of ran-
dom distributions.
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5  ESTIMATION OF CONFIDENCE INTERVALS
OF CUSTOMER LOADS

5.1  GENERAL

In distribution applications the main problem is determining the dimensions
for the network components and monitoring the loading of the installed
network. Therefore the most interesting information from the electric loads
is the highest values and the probability of their occurrence.

In statistical terms the question is to estimate confidence intervals (or confi-
dence limits) for the load variation. The confidence intervals are related to
the statistical distribution of the load. There are two possible strategies for
estimating confidence intervals: calculating them directly from the observed
data or estimating them with the help of a suitable distribution function.

In distribution load flow calculations the normal distribution function has
been practically the only approximation (Fikri 1975) (Juuti et al. 1987).
Normal distribution is the best choice for cumulated independent customer
loads. When the load of one or two customers should be estimated the nor-
mal distribution tends to be unreliable. According to the previous chapter
other interesting distribution functions are the lognormal distribution and
distributions somewhere between normal and lognormal distribution.

There are also plenty of methods which are based on the re-use of data, i.e.
bootstrap (Pahkinen & Lehtonen 1989, pp. 227 - 243) and (Räsänen 1995).
However the preference of this study is to find simple parameterised confi-
dence interval estimators, which are easier to adopt to the electric utilities’
current applications.

This chapter covers the case of estimating confidence intervals for one cus-
tomer from a customer class. The estimation of confidence intervals of sev-
eral customers’ cumulated load from the same customer class is studied in
chapter 6. The most general case of cumulated loads of several customers
from different classes is more complicated while the correlation between
and within the customer classes should be estimated. This case will be left
for further study.

In network load flow calculations these results are most applicable when
calculating the low voltage network where the number of customers is
small. Also the results of this analysis are suitable for energy sales where
one wants to analyse the risk of one big customer increasing the total load.
Because of the different requirements of applications, the target is also to
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find the most general method which is independent of time and customer
class.

5.2  INTRODUCTION

The confidence interval of load Pα% is defined here as a positive load value
under which the load remains with a given probability (see Fig. 23 and Fig.
24):

Pr }%{ P P≤ =α
α

100
( 32 )
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Fig.23. The distribution frequency and the confidence interval Pα.
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Fig. 24. The distribution of load and confidence interval Pα.

Applying the simple form load models in equation ( 4 ) the confidence in-
terval will be estimated by estimating the confidence interval for parameter
L.

� �P L Waα α= ( 33 )

5.2.1  The measure for the accuracy of confidence
interval estimation

To verify the different estimation methods, two error values q1 and q2 are
calculated for each hour. They are defined from the estimated and observed
percentiles and confidence levels according to Fig. 25.
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Fig. 25. Verification of the estimated confidence interval.

q1 defines what per cent of the observed loads are actually below the esti-

mator. q2 defines what per cent the estimator �Lα  differs from the percentile

Lα observed from the data. q2 represents the value and direction of how
much the confidence interval estimator deviates from the value observed
from the sample data.

While q1 and q2 are calculated separately for each hour, for each estimation
method and for each estimated confidence interval, the average of q2 is se-
lected to represent the overall error of the method over several hours and
customer classes.

5.2.2  The customer classes selected for this study

The selected customer classes for this analysis are shown in Table 12. These
classes are the most important for distribution utilities. The number of
classes is also limited to nine to keep the computation data and time within
reasonable limits.
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Table 12. Selected customer classes for analysis of confidence interval es-
timation.

Class Description
810 Industry, 1-shift, all branches
820 Industry, 2-shift, all branches
910 Service, public, all branches
920 Service, private, all branches
110 Residential, one family house, direct electric heat
120 Residential, one family house, direct electric heat, water boiler at night
602 Residential, one family house, no electric heat, electric sauna
220 Residential, one family house, partly electric storage heat
712 Agriculture, milk production, residence included

Overall figures of the models of these classes are presented in Appendix
4.1.

5.3  DESCRIPTION OF THE CONFIDENCE INTERVAL
ESTIMATION METHODS

According to the previous results in chapter 4 this analysis concentrates on
normal and lognormal distribution and their approximations. Five different
confidence interval estimation methods will be studied:
• Normal distribution Estimation method: NE
• LogNormal distribution Estimation method: LNE
• LogNormal distribution Estimation method, variation A: LNEA
• LogNormal distribution Estimation method, variation B: LNEB
• Simplified LogNormal distribution Estimation method: SLNE

Recalling equation ( 5 ) the estimates of the simple form load model pa-
rameters are briefly m1 for average and s1 for standard deviation.
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( 35 )

The number of items in a sample is N. The n:th item of load data of the spe-
cific class c, month m, day d and hour h is briefly Ln
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5.3.1  Normal distribution Estimation method: NE

The parameters for normal distribution are estimated using formulas

m
N

L
n

s
N

L m
n

n

N

n

N

1

1 1
2

1

1

1

1 1

=
=

=
−

−
=













∑

∑ ( )

( 37 )

The estimators for percentiles are selected from respective percentiles of
unit normal distributions Uα. See Table 13.

�L m U sα α1 1 1= + ( 38 )

Table 13. Selected percentiles for unit normal distribution are found, for
example, from (Milton & Arnold 1990, Table V pp. 637 - 638).

α 50 % 84.13 % 95 % 99 % 99.5 % 99.9 %
Uα 0 1 1.65 2.33 2.58 3.10

5.3.2  LogNormal distribution Estimation method: LNE

The parameters of log-normal distribution function are estimated in a like
manner to normal distribution taking the logarithm of the data.
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� exp( )L m U sα α2 2 2= + ( 40 )
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5.3.3  LogNormal distribution Estimation method variations

The confidence intervals remain in logarithm transformation (the order of
the values is not affected). Thus we can estimate the parameters using
corresponding percentiles of the observed distribution and the previous
equation ( 40 ) and table Table 13. This method is tested with the median
and L84.13 % when Uα = 1 ( 41 ) and L95 % percentiles when Uα = 1.65 ( 43 ):
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� exp( )L m U sa a aα α3 3 3= + ( 42 )

In the following text this method is abbreviated LogNormal Distribution
method A, LNEA.
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� exp( )L m U sb b bα α3 3 3= + ( 44 )

In the following text this method is abbreviated LogNormal Distribution
method B, LNEB.

5.3.4  Simplified LogNormal distribution Estimation method:
SLNE

The parameters of the lognormal distribution function are estimated here in
a simplified way using the ordinary mean (m1) and standard deviation (s1)
estimated in ( 37 ). The ”simplified” estimators m4 and s4 of the lognormal
distribution are:
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( 46 )

The background for selecting this “ad hoc” method is the practical reason
that the best known parameters of loads are the mean and the standard de-
viation and they are already available in the electric power distribution ap-
plications. Thus applying this method requires no additional data to be dis-
tributed to the current computing systems.

5.3.5  Properties of SLNE

SLNE here, represents the distribution which is “somewhere between the
normal and lognormal distributions”. This is explained by the known prop-
erties of the normal and lognormal distribution. In the following we assume
that the data comes from lognormal distribution with parameters ξ and σ.

The relation between the parameters of lognormal distribution ( ξ and σ )
and mean and standard deviation (m1 and s1) can be derived from the defini-
tion of lognormal distribution (Johnson & Kotz 1970 p.115, Lokki 1980 pp.
436 - 438 ):
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The parameters of lognormal distribution are as in equation ( 39 )
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By substituting equation ( 47 ) to the equations of simplified lognormal dis-
tribution parameters in equation ( 45 ) we get
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In the following we now study the estimation error q2 of SLNE compared to
NE. Recalling the confidence interval estimators for normal distribution
(NE),

�L m U sα α1 1 1= + ( 50 )

and simplified lognormal distribution (SLNE) according to eq. ( 46 )

�L m
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m
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α

α

4 1
1

1

1= +






 ( 51 )

and assuming the lognormal distribution as the actual distribution of the
data

L Uα αξ σ2 = +exp( ) ( 52 )

we can study the relative estimation error value q2 when the parameters of
the distribution varies. We calculate for NE method
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and for SLNE method
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−α α
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( 54 )

Setting the parameter ξ = 0 and varying the parameter σ the result is plotted
as a function of s1/m1 in Fig. 26.
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Fig. 26. The theoretical estimation error q2 of 99.5 % estimators of NE and
SLNE applied to lognormal distribution.

The curves in Fig. 26 show how the error of the NE method grows to a
negative direction when the relation s1/m1 grows. The error of the simplified
lognormal estimation is quite small when s1/m1 < 1.5. The error then grows
rapidly when s1/m1 > 1.5. This explains why the SLNE is below the LNE
but above the NE. Also it is accurate enough in load estimation when the
s1/m1 of load data is mostly well below 1.5 as seen from Fig. 28 - Fig. 30.

5.3.6  The flow of computation estimating and verifying
the estimators

The flow of the computation is presented in Fig. 27. The overall results
from the estimation of the parameters are shown for three customer classes
in Fig. 28, Fig. 29 and Fig. 30.

Comparing these figures with earlier load models presented in Appendix
4.1. we find them similar. The different monthly load curves, especially in
1-shift Industry, is due to the slightly different ways the charts were plotted:
The curve in Fig. 28 is an average of work days but the monthly curve in
Appendix 4.1 is an average of the whole month, holidays included.
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Another important observation is that the results of electric heating are
similar with the previous analysis presented in Appendix 4.1 although the
temperature standardisation was applied to the analysis in Appendix 4.1 but
not here. This is rather surprising as some reduction of variance due to the
temperature standardisation is generally expected. The reason why the tem-
perature standardisation did not reduce the variance should be a target for
further study.

Raw load research data

Filter outliers

Divide with annual energy

Estimate parameters for confidence interval estimators

Verify the goodness of estimator to data

Store the results

Select data for  class, month, day type, hour

New class, month, day type, hour?

Fig. 27. Flow of the estimation and verification process.
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 monthly average load
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Fig. 28. Results of estimation of parameters m1 and s1. Class 810 Industry
1-shift.

 monthly average load
 Class  110 one customer
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Fig. 29. Results of estimation of parameters m1 and s1. Class 110 direct
electric heating, one family house. No temperature standardisation.
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 monthly average load
 Class  602 one customer
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Fig. 30. Results of estimation of parameters m1 and s1. Class 602 residen-
tial, one family house.

5.4  VERIFICATION OF THE ESTIMATORS WITH THE LOAD
RESEARCH DATA

5.4.1  General

The selected confidence intervals to be calculated will be 84.13 %, 95 %,
99 % and 99.5 %. The problem with this representation is to summarise and
analyse the large number of different cases here.

The computational analysis was done for working days for
• 12 months
• 9 customer classes
• 24 hours
• 5 estimation methods
• 4 confidence intervals
• 2 estimation error values: q1 and q2

which make altogether 12 ⋅ 9 ⋅ 24 ⋅ 5 ⋅ 4 ⋅ 2 = 103 680 values.
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First we will study in chapter 5.4.2 the distribution functions with some se-
lected cases which are assumed to be the most interesting. The selected
customer classes are: industry 1-shift (810), residential electric heating
(110) and residential (602). From these classes the hours 00.00 - 01.00 and
09.00 - 10.00 in January are selected to represent day and night. In ch 5.4.3
the error values for the selected hours are presented.

In ch. 5.4.4 we further limit the analysis to 99.5 % confidence interval and
NE and SLNE estimation methods and finally in ch. 5.4.5 we study the es-
timation methods only with the maximum hour in each customer class.

5.4.2  Observed load distributions and estimated distribution
functions

Figures 31 - 36 present distribution functions with the data from the load
research. The selected data is from January work days, hours 00.00 - 01.00
and 09.00 - 10.00 of class 810 Industry 1-shift, class 110 residential, direct
electric heating and class 602 residential without electric heating. The upper
graph covers all data and the graph below is focused on the tail area to show
the distribution of extreme values better. See also the graphs of the original
data in Appendix 4.2.
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Fig. 31. Estimated distribution functions and distribution of the data. Class
810 Industry 1-shift, January, working day, hour 00.00-01.00. Sample size
is 2253.
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Class = 810, month = 1, day = Work, hour = 10
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Fig. 32. Estimated distribution functions and distribution of the data. Class
810 Industry 1-shift, January, working day, hour 09.00-10.00. Sample size
is 2311.

Class = 110, month = 1, day = Work, hour = 1
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Fig. 33. Estimated distribution functions and distribution of the data. Class
110 direct electric heating, one family house, January, working day, hour
00.00-01.00. Sample size is 1944.
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Class = 110, month = 1, day = Work, hour = 10
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Fig. 34. Estimated distribution functions and distribution of the data. Class
110 direct electric heating, one family house, January, working day, hour
09.00-10.00. Sample size is 1943.

Class = 602, month = 1, day = Work, hour = 1
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Fig. 35. Estimated distribution functions and distribution of the data. Class
602 residential, one family house, January, working day, hour 00.00-01.00.
Sample size is 829.
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Class = 602, month = 1, day = Work, hour = 10
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Fig. 36. Estimated distribution functions and distribution of the data. Class
602 residential, one family house, January, working day, hour 09.00-10.00.
Sample size is 832.

5.4.3  Verification of confidence interval estimation

Tables 14 -19 present the estimation errors q1 and q2 of selected classes 810,
110 and 602, January workdays, hours 00.00 - 01.00 and 09.00 - 10.00. The
estimation methods are described in chapter 5.3.

Table 14. The errors q1 and q2 of the confidence interval estimation. Class
810 Industry 1-shift, January, workday, hour 00.00 - 01.00.

Method q1[%] q2[%]
α= 84.13% 95% 99% 99.5% 84.13% 95% 99% 99.5%

NE 6.28 0.21 -2.24 -2.30 20.12 0.90 -40.54 -42.79
LNE 0.20 0.30 -1.13 -0.74 0.14 1.46 -22.88 -18.00
LNEA (0) 0.34 -1.00 -0.74 (0) 1.92 -22.05 -16.93
LNEB -0.38 (0) -1.13 -0.88 -1.14 (0) -24.11 -19.35
SLNE 6.28 1.49 -0.55 -0.61 20.12 16.24 -15.78 -11.96
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Table 15. The errors q1 and q2 of the confidence interval estimation. Class
810 Industry 1-shift, January, workday, hour 09.00 - 10.00.

Method q1[%] q2[%]
α= 84.13% 95% 99% 99.5% 84.13% 95% 99% 99.5%

NE 3.06 -0.41 -0.90 -0.88 4.11 -1.42 -7.36 -12.53
LNE 9.51 4.39 1.00 0.50 17.97 34.68 57.60 61.52
LNEA (0) -0.97 -0.64 -0.50 (0) -3.71 -5.71 -9.25
LNEB 1.94 (0) -0.08 -0.15 2.31 (0) -0.54 -3.75
SLNE 3.06 1.02 0.13 0.02 4.11 2.77 3.27 0.30

Table 16. The errors q1 and q2 of the confidence interval estimation. Class
110 direct electric heating, one family house, January, workday, hour 00.00
- 01.00.

Method q1[%] q2[%]
α= 84.13% 95% 99% 99.5% 84.13% 95% 99% 99.5%

NE 1.26 0.47 -0.08 -0.32 2.55 0.92 -0.55 -7.11
LNE 9.49 4.79 0.95 0.50 19.19 58.43 121.67 135.87
LNEA (0) 1.40 0.54 0.24 (0) 6.31 17.73 15.36
LNEB -3.93 (0) 0.38 0.04 -3.64 (0) 7.99 4.87
SLNE 1.26 2.02 0.54 0.29 2.55 8.45 19.46 16.82

Table 17. The errors q1 and q2 of the confidence interval estimation. Class
110 direct electric heating, one family house, January, workday, hour 09.00
- 10.00.

Method q1[%] q2[%]
α= 84.13% 95% 99% 99.5% 84.13% 95% 99% 99.5%

NE 1.00 -0.04 -0.90 -0.84 1.37 -0.26 -7.08 -8.38
LNE 5.32 4.02 0.95 0.50 7.99 26.30 45.14 54.96
LNEA (0) 1.35 0.43 0.09 (0) 4.22 6.16 8.62
LNEB -2.04 (0) 0.02 0.04 -2.47 (0) 0.14 1.85
SLNE 1.00 1.50 0.54 0.14 1.37 5.35 6.99 9.35

Table 18. The errors q1 and q2 of the confidence interval estimation. Class
602 residential, one family house, January, workday, hour 00.00 - 01.00.

Method q1[%] q2[%]
α= 84.13% 95% 99% 99.5% 84.13% 95% 99% 99.5%

NE 8.97 0.40 -1.61 -1.49 33.31 10.08 -20.11 -21.87
LNE 2.22 -0.37 -1.45 -1.19 3.87 -5.38 -19.29 -15.58
LNEA (0) -0.98 -2.07 -1.19 (0) -9.98 -24.16 -21.03
LNEB 2.99 (0) -0.69 -0.42 6.58 (0) -12.02 -6.98
SLNE 8.97 1.47 0.69 0.19 33.31 26.90 13.34 20.47
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Table 19. The errors q1 and q2 of the confidence interval estimation. Class
602 residential, one family house, January, workday, hour 09.00 - 10.00.

Method q1[%] q2[%]
α= 84.13% 95% 99% 99.5% 84.13% 95% 99% 99.5%

NE 3.70 -1.78 -1.62 -1.66 6.37 -4.50 -17.90 -26.14
LNE 3.39 1.15 0.23 -0.27 4.39 3.57 1.75 -3.52
LNEA (0) -1.93 -1.00 -0.89 (0) -5.51 -11.78 -17.84
LNEB 2.77 (0) -0.39 -0.27 3.49 (0) -4.43 -10.26
SLNE 3.70 0.53 -0.39 -0.27 6.37 0.82 -5.56 -11.96

From Tables 14 - 19 we see how the error of estimation varies from hour to
hour and in general the simplified lognormal estimation method SLNE re-
sults in less errors than the normal distribution method NE. The LNE
method, which is based directly on lognormal distribution, results in very
high errors as seen in Tables 15 -17.

Table 20 summarises the analysis where the different methods of estimating
confidence intervals were compared to load research data from the Finnish
load research project. The results in Table 20 are the average values from an
analysis of 9 customer classes over 12 months. For each hour there are, on
average, 800 observations.

Table 20. Average errors of confidence interval estimation. Average result
of  9 customer categories, 12 months, working days and 24 hours.

Method q1[%] q2[%]
α= 84.13% 95% 99% 99.5% 84.13% 95% 99% 99.5%

NE 3.15 -1.08 -1.94 -1.82 10.91 -4.82 -20.97 -25.63
LNE 2.76 1.44 0.21 0.07 5.55 13.38 26.53 33.87
LNEA (0) -0.05 -0.37 -0.35 (0) -0.08 2.73 5.86
LNEB -0.02 (0) -0.04 -0.10 0.87 (0) 1.92 4.54
SLNE 3.15 0.63 -0.03 -0.07 10.91 4.92 0.11 -0.16

The conclusion is that applying normal distribution approximation when
estimating 99.5 % confidence interval for one customer leads, on an aver-
age, to -25.63 % error. If we use the simplified lognormal approximation
instead we get an average error of -0.16 %. According to this result the sim-
plified lognormal approximation results in more accurate estimates than the
normal approximation in the case of one customer.

In further analysis we concentrate on the NE and SLNE methods estimating
the 99.5 % confidence interval.
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5.4.4  Verification of 99.5 % confidence interval estimation

Now we concentrate on the 99.5 % confidence level which is the highest
resonable level with the sample size around 1000. With a sample size of
1000 the 99.5 % interval means that 5 observations are expected to be above
the confidence interval. The possible few errors in data will then not affect
the result too much.

In Figs. 37 - 39 the estimation error q2 for the 99.5 % percentile is plotted
for January and July, workdays varying the hour of day, and for hours 00.00
- 01.00 and 09.00 - 10.00 varying the month. From these figures we see how
the error of SLNE is in general smaller and the NE method in general esti-
mates the confidence interval too low ( q2 is negative).
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Fig. 37. Error q2 of confidence interval estimation. Class 810 Industry 1-
shift. Above: the error for 24 hours of a workday in January and July. Be-
low: the error for 12 months at hours 0.00 - 01.00 and 09.00 - 10.00.
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month = 1, day = Work
99.5% estimation, class = 110

242220181614121086420

25
20
15
10
5
0

-5
-10
-15
-20
-25

q2[%]

t[h]

month = 7, day = Work
99.5% estimation, class = 110

242220181614121086420

20

10

0

-10

-20

-30

-40

-50

q2[%]

t[h]

day = Work, hour=00.00 - 01.00
99.5% estimation, class = 110

121110987654321

20

10

0

-10

-20

-30

-40

q2[%]

t[month]

day = Work, hour = 09.00 - 10.00
99.5% estimation, class = 110

121110987654321

20

10

0

-10

-20

-30

-40

q2[%]

t[month] NE     SLNE   

Fig. 38. Error q2 of confidence interval estimation. Class 110 direct electric
heating, one family house. Above: the error for 24 hours of a workday in January
and July. Below: the error for 12 months at hours 0.00 - 01.00 and 09.00 - 10.00.
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Fig. 39. Error q2 of confidence interval estimation. Class 602 residential, one
family house. Above: the error for 24 hours of a workday in January and July.
Below: the error for 12 months at hours 0.00 - 01.00 and 09.00 - 10.00.
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In Fig. 40 the average estimation error q2 of the 99.5 % confidence interval
is presented for each class for January and July, hours 00.00 - 01.00 and
09.00 - 10.00.

In Fig. 41 the average error q2 over 24 hours of a day in January and July
and average error over 12 months at hours 00.00 - 01.00 and 09.00 - 10.00
is presented.

From Fig. 40 and Fig. 41 we see the error of SLNE is smaller than the error
when using NE method. Also from the figures it can be noted that the NE
method gives too low estimates while the error q2 is systematically negative.

In Fig. 42 the average errors for winter work days (1.11. - 31.3., hours 07.00
- 22.00), winter work days night (1.11. - 31.3., hours 22.00 - 07.00), sum-
mer work days (1.4. - 31.10, hours 07.00 - 22.00) and summer workdays
night (1.4. - 31.10., hours 22.00 - 07.00). Again the error of SLNE estima-
tion is smaller.
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Fig. 40. Error q2 of confidence interval estimation comparing different
classes months and hours.
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Fig. 41. Error q2 of confidence interval estimation. Average over 24 hours
in selected months and average over 12 months of selected hours.
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Fig. 42. Error q2 of confidence interval estimation. Average over winter and
summer day and night.
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In Fig. 43 the average error over a year is presented. Except for class 220
the error of SLNE is small compared to NE estimation. Here we can see that
the result in Table 20, SLNE error -0.16 % for α = 99.5 % percentile gives a
bit wrong impression of the accuracy of the SLNE because the error in class
220 has a positive sign compensating for the overall other negative errors of
other classes. Still this result proves the smaller error of the SLNE method
when applied to all classes and all times.

day = Work, hour = 00.00 - 24.00
99.5% estimation, month = 1...12,

15

10

5

0

-5

-10

-15

-20

-25

-30

-35

-40

q2[%]

class
712220602120110920910820810 

 NE     SLNE   

Fig. 43. Error q2 of confidence interval estimation. Average over year and
all hours of day.

5.4.5  Verification of confidence interval estimation of customer’s
maximum load

The final task is to study how the overall maximum of a customer load
could be estimated. This is the most common engineering problem which
occurs when the lines and other equipment near the customer are consid-
ered. The customer’s maximum load is an important factor which deter-
mines how much transmission capacity should be available to gain a desired
performance.

The results are shown in Table 21 where the confidence of interval estima-
tion is shown for the month and hour of the highest 99.5% value for every
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class. In addition to the estimation results, the values of the parameters m1

(mean) and s1 (standard deviation) are shown.

From the table we also observe the Finnish peculiarity, the electric sauna, in
class 602. The electric sauna is a high power appliance in many Finnish
homes, usually 6 kW. While the figures in Table 21 are given for an annual
energy of 10 MWh and the usual annual energy for a one family house
without electric heating is 3 - 5 MWh per year, the power estimated using
L99.5% is reduced to 4 - 7 kW.

Table 21. Performance of NE and SLNE estimators when the 99.5 % confi-
dence interval is highest. Unit of m1 , s1, L99.5% , NE and SLNE is
[W/10 MWh/a].

Class month hour m1 s1 L99.5% NE q2[%] SLNE q2[%]
810 12 9 3110 1449 8578 6835 -21 8313 -4
820 2 10 2124 939 6264 4538 -28 5444 -14
910 1 17 1813 905 7216 4140 -43 5134 -29
920 1 17 1994 692 5294 3774 -29 4289 -19
110 12 20 2137 1096 6688 4954 -26 6193 -8
120 12 23 2732 1108 7921 5581 -30 6554 -18
602 3 20 2803 2839 14873 10099 -33 16919 13
220 1 1 4094 1705 8763 8478 -4 10020 14
712 10 20 1767 1187 8859 4817 -46 6619 -26

5.5  ESTIMATING CONFIDENCE INTERVALS OF THE DATA
FROM THE SIMULATION

An example of a customer’s load variation simulation is presented here. The
customer appliance data is the same as in the simulation presented in chap-
ter 4.5.7.

Three simulations are presented in Fig. 44 - Fig.46. The estimated normal
(NE), lognormal (LNE) and simplified lognormal (SLNE) distributions are
also drawn. Also with this simulated data the simplified lognormal curve
fits best.
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Simulated load distribution
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Fig. 44. Simulated distribution and normal, lognormal and simplified
lognormal distribution functions. Expected load m1 = 475 W and s1 = 237
W.
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Fig. 45. Simulated distribution and normal, lognormal and simplified
lognormal distribution functions. Expected load m1 = 909 W and s1 = 504
W.



83

Simulated load distribution
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Fig. 46. Simulated distribution and normal, lognormal and simplified
lognormal distribution functions. Expected load m1 = 1251 W and s1 = 656
W.

5.6  APPLICATION OF THE CONFIDENCE INTERVAL ESTI-
MATORS TO PRACTICAL DISTRIBUTION COMPUTATION

The previous results can be applied in practice to estimate the confidence
intervals for one customer. Substituting the parameters of simplified
lognormal approximation ( 45 ) to the equation of the estimator ( 46 ) we get

�L m
s

m

U

α

α

4 1
1

1

1= +






 ( 55 )

recalling again from the definition of the model ( 35 ) that L = m1 and sL =
s1 we can now write the formula of the estimator using the parameters of the
load model

�L L
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α

α
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( 56 )

Applying the load model for simplified lognormal approximation we get
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and for normal distribution approximation we get
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Example: A load model Lc gives, for a customer with a given annual energy
Wa, one certain hour’s load mean value P = 100 kW and the standard de-
viation sP = 50 kW.

With the NE method we estimate the 95 % and 99.5 % confidence interval:

P

P
95%,1

99 5%,1

100 1 165 05 182 50

100 1 2 58 05 229 50

= ⋅ + ⋅ =
= ⋅ + ⋅ =

( . . ) .

( . . ) ..

kW

kW

and with the SLNE method we get

P

P

95%,4
1 65

99 5%,4
2 58

100 1 05 19523

100 1 05 284 65

= ⋅ + =

= ⋅ + =

( . ) .

( . ) .

.

.
.

kW

kW

If we have load values P  = 100 kW and sP = 75 kW with the NE method
we estimate

P

P
95%,1

99 5%,1

100 1 165 0 75 22375

100 1 2 58 0 75 29350

= ⋅ + ⋅ =
= ⋅ + ⋅ =

( . . ) .

( . . ) ..
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and with SLNE we get

P

P
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99 5%,4
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100 1 0 75 25178

100 1 0 75 42368

= ⋅ + =

= ⋅ + =

( . ) .

( . ) .

.

.
.

kW

kW

The SLNE method is important in the sense that there is no need for pa-
rameters other than the ordinary mean and standard deviation. These pa-
rameters are already available for utilities’ applications and therefore their
use will not require any activity other than a change in the computation al-
gorithm.
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6  ESTIMATION OF CONFIDENCE INTERVALS
OF SEVERAL CUSTOMERS

6.1  GENERAL

The result of the previous chapter was a method to estimate confidence in-
tervals for one customer load. When the load consists of more than one
customer the estimators are not directly applicable.

According to the Law of Great Numbers, the distribution of the sum of the
loads becomes normal when the number becomes large. A complete study
of the problem requires analysis of the correlation between customer classes
and will be left for further studies.

Here we assume the loads are from the same class and are independent.
First we study how the estimators of the confidence intervals should be
modified when the number of customers increases to 2, 3, 4 etc. Then we
apply the method to load research data.

6.2 DEVELOPMENT OF THE ESTIMATION METHODS FOR
SEVERAL CUSTOMERS

6.2.1  The parameters of the sum of random
variables

According to probability theory, the mean of the sum of random variables is

µ µ µ µs k= + + +1 2 � ( 59 )

Also if the variables are independent, the sum of the variances is

σ σ σ σs k
2

1
2

2
2 2= + + +� ( 60 )

Assuming each variables’ mean and standard deviation is equal we get

µ µs k= ( 61 )

σ σ σ σs sk k2 2= ⇒ = ( 62 )
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According to the simple load model in equation ( 4 ) the standard deviation
s is a linear function of the customers annual energy consumption. Assum-
ing that Wa,i is the annual energy of customer i we calculate for k customers
the one customer’s standard deviation with the average annual energy

s s

W

k

a i
i

k

av.  one customer=
=
∑

1
1

,

 ( 63 )

We get the standard deviation of k customers by substituting ( 63 ) to the
previous equation ( 62 )

s ks ks
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=

∑
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1 1

1

,

, ( 64 )

According to this result we shall now test the estimation of confidence in-
terval of loads of more than one customer in a class by dividing the standard
deviation by the square root of the number of customers.

6.2.2 Normal distribution confidence interval estimation NE for
several customers

The parameters for normal distribution m1 and s1 are estimated from the
data of one customer. The estimators for percentiles Lαk% according to the
result of chapter 6.2.1 are selected from respective percentiles of unit nor-
mal distributions Uα. See Table 13.
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6.2.3 Simplified lognormal distribution confidence interval
estimation SLNE for several customers

The parameters of lognormal distribution function are derived from m1k and
s1k similarly:
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The procedure for estimation computation is shown in Fig.47.

Raw load research data

Filter outliers

Divide with annual energy of group

Estimate parameters for confidence interval estimators

Verify the goodness of estimator to data

Store the results

Select data for  class, month, day type, hour, nr in group

New class, month, day type, hour, nr in group

Select random groups from data of same day  and add together 

Fig. 47. Flow of the estimation and verification process for groups of cus-
tomers.

6.3  VERIFICATION OF THE ESTIMATION OF SEVERAL
CUSTOMER’S LOADS

6.3.1 Verification of 99.5 % confidence interval estimation

The following Figs. 48 - 52 present the results of estimation of 99.5 % con-
fidence interval when the number of customers k is 1, 2, 3, 4, 6 and 8.

The data representing sums of several loads is calculated by selecting ran-
dom combinations from the data

Ln
W m d h W m d h

W W
h h

a a

=
+ +
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( 69 )
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Fig. 48. Estimation of the 99.5 % confidence interval for 2 customers.
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Fig. 49. Estimation of the 99.5 % confidence interval for 3 customers.



89

m = 1.11. - 31.3.,d = Work, h = 07.00 - 22.00
99.5% estimation, nr in group = 4
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Fig. 50. Estimation of the 99.5 % confidence interval for 4 customers.
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Fig. 51. Estimation of the 99.5 % confidence interval for 6 customers.
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m = 1.11. - 31.3.,d = Work, h = 07.00 - 22.00
99.5% estimation, nr in group = 8
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Fig. 52. Estimation of the 99.5 % confidence interval for 8 customers.

The figures clearly show that the assumption of independent loads is wrong.
The estimates are, overall, below the observed confidence intervals. How-
ever the NE method for several customers gives almost the same results as
the SLNE method. The overall error q2 of the estimation becomes smaller as
the number of customers k grows. When the number of customers is 8 (Fig.
52) the estimation error is about -10 % except class 120. Obviously the as-
sumptions of the estimators are not fulfilled, but the accuracy is still in a
range sufficient for most distribution applications.

The other conclusion is that only in the case of one or two customers is the
SLNE estimation clearly better than NE. In the case of three and more cus-
tomers the two estimation methods give similar results. The value of the
error q2 remains, in winter days, around -10 % when the number of custom-
ers grows. However, such an error (ranging from -10 % to +5 % estimating
the 99.5 % confidence interval) is quite acceptable for most distribution ap-
plications.

One source for inaccuracy of this analysis is the random selection algorithm
to form groups of 2, 3, 4,… customers. While the number of the available
load data values varies, the random selection has different numbers of val-
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ues to select. The work to improve this method will be left for further stud-
ies.

6.3.2  Verification of estimation of several
customer’s maximum loads

Here the result is presented for selected customer classes: class 810 Industry
1-shift, class 120 electric heating with storage water boilers and class 602
homes with electric sauna. The results of the other customer classes will be
analysed in further studies.

Class 810 Industry is shown in Table 22. The estimation result is good and
there is no notable difference between NE and SLNE when the number of
customers is more than 1.

We also see some odd things. The time position of highest load changes as
the number of customers grows, and the parameter values sometimes in-
crease when the number of customers increases while a decrease in the pa-
rameter values would be expected. The main reason for these is obviously
that the data values are the result of random selection forming the groups of
2, 3, etc. customers.

Table 22. The model parameters at the time of maximum load of Class 810
Industry 1-shift with different number of customers. Number of customers
1…8. Unit of m1, s1, L99.5%, NE and SLNE is [W/10 MWh/a].

Nr. Month hour m1 s1 L99.5% NE q2[%] SLNE q2[%]
1 12 9 3110 1449 8578 6835 -21 8313 -4
2 12 15 2761 1124 6218 5590 -11 6114 -2
3 12 11 3021 928 5348 5295 -1 5501 2
4 1 9 3229 748 5018 5012 -1 5094 1
5 1 9 3226 694 4893 4838 -2 4876 -1
6 1 11 3330 568 4785 4800 0 4811 0
7 1 9 3202 629 4536 4610 1 4604 1
8 1 9 3202 597 4489 4530 0 4512 0

The following example is the class 120 Residential, direct electric heating
shown in Table 23. In class 120 the electric water boilers are automatically
switched on in the evening. Here we see how the L99.5% does not decrease
when the number of customers increases because the boilers are always
switched on same time. The values when the number of customers is 3 and
8 are exceptional and likely because of errors in the random selection algo-
rithm.
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Table 23. The model parameters at the time of maximum load of Class 120
Residential, direct electric heat, one family house, water boiler at night.
Number of customers 1…8. Unit of m1 , s1, L99.5% , NE and SLNE is [W/10
MWh/a].

Nr. Month hour m1 s1 L99.5% NE q2[%] SLNE q2[%]
1 12 23 2732 1108 7921 5581 -30 6554 -18
2 2 23 2795 837 5290 4888 -8 5213 -2
3 12 8 1605 579 5827 2532 -57 2619 -56
4 2 23 2766 638 4524 4289 -6 4364 -4
5 2 23 2758 583 4370 4136 -6 4170 -5
6 2 23 2762 558 4310 4023 -7 4033 -7
7 2 23 2749 521 4163 3935 -6 3930 -6
8 12 11 1469 415 4524 2023 -56 2013 -56

The last example again represents that Finnish peculiarity, the electric
sauna. Many Finnish homes also have an electric sauna which is usually
about 6 kW installed power. The other thing is that Finns have a habit of
using their saunas at the same time which leads to a well known “sauna
peak” for the electric utility. The “sauna peak” is usually on Saturdays, so
the working days are not the best days to study it, but to give information on
how the use of saunas is distributed over the hours of a week. The use of
saunas however, is nowadays spread over the weekdays. In the table we see
how the maximum load takes place in the evening of working days at hour
20. The value of the peak for one customer with a 99.5% confidence level is
almost 15 kW but with eight customers, only 7 kW. Remember that the fig-
ures are given at 10 MWh annual energy and the usual household’s annual
energy use is between 3.5 MWh and 5 MWh per year.

Table 24. The model parameters at the time of maximum load of Class 602
Residential, one family house, no electric heat, electric sauna. Number of
customers 1…8. Unit of m1 , s1, L99.5% , NE and SLNE is [W/10 MWh/a].

Nr. Month hour m1 s1 L99.5% NE q2[%] SLNE q2[%]
1 3 20 2803 2839 14873 10099 -33 16919 13
2 3 21 2666 1962 11336 7750 -32 9741 -15
3 12 17 2156 1039 9749 4338 -56 4692 -52
4 12 21 2651 1278 8232 5812 -30 6143 -26
5 12 18 2411 939 7638 4944 -36 5072 -34
6 12 21 2701 1170 8038 5244 -35 5288 -35
7 2 19 2651 1087 7778 5096 -35 5070 -35
8 2 19 2755 1126 7070 4938 -31 4862 -32
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The overall error q2 in Table 24 is also systematically around -35 %, which
again reminds us that the assumption of independence between loads is not
valid.

When the number of customers increases the analysis of the confidence in-
terval obtained from the sample distribution becomes very small. However
this is only an applicable result when the sample is from exactly the same
population and time. When we apply the load model to a larger number
(10…1000…) of customers to estimate their total load, the error comes
from differences between the target population and the sample population
and the errors applying the model at different times.

In the following chapter the method of Distribution Load Estimation is in-
troduced to apply load models to a large number of customers.
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7  DISTRIBUTION LOAD ESTIMATION  (DLE)

7.1  GENERAL

The load research has produced load models to convert the customers’ an-
nual energy consumption to hourly load values. The reliability of load mod-
els applied from a nation-wide sample is limited in any specific network
because many local circumstances are different from utility to utility and
time to time. Therefore there is a need to find improvements to the load
models or, in general, improvements to the load estimates.

In Distribution Load Estimation (DLE) the measurements from the network
are utilised to improve the customer class load models (See Fig. 53).

substation feeder

primary substation

distribution feeders

mv-network 1 (open loops)
remotely operated disconnector
mv-network 2 (radial)
distribution feeder substation

lv-fuse

lv-line

lv-line to customer

main fuses

energy metering

customer

110/21 kV

20/0,4 
kV

P,Q,U

U (P,Q)

I,(P,Q)

(I,U)

W,P,Q,U,I

(I,U)

Fig. 53. Possible measurements in distribution network.

The results of DLE will be new load models that better correspond to the
loading of the distribution network but are still close to the original load
models obtained by load research. The principal data flow of DLE is pre-
sented in Fig. 54.
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A verage custom er 
class load curves
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(SCA DA )
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(Netw ork topology &  billing inf. syst.)

Estim ated custom er class load curves

H ourly load curves for custom er 
class at the m etering point

ESTIM ATIO N

Fig. 54. The data flow of distribution load estimation (DLE) process.

7.2  BACKGROUND

Distribution system load estimation has been studied especially by Hand-
schin and Dörnemann (1988), Dörnemann (1990) and Dörnemann et al.
(1990). Their studies handle distribution network loads and customer class
load models estimated from the busbar loads using the Bayesian estimation
method.

In the USA, distribution network estimation is the subject of research activ-
ity, but the difference in the distribution system makes the problems there
more complicated. Wu & Neyer (1990), Baran & Kelley (1995) and Ghosh
et al. (1996a, 1996b) handle the total three phase system with state estima-
tion techniques. The difference with conventional state estimation methods
is that the load data is obtained from load models instead of direct meas-
urements.

Utilising the distributed estimation algorithms, distributed load estimation
was studied in (Seppälä 1991). This method could reduce the computation
time by applying parallel algorithms when handling large distribution net-
works.

Kärenlampi et al. (1996) have developed estimation and monitoring systems
for distribution networks. The remote meterings are used to adjust the load
model data to better fit the measured loads of the feeders of the distribution
network. The method is integrated into a network operator’s support system
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developed by Tampere University of Technology under the distribution
automation research programme Edison.

7.3  THE ESTIMATION PROCEDURE

7.3.1  Definition of weighted least squares estimation

We assume that the distribution network is radial operated. Each meter
measures the load for a specific part of the network. Usually the load me-
tering points are at the primary substations, but also metering can exist
deeper in the network (see Fig. 53). The medium voltage feeders are usually
equipped with current metering and the substation primary feeder is also
equipped with active power metering. See Fig. 55.

W 1 1, . . .,W1n

W 2 1, . . .,W2n
W m1, . . .,Wm n

S1
S2 Sm

Fig. 55. Distribution station with feeder measurements S1...Sm. Over an area
i the total annual energy of a customer class j is Wij.

To calculate the hourly load estimate for each customer class we use the
linear load model ( 4 ):

P t L m t d t h t Wc a( ) ( ( ), ( ), ( ))= ⋅ ( 70 )

In the following mathematical manipulation, the load model is briefly pre-
sented as the equation

z xW= ( 71 )
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where z denotes the customer class’ one hour’s expected load P  derived
from the model, W corresponds to annual energy Wa and x corresponds to
the factor Lc, which represents the relationship of customer’s hourly load to
the annual energy consumption.

The annual energy in different areas of the network is represented by Wij,
where i defines the area and j defines the customer class.

In the distribution network, the total load is a sum of the loads of distinct
customer classes 1...n. The total load of the customer class in the network is
zj. The total annual energy of each class j in the network is presented briefly
as Wj

W Wj i j
i

m

=
=
∑ ,

1

 ( 72 )

The total annual energy consumption of customer classes 1...n over areas
1...m are (See Fig. 55)

W W W

W W W
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n n mn
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The equation between the actual customer class load and the load obtained
from the model can be written adding an error term vj:

z v W x

z v W xn n n

1

n

+ =

+ =

1 1 1

�






( 74 )

The matrix form of the equations between customer class loads and cus-
tomer class load models is
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� z v W x ( 75 )

where z is one column matrix with the number of rows equal to the number
of customer classes. Wz is a diagonal matrix of total annual energies of
customer classes in the network. x is one column matrix of load model pa-
rameters.
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For each load measurement Si in the network we can write equations, where
the value of the measured load is the total of the loads of customer classes
in the corresponding area. The equations can be written adding an error
term ei

S e W x W x

S e W x W x

n n

m m m mn n

1 1 11 1 1

1 1

+ = + +

+ = + +







�

�

�

( 76 )

The error term also includes the network losses unless the losses are defined
as one customer class. The matrix form of the equations is
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S and e are one column matrixes where the number of rows is equal to the
number of measurements. WS is a matrix where the number of rows equals
the number of measurements and the number of columns equals the number
of load classes. x is a one column matrix where the number of rows equals
the number of customer classes.

The two matrix equations ( 75 ) and ( 77 ) presented together now describe
the total system of customer class load models. The load models describe
the customer class loads in the network z v W x+ = z  and the relation be-

tween the measurements and load models is described by the equation
S e W x+ = S . Combining these equations we get an equation of partitioned

matrixes

z

S

v

e
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W
xz

S









 +









 =









 ( 78 )

Now we want to find x that minimises the error 
v

e








 .

For this kind of optimisation problem with several parameters, we will use
the method of Weighted Least Squares Estimation (WLSE), which is widely
utilised in the state estimation of transmission networks (Debs 1988 p. 291).
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7.3.2  The formulation of WLSE

The general solution of the WLSE equation of the form

c = Ab ( 79 )

is solved by solving the minimum of the sum of squares weighted by R-1

[ ]min ( ) (c Ab R c AbT 1− −−  for b. ( 80 )

where the weights in R-1 are covariances of the variables and measurements.
Assuming the variables are independent we get a diagonal matrix with vari-
ances.
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The solution of ( 80 ) is when the derivative of the equation is zero

− − =−2A R (c Ab)T 1 � 0 ( 82 )

and the solution and the estimate is �b

�b [A R A] A R cT 1 1 T 1= − − − ( 83 )

and applied to the DLE problem ( 78 )
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7.3.3  Definition of the weights

The weights in R-1 are inverses of the variances of models and measure-
ments. This leads to a solution where the estimates of the load models and
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measurements of higher variance are subject to greater changes than those
with lower variance.

Now the question is to select which model of variance should be used. One
choice is to use the square of the standard deviation sP of the load model
and the other choice is to use the square of the standard deviation of the sum
of k customers (s k/ ). While the load research data is from different times
and usually different population, the variability of the model error at the
specific hour is not only a function of the number of customers. While we
have no information from the other factors of error variance we rather apply
the model ( 4 ) for standard deviation

s t s m t d t h t WP Lc a( ) ( ( ), ( ), ( ))= ⋅ ( 85 )

to evaluate the variance σ 2 2= ( )sP . The value of standard deviation of

load models in general ranges between 30 % ... 100 % from the mean.

For the network measurements the standard deviation needs to be approxi-
mated. One practical method is first to approximate the maximum error. The
distribution of the error is unknown, but assuming the error to be roughly
normally distributed, the standard deviation is about 1/3 of the maximum
error.

For example, when we have a current measurement, the evaluation of active
power from current includes an error ( the cos φ is usually unknown and
needs to be estimated too) which may have a standard deviation of 10 %
from the absolute value of the measurement. In the case of direct active
power measurement the error could be 1 % or less. Thus the direct meas-
urements have smaller error variance than the load models. Also the resolu-
tion of the SCADA communication between the remote terminal and central
computer bring some error to the registered measurement values.

Only relative differences between weights in R-1 are important. When in
practice the measurements get much smaller variances, the solution will
more likely change the load models than the measurements.

7.3.4  Application of estimation

Finally with the help of the result �x  we can solve the new customer class

load estimates �z and the load at the points of measurements �S :

� �

� �

z W x

S W x
z

S

=

=
( 86 )
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The network losses can be taken into account in two ways. The losses may
be defined as one load model; otherwise the total losses will be included in
the error of the models and measurements. The definition of a load loss
model for estimation should be a subject for further studies.

7.4 A DLE EXPERIMENT WITH FOUR SUBSTATION FEEDER
MEASUREMENTS

The previous DLE method will be dealt with here with some substation
feeder data. Load current measurements from four 20 kV distribution feed-
ers and the customer class information has been used to build the equations
presented in the previous chapter. The measurements and load models of the
feeders are presented in Fig. 56 and Fig. 57.
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Fig. 56. Examples of how estimation affects customer class load models (zj).
The result of estimation is represented by a dotted line and the original load
model is represented as a solid line. 110 = direct electric heating, 120 =
direct electric heating with storage water boilers, 810430 = 1 shift industry
(textile) and 910820 = service (private sector). Average values for working
days over January.
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Fig. 56 shows an example of how the models change on an average in one
month according to estimation with the four substation current measure-
ments. The error is shared between models and measurements depending on
how large a share of a load model is represented in one measurement and
how high the model variance is. This also means that the small or negligible
customer classes are not affected in estimation.

The curve of the customer class ”Electric heating with storage boilers” in
Fig. 56 is interesting because it shows exactly the actual situation where the
utility controls the boilers simultaneously and the peak is caused by the
boilers which are switched on the same time (at 22.00).
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Fig. 57. Feeders from Meriniitty and Perniö substations (nr. 3480001,
3480002, 3480005 and 3480010) are the measurements (Si) . The result of
estimation is represented by a dotted line. The feeder measurement, where
the values are transformed from current to active power, is represented by a
solid line. Average values for working days during January.

7.5  LOAD ESTIMATION WITH ONE MEASUREMENT

The simplest case of DLE is one measurement in the feeder of a radial
network . Here we analyse the special case more to see if it would be possible
to formulate a simpler form of load estimation for the special case of one



103

measurement in a radial distribution network. However this result can be
generalised to any radial network split to areas of one meter in the feeding
point.

The form of the state equations in DLE recalling ( 78 ) is
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Now the S, e, Ws are one-row matrixes and the equation with one
measurement can be written simply
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We minimise the weighted sum of squares of errors in the following form by
substituting
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to ( 80 ) and we get the function G representing the weighted sum which
will be minimised
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In practice the total error between the original models and the measurement
is known as total value ′e
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1 1

( 91 )
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Now we state the problem differently: What are the values of vj to minimise
the weighted sum of square error when the total difference ′e  is given? Or
in other words: How should the error ′e  be divided among the customer
classes to fill the WLS-criteria?

Substituting the equation ( 91 ) to equation ( 90 ) we get
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The minimum is found by solving the set of partial derivatives

∂
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The result for vj is (For derivation see Appendix 3)
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Substituting this to the formula

z v W xj j j j+ =  ( 95 )

we get the estimate in the form
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This result is useful for many practical distribution applications, where for
example, the voltage drop of the radial distribution feeders is calculated
separately. This result states that when the WLSE method is used the error
between the loads and metering are divided in proportion to their variances.
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EXAMPLE:
From a 20 kV feeder a current of 20 A was measured on Wednesday, the
15th March, 1995 14.00-15.00. The bus voltage was 20.7 kV. From the net-
work information system we receive the information that the feeder was
feeding five customer classes according to Table 25.

Table 25. The annual energies of the measured feeder

Customer class [MWh/a]
1. 1-shift industry 1000
2. Agriculture 200
3. Residential with direct electric heating 1000
4. Storage heating 400
5. Residential 1800
Total 4400

From the load models from load research we obtain the relation between
annual energy and the corresponding hour’s load as shown in Table 26.

Table 26. Customer class load models and expected load Pj and standard
deviation sj.

Customer class Lc

[W/MWh]
 sLc

[W/MWh]
Pj

[kW]
sj

[kW]
1. 1-shift industry 297 133 297 133
2. Agriculture 90 64 18 12.8
3. Residential, direct electric heating 135 81 135 81
4. Storage heating 24 15 10 6
5. Residential 101 70 182 126
Total 642

This information was obtained from the published files of the Finnish load
research project. The structure of the model is from the calendar year 1990.
Thus we apply the day, March 14th, which was a Wednesday in 1990.

From the feeder current metering we get the active power by assuming first

that the load factor cosφ = 0.9. Thus PS = ⋅ ⋅ ⋅ =3 0.9 20 20.7 710kW . The

standard error of the measurement σP will be approximated as 7 %, thus σP

= 50 kW. The error between models and measurement e = 710 - 642 kW =
68 kW will be shared relative to the variances of the models and measure-
ments. The result is shown in Table 27.
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Table 27. The original model class loads, variances, error/correction vj and
new estimated value.

Customer class Class
load Pj

[kW]

Variance
σj

2

[kW2]

Error
vj

[kW]

Estimate
�P
j

[kW]
1. 1-shift industry 297 17689 33 330
2. Agriculture 18 4096 8 26
3. Residential with direct electric heating 135 6561 12 147
4. Storage heating 10 225 0.5 10.5
5. Residential 182 4900 9 191
Total 642 33471 62.5 704.5

This shows how the difference between the total of models and the meas-
urements can be quite easily shared between models. This method takes into
account both the difference in the sizes of the customer classes and the un-
certainty of the model and measurement expressed in the variances of the
models and measurements.

7.6  UTILISATION OF DISTRIBUTION LOAD ESTIMATION

When integrated into the utility’s information systems and SCADA the DLE
does not require any additional investments. The DLE can be utilised in the
distribution automation in several ways (Seppälä & Kärkkäinen 1995):
• The output of DLE is a selection of load curves for customer categories

and load classes. These curves can be utilised in forecasting purposes.
• DLE brings the possibility of continuous load research where the need of

customer level recordings is reduced compared to conventional load re-
search.

• When the electricity markets are free from regulation the DLE brings on-
line information from the loads when the final load values are not avail-
able due to the time consuming clearing between producers and sellers.
With the help of DLE the utility can calculate their energy balance relia-
bly on an on-line basis.

From the DSM point of view, the DLE can be utilised in several ways, for
example:
• The accurate knowledge of feeder load gives the indication for the need

of DSM at a specific time (load management, real-time pricing) and site,
• the better estimates of load curves of different customer classes can be

utilised in the operation of the load management system (actual timing of
the load control) and estimation of the effects of load management on the
total load.
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The benefits of DLE can be achieved from optimal utilisation of the distri-
bution network capacity
• maximum utilisation of network components
• finding the most profitable targets for network investments and service.

The integration of DLE to the utility’s information systems is a task which
requires some further experiments. The basic problem is which form of in-
formation is needed in further applications. The suggested DLE method re-
sults in new load values for each hour. Such information is handled on line
and requires applications capable of accepting on line information. Such
applications are studied and presented in (Kärenlampi et al. 1996).

Another alternative is to collect the estimated load information to a database
where the data will be retrieved for further study. When large differences to
applied load models occur the reason for the difference should be analysed
and the current load model changed. Some of the distribution network com-
putation applications (at least Tekla, Tietosavo and Versoft) support a load
model editor which can be used to update the load models according to the
information retrieved from load estimation.

The estimation algorithm is very general and brings a lot of possibilities to
develop applications. For example, the results of estimated loads could be
used recursively in further estimations. Such variations and improvements
should be targets for further analyses especially when there is a continu-
ously running DLE installation available to test with live data.
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8  DEVELOPMENT OF THE APPLICATIONS

The results of this thesis will now be reviewed together with an analysis of
future applications for development. This work has been done as a part of
the Finnish distribution automation research programme Edison, which is
integrating several development projects to build a new scheme for a distri-
bution automation system (Lehtonen 1996).

Today load research and utilisation of load models are on a high level in
Finnish utilities. Similar high level integration of distribution applications is
difficult to find in other countries. The direction of development from this
point can be seen in two ways:
• Development of applications and improvement of load data in Finnish

utilities
• Development of products for distribution and applications for domestic

and international markets.

8.1  DEVELOPMENT OF UTILITIES’ APPLICATIONS

The free electricity market in Finland has changed the prospects of load re-
search. In the monopoly situation the local seller’s developed local tariffs
and pricing schemes which have also affected the load variation of custom-
ers. In the future such loacal features are expected to change. Also the num-
ber of distribution companies is speculated to shrink from the current 103.

The electricity market for small customers is being considered by the
authorities. The requirement of hourly meterings for customers participating
in the electricity market is too expensive. One alternative is that the small
customers participate in the markets using type load models. In such a case
the need for load research data will increase. Also the methods to estimate
loads of customer classes using load estimation (DLE) techniques are
needed to adjust the energy sold to the total load observed in the feeding
substation of the distribution network (Lehtonen et al. 1996).

While the sales of energy will be changing in many ways the distribution
function itself remains a monopoly. The authorities will be supervising the
distributors and the main problem is to focus the network investments in an
optimal way and keep operating costs under control. Load data and applica-
tions of load models will be needed again not only to help the functions of
planning and operation but also to convince the authorities and public.
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The application of confidence interval estimation presented in chapter 5 is
basic. The new results are applicable at best in low voltage network calcu-
lations where there are only one or a few customers. While load estimation
of one customer is not very important as a single case, it becomes important
because the number of such cases becomes high in distribution networks.
An analysis of correlation between customer classes is suggested for further
study. The correlation between customer classes is needed to complete the
calculations of the sums of loads of different customer classes in distribu-
tion networks.

The simplified confidence interval estimation (SLNE) could be added to the
network computation and planning applications’ toolbox (See example on
page 85.).

The results of load distribution in chapter 4 and 5 are important tools when
analysing the impact of Demand Side Management (DSM) functions and
loads of end use appliances. The outcome of DSM operations are always
random and require simulation tools. The analysis of the origins of distribu-
tion functions and confidence intervals is a contribution to development of
DSM analysis evolving from end use appliances to customer load and fur-
ther to total system load.

The new metering techniques and requirements of hourly metering in the
electricity market bring large amounts of load data. The availability of the
load data also brings a challenge to analyse and benefit from the informa-
tion. The statistical modelling technique and simple load models bring a
straightforward method to utilise the load data from remote meterings.

When the amount of load measurement data increases, data management
becomes an essential factor when utilising the load information. This is an
acute challenge to software and applications development.

8.2  DEVELOPMENT OF DISTRIBUTION AUTOMATION
PRODUCTS

The Finnish distribution system and distribution applications are well ad-
vanced compared to corresponding systems in other countries. This is an
advantage for the development of products for distribution applications.
However, development of applications for other markets where the infra-
structure is not similar to Finland, requires special attention.
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For example, the concept of load research and load estimation, presented in
this thesis, requires good background data from customers and their energy
use. When such information is not available the applications should be ca-
pable of supporting the user to generate the needed information. The algo-
rithms should be so robust that they accept rough approximations as well as
completely defined models or measurements.

Therefore one target for further study should be the development of these
methods to work with minimal data and also applications supporting a com-
plete lack of background information.
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9 CONCLUSIONS

The analysis of customer loads and load estimation is a traditional area of
electricity distribution technology. Modern computers and load research
data collecting techniques and analyses have led us to new sources of in-
formation. More accurate methods of analyses are required because the
competition and market forces will increase the demands of productivity
from the electric utilities. During the last decade the availability of load data
has increased. This study has given some methods of how the information
could be utilised.

In this thesis a model for customer electric load variation and a new method
for estimating confidence intervals was developed. The method is simple
and easy to use. It can be applied in network load flow and voltage analysis
and customer pricing applications.

A method for Distribution Load Estimation (DLE) which combines the
models and measurements was developed. The load estimation of a distri-
bution network is reaching the level where it could be introduced as a prac-
tical application. The utilities are getting better estimates from the partici-
pation of different load categories to the system’s total load.

The Finnish national load research project has proven the usefulness of
customer load data analysis. In spite of the success of the load research
project, the accuracy of the estimates is still limited. Local customer load
research data is required before accurate load estimates from customer load
research data are possible.

The electric utilities should systematise their load research, even on a
smaller scale. The benefits of improved accuracy in the load estimates will
no doubt pay back the costs of load research.

This thesis has pointed out several subjects for further study:
• New load research should be targeted to loads which don’t have regular

seasonal variations.
• The linking of the load models to utility databases should be analysed to

get more accurate information on how the load models are in general ap-
plied.

• The customer load variation model should be analysed further to find out
the complete theoretical basis determining the statistical distribution of
customer loads.

• The applicability of the load variation model to DSM studies should be
analysed.
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• The temperature standardisation should be studied because the latest re-
sults show that the temperature standardisation of earlier studies did not
have the expected results.

• The load correlation between and within classes should be studied to
form models for cumulated loads for several customers from several
classes.

• The random algorithm for simulation of  the loads for several customers
should be developed so that they better take into account the varying
amounts of available load data.

• The transmission loss load model for DLE should be developed.
• The variation of DLE taking recursively the estimated values should be

studied.
• The method of configuring DLE without preliminary load models should

be developed.
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APPENDIX 1

List of publications on the results of the load research project.

The first results from the load research project were published in 1985 by
the Co-operation organisation for Finnish power producers (STYV). The
work was done jointly by the planning committee and published. The title of
the publication was:

• Sähkön kulutuksen indeksisarjat - selvitys tarkistustyöstä 1985.
Suunnitteluvaliokunnan  raportti . 3/85. 40 p. + app.

The Association of Finnish Electric Utilities has published following reports
presenting the results of the load research project:
 
1. Sähkön käytön kuormitusmittaukset. SLY julkaisuja 1/1986. 14 p. + app.
 
2. Sähkölaitosten kuormitustutkimus. SLY julkaisuja 3/1988. 19 p. + app.
 
3. Sähkölaitosten kuormitustutkimus 1992. SLY julkaisuja 5/92. 172 p.
 
4. Data disks of the load curves and standard deviations in various formats.

At least 3 and 4 are available from SLY-Palvelu Oy.

All publications are in Finnish.
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APPENDIX 2

2.1 Customer classification in 1992 analysis.

Residential customers
Class Class description Number of

recordings
included

110 One family house, direct electric heat, water boiler <300l 54
120 One family house, direct electric heat, water boiler =300l 65
130 One family house, direct electric heat, floor heating > 2kW 18
210 One family house, partial storage electric heat, short discon-

nect periods
12

220 One family house, partial storage electric heat, long discon-
nect periods (7-22)

27

300 One family house, full storage electric heat, (7-22) 16
400 One family house, heat pump 34
510 One family house, dual heat, flat tariff 9
520 One family house, dual heat, night tariff 9
530 One family house, dual heat, seasonal tariff 17
601 One family house, no electric heat, no electric sauna 10
602 One family house, no electric heat, electric sauna 22
611 Flat, no elect. heat, no electric sauna. 24
612 Flat, no electric heat, electric sauna 4
1010 Block of flats, no flats included 6
1020 Block of flats 8
1030 Semi detached house, direct electric heating, whole building 18
1120 Summer cottages (sub-station level) 11
711 Agriculture, milk production, residence excluded 13
712 Agriculture, milk production, residence included 28
713 Agriculture, milk production, residence included, electric,

sauna
13

714 Agriculture, milk production, residence included, electric
sauna, electric heat.

15

721 Agriculture, meat production, residence excluded. 2
722 Agriculture, meat production, residence included 4
732 Agriculture, crop production, residence included 7
733 Agriculture, crop production, residence included, electric

sauna
2
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Industrial customers 1-shift
Class Class description Number of

recordings
included

810 1-shift industry all branches all below
810430 Textile, clothing and leather industry, 1-shift 15
810440 Wood industry (mechanic), 1-shift 9
810460 Chemical, oil, gum and plastic industry, 1-shift 8
810480 Metal and machine works, 1-shift 17

Industrial customers 2-shift
Class Class description Number of

recordings
included

820 2-shift industry all branches all below
820420 Food, drink & tobacco industry, 2-shifts 18
820430 Textile, clothing and leather industry, 2-shift 3
820452 Paper products manufacturing, graphical industry, 1-shift 6
820460 Chemical, oil, gum and plastic industry, 2-shift 9
820480 Metal and machine works, 2-shift 9

Service customers public
Class Class description Number of

recordings
included

910 All branches all below
910810 Administration 8
910820 Education, schools 10
910830 Hospitals and health care 6

Service customers private
Class Class description Number of

recordings
included

920 All branches all below
920610 Wholesale trade 5
920622 Department store 29
920622 Retail shops 8
920630 Car retail and service 6
920640 Hotels, accommodation service 5
920650 Restaurant and café 3
920660 Bank & Insurance 13
920670 Recreation and cultural service 4
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2.2 Customer classification for total energy demand

This classification is traditional in Finnish production planning applications
and is derived from the previous groups of Appendix. 2.1. for compatibility.
The simplicity and general form of these load models keep them popular in
applications which don’t require more specific classification. The idea for
this classification is presented in the following figure which describes the
distribution of total (nation-wide) energy consumption to these different
categories. The percentages describe how the larger groups are combined.
For example, the category Other industries (1.) consists of 65% 1-shift in-
dustry (2) and 35% 2-shift industry.

TOTAL-
CONSUMPTION

INDUSTRY SERVICE PRIVATE AND
AGRICULTURE

Other industries

Public

Business

Homes

One family  and 
semidetached

Blocks

Farms

Electric heating

Direct

Partly  storage

Storage

Process industry

1-shift industry

2-shift  industry

Electric heating
+ household

Direct + 
household

Partly storage + 
household

Storage + 
household

3.

2.

6.

5.

15.

16.

17.

18.

8.

9.

10.

12.

13.

14.

1.

4.

7.

11.

65%

35%

33%

67%

15%

42%

43%

10%

10%

80%

10%

10%

80%
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APPENDIX 3

Derivation of the load estimation with one measurement

The problem is to solve the value for vj so that the weighted sum of squares
of errors is minimum in the equation
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Substituting this to the set of equations ( 4 )
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APPENDIX 4

4.1 Simple load models for selected customer classes.

These figures are based on the load model data files published by the
Association of Finnish Electric Utilities in 1992. The figures present simple
form load model paramters, the average load and standard deviation in W
for 10 MWh annual energy use Wa.
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 Model  810: monthly average load
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Fig. 1. Industry 1-shift. Model nr 810.

 Model  820: monthly average load
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Fig. 2. Industry 2-shift. Model nr 820.
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 Model  910: monthly average load
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Fig. 3. Service, public. Model nr 910.

 Model  920: monthly average load
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Fig. 4. Service, private. Model nr 920.
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 Model  110: monthly average load
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Fig. 5. Electric heat, one family house. Model nr 110. Standardised to long
term average temperature.

 Model  120: monthly average load
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Fig. 6. Electric heat, one family house. Model nr 120. Storage water heat-
ing. Standardised to long term average temperature.
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 Model  220: monthly average load
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Fig. 7. Electric heat, partly storage, one family house. Model nr 220. Stan-
dardised to long term average temperature.

 Model  602: monthly average load
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Fig. 8. Residential, one family house, electric sauna.
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 Model  712: monthly average load
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Fig. 9. Agriculture with milk production and residence consumption in-
cluded.
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4.2  Plots of load research sample data

The following figures present plots of load research sample data for a spe-
cific class, month, day-type and hour of day. Each value is plotted along the
x-axis. These figures show the scatter of hourly loads in a sample and how
the division with annual energy affects the distribution.

In each figure the above plot shows the original load data sample in watts.
The plot below shows the same load data divided by customer’s annual en-
ergy use and scaled as watts per 10 MWh/year.
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Class=810, Month=1, Day=Work, Hour=1
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Fig. 10. Class 810 industry 1-shift, January, working day, hour 00.00-
01.00.

Class=810, Month=1, Day=Work, Hour=10
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Fig. 11. Class 810 industry 1-shift, January, working day, hour 09.00-
10.00.
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Class=110, Month=1, Day=Work, Hour=1
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Fig. 12. Class 110 direct electric heating, one family house, January,
working day, hour 00.00-01.00.

Class=110, Month=1, Day=Work, Hour=10
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Fig. 13. Class 110 direct electric heating, one family house, January,
working day, hour 09.00-10.00.
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Class=602, Month=1, Day=Work, Hour=1
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Fig. 14. Class 602 residential, one family house, January, working day,
hour 00.00-01.00.
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Fig. 15. Class 602 residential, one family house, January, working day,
hour 09.00-10.00.



 APPENDIX 5

Distribution machines

From the history of science we find methods which sometimes can give us
another interesting view to a problem. These machines are nowadays re-
placed by computer programs. However the appearance of these machines
gives better understanding to the physical origin of normal and lognormal
distributions.
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Galton’s normal distribution machine (Hald 1965, p. 32) from the book
“Natural Inheritance” 1889. The apparatus consists of a board with nails
of a given row being placed below the midpoints of the intervals in the row
above. Steel balls are poured into the apparatus through a funnel, and the
balls will then be “influenced” by the nails in such a manner that they take
up positions deviating from the point vertically below the funnel. The distri-
bution of the balls is of the same type as the theoretical distribution from a
binomial process.
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Kapteyn’s skew distribution machine (Kapteyn 1916, fig. 7). The whole ma-
chine is 104 cm high. The pins of Galton’s machine are replaced here with
pentagon shaped deviators, two sides perpendicular and the two upper ones
inclined at a fixed angle (45 °) to the horizon. The deviators are of varying
breadth. The breadth is proportional to the distance of the deviator from the
left hand side of the machine. Sand is poured into a funnel situated at the
top. The sand will arrive in the receptacles placed at the bottom of the ma-
chine and form a histogram approximating lognormal distribution.
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