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ABSTRACT

The economy of the sawing process would be greatly improved, if the inter-
nal properties of logs were known beforehand.  The output quality would
be more predictable, resulting in a higher yield and better utilisation of
timber.

Our fundamental idea was to apply the principles of computed tomo-
graphy (CT) to knot detection in logs.  CT is a standard method in medical
applications for internal diagnosis of the human body.  Unfortunately, the
high-speed sawing process leaves a very limited time for log imaging.  Ro-
tation or multiple passes cannot be used to obtain hundreds of  projections
of a log; thus a detailed reconstruction in the sense of CT is not possible.
However, we found that even from three fixed projections valuable infor-
mation can be acquired.  This was demonstrated by analysing images of
both simulated and real logs.  An x-ray imaging system was constructed to
measure full-sized logs moving at normal sawing speeds.  At the first stage,
only one source-detector pair was available; thus three passes per log were
needed in the tests.

A new method was developed for computing 3-D properties of knot
clusters.  We call it the sector oriented reconstruction technique, or
SORT.  The name refers to the principle of applying a cylindrical co-
ordinate system with discrete sectors, rings, and slices.  The object space is
composed of volume elements with dimensions far larger than the imaging
pixel size.  The densities of the volume elements are estimated to recognise
potential knot locations and sizes.  The method uses a priori knowledge of
typical shapes and densities of knots and stems, along with evidential
reasoning when looking for candidate knot directions.

The method produces estimates of knot characteristics at two levels:
(1) volumes and co-ordinates of knot clusters, and (2) thicknesses, lengths,
volumes, and co-ordinates of individual knots.  In some cases, the informa-
tion from three projections is not enough to separate out individual knots. A
confidence index is therefore calculated to indicate the reliability of the re-
sults.

The performance of the detection algorithms was tested with data
from simulated and real logs. For real logs the relative volumes of detected,
undetected, and ghost knots were 0.88 : 0.12 : 0.15, and for simulated logs
0.96 : 0.04 : 0.02.
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1  INTRODUCTION

1.1  WHY INSPECT LOGS BEFORE SAWING THEM UP?

Trees are not created equal.  This is unfortunate for a sawmill owner who
would like to use homogeneous raw material for producing uniform-quality
lumber for his customers.  He faces the problem of how to match the vary-
ing properties of incoming timber and the product demand from the market,
and specially, how to do this in an economic way.

Logs differ in their geometry and internal quality. The maximum di-
mensions of the sawn timber depend on the top-end diameter of the log and
deformations such as crook and sweep. Internal defects like knots, cracks,
or rot lower the value of the product.  The basic goal of sawing is to pro-
duce boards that have as much clear face as possible.

The sawing process is irreversible: once sawn up, a piece of timber
can only be accepted or rejected.  If a product is rejected because of low
quality, its value drops dramatically.  On the other hand, sawing cheap
products from high-quality timber is uneconomical.  The solution to this
optimising problem is log sorting.

At present, log sorting is based on visual inspection for surface defects
and optical measurement of the top-end diameter.  The logs are classified
into 10 - 30 grades according to these properties.  Each grade is then proc-
essed as a whole, using one single sawing set-up.

As one might expect, this kind of sorting is far too inaccurate for an
individual log (Grönlund 1992).  Even though a skilled operator may guess a
lot about the internal quality of a log just by looking at its appearance, the
frequency of misjudgements is high.  Usenius (1988b) claims that only half
of the logs are classified correctly by a human inspector.  This percentage,
of course, depends on the number of grades used.

With this background, it is natural to strive for better sorting of timber
based on information about internal defects.  Potential technologies for non-
destructive detection of defects are gamma rays and x-rays combined with
semiconductor detectors, which are fast enough for imaging moving logs.

Accurate grading would lead to a raised volume yield (square-edged
sawn timber), thus improving the economic outcome.  Grönlund (1992) es-
timates that the value increase of sawn timber would be in the range
7 - 10 %, if the internal defects were known.  Usenius (1988b) states that
the value of nearly knotless board is 3 - 5 times the value of knotty board.
He also estimates that the value yield can be increased 5 - 15 % from the
present level by using computed tomography (CT) to detect internal defects.

According to Zhu et al. (1991a), the first decision that must be made
about a log is whether to saw it into lumber or to produce veneer. A correct
decision to produce veneer can increase the log’s value tenfold.

Hodges et al. (1990) have studied the economic potential of CT scan-
ners for hardwood sawmills.  The investment would be profitable for large
mills, even with only moderate (5 %) increases in lumber value yields.
They have calculated the cost of investment according to the prices of cur-



12

rent medical CT systems, even though the actual system construction would
most probably be quite different.

If the internal properties of logs were well enough known, we also
might think of applications other than just log sorting before sawing. Such
applications are optimal positioning of the log, and quality pricing.

Usenius (1988a) estimates that the volume yield may increase by more
than 10 %, if optimum positioning is used during the saw-up. This is quite in
keeping with simulations by Wagner et al. (1989a), showing a 10.5 to 10.9
% increase in log value.  Zhu et al. (1991a) reports a wider range of varia-
tion of improvement, from 7 up to 21 %.

Quality pricing is based on incoming inspection at the sawmill.  It has
been a standard procedure in Sweden for years, and is now planned to be
adopted by some Finnish companies too. In quality pricing, the logs are
graded individually to classes that fix the price. At the present time, the
grading uses visual inspection and optical measurements.  The accuracy and
objectivity of the inspection would be much better if an automatic detection
of internal defects were applied.

1.2  IMAGE RECONSTRUCTION FROM PROJECTIONS

As early as 1917, J. Radon showed that any object can be reconstructed if
all  of its projections are known  (Herman 1980, pp. 279 - 283).  On the
other hand, Herman (1980, pp. 283 - 285) proves that a picture is not
uniquely determined by any finite number of views.  In practice, we are not
looking for the exact solution, but are quite satisfied with an approximate
solution containing only the substantial details of the original object. Plenty
of experience of such reconstructions has been gained in both medical and
industrial applications.

The method of reconstructing object cross-sections from one-dimen-
sional projections is called computed tomography or CT.  CT, using x-ray
imaging, has been applied successfully to medical diagnostics for more than
two decades.  With 500 - 1000 projections, the accuracy of reconstructed
images is good enough to show the essential details of human organs.

1.2.1  Radon transform and reconstruction algorithms

In Figure 1, we have a three-dimensional object imaged in parallel beam
geometry. Let function f(x,y) represent the values of a cross section. The
parallel projection of function f(x,y) at angle θ is given by (Kak & Roberts
1986, p. 656)

P t f t s ds
s

θ ( ) ( , )= ∫ , (1)

where t = x cosθ + y sinθ  and s = -x sinθ + y cosθ.  For continuous θ,
Equation (1) defines the Radon transform of f(x,y).
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The reconstruction of the cross-sectional  image requires a numerical in-
verse of the Radon transform.  This is done by superimposing all the pro-
jections onto the cross-section area.  A trivial way of doing this is simply
averaging the contributions of the projections onto the image area.

When the number of projections is limited, the backprojection alone is
not enough. A simple example is shown in Figure 2. An object with two
sharp details is imaged in three-view, parallel-beam geometry. Along with
the original details, the backprojection yields undesirable effects. The black
ellipses cast shadows along the projection lines, a phenomenon which is
called streaking. Where strong streaks meet, a ghost image is formed. Be-
sides, the original details are flattened because their mass is partly distrib-
uted along the projection lines.

There are two basic ways of overcoming the problems of disturbing
reconstruction effects:  iteration or finding an analytic solution. Sanz et al.
(1988) present the principles of non-iterative analytic solutions. They start
with the conventional definition of  the inverse Radon transform,

f x y Q x y d( , ) ( cos sin )= +∫ θ

π

θ θ θ
0

. (2)

θ f(x,y)

x

y
s

t

θP (t)

Figure 1.  Parallel-beam projection at angle θ (according to Rossi &
Willsky 1984).

objects

object image

ghost image

streaks

(a) (b)

Figure 2. The original cross section has two sharp object details (a).
Backprojecting three projection images results in streaks and ghost
images in addition to the correct details (b).
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In Equation (2), Qθ(t) is obtained from projections Pθ(t) by filtering
them with a high-pass filter.  The discrete implementation of this inversion
formula depends on the imaging geometry (parallel-beam, fan-beam equi-
angular, fan-beam equispaced).

If convolution in projection space is used to perform the filtering, the
above reconstruction algorithm is referred to as the convolution backpro-
jection technique.  If filtering is performed in Fourier space, the algorithm is
designated the filtered backprojection technique.

An example of an iterative reconstruction algorithm is the algebraic re-
construction technique, ART (Agi et al. 1992).  First, the set of projections
is written as one single-column vector

[ ]r = r r rq1 2, ,..., , (3)

where q is the total number of samples in all projections. Likewise, the im-
age to be constructed is defined as a column vector

[ ]i = i i i t

T
1 2, ,..., ,  (4)

where t is the number of the image pixels. Then the Radon transform can
be written as

r Ai e= + ,  (5)

where A is the projection matrix and e is the error vector. In each iteration
round, the error between each measured and calculated ray-sum is normal-
ised and added to the estimate of the image.

The interested reader can learn more about reconstruction algorithms
from papers by Kak (1990) and Kak & Roberts (1986). Rossi & Willsky
(1984) analyse the performance and robustness of reconstruction algo-
rithms. The books by Herman (1980), Huang (1987), Sanz et al. (1988),
and Krestel (1990) give a good survey of the fundamentals of CT.

1.2.2  The number of projections needed for reconstruction

There are some practical difficulties in applying the ideal mathematical so-
lution to CT (Herman 1980, p. 38):

♦ Radon’s formula determines a picture of all its line integrals.  In CT
we have only a finite set of measurements. Even if these were ex-
actly the projections along a number of straight lines, a finite num-
ber of them would not alone be enough to determine the picture.

♦ The measurements in computed tomography can only be estimates
of the line integrals.  Inaccuracies are due to the width of the x-ray
beam, scattering, beam hardening, detector inaccuracies, and me-
chanical instability of the measurement system.
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When is a reconstructed cross-section acceptable?  For example, two
conditions might be set for successful reconstruction:

♦ The spatial resolution of the image is approximately the detector
pitch wd.

♦ The signal-to-noise ratio of the reconstructed image is about the
same as in the projection images.

One way of getting an idea about the number of projections needed is to
conclude like Pullan (1979) that if the cross section to be reconstructed
contains n rows and n columns, we have n2  unknowns to solve. Thus, n2

independent simultaneous equations would be needed to calculate a unique
solution to the problem. It will then be necessary to make at least n individ-
ual transmission measurements from at least n directions to reconstruct the
cross section.

Herman (1980, p. 285) gives a measure for the necessary number of
projections M.  Expressing the image function in polar co-ordinates (r, α),
the image complexity is related to its frequency response about angle α.  If
we choose the number of projections M to be so large that the interesting
object details are unlikely to have frequencies higher than M/2π, a satisfac-
tory solution may be achievable.  The higher frequencies must, of course,
be filtered from the resulting image.

To apply Herman’s criterion to our present problem, we can presume,
for example, that most logs have maximally eight knots in one slice.
Choosing a sampling frequency twice as high as the "knot frequency", we
end up with 16 imaging projections.  By doing this, we could find all the
knots, but still could not see small details in them.

1.2.3  Restrictions set by the sawing process

In medical applications, some hundreds of projections are obtained with one
x-ray source and one line detector.  The source-detector combination is ro-
tated step-by-step around the object, taking one image per step.

Unfortunately, the above set-up will not work with log imaging in a
sawing process.  The log moves at speeds of up to 2.5 m/s, and it cannot be
stopped or rotated to get multiple projection images from one log slice; nor
can the imaging hardware rotate around the log.  The only way of obtaining
several projections is to have a fixed source-detector pair for each direction.
Economic reasons limit the number of projections to about three.

Obviously it is not possible to reconstruct log images from three pro-
jections, if we understand reconstruction in the traditional pixel-by-pixel
sense.  Instead, we shall locate the knots as a combination of greater
volume elements.  When doing this, we utilise a priori information about
the geometry of the logs and the stem.
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1.3  THE SCOPE OF THE RESEARCH

The present study was preceded by several phases of research, both at
VTT and in other organisations.  These projects included experimental
work on applying x-rays for wood imaging, collecting knowledge of wood
properties, and developing a new x-ray line camera.  This previous research
resulted in a set of preconditions for our study:

♦ X-rays are used for imaging.
♦ There are exactly three imaging projections at 120° intervals, with

fixed source-detector hardware for each projection.
♦ Fan-beam imaging geometry is applied using a point source and a

line detector.
♦ An image line consists of 256 pixels, each pixel being digitised with

16 bits.
♦ The nominal imaging speed is 500 lines per second, which corre-

sponds to 2 to 5 lines per centimetre at log speeds of 1.0 - 2.5 m/s.

From these starting points, our aim was to develop a method for obtaining
three-dimensional information on knots in logs.  This information should be
accurate enough to enable an essential improvement in log sorting.  Addi-
tionally, the algorithms should be implementable with current processor
technology to work at normal sawing speeds.

In this research, our interest was solely in the detection of knots.  At-
tention was focused on developing a measuring instrument, and the ques-
tions involved with log sorting and process optimisation were not consid-
ered.  We also left out the measurement of geometrical properties and the
detection of cracks and rot, even though the same imaging technique is
applicable.

Details of the line camera are not included because of trade secrets in-
volved.

1.4  THE CONTRIBUTION OF THE THESIS

The contribution of the thesis is a method of detection of knots in logs using
x-ray imaging and only three projections.  The method is tested with both
simulated and real log images.  It is shown that the information obtained is
valuable for effective log sorting before sawing.  The method produces pa-
rameters such as the number of knots per metre, knot volume per metre,
estimated knot co-ordinates, and amount of knotless sapwood.

All computation was carried out with a standard PC.  The implemen-
tation of the real-time system is being carried out by another party accord-
ing to the specification outlined in this study.
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1.5  RELATED RESEARCH

1.5.1  Scanning logs with medical CT

Several research groups have applied medical CT systems for log scanning
experiments.  The results are promising.  This is natural because a log and
the human body are similar both in their dimensions and their x-ray charac-
teristics.  However, the low speed and the high cost of the present CT scan-
ners make them impractical for real-time industrial inspection systems.
These studies have been mainly demonstrations to gain justification (and fi-
nancial support) for more practical research.

Funt and Bryant (1987) were probably among the first ones to try
medical CT images in the detection of internal log defects.  They developed
an automatic method for interpretation of CT images to identify the knots,
rot, and cracks occurring in a log.  They met the same problem as others at
that time: the scanning time was 3 minutes per slice!

Som et al. (1992) describe an automated feature extraction technique
to detect and classify features such as knots, rots, and cracks from CT im-
ages of logs.  The images were acquired using a hospital CT system, the
GE9800, with a fan beam and a slice thickness of 2 mm.  The slice data
were used to reconstruct an image of 512-by-512 pixels.

According to Som, the major difficulties are the high moisture content,
the high density variation within logs and the high mill throughput rates.
Their experiments showed that knots were sometimes obscured by
moisture.  The density value of a pixel was not enough for the segmentation
of the image, but also the statistical spread of the neighbourhood should be
utilised.

Grundberg & Grönlund (1992) also used the GE9800 to scan test logs.
They demonstrated the detectability of knots by reconstructing cross-sec-
tions with 512-by-512 spatial resolution using 4096 grey levels.

Both Wagner et al. (1989b) and Roder & Magnuson (1989) report
their experiments of scanning logs with a medical CT scanner, the Imatron
CT-100. The CT-100 is called a "fifth-generation" scanner because it uses a
scanning electron beam instead of mechanical rotation of the x-ray imaging
system. It generates a moving x-ray fan by scanning a highly focused elec-
tron beam along semicircular tungsten  targets that partially surround the
object to be scanned. In its ultrafast mode, the CT-100 acquires 34 images
per second. As one might expect, the images were accurate, showing all the
knots and even the annual rings. The scanning speed of the CT-100 for
256-by-256 images is 0.3 m/s. An array processor and backprojector hard-
ware reconstructed the images in approximately 5 seconds.

Two papers by Zhu et al. (1991a, 1991b) describe a  computer vision
system aimed at locating, identifying, and quantifying the internal defects of
logs by analysing their CT image data. The proposed inspection system is
composed of three components: a CT scanner-based data acquisition sys-
tem, a low-level module for image segmentation, and a high-level module
for defect recognition.  A heuristic, rule-based approach is used to perform
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3-D object recognition.  The performance of the method was demonstrated
by experiments with CT images of red oak logs.

1.5.2  Experiments with a small number of projections

Sikanen (1989) has studied the properties of four selected reconstruction al-
gorithms with very few projections.  The performance of the algorithms was
investigated using both simulated  data and real measurements on wood
samples.  The results showed that non-iterative methods were not suitable
due to strong streaking.  The iterative algorithms (the multiplicative alge-
braic reconstruction technique MART and the maximum entropy method
MENT) were able to detect 50 % of knots larger than 10 millimetres.

To improve the results, two methods were developed for obtaining dif-
ference images that contain only the absorption due to knots.  The first
method is a simple subtraction procedure that uses the projection data of a
knotless slice as a reference.  The other one estimates the density distribu-
tion within the stem from measurements of a knotless slice.  The density
distribution is presented as a series expansion.  The second method is
shown to yield better results and to improve the visibility of knots in the re-
constructed difference images.

Sikanen concludes that - according to his experiments - approximately
six projections are needed to detect 10-millimetre knots.

1.5.3  Unconventional imaging geometries

X-ray sources and detectors do not have to be in one plane.  The only re-
striction is that the projections should be independent.  Puumalainen (1993)
describes a method called MOCT (moving object computer tomography).
The imaging system uses two x-ray sources and six line detectors.  Each
source illuminates a group of three parallel line detectors that are placed
successively across the moving direction of the log.  Thus, six projections
are achieved with only two sources. There are no reports on the perform-
ance of systems of this kind.

1.5.4  Optical scanning to find internal defects

Lee et al. (1991) have used a log profile image and a log surface image,
both simultaneously captured by an optical scanner, to predict the internal
properties of the log.

Grace (1992) reports a log sorting system based on information gen-
erated by the scanning frame.  According to Grace, the surface smoothness
is related to the knottiness of the log.  The type of the log (butt, middle, top)
can be guessed from the shape.  The variables of log geometry, which are
best related to board grade, were log type, butt-end taper and bumpiness.
Using this information, a sorting system was constructed and later installed
at a sawmill.
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1.5.5  Detection systems for explosives

X-rays have been applied for a long time in the detection of weapons that
could be used for hijacking. Nowadays the major threats are explosives.
Passenger luggage cannot be effectively inspected for explosives using con-
ventional one-view imaging, nor is there enough time for such computed
tomography as in medical applications.  So this problem has some similari-
ties to our problem of finding defects in logs.

Bjorkholm & Wang (1992) describe a system called Z-Scan, which is
based on two-view, dual-energy x-ray imaging. Because the attenuation of
an element depends heavily on the radiation energy, materials can be clas-
sified much more effectively with two energies than with one. A three-di-
mensional mass model of the object is created using a modified multiplica-
tive algebraic reconstruction technique (MART). To reduce ray artefacts
and ghost images, a set of physical constraints is applied: (1) the recon-
struction space is limited to the maximum possible dimension of the bag, (2)
only physically reasonable densities are allowed, (3) the mass distribution of
typical bag contents is used as a reference, and (4) the space frequency of
the solution is limited. Z-Scan is claimed to be rather sensitive to explosives
simulants with modest, visually resolvable false detections. The system is
undergoing further sensitivity testing.

 Eilbert & Krug (1992) report on their work on a one-view, dual-en-
ergy x-ray system for the detection of explosives in baggage contents. Each
object in an item of baggage is examined for a match to a specific effective
atomic number, density, and mass threshold. Material properties are deter-
mined by comparing the relative attenuations of the 75 kV and 150 kV
beams, and electronically separating the object from its local background.
The detection expert system incorporates composition analysis, and many
additional heuristic factors such as the object’s shape, density, and mass, as
well as suspicious configurations and devices such as sheet explosives,
detonators, and electronics.

Even the most advanced luggage inspection systems are only semiau-
tomatic: a human operator has to check the images of each suspicious case
before a security alarm.

1.5.6  Nuclear emission imaging

The next application is quite different from ours, but the basic problem is
the same: how to reconstruct objects from a limited number of projections.

Lévai et al.  (1990) have made feasibility studies for tomographic re-
construction of a cross-sectional activity distribution of a nuclear  fuel as-
sembly.  The purpose was to determine the number of fuel pins and localise
the positions where pins were missing.

Gamma radiation from an irradiated 8-by-8 fuel assembly was meas-
ured from different angles and positions.  The measured data set was used
as projections for reconstructing the activity profile of the assembly in a
cross-sectional plane.  The following a priori rules were utilised in the re-
construction: (1) pixel values must lie within specified ranges, (2) the image
vanishes outside a region, (3) the image to be reconstructed deviates at most



20

by a known percentage from a similar reference image, (4) it is sufficient to
make a binary decision (the pin present or absent), though the actual
activity distribution function is not binary.

Lévai concludes that for reliable detection a minimum of 12 to 16
views is needed.

1.5.7  Convex hulls in limited-projection CT

Making use of convex hulls is one way of improving the reconstruction
from limited-projection measurements.  The convex hull of an object is the
smallest convex region containing the object.  It is discovered from the
projections by determining the  support lines, which are tangential lines
bounding the object.

Tam (1987) presents an algorithm to determine an estimate of the ex-
terior boundary of the object. This boundary as well as the upper and lower
limits of the density are used as a priori information of the object. The ac-
tual reconstruction is an iterative process where the image is transformed
back and forth between the object space, with corrections made by the a
priori  information.

Tam also uses his algorithm for detecting flaws embedded in known
objects. The idea is to eliminate the contribution of the known medium, and
reconstruct the difference image.

Prince & Willsky (1990) propose algorithms for reconstructing convex
sets from noisy support line measurements. The measurement noise may
make the set of measured lines inconsistent, i.e. there may be no convex set
that has all the measured lines as support lines. Prince & Willsky show how
knowledge of geometric constraints, the object’s shape and position, and
measurement noise models may lead to optimisation-based or probabilistic-
based  algorithms.

The above ideas have been tried in log scanning. The patent applica-
tion by Aune & So (1989) brings up a log scanning system that uses three-
view x-ray imaging. The image of the knot-free stem is first computed by
filtering, and then its contribution is subtracted.  Finally, the support lines of
the defects are located from the difference image. To overcome the prob-
lems arising from multiple overlapped defects, several thresholds are used in
this edge-looking process.

Methods based on convex hulls are highly suitable for establishing
boundaries of a solid object or a single defect on a known background.  On
the other hand, they are not very useful when a detailed image of a more
complicated object has to be reconstructed.  As seen later in chapter 2,   we
have some special problems when detecting knots in logs.  These include
fading of knots and inconsistency of projections, both caused by attenuation
of humidity.  A knot may not appear as a unique convex object in the x-ray
images because of this disturbance.

1.5.8  Gamma ray scanners

Grönlund (1992) presents TINA, a gamma ray scanner that has been
used in Swedish sawmills for more than 10 years. It measures the under-
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bark diameter and density variations along the log. Hagman (1992) de-
scribes a quality model based on the data collected by TINA. The model is
a linear combination of density properties and external shape properties of
the log. The external shape parameters involved are the taper in the butt
half of the log and the surface unevenness. Hagman claims that their system
has a better prediction capability than manual grading. For a two-class
system (high quality, low quality), the precision of prediction was 75 %
with equal group sizes.

Taylor et al. (1984) used an industrial tomography system with an
Ir192 photon source to detect defects in a small number of test logs.  With
100 projections, the detection capability was satisfactory, but the imaging
time per slice was as long as one second.

1.5.9  Summary

The success of medical CT has encouraged researchers to try the same
technology in industrial processes to detect internal defects in products. Log
sawing is one process that could make great use of such a detection instru-
ment. Most of the research within this field concentrates on off-line experi-
ments with medical CT. However, because of certain technical difficulties,
no on-line CT systems for log inspection have been developed yet. The big-
gest problem is the imaging speed: there is not enough time to obtain a suf-
ficient number of projections to reconstruct cross-sections accurately. The
imaging speed is limited by the x-ray technology, and no major break-
through is expected in this area. After recognising that true CT is not possi-
ble in this application, the question is put in another way: how can one gain
useful information from incomplete imaging data?

One possibility is to determine the size and shape of the log with opti-
cal, gamma ray, or x-ray detection. With gamma rays and x-rays also den-
sity can be measured. Logs may then be sorted using quality indices calcu-
lated from the above-mentioned properties. Size, shape, and density
indicate if the log is from the top, middle, or butt part of the stem. This
information helps indirectly in the prediction of knot characteristics.

Another approach is to look for approximate reconstruction using
known properties of the object. The problem is much easier if there are
only a few interesting details in the object, and their shape can be described
with simple models. Obviously, this principle is a potential way of detecting
knots in logs.
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2  X-RAY IMAGING OF WOOD

2.1  INTERACTION OF X-RAYS WITH MATERIAL

When x-rays penetrate material, the radiation complies with the law of at-
tenuation (Krestel 1990, p. 71),

N N e x= −
0

µ , (6)

where N = number of quanta penetrating the material,
N0 = number of incident quanta,

 µ = linear attenuation coefficient, and
 x = thickness of material.

Defining the intensity of radiation as a number of quanta through a unit area
per unit time, we can rewrite Equation (6) in form

J J e x= −
0

µ , (7)

where J = intensity of radiation penetrating the material, and
J0 = intensity of incident radiation.

The decrease in the number of quanta passing through material can be ex-
plained by three effects: the photoelectric effect, scattering and pair produc-
tion (Krestel 1990, pp. 71 - 72).

In the case of the photoelectric effect, an x-ray quantum hits an elec-
tron of the inner atomic shell and transfers all its energy to this electron. If
the energy transferred is greater than the binding energy of the electron, the
electron is removed from its atom.

The x-ray quantum can interact with an atom without its energy being
absorbed. It then leaves the atom in a changed direction. If it retains all its
energy, this is called coherent scattering or Rayleigh scattering. If it loses
a part of its energy, the effect is called incoherent scattering or Compton
scattering.

Electron-positron pair production does not occur in the low-energy x-
ray imaging systems that we are considering here.

The attenuation law of Equation (6) holds only for a very limited case
when

♦ the radiation is monochromatic, and
♦ the thickness x of the object is infinitesimally small, and
♦ the material is homogeneous.

Generally, none of these conditions is true, and the attenuation law must be
adjusted.
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The case of non-monochromatic radiation

The radiation being monochromatic means that the energy of all the inci-
dent quanta is the same.  In reality, x-ray tubes generate beams with a
spectrum of energies; the radiation is polychromatic.  For example, if we
use an x-ray tube voltage 100 kV, the half-power points of the output
radiation are typically 30 keV and 70 keV.  Because the linear attenuation
coefficient µ is a function of energy, we should integrate over the radiation
spectrum:

J J E e dEE x= ⋅∫ −
0( ) ( )µ . (8)

We can measure the spectrum of the incident radiation, but there is still one
more problem called beam hardening.  The attenuation is generally greater
for photons of lower energy, and thus the energy spectrum of the x-ray
beam changes (hardens) as it passes through the object.  This means that µ
also depends on the position along the measurement beam, leading to

J J E e dE
x E dx

= ⋅ ∫−∫ 0 ( )
( , )µ

. (9)

The effect of multiple scattering

When the object is not infinitesimally thin, an x-ray quantum may have mul-
tiple interactions with atoms. As stated by Wells et al. (1991), these events
have practical significance when µx >1. After multiple scattering, a fraction
b of primary scattered radiation will arrive at the detector. This reduces the
calculated linear attenuation coefficient. Analysis by Wells gives us a
revised model of attenuation:

J J e b xx= ⋅ +−
0

µ µ( )1 . (10)

Wells extends this to higher order scattering as follows:

J J e
e

a
x

ab x ab

= ⋅ +
−−

+

0
µ

µ( )/( )

1
11

.
(11)

Another parameter a is introduced as a corrector for higher order
scattering.  Note that Equation (11) approaches Equation (10) when a
approaches 0.

The values of parameters a and b depend on the effectiveness of the
collimators in the imaging system. Collimators are metallic screening struc-
tures to reduce unwanted scattered radiation that reaches the detector.
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The effect of density

The linear attenuation coefficient µ includes the effect of the density of the
interacting material. We introduce the mass absorption coefficient (µ/ρ)m,
which is independent of the density ρm.  The relationship between these co-
efficients is

µ µ ρ ρ= ⋅( / )m m. (12)

The mass attenuation coefficients of primary elements in a material can be
used to predict the (µ/ρ)m of a material. This is done by summing the at-
tenuation values (µ/ρ)i of the elemental constituents, weighted according to
their elemental fractions fi,

( / ) ( / )µ ρ µ ρm i
i

if= ⋅∑ . (13)

Equations (12) and (13) derive to

µ ρ µ ρ= ⋅ ⋅∑m i
i

if( / ) . (14)

For a given measurement system, it is not very easy to control all the above
variables analytically. Very often one has to rely on an empirical model of
attenuation, which lumps together all the effects of the source spectrum,
collimation, detector sensitivity, and the object properties. One way of doing
this is to determine experimentally a so-called build-up coefficient B, which
is a function of energy E and the thickness x of the object:

J B E x J e x= ⋅ −( , ) 0
µ . (15)

If any essential change occurs in the imaging conditions, there may be a
need for recalibration.

2.2  X-RAY CHARACTERISTICS OF WOOD

According to Wirkola (1983, p. 1522), a typical chemical composition of
absolutely dry wood is: carbon 50.4 %, oxygen 42.5 %, hydrogen 6.2 %,
and nitrogen 0.5 %.

Viitaniemi (1990) gives approximate dry-densities of pine: 500 kg/m3

for stem wood, and 950 kg/m3 for knots. According to the same report, the
average moisture percentages of pine are: knot in sapwood 21 %, knot in
heartwood 18 %, sapwood 88 %, and heartwood 20 %. Note that the mois-
ture percentage (m.p.) is expressed here as moisture mass per dry-wood
mass:

m p
m m

m
f d

d

. .=
−

⋅100 (16)
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This definition comes from the way that the moisture content is usually
measured: a piece of wood is first weighed fresh (mf) and then again after
drying (md).

The humidity of knots and heartwood is fairly low and stable. On the
other hand, sapwood is the vital part of the tree, and therefore contains
much water. Its moisture contents also vary considerably. Data collected by
Kärkkäinen (1985) indicate that the variation range is from 80 % to 180 %.

From the above figures, we can estimate densities and chemical com-
positions of knots and wood, these are shown in Table 1. When calculating
densities, a volume expansion of 13,5 % is allowed, as reported by Viita-
niemi (1990).

Each element has its own mass attenuation coefficient as indicated in
Table 2.  Combining data from Tables 1 and 2, we can calculate linear at-
tenuation coefficients for knots, heartwood, and sapwood.  The results are
presented in Table 3.

Table 1.  Estimated densities and chemical compositions of knots and
wood.

Type of wood Density / Percentage of chemical elements
kg / m3 C O H N

  Sapwood, 80% moisture 790 28.0 63.2 8.3 0.3
  Sapwood, 180% moisture 1230 18.0 72.4 9.3 0.2
  Heartwood 530 42.0 50.3 7.0 0.4
  Knot in sapwood 1010 41.7 50.6 7.0 0.4
  Knot in heartwood 990 42.7 49.6 6.9 0.4

Table 2.  Mass attenuation coefficients of carbon, oxygen, hydrogen, and
nitrogen according to Compton & Allison (1960).

Energy / keV Mass attenuation coefficient / (µ/ρ) / (m2/kg)
C O H N

50 0.0188 0.0214 0.0375 0.0199
60 0.0176 0.0191 0.0375 0.0182
70 0.0167 0.0178 0.0360 0.0172
80 0.0161 0.0168 0.0344 0.0164
90 0.0156 0.0161 0.0327 0.0158

100 0.0151 0.0155 0.0313 0.0153
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Table 3.  Estimated linear attenuation coefficients of knots and wood.

Type of wood Radiation energy / keV
50 60 70 80 90 100

  Sapwood, 80% moisture 39.6 38.2 36.3 34.6 33.0 31.7
  Sapwood, 180% moisture 66.1 63.8 60.7 57.8 55.2 52.9
  Heartwood 23.8 23.0 21.9 20.9 19.9 19.1
  Knot in sapwood 45.6 43.9 41.8 39.9 38.1 36.6
  Knot in heartwood 44.3 42.6 40.6 38.7 37.0 35.5

The contributions of hydrogen and nitrogen to the x-ray attenuation of
wood appear to be negligible, and the attenuation of x-rays in wood is dic-
tated by carbon and oxygen.  Because the atomic weights of these elements
are closely similar, their coefficients are nearly the same at energies used.
This leads to the unfortunate fact that high moisture content of sapwood
may cause considerable difficulties in the detection of knots.

Som et al. (1992), for example, state that the knots are sometimes ob-
scured by moisture and no obvious image segmentation is available through
simple histogram processing. If the humidity of the sapwood is high, the
density of the normal sapwood may be nearly the same as with the knot or
even higher. This finding is supported by Taylor et al. (1984).

Figure 3 demonstrates the fading effect caused by moisture.  X-ray
images of a fresh log and a dry log are shown. In both cases the projections
have been selected so that the knot shades should continue from the middle
to the border of the image. In the fresh log, however, the knots seem to dis-

(a) (b)

(c) (d)

Figure 3.  (a) High moisture contents of sapwood weaken the visibility of
knots in an x-ray image. For comparison, (b) shows an image of a dry log.
The corresponding curves (c) and (d) characterise the cross-sectional
densities of the logs. Dotted lines represent cross-sections of ideal
homogeneous objects.
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appear in the sapwood region. They reappear near the surface, where the
outcoming branch deforms the stem. Obviously, the fading effect should be
kept in mind when developing a method for knot detection.

2.3  EQUIPMENT FOR X-RAY IMAGING

2.3.1  X-ray sources and detectors

An x-ray source consists of a high-voltage generator and an x-ray tube. Ac-
cording to the literature, all experimental log scanning systems use a voltage
of less than 150 kV. This choice is based on medical applications research
seeking the best matches for the radiation energy and the object density.
Since the tube current may be 10 mA or more, the total power consumption
of the tube is more than 1 kW, and water cooling is necessary.

 The most advanced generators use primary regulation by means of
power level compensation and microprocessor control  to achieve a good
long term stability. The deviation of the output power is stated to be less
than 1 %.

For fast imaging, the short-term characteristics are even more impor-
tant.  The output ripple must not exceed digitising resolution.  In practice
this is realised with frequency inverters, a typical switching frequency being
500 kHz.

To date, three types of detector systems have been used in CT
systems (Krestel 1990, p. 437):

♦ scintillation crystals with photomultipliers,
♦ scintillation crystals with photosensitive semiconductors, and
♦ xenon gas ionisation chambers.

The crystal-semiconductor combination is the most popular type of detector
in the newest systems, probably because of its high packing density.  Scin-
tillation crystals convert x-rays into visible light, which is then measured
with a photodiode and proper amplification electronics.  Typical scintillation
materials are NaI, CsI, and Bi4Ge3O12.

2.3.2  Imaging geometry

The first x-ray scanning systems had only one source and one detector. The
source-detector pair was first moved in a translational manner, producing a
parallel-beam image at one projection angle (see Figure 4). Then the
source-detector combination was rotated by an angle increment, and the
next projection was measured.  This is apparently a slow way of scanning.

The fan-beam imaging system has a combination of one x-ray tube
and a line detector with multiple elements. There are several implementa-
tion principles of this geometry. The source and detector may rotate to-
gether around the object, or only the source rotates while the detector is a
fixed ring.  In fifth-generation imaging systems, there is no mechanical ro-
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tation at all (Roder & Magnuson 1989). The electron beam is deflected by
coils before it hits an arc-shaped anode located around the imaging area.
Thus the direction of the x-ray beam can be controlled electronically,
making the scanning much faster than in conventional systems.

(a) (b) (c)

Figure 4.   Imaging geometries: (a) parallel beam, (b) rotating fan beam,
and (c) fan beam with a fixed detector ring.

We want to measure the straight beam coming from the x-ray tube to a de-
tector cell. Because of scattering, a part of the radiation zigzags through the
object and does not truly represent the points in the ideal line-of-sight path.
To reduce the scattered radiation, a collimator is installed in front of the
detector. The simplest collimator is a narrow slot in a plate of strongly at-
tenuating metal such as lead. This kind of structure obstructs radiation
coming from outside the imaging plane. A lamellar structure with a hole for
each detector element also reduces scattered beams in the imaging plane.

The speed requirement in our system dictates that fixed fan-beam ge-
ometry must be used. This means that each projection has its own x-ray
tube and line detector.
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3  SECTOR-ORIENTED RECONSTRUCTION

3.1  SEARCH FOR THE METHOD

The message from the previous chapters is clear: a pixel-by-pixel recon-
struction - in the sense of conventional tomography - is a hopeless task from
a small number of projections.  However, the literature cited and our own
preliminary tests imply that useful information can be gained even from
three projection images.  According to the opinions of some sawmilling pro-
fessionals, even such parameters as knot volume per unit length and thick-
ness of knot-free sapwood would greatly help in log sorting. It is also
known that the value of the log is significantly correlated to the part of the
stem it is cut from (Hagman 1992). Even more valuable, and possibly still
obtainable, would be knowledge about approximate knot areas on given
surfaces of sawn timber.

The project was begun by testing a few hypotheses with experimental
data. The data were acquired with an imaging set-up consisting of an x-ray
source, a line detector, and a mechanism to move pieces of logs through the
system. The images went through pre-processing, which included gain and
offset correction of individual pixel values, logarithmic transformation, and
adjustment of the mutual positioning of the projections. Finally, the back-
ground was filtered out from the images to show only the variations due to
knots. These difference images were used in testing the hypotheses de-
scribed below.

3.1.1  The hypotheses tested

Hypothesis 1: Knot directions in 3-D space can be determined from knot
vectors in the projection images.

The idea of Hypothesis 1 comes easily into mind when looking at images
such as in Figure 5. Indeed, if the endpoints of a line are known at least
from two views, the line can be located in 3-D space. The essential problem
seems then to be how to find the endpoints. The projection images have to
be filtered, segmented, and examined for knot-like objects. When a knot
shape is found, its orientation must be determined in order to look for the
endpoints from the proper directions. Surprisingly enough, the endpoints do
not generally lie on the border line of the knot shadow, but rather within it.
This finding can be shown with elementary geometry.

When trying to formulate a robust algorithm for the calculation of knot
directions, we faced considerable difficulties. First of all, the accuracy of
endpoint detection was inadequate. Even though the shadow of the knot is
located correctly, it is not self-evident where exactly the endpoints lie. Un-
fortunately, the result of the calculation is sensitive to endpoint inaccuracy.
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Furthermore, some of the endpoints are shadowed by other knots. Aune &
So (1989) claim that overlapping knots can be distinguished with multiple
thresholding. We witnessed no evidence of this in our tests. It follows from
the shadowing that there may be a different number of endpoints found in
the projection images. When we add to this the inaccuracy of the endpoints,
it is understandable that consistency between projections is often hard to
find.

The above aspects decreased the attraction of the principle in Hy-
pothesis 1, and so this idea was rejected already at an early phase of the
project.

Hypothesis 2: Convex hulls can be utilised to reconstruct simple objects
such as knots.

The principle of convex hulls is suggested for example by Tam (1987),
Prince & Willsky (1990), and Aune & So (1989). The idea is to approxi-
mate a convex object with a polygon, which is bordered by the support
lines of the object. In a given view direction, the support lines are the two
straight tangential lines of the object to that direction (see Figure 6). The
convex hulls are determined separately for successive cross-sections, and
the results are then combined to obtain a 3-D reconstruction of the object.

In our case, the aim would be to find a set of convex hulls, each con-
taining one single knot. Figure 6 shows an example with two cross-sections
reconstructed. The result seems quite satisfactory, but still there are indica-

(a) (b) (c)

(d)

Figure 5. Knot vectors found in three projection images (a - c) are used to
calculate the directions of knots. (d) shows the result as a cross-sectional
view.
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tions of potential problems even in this simple case. The object areas in
Figure 6.e are wider than they should be. This is obviously because two
partially overlapping knots appear as one object in the projection images,
thus generating only one pair of support lines instead of two pairs. When
the number of knots increases, the knot segments in the reconstruction
images tend to combine, which makes the results worthless. Multiple
thresholding may help to distinguish overlapping knots (Aune & So 1989),
but it is not a generally applicable solution according to our experiments.

Another harmful phenomenon is the splitting of knot images. As ex-
plained in Chapter 2, the moisture in sapwood often causes fading, and
therefore some knots do not appear as continuous regions in the projection
images. This results in inconsistent support lines from the projections.

Because of the above mentioned factors, Hypothesis 2 was also dis-
carded.

Hypothesis 3: Cross-section images of reasonable quality can be achieved
with backprojecting, if enhanced with angular filtering.

We learned in Chapter 1 that using a small number of projections will create
streaks and ghost images in reconstruction. Hypothesis 3 is based on the
fact that knots grow from the heart of the stem towards the surface. Figure
7 illustrates what is meant by angular filtering. Suppose that the cross-
section generated by backprojecting is expressed in polar co-ordinates as

(d) (e) (f)

A

B

B

B

(a) (b) (c)

A

BB

A

Figure 6.  Convex hull principle: support lines from three projection
views border convex hulls that contain the knots. Cross-section A is shown
in (d) and cross-section B in (e). The original objects at both cross-
sections are presented in (f).
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f(ω, r). The image is low-pass filtered in regard to ω producing the image in
Figure 7b. In addition to that, an average is calculated from the image as a
function of ω. The result of averaging is visualised by Figure 7c showing the
directions in which the knot patterns are concentrated. Streaks in 7b can
now be attenuated by using 7c as a mask or a weighting function.  The
image in Figure 7d is obtained as a weighted sum of 7b and 7c.
Thresholding yields the final reconstruction in Figure 7e.

The procedure of angular filtering is expected to reject shapes that do
not fit in with the characteristics of natural knot patterns. Preliminary tests
with measured and simulated data were so promising that the efforts were
directed to developing this principle further.

3.1.2  Guidelines for developing the method

The essential objective in developing the knot detection method was to find
algorithms that could be run in reasonable hardware in real time. In this
case “reasonable hardware” was defined as commercially available multi-
processor units that would work under the control of a standard PC com-
puter. The task to be implemented included computation of about 500
cross-sections per second, the size of a cross-section being typically 256 by
256 pixels. Each image had to be filtered and segmented, and then the

(a) (b) (c)

(d) (e)

Figure 7.  Enhancing the reconstructed image with angular filtering: (a)
cross-section backprojected from three projections, (b) cross-section after
filtering in regard to polar angle ω, (c) image density averaged as
function of angle ω, (d) weighted sum of (b) and (c), (e) the final image
after thresholding.
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successive cross-sections should be combined to find 3-D knot shapes. This
was considered computationally far too heavy for the suggested equipment.

Conventional CT in fact sums all projections onto the cross-section to
be reconstructed. When we are trying to do the reconstruction from only
three projections without iteration, summing is not effective. Suppose that
two projections contribute strongly to a certain area in the cross-section, but
the corresponding part of the third projection is empty. Summing would
yield a non-zero value for that area, even though the method should clear it
according to information from the third projection. In other words, the re-
construction method should be exclusive.

Starting from these prerequisites, we stated our strategy as follows:

♦ Rather than trying to reconstruct log slices pixel-by-pixel, we look
for three-dimensional shapes that have a direct relationship to the
geometry of knots in wood.  The cylindrical co-ordinate system is
used to present the object.

♦ Data is compressed as fast as possible to reduce computation and
keep the memory requirements reasonable.  A log image represents
several megabytes of data that must be processed in seconds.
Thus, a non-iterative method  with the pixel-by-pixel processing
minimised would be desirable.

♦ A priori knowledge of knots and stems is utilised.  The knowledge
is associated with the geometry, density, and moisture contents in
different parts of the log.

♦ The locating of knots is based on uncertain, incomplete data. A
principle called fuzzy reasoning is applied to combine measured
data and a priori knowledge.

♦ The reliability of the detection result is estimated.

The above principles have led us to a method that we call the sector-ori-
ented reconstruction technique, SORT.

3.1.3  Overview of SORT

Figure 8 presents the computing phases and data flow in the SORT method.
The first four phases are similar for all three projections P0, P1, and P2,
and can be implemented totally in parallel.

Imaging is followed by pre-processing that includes normalisation of
individual pixel values and adjustment of the mutual positioning of the
projections. Background elimination is a two-part process: an image of the
knotless stem is first determined by low-pass filtering; then the share of the
stem is subtracted from the original image to show only the variations due to
knots.

Backprojection in CT means superimposing all projections on to a
cross-section. Our procedure differs from that in two ways. First, the inter-
mediate results of each projection are saved separately for further process-
ing. Second, the contribution of the projection is not directed to pixels, but
rather to elements of sector-shaped areas. The purpose of this practice is to
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decrease the amount of computation in filtering and segmentation, as de-
scribed later.

The process divides into two branches after backprojection. The
branch on the right computes collective parameters of the whole knot clus-
ter, such as bounding dimensions and the total knot volume of the cluster.

The left branch handles individual knots, and its input data are the
three backprojections consisting of density-related values. These values in-
volve uncertainty that must be handled statistically. To do this, they are
transformed to probabilities, or evidences. Combining the backprojections is
then carried out as a process called fuzzy reasoning, where evidence of ele-
mentary image segments yield probabilities for candidate knot directions.
Finally, the original projections are backprojected to the knot directions se-
lected, and the resulting patterns are analysed to obtain the co-ordinates and
volume of each knot.

Imaging

Pre-processing

Background elimination

Backprojecting to 3-D space

Combining backprojections

Candidate knot directions

Backprojecting to
candidate directions

Knot parameters

P2P0 P1

P2P0 P1

P2P0 P1

P0 P1 P2

Projection images

Normalised images

Knot images

3-D backprojections

Calculating cluster
parameters

Cluster parameters

Figure 8. Flowchart of the sector-oriented reconstruction technique,
SORT. P0, P1, and P2 refer to the three imaging projections.
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3.2  FUNDAMENTALS

3.2.1  Co-ordinate system

The cylindrical co-ordinate system is a natural choice for describing logs
and the knots in them.  A short piece of a stem is approximately a cylinder
with its pith on the longitudinal axis.  The knots start from the pith and grow
radially towards the surface of the log.  Each knot is contained in a sector,
which does not include any other knot.

The cylindrical co-ordinate system is defined by the rotational angle α,
the radius r, and the longitude z.  We quantise the co-ordinates to obtain
discrete volume elements (i , j, k) in the cylinder space:

sector i: (i - 0.5)⋅∆α ≤ α < (i  + 0.5)⋅∆α ,
ring j: (j - 1)⋅∆r ≤ r < j⋅∆r ,
slice k: (k - 1)⋅∆z ≤ z < k⋅∆z .

(17)

If the slice number is not relevant, we refer to sector elements (i , j).   The
quantising steps selected are ∆α = π / 18 = 10 degrees, ∆r = 2 centimetres,
and ∆z = 1 centimetre. The selection is a compromise between computa-
tional load and spatial resolution. The angle step is such that about all the
knots reside in 1 to 4 sectors. The number of volume elements associated
with a typical knot is in order of one hundred. Improving the spatial resolu-
tion would increase the computation almost linearly, but it would not auto-
matically improve the accuracy in the same proportion. When the details
become smaller, the uncertainty about their reconstruction increases.

The log is analysed in parts that contain one knot cluster each. The
knot cluster under examination is placed at the origin of the co-ordinate
system.  To adjust the co-ordinates correctly, the central line of the log and
the starting point of the knot cluster are first determined.

ring  j

slice k

sector i

z

α β r

γ

Figure 9.  On the left: the cylindrical co-ordinates are α, r, and z. Angles
β and γ are measures of steepness and width of the knot. On the right: the
co-ordinates are quantised to rings, slices, and sectors.
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If R and L denote the radius and the length of the part of the log to be
analysed, the maximum values of indices i , j, and k are then

imax = 2π / ∆α − 1 ,
jmax = R / ∆r ,
kmax = L / ∆z .

(18)

Additional variables used to describe knot characteristics are the rise angle
β and the opening angle γ.  β is the angle that the axis of a knot makes with
the origin plane z = 0.  As the knot is modelled as a cut cone, γ is the aver-
age opening angle of that cone (see Figure 9). The positive direction of z is
towards the top end of the log, and thus the values of β are normally posi-
tive.

3.2.2  Imaging geometry

The x-ray tube is considered here as a point source.  The imaging geometry
is defined by source-to-log-axis distance d1, and source-to-detector distance
d2. Figure 10a shows a scheme of the geometry for one projection. The dis-
tance d2 is a fixed property of the equipment, while d1 varies with the shape
and diameter of the log and with its position on the conveyor.

To interpret the images correctly, distance d1 must be determined
separately for all projections. To do that, the central lines from the x-ray
sources to the middle of the log are calculated from the edge points of the
projection images. The central lines are drawn in Figure 10b with dotted
lines. Parameter d1 is the distance from a source to the intersection of those
lines. The SORT method also requires that the images are shifted to make
the middle of the log coincide with the z axis.

d 1

(b)(a)

x-ray source

sector element (i,j)

R

detector
element h

detector plane

d 2

Figure 10.  (a) The concepts and parameters associated with the imaging
geometry. (b) The origin of the imaging geometry is where the continuous
lines meet. The dotted lines show the directions from the x-ray sources to
the middle of the log.
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The detector elements are indexed by h.  On some occasions, the ray
from the source to the element h is called ray h.

The detector consists of those elements whose width is wd.  The
detector element width projected onto the origin plane is

w
d

d
wd d0

1

2

= ⋅ . (19)

Parameter wd is used to scale log dimensions from pixels to centimetres.

3.2.3  Backprojecting coefficients

The imaging system produces three 2-D images pm(h, k) of the object, with
m = 0, 1, and 2.  To compute the contribution of a projection pixel pm(h, k)
to a volume element (i, j, k), a set of coefficients c(h, i, j) is used.  The co-
efficient c(h, i, j) equals the length of the ray h within the sector element
(i, j) expressed in centimetres.

The coefficients c(h, i, j) are applicable for all three projections with
proper phase shifts of index i . Bearing in mind the conventions in Chapter
3.2.1, the shifted indices of projections 1 and 2 are i1 = (i  - 12) mod 36 and
i2 = (i  + 12) mod 36, respectively.

Most of the coefficients c(h, i, j) are zero. For a given i  and j, the
coefficients are non-zero if and only if h lies within a certain interval [hmin,
hmax].  This is most fortunate; a great deal of computing time is saved by
tabulating these limits for later use:

{ }h i j h c h i jmin( , ) min( ) ( , , )= >  0 , (20)

{ }h i j h c h i jmax( , ) max( ) ( , , )= >  0 . (21)

The sum of all ray fractions inside the sector element (i, j) gives a measure
of the area of the element:

a i j c h i j
h

( , ) ( , , )= ∑ . (22)

Since the ray width varies in a fan beam geometry, a(i, j) is not a true area.
Nevertheless, it represents adequately the size of the element needed in the
following calculations.

The coefficients c(h, i, j) are calculated for a given log distance d1.
To apply these coefficients to other distance values, the input images must
be zoomed by remapping the detector element index h.  To obtain accurate
results with a wide range of log positioning, there must be several sets of
coefficients, each being used for a certain distance interval.
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3.2.4  The application of knowledge on wood

A few simple rules are utilised in the detection of knots.  The rules are con-
cerned with the geometry and density of typical stems and knots. It has to
be understood that the assumptions below are approximations and do not
hold exactly for natural wood. We have to be satisfied with a simplified so-
lution that best fits the insufficient data. For that purpose, the rules are valu-
able.

♦ The cross-section of the stem is approximately elliptical. The size of
the cross-section can be estimated with the average of the diame-
ters from the three projections.  The maximum value of those di-
ameters is used to define a circle containing the reconstructed
image of the cross-section.

 
♦ The starting point of the knot is located on the axis of the stem. A

knot is modelled as a cut cone, which can be described with the ro-
tation angle α, the rise angle β, the opening angle γ, and the radial
length rk. The radial length is the distance between the end of the
knot and the pith. In most cases, the rise angle β is from 0° to 50°.

 
♦ All the knots in a cluster start nearly at the same point. The neigh-

bouring knots cannot lie immediately side-by-side; we assume a
minimum rotational distance of 40°. In a very knotty log, the rota-
tional distance can be smaller. Such a knot pattern could not be dis-
tinguished with our method.

 
♦ The stem density varies both radially and longitudinally. The radial

variation is so wide that it has a considerable effect on the visibility
of knots in x-ray images. This effect must be compensated for.

3.2.5  Evidential reasoning

Later in this chapter we shall use evidential reasoning for locating knots. A
group of pixels in a projection image gives us evidence that certain volume
elements might belong to a knot.  Pieces of evidence are gathered from all
the projections and combined, resulting in a belief value for each volume
element.  The process continues with combining beliefs of adjacent volume
elements, producing a belief value for a sector to contain a knot.

In our case, evidence can be either positive or negative.  Evidence is
actually a probability value that is scaled in the interval [−1, 1].  Values −1,
0, and +1 correspond to the phrases “definitely no”, “undetermined”, and
“definitely yes”.

For combining evidences e1 and e2, we introduce an operator recom-
mended by Cheng & Kashyap (1989),

E( , )e e
e e

e e1 2
1 2

1 21
=

+
+

. (23)
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The operation is extended to more arguments by noting that

E E E( , , ) ( ( , ), )e e e e e e1 2 3 1 2 3= . (24)

Cheng’s operator was selected, because it is easy to use, and it has certain
good properties. The operation is commutative and associative meaning
that the result does not depend on the order in which the set of evidence is
gathered.  The combination function is also monotonic, i.e. stronger
evidence creates higher belief values for the hypothesis.

Evidence is derived from some logical or physical variables, such as
density in our case.  To gain robustness in the reasoning, the elementary
evidence must be determined carefully.  One erroneous value near the end-
points –1 or +1 may distort the combined belief.  When calculating evidence
on density values of volume elements, we must make sure of the rea-
sonableness of the result by setting an upper limit for the density.

The number of pieces of evidence also affect the scaling of evidence
values.  For example, we may state that combining n “fairly positive” ele-
ments should produce belief b. We then have to find proper evidence e that
fulfils the condition E(n pieces of e) = b.

3.3  PRE-PROCESSING OF X-RAY IMAGES

Pre-processing means normalisation and linearisation of pixel values, as
well as locating the object and centring it for 2-D processing.  All these
functions are quite mechanical operations that could be implemented with
hardware in the imaging system.  In our case, however, the processing has
been executed off-line in a PC.

3.3.1  Log end detection

In continuous operation, the imaging system has to detect the start and stop
ends of the log.  This can be done easily by observing row sums of the im-
age.  When the sum exceeds a given threshold, a log is present at the imag-
ing line.  If a log end has been cut slanting, the three projections may see
the end lines at different places. We must then use some logic to resolve the
discrepancy.  Our rule is that all projections must agree about the presence
of the log.

3.3.2  Averaging lines to slices

A length encoder is included in the conveyor so that the longitudinal co-or-
dinate can be attached to every line of pixels. The number of lines per unit
length varies with the conveyor speed.  As we would like to handle slices of
constant thickness, the pre-processing should include an algorithm for trans-
forming a number of lines to slices. In our system, the slices are calculated
by averaging the lines whose longitudinal co-ordinates fall within the same
centimetre.
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3.3.3  Pixel value normalisation

Every detector element is an individual.  The sensitivity variation within an
array of photodiodes is typically less than 1 %, but more inaccuracy comes
from optical coupling between the scintillation crystal and the photodiode.
The total sensitivity of an element may be as low as 50 % of the sensitivity
of the best element in an array. Another problem is the temperature
dependence of the photodiode: the dark current of the diode is doubled with
a temperature rise of 10 degrees.  This results in an offset current, which is
summed into the current caused by the optical signal.  To overcome the
gain and offset variations, each measured detector element of value dout is
normalised with two calibration values ddark and dfull:

d
d d

d dnorm
out dark

full dark

= ⋅
−
−

C . (25)

The offset value ddark is measured without x-rays, and the maximum value
dfull with full radiation when no object is present.  The constant C scales
dnorm to the appropriate number range.

3.3.4  Linearisation

In order to establish the object density, values proportional to the linear at-
tenuation coefficient µ have to be obtained.  The attenuation law of Equa-
tion (7) can be solved for µ by taking logarithms of both sides and rearrang-
ing,

µ =
1 0

x

J

J
log . (26)

As stated in Chapter 2.1, this simple law is distorted by multiple scattering
and beam hardening. The linear attenuation coefficient given by Equation
(26) decreases with increasing object thickness, resulting in inconsistency
between measurements from different angles. To determine a more accu-
rate model of attenuation, we have measured values J0/J with varying ma-
terial thickness. The experiment showed that the attenuation law
appropriate for our imaging equipment is

J J b x e x/ ( ( ) )0
21= + ⋅ ⋅ −µ µ , (27)

where b is an experimental coefficient.
We would like to linearise the pixel values to produce the thickness of

the material in centimetres at a given average density, e.g. 1000 kg/m3.
Knowing the chemical elements of wood, a typical value of µ can be gath-
ered from literature (as Compton & Allison 1960). The energy spectrum of
the source has to be considered when determining the proper value for µ.
Coefficient b depends on the radiation collimation of the set-up, and must
always be determined experimentally.
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Object thickness x is solved from Equation (27) by iteration and saved
into a look-up table for use in the linearisation process:

{ }LT( ) ( ( ) )d x d b x enorm norm
x= = + ⋅ ⋅ −  1 2µ µ , (28)

where dnorm is the normalised value of a pixel, dnorm = 1...65535. Then, the
linearised pixel value dlin can be taken from the look-up table,

d dlin norm= LT( ) . (29)

3.3.5  Edge detection and object centring

The edges of the log are determined for two reasons: the radius of the log
must be known in the following computation, and the log must be centred in
relation to the co-ordinate system.

Finding the edges is performed by simply thresholding the projection
slice values with t:

{ }h h d h tl lin= >min( ) ( )  , and

{ }h h d h tr lin= >max( ) ( )  .
(30)

Symbols hl and hr refer to the left and right edges of the log, as projected on
the detector.  The threshold t is selected  to correspond to some centimetres
of wood.

The mid point of the slice is the average of hl and hr. Before the actual
centring, the centre line consisting of successive mid points must be filtered
to remove the effects from curved edges. Then, every slice is centred by
shifting its pixels by such number of steps that the mid point coincides with
the central line of the image space.

3.4  ACQUISITION OF 2-D KNOT DATA

3.4.1  Locating knot clusters

To save computation time, we pay attention to only those pieces of the log
that seem to contain knots. A hint of a knot cluster is obtained from the row
sums: an image row containing knot pixels has a greater sum than its neigh-
bours without knot pixels. Therefore we calculate the sum of all slices k of
the log from the three projection images p0, p1, and p2:

S k p h krows m
h

n

m

( ) ( , )=
==

∑∑
10

2

. (31)
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We include all three projections in the row sums to get a reliable result.
Figure 11 presents an example of the variation of row sums along the length
of the log.  The locations of knot clusters are clearly seen in the curve.  As
one might expect, the thickness of the log also contributes to the sums. Lo-
cal characteristics of the curve should therefore be observed to locate the
clusters.  We do this by comparing each point with the minimum of a neigh-
bourhood window.  The window should be as narrow as possible to keep
the calculation simple, but it still should be wide enough to contain a long
cluster.  We have selected the width of 31 points, because most knot clus-
ters are shorter than 31 centimetres.

The start and end co-ordinates of the clusters are then determined by
median filtering which is highly suitable for this application because of its
robustness.  Additionally, we expect that more than half of the log is normal
wood without knots, and so the rows with sums above the median would
most likely contain all the knot areas.

We used a brute-force method based on sorting to determine the me-
dian.  Since this operation is needed only once per piece of a log, its com-
putational effectiveness is not critical.  Better methods are surveyed by Ju-
hola et al. (1991) and Astola & Campbell (1989).

3.4.2  Removing the background

After locating the knot clusters, we shall filter out the normal wood from the
image to uncover deviations caused by knots. The nature of our object sug-
gests one-dimensional filtering. As the log is scanned lengthwise, the gra-
dients in image columns are small, while rows reflect the round shape of the
stem. Figure 12 shows some columns of a log image.

Potential methods for approximating the body of the wood include av-
eraging or median filtering with a sliding window. When selecting the
method, we have to take into account that the thickness of the stem changes
at the knot cluster. This is especially true for the top part of the stem. The

(b)

(c)

(a)

Figure 11.  (a) Row sum of a log image indicates the locations of knot
clusters. (b) The effect of changing stem thickness is eliminated by
comparing each point to the minimum of a gliding window. (c) The knot
sections in the log are detected by median filtering of curve b.
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thickness change appears as a step in the image column. Most easily, the
step is eliminated by linear interpolation over the cluster section. The back-
ground is then removed column-by-column producing a difference image:

♦ Outside cluster sections, set the difference image to zero.
♦ Inside a cluster section,

♦ pick up reference values from rows just preceding and follow-
ing the cluster section,

♦ calculate the background value for a pixel by linear interpola-
tion from the reference values, and

♦ subtract the background value from the original pixel value.

For every knot cluster, the two-dimensional processing results in three pro-
jection images pm(h, k) containing the knot information.  Additional parame-
ters to be saved are the starting co-ordinate z0, and the left and right edge
points of the cluster.

3.5  RECONSTRUCTION OF KNOTS

The three-dimensional processing falls into three parts. First, we compute
some collective properties of a knot cluster describing the over-all quality of
that part of the log. As we shall see later, this may be the only information
we are able to obtain in the worst case. Then we look for candidate angles
for the knots utilising fuzzy reasoning. Finally, the reconstruction is con-
cluded by backprojecting the three projection images into the candidate an-
gles.

Figure 12.  Curves at the top refer to columns of a log image. The back-
ground is removed by zeroing the points outside cluster sections and sub-
tracting interpolated values inside clusters (bottom).
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3.5.1  Computing collective cluster properties

The main input of this stage are the three projection images p0(h,k), p1(h,k),
and p2(h,k). We start with fitting them into the co-ordinate system, i.e. find-
ing values k1, k2, and jmax, which set boundaries to the cylinder containing
the knot cluster. The basis for most of the following calculation will be a
new image obtained by averaging the six halves of the input images:

p h k p h k p n h ka m m
m

( , ) (( ( , ) ( , )) /= + + −
=

∑ 1 6
0

2

. (32)

Averaging is done for all slices k of the cluster with h = 1...hc, where hc is
n/2, half of the number of detector elements (see Figure 13).  The idea be-
hind using image pa instead of the original images pm is to reduce computa-
tion.  At the moment, we are only interested in properties that are
symmetrical in respect to the central line of the images.

Boundaries of the knotty volume in a cluster

The limits k1 and k2 of the longitudinal co-ordinate are set so that the knot
volume lies within them.  Because images always contain some noise, it is
not reasonable to include all non-zero slices. We have to allow for a toler-
ance that is represented by the multiplier δ in the following equations. The
value of δ  is not critical, and it may be for example 0.01.

k k p h k p h kx a
hk

k

a
hk

x

1 = ≤ ⋅
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=
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δ , (33)
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1

1 δ . (34)

To simplify things later, k is normalised by subtracting k1–1.  Then the slice
numbers under examination are k = 1...kmax, where kmax = k2 – k1+1.

We have found earlier the edge pixels of each projection along the
stem, defined by Equation (30). Taking these edge points from a reference
line kref just below the knot cluster, we can calculate an approximate radius
for the cluster in centimetres as seen from direction m,

[ ]r h k h k wm rm ref lm ref d= − ⋅( ) ( ) /0 2 , (35)

where wd0 is the pixel width at the origin plane, and m = 0, 1, and 2.
The maximum of the three projection radii rm is then quantised with

∆r = 2 centimetres to obtain the number of rings jk in the cylindrical co-or-
dinate system:

jk = Int(max(r0, r1, r2) / ∆r) + 1 . (36)
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Especially in butt end logs, knots do not always reach the stem surface.
The knotless sapwood has a high value, and thus it is important to know its
thickness.  We determine the cylinder holding the knots, which is character-
ised by radius rk.  First, an image column hk is sought such that the interval
h = 1...hk contains only a minor portion δ of the knot volume. Again, the
parameter δ is a tolerance multiplier as in Equations (33) and (34).

h h p h k p h kk x a
h

h

k
a

h

h

k

x c

= ≤ ⋅






= =

∑∑ ∑∑max( ) ( , ) ( , )  
1 1

δ . (37)

The knot cylinder radius in centimetres is then calculated as

r h h wk c k d= − + ⋅( )1 0 . (38)

Cluster shape

An important constraint for the reconstruction comes from the cluster
shape. It is quite reasonable to assume that, in most cases, the following is
true in our approximate log model:

♦ All knots start at the origin of the co-ordinate system when the
projection images are centred and cut as described earlier.

♦ All knots are inside radius rk.
♦ The steepest knots reach the topmost slice kmax at radius rk.
♦ The rise angles of all knots are positive.

(a) (b) (c)

k2

k1

hchk

(d) (e)

Figure 13.  The six halves of the three projections (a-c) are averaged to
obtain an image characterising the over-all properties of the knot cluster
(d). The top and bottom slices of the cluster are numbered k2 and k1.
Horizontally the knots are located between the central line hc and the
outer limit hk.  A collective reconstruction of the cluster is then computed
(e), as described later in this chapter.
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The model stated above is not exact. Knots in a natural log do not start at
the geometrical centre of the log but at the pith, which may be centimetres
away from the centre. Likewise, real knots are not always straight as as-
sumed by the last rule. These remarks are not totally relevant, because we
are looking for a simplified model that best fits the data measured, not an
exact form of natural knots.

A shape mask function w(j, k) is developed according to the rules
above. Figure 14 illustrates this coefficient function, which is 1 where knots
are expected to reside and 0 everywhere else. The maximum slope is fixed
by coefficient kmax / jk, and the maximum distance from the centre by ring
number jk. The shape mask function is defined as

w j k
k

k

j
j j j

k
k( , )

.max

= < ⋅ + ≤



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0

   if   and ,

   otherwise.
(39)

To take function w(j, k) into account in the reconstruction, we need to
calculate another variable l s(h, k). It is the sum of coefficients c(h, i, j)
along ray h in slice k, weighted by function w(j, k). Effectively it gives the
length of the potential knot space along that ray.

l h k w j k c h i js
ji

( , ) ( , ) ( , , )= ⋅∑∑ , (40)

which is calculated for all k = 1...kmax and h = hmin(i, j)...hmax(i, j).  See
Figure 15 for clarification.
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Figure 14.  Mask function w(j, k) includes elements (j, k) under the maxi-
mum slope line and excludes those above the line. The value of w(j, k) is
also 0 for rings j > jk.
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w=1

w=0

element (i,j,k)

ray h

Figure 15.  In a given slice k, function w(j, k)  is zero within the inner
circle, and unity outside the circle.  The actual length of ray h through
the slice is the sum of c(h, i, j) of every passed element (i, j, k).  The
effective ray length ls is obtained by weighting each c(h, i, j) with w(j, k).

Radial density variation

The wood density is known to vary considerably as a function of distance
from the pith, as described in Chapter 2.2. The heartwood is dry, whereas
the vital sapwood contains a lot of moisture and is more dense.  How a knot
stands out from the background wood depends on the location of the knot
and on the freshness of the log. With wood density ρw and knot density ρk,
the contrast of the knot image is proportional to ρk - ρw. To enhance the
contrast, we shall multiply the images by a correction coefficient

c k

k w
ρ

ρ
ρ ρ

=
−

. (41)

We shall face problems when ρw approaches ρk or possibly exceeds it: the
image disappears and cρ comes vague. Obviously the coefficient must be
restricted to some reasonable positive values, say 1 to 10.

If an object is known to be cylindrically symmetrical, it can be recon-
structed from one projection (Deutsch et al. 1990). To a certain extent, a
log can be considered to be a cylindrical object. Thus we can find an
estimate for the radial density variation using the principles given in the
literature. Appendix A presents a derivation of the radial density function
and the radial correction coefficient cρ(j).

Collective reconstruction of a cluster

Our next target is to derive the collective reconstruction Q(j, k) of the knot
cluster.  We start with backprojecting pa(h, k), the average of the three pro-
jections, to volume elements (i, j, k).  The contribution of ray h to element
(i, j, k) in slice k is

q i j k w j k c h i j p h k l h kh a s( , , ) ( , ) ( , , ) ( , ) / ( , )= ⋅ ⋅ . (42)

The ray sum pa(h, k) is simply distributed along ray h, taking into account
the shape function w(j, k).  Note that Equation (32) defines pa(h, k) only for



48

one half of the projection where h ≤ n/2.  For greater values of h, pa(h, k)
are replaced with pa(n+1 - h, k) by symmetry.

We then sum up all rays relevant to element (i, j, k), and divide the re-
sult by the sum of ray sections within that element:

q i j k
a i j

q i j ks h
h h

h

( , , )
( , )

( , , )=
=
∑1

1

2

, (43)

where h1 = hmin(i, j), h2 = hmax(i, j).  Since qh(i, j, k) is a line integral of
density, Equation (43) gives an estimate for the density of element (i, j, k).

To obtain the final reconstruction as one single 2-D image,  we com-
bine all sectors i .  At the same time, we compensate for the effect from ra-
dial density variation with the multiplier cρ(j).

Q j k c j q i j ks
i

( , ) ( ) ( , , )= ⋅ ∑ρ , (44)

where i = 0...imax, j = 1...jmax, and k = 1...kmax.
Q(j, k) is a combined cross-section of all knots in the cluster.  It com-

prises information about the maximal dimensions, density distribution, and
total volume of the cluster.  Figure 13 gives an example of how three pro-
jections develop into a collective reconstruction image.

Each Q(j, k) is a sum of densities from equal-sized elements.  Assum-
ing an average knot density ρk, we obtain an estimate for the total knot vol-
ume as

V v j Q j k
k k

k

j

j

= ⋅
==

∑∑1

11ρ
( ) ( , )

maxmax

, (45)

where v(j) is the volume of an element in ring j. It is obtained by

v j
r z

j( )
( )

( )=
⋅ ⋅

⋅ −
∆α ∆ ∆2

2
2 1 , (46)

where ∆α is the sector angle, ∆r the ring width, ∆z the slice thickness, and j
the ring index.

Density parameters

In the next section, we use the parameters critical density and maximum
density calculated as

ρmax= max{Q(j, k) | 1≤  j ≤  jmax, 1 ≤ k ≤ kmax}, and (47)

ρcrit= ρmax/(2⋅jmax). (48)

Maximum density ρmax is the highest value in the collective reconstruction
image.  We expect that there are normally no higher densities than ρmax in
the cluster.  Usually ρmax is due to multiple knots, and it is noticeably greater
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than actual densities of any volume element.  Critical density ρcrit is the de-
tection limit for a knot: if a volume element has a calculated density lower
than ρcrit, it probably does not contain knots.

Equation (48) needs some explanation. The diameter of a slice is
2·jmax.  If there is only one knot element with density ρmax in the slice, it will
produce element densities of at least ρcrit when distributed along any
projection line. Thus, volume elements with densities greater than ρcrit are
considered to be potential knot elements, while the others are likely to be
empty.

As will be discussed later, parameters ρmax and ρcrit are not used as
hard thresholds, but rather as a basis for calculating evidence of knot
existence.

3.5.2  Finding the candidate angles

After having found some over-all characteristics of the cluster, we now start
looking for locations of individual knots. First, the three projection images -
one at a time - are backprojected on to cross-sections. This produces ap-
proximated density values for each volume element. Using parameters ρcrit

and ρmax defined in Chapter 3.5.1, the densities are then scaled into
evidence values. Finally, combining evidence results in belief values that
indicate the potential knot sectors.

The backprojection process is the same as that described earlier in the
case of the collective reconstruction. The contribution of the projection im-
age pm(h, k) to a given volume element (i, j, k) is calculated as

u i j k w j k c h i j p h k l h km m
h h

h

m s( , , ) ( , ) ( , , ) ( , ) / ( , )= ⋅ ⋅
=
∑

1

2

. (49)

The three projections m = 0...2 are handled with all sectors i = 0...imax,
rings j = 1...jmax, and k = 1...kmax. The summing limits of h are h1 = hmin(i, j)
and h2 = hmax(i, j).

The resulting um(i, j, k) is a line integral of density, as in pm(h, k).  The
sum of the rays within element (i, j) is a(i, j). Therefore, dividing um(i, j, k)
by a(i, j) yields a number proportional to the density.  The radial density
correction is accomplished with another multiplier cρ(j), yielding

ρ ρm mi j k u i j k c j a i j( , , ) ( , , ) ( ) / ( , )= ⋅ . (50)

The density value of a volume element is converted into evidence defined as
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Figure 16.  The function transforming estimated element density to
evidence of knot existence.

Figure 16 portrays the function in Equation (51).  The evidence values are
limited between e0 and e2 to suppress the effect of abnormally high or low
densities.  The absolute values of e0 and e2 should always be clearly less
than 1 to prevent one erroneous value from distorting the final result.  Safe
figures are e0 = −0.5 and e2 = 0.5.  Densities ρcrit and ρmax are the
parameters defined in Chapter 3.5.1.

The evidence from the three projections are combined, element by
element, using the operator defined in Equations (23) and (24),

[ ]e i j k e i j k e i j k e i j kc ( , , ) ( , , ), ( , , ), ( , , )= E 0 1 2 . (52)

At this point we have generated a three-dimensional image ec(i, j, k) of the
object into a cylindrical co-ordinate system.  The image is fuzzy, meaning
that the values of individual volume elements are rather probabilities of knot
existence than densities.  In the following, we shall combine elements to
knot shapes and calculate the evidence values of those shapes.  First we go
through all sectors i  observing a discrete set of rise angles β = 0 ... βmax.
The evidence of the sector element (i, j) at rise angle β is calculated as

e i j j k e i j k jr c
k

( , , ) ( , , ) ( , , ) /( / )β β= ⋅




∑F max 2 . (53)

Equation (53) computes a weighted sum of the evidence of volume ele-
ments. The weighting function F includes the elements occurring in direc-
tion β; the exact definition of F is in Appendix A.  Evidence is scaled with
2/jmax to obtain reasonable values when combining  jmax elements in the next
step:

e i e i e i js r r( , ) ( ( , , ),..., ( , , ))maxβ β β= E 1 . (54)

Density

Evidence

2e

0e

maxρρcrit
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This intermediate result expresses the evidence of knot existence in sector i
at rise angle β. The greatest of es(i , β)  is selected to represent the sector:

e i e i e it s s( ) max( ( , ),..., ( , ))max= 0  β . (55)

Angle β, which maximises the sector evidence, is taken as an estimate for
the rise angle, and is denoted by β(i).

Each sector i  now has evidence et(i) characterising its probability of
containing a knot.  Figure 17 shows the evidence curve of an example case.
Which sectors should we select as probable knot sectors?  Obviously, a
candidate must be a local maximum, but how wide a neighbourhood should
be considered?  The experimental part in Chapter 4 includes tests on this
property; the results have encouraged us to choose a window size of seven
sectors. It is yet another question if all local maxima are potential knot can-
didates.  This was also tested, resulting in the condition that the evidence
has to exceed a given threshold eth.  Not surprisingly, an appropriate value
for eth appears to be about 0.  To conclude, the sectors meeting all the crite-
ria in Equation (56) are selected as candidate knot angles.

e i e

e i e

e i e

t t

t t

t th

( ) > max( ( - 3), ( -2), ( -1)) , 

( ) > max( ( + 1), ( + 2), ( + 3)) , and

( ) > . 

i e i e i

i e i e i
t t

t t









(56)

One would expect that evidence et(i) is a measure of certainty of the hy-
pothesis that the selected sector i  really contains a knot.  We shall return to
this question in Chapter 4 with the experimental results.

e(i)t

5 12 19 32
i

0.5

0

-0.5

Figure 17.  Evidence curve of a cluster indicates knot candidates in
sectors 5, 12, 19, and 32.
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3.5.3  Backprojection

The last step in the reconstruction of knots is the backprojection of the three
images pm(h, k) into a 3-D cylindrical space.  The computation is very much
similar to that described in Equations (49) and (50).  However, this time we
consider only those sectors i  that have been selected as candidate sectors;
rest of the volume is thought to be empty.  We denote the set of knot
sectors by Ik. Also the approximate rise angle β(i) is taken into account
when restricting the knot location.  The rise angle constraint is set by mask
function G(j, k, β) defined in Appendix A.

We first calculate lsm(h, k), the sum of coefficients c(h, i, j) along ray
h in slice k weighted by function G(j, k, β).  This is done for all slices
k = 1...kmax, all rays h, and all projections m = 0, 1, 2.

l h k j k i c h i jsm m m
j

j

i I

k

k

( , ) ( , , ( )) ( , , )= ⋅
=∈

∑∑ G β
1

.
(57)

The contributions of the three projections are backprojected into the cylin-
der space S(i, j, k).  For knot angles i∈ Ik, all rings j, and all slices k, the
three projections are averaged by

S i j k c j G j k i c h i j p h k l h km m m sm
h h

h

m

( , , ) ( ) ( , , ( )) ( , , ) ( , ) / ( , )= ⋅ ⋅
==
∑∑1

3
1

2

0

2

ρ β , (58)

where h
1
 = h

min
(i

m
, j) and h

2
 = h

max
(i

m
, j).  The total knot mass is thus distrib-

uted this way to those sectors that have been chosen as candidate sectors.
The radial density variation is compensated for with cρ(j). Figure 18 shows
an image of S(i, j, k) for a given knot sector i .

An auxiliary variable S
a
(i, j) is calculated for the estimation of knot

lengths. It represents all the knot mass in sector i  that resides in rings 1...j:

S i j S i j ka
k

k

j

j

( , ) ( , , )=
==

∑∑ 1

max

1 11

. (59)

The length of the knot in sector i  is found by observing the growth of Sa(i, j)
with increasing j. In an ideal case Sa(i, j) drops to zero with a particular j. In
reality, interference from other knots may create non-zero values also for
empty volume elements. Thus we have to allow a fraction δ of the calcu-
lated volume to remain outside the knot length rt. The knot length is interpo-
lated using Equations (60) and (61):

{ }j i j S i j S i j S i jt a a a( ) ( , ) ( ) ( , ) ( , )max= ≤ − ⋅ < +  1 1δ ,
(60)
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The rise angle β and opening angle γ are sought by calculating statistical
properties of the knot pattern in Figure 18. Imagine a straight line from the
origin to the centre of element (j,k). When the dimensions are expressed in
centimetres, the slope of such a line is

t j k
k z

j r
( , )

( . )

( . )
=

− ⋅
− ⋅

05

05

∆
∆

. (62)

The first and second moments of the slopes t(j,k) are
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where s is the sum of all S(i, j, k) in sector i  calculated by

s S i j k
k

k

j

j

=
==

∑∑ ( , , )
maxmax

11

. (65)

The first moment m1 is the average of t(j,k), and thus an estimate for the
rise angle can be obtained by

( )β = −tan 1
1m . (66)

Recalling the statistics, the  mean deviation is calculated from the moments
by

D m m= −2 1
2 . (67)

j
t

k

j

Figure 18. A knot profile obtained from the backprojection process.
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In an ideal case with a conical and homogeneous knot, the mean deviation
D turns out to be exactly half of the maximum deviation. Noticing the effect
of β on the slope, we finally obtain an estimate for the opening angle γ by

( )γ β= −tan cos1 22D .
(68)

The total knot volume in sector i  can now be estimated from other geomet-
rical parameters of the knot:

V i
r it( )

( ) tan

cos
=

⋅ ⋅π 3 2

33

γ
β

. (69)

Equations (68) and (69) are derived in Appendix A.

3.6  USE OF THE RESULTS

We have obtained two kinds of measures describing the knots in a log:  col-
lective cluster properties and individual knot properties.

The collective cluster properties include total knot volume V and knot
cylinder radius rk.  V and rk can be used to estimate the log quality without
knowing the detailed knot pattern.  For example, the knot volume per log
volume may serve as an index for the log quality.  Radius rk defines the
cylinder containing all the knots in a cluster, thus indicating the thickness of
clear sapwood.  Normally only the knots on the sawn surfaces matter, so rk

guides us in selecting the blade set-up.
The size and orientation of individual knots are characterised by the

length rt and angles α, β, and γ.  Starting from these parameters, one is able
to calculate the expected locations and areas of knots on potential sawing
surfaces.  Thus the value of the log can be estimated for several blade set-
ups before sawing.  Further process optimisation might include trimming the
log or finding the best sawing position according to the knot information.

Even though not discussed here in detail, log geometry is an essential
part of log sorting.  At least the top end diameter must be known for proper
classification.  An x-ray detector has an advantage over optical instruments
because of its ability to find the diameter of the log under the bark.
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4  EXPERIMENTS

The experiments included both simulations and imaging of real pine logs at
normal sawing speeds with x-rays.  These two methods were complemen-
tary to each other: while  true x-ray images contained typical variations of
natural wood and noise from the measurement system, simulations were
useful for obtaining accurately controlled test material.

4.1  PRELIMINARY TESTS

The first trial in the research project was to take a piece of log to a local
hospital, where it was imaged using a medical x-ray generator and a short
detector module.

The results encouraged us to set up a test environment in a laboratory.
It included a controllable x-ray generator, a line detector block with 8-bit
resolution, and a mechanism to move logs over the detector.  With this
equipment, we could image log pieces as big as 40 centimetres thick and 80
centimetres long.  A series of tests was conducted to gain further
knowledge about the x-ray characteristics of wood.  Especially important
was to check the total attenuation of normal-sized logs and the contrast
between various knots and stemwood. The experience from these tests also
helped in the development of new imaging hardware which was to be used
in the next stage of the project.

4.2  LOG IMAGING WITH A FULL-SCALE SYSTEM

Finally, we were able to construct a full-scale imaging system to handle logs
in sawmill-like conditions. A conveyor moved the logs at typical saw-mill
speeds from 1 to 2.5 m/s. The detector was now 90 centimetres long, and
its resolution was 16 bits. This was good enough to manage logs up to 50
centimetres in diameter.

Only one source-detector pair was available, and thus three passes
were needed to image one log. This caused some trouble in controlling the
rotational angle: some logs refused to keep their position during the trans-
port through the system. Obviously, the consistency of the three projections
suffers if their rotational angles are inaccurate. The only way to overcome
this problem was to observe visually the log passage, and then reject those
logs that moved their position.

After imaging, the logs were sawn up into square timber and visually
inspected for knots. This practice was a compromise: most of the informa-
tion needed was  achieved with a tolerable amount of work. A complete
autopsy of logs would have been extremely laborious.

The sawn surfaces were inspected visually, recording the knot size
and  the knot co-ordinates x, y, z. The size of the knot is expressed by
diameter d, which is the average of the main diameters of the elliptical knot
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pattern. The origin of the knot cluster z0 was measured from the x-ray
images. Knowing these values, parameters α, β, and γ could then be
calculated.

The knot length rk cannot be measured accurately from a piece of
square timber. However, to get some idea of this parameter, its value was
estimated using experience gained from earlier knot analyses. The estima-
tion was based on the size and appearance of the knot on the surfaces of
the stem and the sawn timber.

The logs analysed included 82 clusters with 288 knots altogether.
Note that some of the knots escape inspection, since they do not reach the
sawn surface (see Figure 19). Some of the hidden knots would appear on
the surfaces if the log were sawn in a different way.

The test objects were pine logs. Their lengths varied from 2.5 to 4.5
metres, and their diameter from 20 to 45 centimetres.

4.3  SIMULATIONS

Simulated images were synthesised taking into consideration typical shapes
and density variations of  knots and stems. The imaging geometry was the
same as in actual log imaging. The number of clusters was 160, each cluster
consisting of 1 to 6 knots, making a total of 590 knots.

The parameters used in the calculation of the synthetic log images are
the following:

♦ radius of the log, R = 20 cm
♦ radius of heartwood, rh = R/2
♦ distance of the knot end from the pith, rk

♦ rotational angle of the knot, α
♦ rise angle of the knot, β
♦ opening angle of the knot, γ
♦ density of sapwood, ρws = 800 kg/m3

♦ density of heartwood, ρwh = 500 kg/m3

♦ density of knots, ρk = 1000 kg/m3

z

x

y

z0

Figure 19.  After imaging, the log under inspection was sawn into square
timber as shown in the picture on the left. The co-ordinates and sizes of
knots were measured on the log surface as well as on the faces of the sawn
timber.
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♦ mass attenuation coefficient, µ/ρ = 0.017 m2/kg.

The radial stem density and the knot density were assumed to follow the
curves in Figure 20. In reality the density variation curves are smoother than
those in the figure, of course, but this has no great effect upon the knot im-
age. When a knot grows, it displaces surrounding wood, and forces its
density to increase. We have estimated from x-ray images that the radius of
the tighter wood around the knot is typically twice the radius of the knot, as
is suggested by Figure 21.

In a small number of cases, the variables α, β, γ, and rk were set
manually to generate especially interesting test samples.  However, mostly
the parameter values were selected randomly by the simulation program.
The constraints in doing this were:

♦ The rotational angles α of two neighbouring knots must differ by at
least 40 degrees.

♦ The rise angle β is limited to between 0 and 50 degrees.

Distance from pith Angular deviation from knot axis

Radial stem density Angular knot density
1000

500

1000

500

0 R 0 γ 2γ

Figure 20.  The density model of the stem includes constant values for
heartwood and sapwood with a linear transition between them (left).  The
density inside the knot is assumed to be constant; outside the knot the
density decreases linearly towards the wood density (right). Densities are
expressed in kg/m3.

γ

Rrk

2γ

Figure 21.  The knot is modelled as a cone with opening angle γ.  The
knot is surrounded by denser wood up to angle 2γ.  The knot does not
always reach the surface of the log (radius R) but ends at distance rk  from
the pith.
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♦ The opening angle γ is between 4 and 10 degrees.
♦ The number of knots is from 1 to 6.



59

4.4  RESULTS

In this section we present the results of real-log experiments and simulations
side by side and compare them.  Appendix B contains the charts generated
from the experimental data.

4.4.1  Angular distance between knots

The selection of candidate knot sectors is based on their evidence values.
Our strategy is to look for local maxima in the evidence-versus-α curve.
Additionally, we expect that knots do not reside very close to each other.
Thus the evidence of a true knot sector should be greater than the evidence
within a certain window of neighbouring sectors. The first test searches for
the window size giving the best detection results. We compare window
sizes of three, five, and seven sectors, which correspond to minimum knot
distances of 20, 30, and 40 degrees.

Efficiency in knot sector detection means two things: (1) most of the
true knot sectors should be found, and (2) not many false alarms should ap-
pear.  Depending on the final optimisation arguments, the mutual impor-
tance of the two criteria may vary.  The first principle coming to mind is to
balance them by minimising their sum.

Looking at Figures B1 and B2 in appendix B, one can easily conclude
that the neighbourhood of seven sectors is the best. Wider windows were
not tested, but the results imply that it would have been unnecessary. The
7-sector window already results in more undetected knots than ghosts,
meaning that the optimum has been passed. Using nine sectors in the com-
parison would also force the minimum knot distance to 50 degrees, which is
hardly acceptable.

Besides the window size, a threshold value for evidence was deter-
mined in this analysis. Using the sum-of-error curves in Figures B1 and B2,
the threshold was set to 0.0.

4.4.2  Over-all performance

Figure B3 and Table 4 show the ability of the method to detect knots. The
number and volume of correctly detected, undetected, and false knots are
compared to those of actual knots. It is not surprising that the results are
better for simulated logs than for real ones.  Noise from the natural
structure of wood, and inaccuracies in the log positioning cause errors in x-
ray images.  Additionally, some of the false knots could have been true

Table 4.  The quantities of detected, undetected, and false knots in
relation to the quantity of actual knots.

Result Simulated logs Real logs
by volume by number by volume by number

Detected 0.96 0.91 0.88 0.87
Undetected 0.04 0.09 0.12 0.13
False knots 0.02 0.04 0.15 0.21
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ones, even though they did not appear on the sawn surfaces. Of course,
some small knots have escaped both the detection and the visual inspection.

The quantities of undetected and false knots balanced fairly well for
both simulated and real logs.  The detection parameters (evidence
threshold, acceptance window) were the same in both cases, which
suggests that they are not very sensitive to variations in object properties.

4.4.3  Evidence as a measure of confidence

One could expect that the evidence value of a sector is high, if there is a
strong knot in that sector.  Figure B4 in appendix B presents the probability
of successful knot detection as function of evidence. Clearly the probability
increases with growing evidence, and thus the sector evidence can be re-
garded as a confidence measure of knot findings. The level of probability
seems to depend strongly on the object properties. For simulated knots, the
detection probability is higher than 0.95 for all evidence values above zero,
and thus its slope is small. The parameter has a greater importance in the
case of real logs, as can be seen from the steepness of the lower curve in
Figure B4.

4.4.4  Cluster classification

One way of classifying logs is based on their relative knot volume. This
property may be called knottiness, or the knot volume index.

We split the clusters in the experiments into two halves both by their
actual and estimates volumes, producing four classes. This was done sepa-
rately for simulated and real logs.  Table 5 summarises the results.

The percentages of correct classification were 98 % for simulated logs
and 86 % for real logs.  These figures are considered to be satisfactory.  For
comparison, Hagman (1992) reports 75 % success in similar tests with a
gamma ray scanner.

The correlation between actual and estimated cluster volumes is pre-
sented in Figure B5.  Figure B6 shows the same kind of charts for the maxi-
mal knot lengths in clusters. A linear regression model is applied to these
test cases.  The regression parameters have been collected into Table 6. Al-
though the volume correlation is clear, one might wonder at the slope coef-
ficients of 1.7 for simulated logs and 1.4 for real logs. The phenomenon is
associated with the denser wood around knots, which is not counted in knot

Table 5.  The knot clusters are classified according their actual and esti-
mated volumes as small and large using the median as threshold.  The
classification is done for both simulated logs and real logs.

Volume class Relative class size
Actual Estimated Simulated logs Real logs
small small 0.49 0.43
large small 0.01 0.07
small large 0.01 0.07
large large 0.49 0.43
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volume but which still affects the x-ray attenuation.
The results of the knot length test are not very representative. Looking

at Figure B6, one can see that the sample points would be well located
around the unity-slope line, but the regression curve is vague because of
small the deviation of values.

4.4.5  Accuracy of co-ordinates and size measures

Figures B7, B8, and B9 visualise the error distributions of knot parameters
α, β, and γ, respectively.  The corresponding standard error deviations have
been calculated into Table 7.

A serious concern in Table 7 is the 17-degree error of α for real logs.
This means that a notable share of detected knots would be located inaccu-
rately on sawn surfaces. An acceptable and still realistic target for a stan-
dard error of α is 10 degrees. Our believe is that this target is reached when
a complete three-projection system is available. Probably most of the error
originates from the inconsistency of separate passes in the present one-pro-
jection imaging equipment.

Figures B10 and B11 show the correlation between actual and esti-
mated volumes and lengths of individual knots. The corresponding regres-
sion parameters are presented in Table 8.

Table 6.   Linear regression coefficients indicating the dependence of esti-
mated and actual volumes and the maximal knot lengths of clusters.

Coefficient Simulated logs Real logs
Volume Length Volume Length

Slope 1.7 0.91 1.4 0.70
Intercept -23 1.6 67 3.8
Correlation 0.99 0.93 0.78 0.78

Table 7.  Standard error deviations of knot parameters.

Parameter Simulated logs Real logs
α 9.1° 17°
β 1.9° 3.4°
γ 1.5° 2.4°

Table 8.   Linear regression coefficients indicating the dependence of esti-
mated and actual volumes and lengths of individual knots.

Coefficient Simulated logs Real logs
Volume Length Volume Length

Slope 0.87 0.22 0.85 0.61
Intercept 29 15 20 4.9
Correlation 0.88 0.53 0.71 0.66
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5  DISCUSSION

The course of the research

The target of the research project was to develop a method that would de-
tect knots in logs using x-ray imaging. The system should work in real time
without slowing down the sawing process. The basic idea was borrowed
from computed tomography: three-dimensional object reconstruction from
projections. However, traditional CT was soon discarded as unrealistic.
Even the most modern fifth-generation CT systems were not capable of im-
aging logs at sawing speeds. We were forced to look for a simpler system
that still could produce useful information for log sorting.

The conclusion from the speed requirements was that an imaging sys-
tem with fixed projections should be used. It was not possible to rotate the
object nor the imaging equipment without disturbing the process flow. The
number of projections was limited to three for economic reasons.

Several reconstruction methods were tested with empirical data. In the
first method, we tried to determine the knot directions from knot vectors
extracted from 2-D projection images. The second one used the idea of de-
termining convex hulls from their support lines. The third was based on
backprojecting the projections to cross-section images that were then en-
hanced with angular filtering.

The first two trials yielded unsatisfactory results. The main problems
were caused by overlapping knots and fading of knot patterns. Fading is due
to the moisture content of the sapwood that attenuates x-rays badly. The
third method seemed promising: angular filtering decreased streaks and
ghost images, thus highlighting the knot pattern. The reason for this en-
hancement is that the filtering method matches well with the natural shape
of knot patterns. The disadvantage of the method is its computational heavi-
ness. It included several phases of pixel-level processing that would have
been costly to implement.

We applied the idea of the third method, but modified it to reduce the
pixel operations. The object space was expressed in cylindrical co-ordinates
and divided into discrete volume elements. The sizes of the elements were
chosen so that a coarse shape of a knot could be produced with a small
number of elements. Typically, that number is in the order of one hundred.
Each element is characterised by one single value after the backprojection;
density variation inside the element is not considered.

The results achieved

The output of the computation is two-level information on knots  in the log.
First, collective data on the knot cluster is obtained, including location and
the bounding cylinder of the cluster, and the estimated knot volume in it.
The bounding cylinder indicates how much knotless sapwood there is
around the cluster. Secondly, the co-ordinates and size parameters of indi-



63

vidual knots are used to estimate the knot area on given sawing surfaces.
This enables the selection of the product type that would yield the best eco-
nomic result.

The hierarchy of the quality data is useful, because the three projec-
tion images are not always enough for exact detection of knots. The upper
levels of information are quite reliable, offering a basis for log sorting. The
second level, determining of detailed knot parameters, involves uncertainty
when the number of knots in a cluster is high. However, these difficult
cases could be classified to lower grades by the upper-level parameters.
The easier ones with fewer knots are associated with high-quality logs, and
then the knowledge of individual knots is of great importance. The calcu-
lated knot pattern can be tested for several blade set-ups to find the most
beneficial one. The computation results include a confidence figure indicat-
ing the reliability of the estimated knot data. The confidence figure and the
cluster volume help to decide which level of information should be used in
log sorting.

To keep the hardware requirements reasonable, data is compressed
quickly. After obligatory pre-processing at the pixel level, lines are averaged
to slices of one centimetre thick. Thereafter, only the interesting parts of the
images are processed, dropping out knotless wood and the areas outside the
stem. At this point, the information has been reduced by a decade or more.
The original imaging resolution is used when backprojecting the 2-D images
to the cylindrical object space, but later a much coarser volume-element
grid is applied. This reduces the information by another decade, and so
megabytes have turned to tens of kilobytes. The results of a log are
compressed into some hundreds of parameters.

The ability to find knots is expressed by the relative volumes of de-
tected, undetected, and false knots. For real-log knots these figures were
0.88 : 0.12 : 0.15, and for simulated knots 0.96 : 0.04 : 0.02. It was difficult
to compare the performance of our method with the performance other
systems. Reliable data on visual inspection was not found. Hagman (1992)
claims that their gamma ray scanner has a greater ability to classify logs
than human inspectors typically have; thus we tried to repeat Hagman’s
test. The clusters in the experiments were split into two equal-sized halves,
and then classified according to the computed results.  The percentages of
correct classification were 98 % for simulated logs and 86 % for real logs.
For comparison, Hagman reports 75 % success with a gamma ray scanner.

The results from the simulated clusters were better than those from
the real clusters. One reason for this is that the simulated clusters did not in-
clude natural noise present in real logs. Another reason is the different im-
aging quality. The simulated cases lack some inaccuracies involved with the
present imaging system. Since only one source-detector pair was available
in the tests, three passes were needed. This caused inaccuracy in both the
rotational and longitudinal co-ordinates. It is quite reasonable to expect that
the performance of a complete three-view system would fall between the
levels obtained in the simulated and real cases of our experiments.

The detection system which applies our method is expected to have
value in log sorting. The existing sorting systems are based on optical scan-
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ners and visual inspection. They have some draw-backs: internal defects are
not found, and the log dimensions cannot be measured under the bark.
Problems and restrictions

Reconstruction from a small number of projections has inherent
uncertainty. In a general case, an infinite number of  solutions may be
derived from the same projections. The possibility of finding a correct result
is better in our application, where the object is fairly simple. The object can
be modelled, and constraints can be set to guide the reconstruction process.
Nevertheless, there is no unique solution even in this case.

In our method, uncertain detail information is combined to find prob-
able knot locations. In most cases this process is successful, but not always.
For example, some knot patterns produce different results when imaged
from different directions. This is because the projection angles affect how
the shadows of real objects are cast on the cross-section, and how ghost im-
ages are generated. If we are fortunate, a certain pattern is located
perfectly; on the other hand, the result from the same cluster may become
vague with projection angles rotated.

Because the density of a volume element cannot be determined relia-
bly, quality grading of knots is not possible. This is a pity, because it would
be very useful to know if a knot appears on a sawn surface as sound, dry,
or rotten.

One problem is the uncontrolled movements of the log on the con-
veyor; this may cause inaccuracy in the measurement of rotation angles and
log geometry. The type of the conveyor must be selected carefully to avoid
this difficulty.

Computational factors

The knot detection system must work in real time; the knot data is needed
some seconds after the log has passed the inspection point. The data flow
from the detector has to be at least 500 lines per second to cope with the
conveyor speeds of up to 2.5 m/s used in present-day sawmills.

The computing problem at hand includes parallelism, a property which
can be utilised in the implementation. The operations closely associated
with imaging and pixelwise pre-processing are executed independently for
each projection. This applies nearly as well to two-dimensional processing
of the projection images.  Only minor interaction between projections is
needed when locating knot clusters. Also a significant part of the three-di-
mensional processing is involved with separate projections, and can be di-
vided to three parallel processes.

Although the computation should run at the same average speed as the
logs, rather long pipelining delay can be allowed. The log is cut into sections
that are pipelined through the separate phases of the processing. Data
buffering is needed between imaging, pre-processing, 2-D processing, and
3-D processing. However, the complete data from the whole log length
need not be stored in the buffers, only the data from the latest section.

A real-time system has been implemented in another project, and it
has been proved to work at a log speed of 2 m/s.
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Potential development subjects

The resolution of the cylindrical co-ordinate system was a compromise be-
tween accuracy and computational load. The sector angle is 10 degrees, the
ring width 2 cm, and the slice thickness 1 cm. This means that the width of
the largest elements in a log with 40-cm diameter is about 3.5 centimetres.
If enough processing power were available, the sector and ring widths could
be halved. Further resolution improvement is hardly cost-effective at the
moment, since the requirements for processing capacity would increase
dramatically.

The method uses many parameters that are set as default values based
on knowledge of the properties of typical wood. Some of the parameters
are densities and moisture percentages in heartwood, sapwood and knots.
To be more flexible, the system should be able to adapt itself to variations in
object characteristics. The present computation method disregards this. For
example, the accuracy of the knot volume estimates will most probably get
worse if the log is wet. In this case, adaptability would mean adjusting a
density coefficient.

Important parameters are ρmax and ρcrit, which are used to derive evi-
dence values from densities. If the density of a volume element is over ρmax,
the knot evidence of the element is set to its highest value, while if it is un-
der ρcrit, the evidence is the lowest possible. These parameters are now de-
termined from the maximum of the collective reconstruction (see Chapter
3.5.1). To add adaptivity, the variation of the stem density and the distribu-
tion of the knot pattern should be basis for the calculation of ρmax and ρcrit.

A frequently asked question is about the number of projections. Three
was selected by the project management fairly heuristically. Why not two
or four? Using two projections does not seem very attractive. The ability for
determining 3-D characteristics of a knot would be definitely worse than
from three projections. The system would also lose the competition with
optical instruments in the measurement of geometrical properties. The only
use for a two-projection system would be the estimation of the total knot
mass in logs. A four-projection system can produce more accurate results,
but the value of the improvement is not clear without an extensive analysis
of the sawing process.

Other variables to be measured

We have concentrated here on knot detection only.  Also other defects and
log geometry parameters are important to know in the sawing process. X-
ray imaging can also be applied to determine some of these properties.

The usable size of the log should be known to select a proper blade
set-up. At present, optical instruments are used to measure the diameter at
the top end. Some systems measure also the shape of the log.  Moreover,
the length and volume of the log can be obtained from scanned data. Opti-
cal scanners suffer from one handicap: they cannot establish log dimensions
under the bark. Wood is what counts, not bark; thus x-rays are useful be-
cause of their capability to distinguish differences in material density.
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The shape is characterised by such properties as taper, crook, and
sweep. Shape determination is not just an imaging problem, but also a me-
chanical one. The conveyor system must assure a smooth and straight pas-
sage of the log through the imaging plane. If the log keeps jumping and
turning on the conveyor, the shape information is distorted. To a certain
extent, such problems can be compensated for with additional detectors.

The method described in Chapter 3 does not include shape computa-
tion at the moment. It only locates the over-bark log edges from the 2-D im-
ages for diameter calculation and image centring.

Other potential defects are rot, cracks, and resin pockets. Rotten
wood is separated from sound wood by its low density. Obviously rotten
heartwood in the butt end as well as other large areas of rot are recognised,
but small defects associated with knot clusters are hopeless to find.

Typical cracks would escape this kind of inspection. A crack may be
radial or ring-shaped, following the annual rings. The poor visibility of
cracks in x-ray images is because their influence is distributed smoothly
within the image. Resin pockets are gaps between annual rings filled with
resin. They too are hard to detect if not especially large.

Applying the method to other species of tree

The method was intended for pine only, and all the test objects were pine
logs. Applying the method to different species of tree will require modifica-
tions. Spruce, for example, has a different knot distribution from that of
pine: between knot clusters there are single knots here and there. A new
way of finding the clusters and handling the single knots must be developed.
Also the stem density profile is different, which affects the density pa-
rameters.
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6  CONCLUSIONS

The basis for selecting x-ray technology for log inspection is its capability to
see the internal properties of objects. Producing several projection images
with x-rays and applying the principle of computed tomography would yield
three-dimensional data on the log. However, no such inspection systems
have been realised because of the high speed requirements of the sawing
process.

The subject of this research work was a knot detection system with
three fixed projections. It was known in advance that three projections can-
not guarantee exact reconstruction of a 3-D object. Strong object details
tend to hide weaker ones, or their shadows may combine into extra ghost
details. However, utilising knowledge of the properties of knots and stems,
we were able to develop a method  for determining the coarse shapes of the
knots. The inherent uncertainty from insufficient information is managed
with a confidence figure, which is calculated for each candidate knot to
judge the usefulness of the results. Our method is called the sector-oriented
reconstruction technique, or SORT.

The performance of the method is expressed in terms of the relative
volumes of detected, undetected, and ghost knots. In our experiments, these
figures were 0.88 : 0.12 : 0.15 for real logs. Unfortunately, there was no
performance data from the present-day systems for comparison.

Very knotty logs are the most difficult to analyse. Knots are not dis-
tinguished reliably enough to determine knot areas on planned sawing sur-
faces. However, estimates for total knot volume and thickness of knotless
sapwood are obtained, and the log sorting is possible on the basis of these
data. The knottiest logs are sorted into the lowest-quality classes anyhow,
and detailed knot information is not so important. The best logs are easier to
analyse, and more detailed information is obtained for the sorting.

It would be valuable for log sorting to know the knot quality, i.e. if a
knot is fresh, dry, or dead. However, the density values determined from
three projections are inaccurate, and thus the quality of individual knots
cannot be calculated.

X-ray scanners are suitable for measuring important geometrical prop-
erties of the log, such as top end diameter, total volume, crook, sweep, and
taper.  The advantage of x-instruments over optical ones is that the log di-
ameter can be measured  under the bark.

The algorithms presented are tuned to knot detection in logs. Still,
similar principles might be useful in developing an inspection system for
objects other than logs, if the object can be modelled with simple geometri-
cal forms. Examples of such objects are pipes, tiles, boards, bottles, or
canned products.
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Appendix A

AUXILIARY FUNCTIONS

RADIAL DENSITY VARIATION

A log can be considered as a cylindrical object, the density of which varies
with the distance from the axis.  This is due to the way the tree grows: the
vital functions take place in the sapwood near the surface, while the heart-
wood is dead.  Thus the sapwood contains much humidity, and the heart-
wood is quite dry.  The wet parts of the stem weaken the visibility of knots;
this effect needs to be compensated for to obtain more accurate information
on knot properties.

We handle the cross-section of the stem as a set of discrete rings, as-
suming a constant density within each ring.  This is not exactly true, of
course, but we are now interested only in rough estimates of averages.
Each ring j is bordered by two circles, whose tangential rays from the
source hit the detector at points h1(j) and h2(j) as shown in Figure A1. The
passage length of ray h within ring j is denoted by l(h, j).

Let us define L(j, k) as the sum of ray segments that belong to ring k
and are parts of rays h1(j) ... h2(j):

L j k l h k
h h j

h j

( , ) ( , )
( )

( )

=
=
∑

1

2

. (A1)

We have obtained an attenuation curve p(h) for a stem cross-section from
normalised x-ray images.  Curve p(h) represents the line integral of the
density through the object.

h

ring  j

h

p(h)

1h2h

A

B

h3

Figure A1. On the left: curve p(h) shows typical attenuation of a log
cross-section. On the right: the tangents of the inner and outer borders of
ring j hit the detector at pixels h1 and h2. Respectively, the border pixels
of the next inner ring are h2-1 and h3. The length of segment A-B of ray h
is denoted as l(h, j) in the text.
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Starting from the outermost ring n, we add up both the ray segment lengths
and attenuation values

L n n l h n
h h n

h n

( , ) ( , )
( )

( )

=
=
∑

1

2

, and (A2)

P n p h
h h n

h n

( ) ( )
( )

( )

=
=
∑

1

2

. (A3)

A measure of the density of the outermost ring is the quotient of the above
sums:

ρ( )
( )

( , )
n

P n

L n n
= . (A4)

Let us look at the next ring n-1 having tangential border pixels h1 = h1(n-1)
and h2 = h2(n-1).  The values p(h) now come from both rings n and n-1.
Knowing ρ(n), P(n-1), L(n, n-1), and L(n-1,n-1), we are able to solve
ρ(n-1).  The following equation holds for any given j:

P j k L j k
k j

n

( ) ( ) ( , )= ⋅
=

∑ρ , (A5)

which derives to

ρ ρ( )
( , )

( ) ( ) ( , )j
L j j

P j k L j k
k j

n

= ⋅ − ⋅








= +
∑1

1

. (A6)

Thus the densities can be determined for all rings proceeding from the out-
side to the inside.  Because of the nature of this reconstruction problem, the
output is sensitive to any noise or irregularities in the object.  One has to use
conservative rules to keep the results within reasonable limits; for example,
only a given percentual deviation from the average value may be allowed.

A density correction function cρ(j) is now calculated from ρ(j) and the
typical knot density ρk to enhance the projection image,

c j
j

k

k
ρ

ρ
ρ ρ

( )
( ( ))

=
−

. (A7)

Note that Equation (A7) is useful only if a proper estimate of ρk is available.
Some limits must be set on cρ(j) to recover from exceptional situations.
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FUNCTION  F  FOR RISE ANGLE SEARCH

When candidate knot sectors are sought, the evidence values of the volume
elements are saved in table S(i, j, k).  Indices i , j, and k refer to sectors,
rings, and slices, respectively.  Given a certain knot sector i c, the table under
consideration is two-dimensional, as shown in Figure A2.  We should like to
find out direction β that matches best the evidence values in the table.  The
apex of angle β is in the origin O in the lower left corner, and the right side
of β  is the horizontal line passing through the origin.

We test a set of discrete values for β.  For each β, a weighted sum is
calculated using the weighting function F( j, k, β) defined as

F( , , ) ( , , ) / ( , , )j k A j k A j k
k

β β β= ∑ . (A8)

As visualised by Figure A2, the function is determined from the element ar-
eas falling into an angle interval (β - ∆β, β + ∆β).  We  have used 5 degrees
as the value of parameter ∆β.

j

k
β − ∆β

β + ∆β

O

A(j,k,β)

Figure A2.  A(j, k, β) is the area of element (j, k) bordered by lines at an-
gles β - ∆β and β + ∆β.

MASK FUNCTION  G  FOR BACKPROJECTION

In the backprojection, we need a mask function G(j, k, β), which is fairly
similar to F(j, k, β).  With the same geometrical prerequisites, we define

G( , , ) ( , , ) /( )j k A j k r zβ β= ⋅∆ ∆ , (A9)

where ∆r and ∆z are the horizontal and vertical measures of the elements.
So G(j, k, β) equals 1 if the element (j, k) totally belongs to the angle inter-
val; otherwise its value is between 0 and 1.

We have used 15 degrees as the value of parameter ∆β when
determining function G(j, k, β).
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ESTIMATING THE KNOT VOLUME

We remember from elementary geometry that the volume of a cone with
height h and base area A is

V hA=
1

3
. (A10)

Let us examine the knot geometry according to Figure A3. The rise angle
and the opening angle are denoted by β and γ, respectively. The central
point of the knot cone at x = rt is

[ ]z rt= ⋅ + + −
1

2
tan( ) tan( )β γ β γ . (A11)

So the central point is not exactly in direction β. However, to simplify the
equations, we approximate that

z rt≈ ⋅ tan( )β . (A12)

The error in co-ordinate z caused by the approximation is less than 8 %,
when 0° < β < 50° and 0° < γ < 10°.

The vertical radius of the knot pattern ellipse is

[ ]b r

r r

t

t t

= ⋅ + − − =

−
≈

1

2

2 2 2 2 2

tan( ) tan( )

sin cos

cos cos sin sin

tan

cos

β γ β γ

γ γ
β γ β γ

γ
β

              .

(A13)

This time the basis for the approximation is that the sine term in the de-
nominator is small compared to the cosine term. The error in diameter b is
less than 5 %, when 0° < β < 50° and 0° < γ < 10°.

To calculate the horizontal radius of the ellipse, we first determine
knot length l . Remembering the approximation of Equation (A12), we get

l rt= / cosβ . (A14)

The horizontal radius is now

a l rt= =tan tan / cosγ γ β . (A15)

Substituting A = πab and h = rt, we obtain from Equations (A10), (A13),
and (A15)

V
rt=

⋅ ⋅π γ
β

3 2

33

tan

cos
. (A16)
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ESTIMATING THE RISE AND OPENING ANGLES

Our aim is to determine the rising angle β and the opening angle γ from sta-
tistical properties of the knot profile. Let us take a look at the ideal knot
cone shown in Figure A3. A straight line from the origin to a point (x, z) has
a slope z / x. At that point, the cone has a thickness 2y. The properties we
need to calculate are the first and second moment of the slope z / x. The
task is simplified dramatically when noticing that the distribution of the
slope is exactly the same for every x. This is because the cross-section of
the cone for all x is the same ellipse, only scaled linearly with x:

y
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z z

b
a x

b x

z x

2

2
0

2

2

2

0
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−

=

=
=
=

( )
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 ,   

 

,
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γ β
γ β
β

(A17)

The moments are calculated from the following integrals:
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Figure A3. The knot axis forms angle β with the horizontal  plane. The
length of the knot is l while the horizontal component of its axis is rt. The
width of the cone is characterised by opening angle γ. The base of the
cone is an ellipse with main diameters 2a and 2b.
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After some work, the results are obtained:

m
z

x1
0= = tanβ , (A20)
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44 4
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Equation (A20) yields the rising angle b, which is simply

β = −tan ( )1
1m . (A22)

The mean deviation is expressed through the moments by

D m m= − =2 1
2

22

tan

cos

γ
β

. (A23)

Opening angle γ is thereby solved as

( )γ β= −tan cos1 22D . (A24)

Conclusion: When the moments m1 and m2 are calculated from the knot
pattern obtained in the reconstruction, Equations (A22) and (A24) help to
estimate the parameters β and γ.
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RESULTS OF EXPERIMENTS

The experiments included both simulated and real log images.  Simulated
images were synthesised having regard to typical shapes and density varia-
tions of  knots and stems.  The imaging geometry was the same as in actual
log imaging.  The number of clusters was 160 with 1 to 6 knots per cluster,
making a total of 590 knots.

Tens of pine logs were imaged with the x-ray line camera developed
in the project.  Each log was imaged three times to obtain the three projec-
tions. Some of these logs were then sawn up into square timbers and visu-
ally inspected for knots.  The logs analysed included 82 clusters and 288
knots altogether (as discovered by visual inspection).

The first test summary in Figures B1 and B2 is involved with the se-
lection of candidate knot sectors.  Each candidate sector has an evidence
value that must be greater than the evidence of all other sectors within a
given window.  Window sizes of 3, 5, and 7 sectors are compared, the
width of one sector being 10 degrees.

Figure B3 shows the efficiency of the method in detecting knots.  The
number and volume of correctly detected, undetected, and ghost knots are
compared to those of the actual knots.

The sector evidence is considered as a confidence measure of a knot
finding.  Figure B4 presents the probability of successful knot detection as
function of evidence.

Figures B5 and B6 portray the accuracy of determining volume and
radius of clusters, whereas Figures B7 to B11 are involved with individual
knot parameters.
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Figure B1.  The detection performance of the sector evidence as a
function of the acceptance threshold for simulated test clusters.  The
numbers of undetected knots, ghost knots, and their sum are compared to
the actual number of knots using three sizes of the acceptance window.
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Figure B2. The detection performance of the sector evidence as a function
of the acceptance threshold for real-log test clusters.  The numbers of
undetected knots, ghost knots, and their sum are compared to the actual
number of knots using three sizes of the acceptance window.
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Simulated knots
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Figure B3.  The amounts of detected, undetected, and ghost knots are
compared to the amount of actual knots by number and by volume.
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Simulated knots

t

p(
t)

0,80

0,85

0,90

0,95

1,00

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

Knots in rea l logs

t

p(
t)

0,80

0,85

0,90

0,95

1,00

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

Figure B4.  The probability of correct knot detection as a function of
sector evidence.  Probability p(t) is defined as the number of detected
knots per the actual number of knots when evidence ≥ t.
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Figure B5.  Estimated volume versus actual volume of knot clusters.  Pa-
rameters a and b are the coefficients of linear regression y = ax +b, and r
is the corresponding correlation coefficient.
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Simulated clusters
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Figure B6.  Estimated knot length versus actual knot length of knot clus-
ters.  If there are several knots with different lengths in the cluster, the
maximum among them is used.  Parameters a and b are the coefficients of
linear regression y = ax +b, and r is the corresponding correlation
coefficient.
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Figure B7.  Error distribution of rotation angle α.
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Figure B8.  Error distribution of rise angle β.
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Figure B9.  Error distribution of opening angle γ.
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Simulated knots
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Figure B10.  Computed volume versus actual volume of individual knots.
Parameters a and b are the coefficients of linear regression y = ax +b,
and r is the corresponding correlation coefficient.
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Figure B11. Computed knot length versus actual knot length.  Parameters
a and b are the coefficients of linear regression y = ax +b, and r is the
corresponding correlation coefficient.
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Esittelyteksti

The study presents a method for computing three-dimensional properties of knots in
logs from x-ray images. The basic idea comes from computed tomography, with the
exception that only three projections are used. The number of projections cannot be
much larger because the speed of the sawing process sets a tight limit for the imaging
time.

Exact reconstruction of the object from three projections is not possible. How-
ever, good estimates for the size and co-ordinates of the knot patterns can be achieved
with the method presented. The method uses a priori knowledge of typical shapes and
densities of knots and stems, along with fuzzy reasoning when looking for candidate
knot directions.

The performance of the method was experimented with simulations and analys-
ing x-ray images of real logs.
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