
VTT PUBLICATIONS 308

Model-based explanation
of plant knowledge

Pertti J. Huuskonen

VTT Electronics

Academic dissertation for the degree of Doctor of Technology
to be presented, with the permission of the Department

of Electrical Engineering, University of Oulu, for public discussion
in the Auditorium L10, Linnanmaa, on May 30th, 1997,

at 12 o’clock noon.

TECHNICAL RESEARCH CENTRE OF FINLAND
ESPOO 1997

ISBN 951–38–5053–6 (soft back ed.)
ISSN 1235–0621 (soft back ed.)

ISBN 951–38–5054–4 (URL: http://www.inf.vtt.fi/pdf/)
ISSN 1455–0849 (URL: http://www.inf.vtt.fi/pdf/)

Copyright © Valtion teknillinen tutkimuskeskus (VTT) 1997

JULKAISIJA – UTGIVARE – PUBLISHER

Valtion teknillinen tutkimuskeskus (VTT), Vuorimiehentie 5, PL 2000, 02044 VTT
puh. vaihde (09) 4561, faksi (09) 456 4374

Statens tekniska forskningscentral (VTT), Bergsmansvägen 5, PB 2000, 02044 VTT
tel. växel (09) 4561, fax (09) 456 4374

Technical Research Centre of Finland (VTT), Vuorimiehentie 5, P.O.Box 2000, FIN–02044 VTT, Finland
phone internat. + 358 9 4561, fax + 358 9 456 4374

VTT Elektroniikka, Sulautetut ohjelmistot, Kaitoväylä 1, PL 1100, 90571 OULU
puh. vaihde (08) 551 2111, faksi (08) 551 2320

VTT Elektronik, Inbyggd programvara, Kaitoväylä 1, PB 1100, 90571 ULEÅBORG
tel. växel (08) 551 2111, fax (08) 551 2320

VTT Electronics, Embedded Software, Kaitoväylä 1, P.O.Box 1100, FIN–90571 OULU, Finland
phone internat. + 358 8 551 2111, fax + 358 8 551 2320

Technical editing Leena Ukskoski

VTT OFFSETPAINO, ESPOO 1997

3

Huuskonen, Pertti J. Model-based explanation of plant knowledge. Espoo 1997,
Technical Research Centre of Finland, VTT Publications 308. 173 p. + app. 59 p.

UDC 681.372.12:159.95
Keywords knowledge based systems, expert systems, industrial automation, support

systems, explanation mechanisms, hypertext, context-based interaction, HCI

ABSTRACT

This thesis deals with computer explanation of knowledge related to the
design and operation of industrial plants. The needs for explanation are
motivated through case studies and literature reviews. A general framework
for analysing plant explanations is presented. Prototypes demonstrate key
mechanisms for implementing parts of the framework.

Power plants, steel mills, paper factories, and high energy physics
control systems are studied to set requirements for explanation. The main
problems are seen to be either a lack or an abundance of information.
Design knowledge in particular is found to be missing in plants. Support
systems and automation should be enhanced with ways of explaining plant
knowledge to the plant staff.

A framework is formulated for analysing explanations of plant
knowledge. It consists of three parts: 1. a typology of explanation, organised
by the class of knowledge (factual, functional, or strategic) and by the target
of explanation (processes, automation, or support systems), 2. an
identification of explanation tasks generic for the plant domain, and 3. an
identification of essential model types for explanation (structural,
behavioural, functional, and teleological). The tasks use the models to
create the explanations of the given classes.

Key mechanisms are discussed to implement the generic explanation
tasks. Knowledge representations based on objects and their relations form
a vocabulary to model and present plant knowledge. A particular class of
models, means-end models, is used to explain plant knowledge.
Explanations are generated through searches in the models. Hypertext is
adopted to communicate explanations over dialogue based on context.

The results are demonstrated in prototypes. The VICE prototype
explains the reasoning of an expert system for diagnosis of rotating
machines in power plants. The Justifier prototype explains design
knowledge obtained from an object-oriented plant design tool. Enhanced
access mechanisms into on-line documentation are studied with examples
from high-energy physics experiments. The Lepo prototype explains the
behaviour of automation logic in various kinds of plants.

4

PREFACE

The research for this thesis was carried out during the years 1990 to 1996 at
VTT Electronics (previously called the Computer Technology Laboratory)
and at the European Center for Nuclear Reseach (C.E.R.N.), in the SELME,
TIESU, CICERO and LEPO projects. The projects were funded by the
Technology Development Centre of Finland (TEKES), VTT Electronics,
the University of Oulu, C.E.R.N., and the participating companies: Enso
Fine Papers, Imatran Voima, Konecranes Components, Pohto, Rautaruukki,
Tampella Power, and Valmet.

I have also accepted significant support for this thesis from the
following Finnish foundations: Suomen kulttuurirahasto, Jenny ja Antti
Wihurin rahasto, Tauno Tönningin säätiö, and Tekniikan edistämissäätiö. I
am grateful to all the people and organisations who have contributed to
these efforts.

I wish to thank my supervisor at the University of Oulu, Prof. Matti
Pietikäinen, for guiding my dissertation efforts. I am most grateful to Prof.
Martti Mäntylä (Helsinki University of Technology) and Dr. Raimo
Korhonen (Valmet Automation) for providing encouraging critique as the
nominated reviewers this thesis. I would like to express thanks in advance
to Prof. Kari Kuutti (University of Oulu) and Dr. Raimo Korhonen, who
have been appointed as the opponents for the public defense of this thesis.

Dr. Kari “Pastis” Kaarela has coauthored several of the papers included
in this thesis. Without his encouragement, sophisticated humour, and taste
for sparkling wine this work would never have been completed. I owe
similar thanks to Dr. Pekka Isomursu and Dr. Matti Kurki for supporting
this thesis. Besides commenting on draft versions, these three friends and
colleagues have given me many a good advice from the time of their own
dissertation efforts.

Prof. Veikko Seppänen has provided comments on several versions of
this thesis. A devoted reviewer, he gave suggestions that were usually full
of insight, sometimes weird, but at all times thought-provoking. His ideas
have been invaluable in formulating the structure of this thesis.

Anneli Korteniemi deserves the credit for attracting me into the field of
artificial intelligence. Her work with the VICE system gave me a good basis
on which to build my research. She graciously guided my efforts during my
M.Sc. work and coauthored two of the fundamental papers in this thesis.

Johan Plomp and Esko-Juhani Malm deserve special thanks for their
painstaking realisation of the Lepo C++ prototype, which has linked
together many of the results documented in this thesis. Dr. Hannu Heusala
from VTT and Jari Paanasalo, Janos Kovacs, and Hannu Paunonen from
Valmet, together with our other industrial partners, have given us invaluable

5

support and comments for this work. A number of people from the plants
and experiments deserve thanks for sharing with us their knowledge,
elements of which have found their way in this thesis.

I also wish to thank the following people for their efforts: Juha Takalo
for carrying out the on-line documentation studies in CICERO, Jaakko
Oksanen for the P&ID work and Dr. Juha Jaako for modelling in TIESU,
John Meech and Eric Wagner for the HCI analyses in CICERO, and Martti
Meri, Jyrki Okkonen, Prof. Kauko Leiviskä, and Anne Väisänen for co-
authoring the papers.

I wish to thank Prof. Hannu Hakalahti and Dr. Jean-Marie Le Goff for
making it possible for me to work within the unbelievable research
environment at CERN. This thesis was largely formulated during my stay in
Geneva, which was in many respects the high time of my life. Special
thanks go to Esa Salonen for the two wedding rides, not to mention the
hikes, the downhill, and the raclette.

Thanks to Gordon Roberts, not only for checking the language of this
thesis, but also for the most inspiring lessons during my academic career,
and for good humour. I am also in debt to Douglas Foxvog and Belinda
Ikeda, who have proofread and commented on some of the material. Merci à
Mme. Huguette Cabel, who has been of great assistance in my work.
Somewhat unexpected thanks must go to Mika Matturi, who donated me the
guitar that has greatly helped in the process of writing this thesis.

I will always remain in debt to my dear mother, who has inspired me to
look at this world with curious eyes. She has showed me, among other
things, how one should be able to get really excited about something. To
date, I have been really excited about several things, and plan to continue
that way.

Finally, a kiss to Marja, my dear angel.

Saariselkä, Finland, April 1997

Pertti J. Huuskonen

6

CONTENTS

ABSTRACT ... 3

PREFACE .. 4

CONTENTS ... 6

LIST OF ORIGINAL PUBLICATIONS .. 10

GLOSSARY ... 12

1 INTRODUCTION .. 15

1.1 THE NEED FOR EXPLANATION .. 15
1.1.1 Plant supervision ... 16
1.1.2 Avoiding mental mismatches .. 18

1.2 MODELS OF PLANT KNOWLEDGE... 18
1.3 PROBLEM STATEMENT.. 20

1.3.1 Research problem .. 20
1.3.2 Research hypothesis .. 21
1.3.3 Research assumptions.. 22
1.3.4 Research methods.. 23

1.4 SCOPE OF THE RESEARCH .. 24
1.4.1 Application areas... 24
1.4.2 Research areas ... 25

1.5 OUTLINE OF THE DISSERTATION.. 26

2 PROBLEM ANALYSIS... 27

2.1 PLANT DESIGN AND USE... 27
2.2 PROBLEMS IN PLANT DESIGN.. 28

2.2.1 Communication ... 29
2.2.2 Compatibility ... 30
2.2.3 Low level descriptions... 30
2.2.4 Tool support... 31
2.2.5 Design knowledge ... 31

2.3 PROBLEMS IN PLANT USE... 32
2.3.1 Tasks and tools .. 33
2.3.2 Processes.. 35
2.3.3 Automation .. 37
2.3.4 Support systems... 39

2.4 REQUIREMENTS FOR EXPLANATION..................................... 42

7

3 A FRAMEWORK FOR EXPLAINING PLANT KNOWLEDGE.... 45

3.1 A TYPOLOGY OF EXPLANATION... 46
3.2 GENERIC EXPLANATION TASKS ... 49
3.3 TASK FEATURES.. 51
3.4 MODELS FOR EXPLANATION ... 53

4 EXPLANATION AS OBJECT MODELLING 56

4.1 EXPLAINABLE OBJECTS .. 57
4.2 EXPLAINABLE TASKS .. 59

4.2.1 The VICE system... 59
4.2.2 Explaining reasoning... 60
4.2.3 Explaining strategies ... 61
4.2.4 Development support... 62

4.3 EXPLAINING RELATIONS .. 62
4.4 MEANS-END MODELLING ... 64
4.5 CONTRIBUTION MODELS .. 67

4.5.1 Relaxing the levels .. 67
4.5.2 Gas system example .. 68
4.5.3 Weighted relations... 69
4.5.4 Dynamic relations.. 70

5 EXPLANATION AS DESIGN RECOVERY 72

5.1 MULTILEVEL FLOW MODELS... 73
5.2 THE P&ID ENVIRONMENT... 75
5.3 EXPLAINING DESIGN KNOWLEDGE 78

5.3.1 Deriving explanations through relations 79
5.3.2 Justifiable objects .. 81

5.4 EXPERIENCES WITH THE JUSTIFIER PROTOTYPE............... 81

6 EXPLANATION AS DIAGNOSIS ... 84

6.1 BACKGROUND ... 85
6.2 LEVELS OF LOGIC EXPLANATION .. 85
6.3 THE LEPO C++ PROTOTYPE... 88

6.3.1 Filters... 89
6.3.2 Data histories... 90
6.3.3 Object models.. 90
6.3.4 Simulation.. 91
6.3.5 Explanation.. 91
6.3.6 Human-computer interfaces .. 93

6.4 COMPLEXITY ISSUES.. 94
6.5 EXPERIENCES WITH THE PROTOTYPE................................... 97
6.6 FUTURE RESEARCH .. 100

7 EXPLANATION AS INTERACTION... 103

7.1 HYPERTEXT .. 104

8

7.1.1 Dynamic documents .. 104
7.1.2 Hypertext for explanation.. 105
7.1.3 Content generation... 105

7.2 ENHANCED HYPERTEXT ... 106
7.2.1 Model-based hypertext .. 106
7.2.2 A usability study.. 108

7.3 CONTEXT... 109
7.4 DIALOGUE... 111

7.4.1 The explanation creation process .. 111
7.4.2 The use of context ... 113

7.5 EXPERIENCES WITH HYPERTEXT ... 115

8 RELATED RESEARCH.. 117

8.1 APPROACHES TO EXPLANATION .. 117
8.1.1 Explaining tasks... 118
8.1.2 Explaining models ... 119
8.1.3 Functional knowledge ... 120
8.1.4 Targets of explanation ... 122

8.2 EXPLANATION IN PLANTS .. 122
8.2.1 Support systems... 123
8.2.2 Mental models of plant systems .. 126
8.2.3 Design knowledge ... 127

8.3 LOGIC EXPLANATION .. 128
8.3.1 The diagnosis background... 128
8.3.2 Explanations of industrial logic... 130
8.3.3 Improved logic languages.. 132

8.4 INTERACTION TECHNIQUES... 133
8.4.1 Hypertext ... 134
8.4.2 Dialogue .. 135
8.4.3 Rhetoric for explanation.. 136
8.4.4 User modelling .. 137

9 INTRODUCTION TO THE PAPERS ... 139

9.1 EXPLAINING KNOWLEDGE IN A DIAGNOSTIC EXPERT
SYSTEM .. 140
9.1.1 Paper I: Explainable tasks, user profiles, and hypertext....... 140
9.1.2 Paper II: Context for explanation generation and navigation141

9.2 EXPLAINING DESIGN KNOWLEDGE OF INDUSTRIAL
PLANTS ... 142
9.2.1 Paper III: Capturing design knowledge into models 142
9.2.2 Paper IV: Bringing design knowledge to users 143
9.2.3 Paper V: Explaining design knowledge from means-end

models .. 143
9.3 SUPPORT SYSTEMS IN HIGH ENERGY PHYSICS 144

9

9.3.1 Paper VI: Human-machine interfaces in high energy physics
control systems... 144

9.3.2 Paper VII: Modelling high energy physics control systems 145
9.4 EXPLAINING AUTOMATION LOGIC (PAPER VIII) 146

10 CONCLUSIONS... 148

10.1 RESULTS .. 148
10.2 ANSWERS TO THE RESEARCH PROBLEMS 149
10.3 THE MAIN CONTRIBUTIONS... 152
10.4 DIRECTIONS FOR FUTURE RESEARCH............................... 153

10.4.1 Applications outside the plant domain 153
10.4.2 Ubiquitous explanations .. 156

REFERENCES .. 157

PAPERS

10

LIST OF ORIGINAL PUBLICATIONS

This dissertation includes the following eight original publications (Papers I
through VIII):

I Korteniemi, A. & Huuskonen, P. 1991. An Expert System with
Explanations Tailored to Each User. In: Proceedings or the 3rd
International Symposium on Expert Systems Application to Power
Systems (ESAP’91), Tokyo, Japan, April 1 - 5, 1991. Pp. 381 - 384.

II Huuskonen, P. & Korteniemi, A. 1992. Explanation Based on
Contexts. In: Proceedings of the Eighth Conference on Artificial
Intelligence for Applications (CAIA’92), Monterey, CA, March 2 -
6, 1992. Los Alamitos, CA, USA: IEEE Computer Society Press,
1992. Pp. 179 - 185. ISBN 0-8186-2690-9

III Kaarela, K., Huuskonen, P. & Leiviskä, K. 1993. The Role of Design
Knowledge in Industrial Plant Projects. In: Proceedings of the 4th
International Conference on Cognitive and Computer Sciences for
Organizations (ICO '93), Montreal, Canada, May 4 - 7, 1993.
Montreal: Girico. Pp. 173 - 183. ISBN 2-7624-0555-6

IV Kaarela, K., Huuskonen, P. & Jaako, J. 1993. Providing Plant Design
Knowledge to the Operators. In: Smith, M. J. & Salvendy, G. (eds.)
Human-Computer Interaction: Applications and Case Studies.
Proceedings of the Fifth International Conference on Human
Computer Interaction (HCI '93), Orlando, Florida, August 8 - 13,
1993. Vol. 19A. Amsterdam: Elsevier Science. Pp. 546 - 551. ISBN
0-444-89540-X, ISSN 0921-2647

V Huuskonen, P. & Kaarela, K. 1995. Explaining Plant Design
Knowledge through Means-End Modelling. In: Anzai, Y., Ogawa, K.
& Mori, H. (eds.) Symbiosis of Human and Artifact: Human and
Social Aspects of Human-Computer Interaction. Proceedings of the
6th International Conference on Human-Computer Interaction (HCI
'95), Tokyo, Japan, July 9 - 14, 1995. Vol. 20B. Amsterdam: Elsevier
Science. Pp. 417 - 422. ISBN 0-444-817956, ISSN 0921-2647

VI Meech, J. F., Huuskonen, P., Le Goff, J.-M. & Wagner, E. 1995. An
Analysis of the Human-Computer Interfaces to High-Energy Physics
Control Systems at CERN. In: Anzai, Y., Ogawa, K. & Mori, H.
(eds.) Symbiosis of Human and Artifact: Human and Social Aspects
of Human-Computer Interaction. Proceedings of the 6th International
Conference on Human-Computer Interaction (HCI '95), Tokyo,

11

Japan, July 9 - 14, 1995. Vol. 20B. Amsterdam: Elsevier Science. Pp.
291 - 296. ISBN 0-444-817956, ISSN 0921-2647

VII Huuskonen, P., Kaarela, K., Meri, M. & Le Goff, J.-M. 1994. On
Knowledge Representation for High Energy Physics Control
Systems. In: Dasgupta, S., De, S.K. & Roy, A. (eds.) Accelerators:
Control & Data Acquisition. Proceedings of the International
Conference on Current Trends in Data Acquisition & Control of
Accelerators (CTDCA ’94), Calcutta, India, December 6 - 8, 1994.
Calcutta: Variable Energy Cyclotron Center. Pp. 100 - 109.

VIII Huuskonen, P., Kaarela, K., Okkonen, J. & Väisänen, A. 1995.
Explaining Control Logic to Process Operators. In: Forsyth, G. F. &
Moonis, A. (eds.) Proceedings of the 8th International Conference on
Industrial and Engineering Applications of Artificial Intelligence and
Expert Systems (IEA/AIE '95), Melbourne, Australia, June 5 - 9,
1995. Amsterdam: Gordon and Breach Publishers. Pp. 203 - 211.
ISBN 2-88449-198-8

The papers will be referred to in the text by the corresponding Roman
numerals (I - VIII).

The author of this thesis is the main author of Papers II, V, VII and
VIII. The research for these papers has been done by the author. The co-
authors have provided comments and material for these papers. They have
also helped in the formulation of the research ideas and in the practical
work.

Papers I, III, IV, and VI have been written by Ms. Anneli Korteniemi,
Dr. Kari Kaarela, and Mr. John Meech. The author of this thesis has
contributed considerably to the research reported in these papers in terms of
providing ideas and material, carrying out experimental studies,
implementing prototypes, and co-authoring the papers.

12

GLOSSARY

The following terms, definitions, and abbreviations will be used in this
thesis. Some of the definitions are specific to this thesis; other, broader
meanings may be assumed elsewhere. Unless otherwise specified, the
definitions have been formulated by the author.

Artificial
intelligence

The study of principles and techniques that enable
computers to tackle problems that have previously
been thought possible only for humans to solve.

Automation 1. The control and information systems that are used to
control plants. 2. The act of automating plant
operations.

Automation
system

A kind of control system, here used as a synonym for a
DCS.

CERN The European Centre for Nuclear Research, in
Geneva, Switzerland. The birthplace of the WWW.

Control system A system that controls the operation of a plant or parts
of it.

DCS A distributed control system.
Designer A human who designs plant systems.
Expert system A KBS that uses knowledge acquired from human

experts to achieve automated reasoning tasks with
performance comparable to that of the experts.

Explanation “The act of explaining; a making clear or understood;
exposition; interpretation; the clearing up of matters
between parties who have been at variance” [Thatcher
1965]

Explanation
mechanism

A software module that constructs explanations.

HEP High Energy Physics; here refers to the physics
research that uses large experimental facilities, such as
particle accelerators.

Hypermedia An interlinked collection of information chunks;
usually text, graphics, audio, and video connected
through links that can be followed with a browser.

Hypertext Hypermedia that mostly consists of text material. In
this thesis, this term is used interchangeably with
“hypermedia”.

13

KBS Knowledge-based system, a software program that
uses captured human knowledge. Here the term is seen
in its wider meaning, including model-based systems
that do not necessary contain human knowledge.

Knowledge The higher level information with semantic content
that humans frequently apply to reason about systems,
as opposed to lower level data that most computerised
systems handle.

Knowledge
engineering

A branch of artificial intelligence that seeks to design
knowledge-based systems (KBS).

Maintainer A human who maintains plant systems to keep them in
operable conditions.

Mental model The image of a system that humans form in their minds
when dealing with the system.

Model A (computer) representation of a target system that
tries to make certain aspects of the system more easily
analysable.

Model-based
system

A KBS that is based on explicit models of the domain
and/or problem-solving, rather than having them
inseparably intertwined with the program code or
rules.

Modelling The act of creating a model; usually by a knowledge
engineer, or automatically by software.

Operator A human who controls the systems of a plant.
Plant An (industrial) organisational unit in a physical

location that has identifiable processes, automation,
and people operating them.

PLC A programmable logic controller, a control system that
is usually used in more limited applications than a
DCS.

Process 1. The (physical) parts of a plant that are controlled by
automation. 2. The various phases that lead from a
goal to an implementation, for instance in a design
process.

Support system The part of automation that is more concerned with
supporting human tasks than controlling plant systems.

Task 1. A set of activities to be carried out by a user. 2. A
unit of problem-solving knowledge in a knowledge-
based system. 3. A (generic) method of constructing
explanations for a particular type of needs.

Teleology The theory or study of purposiveness in nature, on
explanations of ends, aims, goals, intentions or

14

purposes. (Adapted from Flew [1979]). “The science
or doctrine of final causes; the science treating of the
end or design for which things were created”.
[Thatcher 1965]

User A human using a system (here: operators and
maintainers)

WWW The World-Wide Web global hypermedia network.

15

1 INTRODUCTION

Two fundamental ingredients of human intelligence are introspection, the
ability to examine one’s own thoughts, and verbalisation, the ability to
convey these thoughts to other people. Much of our daily lives seems to
consist of these two activities.

Artificial intelligence seeks to develop computer systems that are
intelligent. If we take human intelligence as a target for these developments,
then an intelligent system should be capable of both introspection and
verbalisation – in short, explanation. The system should be able to analyse
the knowledge it uses and to communicate this knowledge to the outside
world.

In computer software, the subsystem that is responsible for these
activities can be called the explanation mechanism. This thesis concentrates
on computerised explanation applied to the domain of plants1. We review
requirements for explanation, propose explanatory concepts and
mechanisms, and demonstrate results with cases drawn from plants.

1.1 THE NEED FOR EXPLANATION

People often have problems with the use of technical systems. They may not
fully understand the intended functions of a system, which makes it difficult
to effectively operate it. This is evidenced particularly well with the
classical example of human-machine interface research: the controls for
video-cassette recorders (VCR).

For many users, the majority of the functions in a VCR are unknown
[Norman 1988]. Normally they only apply a handful of functions that are
needed for basic operations. The rest of the functions are only used in
exceptional cases (such as time zone adjustments), and instruction manuals
are often needed to activate these functions. The internal operation of the
VCR is most often not clear to the users, and they need external advice to
use the machine. The advice can come from the manual, or perhaps more
often, from a more experienced user.

1 In this thesis the term “plant” covers industrial plants (for example, power
plants) as well as non-industrial plants, such as particle accelerators.

16

1.1.1 Plant supervision

Difficulties very similar to the VCR case are found in industry. Modern
plants are arguably among the most complex human-operated systems,
which makes them particularly rich in operational problems. Many of the
problems that plant supervisors (termed “operators” later in this thesis) face
are information-related: either there is too much or too little information
available [Buck 1989], or it is available in the wrong context.

Many operators lack a thorough understanding of the plants they
operate. The daily functions quickly become familiar to them, but less
frequent events may be unclear, leading to problems, and possibly to
danger. One aim of this thesis is to point out practical difficulties in plant
supervision and to offer concepts and mechanisms that can be used to solve
some of these difficulties.

Figure 1. Part of the control room of the L3 experiment at CERN.

Figure 1 shows a particular case we have studied: the underground control
room of the L3 experiment at CERN, the European Centre for Nuclear
Research, in Geneva, Switzerland. This experiment is operated by visiting
physicists, who spend a week or two there collecting physics data.
Supervision is an auxiliary duty for them, and therefore they are not familiar
with all the subsystems after the brief training period. Problem cases cause
much confusion, and the operators frequently have to call in the control
experts to solve the situation. Even though the operators may have
doctorates in nuclear physics, they are not confident with systems with
which they are unfamiliar. This is evident in the following episode from
CERN [Le Goff 1993]:

At four a.m., the telephone wakes up from a deep sleep the control
expert who is on call. A nervous physics student on the phone explains
that alarm number 15 has gone off. After stopping the alarm buzzer,
he had quickly read the operating procedure for that particular alarm.

17

He was rather worried, as the instructions seemed to suggest that the
magnet cooling system could be shut down, and that was a serious
situation for the valuable physics data collection and possibly for the
machinery as well. Unsure how to proceed, he had decided to call the
expert.

After getting dressed and rushing the fifteen minute drive to the
scene, the expert takes a look at the main sensor readings and decides
that the situation is less serious than it sounded. A few minutes of
troubleshooting reveal that the alarm was caused by a plotter running
out of ink – a problem that hardly justified waking up the expert in the
middle of the night!

In this case, the operator had received misleading information from the
alarm system and could not evaluate the seriousness of the situation. In
panic, he was unable to find more detailed information because he did not
have a clear idea of the systems.

Although this false alarm case can be largely blamed on the design of
the alarm system, other cases could have been more serious. If the control
systems had been equipped with better diagnostics, the operator’s distress
might have been avoided. He could have used more (or better) information
on the original problem, on the alarm system’s functions, and on the proper
action to take.

Similar problems are evidenced in almost all settings where people deal
with technical systems. Users of computers, copying machines, elevators,
kitchen appliances, and cellular phones all struggle with systems they need
to use but do not fully understand. According to Norman [1983], Rasmussen
[1986], Carroll & Olson [1988], Sheridan [1988], Stassen et al. [1988],
Buck [1989] and Wexelblat [1989], humans form a mental model of a
technical system they interact with. This model is formed unconsciously
while learning to use the system. Learning is supported through instruction
manuals, courses, and experience. Since proper instruction is often difficult
to comprehend or is not available, people resort to trial and error. They form
incomplete mental models of the system, revising the models little by little
through experience with the system.

Sometimes the mental models can be faulty [Norman 1983]. This
happens usually when proper instruction is not given. In such cases people
seem to form their own theories on how systems work that do not
necessarily correspond to the reality [Carroll & Olson 1988]. The users of
systems then rely on their incorrect theories, until they become confused by
the unexpected behaviour. At that point, computer support would be
welcome.

18

1.1.2 Avoiding mental mismatches

The mismatch between the mental models and the reality could be a major
source of the frustration that people often experience with technical systems
[Norman 1988]. The frustration can be lessened by designing systems more
according to the way that people work [Schneiderman 1987]. This approach
is clearly visible in modern office automation software that tries to mimic
ways that people worked in a traditional office. However, this is not always
possible, especially in the case of such complex systems as industrial plants.
Some computerised controls, for example automated start-up sequences, are
based on principles that have changed fundamentally since the days of
manual control [Sheridan & Ferrell 1974].

Another approach is to educate the users offering them correct mental
models. This approach, based on training, tends to fail with time. The
deteriorating memory of humans does not support extensive training
beforehand. Normally, general guidelines can be given in advance, but
regular training will be needed during use to refresh memories.

We want to promote a third approach: to offer on-the-spot help where
the users have problems in understanding the systems [Rettig 1993].
Traditional help systems are not sufficient, since they cannot adapt to the
situation or to the users’ needs. More dynamic help systems are needed for
the complex situations found at plants.

Explanation is a way to give dynamic help, to clarify the way a system
works, and to educate people about the properties, functions, and limitations
of a system. Explanations can be offered either upon the user’s request or
automatically whenever a system detects that a user has problems with the
system. Properly designed control and diagnostic software would allow
many systems to explain themselves.

1.2 MODELS OF PLANT KNOWLEDGE

Various kinds of support systems have been realised in industry to help
people in plants with their tasks [Hayes-Roth & Jacobstein 1994]. Some of
these systems apply techniques from knowledge engineering. An important
subclass of these systems is based on models of knowledge related to the
plant.

In this thesis, we distinguish two kinds of models related to plant
knowledge, depicted in Figure 2: (A) the mental models that humans form
and (B) the models that plant systems contain. We seek to enhance the
mental models indirectly by explaining the models of the plant systems.

The figure shows a view to the interplay between a plant operator, an
automation system, and the plant itself. The operator unconsciously forms
mental models both of the plant (A1) and of the automation system (A2).

19

These models are initially formed during training and then get revised with
the actual use of the plant and the automation.

Traditionally the automation serves to carry out the operator’s
commands and dispatch them to individual devices. An equally important
function is to visualise the behaviour of the plant – to store, filter, and
clarify the data that is received from the sensors. Automation also serves as
the user interface to support systems.

Domain
model

System model User model

Training Modelling

Explanation

Questions

Domain
model

System
model

B 1

B 3

B 2

A 1

A2

Figure 2. The models of the domain, the automation, and the user.

We propose a new function for the automation2: to explain the plant; to act
as a documentation and knowledge repository; to clarify the plant’s and
automation’s own behaviour, their underlying design choices, and their
capabilities and limitations. The automation could participate in a dialogue
with the users, becoming an assistant in their duties.

For this aim, the automation must acquire a model of the plant (B1). It
should also maintain a model of the user (B2) for natural communication
and should contain a model of itself (B3) to be able to explain its own
behaviour [Tanner & Keuneke 1991].

In this thesis, we suggest ways to model knowledge about plants and
automation, and to explain this knowledge to the users. Our main focus is in
domain and system models (B1 and B3).

2 Here we assume that support systems are part of the automation, although
presently they are often separate systems. We believe that, in the future,
automation systems will carry out many tasks that are now done by separate
support systems.

20

1.3 PROBLEM STATEMENT

We have studied the practical problems that people have in controlling and
understanding plants with automation. These empirical studies are presented
in the papers and discussed further in Chapter 2. To summarise, many
problems are related either to a lack of information, or an excess of
information concerning the plant systems. The information would have to
be represented in such a form that it becomes easier to understand. In
particular, ways must be found to model this information and to
communicate it to humans in a suitable manner.

1.3.1 Research problem

Johannsen et al. [1983] stress that for successful interaction between human
and machine, the following questions should be considered in the control of
technical systems:

♦ What kind of information is needed?

♦ How should this information be acquired?

♦ How should the information be organised and structured?

♦ How should the information be analysed?

♦ How should information be processed before being displayed?

♦ How should information based judgments be formulated?

♦ How should the information be transmitted in decentralised
situations?

In our view these are the questions that should be answered for information
systems used in plants. Since the full scope of the questions encompasses a
very large area of research, it is not possible in one piece of work to answer
them completely. We have therefore chosen the most relevant questions as
the topic of this thesis, as will be detailed shortly.

We direct our research to concern itself with an important class of
information: knowledge. With “knowledge” we mean the high level
information that humans frequently apply to reason about systems, as
opposed to lower level information that most automation systems handle.
For the purpose of this study, we largely ignore many kinds of the tacit
knowledge [Suitiala 1993] that humans seem to use, such as common sense
understanding of the world, or general factual knowledge found in lexicons.
We restrict ourselves to deal with technical knowledge related to plants, that
is, knowledge of structures, behaviour, functions, and purposes of plant
systems. Much of this knowledge is abstractions of lower level information.

21

Based on this discussion, we define the research problem for this work
as follows:

How can plant knowledge be communicated to the plant
staff?

This general problem can be stated as more specific subproblems:

P1: What difficulties do people have with technical systems in
plants?

P2: What kinds of knowledge would be needed to solve these
problems?

P3: How can this knowledge be captured and modelled?
P4: How can this knowledge be communicated to people?

The problem analysis and conceptual solution presented in this thesis will
answer subproblems P1 and P2. Most of the practical results documented in
the thesis will deal with subproblems P3 and P4.

1.3.2 Research hypothesis

We hypothesise that the research problem (more specifically, subproblems
P3 and P4) should be approached through viewing the communication of
knowledge as explanation. The problem is then reduced to finding such
modelling and interaction techniques that facilitate explanation.

We further hypothesise that different kinds of explanations should be
classified according to the target system to be explained and according to
the classes of knowledge to be explained. This classification helps to
analyse the various uses that explanation has in plants. We propose that
explanations should be produced by generic explanation tasks that may
employ similar techniques in different domains, facilitating reuse.

For a pragmatic side of the research hypothesis we propose that the
research problem be solved by using specific explanation techniques for the
tasks, in particular knowledge-based models and interaction mechanisms
based on hypertext.

There are other possible solutions to the problem, for instance education
of the plant staff, visualisation of plant information, and the development of
the plant organisation. We believe that the knowledge-based solutions we
propose are the most suitable ones for problems that originate from a lack of
knowledge, which seems to be the case in plants. Moreover, when new
information systems are introduced to plants for better conveying
information to the staff, the systems may create yet another source of

22

confusion. Explanatory techniques are needed to clarify the information
where traditional information systems are no longer sufficient.

The main hypothesis can be summarised:

The research problems can be answered by viewing the
communication of knowledge as explanation.

1.3.3 Research assumptions

In engineering, systems are often characterised only by their input-output
relationships without regard to how these relationships are formed inside the
systems. This “black box” principle is routinely used in engineering for
analysing systems without a need to know their internal structure or
behaviour.

The principle is useful for breaking down complex systems into smaller
parts, or dividing up responsibilities between designers. Unfortunately, the
principle also makes the users’ life harder. They may spend much of their
time trying to understand how the system works, even though the designers
never anticipated such a need. The system’s internals are designed to be
invisible to the users; they are indeed black boxes.

We believe that the black box tradition actually shows up in the human-
machine interfaces of many technical systems, and is one cause of many
problems that people experience with such systems. The systems’ internals
are deliberately masked from people who would have a need to know them,
especially in such abnormal conditions as process failures. [Sheridan 1988,
Norman 1988]

We assume that explanation helps to alleviate the black box problem.
Through explanation, the users of technical systems gradually gain a better
understanding of the systems. As a mission of this thesis, we seek to find
ways of allowing a technical system to incorporate sufficient knowledge to
explain itself to its users.

Help systems have become an important part of commercial software.
Unfortunately they are targeted towards general advice and thus are not
easily customisable to actual use situations. We deal with such applications
where it is generally not possible to predict all behaviours of a system, and
thus not possible beforehand to construct explanations that cover all
necessary cases. Dynamic explanation generation is needed in those
applications. Model-based explanation is our approach to achieve such
generation.

A central assumption, underlying most topics discussed in this thesis, is
that knowledge-based techniques can help to construct explanations.
Knowledge-based techniques require the existence of knowledge in some

23

form. Our approach is not to automatically generate or derive new solutions
from observations, but rather to adapt existing knowledge into new forms
that are useful to the plant staff.

In some cases, existing knowledge can be made available for the
explanation mechanisms with relatively little effort, as is the case with many
diagnostic expert systems. Such systems often store knowledge in their
knowledge bases in a form that can be explained, although the knowledge
may have to be restructured for explanation. In other cases, for instance
with plant design databases, some of the knowledge has to be adapted to be
explainable. This adaptation, termed modelling, is usually performed by
knowledge engineers.

We make the optimistic assumption that the models in knowledge-based
systems are valid enough to be explained to users. In practice, models will
always be incomplete and/or contain inaccurate or contradictory
information. We have not explored the implications that giving incorrect
information may have to humans’ mental models. However, explanation can
help detect some of the limitations or contradictions in knowledge bases.

We assume that many problems in plant design and subsequently in the
use of the plants are due to a lack of access to higher level design
knowledge [Kaarela 1996]. We believe that users are able to understand
both concrete and abstract design information, once it is placed in the right
context through explanations.

The various systems that we will present all work in co-operation with
the user, which is a necessity for support systems. Our systems are
intentionally designed to be assistants to human problem solvers, with the
associated trade-off of becoming less capable of autonomous operation.

1.3.4 Research methods

We seek to solve the research problem mainly with a constructive approach.
We first analyse empirically information-related problems that people have
with automation. We then present a framework that typifies the kinds of
explanation that are needed to solve the problems. We propose model-based
concepts and techniques for explanation as the solutions, and validate the
key mechanisms in prototypes.

Chapter 2 of this thesis and Papers IV, VI, VII, and VIII cover the
problem analysis. Together with Chapter 3, Papers I, IV, VII, and VIII
propose the solutions on a conceptual level, while Chapters 4 - 7 and Papers
II, V, VII, and VIII include solution mechanisms with prototypes.

24

1.4 SCOPE OF THE RESEARCH

1.4.1 Application areas

The research presented in this thesis covers several interrelated application
areas (Figure 3): power plants, paper machines, high energy physics (HEP)
systems, and steel mills. In each area we focus on specific topics.

The technical subsystems in HEP experiments are so similar to those
used in industrial plants that we regard HEP systems as kinds of plants. In
fact, HEP systems surpass most industrial systems in their complexity,
making them a good target for our studies. The next generation of
experiments, to be constructed at the start of the next millennium, will be
even more complex by an order of magnitude.

Plant design is the first topic. There the focus is to study the
information-related problems that people have with plant systems, and how
this information could be obtained from designers. We suggest ways of
capturing design knowledge and communicating it to the users in the plants.
The results are demonstrated with cases drawn from power plants and high
energy physics systems.

Plant
design

Control
logic

Expert
systems

High
energy
physics

Power
plants

Paper
machines

Steel
mills

Figure 3. The main topics and application areas of the thesis.

The second topic concerns control logic, an important subset of automation.
The aim is to study the specific problems that control logic solutions cause
in industry, and we propose software solutions to these problems. Here the
viewpoints range from behavioural analysis of the users to implementations
of explanation algorithms. The industrial cases cover paper machines and
steel mills.

25

The third topic is diagnostic expert systems that need to communicate
their results to users. We focus on the task of adding explanation facilities
into an existing expert system for power plants. With the case, we propose a
number of conceptual level solutions and concrete mechanisms.

1.4.2 Research areas

Explanation falls within the interdisciplinary zone between several fields of
science and technology. To achieve demonstrable results, we emphasise an
engineering approach. We combine ideas from several sciences, especially
human-related sciences, into engineering solutions.

In all application areas, we limit ourselves to information-related topics,
and more specifically into ones that deal with knowledge-based techniques.
As a consequence, we suggest results obtainable through the use of
information technology. This restricts our research to exclude other possible
solutions, such as organisational or educational aspects of communicating
technical knowledge.

Within the large area of information technology, it has been necessary
to select aspects of modelling and presenting knowledge. Our approach
combines ideas from the fields of knowledge engineering and human-
machine interface research. For knowledge representation, we apply
network-oriented methods implemented in object-oriented software. Such
knowledge representation methods as formal logics and connectionist
systems are not targeted in this thesis.

Even though we discuss how our solution mechanisms can be
implemented and maintained in practice, we largely ignore the professional
software engineering perspective. The transfer of design knowledge from
designers to users is, however, discussed.

We consider modelling of technical systems mostly from a semantic
viewpoint, leaving such modelling constructs as differential equations and
qualitative models outside the scope of this work. Our representations of
design rationale are limited to those aspects that are needed to study
explanations. They do not try to cover the full range of constructs necessary
to represent the lifecycle of a plant, as this is a complex research issue in its
own right.

Our discussion of human-machine interaction is focused on explanatory
dialogue. We touch on the relevant topics within cognitive and behavioural
sciences briefly. We have deliberately chosen lightweight approaches to
user modelling, complexity management, navigation and dialogue. We base
our approach on contexted hypertext, fully realising that it is but one
possible medium for interaction. This approach facilitates integration with
on-line documentation systems, which is highly beneficial for explanations
in the plant domain.

26

1.5 OUTLINE OF THE DISSERTATION

Chapter 2 analyses the information-related problems that people have in
design and use of plants. These problems are taken as the requirements for
the explanation framework presented in Chapter 3. It defines generic
explanation tasks for the plant domain. The framework is used in the
succeeding Chapters 4 to 7 to give a point of reference for the discussion.

Ways of implementing parts of the framework are studied in several
chapters, from a modelling viewpoint (Chapter 4), from a design recovery
viewpoint (Chapter 5), from a diagnostic viewpoint (Chapter 6), and from a
human-computer interaction viewpoint (Chapter 7). For each viewpoint, the
proposed concepts for explanation are presented and demonstrated by a
number of prototypes.

Related work is reviewed and compared to the results of this thesis in
Chapter 8. An introduction to the included papers is the topic of Chapter 9.
Chapter 10 draws the conclusions of the thesis.

Papers I to VIII in the appendices contain the original papers.

27

2 PROBLEM ANALYSIS

This chapter studies the difficulties that appear in the various parts of the
design process and the use of the plant, with the aim of estimating how
explanation could help in solving the problems. We use this study as the
requirement analysis for an explanation framework that will be presented in
the next chapter. Our views are based on empirical analyses in projects
related to power plants and high energy physics control systems, as
documented in the included papers. To support our views, we highlight
some findings from the large body of research into industrial control and
support systems.

2.1 PLANT DESIGN AND USE

Figure 4 shows a simplified model of plant design and use (the
implementation phase has been omitted for clarity). We use the model in
this and the following chapters to discuss information-related problems in
plants.

The top left part of the figure depicts how the designers of various
disciplines participate in the process. As end results, the design process
produces the plant processes and the automation, with the associated
documentation. They are used by the people that form the plant’s
organisation. Our focus is in operators and maintainers, although some of
the results will apply to other staff, for example managers3.

The area inside the dotted line emphasises the role that knowledge-
based systems can have in the design process. Much valuable knowledge
concerning the plant and the design process are captured in databases. To
create support systems, a knowledge engineer adapts the knowledge into
models. Support systems use the models to help the plant staff in operating
the plant. Ideally, the systems gather the experiences of the staff to be
reused in the design to build other support systems and plants.

3 Buck [1989] uses the term “operator” very liberally to refer to anyone using the
systems or processes in plants. In a way, all the people in a plant operate it to some
degree.

28

Design Use

Designer

Knowledge
engineer

Process

Automation

Support systems

Maintenance
staff

Design
knowledge

Models

Designer
Other
staff

Building
designMachine

design

Process
design

Automation
design

Documents

Operators

Figure 4. Plant design and use.

The model could be elaborated. For instance, Korhonen [1991]
distinguishes separate predesign, specification, implementation, testing, and
startup phases in automation projects. He also deals with reuse, which is not
shown in the figure. However, with our scant model we want to emphasise
that plant use is largely dependent on the results of the design phase, as will
become apparent later in this chapter.

2.2 PROBLEMS IN PLANT DESIGN

Some of the numerous subtasks that make up a plant design are shown in
Figure 5. These subtasks are normally divided up among several
organisations, often involving hundreds or even thousands of people. The
tasks overlap both in time, going on simultaneously, and in content, dealing
with the same parts of the design from different viewpoints.

29

Equipment
design

Piping
design

Automation
design

Logic & control
diagrams

System
descriptions

Equipment
list

PI-diagrams Instrument
list

Process
data

Produces

Refines

Uses

Instrumentation
design

Process
design

Figure 5. Dependencies between design areas.

2.2.1 Communication

Plant design, and design in general, is iterative by nature. Many design
subtasks can only commence after receiving input from some other
subtasks. These in turn depend recursively on further subtasks (Figure 5),
mandating an incremental way of solving the design problems.

The complexity of plants and the nature of the design process together
imply that communication is fundamentally important in plant design
[Rytoft et al. 1990]. Unfortunately, in actual design projects much
knowledge is never transferred. This was evidenced by our empirical studies
of power plants, documented in Papers III and VIII, and high energy physics
control systems, documented in Papers V and VII. Much of the knowledge
is mutually understood and does not need explicit transfer, but some
knowledge seems to get lost due to a shortage of suitable transfer methods
[Klein 1993, Kaarela 1996].

Design work often stalls due to a lack of required data. Inputs from
other designers arrive late, if ever. Therefore designers sometimes have to

30

base their work on assumptions and estimates of the other designer’s work4.
Moreover, designers are often reluctant to freeze their designs, tending to
modify them up to the last minute. Inconcistency problems therefore plague
plant design, caused by outdating replication of design documents in several
organisations [Rytoft et al. 1990]. Current design tools’ support for
concurrent design work should be improved [Klein 1993].

2.2.2 Compatibility

There is an increasing trend towards electronic data transfer in plant
projects. However, the formats for transferring design data are even today
largely incompatible between organisations, despite the existing and
emerging standards (for instance STEP (ISO 10303-1) [1994], IGES [1988],
and CALS [Weich 1992]). The tool support for standards emerges slowly,
and legacy designs remain in proprietary formats.

Even similar data formats are not in themselves sufficient to guarantee
the usability of the data. For instance, an instrumentation diagram remains
just on a drawing level if the transfer format cannot group the geometric
primitives – lines, polygons, and text – into meaningful entities, such as
pumps and valves. The semantic content of design documents is often lost
in the transfers causing manual re-entry of information. [Kaarela et al.
1992]

2.2.3 Low level descriptions

Design descriptions tend to concentrate on device level details
[Stephanopoulos 1990], largely ignoring higher level information such as
justifications of the design choices. As an example, let us consider the
process and instrumentation diagrams that are important in communicating
process designs. They depict the various devices and instruments of the
process, connected through pipes and signal lines. They serve well to
transfer data on the interconnections of devices. Yet, somehow these
diagrams are also believed to convey higher level knowledge on the design
choices and tradeoffs, purposes of designs, and other tacit knowledge.
[Kaarela 1996]

In reality, the knowledge is shared between designers who have used or
seen similar solutions in the past. They unconsciously lend the higher level
knowledge from these solutions. This convenient way of communication
may fail in the case of exceptional designs, and will certainly fail if the
designer does not have enough background knowledge in the specific

4 Ideally, they would apply the black box principle by agreeing only on common
interfaces of interrelated parts, rather than on shared functionalities of these parts.
In practice, however, interdependencies seem unavoidable with physical systems.

31

domain. Design documents would have to be enhanced to capture as much
as possible of this knowledge.

PI-diagrams, even with control diagrams, fail to show the interactions
between different parts of the plant. Physical devices, automation, and the
users collaborate to achieve operations. Unfortunately, it is not clear from
many existing designs how the parts function as a whole [Rasmussen 1985].

2.2.4 Tool support

A large part of industrial design involves reuse [Korhonen 1991]. The most
common way to design a plant is to use an existing plant design as a basis.
Reuse first implies understanding an existing design and then making
modifications to it [Fischer et al. 1991], a task which needs to be aided by
higher level knowledge. Another activity that requires redesign is the
maintenance of a plant. Modifications are frequent at some plants, causing
much reverse engineering to understand the existing solutions before
making changes to them. As Årzen [1991] says, “lack of knowledge makes
it difficult and dangerous to modify the control system”.

Designers tend to concentrate on the normal behaviour of the plant.
Their task is usually to design the intended functionality, which may
obscure the possibilities of undesired behaviour. As a result, design and
documentation emphasise the normal state [Korhonen 1991, Ishack 1993].
In many cases, studies and simulations of problems are carried out during
design, but it is difficult to predict all possible mishaps in a plant. In
practical projects, simulation is usually too costly or too difficult, and some
problem cases are never anticipated. Plant users are therefore not always
well supported in handling a problem.

Most design tools are not able to capture conceptual level knowledge
[Johannsen & Alty 1991, Chandra 1992]. They cannot normally include
justifications, purposes, alternatives, or rationale behind the designs [Lee &
Lai 1991]. This is unfortunate, since this knowledge would be best available
at the time of design.5

2.2.5 Design knowledge

We conclude that current design documents, tools, and practices suffer from
poor knowledge level content. Lower level data are abundant; higher level
knowledge is often missing [Olsson 1993]. As we suggest in Papers III and
IV, many problems in plant design and subsequently in the use of the plants
seem to be due to this lack of knowledge. The lack has become apparent

5 Yet even with tool support it may be difficult to motivate designers to record for
other people the design knowledge that they do not themselves directly need. The
plant staff are not seen as their direct customers during the design process.

32

only recently, when computerised tools and formats have gained acceptance
in industry, and designs have been formalised.

At this point, we would like to to observe that despite the difficulties we
have discussed, plants are successfully built and run in industry. We believe,
however, that much of this success is owing to the humans’ capacity for
making sense of vague design knowledge. As more and more design tasks
are becoming computer-aided, problems that we have described start to
surface. The increasing complexity of plants with ever more strict
production, safety, and environmental requirements cause further problems.

Conklin & Yakemovic [1991] and Fischer et al. [1991] suggest several
practical reasons why design knowledge is not currently recorded or
transferred: no time is allocated for it in projects; documenting work may
disturb creativeness; designers are reluctant to document the “wrong turns”;
the amount of data can be unmanageable with the available tools; and much
of the successful expertise is tacit, to mention but a few. It may well be that
the greatest difficulties may lie in the organisation and culture (and perhaps
even in the nature) of plant design. However, we believe that proper tool
support could lessen these difficulties.

We now look at how problems caused by design combine with
problems caused by the plant’s operational processes and systems, leading
to difficulties for the plant staff.

2.3 PROBLEMS IN PLANT USE

The complexity of modern plants is evident in the work of operators, who
may have to supervise hundreds of subsystems consisting of tens of
thousands of components [Olsson 1993]. Most of these details are hidden
from the operator, who sees only a distanced view through the automation
[Ishack 1993]. However, the details surface as soon as there are
malfunctions that the automation cannot handle. To clear the trouble, the
operator must solve high level problems as well as carry out low level
manipulation.

The maintenance staff face similar requirements. A plant evolves
continuously; after the start-up phase improvements will be needed in
efficiency and quality [Paunonen 1995]. Not only do the maintainers need to
keep the plant in operation, but they also need to understand it well enough
to improve it. Although often seemingly local in scope, maintainer’s duties
nevertheless require an understanding of the plant as a whole.

The discussion in this chapter concentrates on the work of the operators
and maintainers, somewhat ignoring other groups, such as managers and
laboratory staff.

33

2.3.1 Tasks and tools

To understand the problems of the plant staff, we need to look at the tasks
they face and the tools they use.

MONITORING
TASKS

PLANNING
TASKS

CONTROLLING
TASKS

DISTURBANCE
MANAGEMENT

TASKS

Measuring

Monitoring

Data processing
Communicating

Scheduling

Optimizing
Goal

formulation

Predicting

Fault detection
Fault diagnosis

Fault correctionContinuous control

Sequential control

Figure 6. Categorisation of an operator’s main tasks in plants.

Lees [1974] has listed some of the tasks that operators carry out in plants.
Figure 6 classifies the tasks into four main categories. Traditionally, the
work of the operators is concentrated on the left hand side, in control and
data processing. Modern automation has moved the focus towards the right
side – they have become planners and disturbance managers [Sheridan et al.
1983].

Maintainers are mostly occupied with repair, fault avoidance, and fault
prediction. Their tasks tend to emphasise the right half of the figure. Two of
their primary occupations are not included in Lees’ list, however: preventive
maintenance and information seeking. They spend much of their time in
keeping the machinery in the plant in working condition, which in turn
mandates diagnosis and search for relevant information.

The concrete tasks can be seen as instances of more general information
processing tasks. The following list, gathered from several sources
[Sheridan 1988, Johannsen 1990, Stephanopoulos 1990, Årzen 1991, Leitch
& Gallanti 1992, Olsson 1993, Van de Ree 1994, Paunonen 1995],
identifies some of these general tasks:

♦ Information gathering

♦ Interpretation

♦ Analysis and evaluation

♦ Planning and prediction

34

♦ Optimisation

♦ Decision making

♦ Execution of control actions

♦ Monitoring

♦ Communication

♦ Learning

♦ Teaching

As we see, much of the work done in plants consists of information
processing. Plant automation is developing towards decision making
support for the organisation [Paunonen 1995]. The tools in plants should
support this development. In this thesis, we propose to apply explanations as
an important feature of decision support systems in plants.

Process

Automation

Support
systems

Process
variables

Actions
Sensor
readings

Actuator
settings

Figure 7. The three levels of systems in plant supervision.

Figure 7 shows a three-level model of the process supervision systems in
plants: the process, the automation, and the support systems [Stephens
1992]. Each level builds on the level below. The automation abstracts the
sensor readings it receives from the process into indicators that describe the
process variables. It also dispatches the operator’s commands into lower
level actions that directly affect the process devices. Support systems further
abstract the process variables into a diagnostic understanding of the state of
the process, and carry out optimising or recovery plans by suggesting
actions for the operator and the automation.

In the automation industry, the support systems are normally referred to
as “information” systems, as opposed to automation systems (although the
difference is diminishing). This emphasises their informational role.
Support systems are often seen as more active systems, with capabilities for

35

problem solving. In this thesis, the term “support system” is taken to
comprise both notions.

We now survey some of the problems found at each of the three levels:
processes, automation, and support systems.

2.3.2 Processes

The work of the plant staff is to a large extent driven by the events of the
process [Johannsen et al. 1983, Rytoft et al. 1990]. When the process is
running normally, the people spend much of their time in routine monitoring
and maintenance. When there are disturbances in the process, the operators
must bring it back under control, often in a hurry6. The source of the
disturbance needs to be quickly diagnosed and the maintainers may need to
do some repair before normal operation can be restored. Stassen et al.
[1988] point out that the operators are frequently underloaded, and
occasionally catastrophically overloaded.

The process-paced mode of operation requires humans to quickly grasp
the essence of complex situations and plan a set of correct actions to take.
To avoid overload, the people need clear mental models of the plant, and
must be able to search effectively for supporting information when needed
[Buck 1989]. With current systems, especially so with plant documentation,
this may be difficult. There is so much information and so many details that
help would be needed in navigating through the references.

The complexity of the plants would require that the relations, both
physical and logical, between process elements be made clear [Paunonen
1995]. To choose effective control strategies and plan actions people must
understand how systems interact [Broadbent et al. 1986, Norman 1988]. The
dependencies are often hidden in the process, which causes much work in
plants to if one is to understand the process events. Processes should be
made more transparent [Olsson 1993].

Figure 8 illustrates the lack of transparency. It shows a simplified
process and instrumentation diagram of a gas system we studied in the
Cicero project at CERN. This graphical description does not make it clear
that the gas pressure in the main loop is to a large degree controlled by the
vent valve at the right side of the diagram. This dependency is explained in
the associated documentation [Peach 1994], but cannot be understood from
the diagram alone. Additional information is needed.

6 Perhaps the most lively description of the nature of this work was given by
airline pilots and nuclear plant operators, who are said to refer to their work as
‘hours of boredom punctuated by moments of terror’ [Sheridan et al. 1983].

36

p1

p2 p3

p4

p5p6

p7p8

p9

p10
p11

p12p13

 p14

p15

p16

p17

p18

p19p20

p21

p23

p24

p25
p26

p27

p28

p29 p32

p30

p31

p33

p34

p35

p36

p37

PReg1

V1 V2

V3
V4

Filter1

Chamber1

S1

V5 V6

S2

S3

S4

Ctrl1 V7 Compressor1

S5

S6S7S8

Preg3

Preg2

S9

V8

Mixer1

S14

S13

S12

Preg6

S15

S11S10 Ctrl2 Ctrl3

Preg4 Preg5 S16

Controller

P: 0...10 mbar

return flow

P > 3 mbar!

% ethane P >> xxx !

P < -3 mbar!

P: 0...400 mbar

ControllerController

P:0-400 mbar

% argon % ethane

ppm H2O

ppm O2

% ethane

> 80% !

P atmosphere

Argon 5 bar
supply line

Ethane 5 bar
supply line

Argon purge line
8 mbar

Mixture purge line

Fresh
gas
line

VENT

10 mbar
line Exit gas line

Purge
exit
line

F
ilt

er
ed

 1
0

m
ba

r
lin

e

1 P chamber
of 1 octant

High P line

Feed line Return line

0.4 u filter

Detector
ventilation

Bypass
valves

Compressors

T atmosphere

Figure 8. A simplified version of a gas system used at CERN.

The occasional malfunctions of the sensors that describe the processes add a
further source of complexity [Rowan 1989]. In addition to dealing with the
huge volume of data and internal dependencies, people must all the time
suspect the information they receive to detect possible sensor faults.

There is also complexity in the behaviour of the processes. For instance,
batch processes are always in a transient state [Keränen et al. 1988]. Many
processes exhibit time delays to the order of hours, or even days [Hoc
1989]. To understand the dynamics of such processes, an operator should
follow the process over long periods. This may not be possible in usual shift
work, where new people take over the supervision after every eight hours or
so. Process history databases contain valuable information of the past
process states, but this information is not always made properly available to
the operators [Årzen 1991].

Ideally, work would be directed by the goals of the plant [Kaarela
1996]. Each plant has a set of ideals that the operations aim at, such as

37

production, economy, environment, and safety goals. The processes are to
be driven in such a way as to achieve these goals. In reality, not all goals
may be reached simultaneously, and the staff have to find a suitable
compromise between the goals.

Unfortunately, the goals of the plant are seldom made explicit to the
people running it [Olsson 1993]. Consider the following passage from
Mould’s [1988] reconstruction of events in the control room of Unit
Number 4 at the Chernobyl nuclear power plant, on the night of 25 April
1986:

“01:22.30 - The operator looks at a printout of the parameters of the
reactor system. These are such that the operator is required in the
written rules to immediately shut down the reactor, since there is no
automatic shutdown linked to this forbidden situation. The operator
continues with the experiment (major fault no. 5 and the most serious
one). Computer modelling has shown that the number of control rods
in the reactor core were now only six, seven or eight, which represents
less than half the design safety minimum of fifteen, and less than one-
quarter the minimum number of thirty control rods given in the
operator’s instruction manual.”

Within a minute this violation of safety goals, combined with several other
mistakes, led to a power surge in the nuclear reactor and a thermal
explosion in its fuel channels. The results are well remembered.

Could this accident have been prevented with better information
systems? Medvedev [1991] suspects that the main reason for the accident
was in fact mischievous management that forced the operators (despite their
doubts) to ignore all safety regulations. On the basis of Medvedev’s
account, it could be reasoned that in this controversial situation the
operators could not fully comprehend the state of the reactor, and acted
upon faulty mental models. Since all the safety systems had been disabled,
the situation got out of hand.

One can speculate that a better understanding of the safety goals and the
state of the reactor could have helped. This information was offered through
the automation and documents, but was ignored. In the rather fantastic case,
the support systems should have detected the staff’s faulty thinking and
persuaded them to abandon their plan by explaining the possible
consequences.

2.3.3 Automation

Modern automation is well able to manage the normal operation of plants.
The operator is usually only needed in abnormal situations, when the
automation can no longer cope with a disturbance. The operator has become
a supervisor, who follows the process through the automation. The

38

manipulation of the process devices is largely becoming trusted to the
automated sequences. However, there is currently less help to analyse the
abundance of sensor data [Årzen 1991, Olsson 1993]. The data storage
capabilities of modern plants are mainly used for low level displays and
routine trends [Van de Ree 1994].

When problems arise, the operator’s supervisory task changes into crisis
management [Stassen et al. 1988]. This is a fundamental change, requiring
different kinds of tools from those used in normal supervision. The
quickening pace of production changes in modern plants has a similar
effect, creating frequent little crises to be resolved. As a whole, it would be
desirable that automation gave better help in managing changes.

A fundamental irony of automation [Bainbridge 1983] is that it tries to
free the operator from knowing the exact low-level details of the process.
Unfortunately, when there is a malfunction, the automation fails to operate
as designed, and the operator must investigate precisely those low-level
details that were obscured by the automation7. It is no surprise that in such
cases there will be difficulties, since the details are not known to the
operators. Normally the maintenance staff take over detailed problem
tracing, but their situation is not much different. They often have several
process areas to maintain, and many individual systems are likely to remain
unknown until problems appear.

At any large plant there are bound to be several errors in the
implementation (and design) of the automation. These errors show up in the
use of the plant, often only in exceptional situations, adding new
complications to be solved. The following example shows a minor but
irritating problem in a power plant: an alarm that cannot be dismissed.

Alarm "Flue gas fan bearing fan started by protection" results when
the flue gas fan is stopped by a sequence program. The program also
stops the bearing fan, which causes the bearing temperature to rise
over the safety limit. This in turn forces the bearing fan to restart and
raises the above alarm. When the flue gas fan is restarted, everything
is normal, except that the alarm stays on. It cannot be dismissed,
because that would require stopping the bearing fan, which (for some
mysterious reason) is impossible when the flue gas fan is running.

The operators we interviewed at the plant considered such minor design
errors to be very irritating. Even though most errors presented no real
problem to the operation of the plant, they were said to cause much
additional work. Moreover, the operators were frustrated by the functions
they knew to be defective, but yet had to live with.

7 A prime example is automation logic, as studied in Paper VIII and Chapter 6.

39

Sometimes the automation may mask device problems [Bainbridge
1983]. For instance, a drifting sensor may be hidden behind a control loop
that compensates for the drift, until it starts to affect the process seriously.

When a critical event takes place, it can often only be inspected
afterwards, when the original situation may have already passed. Process
histories are then needed to reconstruct events. This is sometimes difficult
due to the immense amount of logged data (or quite often, the lack of it).
Relevant data for the situation should be brought forward and events
replayed, suppressing unnecessary details in the histories.

As with the processes, the documentation concerning the automation
tends to be spread out in several places and systems. There is still little
support for cross-navigation between the systems, even though today the
documentation is becoming available in an electronic form. The plant staff
must therefore resort to their memory and manual search for finding
information. At times, this is too difficult and the information remains
unfound8. This may lead to assumptions and even wild guesses, which will
lead to non-optimal performance in operating the plant.

The interactions of the various parts of the automation are sometimes
unclear. The same problem is evident at the process level. Even though the
connections between the systems may be documented in control or logic
diagrams, the behaviour of the systems remains opaque. Support would be
needed to explain these interactions [Paunonen 1995, Broadbent et al.
1986]. This is particularly evident in maintenance, where modifications may
introduce undesired side effects, if the interactions are not understood
[Fischer et al. 1991]. Maintainers spend much of their time reverse
engineering existing solutions to be able to make modifications [Barman
1992]. This task should be helped.

2.3.4 Support systems

Support systems enhance the capabilities of automation by offering higher-
level information to humans. They are used for help in monitoring,
diagnosis, planning, interpretation, prediction, control, repair, instruction,
and information management tasks [Buck 1989, Johannsen & Alty 1991,
Årzen 1991, Oxman 1993, Durkin 1996]. Some of those systems apply
knowledge-based techniques to achieve performance comparable to human
experts in some limited areas. Knowledge-based support systems are the
main focus of our treatment, although useful systems are created with other
techniques as well.

The Tiger system [Milne et al. 1996] is a good example of a knowledge-
based plant support system. It is used in a chemical plant for condition

8 A power plant operator we interviewed explained that there were three ways to
deal with an unknown alarm: either to ignore it (!), to ask for advice from other
people, or (as a last resort) to inspect the manuals.

40

monitoring of a gas turbine that is the most vital component in an ethylene
process. The system gives model-based advice on the current and predicted
performance of the turbine in terms of diagnostic displays, trends, and on-
line documentation. In problem cases, it can isolate faults in the process to
the component that caused the original failure. A rich set of techniques have
been applied, including alarm filtering, logic explanation, root cause
diagnosis, causal graphs, qualitative simulation, and hypertext. The key
benefit of Tiger is said to be its availability: “It acts as a gas turbine
engineer monitoring system every second, 24 hours a day, every day of the
year” [Milne et al. 1996].

A support system oversees the processes and automation, much like the
operator, although from a more limited scope. It should be able to explain
these two levels (Figure 9). In fact, a support system becomes another
potential source of confusion, so it should also be able to explain itself.

Support
system

Explanation
on the plant

Explanation
on the

automation

Explanation
on the

support
system

Figure 9. A support system should explain the other levels and even itself.

A central issue with support systems is their scope. Most successful
knowledge-based systems function in very limited domains [Winston 1993].
As a result, most systems fail to treat topics that are outside the scope of
their knowledge. Unfortunately, it is hard for humans to know when a
question is within the scope of a system. The system should be able to
describe its own limits [Wexelblat 1989, Buck 1989]. This would help
humans estimate the kinds of results that can realistically be expected from
a system.

Trust is another important issue with support systems. Industrial users
are eager to abandon a support system the first time it produces an
erroneous answer. Curiously, if a human expert makes a mistake, it is
tolerated much better. Humans appear to trust other humans more easily

41

than machines9. A support system is useless if humans do not trust it, and
therefore it must try to earn their trust [Berry 1995]. However, excessive
trust and computer mysticism can be dangerous [Sheridan et al. 1983].

One way a system could earn trust is to justify its own results. Humans
may want to know how the results were obtained; what data they were
based on; where the knowledge for the derivation of results came from.
These justifications can be used to evaluate the utility of the answers, or to
discover deficiencies in the system’s knowledge bases. In certain cases the
system may give correct results, but the human using the system has
different (possibly wrong) opinions about the results’ validity. In such
cases, the system could try to persuade the human to reconsider the
problem.

Every knowledge-based system has some built-in strategy for reasoning
that may be of interest to humans. When a system poses questions to the
users, they generally want to know the reason why the question was asked.
Knowing the system’s strategy for finding and deriving information can
much relieve the frustration of a human subject. Likewise, the actions of a
fully autonomous system become understandable when it explains the
strategy behind its actions. [Clancey 1983, Hasling et al. 1984]

The internals of the support system should be made visible to the users
to a certain degree, to lessen the black box problem. A model of the support
systems’ functions should be offered, making connections, data and
knowledge flows visible. [Buck 1989]

The different backgrounds of the different users should also be
acknowledged. Paris [1987] has pointed out that the type of support given
may have to vary in the amount of detail and in the type of content
depending on the user. The system should maintain a user model, to
understand the user’s knowledge and intentions. This would help the system
to give more directed answers and reduce irrelevant detail. Kobsa &
Wahlster [1989] have covered many aspects of user modelling in dialogue
systems.

The interaction should be made as natural as possible. Many systems
that deal with knowledge-based concepts tend to use a question-answer kind
of dialogue. However, a question-answer dialogue may not be optimal in
plants. The medium of the dialogue may have to vary from natural language
text to three-dimensional graphics, depending on the users’ background.
The maintenance of dialogue should be given special care in the case of
advice-giving systems [Cawsey 1992].

9 This is evidenced, for instance, in the common fear of autopilots. Most people
(including the author of this thesis) would not board an aeroplane that flies
without a human pilot, although it is well known that humans make mistakes
easily. However, humans are clever in recovering from their own faults and in
finding explanations for their errors, but machines are not. Perhaps this adds to the
mistrust towards machines?

42

2.4 REQUIREMENTS FOR EXPLANATION

Explanation in general has many possible uses [Buchanan & Shortliffe
1984, Buck 1989, Wick & Slagle 1989, Wexelblat 1989, Berry 1995]. We
summarise the potential uses as follows:

♦ Clarification. The actions taken by a system can be mysterious if the
users do not know its internals. If the system can explain its actions, the
users can more easily see the connection between the system’s inputs
and outputs. For instance, an alarm at the output of a control logic is due
to some events in the inputs that the logic should be able to explain.

♦ Justification. Users of a technical system may be able to trust the system
better if they know the kinds of design decisions that underlie the
system’s technical solutions. For instance, a quality indicator in a paper
plant is more understandable if the details of the calculation for the
indicator are known. This adds to the users’ confidence, which may help
them to accept the system.

♦ Persuasion. When there is a mismatch between the users’ expectations
and the results given by a system, the users do not know whether to trust
the system or their own judgement. If the system can be shown to
function correctly, explanation can convince the users to question their
own views.

♦ Validation. If a system misbehaves, explanations can act as a debugging
facility to find the source of problems.

♦ Education. An explanation facility can tutor the users about a system,
offering on-the-spot help, definitions for terms, and detection of
misunderstandings.

♦ Visualisation. Explanations can transform complex structures into more
understandable ones, for instance by demonstrating the functions of a
system through graphical means. The dynamic behaviour of many
systems is best explained by animation.

♦ Abstraction. The complex behaviour of a system is easier to
comprehend through proper data abstraction techniques. Explanation can
show the flows of data in a system to reduce the apparent complexity.

♦ Demystifying. Often people do not know the limitations of systems, and
may expect too much from them. Explanations can make these
limitations clear, helping to lower the expectations.

Comparing the listed possibilities against the previously discussed
difficulties in plant design and use, we conclude that explanation has the
potential to help eliminate the difficulties.

From the discussion in this chapter we abstract the following key
requirements for explanation in plants (Table 1):

43

Table 1. Key requirements for explanation in plants.

Requirement Justification Discussed in:
Make design knowledge
(design choices, alterna-
tives, tradeoffs, and justifi-
cations) available at plants.

Knowing the rationale behind
designs is necessary for opera-
tion and maintenance.

Section 2.2,
Chapter 5, Paper
IV

Enhance design tools and
documents to capture the
tacit design knowledge.

Design knowledge is best
available at design time. With-
out tool support it will not be
collected.

Section 2.1,
Chapter 5, Pa-
pers III and V

Clarify complex things by
visualising interdependen-
cies between items and by
hiding excess details
where they are not needed.

Two fundamental strategies to
manage complexity are show-
ing connections between things
and abstracting away details.10

Sections 2.2, 4.3
- 4.6, Chapter 6,
Papers VII and
VIII

Offer proper mental mod-
els.

If mental models are not of-
fered, users may invent their
own, faulty models.

Section 1.2, 2.2,
Papers IV and VI

Make goals and functions
of plant items clear.

Knowing the role of things as a
part of a whole gives them a
meaning.

Section 2.2,
Chapters 4 and
5, Papers III, IV,
and V

Help search for relevant
documentation.

Finding the right information
can be very difficult with man-
ual search, especially in critical
situations.

Section 2.2 and
Chapter 7, Pa-
pers II, III, and
IV

Explain the behaviour of
things by diagnosing and
replaying events.

It is hard to analyse time-de-
pendent events afterwards,
when the causal chains are no
longer apparent.

Section 2.2 and
Chapter 6, Paper
VIII

In support systems, explain
the reasoning and the
strategies behind the rea-
soning.

Explanation helps to earn the
trust of the users and to reveal
the scope of the systems.

Section 2.2, Pa-
pers I and II

Facilitate natural interac-
tion with support systems.

Cumbersome systems will not
be used in industrial settings
where people have little com-
puter experience.

Section 2.2 and
Chapter 7, Pa-
pers I, II, IV, VI
and VIII

10 Rasmussen [1985] notes that “The only way to cope with control systems that
are complex in terms of large numbers of information sources and devices for
basic control actions is to structure the situation and thereby transfer the problem
to a level with less resolution”.

44

The “Justification” column of the table forms a conclusion to this chapter. It
lists the essential problems that we have found in plants. The listed key
requirements have guided the development of the explanatory concepts and
mechanisms presented in this thesis.

The following chapters will show how the listed requirements have
been met.

45

3 A FRAMEWORK FOR EXPLAINING
PLANT KNOWLEDGE

In the previous chapter, we pointed out a number of problems in plant
design and use, and suggested ways that explanation could be used to help
in eliminating the problems. On the basis of this study we now define a
framework for explanations in the plant domain.

The framework has been devised as a synthesis of the problem studies
in Chapter 2, of the explanatory concepts and mechanisms in Chapters 4 to
7, and of the related research in Chapter 8. It is a tool that structures the
various ideas and prototypes of this thesis into a common representation.
Since our research has produced a wide variety of explanation types by
using multiple modelling techniques, an intermediate concept is helpful to
understand the relations between the types and the models. We therefore
introduce the notion of generic explanation tasks for this aim.

The framework will be used as a map in each of the Chapters 4 to 7 to
put the material in these chapters into a larger context. However, the
framework is sufficiently general to find uses beyond this thesis. It could be
used, for instance, as a guide in support system construction to see what
kinds of explanations would be potentially needed.

Depicted in Figure 10, the framework consists of:

♦ A typology of explanations

♦ Generic tasks to produce the explanations

♦ Models that act as the input for the generic tasks

In addition, explanation mechanisms are needed to implement the tasks.
They take the models as their input and produce various types of
explanations as their outputs. A task may use several models and produce
many kinds of explanations. In the figure, these multiple possibilities are
illustrated with the arrows.

This chapter introduces the typology and the generic explanation tasks,
while Chapters 4 - 7 and the included papers detail the modelling methods
and the mechanisms that are used to implement the generic explanation
tasks in a number of prototype systems.

46

Explanation
types

Tasks

Models

FunctionalBehaviouralStructural Teleological

Model
clarification

Abstraction

Justification
of reasoning

Document
navigation

Design
recovery

Behavioural
diagnosis

Factual

Functional

Strategic

Processes Automation Support
systems

Figure 10. A framework for model-based explanation.

3.1 A TYPOLOGY OF EXPLANATION

The key requirements for explanation that were proposed in Table 1 can be
detailed by defining the different types of explanations that are encountered
in the plant domain.

We choose to classify explanations in two ways: according to the class
of knowledge they explain and the target of the explanation (plant
processes, automation, or support systems). For this study, we integrate the
various phases of the design process into its end results. The classification
hence assumes an end-user-oriented view. This is a meaningful assumption,
because in plants explanations will be offered to end users through the
support systems. Those systems are the medium for talking about the other
targets, in addition to talking about themselves.

The other dimension is the class of the knowledge explained. As
Chandrasekaran and Swartout [1991] note, “Each type of explicit
knowledge makes specific kinds of explanation possible”. In this thesis, we
recognise the following types: factual knowledge (what is known about

47

things), functional knowledge (how things work), and strategic knowledge
(why things work the way they do).

Table 2. A typology of explanations for the plant domain.

 Explanation
 target

Knowledge
class

Processes

(Device level)

Automation

(Information
level)

Support systems

(Knowledge level)

Factual
knowledge

(What is known
about things?)

♦ Devices,
systems

♦ Properties

♦ Concepts

♦ Connections

♦ Relationships

♦ Displays

♦ Databases

♦ Controls

♦ Symbols

♦ Diagrams

♦ I/O mappings

♦ Objects

♦ Properties

♦ Relations

♦ Sources of
knowledge

Functional
knowledge

(How do things
work?)

♦ Energy/matter
flows

♦ Balances

♦ Physical
functions

♦ Trends

♦ Process
dynamics

♦ Information
flows

♦ Loops, alarms,
interlocks

♦ Interactions

♦ State behaviour

♦ Histories

♦ Chains of
reasoning

♦ Decisions

♦ Justifications

Strategic
knowledge

(Why do things
work the way they
do?)

♦ Operation
modes

♦ Process goals

♦ Process design

♦ Operation
scenarios

♦ Control
schemes

♦ Automation
goals

♦ Automation
design

♦ Control of
reasoning

♦ Reasons for
questions or
inference

The matrix presented in Table 2 illustrates the classification. The first row
includes explanations that describe the logical and physical things that are
found in plants. The descriptions may include information about the
properties of things, and the dependencies and relationships between them.
The existence and meaning of things, as well as the scope of the models, are
potential candidates for explanation.

Table 3 shows some examples of possible questions that might arise in
plants as regards factual knowledge.

48

Table 3. Example questions concerning factual knowledge.

Processes Automation Support systems
♦ What is this box?

♦ What is the oil tem-
perature?

♦ What does entropy
really mean?

♦ Where does this pipe
go to?

♦ What are the main
parts of a generator?

♦ What kinds of bear-
ings are there?

♦ Who uses this limit
switch?

♦ Where is this power
unit documented?

♦ Are there any alarms
for these measure-
ments?

♦ How many PID con-
trollers are there?

♦ What’s the meaning
of this signal?

♦ What faults are re-
lated to overheating?

♦ Are there any unfin-
ished analyses?

♦ What agents use this
measurement?

♦ Who wrote this rule?

♦ What is known about
bearings?

The explanations for the second row cover the flows of matter, energy or
information in systems. The transformations that affect these flows are
explained, together with the behaviour of the systems in past and present
states. The ways in which knowledge is processed into decisions are
clarified. Some possible questions of this kind are listed in Table 4.

Table 4. Example questions concerning functional knowledge.

Processes Automation Support systems
♦ How does the gas

pressure affect its
temperature?

♦ Why does this flow
decrease when I turn
on the pump?

♦ Tell me how the
water goes round in
the process.

♦ Have there been any
significant changes
in the ambient tem-
perature?

♦ Where is this set-
point given?

♦ How does this con-
trol loop stabilise the
tank level?

♦ Where does this
alarm come from?

♦ What would happen
if I turned this
switch?

♦ Why does this motor
not start?

♦ How was it decided
that the bearing is
faulty?

♦ Why cannot the out-
put power be calcu-
lated?

♦ Where did these in-
put data come from?

♦ What rules were
triggered for this
pressure sensor?

♦ Tell me more about
this result.

The third row makes clear the reasons the systems behave as they do. The
control, operation, and reasoning schemes are laid out. The teleological
purposes, goals, and reasons for the existence of things are clarified. The
rationale for design choices as well as the history of the design process are
explained. Possible questions include (Table 5):

49

Table 5. Example questions concerning strategic knowledge.

Processes Automation Support systems
♦ Why does the proc-

ess stop after five
seconds if there’s no
water?

♦ Why are there two
pumps in parallel?

♦ Why should I purge
the chambers?

♦ How is water re-
moved from the cir-
cuit?

♦ Why is this pressure
control set to 10
mbars?

♦ What is the purpose
of this interlock?

♦ How did the system
get into this situa-
tion?

♦ How does one make
the system ready for
the transition?

♦ Why are these con-
trols separated?

♦ Why am I asked this
question?

♦ What happens after
frequency analysis?

♦ What is this com-
puter doing?

♦ Can I do spectral
analysis now?

♦ How does the system
find the original
fault?

This classification encompasses most explanation types that are given by
support systems used in the industry and some potentially new types. In
Chapters 4 to 7 we demonstrate specific solutions for realising explanations
of many of these types.

3.2 GENERIC EXPLANATION TASKS

The proposed explanation types can be realised in a number of ways. We
call them generic explanation tasks, which is an application of the generic
task concept defined by Chandrasekaran [1986]. We have studied these
tasks within the plant domain, although the tasks could be adapted into
other domains.

Each task assumes a different approach to explanation. The approach
depends on the problem to be solved by explanation and the kinds of
knowledge to be explained.

Figure 11 illustrates the generic explanation tasks with relation to the
plant design and use phases discussed in the previous chapter (cf. Figure 4).

Design recovery
Explanation techniques can be used to communicate the design knowledge
that is currently lost in many design projects. By raising the abstraction level
of design documents to better cover the semantics of the designs, it becomes
possible to construct knowledge-based models of the designed artifact as
well as of the design process. Support systems can then explain these
models to humans. Design choices, rationale, alternatives, and criteria can

50

all be clarified, provided that the models are designed to capture this
knowledge. Design tools would have to be enhanced to support this
knowledge acquisition, since with current tools and design practices much
of this knowledge is lost. Plant operators, maintainers, and designers would
all benefit, as much of their work involves reverse engineering of existing
solutions in plants.

Design Use

Designer

Knowledge
engineer

Process

Automation

Support systems

Maintenance
staff

Design
knowledge

Models

Designer
Other
staff

Building
designMachine

design

Process
design

Automation
design

Documents

Operators

Abstraction

Justification
of reasoning

Document
navigation

Model
clarification

Design
recovery

Behavioural
diagnosis

Figure 11. Generic explanation tasks in plant design and use.

Abstraction
Explanations can be used to reduce the complexity apparent to plant users.
The various interdependencies in the systems can be demonstrated through
explaining how individual parts are combined to function as a whole. Both
physical decomposition (part/subpart) and functional decomposition
(goal/function/device) dimensions are valuable to the users. In critical
situations, details can be suppressed and only data relevant to the situation
offered. The users can choose the level of detail that they desire.

51

Model clarification
Explanation techniques can be used to make the support systems’
capabilities clear. The various items in the models can be explained: objects,
properties, taxonomies, relations, constraints, and rules, among others. The
model contents can be made active, capable of explaining themselves. This
helps the users to understand the scope of the systems, demystifying them.
This will also help knowledge engineers to analyse the contents of the
knowledge bases.

Document navigation
Explanations can be used as an active index for the plant knowledge. They
can be dynamically shaped into hyperdocuments, complementing the more
static documents that come from the design process. The users’ search for
relevant documentation can be aided by systems that have a model of the
documentation contents and knowledge of the search context. The users can
be guided more directly towards relevant documents in the huge mass of
information present in plants. Models can aid navigation between the
documents.

Behavioural diagnosis
Explanations can demonstrate how processes behave and how controls
work. The unfolding of events over time can be illustrated by selective
replay, if proper data histories are available. The details of the automation
can be abstracted or made clear to the smallest bit, depending on the desired
level of detail. The strategies of control sequences and plant designs can be
clarified to the users. All this helps them to understand why things happen.
This understanding will help the plant staff to diagnose events and to plan
the correct actions to take.

Justification of reasoning
Explanations can show how an expert system created its results. Even
support systems implemented in traditional techniques can be analysed in
terms of their problem solving methods. This helps to clarify both the
knowledge contained in the system and the ways that this knowledge is used
to process inputs to outputs. By understanding how a system creates its
outputs, its users become more convinced that the results are correct.
Alternatively, they may disagree with the system with greater confidence.

3.3 TASK FEATURES

Chandrasekaran [1986] states that a generic task can be defined in terms of
its main features: the task specification, the form of knowledge, the
organisation of knowledge, and the control regime. Table 6 details the

52

features of the generic explanation tasks that have been explored in this
thesis.

Table 6. Features of the generic explanation tasks in this thesis.

Task Specification Form of
knowledge

Organisation
of
knowledge

Control
regime

Design
recovery

Communicate
design knowl-
edge to users
& designers

Design knowl-
edge about
the artifact,
the design
process &
design history

Product struc-
tures, design
procedures &
decision
rationale

Replay of
design
processes,
search for
design ra-
tionale

Abstraction Help people to
cope with
complex
information
spaces

Multilevel
structural &
teleological
decomposition
of domain
items

Part-whole &
means-end
networks

Navigation &
knowledge
derivation
over levels of
abstraction

Model
clarification

Make system
contents and
capabilities
more
transparent

Objects,
properties,
relations, rules

Semantic net-
works of ex-
plainable
objects

Queries &
search over
the networks

Document
navigation

Retrieval of
information
relevant to the
context

Static and dy-
namically cre-
ated pieces of
information
and links
connecting
them

Contexted
hypertext with
indexes,
semantic
networks

Browsing,
queries &
search over
hyperlinks

Behavioural
diagnosis

Diagnose how
things work

Causal, struc-
tural & func-
tional depend-
encies of
domain items

Causal
networks,
finite state
machines

Backward
chaining from
events to
causes &
forward
simulation

Justification
of
reasoning

Give rationale
behind the
expert
system’s
results

Problem
solving
methods &
strategies &
domain
models

Tasks/agents,
traces,
explainable
objects, con-
text

Backtracking
through tasks
from results to
inputs

53

The list of the tasks is not exhaustive. Other approaches to explanation have
been discussed in Chapter 8. At least the following aspects found in
explanation research could potentially be regarded as generic explanation
tasks:

♦ Explanatory tutoring

♦ Critiquing systems

♦ Explanation as storytelling

♦ Explanation as automated program writing

♦ Visualisation

♦ User understanding

♦ Agent-based help systems

♦ Commonsense understanding of the world

♦ Conversational repair of misconceptions

Other tasks could be found. However, the tasks listed in Table 6 are the
most relevant as regards the work reported in this thesis.

Many of the listed tasks can be implemented in terms of other generic
tasks. For instance, “behavioural diagnosis” could use the “hierarchical
classification” and “abductive assembly” tasks defined by Chandrasekaran
[1986].

3.4 MODELS FOR EXPLANATION

We advocate the use of models throughout the whole explanation creation
process. To create the explanations of the listed types, the generic
explanation tasks take the models as input. The techniques we propose for
explanation are model-based.

We presume that many problems in explanation creation are reducible
to the problem of finding suitable modelling techniques. The models
produced should be usable by the listed generic tasks to cover the
explanation types of Table 2, that is, the various classes of knowledge for
each explanation target. The contents of the models should be obtained from
design, where possible.

54

Design
systems

Automation
systems

Operator support
systems

Figure 12. The use of the same conceptual model for all design phases.

The same conceptual model should be ideally shared in all phases of the
plant lifecycle – from design to implementation to use and maintenance.
Figure 12 illustrates this point. A semantic network that serves as the
conceptual model is first created in the design, then stored in object
databases in the automation, and finally communicated to the users through
hypermedia. The similar interlinked nature of the conceptual model, the
object databases, and the hypermedia nodes is believed to facilitate
knowledge transfer from the designers to the users [Norman 1983].

In this thesis, we recognise four different kinds of knowledge-based
models [Kaindl 1994, Franke 1991]:

♦ Structural, describing how things are connected physically or
topologically;

♦ Behavioural, describing how things evolve through a series of
states;

♦ Functional, describing how things are transformed into other
things; and

♦ Teleological, describing the intended purposes of things.

A wide variety of different models have been reported in the literature.
Kaindl [1994] surveys several different kinds of models used in artificial
intelligence and software engineering. A range of different user-oriented
models can be found in the field of human-computer interface studies
[Helander 1988]. We view the four models above as the most relevant for
this thesis.

There is general unclarity in the field of artificial intelligence about the
definition of functional models. Many researchers refer to knowledge of
purpose as “functional” [Tanner & Keuneke 1991], while others [Franke
1991] use both terms “teleological” and “functional” for such knowledge.
We view functional models to express knowledge of flows or causality, and
teleological models to express knowledge of purpose.

55

In model-based explanation, three points must be considered:

(1) how the models are created (modelling),

(2) what models are needed (representation), and

(3) how the models are shown (presentation).

The following four chapters are devoted to illustrating various mechanisms
for implement generic tasks. In Chapters 4 to 6, we take a knowledge
representation view to elaborate points (1) and (2), while point (3) is
targeted in Chapter 7 from an interaction viewpoint.

Each of the four chapters covers parts of the framework. The relation of
the chapter to the framework is illustrated in the beginning of each chapter.
Chapter 4 introduces the essential modelling concepts: explainable objects
and means-end models. Chapter 5 builds on these concepts by explaining
design knowledge stored in the models. Chapter 6 applies explainable
objects into explaining the behaviour of automation. Chapter 7 studies more
closely the necessary interaction techniques based on hypertext.

56

4 EXPLANATION AS OBJECT
MODELLING

Generic explanation tasks need models as inputs for creating explanations.
As depicted in Figure 13, this chapter concentrates on modelling methods
that are useful for the “Model clarification”, “Justification of reasoning”,
and “Abstraction” tasks of the framework presented in the previous chapter.

Explanation
types

Tasks

Models

FunctionalBehaviouralStructural Teleological

Model
clarification

Abstraction

Justification
of reasoning

Document
navigation

Design
recovery

Behavioural
diagnosis

Factual

Functional

Strategic

Processes Automation Support
systems

Figure 13. This chapter studies ways to implement the three tasks:
Model clarification, Abstraction, and Justification of reasoning.

This chapter first introduces the concept of explainable objects for model
clarification in Section 4.1. The VICE system makes the concept concrete in
Section 4.2, using explainable tasks. They are a subclass of explainable
objects capable of explaining their reasoning. Section 4.3 discusses relations
between objects as an important part of explanatory models. A particular
kind of relational model, the means-end model, is introduced in Section 4.4.
Section 4.5 describes the extensions of means-end modelling that we
propose for abstraction, resulting in the notion of contribution models.

57

4.1 EXPLAINABLE OBJECTS

Of the possible representation methods available in knowledge engineering
[Garcia & Chien 1991], we have chosen object-oriented representations
[Meyer 1988, Rumbaugh et al. 1991] as the basis for explanations. We use
objects to implement models that capture semantic knowledge at an
epistemological level. The models are, in essence, semantic networks
[Nilsson 1982] that are implemented with object languages. There are
sufficient grounds to this choice:

♦ Much of the available data about plants comes naturally in the form
of objects (both physical and logical) and the relations between
them [Rowan 1989, Gilbert & Wilhelm 1993, Korhonen 1991].

♦ It seems natural for humans to deal with computer representations
of objects, as evidenced by the popularity of direct manipulation in
human-computer interfaces [Schneiderman 1987] and object-based
languages in programming [Rumbaugh et al. 1991].

♦ Objects in knowledge bases are close to human thinking [Hughes
1991], which should decrease the number of transformations from
data to explanations.

♦ Objects can be made active, containing not only data but also
procedures that reason on and explain the data.

♦ Often an object is the best expert concerning itself.11

Other representations, for instance predicate logic [Kowalski 1979], could
be justified. From the implementation and maintenance points of view,
however, it makes sense to select a representation that is well known in the
domain. Most software systems in today’s plants have been designed by
conventional programming techniques, but there is a tendency towards
object orientation [Gilbert & Wilhelm 1993]. Objects will therefore be
natural to many people who design support systems [Årzen 1991], much
more so than predicate logic or rule-based systems.

Many knowledge engineering tools today are hybrid systems,
incorporating several paradigms [Hayes-Roth & Jacobstein 1994]. Most of
these tools offer objects as the central way of organising knowledge. It is
safe to base representations on objects, since it is or will be available in

11 Often but not always. An external observer is sometimes necessary. In the real
world, people resort to the help of experts (doctors, psychiatrists, and spouses) to
understand themselves. An external observer can see beyond the local scope of the
object, which is necessary for understanding [Card 1992].

58

many tools12. The emergence of object-oriented databases further
emphasises this point [Kim 1990, Hughes 1991].

We propose to base explanations on the notion of explainable objects.
They are objects that can offer explanations about themselves. Each object
that is visible to users should be able to construct a local explanation of its
own properties, of the relations that the object has with other objects, or
maybe even of the design process that lead to its birth. The explanations
should be accessible through a number of predefined methods. The methods
should either return the explanations in a structured form to allow further
processing or to directly dump the explanations in output devices (Figure
14).

Explainable object
TANK-15

Explain-properties! Explain-strategy!

�3523(57,(6
�7$1.��� LQ):�6<67(0!
�&3&,7< �����
�&217$,1('�68%67$1&(
:$7(5�
�0$7(5,$/
67$,1/(66�67((/��

"Tank 15 is a tank in the
feedwater system. Its capacity
is 2500 litres, it contains water,
and it is made of stainless steel."

Explainable task
REVISION-ANALYSIS
�3523(57,(6
�5(9,6,21�1/<6,6 LQ7$6.6!
�675$7(*< ��7$6.! � DQDO\VHV WKH
RXWDJH KLVWRU\ RI WKH PDFKLQH LQ RUGHU
WR ILQG W\SLFDO IDXOWV�����

"Revision analysis analyses the
outage history of the machine in
order to find typical faults."

Figure 14. Two explainable objects.

The notion of explainable objects facilitates the distribution of explanatory
duties. It obeys the principle of locality: each object knows only itself and
its neighbours. This principle is known in the software engineering
community as one of the main benefits of object orientation [Meyer 1988].
It increases the modularity of systems, minimising the surface area between
the systems’ parts. We invite this benefit to help in organising explanations
in knowledge bases.

Another important feature of the approach is the inheritance of
properties and methods through class relations. This feature can be used to
advantage in explanation specification: a subclass may reuse the
explanations from its superclass. In case the semantics of a class have been

12 Some of the KBS tool providers even de-emphasise the AI techniques but
stress the object capabilities [Durkin 1996].

59

altered through modifying its visible methods or properties, the explanations
may have to be revised. Inheritance allows an economy of representation,
which helps both explanation creation and maintenance.

4.2 EXPLAINABLE TASKS

We have used the notion of explainable objects in several prototype
systems. Here we briefly describe the VICE system that bases its
explanations on a particular kind of explainable object called an explainable
task. VICE has been more thoroughly documented by Korteniemi [1989]
and in Papers I and II. Other prototypes that use explainable objects are
described in Chapters 5 and 6 of this thesis.

4.2.1 The VICE system

VICE (shorthand for VIbration Cause Expert) is a diagnostic expert system.
It was developed by Imatran Voima Oy, a Finnish power company, to be
used for analysing the condition of rotating machinery, e.g. turbine
generators. Figure 15 shows an example of the system with explanations.

Figure 15. The VICE expert system with explanations.

VICE is a decision support tool mainly for vibration experts. They measure
the vibration of rotating machine parts, and by interpreting measured signals
they can analyse the condition of the machine. The goal is to predict failures
and to avoid downtime of expensive power production facilities. In addition

60

to vibration experts, plant operators and system developers are also
recognised as potential user types.

VICE has structural and behavioural domain models. The structural
model contains the properties of turbine generator parts and the relations
between them. The behavioural model contains the known fault types with
their properties and interdependencies. The contents of these models have
been partially made available to the users. Particularly the attributes of
machine parts and known faults are important to the vibration analyst. The
models are built using the KEE environment [Fikes & Kehler 1985].

The concept of explainable objects turned out to be useful in VICE. Part
of the utility came directly from the convenience of explanation generation
through active objects. Perhaps an even greater benefit was indirect: the
explanations forced the system developers to reconsider the structure of
knowledge bases to make them more easily explainable. The effect was
most apparent in the problem solving model, where we refined the
reasoning processes to a more fine-grained level. This restructuring made
the system more understandable.

4.2.2 Explaining reasoning

Reasoning in VICE has been modelled as a set of problem-solving tasks.
Several researchers have found explicit task models useful for reasoning,
including Clancey [1983], Chandrasekaran [1986], David & Krivine [1989],
Seppänen [1990], Steels [1990], and Tanner & Keuneke [1991]. In our
view, tasks are active agents, explainable tasks, capable of generating
conclusions based on some input knowledge. Normally these conclusions
consist of making changes to the knowledge contained in the system's
models. The reasoning within the tasks is performed by Lisp routines or
rules attached to the tasks. The tasks are akin to the concept of generic tasks
[Chandrasekaran 1986]. VICE tasks are generic within the domain of
vibration analysis.
 Every time a task draws a conclusion, a note is made in a task trace
(stage 1 in Figure 16). When the user asks for justification (2) for a
conclusion, the responsible task is located through the trace (3) and asked to
explain its line of reasoning (4). The task responds by offering a template
(5) that describes how the task uses the input knowledge to arrive at the
result. This template is then filled in with local variable values (6) and
shown as hypertext (7). This interaction principle is elaborated in Chapter 7
of this thesis.

This approach to explanation generation is an informed compromise in
terms of detail. Instead of completely prefabricated answers, we allow the
activation context to influence the answer generation (the mechanisms for
this are discussed in Chapter 7). Instead of detailed rule derivation, we
explain a group of rules or reasoning procedures together. Where the tasks
contain formal rules or logic, they could be explained in the minute detail

61

using classical rule-based explanation [Buchanan & Shortliffe 1984], if so
desired. We have not followed this route. In our experience, task-based
explanation achieves a reasonable balance between extreme detail and
extreme generality. Template-based text generation does suffer from some
problems though that will be discussed in Chapter 7.

TASK:
HISTORY-
ANALYSIS
...
(conclude
 'likelihood
 ?fault
 'possible)
...

TRACE
...
<Event-782>: (HISTORY-ANALYSIS, OIL-WHIRL,
LIKELIHOOD, POSSIBLE, TIME: 35362)
...

Explanation
mechanism

?FAULT "is"
?LIKELIHOOD
"because there were
similar problems in
the history."

CONTEXT
Fault: OIL-WHIRL
Likelihood: POSSIBLE

Tasks'
conclusions
are traced

The task is asked
to explain the
conclusionTask returns

an answer
template Context is adapted

from the trace

Why is oil
whirl possible?

The user asks
for explanation
of the results.

Oil whirl is possible
because there were
similar problems in
the history.

The trace is searched for
relevant conclusions

The answer is
formatted and
shown to the user.

1

2
3

4

5

6

7

Figure 16. Tasks can explain their reasoning and strategies.

4.2.3 Explaining strategies

The tasks can also explain their purpose, or strategy, to help the user
understand the meaning of a certain operation [Clancey 1983, Hasling et al.
1984, Chandrasekaran et al. 1987]. The tasks form a hierarchy: the topmost
tasks correspond to major phases of vibration analysis, while the tasks
below correspond to individual analyses inside these phases. The task
division goes further until the bottom level consists of tasks that only make
singular decisions on individual analysis results.

The control follows this hierarchy. When a task is invoked, it invokes
its subordinate tasks in a depth-first manner. At any point of analysis, users
can ask what is happening. The task that is executing at the time of the
question can then offer an explanation of its strategy for preforming the
analysis, again through templates and hypertext. The last figures of Paper II
give examples of these explanations.

62

Note that we only explain the strategic purpose of a task
[Chandrasekaran et al. 1987, Tanner & Keuneke 1991]. The execution
control of the tasks is left unexplained, although it is visualised in a coarse
manner through the user interface (the large downward arrow at the left of
Figure 15 shows the major diagnosis phases).

This task division is useful not only for tracing conclusions, but also for
clarifying the reasoning process to the users. The main users of VICE were
normally vibration analysis experts, who could easily visualise the system’s
reasoning as a hierarchical set of analyses. Therefore the way of
representing knowledge through tasks matched well with the users’ mental
models (the analyses). As a result, the reasoning was easier to explain.

4.2.4 Development support

The explanation mechanism was an essential aid for the development of the
VICE system. The developers could debug the system’s operation through
the explanations. Validation became easier as well. The developers could
walk through the analyses with the experts. If there were doubtful results,
with explanations they could trace back to the relevant task and modify its
knowledge. The explanations could be stored in the form of reports.
Together the explanations and reports greatly enhanced the development
and validation of the system.

On the problematic side, the increased number of tasks required by
explanations lead to greatly increased memory requirements for the tasks
and the traces. This was a problem for environments with limited resources.
Tracing in general may become burdensome with systems that have intense
reasoning activity.

The development of VICE was continued for five years. During its
lifetime, VICE was used by four developers and half a dozen experts. The
explanations were seen as an essential feature of the system and judged to
be useful, although no comprehensive evaluation was done on the quality
and utility of the explanation mechanism.

We have later used the principles developed for VICE in other projects,
as will be detailed in Chapters 5 and 6.

4.3 EXPLAINING RELATIONS

In object models, only part of the knowledge is stored in the objects’
properties. An equally important part are the relations between the objects.
We have extensively used object networks in the implementation of our
prototypes. They can be regarded as semantic networks or taxonomies
[Woods 1986].

We have analysed several technical systems at industrial plants and high
energy physics experiments. The results of these analyses have been

63

documented in the included papers. Judging by these analyses, a great deal
of the knowledge contained in manuals, drawings, and databases, is readily
representable as networks of related objects. The following digest lists some
of the relations extracted from a gas system manual at one of the CERN
experiments [Peach 1994]:

The compressor is part of the recirculation system. The controller is
located in the SG2 building. The P chambers contain gas. The fresh gas
system connects to the recirculation loop. The loss of power stops the
gas system. The alarm switches off the power supply cabinet. The
mercury switch will close the fresh gas supply valve. The operator locks
alarms when starting to purge. The Eurotherms control the bypass
valves. The back pressure regulator maintains the pressure. Increasing
the recirculation pressure causes increased vent flow. The main
electrical cabinet powers the local cabinet. The bottles supply argon to
the system. The filter removes particles. The bubbler prevents chamber
overpressure. Oxygen is removed from the gas with the purifier. The
sensor measures the gas flow. The documentation describes the system.
The alarm informs the user about the overpressure. A magnetic valve is
a kind of valve.

Legend : X Y
= Y is -a X (spec ia liza tion)

start /stop
switch on/of f

a la rm

warn
in form

open/c lose

control

main ta in

regulate
power

supply

select

add

mix

State
chang ing

Informat ion
transfer

Control l ing

Trans forming

descr ibe

documen t

Structural

part-of

located- in

conta in

connect - to enable/d isable
Al lowing

real ize

prevent

buffer

lock/unlock

Causa l
relat ions

Cont inuous
control

Discrete
control

Prov id ing

Goa l
ach iev ing

Relat ions

Funct ional
relat ions

Balanc ing

Mass ba lances

F low ba lances

Energy ba lances

heat /cool

t ransform

Storage

filtercontr ibute- to

Classi f icat ion Is -a

con flic t

s tore

contain

Figure 17. Relations for describing high energy physics gas systems.

64

Figure 17 shows a taxonomy of some of the relations that we have found
useful for talking about high energy physics systems. We limit ourselves to
binary relations13. According to Broadbent et al. [1986], binary relations are
the most useful ones to be explained to humans. More complex relations are
harder to comprehend and thus to explain, and we have left them aside as a
topic for further research.

We noted in Chapter 2 that explanations should make relations visible.
This can be readily accomplished in many knowledge-based tools (in the
KEE system, for example), where relation graphs can present the relations
in a visual form. Unfortunately, the graphs may become convoluted with
many objects. A more local possibility is to use explainable objects as a
starting point: when explaining an object, the references to other objects
could appear as hypertext links. This principle has been used in our
explanations, as detailed in Chapter 7.

A way to make knowledge bases more explainable is to design the
objects and relations as a domain-specific vocabulary for talking about
systems [Hayes-Roth & Jacobstein 1994]. More concretely put, there should
be hierarchies of both objects and relations, where concepts could be
explained on a general or detailed level as needed. Not all items in
knowledge bases should be explained to all users.

The relations can be implemented as another class of objects. In a way
they can be considered as metaobjects. The taxonomy of Figure 17 forms
the class structure, where the properties of relations can be inherited. This
helps us to manage a large number of possible relations. Knowledge
representations can use the very specific relations, at the bottom of the
hierarchy, while most of the properties of these relations can be defined at
the topmost levels. In this way, one can talk about the domain in natural
terms while the effort to model those relations is minimised [Woods 1986].

4.4 MEANS-END MODELLING

Rasmussen [1986] suggested a particular type of relational model, known as
the means-end model, to model the decomposition of industrial plants at
multiple levels of abstraction. We have based many of the developments
presented in this thesis on variants of means-end models.

There are two dimensions to the decomposition, as depicted in Figure
18. The vertical axis is the means-end dimension. It shows how a system
can be considered at multiple levels of abstraction, with concrete physical
devices at the bottom and the abstract goals of the system at the top. Each
device has a function that it implements. These functions in turn are needed

13 Many researchers in the plant domain seem to have assumed the same
limitation. For instance, Korhonen [1991] has outlined a rich set of (general and
detailed) relations that are binary.

65

to realise certain goals. The relations can be many-to-many, since a device
may have several functions, and a single function is usually implemented
with several devices. Likewise the goals are often related to several
functions and vice versa.

Means

Ends

Whole Part

Device

Part

Part

Part

Subpart

Subpart

Subpart

Subpart

Subpart

Subpart

Subfunction

Function Subfunction

Subfunction
Subfunction

Subfunction

Subfunction

Subfunction

Subfunction

= Realise
/achieve

= Part-of

Subgoal

Goal

Subgoal
Subgoal

Subgoal
Subgoal

Subgoal

Subgoal

Figure 18. Decomposition in the part-subpart and means-end dimensions.

The horisontal axis extends along the whole-part dimension that is the
traditional way of decomposing technical systems. A plant is made of
subsystems that are in turn made of smaller systems. This successive
decomposition forms a tree whose leaves form the concrete objects found in
plants. Not only are the physical devices part of the hierarchy, but also
logical elements, such as alarms or software modules. Even the humans at a
plant could be modelled to carry out parts of the hierarchy. Decomposition
is applied at all levels: functions are made of subfunctions and goals are
made of subgoals.

Rasmussen [1986] identifies five levels of means-end abstraction for
modelling industrial plants (Figure 19). Each level is an abstracted view of
the level below. The three intermediate levels together form what we call
the function level in this thesis.

The means-end model forms a framework for representing knowledge
related to plants. It makes the goals and functions of the systems explicit
and shows how they are related to the devices. This model can be used in
various ways: to explain teleological knowledge (purposes of things), to

66

guide diagnosis of malfunctions, and to guide navigation and presentation
of information in user interfaces, to mention but a few [Rasmussen 1986].
Generic tasks can be defined for these aims, each task using the same model
for different purposes.

COMFORT

COLD

HOT

FLOW TEMP

WARMMIXER

COLD

HOT

Functional purpose

Abstract function

Generalized function

Physical function

Physical form

Production flow models,
system objectives, constraints, etc.

Causal structure: mass, energy, and
information flow topology, etc.

"Standard" functions and processes:
feedback loops, heat transfer, etc.

Electrical, mechanical, chemical
processes of components and equipment

Physical appearance and anatomy;
material and form; locations, etc.

Figure 19. The five levels of abstraction for a very simple process
(adapted from Rasmussen [1986] and Rytoft et al. [1990]).

The model attacks the complexity that is apparent to the users. As Bisantz &
Vicente [1994] note, the model structures the domain in a psychologically
meaningful way. It allows the users to study systems at multiple levels of
resolution, shifting levels to “see the forest through the trees”.

It should be noted though that means-end models can be hard to build
and maintain [Bisantz & Vicente 1994]. The difficulties with the models are
discussed in Section 4.5.

A means-end model in itself is just a representation. It must be
surrounded by systems that use that information. We have built prototypes
of such systems, described in Sections 4.5.3, 5.3, and 7.3.

67

4.5 CONTRIBUTION MODELS

In our studies of the power plants and high energy physics control systems,
as documented in Papers III, IV, and VI, we found that it is at times difficult
to decide whether an item should be modelled as a function or goal. For
instance, the goal “Maintain pressure” can be seen both as goal and as a
function, depending on the viewpoint. We suspect that this is a major source
of confusion for knowledge engineers who craft means-end models or its
derivatives.

We have used means-end techniques to study two other industrial cases,
besides the power plant and gas system documented in the included papers.
In all these cases there has been debate as to where to draw the line between
functions and goals.

Some of this unclarity may be due to our merging of the three function
levels – abstract, generalised, and physical – into a single level. With the
five separate abstraction levels it might be possible to find more satisfactory
divisions. However, this benefit would come with an increased load in
modelling, as five levels would have to be dealt with, instead of three.

There seems to be similar unclarity between the device and function
levels as well, when non-physical devices are dealt with. Moreover, at the
function level it is sometimes difficult to decide whether to model a
dependency as a means-end or a whole-part relation. As a consequence,
different people tend to create very different models.

4.5.1 Relaxing the levels

We believe that it is artificial to force the representation to strictly divide
things into levels. Instead, we propose to relax the notion of levels in
means-end models. We let all items in models to be considered as concrete
or abstract functions, goals, or even devices. The levels are only defined
implicitly through the mutual ordering between items. In object-based
means-end models, an object may freely inherit the properties and behaviour
of the desired level.

The mutual ordering is accomplished by the single “contribute” means-
end relation type in the model. This directed relation could equally well be
called “realise”, “achieve” or “depends-on”. It signifies the dependency of
an item on another item. The network of these relations forms, in essence, a
directed acyclic graph [Sedgewick 1989] that we call the contribution
model.

The representational power of the contribution model is necessarily less
than that of means-end models. It requires the use of context to interpret the
role of a single model item. However, this is not a problem, since in support
systems the navigational paths often lead to model items from external
situations, where the context is given. Moreover, the users do not seem to
really care whether an item is a goal or a function. This distinction is

68

therefore only significant to knowledge engineers building the models.
Relaxing the levels helps them but does not affect the users.

4.5.2 Gas system example

We applied contribution modelling in the CICERO project at CERN
[Barillère et al. 1993]. There a gas system was modelled that supplies an
inflammable argon-ethane gas mixture to one of the particle detectors of the
L3 experiment at CERN. The gas mixture and pressures must be precisely
controlled to achieve suitable conditions for particle detection within the
detector chamber. The gas is being constantly refreshed, with old gas being
vented out and new gas brought in. [Peach 1994]

Figure 20 shows the portion of the gas system model that concerns the
goal of maintaining the system’s availability for physics measurements. The
model was created through interviewing the designers of the system and by
analysing the associated documentation. The whole model consists of about
a dozen goals, forty functions and two hundred devices. The device level of
the model was not completely defined; many subsystems were considered as
black boxes. This level of detail was sufficient for the purposes of the
project.

Availab ility
for physics

Gas pressure
is 1.4 m bar

Gas m ixture
is 38.5 % ethane

M easure exit
gas ethane %

M easure recirc
gas e thane %

Sensor 8Sensor 14

Sensor 15

Sensor 6

Sensor 16

Sensor 1

M ix gases

M a intain
c ham ber
p ressure

A void
overpress ure

Ad jus t flow C om pensa te for
a tm ospheric change

Measure
a tm ospheric

pressure
M easu re
am b ien t

tem peratu re

Have buffer pres sure

R aise p ressure

C rea te flow

M easure re turn f low

Com pressor 1 Pressure regulator 6

M eas ure
high p ressu re

Regula te
h igh press ure

Argon-ethane
m ixing system

Legend:

G oals
Functions
Devices

Figure 20. Portion of the contribution model of a gas system at CERN.

69

4.5.3 Weighted relations

Means-end models tend to suffer from a large number of transitive
dependencies (this topic is elaborated in Section 5.4). The resulting multiple
paths through the models may cause problems to algorithms that are based
on search. To lessen this problem, we propose to encode weights into the
contribute-relations. These numbers signify the strength of the contribution
of an item towards another item. For instance, it could be said that the
function “Regulate high pressure” contributes to the function “Have buffer
pressure” by a factor of 0.7, but only by a factor of 0.3 to the function
“Avoid overpressure”.

The weights can be used to control the search over the contribution
network. Existing heuristically informed search methods, such as beam
search, can be used to limit the number of paths that are taken in the search
for purposes. The cumulative product of the weights can be used as the
distance metric. Those paths can freely be ignored where the cumulative
weight falls under a predefined limit, signifying that the overall transitive
contribution over that path is too small to be of interest. Moreover, the
weights can be used to select the order in which multiple results get shown
to the users. The items with the largest cumulative weight are explained
first.

Figure 21. Portion of a contribution model prototyped on the G2 expert
system shell.

70

Paper VII discusses contribution models in the case of HEP systems. Since
the publication of the paper, we have investigated the use of weights in
contribution networks with a small prototype implemented with the G2
expert system tool. Figure 21 shows a portion of a gas system’s contribution
model with the weights between the model items. The relations are drafted
with the standard G2 facilities of drawing connections between objects.
These connections are then translated into contribution relations.

As a result from the prototype, we have noted that the weights give
valuable information that is missing from the means-end class of models.
Unfortunately it is not clear how the weights should be encoded. There are a
number of ways to manage uncertain knowledge, summarised in Garcia &
Chien [1991]. We have used a straightforward fractional weight that ranges
from 0 to 1, much like the certainty factors of Mycin [Buchanan &
Shortliffe 1984]. Clear semantics are yet to be defined for the weights.

Humans tend to have problems in giving numerical estimates, whereas
the linguistic terms used in fuzzy logic are more readily accepted [Zadeh
1984]. An interesting possibility would therefore be to define the weights
using fuzzy factors, with fuzzy reasoning applied to calculating the
cumulative weights over the network.

4.5.4 Dynamic relations

The dependencies in means-end models are not static. They often depend on
the operational states of the plant components [Bradshaw & Young 1991].
For instance, the oxygen sensor’s reading in the L3 argon-ethane gas system
is irrelevant when the experiment is not collecting collision data. In normal
use the same information is crucial for calibration of the measurements.
This state information is often available from the control systems, where
sequences or state machines drive the operations. The contribution weight
can be made dependent on the state (Figure 22).

Van de Ree [1994] and Jaako [1996] propose to construct different
models for the different states of a plant. In our view, this would
considerably increase the effort in maintenance of the models. We depart
from their approaches by merging the different models into a single state-
dependent model, decreasing the need for model maintenance.

71

Mix gases

Refresh
mixture

Minimize
oxygen
content

Minimize
chamber

contamination

Gas mixture is
38.5 % ethane

Avoid
explosions

Protect
chambers

Legend:
= contributes-to

IF taking data
THEN crucial
ELSE irrelevant

IF high V is on
THEN important
ELSE interesting

Figure 22. The relation weights can be made dependent on the system’s
state.

In conclusion, we propose to extend means-end models into contribution
models enhanced with state-dependent fuzzy weights. We suggest this
extension as an interesting research topic.

72

5 EXPLANATION AS DESIGN
RECOVERY

In this chapter, we concentrate on explanations that could help the
maintenance staff in plants. Much of their work deals with reverse
engineering of existing designs, as we noted in Chapter 2. Explanations of
design knowledge could decrease the effort in plant maintenance. The
explanations can be crafted from models that capture the knowledge at the
time of design.

Explanation
types

Tasks

Models

FunctionalBehaviouralStructural Teleological

Model
clarification

Abstraction

Justification
of reasoning

Document
navigation

Design
recovery

Behavioural
diagnosis

Factual

Functional

Strategic

Processes Automation Support
systems

Figure 23. This chapter studies recovery of design knowledge through
model abstraction.

Explanation calls for a common conceptual model throughout the
design process, as formulated in Section 3.4. We propose Lind’s [1990]
Multilevel flow modelling (MFM) to function as the conceptual model.
MFM models can be used to capture design knowledge, to enhance reuse of
the knowledge, to model the knowledge in automation systems, and finally
to construct explanations in automation and support systems. Thus MFM

73

facilitates the transfer of explanatory knowledge from design to use. In
terms of the framework of Chapter 3, it forms the input to the Design
recovery and Abstraction tasks (Figure 23).

Section 5.1 introduces MFM modelling as an extension to the means-
end models of the previous chapter. Section 5.2 shows how we extended a
design environment to capture explanatory design knowledge into object
models at the time of design. Section 5.3 formulates the mechanisms for
design recovery with methods of explaining the knowledge in the models at
multiple levels of abstraction. Section 5.4 briefly discusses the utility of the
approach.

5.1 MULTILEVEL FLOW MODELS

Lind [1990] has extended means-end modelling to cover the causal
dependencies in the plant. His Multilevel Flow Modelling (MFM) method
adds the concept of flows to the representations. This extension strengthens
the models by making the causal interaction paths between process parts
explicit. In physical systems, the interchange of energy and mass between
the parts is responsible for the observable interactions [Lind 1990]. The
patterns of these interactions would be valuable information for the plant
users.

In MFM, the energy, material, and information flows are recognised at
the various levels of abstraction. The flows through the parts of the plant are
modelled as flow structures, over which the energy or matter balances are
known. Inside the flow structures, each device is modelled to carry one or
several primitive flow functions: sink, source, balance, barrier, transport, or
storage. Combinations of these primitives form the functional structures that
are found in plants.

The means-end dimension, as defined by Lind, consists of three levels:
devices, functions, and goals. Mappings between the levels come in the
form of four relations. The realise relation couples functions to devices. The
goals are achieved by functions. The third relation, achieve-by-control,
represents the need for a manager (usually a control loop or the operator) to
achieve certain goals. The fourth relation shows the condition that a goal
must be achieved in order for a function to work as expected.

Figure 24 shows an example of these relations for a feedwater system,
depicted with the symbols that Larsson [1992] suggests for MFM diagrams.
The device level is not shown in the diagram, as is usual with MFM.
However, the relations to devices form an essential part of MFM models.

74

G1: Produce the required
amount of feedwater

G2: Maintain
sufficient level in
the feedwater tank

G3: Keep
the pump
running

C

C

A-C

AA-C

F1

F2 F3

C1

C2

Symbols:

Matter Energy

Source

Sink

Storage

Control

Observation

Decision

Action

Transport

C

A

A-C

Achieve
Condition
Achieve
through control

Figure 24. An example of a multilevel flow model (adapted from Kaarela
[1996]).

Simple laws of matter and energy conservation are used in MFM to describe
the normal state of the process. The model is thus a normative one,
describing the process as it is meant to function. It can be used to detect
variations from normal behaviour, though it is not efficient for simulating
future behaviour. Abnormal process conditions will show up as variations in
the matter or energy balances, which facilitates diagnosis. Other uses for
MFM include alarm analysis, plant state abstraction, measurement
validation, and user interface building [Lind 1990, Larsson 1992, Sassen
1993, Van de Ree 1994, Kaarela 1996].

Vicente [1992] and Kaarela & Oksanen [1994] have investigated the
application of MFM in the user interfaces of automation. MFM forms a
meaningful way of structuring the display hierarchies, and facilitating
information abstraction and alarm processing. Normally the users would
only see the abstracted state of the overall goals of the plant. When a goal
ceases to be achieved, the displays then guide the users to the functions and
devices that no longer work as expected. [Kaarela 1996]

75

5.2 THE P&ID ENVIRONMENT

Our industrial partner, Tampella Power Oy, developed an application called
P&ID for supporting initial phases of boiler design [Riitahuhta 1988]. The
P&ID tool provided us with a knowledge-based platform for testing our
ideas about modelling design knowledge for explanations.

The goal of the system is to encode knowledge about preliminary boiler
design into object structures, and thus to reduce time spent on routine
calculations and labeling. Tampella Power Oy built a model of the
feedwater system of the power plant that we studied.

P&ID was constructed on top of Design++, a general engineering tool
marketed by Design Power Inc. It can be used for maintenance of product
knowledge and design knowledge through automated design features. The
system has been developed since 1987, through various generations. The
version used in our work was 1.4, running under Unix on Sun Sparcstations.

KEE
Product knowledge
Design knowledge
Design interface

CAD

Drafting
Visualization
Geometry

DB

Component data
Database links to other

design systems

Other tools

Figure 25. The Architecture of Design++.

Figure 25 portrays the Design++ architecture. The central element in the
system is the KEE environment14 by Intellicorp, which is used to maintain
the knowledge about the product and the design. A CAD system assists in
drafting and three-dimensional visualization. There is an interface to a
relational database, which contains component data and allows
communication with other design environments. Finally, there are links to
other software, allowing transfer of text and CAD diagrams.

The components of the product structure are organised by two kinds of
hierarchical relations: (1) the is-a relation, creating an inheritance hierarchy,
and (2) the part-of relation, classifying the objects according to their role in
the product's structural decomposition. The knowledge about these
components' properties is stored in the objects' attributes. Each attribute may

14 KEE has later been replaced in Design++ by a more modern object store.

76

have an associated design rule that can be used to infer the value of the
attribute. The rules may retrieve knowledge from other objects' attributes.

Figure 26. The P&ID application on the Design++ tool.

Figure 26 shows a screenshot of the P&ID application. The user interacts
with the system through the facilities provided by Design++. The browser
window on the lower left shows the top levels of the part-subpart-hierarchy
in the feedwater model. The concrete devices are on the right, and the
hierarchy shows their composition into larger assemblies. The Autocad
window (upper right) displays the graphical view of the model. There is a
one-to-one mapping of each concrete component in the model into its
graphical appearance.

The object's properties can be accessed through separate windows
(lower right). Each property has an associated design rule. The majority of
the rules contain knowledge of sizing calculations, labeling and diagram
layout. The window shows a rule that calculates the hydraulic power of the
feedwater pump based on other data.

We extended the P&ID tool adding facilities to model the function and
goal levels of means-end models. The Design++ tool already offered
facilities to model the whole-part decomposition, and the P&ID application
formed the device level of the models. Figure 27 portrays the extensions.

77

Goals
Control-fw-flow
Produce-flow

Raise-pressure
Raise-temperature

Devices

Functions

Fw-preheating
Fw-pressure-elevation

Fw-storage
Injection-water-generation

feedwater-system

hp-superheating-spray-system
storage-deaeration

piping-system

pump-system
pump.1
pump.2
discharge-line.1
discharge-line.2

Automation

Design++
Means-end
modelling

Figure 27. Means-end extensions to the Design++ tool.

We built simple menu-based mechanisms to define the relations of the
objects at various levels. The resulting means-end networks could be
visualised by the graphical browsers offered by KEE. An Autocad-based
editor with MFM templates was also constructed to allow graphical
modelling. Mechanisms were implemented into the model items to record
design rationale at design time: design issues, alternatives, design choices,
and justifications. Facilities were created for exporting the models in
various forms: relational tables, C++ objects, structured text (SGML), and
Prolog facts. [Kaarela 1996]

The key point of the approach is in recording the design knowledge.
The MFM models should be constructed during design, when the
background knowledge for the decisions is most readily available. Through
suitable tools, the designers themselves could construct large portions of the
MFM models. Ideally, designers could document their solutions in the
models when they create the designs. This, of course, requires extensive
support from the design tools to minimise the additional documenting work.
The above mentioned extensions to P&ID show the way for such tools.

The approach could be used to reuse design knowledge [Kaarela 1996].
Existing designs are often taken as the starting point for new designs. If the
semantic knowledge behind these designs were available with the design,
reuse would be enhanced. The design processes themselves would become
reusable, in addition to the end results. This would necessitate explanation
of the knowledge contained in design models.

In our view, the most important dimension of the MFM models is their
means-end knowledge, as far as reuse is concerned. We have therefore
sought to convey such knowledge with the explanations. Explaining the
interactions between plant parts through energy and matter flows remains an
open research topic.

MFM forms a model for structuring the documentation concerning the
plant [Kaarela et al. 1995]. The relations of the model form the hypertext
connections between parts of the text. For instance, the online

78

documentation system that will be described in Chapter 7 could be
enhanced through the explicit definition of the various gas and energy flows
in the gas system. These flows would then serve as convenient guides when
navigating through the web formed by the interactions in the system.

5.3 EXPLAINING DESIGN KNOWLEDGE

Rasmussen [1985, 1986] suggested that means-end models could be used
for explanation. Any item in the model is given a purpose by its relations to
upper levels. Similarly, the implementation of a function or a goal can be
understood by tracing the relations towards lower levels. Figure 28
illustrates this point.

Purpose ("W hy")

Requirem ents

C onsu lt to find causes
of causes, to se lect

a lternative resources and
m eans for actions

Process representation ("W hat")

Structura l inform ation :
* Functiona l m odel and
 causa l re la tions

Implementation ("How ")
C onsult to judge e ffects o f

d is tu rbances and to p rio ritize
goa ls and consequences

Resources:
* P rocesses and sub-functions
* Supplies o f m ateria l and energy
* C ond itioning system s

D ata required:
* Actua l s ta tes and target
 s ta tes o f processes
* C r itica l variab les and lim its
 fo r supporting sys tem s and
 resources

Figure 28. Neighboring levels can be used to answer
questions about an item [Rasmussen 1986].

We used the P&ID environment with our extensions to prototype the
explanatory possibilities. The work is described in detail in Paper V, and we
summarise the main points here. The prototype called “Justifier” can answer
the following kinds of questions:

♦ What is the purpose of this object?

♦ How is the value for this attribute obtained?

♦ Justify this design rule.

79

♦ How is this object implemented?

5.3.1 Deriving explanations through relations

We view design knowledge explanation as navigation in means-end models,
following Rasmussen’s suggestions. We distinguish two kinds of
explanations concerning a model item: (1) explicit explanations that are
given by referring to design choices, and (2) derived explanations that are
inherited through relations between items. 15

Explicit explanations concern design rationale, the account that a
designer might give when asked to justify a design choice [Lee & Lai
1991]. We have taken a lightweight approach to modelling design rationale:
justifications are data structures in the objects they talk about. They can
consist of keywords, such as “authority”, “standard”, “safety”, “cost”,
“preference” that are used to denote the criteria for choosing a certain kind
of design. Such keywords can be supplemented by references to documents.
The structures may also contain freeform text.

Figure 29. Justifications in a design rule.

15 “Knowledge is of two kinds. We know a subject ourselves, or we know where
we can find information upon it.”– Samuel Johnson, in Boswell’s Life of Johnson.

80

These justifications are implemented as Lisp structures stored in the
devices, goals, and functions. Depending on their position they refer to the
whole object or to its attributes, or to the rule that was used to compute a
value to the attribute (see Figure 29 for an example). The justifications are
generic structures in the sense that their meaning changes with the position
but their form remains the same.

If an item is not explicitly justified, a justification can be derived by
traversing the network formed by the relations. Figure 30 illustrates this
process. The search follows the whole-part and means-end relations, with
the latter having precedence. When a superpart is found that is related to a
function, the function’s purpose is recursively searched. The search ends
when an explicit justification is found. Bisantz and Vicente (1994) produce
explanations from means-end models with similar mechanisms.

Pump_system
Type: assembly
Purpose: -
Realizes:
Part-of:

Fw-pressure-elevation
Type: function
Purpose: -
Realizes:
Part-of:

Pump.1
Type: device
Purpose: -
Realizes: -
Part-of:

Type: goal
Purpose:(INCREASE
 PRESSURE-251)
Realizes: -
Part-of: -

Raise-pressure

Explicit justifications

Derived via means-ends-relations

Derived via structural relations

11
22

22

33
11

22

33

Figure 30. Derivation of explanations through relations.

An example of the explanations with Justifier is seen at the bottom of the
window in Figure 31. The user interface is modest, using the basic
windowing facilities available in KEE and Design++. The queries for
justification can be made either via object menus or Lisp commands. The
justifications are displayed as narrative text or as relation graphs. Further
queries can be made by pointing to the objects displayed in the graph.

81

Figure 31. An example of the explanations with the Justifier prototype.

5.3.2 Justifiable objects

In addition to modelling facilities, we have extended the Design++ tool with
the notion of justifiable objects. They are objects, classes, or instances
which can reside at any level of abstraction or decomposition, and can offer
explanations of themselves in the manner described above. They are a class
of explainable objects defined in Chapter 4.1.

Questions are asked by sending the message JUSTIFY! to the object.
The object answers by returning a structured representation of the
justification. It can also print this structure in English-like text. The
justifiable objects are defined with a superclass JUSTIFIABLES that
defines the functionality. The defined methods and properties are then
inherited by all of the Design++ model objects at all abstraction levels.

5.4 EXPERIENCES WITH THE JUSTIFIER PROTOTYPE

The Justifier prototype shows how design knowledge can be explained from
MFM models that have been constructed at the time of design. Although the
prototype has only been tested in a design tool, the mechanisms will work in
automation systems that can store object models in their databases. For the
greatest benefit, the maintenance staff should receive explanations from the
databases they use for maintenance.

82

Our simple model of design rationale, the keywords, is not sufficient to
model real design processes. More elaborate models would be needed to
capture the iterative dependencies inherent in design [Lee & Lai 1991,
Gruber & Russell 1992]. However, to study explanations based on means-
end models, the keywords scheme was sufficient.

In Justifier we presume that an object shares its semantics with the
superparts, which is often the case. A component normally assumes a
purpose from the system it belongs to. In the example of Figure 30, a pump
gets its purpose from the pump system.

When a single device participates in multiple systems or functions – as
is often the case – this assumption causes trouble. There are several possible
paths for deriving a purpose. A proportional valve, for example, may serve
to adjust gas flow or to isolate gas circuits, depending on the way it is used.
As a part of a gas line, the former purpose dominates; as a part of the
protection circuit, the latter. It is not clear which justification should be
chosen.

The problem gets worse when the derivation traverses several levels. At
each level, the paths multiply, potentially leading to myriads of possible
purposes for a single device. While storing large numbers of objects and
relations is quite feasible with today’s systems, the explanatory search in the
networks would certainly create computational troubles. Moreover, the
order in which the various links are traversed affects the explanatory results
and the complexity of the search.

These problems caused us to seek ways of managing this complexity.
We propose to use the contribution models described in Section 4.5 for this
aim. However, with the model we studied, the problem of multiple paths
was not a significant one. Only top level devices and subsystems had
defined functions and in our model multiple purposes were largely absent.
Many functions were explicitly justified, so the searches ended early.

The problem can be further lessened through the interactive nature of
explanation. In many cases it is sufficient to proceed a few links up the
hierarchy and then stop. At this point the partial paths can be shown to the
user, who then selects the most promising path to follow for further
explanations. This becomes convenient if the user interface is based on
hypertext, as we will propose in Chapter 7.

The results we got from the prototype can be summarised:

♦ The way of deriving explanations over the means-end relations can
be effectively used for explanation.

♦ More elaborate models of design rationale could be used to give a
more meaningful understanding of the design choices.

♦ The inherent complexity of the search over many-to-many relations
needs to be tackled. Contribution models are one way of directing
the search.

83

♦ The interactive nature of explanations allows us to show
intermediate results as pointers to more detail. This helps to lessen
the complexity of the search.

84

6 EXPLANATION AS DIAGNOSIS

This chapter is devoted to realising the Behavioural diagnosis task of the
framework to cover an important subclass of automation: the logic. Figure
32 shows how behavioural diagnosis offers explanations about automation.
The Document navigation task is also touched upon, as the explanations are
shown in the form of hypermedia. A more thorough treatment of the
mechanisms to realise document navigation will be found in Chapter 7.

Explanation
types

Tasks

Models

FunctionalBehaviouralStructural Teleological

Model
clarification

Abstraction

Justification
of reasoning

Document
navigation

Design
recovery

Behavioural
diagnosis

Factual

Functional

Strategic

Processes Automation Support
systems

Figure 32. This chapter applies the behavioural diagnosis and document
navigation tasks into explaining automation logic.

Section 6.1 gives a brief summary of the project background. In Section 6.2,
we outline a four-level model of logic explanation in plants. The model is
based on multilevel information abstraction. We then study in Section 6.3
the main features of the Lepo C++ prototype. The concept of explainable
objects from Chapter 4 is a central feature in the prototype. Management of
feedback and complexity issues are covered in Section 6.4. Section 6.5
draws some conclusions on the work, and some future research possibilities
are pointed out in Section 6.6.

85

6.1 BACKGROUND

Paper VIII documents our work in diagnosing the behaviour of automation
logic. The problems that the plant staff have with logic have been outlined
in Chapter 2 of this thesis. The main problems can be summarised as
follows:

♦ Automation logic is designed as black boxes (invisible to users).
♦ Yet the users need to decode that logic by hand in the case of

problems.
♦ This decoding is mentally demanding and too slow in critical

situations.
♦ The design choices behind the logic are invisible, impeding

modifications.
♦ The supporting documentation must be searched manually.

We propose to attack these problems through offering knowledge-based
help to the users. Our approach concentrates on explaining the behaviour of
logic.

Paper VIII describes our experiences with the Lisp-based prototype
called Lepo (shorthand for Logic Explanation for Process Operators) that
we constructed to demonstrate the possibilities of explanation. Since the
paper was written, we have made advances in the research to cover more
industrial cases, management of feedback, and coupling to automation. We
have built a new prototype with C++, also called Lepo, and analysed
industrial cases with it. The prototype extends the work described in the
paper and joins together many of the explanatory techniques presented in
this thesis.

The research for the Lepo C++ prototype has been carried out in a joint
research project with industrial partners. Examples drawn from the partner’s
systems were used as the reference cases. Paper winders, paper coaters,
pallet conveyors, and hot steel rolling drives have been studied. Logic code,
documentation, examples of problems, and users’ opinions were collected
together with data that was logged from the PLC’s. The logic in the cases
has been implemented with Siemens S5 PLC’s and the Damatic XD
automation system from Valmet.

6.2 LEVELS OF LOGIC EXPLANATION

We identify three main classes of explanations on automation logic:

A. Explaining the meaning of logic
B. Explaining the behaviour of logic
C. Speculative help

86

These classes correspond to the three classes of explanatory knowledge
identified in the framework of Chapter 3. Figure 33 shows examples of
these question classes with the case of a feedwater pump interlock circuit.
The ways of answering the questions have been discussed in more detail in
Paper VIII.

10 s

&
Steam temp
< 270 C

A: What is the
meaning of this

 input?

A: What is the
purpose of this

circuit?

A: What is
this gate?

B: Why is this
signal 1?

C: Under what
circumstances could

this signal be 1?

C: What if this input
changed to 0? B: How can one

drive this signal
to 0?

Pump 1 running

Pump 2 running

Fire in
pump casing

Feedwater pressure < 30 bar

Bearing vibration warning

Loss of pump lubrication

Pumps in danger

C: What inputs
could affect this

output?

C: What outputs could
this input affect?

1

1

Figure 33. Possible questions on a logic circuit.

The explanations that Lepo offers can have multiple uses in plants. The
various users – operators, maintainers, and designers – all have needs at
different levels due to their backgrounds and the nature of their
assignments. Figure 34 shows the four levels of logic explanation that can
be identified in plants. The three classes of questions may be answered at
any of these levels. In practice, the lowest levels are available through PLC
programming environments, whereas the highest levels are offered through
support systems.

The abstraction level rises from the machines towards the users. The
program level is closest to the actual operation of a PLC or a DCS. On this
level the logic is seen as a series of assembly code instructions executed on
a serial CPU.

The functional level views the logic as a network of nodes and gates.
The execution of the logic is quasi-parallel, functional mapping of inputs to
outputs. The state machines are formed implicitly by elements that have
memory (for instance set-reset gates) and by feedback loops in the network.

87

AAXZ20
AN F34.2
A I6.1
A I6.5
S Q45.4
O I105.6
ON F202.1
O Q45.5
R Q45.4

Diagnostic
level

Behavioural
level

Functional
level

Program
level

33 57 48 45 52 45 76 1E
E7 09 15 09 18 0A 1D 07
1F 0E 85 1E D7 1B 61 07
5E 16 F3 0E E1 0E CB 09
77 08 B7 0D 92 09 D9 1E
44 16 73 09 93 0E 81 0E
2F 0D 44 09 0F 0B 4B 0A
52 16 2F 0A C4 09 36 0A

Q: Why has the machine stopped?
A : Sequence ACCEPT_PALLET
 (PB 59) is in state EXPECT_PALLET
 (Q45.4) waiting for PALLET_COMING
 (I105.6) to become active.

F34.2
I6.1
I6.5

I105.6
F202.1

Q45.5

Q45.4

&

>1

S

R Q

2t

2t

2t

3t

3t

3t

I6.5

F34.2
I6.1

I105.6
F202.1

Q45.5

2t

3t

x12

x721
1t
Q45.4

t

t
Q45.4

Q45.3

Q45.6

Q45.5

I105.6

Figure 34. The four levels of logic explanation.

The behavioural level views combinatorial logic as a time interval-based
dependency network, where the changes in inputs propagate to the outputs
after the time delays inherent in the network. The state machines formed by
the network are abstracted into state-transition diagrams, with identified
states and conditions.

The diagnostic level is more concerned with the logic’s environment
and operational context. The logic itself has been abstracted into causal
explanations between inputs and outputs. The explanations give direct
advice on the reasons for events and states, and can suggest possible actions
to take. The advice is restricted to the inputs and outputs of the logic, since
the analysis of the logic can not directly diagnose the plant around it.
However, navigation from the logic into related documentation can help us
to understand the explanations in a wider context.

88

Operators in plants are usually not concerned with the internal operation
of the logic. When problems appear, they are eager to call the maintainers to
trace the reasons. This causes much work for the maintenance staff. What is
worse, they are not available during night shifts. With Lepo, the operators
could do more themselves. They can remain on the diagnostic level for their
disturbance management tasks, where prompt actions are often needed.

The maintenance staff in plants may need to work on all levels
simultaneously. Their tasks frequently involve diagnosing faults in or
through the logic and making changes to it. For this they have to reconstruct
chains of events. With Lepo, they can look at the logic at all levels of
abstraction, and study the past events. They may even simulate the effects of
possible actions on the logic.

The designers who create the logic traditionally work either on the
program level or on the logic level. With Lepo coupled to their design tools,
the level of the design would rise. Designers could analyse the behaviour
and the dependencies of the logic to see if their design works in the way it
was meant to. Moreover, the design knowledge on the purposes and design
choices could be communicated to other users and designers through Lepo,
if the design tools allowed recording the knowledge.

6.3 THE LEPO C++ PROTOTYPE

Due to the industrial orientation, one of the central requirements for the
second Lepo prototype has been its embeddability into the control systems.
We chose to use C++ as the main implementation language, running under
Windows NT or Unix. Algorithms and user interfaces have been built for
both of these operating systems. With the increase of industrial personal
computers and Unix-based solutions in plants, these choices minimise the
embedding effort.

Figure 35 describes the architecture of the Lepo C++ prototype. A filter
decodes the logic code used in the automation from binary or source forms
into an intermediate file format. This format is then transformed into a
generic object-based model that is used to simulate and explain the logic.
Events are explained with the help of data histories. They store logged data
from the automation, which is then read into the objects. References to
supporting documentation are included in the objects, when available from
design systems. The resulting explanations are shown to the users as
context-sensitive hypertext, linked with logic diagrams and other
documentation.

89

Human-Computer
InterfaceExplainer

(+ Models)

Logic code
translator

P
LC

 o
r D

C
S

- Visual C++
- WWW
- (X-windows)- C++

- Siemens
- Valmet XD
- IEC-1131-3

Data interface

- C / C++

I/O data

Code

DDE,
OLE,
Sockets

Semi-manual
transfer

Inter-
mediate
file

Process
Documentation

- Diagrams
- Code
- Text

Memory
mapped
file

Figure 35. The architecture of the Lepo C++ prototype.

Lepo covers the four levels of explanation. The filters recover code
structures from the program level for use at the upper levels. The simulator
works at the functional level. The explanation algorithms work by selecting
pieces from the logic level to the behavioural level. The hypertext interface
of Lepo, together with the various diagram displays and documentation,
gives some help to the users at the diagnostic level (although diagnosis of
the environment is not within the scope of Lepo).

6.3.1 Filters

The filters assume the main responsibility for processing the raw
automation logic code into more easily analysable object structures. A
partial filter has been built for the Unix environment as an extension to
Valmet’s design tools. It extracts logic gates from Damatic XD automation
diagrams, leaving out such non-logic constructs as motor control blocks, for
example. These diversified constructs must be explained using other means,
since they are not meaningfully representable as binary logic networks.
Symbolic boolean logic expressions, in which logic functions are often
defined in XD applications, are converted into equivalent nodes and gates.

A more ambitious filter has been implemented by Valmet for the Step5
language used in Siemens S5 PLC’s. The filter directly decodes the binary
S5 code, in principle allowing the changes to the code to be automatically
updated in the object structures of Lepo. With today’s tools, the binary code
is the only representation that is guaranteed to correspond to the program
the PLC is executing. If the source code is not stored in the PLC itself, there
is always a chance for version mismatches. This problem is avoided by
directly decoding the binary code.

90

The IEC 1131 standard [IEC 1993, Lewis 1996] may become an
important format for the transfer of logic definitions between design
systems and PLC’s in the next decade. It defines five different languages for
representing logic: FB/function blocks, LD/ladder diagrams, SFC/structured
function charts (state machines), IL/instruction lists, and ST/structured text
(a Pascal-like language). Of these, FB, LD, SFC and IL source codes will
map relatively easily into our representations. The ST language will require
more extensions to the current formats and object representations. Future
work will include implementation of filters for these IEC languages.

6.3.2 Data histories

Lepo uses history data available from the process to analyse past events. If
the state of a logic variable in the automation is known, it can be directly
used for explanation. This speeds up simulation of the past events.
However, some simulation will remain necessary, since in most cases it will
not be possible to keep complete traces of the execution of a PLC. The
execution cycles may be too fast or memory sizes insufficient for exhaustive
logging. In any case, some of the internal variables will remain hidden and
must be recovered through simulation.

In our case, Valmet has implemented a data logging system for Lepo. A
personal computer records the inputs, outputs and internal variables of an
S5 PLC through an Ethernet connection. The achieved logging rate with the
current system is to the order of 50 ms for a total of 1500 bits. The data
histories are kept for half an hour and then discarded or summarised. These
histories are available for Lepo through a memory-mapped file scheme.

6.3.3 Object models

The logic is modelled within Lepo as directed cyclic graphs that are
implemented as C++ objects. There are currently seven classes for
modelling logic nodes and eleven classes for the different gates. More
classes can be conveniently added as needed for new kinds of logic, since
the interfaces for each object have been defined with extensions in mind.
The object model is generic; it can accommodate new logic solutions by
only defining new subclasses. It is thus usable for any system for which a
filter can be constructed.

The incoming code from the filters is analysed and translated into a
network of instances of the node and gate classes. The execution order and
the module hierarchies of the PLC are also modelled, since they define the
block interconnections in the network. In other respects, the network is a
purely abstract representation of the logic, readily analysable through graph
algorithms.

Some aspects of the original code (for instance such instructions as
conditional backward jumps) are not easily representable with the object

91

structures. Our current object model covers the most important binary S5
functions (AND, OR, NOT, registers, and timers).

The data histories obtained from the PLCs are stored in the nodes when
needed for the explanation. An incremental representation is used for the
data that records only the changes to logic variables. This is convenient for
logic where changes are relatively infrequent compared to the logging rate,
as is the case with much of the automation logic in plants today.

All objects in the network have been modelled as explainable objects in
the manner presented in Chapter 4. Every node and gate can offer
explanations concerning its values or functions. For instance, a node can
explain its meaning, and a gate can explain how it propagates logic values
from inputs to outputs.

6.3.4 Simulation

Lepo has a simulator that mimics the binary operations of a serial PLC. It
guides the generation of explanations by inferring signal states at time
points under study. The simulation is based on three-valued logic, with true,
false, and unknown states. An unknown signal state may result in a network
where there has not been logged data for a given time period and the state
cannot be derived from other signals.

In principle, the simulation starts from a known input state vector and
propagates the changes towards the outputs of the network. The serial
scanning nature of a PLC can be accurately mirrored through the
interconnections of the object model. In the case of S5 code, the evaluation
order of code blocks and segments are known through the program
organisation. The time dependencies caused by delays and gates with
memory are covered. However, the simulator does not currently cope with
non-binary logic constructs (such as PID controllers). The simulation
therefore only reflects the internal operation of a PLC to a certain degree.

For explanation, the simulation does not need to cover the whole logic
network but only the part that affects the output. In those cases the
evaluation works recursively backwards from the output towards the inputs.
When explicit values are found for the inputs, the values are propagated
forward to the outputs. Thus Lepo’s simulator is mostly used in a
backtracking mode.

The gates have an active role in the simulation. At each stage of the
forward propagation, the gates are asked to calculate their output values
based on the given inputs. Propagation then backtracks the recursive route
until the value in the output can be determined.

6.3.5 Explanation

Explanations implemented so far cover several of the question types in
Figure 33:

92

Q1: “What is this gate?”
Q2: “What is the meaning of this node?”
Q3: “What inputs caused this output state?”
Q4: “What inputs caused this output event?”
Q5: “What inputs may affect this output?”

Questions Q1 and Q2 are answered through explainable objects by listing
comment data obtained from the logic code or other design systems, or by
referring to supporting documentation.

The analysis of behavioural questions Q3 and Q4 is carried out by first
simulating the logic and then asking each object in the circuit to explain its
output values. The explanation proceeds recursively from outputs toward
inputs. When direct input variables are encountered, they are output as
hypertext objects to the users. When other parts of the logic are referenced,
they are listed as possible continuation questions in the form of hypertext
links. Figure 36 shows an example of an explanation for question type Q3.

Figure 36. The hypertext interface of the Lepo C++ prototype
with an explanation on the state of an output (type Q3).

Question Q5 clarifies the complex interdependencies in the logic. The
resulting listing acts as a static output-input cross-reference that helps to
understanding dependencies. This point is elaborated in Section 6.4.

93

6.3.6 Human-computer interfaces

Figure 36 shows an example of the human-computer interfaces of the
prototype. Explanations are shown as hypertext through a WWW [Berners-
Lee et al. 1994] browser connected to Lepo. The explainable objects
produce hypertext based on their instance variable values. The irrelevant
details can be diminished and important features emphasised by typographic
means. The level of detail may be adjusted depending on the user’s
preferences.

Continuation questions can be asked through pointing at the hyperlinks.
When a link is pointed at, Lepo generates possible continuation questions
based on the context. Each link stores the context under which it was
created, thus allowing context-based interaction. The context representation
here is straightforward, consisting of the object name, question type, and the
relevant time interval. Context refinement is performed through a WWW
page, where the user may modify the question parameters.

We use the standard navigational devices of WWW. With the browser’s
“back” and “history” functions it is always possible to come back to a
previous explanation for further questions.

Figure 37. A diagram viewer and navigator built by Valmet.

In industry, graphical explanations would normally be favoured to textual
ones. A viewer implemented by Valmet shows the logic diagrams with

94

signal values changing in real or simulated time (Figure 37). Lepo may
show a diagram with the viewer as an answer to a question. The objects in
the diagrams are active in the same way as the hyperlinks in the WWW
pages: pointing to the diagram gives access to further explanations through
Lepo.

CAD viewers may be used to show related information, such as wiring
or electrical diagrams. In the figure, there is a navigation panel that shows
the possible ways that a single item, for instance a signal, can be visualised
with Lepo and the viewers. In addition, there are facilities to invoke Lepo
via DDE (Dynamic Data Exchange) from external applications, for example
supervisory software packages.

These interfaces can be made available over networks. We have
constructed a WWW server version of Lepo that allows explanations to be
accessed over the Internet with a simple WWW browser. Diagrams are
made available through a viewer implemented in the Java language that
allows showing dynamic logic displays on the WWW pages created by
Lepo.

WWW access to Lepo can facilitate remote diagnostics. PLC
programmers or plant experts can study the operation of the plant from
remote locations, complementing the experience of the plant staff. Plant
documentation can be linked in the explanations, once it is converted into
electronic formats. With its context-sensitive dialogue, this interface to
explanations demonstrates a flexible way to access plant information.

6.4 COMPLEXITY ISSUES

The search in the graph from outputs of a PLC to its inputs has potential for
a combinatorial explosion. This implies that an output can potentially
depend on a large number of nodes, maybe all of the I/O space. When these
nodes in turn depend on others, the space becomes even larger. Explanation
may therefore fail to find a satisfactory answer before the search space
becomes too large to manage. This also directly affects the speed of the
explanations, which can be crucial for operator assistance.

On the basis of the initial analyses of existing logic codes, we believe
that this combinatorial complexity is not a problem in the majority of
situations. We have also found ways of decreasing the effects of the
complexity. The discussion in the rest of this section offers some insight
into the significance of the problem, although it is not meant to be a
rigorous proof.

Question Q5 can be used to analyse the complexity of logic explanation.
The question is answered through a statical analysis of the logic graph we
call the fan-in-analysis. Effectively, it is a breadth-first traversal of the
graph. The fan-in analysis forms the fan-in tree of the graph, where the
concerned output is the root of the tree and the inputs affecting it are the

95

leaves. A very large tree may be created, where a significant fraction of all
the systems’ inputs is included.

62.9% of the outputs

The log scale frequency
distribution of Fan-in(Q)
for a paper winder logic

1

10

100

1000
1

0

3
0

5
0

7
0

9
0

1
1

0

1
3

0

1
5

0

1
7

0

1
90

2
1

0

2
30

2
5

0

2
7

0

2
9

0

3
1

0

3
3

0

3
5

0

3
7

0

3
9

0

4
1

0

4
3

0

4
5

0

4
7

0

4
9

0

Fan-in(Q) = Number of nodes affecting an output Q

89.5% of the outputs

Fr
eq

ue
nc

y
di

st
rib

ut
io

n
of

 F
an

-in
(Q

)

Figure 38. The frequency distribution of the number of nodes that
potentially affect an output node in a paper winder logic.

Figure 38 shows the case of the paper winder PLC software where the total
number of logic nodes exceeds one thousand. Here the fan-in analysis has
backtracked a single execution cycle of PLC logic from each node that has
been used as an output. The figure shows the frequency distribution of the
number of nodes that the analysis finds per output. The nodes that are
included in the number form the potential search space for the explanations.

In this case, the majority (nearly 90%) of the outputs are only dependent
on less than 80 nodes, which is 5% of the total of 1500 nodes.
Approximately 2/3 of the outputs depend on less than 20 nodes (3% of the
total). These numbers correspond to the number of individual nodes that the
user would see as an answer for a single output, if all potential nodes are
included. In practice many of these nodes (such as intermediate variables)
will not be shown, cutting the average number (44 nodes) roughly in half.

This study shows that, even with industrial examples of realistic scale,
only a fraction of the logic outputs will require large searches. Thus the
typical size of the search spaces will not be prohibitive in terms of
computational complexity. However, the space will grow due to recursive
feedback when several PLC execution cycles are considered. The rate of
growth is a topic for further study.

96

There are ways to limit the search for the more complex cases. For
questions Q3 and Q4, the search space becomes pruned during the traversal.
With many gates, some inputs can be considered as “don’t-cares” for the
situation at hand. The sub-networks behind those inputs are then ignored in
the search. This heuristic pruning of the search space can be necessary,
since not all the potential inputs can be included in the explanation. We
currently use three kinds of heuristics:

1. Such inputs for a gate that cannot possibly affect the output state of the
gate are ignored. Classic examples of this are “0” inputs of an OR gate
with a “1” in the output.

2. Such inputs for a gate are investigated first that changed their state just
before a change in the outputs. This heuristic assumes that
simultaneity implies a causal relation (which will not hold in all
cases).

3. Outputs of a state machine are considered terminal nodes for the
search (assuming that the state offers sufficient explanatory
information to the users).

Other possible heuristics can be defined. If semantic information about
nodes is available, it can be used to rank the relative importance of each
node in the course of search. Currently this ranking is implicit in the
algorithms, but could be made explicit.

The use of heuristic pruning may affect the reliability of Lepo’s results.
By excluding portions of the network from analysis we may ignore
important inputs that nevertheless have affected the output in some way.
Therefore one cannot guarantee the completeness of Lepo’s explanations
where heuristics are used. Some way of limiting the search will be needed
however, as the whole logic cannot be exhaustively analysed without it.

We consider an approximate solution to be more valuable than no
solution at all. Moreover, according to our studies documented in Paper
VIII, humans appear to use heuristic pruning effectively when they analyse
logic. We are trying to mimic their way of finding approximate solutions
with the heuristics of Lepo.

One non-heuristic way to limit the complexity is to control the depth of
the search. In Lepo, explanations do not traverse segment borders unless
told to do so. This serves to limit the amount of explanatory detail.
Hyperlinks allow continuation questions where more detail is desired. In
this way, the problem of excess detail can be partially solved by trusting
some of the explanation planning tasks to the user. However, with this
limitation it would no longer be possible to give fully automatic
explanations that go all the way to the relevant inputs.

Minimisation [Brayton et al. 1987, Biswas 1986, Bostick et al. 1987,
Malik et al. 1988, Yang & Ciesielski 1991, Hong & Muroga 1991] of the
logic network limits the size and thus the complexity of the analyses. We

97

have implemented some straightforward minimisation algorithms that can
reduce the network into a factored form [Brayton 1987]. The utility of this
approach has not yet, however, been formally analysed in the case of
automation logic.

In Lepo, none of the strategies for managing complexity – heuristic
pruning, importance ranking, minimisation, and user-driven search – is
sufficient alone. Several strategies must be combined for solving industrial
problems. Moreover, their relative utility depends on the preferences of the
users. We plan to allow the users to control the strategies by means of
priority settings. In this way, a variety of problem-solving styles with
automation logic could be accommodated.

6.5 EXPERIENCES WITH THE PROTOTYPE

While the development of the Lepo C++ prototype is still going on,
industrial problems on a realistic scale can already be analysed with it. We
have deliberately concentrated on an important subclass of industrial
automation, the logic. As we point out in Paper VIII, a major part of the
problems on plants is related to logic. We therefore expect that knowledge-
based help, as offered by the prototype, will considerably help plant
operation once it is available through the automation.

The concept of logic explanation has raised industrial interest, as
evidenced by the number of companies participating in the research. One
company will extend the prototype into a commercial product, and others
are keen on having the solutions available in their plants. We can therefore
judge that the research has produced results that have practical value.

The basic architectural choices of the first Lepo prototype presented in
Paper VIII have been shown to work in practice. The object representations,
the graph algorithms, and hypertext interfaces have since been much
extended, but the concepts behind them have remained the same.

The serial nature of the PLC creates a number of problems. We simulate
the behaviour at a parallel network level, but the actual PLC works as a
serial CPU. Certain PLC constructs, such as conditional jumps and function
calls, are not always easy to map to a graph representation. In those cases,
the same physical PLC code may be entered from multiple locations –
something that logic graphs do not describe conveniently.

The problem is complicated by the fact that single memory locations
may be overwritten in multiple places in the code. Unfortunately, data
logging only captures the last result, not the intermediate ones. If these
memory locations are used as inputs in other parts of the code, it becomes
necessary to know the execution order of the program. This order may be
dynamic. It is not possible in all cases to construct a static graph of the
program that captures the execution dynamics. Instead, other ways of
modelling the dynamics will be needed.

98

We have modelled some of the dynamics through finite state machines.
Typical sequence implementations in the logic can be semi-automatically
analysed and converted to state machines. Currently Lepo can reverse
engineer state machines from PLC code that has been written according to a
predefined coding style. The conditions of the state machines are
implemented in combinatorial logic, falling back to graphable constructs.
Likewise the actions associated with states become inputs to combinatorial
networks, returning to the realm of the current Lepo. Such questions as
“What is going on?”, “What is the purpose of this step/transition?”, “How
did we reach this step?”, and “How do we reach this step from the current
one?” are being implemented.

Another possible approach to managing dynamics is to simulate the
execution of a PLC at the lowest possible CPU level and keeping a trace of
the events. Behaviour can then unambiguously be explained from the trace.
Unfortunately, keeping such a trace will require much memory and
processing capacity. This possibility should be investigated, though.

In most logic implementation languages there are some constructs that
cannot be analysed through binary logic. Much of the automation used in
plants, for instance control loops, is non-binary by its nature and thus not
within the scope of Lepo. This implies that in many logic programs there
will be parts whose behaviour cannot be analysed. However, major parts of
the code that is causing problems in plants are analysable by Lepo, as the
discussion in Section 6.4 shows.

The very existence of Lepo could be questioned. It could be argued that
the languages used in logic programming today are simply too primitive.
Instead of explaining such low level details, the programs should be written
at higher level languages that are more understandable by humans. In fact,
with suitable design systems, programs could be constructed automatically
based on given constraints [Bonfatti et al. 1995]. Models for explanations
would result as a side product. The historical developments in software
engineering suggest the same conclusion: the low level assembly languages
are very little used today, and higher-level languages dominate. Application
generators automatically produce important portions of software. Similar
trends can be seen in all engineering, and we expect the same developments
to happen with PLC programming tools.

The argument of raising the level of languages is challenged by the
large body of low level PLC software in existence. Whole populations of
PLC programmers are not very familiar with higher level languages, not to
mention the issue of tool support. The programs that are in use today are
likely to be used well into the next century. Accepting this situation, it
makes sense to invest in automatic ways of improving the understandability
of today’s automation. Lepo shows some ways of achieving this aim.

A language in itself is seldom self-explicable, however. We believe that
most PLC constructs will remain on relatively low levels for some time to
come. Even in other areas of software engineering there are few high level

99

languages that approach the (imprecise, vague) human way of expressing
problems. It could be argued that since computer programs, by definition,
are meant to interpreted by computers, they will always contain
implementation artifacts that make it harder for humans to understand their
intended function. It seems to us that once higher level languages start being
used, systems similar to Lepo may still be needed to explain them. Such
systems could function as very high level debuggers for the languages.

To summarise the discussion in this section, we conclude that Lepo
offers clear advantages as compared to manual diagnosis:

♦ The user avoids the laborious, error-prone mental “simulation” of
the logic.

♦ Lepo improves navigation in the logic code.

♦ Interdependencies within the code become more visible.

♦ Lepo can find a relatively small set of “important” dependencies.

♦ The whole diagnosis becomes faster, when not fully automatic.

There are possible disadvantages as well:

♦ Heuristic search methods are not fully reliable, although humans
may assume so. They may trust Lepo too much.

♦ An assisting mode is not enough; fully automated answers may be
needed that require no human intervention.

♦ The operators want to know what happened in the process, not
which input was the cause of the output. With its current data
sources, Lepo necessarily goes no further than the I/O limit of a
PLC.

♦ Data logging may not be always possible. The explanations would
then become much more speculative in their nature.

♦ PLC codes invariably contain non-binary constructs. Therefore
Lepo can never explain all of the PLC through binary diagnoses.

♦ The plant staff may not accept Lepo.

♦ The staff could lose some of their problem solving skills if they rely
on Lepo.

Some answers to these problems are suggested in the next section as
pending research topics. It should be noted, though, that many of these
disadvantages apply to human diagnosers as well.

100

6.6 FUTURE RESEARCH

Lepo should be accessible from the automation displays that the plant staff
use in their everyday work. Some users may prefer to view the explanations
visually in the mimic diagrams, while others prefer text displays. Graphical
interfaces can be constructed for explanation, or existing interfaces
enhanced to support explanations. Via its connections Lepo can be linked to
the automation in existing plants.

Figure 39. A three-dimensional interface to Lepo.

As the capabilities of the display devices continue to grow, it will become
possible to find new interaction mechanisms. Animation and three-
dimensional graphics will be increasingly used. We have built a virtual
reality model of a steel plant, through which explanations concerning the
plant items can be accessed (Figure 39). The model will be used to study
alternative navigation methods for plant information. Since Lepo has been
integrated to the WWW, it can be accessed through browsers just like any
other form of on-line documentation. This line of development may
ultimately lead to a point where all applications appear as electronic
documents.

In the domain of digital electronics design, there is a lot of research into
analysis of logic circuits [Brayton et al. 1987, Biswas 1986, Bostick et al.

101

1987, Malik et al. 1988, Yang & Ciesielski 1991, Hong & Muroga 1991].
More extensive minimising techniques could be used to cut the explanatory
search, replacing the network under study with an equivalent, but smaller
network. Such enhancements should be studied in more depth. The
experiences of modelling and analysing digital circuits with VHDL [IEEE
1076 1987] could likewise be applied to Lepo.

Minimisation is a way of transforming the logic into a new form for
easier analysis. It could also be used for presentation. Transforming the
logic into another visual form (for instance, ladder logic into function
blocks) could make certain things easier to see for humans. However, it is
not clear whether the plant staff would find multiple representations of the
same logic more disturbing than illuminating.

The explanation algorithms of Lepo carry out a heuristic search in the
network created by the logic nodes and gates. Currently the search
procedures are implicit in the explanation subroutines. They could be
formalised as a parametrised search. The same applies to the simulation
algorithms in Lepo. In essence, they perform time-based constraint
propagation in dependency networks, although the approach is not explicitly
formulated as such. The formal methods of temporal logic [Perkins &
Austin 1990], interval arithmetic, and algorithm analysis should all be
studied in relation to the problem space set by Lepo.

As we noted, the users may not understand the imprecision of the
heuristic search. They could trust Lepo too much. Therefore Lepo should
also be able to give warnings and rationale of its own reasoning processes,
to disillusion the users. This is an important topic for further research. Many
of the explanatory techniques detailed elsewhere in this thesis would be
directly applicable. For instance, the heuristic search algorithms could be
formulated as explainable tasks.

What-if questions are not yet available to the users, although Lepo
internally uses simulation for similar purposes. Simulation essentially
answers the question “What would happen with these input values?”. This
question can be implemented as soon as suitable interfaces are available for
defining the input states. The more involved question, “How can we drive
this output to a given state?” would require more exhaustive simulation with
minimisations.

The explanations of the purposes of logic have not yet been
implemented. The object structures of Lepo allow straightforward
implementation of means-end models, once such models are available
concerning automation logic. Logic design environments should be
extended to allow for recording such knowledge. The future PLC
programming tools are likely to be based on the IEC 1131 standard.
Common languages will then facilitate better information transfer between
the tools [Lewis 1996]. In such an environment it would be possible to
enhance the tools with knowledge caption.

102

Logic explanation stops at the limits of the automation. The connections
of the inputs and outputs to the process are not modelled. However, changes
that the logic makes in its outputs affect the process and, eventually, show
up as changes in the inputs. This feedback via the process (or people) has
been outside the scope of Lepo. To achieve full understanding of the
behaviour of the plant, all its parts should be analysable together. This
implies that to fully explain logic, the related processes and people should
be explained as well, which leads us to a large area of diagnostic problems.
Here we have focused on a more manageable subset of this problem
domain.

One possibility for extending Lepo outside the borders of a PLC would
be to model the processes and the people as discrete (binary) machines. This
simplification would then render them analysable by Lepo. Although such
explanations would be coarse at best, they could be of help in some cases.
[Paanasalo 1996]

It is possible that the plant staff would actually resist the use of Lepo. It
could be seen to taking away a mentally laborious yet rewarding task. The
issue of trust could also work against the system. Moreover, relying on Lepo
the staff may lose some skills in problem solving that would be badly
needed where Lepo is no longer usable. Studies need to be carried out on
these aspects in plants with the actual use of the systems.

More filters could be built for popular logic languages. The IEC 1131
standard, if successful, could lead to a widely used interchange format. It
would then suffice to create a filter in Lepo for the five languages of this
standard16, and a wide range of different logic programs would become
available for Lepo. However, the high-level languages of the standard
(particularly ST, Structured Text) are no longer easily analysable by the
binary logic networks of Lepo. New modelling and analysis methods will be
needed to explain high-level code.

It is very awkward to recover the operation of the PLC from the outside.
Instead, the PLC itself should contain Lepo’s functionality. Since many
PLCs today are implemented with powerful microprocessors, this would be
quite feasible. The PLC would then not only execute the logic but also
explain it when required. Likewise the automation systems could explain
themselves. In essence, this would mean expansion of the concept of
explainable objects to cover explainable systems.

These topics form interesting possibilities for future research. Our main
aim in this thesis has been in studying practical approaches to explanation
that can be implemented in industrial settings. Judging from the reception of
the Lepo C++ prototype, we have succeeded.

16 Or just to the IL (Instruction List) language that is very close to the
intermediate language used in Lepo.

103

7 EXPLANATION AS INTERACTION

We propose to use hypertext17 as the main presentational medium for
explanations. It also conveniently serves as the presentational metaphor and
the dialogue model. In this light, explanations can be considered to be active
documentation that can present itself in ways suitable to the situation. In our
systems, the situations have been explicitly modelled as objects, termed
“contexts”.

We have applied this principle in the VICE and Lepo prototypes and
studied the effects of hypertext with on-line documentation. As shown in
Figure 40, the emphasis in this chapter is on the “Document navigation”
task of the framework.

Explanation
types

Tasks

Models

FunctionalBehaviouralStructural Teleological

Model
clarification

Abstraction

Justification
of reasoning

Document
navigation

Design
recovery

Behavioural
diagnosis

Factual

Functional

Strategic

Processes Automation Support
systems

Figure 40. This chapter deals with the Document navigation task.

17 We do not distinguish hypermedia from hypertext in this treatment; we
consider hypertext from a general viewpoint that encompasses technical
documents containing other media as well as text. Our explanations are mostly
text-based, although some graphics are used as well.

104

In this chapter, Section 7.1 first introduces the concept of hypertext applied
in explanation. Section 7.2 then expands the concept with advanced access
mechanisms and evaluates the results with a prototype. Section 7.3 expands
the palette further with the notion of context. Section 7.4 brings these
concepts together into a dialogue model. Section 7.5 discusses the results.

7.1 HYPERTEXT

Hypertext [Conklin 1987] has become a widely accepted way of presenting
information even in industry [Årzen 1991]. During the time that the
research for this thesis was being carried out, hypertext has advanced from
isolated systems to a seemingly ubiquitous presence of the World-Wide
Web (WWW) [Berners-Lee et al. 1994]. At the same time, the creation of
documents has more or less made the transition from paper to an electronic
form, which helps the content creation of hypertext. The progress towards
structured documentation, most notably SGML [ISO 8879 1986, Smith
1992], has further increased the potential of hypertext for presenting
information.

7.1.1 Dynamic documents

We distinguish two kinds of electronic documentation: static and dynamic.
Static documentation, for instance a book on a CD-ROM, is constructed
with the publisher’s machines well before its use. A dynamic document, for
instance a database report, may be created only just before showing it to
users [Gruber et al. 1995]. In reality, there is no clear division between the
two kinds, and many electronic documents are a combination of both. In
fact there is an infinite range of possibilities between these two extremes.
They only differ in the creation time that can be well in advance or just
before publishing.18

Explanations are dynamically created documents. They are constructed
in a system after the user asks a question. The outline and possibly some of
the contents of the explanation may have been written in advance by the
system’s designer, but the rest is crafted from the knowledge contained in
the system.

The degree of prefabrication depends on the system. Usually it is not
feasible to predict all different kinds of explanatory situations beforehand

18 This makes an interesting analogy with computer programs, where subroutine
calls may be linked beforehand at compile time (early binding), or just at the time
of the call (late binding). Moreover, automated “compilation” of documents from
smaller units is becoming possible in today’s tools. In many respects, electronic
documentation is becoming just another form of software, with similar problems.

105

[Swartout 1983]. This may be one of the reasons why help systems for
traditional software are not very satisfactory [Schneiderman 1987]: they fail
to understand the user’s situation and can only present prefabricated
material that may not be what the user is looking for. Explanation could
enhance, if not replace, the current help systems.

7.1.2 Hypertext for explanation

Hypertext is a convenient medium for explanation in knowledge-based
systems. Many knowledge representations, particularly those put forward in
this thesis, can be considered as items of data with links between these
items – in other words, hypertext. There is a clear analogy between semantic
networks and hypertext [Conklin 1987, Tyrväinen 1994].

Norman [1983] notes that a common conceptual model should be
shared among interface designers and users. Hypertext facilitates this
sharing, because it is sufficiently close to the representations we propose for
design systems and knowledge bases in plants.

Hypertext is highly suitable for the question-answer dialogue mode that
is common in explanation [Cawsey 1992]. Questions can be specified by
pointing at hypertext links, and answers can be shown as new hypertext
[Moore & Swartout 1990]. Unnecessary explanatory details can be hidden,
yet remain accessible through links at any time they are needed. Supporting
documentation can also be referenced from within the explanations as links.

Explanation subsystems can be viewed of as sophisticated interactive
report generators. Some of them (including the one in VICE) may function
in a batch mode where standardised reports are created through the
explanation mechanisms. These reports can then be imported to text
processing systems or databases for inclusion into other documentation, or
for storage. The stored reports could also be reused as a basis for further
explanations at a later time.

7.1.3 Content generation

We have applied hypertext for explanations in the VICE and Lepo
prototypes, described in more detail in Chapters 4 and 6. In both prototypes,
the explanations are assembled from the system’s models and shown in
hypertext windows. For VICE, we had to construct our own dynamic
hypertext languages and browsers in Lisp, as these were not available in the
environment we used. In the case of Lepo, we could benefit from the
existing infrastructure of the WWW. Explanations in Lepo are created in
HTML (Hypertext Markup Language) code [Berners-Lee et al. 1994] and
shown on Netscape, a commercial WWW browser.

The VICE explainer uses a template approach [Rubinoff 1985] for
content generation. The templates contain the text and graphics outlines of
the explanations with placeholders for values that are dynamically retrieved

106

from the objects. Conforming to the explainable object principle, the
models’ objects contain the templates and fill them in. For Lepo, the same
mechanism has been foreseen but not yet implemented. Currently Lepo’s
templates are implicit in the object’s methods.

A novel feature of the VICE hypertext language was the procedures.
The templates could contain Lisp code that was evaluated in the context of
the explanation. This construct allowed us to dynamically generate the
contents of the fields, a feature which proved valuable with VICE. Recent
WWW developments, for instance Java [Campione & Walrath 1997], serve
similar purposes by allowing code execution in the document viewer’s
environment.

7.2 ENHANCED HYPERTEXT

Plain hypertext suffers from problems that originate from its web-like
structure. A paper document can be read or browsed from cover to cover,
whereas hypertext is more suited to random paths guided by curiosity. With
a traditional document the reader retains a sense of orientation. It is easy to
tell from the physical form of a book whether a passage belongs to the
beginning or the end of the book. With hypertext it is easy to get lost in the
web of links [Conklin 1987]. It is difficult to anticipate the size of the
document, since it is hidden behind the links. Therefore various indexes,
guides, and search facilities are needed with complex hyperdocuments
[Rivlin et al. 1994].

A related problem is that a reader, faced with multiple links, will have
difficulty in deciding which link to follow [Conklin 1987]. Links in
traditional hypertext documents offer little information about the target they
point to. Equipping the links with more semantic information about the
target could help the users navigate in a document [Halasz 1988].

Dynamically constructed hypertext suffers from the same problems as
static hypertext. Explanations based on hypertext should therefore take into
account those problems. We now briefly look into solutions that can
enhance static hypertext. The techniques, once they become usable, can then
begin to be used for explanations in the manner that will be described in
Section 7.4.1.

7.2.1 Model-based hypertext

We have constructed enhanced access mechanisms in hypertext in the
Cicero project [Kaarela et al. 1995]. The central idea is to use an
information model to structure the documentation. The model contains
semantic information about the elements of the document, which can help
navigation. We have built a hypertext linker that merges the information
model with the hypertext documents. The documents have been marked up

107

with identifiers that correspond to the items of the model. The resulting
document contains hypertext links that match the semantic links in the
model.

The other main feature of the approach is to use the screens of an
automation system as a graphical map to the documentation. Every item on
a screen (for instance, a pump) can potentially have a link to the
documentation related to that item. In plants, it is essential to have direct
access from the automation to the electronic documents, especially in
hurried situations.

We used the gas system discussed in Chapter 4 as a prototype. The
existing means-end model was reused as the information model. The
documentation of the gas system totalled some 150 pages [Peach 1994]. We
used publicly available HTML tools to translate the formatted document
into hypertext, organised into a hierarchically and linearly linked set of
WWW pages [Takalo 1995].

Figure 41. The enhanced on-line version of the gas system documentation.

Figure 41 shows an example screen from the documentation system
prototype. We enhanced the resulting hypertext with the means-end
information. Parts of the document and the corresponding model items (C)
were linked through unique identifiers. The result was a document with
semantic means-end links corresponding to the model. The documentation
was accessed through a publicly available WWW browser (D).

108

We connected the browser to the XD automation system (B) and the
XIS process information system (A), both from Valmet Automation, Inc.
Our partners in the Cicero project had built displays for the gas system with
these tools. The connection enabled navigation from the automation system
or process information system displays into the relevant points in the
documentation, as depicted with the dotted lines in the figure. In addition,
the WAIS indexing engine [Stein 1991] was used to allow keyword-based
searches in the documentation.

7.2.2 A usability study

We evaluated the on-line documentation prototype in a usability test, where
twelve subjects carried out a set of problem solving tasks related to the gas
system. We collected data on the time required to complete the tasks and
evaluated the correctness of the results.

The aim of the test was to find out how model-based enhancements
could benefit in browsing the documents. The point was to reuse the same
models that had been constructed earlier for explanation, although
explanation generation was not used for this limited test. The test has been
documented in depth by Takalo [1995], with the main features summarised
here.

The subjects were divided into three groups of four people. Group A
used a paper version of the documentation, group B used a plain hypertext
version, and group C used hypertext with the enhanced access
mechanisms19. All had access to process flow diagrams. The tasks were
crafted to resemble actual problem solving situations. Four of the nine tasks
required the use of means-end knowledge, for instance: “To make the
conditions suitable for physics, the gas pressure in the chambers is
maintained at a steady 1.4 mbar over the ambient pressure. How is this
control carried out?”. This knowledge was available indirectly in the texts
and directly in the models accessible through the process information
system screens.

We hypothesised that it would be easier to find answers to these
questions through the enhanced access mechanisms. We received mostly
satisfactory answers to the questions. Upon subjective inspection, it
appeared that the subjects who had access to the enhanced on-line
documentation did indeed find the best answers in the shortest time. The
numeric estimates in Table 7 show that group C had the best performance.
This corresponds with the increase in the power of the available tools. The
details for the calculations are available in [Takalo 1995].

19 The subjects in were already familiar with the WWW and had some prior
experience of the various search facilities available there.

109

Table 7. The performance estimates of each group.

Performance per group
A. Paper B. Hypertext C. Enhanced

6.9 6.8 8.2

Our observations of the subjects made us conclude that, in this case, the
boolean string search facility was the most significant utility of enhanced
on-line documentation. It was fluently used by all subjects who had access
to it. In addition, the navigation from automation screens to relevant points
in the document seemed beneficial for the questions that required means-
end information. Likewise the links inside the document that reflected the
means-end model did give some guidance to find purposes and
implementations.

Many of the subjects complained of being lost in the hypertext, unaware
of the context, and thus not knowing whether there would be more valuable
information elsewhere. Group C also complained that the search facility
overwhelmed them with a multitude of possible choices. Nevertheless, they
considered the facility indispensable. An active table of contents that shows
the reader’s position was felt to be desirable. The static index in our
document seemed insufficient to guide the users through the information.

We take these complaints as evidence of the disorientation that people
suffer with hypertext [Conklin 1987]. We suspect that people in group A
could employ the familiar browsing styles, instant access, and location
memorising that paper documents allow. However, tasks that required
finding dependencies did lead more often to failures with paper users.

It appears that static on-line documents, even enhanced with models,
are not sufficient. The systems should guide the users more through
participating in a dialogue with the users. The following sections show
ways of maintaining explanatory dialogue.

7.3 CONTEXT

Knowledge is little;
to know the right context is much;

to know the right spot is everything.

– Hugo von Hofmannsthal, The Book of Friends, 1922

Explanation based on hypertext has similar shortcomings to hypertext
documents. Users must retain their orientation; they must know what is
being discussed. In VICE, we alleviate these problems by keeping an
explanation history that allows the user to come back to previous

110

explanations. All explanations are objects that are retained during diagnosis
sessions. They could be browsed afterwards, and could result in
continuation questions just like newly generated explanations. In Lepo the
same facilities are available in the WWW browser.

A more fundamental solution to the problems is to maintain a dialogue
with the user [Kobsa & Wahlster 1989, Cawsey 1992]. When explanations
are viewed as conversations, many orientation problems are solved through
dialogue maintenance techniques.

We base dialogue on a simple model of context. In our definition,
context is the subset of the knowledge contained in a support system that is
the topic of an ongoing conversation. The knowledge is viewed as a context
space that is traversed in a conversation. In explanatory dialogue, the topic
and the context are constantly changing (Figure 42). This implies that in all
phases of a conversation, the context must be maintained to give
understandable explanations.

Context

Change of
contextC1

C2

C3C4

Figure 42. In explanatory dialogue, the context is always changing.

Figure 43 illustrates our context model. All classes of knowledge in a
support system – objects, tasks, their properties, and relations, among others
– are potential degrees of freedom that form a multidimensional context
space. Contexts in VICE are defined as tuples of (object, property, value,
machine component, task, abstraction level). An example of a context
instance could then be (SEAL-RUB, LIKELIHOOD, ******, BEARING-
L1, HISTORY-ANALYSIS, ******). Some dimensions of the context can
be unspecified (here shown with ******), which reflects the specificity of
the discussion. Initially the topic is not well defined and the context is
unspecified. During a conversation the topic gets gradually refined and thus
the context gets more clearly specified.

111

Component

Likelihood

Abstraction
level

Partial context

Context

Figure 43. Context is the subset of all the possible knowledge in a system.

7.4 DIALOGUE

We have used the notion of context to help explanatory dialogue in several
ways: to understand questions, to search for answers, and to generate the
answers’ contents. Figure 44 shows the dialogue model we propose for
explanation (the model shown here is an expanded version of the one
outlined in Paper II). It shows the various phases in the process of creating
explanations and the flow of data through the process. The bold arrows
show the main explanatory cycle, while the other parts bring additional data
to the process.

7.4.1 The explanation creation process

The user triggers the process by asking a question. In hypertext-based
explanation, this is accomplished by pointing to the question that is shown
as a hyperlink, or by choosing a suitable question from a menu. First the
question must be understood (1). For instance, the question “Why” may
concern either strategy “Why do you ask this question?” or reasoning “Why
do give this answer?”. In our case this phase is straightforward, since we
model all questions as predefined classes (“types” in the figure). The
suitable classes are selected by the menu choice. If no specific question is
selected – which is the case with such continuation questions as “More” –
all classes are selected. This phase is more involved in systems that use
natural language for interaction, for instance in Mycin [Buchanan &
Shortliffe 1984], but becomes easy with hypertext [Moore & Swartout
1990].

112

(4) Generate
contents

(2) Refine
question

space

(6) Show as
hypertext

(5) Filter
details

(3) Search
for answers

(1)
Understand
questions

User
profile

Previous
explanations

Answer
types

Question
types

Object
models

Structured
documents

Unstructured
documents

User's
Question

Possible
questions Chosen

questions

Chosen
answers

Contexted
answers

Explanations

Hypertext

Search
criteria

Relevant
documents

Preferences

Explanations

Queries

Templates

(7) Maintain
context

(8) Analyse
user

(9) Search

Context

Figure 44. A dialogue model for explanation creation.

Next, the question space must be narrowed down (2), if there are several
possible questions. This refinement involves defining the desired context.
Each question class has a defined context where it is applicable. If a
previous context is available (7), it is used as a starting point. If some
dimensions are not specified, the user is asked to refine the context. In
practice this in done by listing the possible values for the unspecified
dimension in a multiple choice menu. For instance, if the component
dimension were unspecified, the user would choose a machine component
or a whole subsystem from the menu. Various object hierarchies could be
used instead of menus to help the refinement.

Ultimately the refinement results in a single question. The predefined
answers are then matched with the question (3). Only those answer classes
are chosen whose context corresponds to that of the question. This matching
is based on the match roles for the dimensions. The roles are attributes of

113

each dimension, as specified in the questions and answers. A dimension can
be GIVEN (must be explicitly listed in the question), EMPTY (must be
empty), FIND (must be filled in during answering), or IGNORE (irrelevant
– can be anything). These match roles are compared between the questions
and answers. The answer classes whose match roles satisfy the conditions
are considered to be in the proper context. Those classes are then
instantiated as suitable answers.

Next the answer’s contents are generated (4). The hypertext templates
contained in the answers are filled in with values of the context. Portions of
the templates are received from the explainable object models in response to
explanation queries. The procedures contained in the templates are then
executed for additional contents. The resulting raw explanations are then
filtered (5) according to the user profile. This profile is created through
analysing (8) the user’s experience, background knowledge, beliefs, goals,
or other factors. In our case, the profile consists of levels for each
knowledge type. A suitable level is selected by the user. If there are details
in the answers that are not compatible with the chosen level, they are left
out of the explanations.

The resulting explanations are stored with their contexts (7) for later
retrieval and shown as hypertext (6). The hypertext templates are translated
from an internal representation into a visible form. The objects listed in the
templates are visualised as hypertext links. The various typographic details
are added. References to other documents can be shown as hypertext links.
Structured documents are offered in the order of relevance to the answers, if
suitable search (9) criteria have been defined. Unstructured electronic
documents are simply referred to through links that have been defined in the
templates.

The user completes the cycle by reading the explanation that now
consists of hypertext questions and answers. If he/she wants more detail on
one of the mentioned topics, pointing to one of the hypertext links (objects,
questions, answers) gives a contexted trigger, and the cycle continues.

Not all of the dialogue phases need to be included in all systems.
Portions of this general model can be adopted as necessary. For instance,
the VICE explainer does not have an explicit user analysis and filtering, or
search mechanisms for external documents. In the Lepo explainer, the
question-answer pairs are more hardwired, and phases (2) and (3) are
straightforward.

7.4.2 The use of context

Context is essential for our dialogue model. It is used for several purposes
in the process:

114

♦ Question disambiguation. The context information stored in links
serves as an implicit mechanism for understanding the context of
the questions.

♦ Explanation planning. The mapping of questions to answers is
based on context. This scheme allows an heuristic search for
finding the answers.

♦ Content generation. The context defines the knowledge space that
the answers must talk about. Explainable objects get some of their
case-specific attributes from context.

♦ Search criteria. An explicit context can be taken as the keyword set
for finding documentation that is relevant to the given explanations.

The principle of storing context information in hypertext links, used in the
VICE and Lepo prototypes, has recently become popular in the WWW. The
dynamic HTML documents created by databases or search engines now
routinely represent context information as encoded fields in the links. A
good example is the Alta Vista search engine that returns a list of document
links in response to queries [Alta Vista 1996]. We consider the popularity of
hypertext to be empirical proof of the concept.

The notion of contexted hypertext could be taken beyond links. The
hierarchical structure of the hypertext could be used to derive the context
from higher levels of the hierarchy towards the bottom levels, and vice
versa. Figure 45 illustrates this point. Not only do individual links have a
context but all text items can have one, either explicitly given or derived
through its position in the tree. Different contexts could be assumed in
different parts of the hypertext explanations. The user could then more
naturally point to any parts of the text, not just to links. In the VICE system,
the graphical bullets before paragraphs each had a context that referred to
that paragraph as a whole, whereas links inside the paragraphs had a more
limited context. The derivation of context through the hierarchy was not,
however, implemented in the system.

115

Figure 45. Deriving context in the hierarchical hypertext structure.

7.5 EXPERIENCES WITH HYPERTEXT

In our experience, hypertext has been a useful choice for communicating
explanations. The computer literate users of our systems have accepted the
notion of hypertext with little hesitation. In the future, as people get more
and more familiar with hypertext, it will become an even more valuable
medium for explanations.

By way of conclusion about the usability test, we saw that means-end
based navigation in online documentation worked as expected. The
evaluation of the small data set suggests that enhanced access mechanisms
help the operators to find more accurate information in less time. The utility
of making means-end knowledge explicit was apparent in questions that
used the means-end knowledge contained in the model. The means-end
displays were not seen to be very helpful20, but the means-end links in the
document were used.

The realisation of the VICE and Lepo prototypes show that our dialogue
model works satisfactorily, although it could be improved. Our subjective
evaluation suggests that the users adopt the question-answer interaction
style easily. This may be due to the inherent nature of diagnostic
explanation: it falls naturally into a expert-novice mode where the novice
poses questions to the expert. A tutoring system [Sleeman & Brown 1982]
would have to assume a different mode, where the expert presents

20 One the subjects wanted to dispense with the means-end displays altogether
and just have links from automation screens to corresponding documents. It
appeared that in general the subjects could have needed more training in the use of
the means-end displays, which does not speak for the utility of the concept for
casual users.

116

information and the novice indicates the understanding gained. Even there
the same dialogue model would work, but the answer planning and
generation would differ.

The template approach to explanation allows some dynamic generation.
Instead of completely prefabricated answers, we allow the activation
context to influence the answer generation. The active procedures and the
assembly of templates from several explainable objects gives a sufficient
degree of freedom to achieve dynamic answers. Unfortunately, template-
based text generation suffers from consistency and inflexibility problems.
As Tanner & Keuneke [1991] note, template-based explanation generation
cannot be as flexible as approaches that generate text from deep models
[Swartout 1983, Moore & Swartout 1990]. In any case, the templates are
directly implementable with today’s tools and therefore have a high
pragmatic value.

Our context model is not complete. Among other things, it does not
account for temporal ordering of dialogue events, nor is it based on any
linguistic theory. However, it was directly implementable with the object
models we had, and sufficed for the need of referring to parts of the
system’s knowledge.

The notion of dialogue in our system is somewhat bare. We do not
explicitly plan the dialogue; it occurs naturally through the heuristic
question/answer matching and the user-driven navigation through contexted
hypertext links. Stronger models for dialogue do exist [Cawsey 1992,
Moore & Swartout 1990, Swartout et al. 1991, Weisang & Zinser 1992],
giving supposedly better results. Also the use of levels for user modelling in
our approach is not sufficient. Better user models could further enhance the
utility of the explanations [McKeown et al. 1985, Paris 1993]. Filtering of
excess details should also be given more study.

Applying these principles into the prototypes described in this thesis
gives good targets for further research. It would be particularly interesting
to conduct usability studies of the various approaches to explanatory
interaction. At this point we must content ourselves to say that our dialogue
model was a workable solution for the prototypes presented in this thesis.

117

8 RELATED RESEARCH

The topic of this thesis, explanation, is on the intermediate ground between
several fields of science and technology. There are large amounts of
research that are related to our work, particularly in the areas of artificial
intelligence, computer science, process engineering, human-machine
studies, and cognitive sciences. We survey here the work that either bears
similarity to our results or is otherwise parallel to the treatment of
explanation in this thesis. With each topic we discuss how the work is
related to that presented in this thesis.

Of the sections in this chapter, 8.1 reviews the development of
reasoning and modelling mechanisms for explanation. Section 8.2 studies
some explanatory support systems for the plant domain, their effect to the
user’s mental models, and the design knowledge needed. Section 8.3
reflects on the research on knowledge-based analysis of logic. Section 8.4
discusses the research on human-machine interaction from hypertext,
dialogue, and user modelling viewpoints.

8.1 APPROACHES TO EXPLANATION

Various approaches to explanation in knowledge-based systems exist in the
literature. The emphasis in explanation research has changed over time from
reasoning to representation to tailoring to interaction (Figure 46).

Tracing
expert
system

execution

Explicit
control &

architecture

User
modelling

Dialogue
planning

Reasoning Representation Tailoring Interaction

Figure 46. The shifting of emphasis in explanation research.

Historically there has been much interest devoted to the problem of
explaining the reasoning of an expert system. The rule-based Mycin system
[Buchanan & Shortliffe 1984] allowed two kinds of questions concerning
reasoning: “Why” and “How”. The questions were answered through
tracing the execution of rules and explaining the derivation of results
through the rules. These two forms of questions have been very popular in

118

commercial expert system shells [Wick & Slagle 1989]. However, it has
since become apparent that the rules are too detailed to be shown to the
users [Jackson 1986]. Other formalisms were needed to raise the level of
explanations.

Explicit models of control and the architecture of the expert system
have been proposed to provide better explanations [Clancey 1983, Swartout
1983, Neches et al. et al. 1985]. More recently, it has been hoped that user
models would tailor the level of detail in explanations so that users could
follow them more easily [McKeown et al. 1985, Cawsey 1992, Paris 1993].
During the 1990’s it has been realised that effective explanations must take
into account the dialogue context [Moore & Swartout 1990]. Explicit
dialogue planning can provide better interactive explanations [Cawsey
1992, Moore & Mittal 1996].

In the following sections, we examine some of the reasoning and
modelling techniques and, in Section 8.4, the interaction techniques that
have been proposed for explanation.

8.1.1 Explaining tasks

The Neomycin system extended the explanations of Mycin to cover
problem-solving strategies [Clancey 1983]. The problem solving in
Neomycin was modelled as tasks that derived conclusions and as metarules
that controlled the reasoning. The execution of the tasks was traced and
conclusions were explained by the task that produced them. Explanations of
the strategies were obtained by examining the metarules. In this way, the
explanations were raised to a higher conceptual level, closer to the user’s
mental mindset [Hasling et al. 1984]. The concept of tasks was found to be
convenient for showing to the users [Clancey 1983].

Similar task-based approaches have since been developed further.
Keravnou & Johnson [1986] emphasise the importance of explaining the
control strategy to the users. Chandrasekaran [1986] formulates the concept
of generic tasks, where each task is specialised to solve a specific problem
and to explain its reasoning [Tanner & Keuneke 1991]. We have based our
explanations in the VICE system on the same concept. We use the term
“explainable tasks” to stress the active role of tasks in explanation creation.
David & Krivine [1989] have constructed a similar task-based system called
Diva, from which we have adopted ideas into VICE. Mittal & Paris [1995]
also stress that for good explanations, the problem solving models should
contain explicit representation of the tasks.

The notion of explainable tasks bears a certain similarity to the
knowledge sources in blackboard systems [Engelmore & Morgan 1988].
This similarity could be exploited to provide blackboard systems with
explanations for conclusions. However, in blackboard systems the control is
nearly non-deterministic, complicating the strategic explanations.

119

Inversely, the derivation of explanations from models by generic
explanation tasks resembles the problem solving in blackboard systems,
where multiple levels of data are gradually transformed to higher level
results by active agents. Could explanations be constructed by blackboard
systems, abstracting low level details into coherent high level accounts?
This question forms a possible topic for further research. The four levels of
logic explanation (Chapter 6) are a step in this direction.

8.1.2 Explaining models

Swartout’s [1983] XPLAIN system introduced explanation of models. This
influential system contained explicit models both for the domain knowledge
and for problem solving. The expert system and its explanations were
automatically derived from these models, helping explanation creation and
maintenance. The domain terminology was explicitly defined in the models,
easing text creation. XPLAIN’s ideas were developed further in the EES
(Explainable Expert Systems) framework by Neches et al. [1985] and
Swartout et al. [1991]. The key point there was that explanations’ contents
are formed when the systems are designed. If design choices are recorded,
explanations can be generated through this design knowledge. Explanation
can cover the design of the expert system as well as its execution.

Chandrasekaran & Swartout [1991] point out that the more explicit the
knowledge representations in a system are, the better its explanations. Each
kind of explicit knowledge makes specific kinds of explanation possible.
This is equivalent to Winston’s [1993] remark on how finding the right
representation is the key to intelligence. The way of representing a problem
can dramatically affect how easy or difficult it is to solve.

The notion of explainable objects has not been explicitly formulated in
the literature, although it is used implicitly in most explanatory systems. We
want to emphasise the benefits that this concept offers: modularisation of
explanatory duties and inheritance of explanations. Both of these principles
are well known in object-oriented analysis [Meyer 1988, Rumbaugh et al.
1991]. This approach is valuable in settings where major parts of the
software surrounding explanations are constructed with objects. For
instance in HEP control systems this is desirable [Arnault 1992, Barillere et
al. 1993, Butler et al. 1993, Flasinski 1994]. The emergence of object-
oriented databases [Kim 1990, Hughes 1991] gives a convenient
implementation platform for the proposed explanations.

The representations we proposed in Chapter 4 essentially form a
domain-specific semantic network language that offers a vocabulary for
talking about plants. Hayes-Roth & Jacobstein [1994] advocate the use of
such languages to make the knowledge bases more understandable. In fact,
the mere classification of objects into inheritance hierarchies already gives
much valuable information [Fikes & Kehler 1985]. Our models are limited
to binary relations, which makes them easier to explain and to understand

120

[Broadbent et al. 1986]. Stephanopoulos has studied a wider set of process-
specific relations in the Design Kit engineering system [Stephanopoulos
1990]. Kowalski & Lebensold [1989] have designed a diagnostic system for
pulp production that uses a number of relations to organise knowledge into
taxonomies. They point out that much of the descriptive domain information
in contained in the relations themselves.

Gruber & Gautier [1993] and Gautier & Gruber [1993] report promising
work on generating causal explanations from qualitative models. Their
method is implemented in the DME environment developed at Stanford
[Fikes et al. 1994] that integrates domain models and mathematical
constraint expressions into explanation. The aim of their work is to explain
events in the simulations and the contents of the models. The reported
explanation mechanism uses similar approaches to those that we have
adopted. The contents for the explanations are first generated locally from
the model components, then combined together according to the causal
chain of an event simulation, then filtered to remove detail, and finally
shown as formatted English hypertext over the WWW. Some items in the
generated hypertext are links pointing to model objects. Mouse clicks to
these links are interpreted as continuation questions.

Compared to our work, Gruber and Gautier are more directed towards
explaining events in qualitative models. They demonstrate the results with a
space shuttle thruster process. We have been more interested in the
behaviour of binary automation, although similar graph-based techniques
are applied in both systems to understand causality. Their mechanisms
employ natural language generation techniques, which we have not adopted
in the prototypes. We put more emphasis on analysing the requirements for
explanations in several domains.

8.1.3 Functional knowledge

Functional knowledge is central to our approach to explaining systems in
plants. Several researchers have studied ways of modelling and presenting
functional knowledge: Rasmussen [1986], Franke [1991], Keuneke [1991],
Lind [1990], Rytoft et al. [1990], Larsson [1992], Vicente [1992], Sassen
[1993], Van de Ree [1994], Bisantz & Vicente [1994].

We distinguish a specific form of functional knowledge: the
teleological meaning behind the functions of plant systems [Franke 1991].
This contrasts the processing-oriented views where the functional input-
output mappings in systems are considered to be functional knowledge.

Rasmussen’s influential book “Information Processing and Human-
Machine Interaction” [1986] is a rich repository of ideas on plant analysis
and modelling. His means-end modelling forms the underlying principles of
much of our work. Rasmussen suggests that means-end models could be
used to capture design knowledge, manage complexity, and justify designs.
We have developed these ideas further and realised them in our prototypes.

121

Rasmussen [1986], Lind [1990], Tanner & Keuneke [1991], Franke
[1991] and Bisantz & Vicente [1994] have all suggested the use of means-
end relations to give explanation on purposes of plant items. We have
formulated an algorithm for this aim and tested the concept with a
prototype. In Paper VIII, we have also suggested a novel application of the
concept into automation logic. Bisantz and Vicente [1994] have created
similar algorithms for generating explanatory operator support over means-
end abstraction hierarchies. They extend the model with topological
knowledge, which facilitates better diagnosis and advice on possible control
options.

Franke [1991] derives teleological explanations from qualitative models
(Qsim) that are enriched with descriptions of purpose. He uses three basic
primitives “guarantee”, “prevent”, and “conditionally” to derive a set of
relations that are potentially richer than the ones we used. His primitives
open up an opportunity for us to extend our contribution models, although
the added representation effort should be balanced against the expressive
benefits.

Lind [1990] extended Rasmussen’s ideas with his Multilevel Flow
Modelling (MFM) method. It captures knowledge about causal
interdependencies between plant items in the form of flow structures. We
have applied this methodology in Papers III and IV. MFM modelling has
greater representational power than means-end models, and is therefore
potentially more useful in analysing plants. As far as explanation is
concerned, we have mostly applied the means-end-oriented subset of MFM.

Several researchers have studied MFM. Larsson [1992] has constructed
a toolbox for MFM modelling with algorithms for alarm analysis, fault
diagnosis and sensor validation. Vicente [1992] has reviewed the use of
MFM in control room interfaces. Sassen [1993] has used the method to
construct diagnostic support systems for generic nuclear plants. Van de Ree
[1994] discusses the application of MFM in plant state abstraction. Kaarela
[1996] proposes MFM for structuring design-related knowledge, user
interfaces, alarm processing, and on-line documentation.

We have extended means-end modelling with ways to reduce its
computational complexity and modelling effort. Sassen [1993] has also
extended the means-end relations, with the slightly different aim of
modelling diagnostic uncertainty. In our contribution models, we suggest
including other modelling constructs, such as fuzzy logic and state
information. State machine representations are particularly attractive, since
the controls in plants are often based on recognisable sequences. This is
especially true in the case of high energy physics control systems [Adye et
al. 1992].

It is not clear that the domain experts would be able to create
contribution models. Johannsen & Alty [1991] suggest that a knowledge
engineer may be needed to identify and to encode the knowledge for support
systems, even if the language is close to the domain. Still, shown through

122

suitable interfaces, the constructs should be understandable both for experts
and end users, which in our view is a major asset.

8.1.4 Targets of explanation

Most researchers have assumed that explanations must closely reflect the
knowledge in the systems. Wick et al. [1988] and Chandrasekaran et al.
[1989] attack this assumption. They point out that in the real world
decisions are often justified by referring to more general knowledge,
unrelated to the actual decision making mechanisms. Explanation
mechanisms that use only knowledge external to the expert system are
loosely coupled, and ones that only use the knowledge in the models are
tightly coupled. Our systems favor tight coupling, since loosely coupled
explanations would be doubtful in some domains, such as safety systems in
power plants. However, the template method we use for text generation can
suffer from inconsistency problems [Swartout et al. 1991]. It can be seen to
loosen the tight coupling.

Chandrasekaran et al. [1989] have defined three kinds knowledge that
should be explained in expert systems: 1. Reasoning, 2. Models, and 3.
Strategies. We have adopted this classification: these levels correspond to
the functional, factual, and strategic classes of knowledge defined in our
framework in Chapter 3. However, we extend Chandrasekaran’s
classification along a new dimension: the target of explanation.

Much explanation research is confined to the limits of expert systems,
or knowledge-based systems in general. We stress that at industrial plants, a
support system should be able to explain the plant, in addition to explaining
itself. The targets of explanation in our framework therefore comprise the
processes, the automation, and the support system itself, as detailed in
Chapter 3.

Stephens [1992] proposes similar dimensions for advanced support
systems. Johannsen [1990] mentions two classes of computer use in
advanced automation systems: (1) computer control (supervision and
control systems), and (2) computer support (decision support systems).
These two classes correspond to the automation and support systems levels
of our framework. Enterline [1988] goes further and remarks that in
addition to data, information, and knowledge levels that correspond to our
framework, plant supervision calls for operational wisdom. We can only
hope that explanation given on the mentioned levels results in increased
wisdom.

8.2 EXPLANATION IN PLANTS

Process supervision has been a popular research topic from the early days of
computerized automation to modern systems. The literature emphasises the

123

difficulty of supervision: the complexity of the plants, the process-driven
operation mode, and the shortcomings of the tools. We could confirm many
of these problems in our case studies in plants. We have expanded the
treatment to cover the problems of the maintenance staff, who have been
studied less in the literature than have the operators. To augment the
problem study of Chapter 2, we now briefly recapitulate the research on
support systems, mental models, and design knowledge.

8.2.1 Support systems

Problems in processes and automation have been circumvented by
designing various kinds of knowledge-based support systems in plants
[Rowan 1989, Johannsen & Alty 1991, Leitch & Gallanti 1992, Oxman
1993, Hayes-Roth & Jacobstein 1994]. Durkin [1996] has analysed the
application types of expert systems in general from a massive survey of
2500 systems. Of those systems, the vast majority have been used for
diagnosis. This is natural, since many of the problems we found in our
problem studies could be solved through better diagnostic aids. Moreover,
as Durkin points out, in industry there is a large amount of expertise for this
class of problems, and diagnostic systems are relatively easier to develop
than many other kinds of systems.

Our developments are along the same lines: most of the results in this
thesis deal with either diagnostic systems or systems that try to indirectly
enhance diagnostics through offering assisting information [Kurki 1995].
Other popular application types include interpretation, prescription, design,
and planning, according to Durkin [1996]. Although support systems for
plants have been widely reported, much fewer systems seem to apply
explanation. Some illustrative systems that have used explanatory
techniques are surveyed in the following.

Sachs et al. [1986] have studied support systems with a simulation of an
oil production platform. Their knowledge-based Escort system, written in
Lisp, seeks to avoid costly shutdowns due to process disturbances. It
provides advice on plant alarms, their relative importance, possible
consequences, and the underlying reasons. A “Why” button on the
operator’s alarm screen gives elementary explanation of the diagnostic
reasoning.

The Tiger system for turbine condition monitoring, with its advanced
knowledge-based support, was discussed in Chapter 2. The Diva system
[David & Krivine 1989] was built for equivalent purposes. Diva is in many
respects similar to the VICE system used in this thesis: both systems are
designed as tools for vibration analysis of rotating machines, both organise
problem solving knowledge in a hierarchy of tasks and explicit fault
models, and both base explanations on traces of task execution. Diva is
reported to offer explanations on strategy and reasoning, and even some
negative “Why-not” explanations. The authors conclude that structuring

124

Diva through a task formalism undoubtedly made its maintenance easier.
We have come to the same conclusion with VICE.

The very design of the D.M.I. interface for a process control support
system [Le Strugeon et al. 1992] seems to imply explanation. The system’s
designers asked themselves questions “what, when, how” to guide the
design of the system to be able to give satisfactory information to the users.
The system itself appears to be a typical forward-chaining rule-based alarm
analyser. It does, however, contain facilities for justifying the reasoning for
several levels of users. A trace of the conclusions gives the proper context
for explanations.

Jovanovic & Maile [1992] report on the ESR system that offers
knowledge-based support for lifetime assessment of high-temperature
pressurised components (mainly pipes) on power plants. The system applies
hybrid techniques, including rules, objects, hypermedia, numerical calculus,
and data bases. The explanations in the system seem to consist mostly of
prefabricated reference material and dynamic database reports shown as
hypermedia, although the system does give some dynamic context-sensitive
support for navigation and management of several levels of detail. The
interaction can be either system-driven or user-driven.

Årzen [1993] reports on a support system concept that encompasses a
broad range of plant information. He proposes a plant database that includes
knowledge currently found in:

♦ Control systems (e.g. logic, interfaces, history & real-time data),

♦ CAD systems (e.g. drawings, 3-D object descriptions),

♦ Information management systems (e.g. supervisory and planning
functions),

♦ On-line documentation systems (e.g. manuals, data sheets),

♦ Design databases (e.g. process component and product
information),

♦ Plant simulators (e.g. dynamic models), and

♦ Real-time knowledge-based systems (e.g. qualitative models and
heuristics).

Årzen discusses the various ways that data could be represented in the
database and presented to users. A demonstrator system has been developed
in collaboration with several industrial partners. Built with the G2 expert
system shell, the demonstrator contains process simulators, user interfaces
for process engineers and end users, and a variety of modelling methods and
diagnostic algorithms. Although the concept does not explicitly target
explanations, it strives for the common purpose of making plant information
more comprehensible and accessible to humans from several perspectives.

125

Therefore we believe that Årzen’s concept could give excellent grounds for
constructing explanations for plants.

The Gradient system (Graphical Dialogue Environment) for operator
support features alarm analysis, consequence prediction, operator error
detection, fault diagnosis, and recovery procedures [Weisang & Zinser
1992]. The system contains an explicit dialogue subsystem. The dialogue is
designed with an interactive environment and various user interface
modules (termed “dialogue assistants”) are then automatically generated. In
a power plant demonstration, dynamically generated graphics and
explanations are shown to users through multiple coordinated displays. No
details are given on how the explanations are generated, however.

Zinser & Frischenschlager [1994] further report on a prototype of a
power plant control room that uses a number of modern interaction
techniques: visualisation, on-line documentation, multimedia, groupwork,
and support systems. Again, even though there are not explicit mechanisms
for explanation, the design of the control room applies many of the same
principles that we have seen useful for presenting explanations. Of
particular interest in the article are novel “mass” displays, where large
amounts of data are visualised through patterns that are reported to be easy
for the humans to follow. It would be interesting to see how explanation
could take better advantage of human pattern recognition capabilities,
instead of concentrating on reducing the amount of explanatory detail.
Another interesting dimension that the article refers to is audiovisual
information. Could explanations in some cases be formulated into, for
instance, auditory patterns?

Slotnick & Moore [1995] point out that a large number of problem
solving systems in industry are still based on quantitative knowledge. In
many cases “mathematical” solutions are preferable to expert systems,
particularly in terms of provability, stability, and easier knowledge
acquisition. Besides symbolic knowledge, quantitative knowledge should be
explained as well. Slotnick & Moore have developed a representation that
translates mathematical relationships into domain-level concepts and
strategies that are typically more understandable to humans. Their
explanation subsystem finds a match between hierarchical models of human
scheduling knowledge and mathematical knowledge of bottleneck
dynamics. With common terms in both, the subsystem then plans an
explanation to answer questions of the “Why” and “Why not” varieties.
Slotnick & Moore have applied the results into an automated scheduling
system for a specialty metal plant.

The surveyed systems give information corresponding to many of the
aspects defined by our framework in Chapter 3, although no single system
offers everything. Explanation has not usually been the main focus of these
systems. In contrast, the present thesis studies essentially all plant support
systems’ functions from an explanation perspective.

126

The prototypes shown in this thesis together cover a wider range of
explanations than the support systems found in the literature. However, we
still have work to do to extend the prototypes into working systems in
plants.

8.2.2 Mental models of plant systems

Much of the research on mental models concerns interaction with computer
software systems [Carroll & Olson 1988, Wexelblat 1989, Bannon 1990].
Since an increasing part of the automation is computerised, many
observations from human-computer interaction research apply to industrial
systems.

Carroll & Olson [1988] state that a user’s mental model should contain
knowledge of the target system’s functions, components and their relations,
internal processes, and how they affect the components. A user will need
several models at different levels of abstraction. Rasmussen’s work on
human problem solving [1986] supports this claim. We have constructed
explanation techniques that clarify such knowledge at multiple levels of
abstraction.

Crossman & Cooke [1974], Stephanopoulos [1987], Hoc [1989], and
Bainbridge [1983] all emphasise that mental models are harder to form with
plant processes of a time-dependent nature. Mental models of the states only
emerge with time [Bainbridge 1983]. Many processes with their long time
delays can be hard to understand, because short-term mental models tend to
degrade before they can be refreshed with new findings [Stephanopoulos
1987, Hoc 1989]. We help this understanding by offering behavioural
explanations that can recover the past states of the automation.

Norman [1988] observed that there are in fact several mental models in
plant design processes. The conceptual model is what a designer has in
mind when designing a system. The system image is what a user sees of the
system, and the mental model is what people form in their heads. Usability
is highest when these three models are consistent with each other. The more
the models differ, the more there will be misunderstandings that show up as
difficulties in use. If no conceptual model is offered at all, the users quickly
invent their theories of how the system works [Bannon 1990, Wexelblat
1989]. In such cases the user’s performance will decrease [Stassen et al.
1988], increasing fatique and stress.

We seek to transfer design knowledge from the designers to develop the
mental models of the users. We base the necessary conceptual model on the
multilevel relationships of the plant’s objects. The system image is offered
as a set of interlinked hypertext documents that reflect these relationships.
The designer’s intentions behind the design choices are explained through
models. This should enforce the users’ mental models to resemble those of
the designer, since the same conceptual model is employed in all phases
[Norman 1983].

127

Stassen et al. [1988] warn that overtraining may reduce the mental
models from a knowledge-based level to rules of thumb. Users would then
apply overlearned procedures in all cases, even when they are not
appropriate. Stassen et al. conclude that training should concentrate on an
understanding of the plant rather than on procedures. We want to improve
this understanding with explanations.

Some of the training could be trusted to on-the-spot explanations. As
Rettig [1993] notes, “…the best time to provide training is at the very
moment the learner needs to apply the knowledge. So the best place for
computer-based training is inside the tool need to accomplish the work.”
However, for training, the explanations should be crafted into a tutoring
mode, which has been outside the scope of this thesis.

Norman [1988] remarks that mental models are usually incomplete, and
even faulty. Yet even incomplete models can be useful [Lees 1974]. In
practice it is impossible to force “correct” mental models. We take this to
imply that even partial explanations of a system can help the users.
Explanations do not need to cover all aspects of the whole plant, as long as
they help in many cases enough to be useful.

8.2.3 Design knowledge

Kaarela [1996] maintains that many problems in plants are due to the
hardware-oriented level of today’s plant designs. Higher level knowledge
gets lost in the design process [Klein 1993]. This necessarily affects the
level of automation and therefore the success of coupled knowledge-based
systems. It also creates a mismatch between the abstract models of a
knowledge-based system and the operator who is forced to think in terms of
hardware. Korhonen [1991] and Rautila [1992] have sought ways to raise
the level of design with better representations. This has also been our focus
with the P&ID and Justifier prototypes.

Stephanopoulos [1990] has outlined the typical and potential uses of
knowledge-based design tools in process and chemical engineering. He
argues that current design tools are geared towards numerical computation
and offer little help for knowledge-based tasks in design. Ideally, the tools
should know about the goal structure of the design process, record the
process, and have rationale for design decisions. Such a system could
reduce the cost and improve the reliability of the design. Our prototype
based on P&ID achieves some of these ideals through its models and
explanations. The work behind the Design++ platform has been documented
by Riitahuhta [1988], Harmon [1990], and Katajamäki [1991]. Klein [1993]
reports on the DRCS system that captures knowledge concerning both the
designed artifact and the design process. The system also uses a language
for design representation that essentially consists of semantic networks.

We view plant design essentially as navigation in a functional
abstraction space. In other words, design consists of making decisions on

128

how abstract goals are realised by concrete systems. As regards design
rationale, this approach is close to that of Chandrasekaran et al. [1993]. We
cover a specific facet of design rationale from an explanation viewpoint: the
teleological justifications of items in plants. Design rationale has been said
to imply "an explanation that answers a question about why an artifact is
designed as it is" [Lee 1992]. This has been our main focus as regards
design. Other researchers have covered many aspects of design and design
rationale [Seppänen 1990, Stephanopoulos 1990, Conklin & Yakemovic
1991, Fischer et al. 1991, Keuneke 1991, Lee & Lai 1991, Gruber & Russell
1992, Chandrasekaran et al. 1993, Klein 1993].

It should be noted that design knowledge does not cover all knowledge
needed in plants. Barentsen [1991] has found evidence that a considerable
amount of knowledge is transferred in the everyday discussions of the plant
staff. This experiential knowledge is often unavailable during design
phases. If facilities for gathering this operational knowledge could be
provided, information transfer from the users to the designers would be
enhanced [Kramer 1987, Gilmore et al. 1989, Johannsen & Alty 1991]. We
have concentrated on design knowledge, since it is more readily available
with today’s tools (although even there the situation could be improved).

Barentsen [1991] further argues that useful knowledge for diagnostic
applications surfaces in the form of stories that the staff tell in plants.
People seem to prefer entertaining stories of past problems compared to dry
problem analyses. This could form an interesting research topic: how could
experiential knowledge in plants be collected into case bases [Lenz et al.
1996] and then explained to users through story-telling mechanisms that
generate explanations from the cases.

8.3 LOGIC EXPLANATION

There is plenty of reported research on analysing logic in the domain of
digital electronics design. Much less research is applied to the techniques in
the field of automation, and attempts to explain automation logic are quite
rare. In this section we review some of the relevant publications in these
fields.

8.3.1 The diagnosis background

The large body of work on diagnosis and automated reasoning on discrete
devices [Barrow 1984, Genesereth 1984, Davis 1984, de Kleer 1984, Davis
& Hamscher 1988, Hamscher 1991, Malhotra & Seviora 1992] is relevant to
our work. Logic explanation is, in essence, a form of diagnosis in which the
aim is not to locate faults in the logic network but to explain its behaviour.
In electronics, detecting physical faults in integrated circuits is essential for
testing, whereas in automation, logic is normally assumed to work correctly

129

(provided that the design is correct). Of particular interest regarding the
automation domain is to find “important” events at the network inputs.
These tasks, diagnosis and explanations, call for similar techniques. We
have adopted several of the techniques from diagnosis research, including
representations and search algorithms.

In their survey of logic synthesis techniques, Brayton et al. [1990] give
an introduction to many of the techniques used for automatic analysis of
digital logic circuits. Artificial intelligence techniques have been used
extensively in this domain: for simulation [Filer & Marshall 1989, Brown et
al. 1993], testing [Bending 1984, Abadir & Breuer 1985, Singh 1987],
minimising [Hong et al. 1974, De Geus & Cohen 1985], design
understanding [Filer et al. 1991, Mir 1994], and layout design [Filer &
Spink 1987]. Many of these applications involve graph-based
representations and both heuristic and algorithmic solutions, in the same
way as Lepo does. This could give grounds to a two-way cross-fertilisation:
that Lepo be used to explain digital circuits, and the research on digital
circuits be adapted into the automation domain.

De Kleer [1984] has formulated a theory for commonsense
understanding of electronic circuits. This fundamental paper seems to have
later been an inspiration for many other researchers who have tackled
problems of knowledge-based circuit analysis. Even though the paper
concerns analogue electronics, many of the techniques are applicable to the
more tractable domain of discrete devices. De Kleer observes that the
function of a circuit (or its purpose) is related to its structure (for instance,
its schematic). The intermediate notion between function and structure is
the behaviour (or, what the device does). With causal analysis of qualitative
models, his Equal system can predict a circuit’s behaviour and explain it in
terms of mechanism graphs. It recognises the purposes of the circuit in a
number of known configurations. De Kleer promotes the power of
teleological knowledge, saying that it helps to see the role of a component
as a part of the whole, and to recognise similar circuit configurations.

Malhotra & Seviora [1992] have devised an object-oriented framework
for representing and reasoning on digital logic. Their Digital System
Understander models logic through multilevel object representations, with
explicit mappings between concrete and abstract levels, and
interdependencies and constraints between objects. A blackboard-based
framework reasons over the representations through a form of constraint
satisfaction. The system supports two logic-related activities: redesign and
design fault localisation. The paper once again brings up the idea of viewing
Lepo as a constraint-based blackboard system.

Genesereth [1993] reviews the work of the Stanford Logic Group on
knowledge-based analysis of discrete systems. He notes that originally their
research started on explanations, although it quickly moved towards rule-
and model-based diagnosis of discrete devices. He emphasises the need for
design information, for which purpose the Helios CAD system was built. It

130

allowed automated simulation, debugging, testability analysis, test
generation, and diagnosis. Helios helped to describe devices at multiple
levels of abstraction, from block diagrams to detailed schematics.
Moreover, it facilitated recording design alternatives and rationale.
Slowness of the general model-based reasoning implemented in first-order
predicate calculus is mentioned as a major problem in the system.

Hamscher [1991] has modelled complex digital circuits for diagnosis.
In the XDE system, circuits are represented as a union of both functional
and physical decomposition hierarchies. He observes that abstraction allows
efficient reasoning on coarser levels of detail, which is more efficient.
Binary signals can be described in terms of such coarse concepts as
frequency, cycles, counting, sequence, duration, sampling, and change.
These temporal abstractions make it possible to reason about large numbers
of events without needing to specify them all. As Hamscher remarks,
temporal precision can be sacrificed without losing too much predictive
force. He postulates that humans appear to use similar abstractions when
analysing electronics.

Hamscher’s work could benefit Lepo. Currently it represents most of
the dynamic behaviour of PLC logic as time-based dependency nets.
Perhaps the complexity of the logic could be better managed by finding
suitable abstractions that explicitly translate the logic networks into higher
level representations. The reasoning would then be carried out on these
higher levels. The recovery of state machines that Lepo currently does is
already a step in this direction. Other higher level formalisms would be
needed. Further work should seek abstractions that are valuable in the
domain of automation logic.

Perkins & Austin [1990] have added a temporal reasoning facility into
the frames of an expert system. The time representation in Lepo objects has
used two of their primitives (exact, valid_until_changed), although we have
not explicitly applied temporal relations in reasoning. Clarke et al. [1986]
have used temporal logic for automatically verifying specifications of state
machines. Moon et al. [1992] have extended their work to safety analysis of
process control systems. In their work the temporal logic constructs are used
to model not only the controls but also the process. Lepo could be extended
in a similar manner for analysing discrete-event processes, if they are
modelled through logic.

8.3.2 Explanations of industrial logic

Milne & Guasch [1994] and Guasch et al. [1995] have studied logic
explanation with an approach that is close to ours. They have analysed the
alarm logic of industrial gas turbines implemented on ladder logic. Their
software reads the ladder logic source code, performs a series of reductions
to optimise the code, and then uses rule-based reasoning to generate
diagnostic messages on the reasons of alarms. The software has been tested

131

with an actual PLC application that is comparable in size to the paper
winder example we have studied. They emphasise, as we do, the acquisition
of the logic code directly from existing design descriptions. They have not
studied the use of the software with other PLC languages, although they
could be added with suitable translators. The algorithms appear generic
enough to be usable with other languages.

Zinser and Frischenschlager [1994] have applied electronic
documentation techniques in power plants. Their treatment of the various
application possibilities includes color-coded animation of signal states in
logic diagrams. They note the advantage “far less time is needed to look up
either the diagram of the actual signal states”. Their main focus is on
innovative interaction technologies, though, and the article does not give
further evidence of any reasoning support for the task, besides better
presentation techniques.

Falcione & Krogh [1993] report on a way to transform ladder logic
code into a state machine representation. Their motivation is design
recovery, with the convincing hypothesis that the resulting state machines
are easier to understand and maintain than the ladder logic. Their algorithms
achieve this conversion through a series a graph transformations. They
group nodes into parallel and sequential structures, exploiting the internal
dependencies of the PLC code. The authors do not detail the many potential
uses of the algorithms, although a neutralisation tank example is used to
clarify the algorithm. From the paper it appears that the object structures of
Lepo could accommodate the algorithms relatively easily. Such extensions
could potentially give better analyses of the dynamic behaviour of logic,
although it has not been investigated how the results should be explained to
the plant staff.

Moon [1994] has analysed PLC ladder logic languages to verify the
safety and operability of PLC’s. His method uses temporal logic to analyse
the time-dependent behaviour of a PLC. A model checker constructs a state
transition graph of the ladder logic code that is then used to find errors in
the code. This approach allows simulation of the logic to answer speculative
questions. Moon reports that the method works well, although it has been
studied with small cases (less than a hundred alarms). The system does not
yet cover timers, counters, and other non-binary constructs either, according
to the author. Lepo has been similarly constrained.

The commercial GDA package (G2 Diagnostic Assistant) [Finch et al.
1991] offers some built-in explanations of the propagation of logic states
through circuits. The explanations and simulations are immediately
available on screen once the circuit topology has been drafted. Besides
logic, GDA can simulate several other data types and functions. The
package has good facilities to create support systems that are
understandable to users but can be constructed by plant experts. However,
the system is rather closed. It is difficult to import the logic definitions from
outside the tool. The Lepo C++ prototype has been designed to receive the

132

logic code from the external world, even directly from the logic controller.
In addition, our prototype answers a wider set of questions.

8.3.3 Improved logic languages

Bonfatti et al. [1995] have devised ways of constructing logic automatically
with their specification language called Easier that allows one to express
constraints ("laws") for defining the logic code functionality on a high
level. The high level representation can then be translated to PLC code
with a set of well-defined transformations. State machines and safety laws
are among the high-level abstractions that they have applied to industrial
controls. Their language also suits domain modelling and formal analysis,
and could even form a basis for explanations.

Laitinen [1995] has studied natural naming in software. He has
observed that the choice of names for program constructs (variables or
subroutines, for instance) can dramatically affect the understandability of
the program. A name can have much semantic meaning to humans.
Explanations should try to establish a common meaning for a program
element in all the places it is mentioned. In PLC software, I/O references
should be named according to the techniques that Laitinen proposes. This
would help the understandability of PLC software, and would make
explanation easier.

Better specification methods and tools for PLC software could enhance
logic explanations considerably. We believe that the trend towards higher-
level programming languages for PLC’s will ultimately realise this concept.
With an advanced tool, the designer would simply express formally the
purpose of the circuit and the tool would generate the corresponding logic
automatically, documenting the purpose at the same time. Application
generators and library components are likely to be popular among future
PLC programmers. If PLC software components are stored in libraries, the
explanatory models corresponding to the components could be a part of the
library. This would facilitate reuse of explanations.

Lewis [1996] proposes a number of functions that a PLC software
programming station based on the IEC 1131 standard should comprise in
the future (classification in Table 8 modified from the source publication):

133

Table 8. Functions for future PLC programming tools
(adapted from Lewis [1996]).

Interface issues Analysis tools Project management
A graphical user interface Ability to pick the right

language for a given task
Library management for
software components

Multiple views to the
software

Support for hierarchical
designs

Concurrent development
and access management

More friendly graphical
editors

Import/export of design
information

Revision control

Navigation in the code
(follow signal paths)

Program validation,
syntax and consistency
checking

Documentation
generation

On-line help on the
programming constructs

On-line diagnostics
(visualising dynamics)

On-line modifications
with audit trails

Our discussion is compatible with Lewis’s list. Lepo already in its present
form provides many of the listed features. We believe that the techniques
used in Lepo will become necessary in the future programming
environments that Lewis envisions. It should be noted that many of the
listed functions are already included in the current programming tools for
general (non-PLC) software. In the future, PLC software may be
programmed with similar tools as other software.

Compared with the majority of the related work, our research has been
more directed towards industrial automation. We have not attempted to
develop new, more powerful logic languages. Rather we have tried to offer
improved tools for the analysis of existing logic solutions in plants. In terms
of algorithms, we have pursued more industrial relevance than theoretic
significance. We have focused on function block logic, whereas ladder
diagrams are used in most other studies of automation logic. This is just the
surface: most researchers have used similar modelling constructs adapted
from diagnostic research.

8.4 INTERACTION TECHNIQUES

The emphasis in the literature on explanation in the recent years has
changed from content creation to studies of human-computer interfaces for
explanation [Paris 1987, McKeown et al. 1985, Moore & Swartout 1990,
Cawsey 1992, Swartout et al. 1991, Feiner & McKeown 1991, Moore &
Mittal 1996]. This trend may be taken to reflect the changing focus of
human-computer interface research [Grudin 1990]. Such topics as
customising, dialogue maintenance, context, and content generation have

134

raised much interest. We briefly survey the research on these interaction
techniques in the context of our prototype systems.

8.4.1 Hypertext

Hypertext has been studied extensively since the popularisation of the
concept [Conklin 1987]. A great deal of the research is directed towards
office documentation management. However, hypertext for technical
documentation has also been treated in depth, for instance by Tyrväinen
[1994]. Many issues concerning hypertext are also relevant to our work,
since we employ it both as the metaphor and as the medium in our
explanations. As Moore & Swartout [1990] observe, hypertext is a natural
form for explanations, since it avoids many of the problems associated with
question understanding. It also conveniently facilitates continuation
questions.

It should be noted though that hypertext is not without its problems. The
orientation problems, discussed in Chapter 7, may not be the most
fundamental ones. As Paunonen [1993] formulates, “…reading does not
traditionally belong to the operator’s assortment of problem solving
methods”. In many industrial settings other means of explanatory
interaction would be preferable to hypertext, for instance embedding the
explanations into graphical displays. Feiner & McKeown [1991] have
approached the presentation of explanations through dynamically generated
three-dimensional graphics, which should ease the acceptance in industry.

Paper I (for an earlier version, see [Huuskonen 1990]) was among the
early publications that applied dynamically produced hypertext for
explanation. Similar work had been carried out for some time by Moore
[1989]. Since then, the popularity of hypertext has grown immensely due to
the World-Wide Web (WWW) [Berners-Lee et al. 1994]. Hypertext in
HTML format is today being dynamically generated by thousands of
computers in response to mouse clicks in browser windows. Typical
research applications are described in [Jeffery 1996].

Models that are based on semantic networks are particularly easy to turn
into hypertext [Snaprud & Kaindl 1992]. An interesting demonstration of
the concept can be found on the Internet [Gruber 1995]. Tyrväinen [1994]
opposes this view, maintaining that text structure and knowledge-based
structures be separated. Nevertheless, more formal structures for the text
contents are desirable. SGML is the most important standard in this area
[ISO 8879, 1986].

We have taken a template-based approach to text generation, following
Rubinoff [1985] and Cawsey [1992]. Many commercial systems use fixed
templates [Wick & Slagle 1989], whereas our templates are adapted to the
situation through filling in values based on context. Some systems translate
knowledge structures directly to English [Buchanan & Shortliffe 1984,
Feiner & McKeown 1991], which helps consistency problems associated

135

with templates [Neches et al. 1985]. Our hypertext templates contain active
procedures. This concept is now being popularised through Java [Campione
& Walrath 1997].

The orientation problems with hypertext that Conklin [1987] and
Nielsen [1990] complain about have not yet been solved in today’s WWW.
Graphical visualisation techniques could help [Nielsen 1990, Rivlin et al.
1994]. We have placed our trust in the standard navigational commands of
WWW browsers and search facilities that can be built into WWW
documents to help navigation. This approach proved workable for relatively
small document masses, as detailed in Chapter 7. Text retrieval for larger
technical documents has been studied in more depth by Tyrväinen [1994].

8.4.2 Dialogue

Advice-giving systems have been the traditional domain of explanations.
The dialogue in those systems usually takes a question-answer form, often
implemented through natural language interpretation. Our hypertext
dialogue is similar, although questions are implicitly given by pointing with
the mouse. We target user assisting applications, where much of the
initiative comes from the user. The user’s role in the dialogue is that of an
active controller.

There is much discussion about dialogue in the field of computational
linguistics and human-computer interfaces. A good compilation of the
relevant research issues is found in [Kobsa & Wahlster 1989]. It is generally
agreed that a system that participates in dialogue with humans should model
the goals and intentions of the user for good dialogue. The role of planning
is often emphasised in dialogue systems [Moore & Swartout 1990, Swartout
et al. 1991, Cawsey 1992, Moore & Mittal 1996].

We depart from this approach and presume that elementary dialogue
can be based on simple representations of context, without a need to know
the goals of the user. Our explanatory mechanisms do not contain an
explicit planning module. Instead, dialogue occurs in navigation through
hypertext links, context is maintained within these links, and heuristic
question-answer matching forms the implicit dialogue planning. However,
the quality of the dialogue could be raised by explicit dialogue planning. A
planner could be included in our dialogue model in a straightforward
manner.

Gruber and Gautier [1993] support our approach with their DME
system that uses contexted hypertext. They note that “...although DME does
not do text planning, the technique allows the user some control over the
level of detail and focus of the explanation. This lessens the need for a user
or dialog model, especially when tutoring is not the explanation task.” This
is equivalent to our claim.

XPLAIN was one of the first explanatory systems to emphasise the
notion of context. The explanations could be generated from several

136

viewpoints. To find a suitable viewpoint, the system employed knowledge
of the execution state of the expert system, of the dialogue exercised so far,
and of the possible intentions of the user [Swartout 1983]. McKeown et al.
[1985] have also noted that a user model helps in finding the right context.
If the user’s intentions are known, the contexts for follow-up questions are
easier to guess. Mittal & Paris [1995] define five elements of context:

1. The problem solving situation,

2. The participants involved,

3. The mode and medium of interaction in which communication is
occurring,

4. The discourse taking place, and

5. The external world.

To craft context-dependent explanations, the system needs to be able to
reason about these elements. They must therefore be represented
declaratively. This has also been the intention behind our context models,
although they do not comprise the whole range of possibilities set by Mittal
& Paris.

Of the context elements defined by Mittal & Paris, our use of context
covers: 1. The problem solving modelled as tasks, and knowledge
representation as explainable objects; 2. User types or “levels”; 3. Hypertext
as the medium and browsing as the mode of interaction; 4. The history of
the discourse, implicitly represented in the hypertext pages that can be
returned to (excluding, for instance, communicative goals, rhetorical
relations, or the information conveyed). The external world, or, more
precisely, the communicative situation type is fixed in our systems.

To explain things successfully the use of context seems necessary
[Swartout et al. 1991, Mittal & Paris 1995]. We have taken a lightweight
approach to context modelling and maintenance: context is stored in
hypertext links and it gets refined through menus. This approach does not
require a dialogue planner, but achieves sufficient dialogue capabilities for
limited systems. Explicit planning would undoubtedly increase the quality
of the explanations [Moore & Mittal 1996].

8.4.3 Rhetoric for explanation

Research into linguistics and human dialogue structures has revealed a
number of different ways of explanation that humans appear to use when
describing things [Moore 1989, Cawsey 1992]. For instance, Paris [1993]
has used the following rhetorical predicates to model descriptions
commonly found in encyclopedias and high school text books:

137

♦ Identification: Description of an object in terms of its superclass.

♦ Constituency: Description of subparts.

♦ Attributive: Illustration of the properties of things.

♦ Cause-effect: A causal relationship between things.

♦ Analogy: Demonstrating the similarity between things.

♦ Renaming: Giving another name for a thing.

♦ Comparison: Comparing a thing to another.

These or similar predicates have then been used to find suitable strategies
for constructing explanations. For instance, Moore & Mittal [1996] add
“Elaboration”, “Background”, “Concession”, “Justification” and
“Evidence” into the palette. These predicates can be seen as the possible
moves in the explanatory planning process.

The identification of the relevant rhetorical predicates has been of less
interest to us, since in our mechanisms the planning is not explicit.
However, we have implicitly applied the predicates Identification,
Constituency, Attributive, Cause-effect, and Justification in our
explanations. Future work should include identification of more predicates
relevant to the plant domain, and inclusion of the predicates into
explanation planning.

8.4.4 User modelling

Every operator is an individual, and should receive explanations tailored to
his/her personal needs [Paris 1993]. The operators have different
backgrounds, motives, and methods. The automation system should support
this customization. It should form a user model, guessing what the user
knows and does not know. With this model, the systems can adjust the
amount and kinds of information to suit the individual. There is a body of
research available on user modelling [Carroll & Olson 1988, Kobsa &
Wahlster 1989].

Rich [1989] suggests the notion of stereotypes to model the users. The
users are modelled into classes, organised in a frame hierarchy. Each frame
lists the user’s typical attributes that can be inherited through hierarchies, or
specialised for individuals. These attributes can then be used to customise
the views of a knowledge base. McCoy [1989] proposes the use of
perspectives for this purpose. In her view, any object could simultaneously
be visible from several hierarchies, the choice of which depends on the
context. The relevance of an object to a dialogue topic is determined by
applying a weighting function over its attributes.

Our models of the user in the VICE system are based on predefined
stereotypes (“user profiles”) for each class of users and on predefined

138

perspectives (“levels”) for each class of objects. Each user can select the
desired stereotype in his/her profile. Each object may explicitly list the
kinds of users it is suitable for. The user’s view to the knowledge in the
system only contains those elements that suit the user’s class.

Since our dialogue model does not explicitly contain a planner, it is not
possible to reason about the user’s goals and intentions [McKeown et al.
1985]. For this reason we did not implement the dynamic changing and
numeric weighting of the perspectives, in the manner suggested by McCoy.
However, the user may change his/her level in the profile at any time to
receive less or more details and to adjust the views to the knowledge. In the
VICE and Lepo prototypes, more detailed help is always available through
the hyperlinks.

Wexelblat [1989] argues that users cannot be classified into fixed
categories. In fact a single user may require explanations at several levels
during one session. This calls for a more dynamic notion of user levels,
where each user selects the level of detail through hyperlinks as desired.
This is the approach we have taken in the Lepo prototype.

Paris [1987] has found that different users need not only different levels
of detail, but even entirely different kinds of explanation. Domain experts
tend to seek structural knowledge, whereas novices are more interested in
understanding the functions. Several different strategies should be devised
for different classes of users and situations. A planner would then create the
contents based on these strategies. In our systems strategies are implicit: we
let the user’s curiosity guide the choice of explanations.

139

9 INTRODUCTION TO THE PAPERS

The papers included in this thesis were written over a period of four years,
from 1990 to 1994. They demonstrate how ideas unfold over time – many of
the principles used in the later papers were first outlined in the early papers.
To illustrate this maturation process, we have included some comments on
the development of the ideas.

Table 9. Summary of the views presented in the original papers.

 Paper

View

I, II III, IV, V VI, VII VIII

Domain Support sys-
tems at power

plants

Power plant de-
sign & user in-

terfaces

High energy
physics

controls & user
interfaces

Industrial con-
trol logic
(PLCs)

What is ex-
plained

Expert system’s
operation

Design
knowledge

Dependencies
& design

knowledge in
controls

Control logic
behaviour

Dominating
explanation

tasks

Justification of
reasoning,

Model clarifi-
cation, Docu-

ment
navigation

Design
recovery,

Abstraction

Document
navigation,

Abstraction &
Model

clarification

Behavioural
diagnosis

Modelling
techniques

Tasks, Context MFM, means-
end models

Task analysis,
contribution

models

Logic graphs

Interaction
techniques

Contexted
hypertext

MFM in design
tools, displays
& hypertext

Control &
support systems

Logic diagrams
& hypertext

Users Vibration ex-
perts, develop-

ers

Plant operators,
maintainers &

designers

Physicists &
maintainers

Maintainers,
programmers
& operators

 Implementa-
tion environ-

ment

Kee/VICE D++/P&ID - Xlisp, C++

Main contri-
bution

Explainable
objects, hyper-
text dialogue

MFM for cap-
turing and ex-
plaining design

knowledge

Requirement
analysis, con-

tribution
modelling

Concepts for
logic explana-

tion

140

Table 9 summarises the various views presented in the papers.
The papers discuss various aspects of explanation in plants. Table 10

places the different views of the papers in the context of the framework
presented in Chapter 3 of this thesis.

Table 10. The relation of the original papers to the explanation framework.

Explanation
target

Knowledge
class

Processes Automation Support systems

Factual Papers I, IV & VII Papers VI & VIII Papers I, II & V

Functional Papers III & IV Papers VI & VIII Papers I, II & IV

Strategic Papers III, IV & V Paper V Papers I, II & V

9.1 EXPLAINING KNOWLEDGE IN A DIAGNOSTIC
EXPERT SYSTEM

The first two papers deal with the diagnostic expert system VICE that was
briefly described in Chapter 4. These papers lay out the essential
mechanisms for explanatory modelling and interaction that the author added
into VICE. In these early papers, the background requirements for
explanation are not explicitly described, since they were inherent in the
design task of creating an explanation facility for an existing expert system.

9.1.1 Paper I: Explainable tasks, user profiles,
and hypertext

Paper I introduces the gradual development of VICE and its main
architectural features, most notably the division of reasoning into tasks. The
section “Explanation types” lists the three types of explanation provided by
VICE: (1) explaining reasoning, (2) explaining strategies, and (3)
explaining domain models. These three types are reflected in the classes of
knowledge in the framework of Chapter 3. The most significant
development, one that also proved effective in practice, was the concept of
explainable tasks.

User profiles are discussed in the next section. A profile scheme was
implemented that allows the different users to get different levels of detail
in the produced explanations. After the publication of the paper, as the

141

system was developed further, it became evident that maintaining the three
levels of detail much increases the effort in developing the explanations.
This is a known feature of text generation mechanism that is based on
templates. As a consequence, a single level (the experts’) was used in
practice. The title of the paper appears slightly too optimistic in its emphasis
on tailoring the explanations to each user.

The subsequent sections introduce an idea that was rather new at the
time of writing the paper (in 1990): the use of hypertext as the explanatory
interaction medium. The two figures show early examples of hypertext
explanations implemented in the Symbolics Lisp environment. The users
could navigate in the explanations by pointing to highlighted words with the
mouse.

The section “Reporting facility” views explanations as text and graphics
fragments that are collected into reports. In essence, the explanation
subsystem functions as a report generator that produces both interactive
explanations and static reports to be included in the documentation
concerning the diagnostic session. An automatic mode to collect
standardised reports was also implemented in which the reporting facility of
VICE was seen as just another kind of user of explanations. The
implemented explanation mechanism was therefore quite general and usable
in several modes.

9.1.2 Paper II: Context for explanation generation
and navigation

Paper II emphasises the notion of context. It is used in two main ways: (1)
as a basis for answer planning and (2) as a basis for hypertext navigation.
While providing some theoretical results, the paper assumes a somewhat
implementational view, discussing in depth the mechanisms to implement
contexted hypertext. We have applied in other research projects many of the
concepts and techniques presented in this paper.

Section 2 lays out the central ideas about explanation modelling and
interaction in the case of expert systems. Explainable objects (termed
“explicable” in the paper) are defined. Explainable tasks are now seen as a
special case of explainable objects.

Section 2.3 presents the application of context in searching for possible
question/answer pairs. This novel mechanism for content planning relies on
matching the given question’s context profile to predefined answers.
Explanations are only generated for those answers that suit the context of
the question.

Dialogue is viewed as navigation in context spaces in the following
sections. Figure 2 shows our iterative dialogue model that has been further
refined in Chapter 7 of this thesis. Explanations are seen as contexted nodes
in hyperspaces, and navigation between the nodes is seen as context
changes. This analogy is demonstrated with example explanations.

142

In Section 3, the explanations are seen to be most useful in program
development: validating, debugging, and knowledge acquisition from users.
This section judges the concepts of explainable objects and context-based
answer planning to be succesful ones. Templates and keyword-based user
levels are regarded as impractical techniques for large-scale systems. An
explicit dialogue planner is seen to be necessary for larger systems. The
hypertext explanations were seen to be very useful from an interaction point
of view.

9.2 EXPLAINING DESIGN KNOWLEDGE OF
INDUSTRIAL PLANTS

Papers III, IV and V all discuss the same topic from different perspectives:
how to capture design knowledge into models and to present it to users. The
papers offer successively more detailed views, with Paper III providing a
problem setting and knowledge acquisition view, Paper IV a support system
view, and Paper V an explanation mechanism view.

9.2.1 Paper III: Capturing design knowledge into models

Paper III introduces the use of Multilevel Flow Modelling (MFM) for
capturing design knowledge. It motivates the need for modelling by
pointing out that there is a lot of information exchanged between parties
involved in plant design.

Section 2 regrets that in real projects, the communication is far from
efficient, which became clear in a power plant case study. An important
point is that design documents tend to concentrate on lower level details,
ignoring higher level knowledge such as purposes for equipment. Especially
process knowledge and design criteria seem to get lost on the way to the
users. We emphasise the need to cover the higher level knowledge in
addition to device-level details. Such knowledge is certainly created and
used during the design process, but for various reasons is never recorded.

Section 3 advocates the use of a systematic approach to acquiring
design knowledge (for instance the functional dependencies between
devices and goals of a plant, or the criteria behind design decisions) during
the design process, at the point where the knowledge is most easily
obtainable. Section 4 presents the formalism used in our approach, the
MFM method (discussed in Chapter 5 of the present thesis). Its use in
building support systems, user interfaces, and on-line documentation
systems is suggested.

Section 5 shows how we extended design tools for capturing design
knowledge. The Design++ tool with the P&ID design application is
described first. The extensions, the object-based and graphical environments

143

are used to capture design knowledge that is then exported to other
applications in the form of objects and structured text.

Section 6 concludes the paper by judging the results to be very
promising, although a certain degree of doubt is expressed whether
designers would accept the increased workload and changes in design
culture that MFM requires. In retrospect we see this as the major drawback
of MFM for industrial applications. This shortcoming has lead us to
concentrate on the less bulky means-end aspects of the technique in Paper
V.

9.2.2 Paper IV: Bringing design knowledge to users

Paper IV elaborates the ideas of Paper III of bringing design knowledge to
the users in plants. The central idea is to use a single conceptual model from
all phases of plant design to its operation.

The paper illustrates the use of the conceptual model. It helps to capture
design knowledge, communicate the knowledge between designers, and
represent it in control systems. The model also facilitates construction of
user interfaces, presentation, interaction, and gathering users’ experiences.
MFM is suggested for realising the model, since it captures
interdependencies and interactions between the concrete and abstract parts
of a plant. This is essential information for a conceptual model.

We observe that hypertext is convenient for presenting design
knowledge to users, since its form (nodes of text with links to other nodes)
is very similar to the form of the knowledge models (objects and relations)
and to the nature of the domain knowledge (concepts and their
interdependencies).

As concrete results, the paper refers to the on-line hypertext prototype
coupled to control systems. This prototype was fully realised only later, but
the advantages could be seen at the time of writing the paper. Other small
prototypes demonstrating these ideas had already received positive
comments from the industrial partners.

9.2.3 Paper V: Explaining design knowledge from
means-end models

Paper V takes an explanation view to the topic of papers III and IV. The
point is to find ways of explaining purposes and justify design choices
related to plant items. A subset of MFM, the means-end analysis, was
assumed as the modelling method for this paper.

Section 1 introduces the need for teleological explanations. There we
focus our treatment of design knowledge to cover two specific aspects of
design knowledge: purposes and justifications. Section 2 details how
means-end models encode the knowledge about purposes in the relations
between model items. We view explanation as navigation in this model,

144

offering explanations either explicitly from the objects’ properties or by
deriving explanations through the relations. Structured text in objects is
adopted to encode design knowledge. The algorithm for deriving the
explanations through the model is then described.

Section 3 describes how we extended the Design++ tool used in the
previous papers to provide explanations of design knowledge. This research
prototype convinced us that the principle works as expected in a design
environment. As a secondary result, the notion of justifiable objects is
defined as a specialisation of explainable objects in the case of design
knowledge.

We point out in Section 4 that our representations of design are not
sufficient to cover all aspects of design knowledge. Especially justifications
of design choices would need more elaborate representations of design
rationale. However, the approach works for explaining means-end
knowledge. The large number of dependencies encountered at real plants
poses few problems, since the search space is reduced during the
explanation process. We did realise, however, that several alternative paths
in the model and the excess of explanatory details need more work. This
point is later developed further in Paper VII.

9.3 SUPPORT SYSTEMS IN HIGH ENERGY PHYSICS

Papers VI and VII deal with the domain of high-energy physics (abbreviated
HEP) control systems. They were written as part of the Cicero project at
CERN, Europe’s central laboratory for particle physics. The different
control systems in a physics experiment are similar to those used in
industrial plants. Accordingly, control strategies and equipment employed at
CERN are similar to those in industry. However, there are subtle differences
that affect the operations from the support systems’ point of view and set
requirements to the modelling and interaction methods that can be used.
These two papers examine this topic in more detail.

9.3.1 Paper VI: Human-machine interfaces in
high energy physics control systems

Paper VI studies the control systems used at CERN from a user interface
point of view. Section 1 introduces the domain of HEP experiments and
describes the Cicero project in which context the work for papers VI and
VII was carried out. The rest of the paper describes the results of a survey of
human-computer interfaces in CERN control systems. The main findings of
the survey are:

♦ Due to the organisation of the experiments, the operators do not
really know the systems they should control.

145

♦ With their physics education, the users could understand abstract
information more easily than their colleagues in industry. This
ability should be used to some advantage.

♦ Shift experts would need help to decode the past and present
behaviour of the control systems.

♦ There are few process models in use at the experiments, which we
suspect to cloud the user’s mental models. Explicit models should
be employed to clarify the processes.

♦ The physical and functional relationships in the domain should
appear in the user interfaces.

♦ Since the turnover of operators is high in HEP control, it is useless
to invest into heavy training. Instead we suggest giving them help
on the spot through advanced help systems.

One of the conclusions that the paper reaches is that context-sensitive
knowledge-based support systems (in short, explanation) could help with
many of the perceived problems. Paper VII discusses this topic in more
depth.

9.3.2 Paper VII: Modelling high energy physics
control systems

Paper VII aims at reducing the complexity apparent to users by devising
knowledge representations that are suitable for HEP support systems. We
claim that a representation based on entity-relationship models (semantic
networks) is sufficient for many aspects of HEP control, especially for
support systems that function in the user assisting mode.

The paper gradually works towards successively richer representations,
at each stage motivating the need for further enhancement. As a solution we
propose contribution modelling, a technique based on means-end modelling.
In line with the Cicero project, we advocate object orientation, and promote
the notion of explainable objects as a natural way to partition
representations and explanation.

We then discuss a number of possible uses of contribution modelling in
the operational context of HEP systems. The various benefits include:

♦ Familiarity to the HEP community used to object-orientation,

♦ Explicitness of dependencies,

♦ Ease of implementation with object databases,

♦ Capacity to capture design knowledge, and

♦ Conformance to ongoing object-based standardising work in HEP
controls.

146

In our view, contribution models essentially form a domain-specific
semantic network language for describing HEP controls. We also point out
some drawbacks: the lack of behavioural knowledge, unsuitability for more
detailed diagnosis and simulation, the potential connectedness of the
models, the danger of disorientation in models, and the need for a
knowledge engineer to construct useful models. Some of these problems are
avoided through the loosely coupled nature of the domain knowledge and
the assisting interaction mode.

9.4 EXPLAINING AUTOMATION LOGIC (PAPER VIII)

Of all papers included in this thesis, Paper VIII deals most closely with the
automation systems’ internal operation. We focus our study on an important
part of the controls: the control logic that carries out the discrete functions
in plants. We conclude that ways of improving the presentations and
understandability – in short, explanation – of the logic are needed to
alleviate the problems.

The paper proposes various ways of visualising logic solutions into
more understandable displays, but stresses that it is also necessary to offer
knowledge-based help with the logic. We recognise three kinds of
explanations on logic circuits: explaining meaning, explaining behaviour,
and speculative help. The paper details a number of examples and their
rationale.

Section 3 outlines the architecture and implementation of Lepo, the
Lisp-based prototype that was built to demonstrate the ideas. The main
features of Lepo were:

♦ The logic representation was based on explainable objects that
formed logic graphs.

♦ The graphs were traversed to simulate the propagation of logic
values through the circuits and to generate explanations.

♦ Templates were used to generate the contents of explanations.

We anticipated in the paper that it would be difficult to acquire the
knowledge to form the logic circuits, that the embedding of the explanations
into automation would need more work, and that complexity issues would
need to be studied. These three points have since been elaborated with the
development of the Lepo C++ prototype to which Chapter 6 of this thesis is
devoted.

We contently noted in the paper the posivite interest from the industry
towards Lepo. This interest has since grown into a larger research project,
also called Lepo, with several industrial partners. Many of the results in the

147

present thesis have been concretised in this project, guided by the vision
given by Paper VIII.

148

10 CONCLUSIONS

We have studied explanation with relation to plants. We have approached
the topic in a constructive manner: we have shown the need for explanations
in plants, proposed a conceptual framework for explanation, and
demonstrated several prototypes that realise key elements of the framework.
Finally, we have positioned the results in a larger context by reviewing
related work on explanation and plants. The approach is well visible in the
structure of this thesis. This chapter reviews the contributions and
summarises topics for further development.

10.1 RESULTS

The main results of this thesis can be summarised as follows:

Problem analysis

♦ Many problems in plants are related to the lack or abundance of
information.

♦ Design knowledge in particular is missing in plants.

♦ Support systems and automation would have to be able to explain
plant knowledge.

Framework

♦ Explanations should cover several classes of knowledge at various
levels of plant systems.

♦ Generic explanation tasks can use models as the knowledge source
for creating explanations.

Solutions

♦ Knowledge representations based on objects and their relations
form a vocabulary for modelling and presenting plant knowledge.

♦ A particular class of models based on means-end modelling is
useful for explaining design knowledge.

♦ Graph algorithms can be used to generate explanations through
searches in the models.

149

♦ Hypertext serves to communicate explanations over dynamic
dialogue based on context.

The results are detailed in demonstrations:

♦ A prototype for explaining the reasoning of an expert system

♦ A prototype for explaining design knowledge

♦ A prototype for model-based on-line documentation

♦ A prototype for explaining control logic

10.2 ANSWERS TO THE RESEARCH PROBLEMS

Referring back to the research problems set in Chapter 1, we can now
formulate the answers:

P1: What difficulties do people have with technical systems in
plants?

The requirements for explanation were obtained through studying the
problems that people have in plants. Our studies concentrated on problems
that are related either to a lack or an excess of information. Most of our
work aims at helping process operators. The needs of the maintenance staff
in plants, software developers, plant designers, and experts of specific
application domains were also studied. A multitude of plant types were
examined to define the problems: power plants, paper machines, steel mills,
and high energy physics experiments. In the range of systems studied, we
found certain common patterns:

♦ There is too much information available to be digested in a hurry.

♦ Many elements of crucial information are nevertheless missing.

♦ Interdependencies between things are unclear.

♦ Design criteria for systems are not understood.

♦ The relevant information in documents is hard to find.

♦ The functions of systems are difficult to grasp.

In short, people were poorly supported in many of their informational tasks.

150

P2: What kinds of knowledge would be needed to solve these
problems?

We chose to solve the problems through knowledge-based support systems.
Model-based explanation is the particular approach we use to convey the
knowledge contained in these systems. As a result of the problem analysis,
we proposed to classify the necessary explanations with a two-dimensional
framework, where one axis is the class of knowledge being explained
(factual, functional, strategic), and the other is the target of explanations
(processes, automation, support systems). For each of the nine fields of this
model we suggested certain kinds of knowledge that would be potentially
explainable.

P3: How can this knowledge be captured and modelled?

We proposed that the knowledge should be captured into models at the time
of design, covering each level of the explanation framework. These models
could then be used to carry the knowledge to the users in plants. We
stressed that a common conceptual model for all design phases was needed,
and proposed object-oriented models based on means-end analysis for this
aim.

Our case studies suggest that knowledge representations based on
objects and their relations form a domain specific vocabulary for modelling
and presenting plant knowledge. We recognised the need for at least
structural, behavioural, functional, and teleological models. These models
can capture important parts of the knowledge that was found to be missing
in plants. We showed mechanisms for recording and explaining design
knowledge in the P&ID and Justifier prototypes. The contribution models
extend means-end modelling with ways of managing large amounts of
dependencies, which helps to tackle an abundance of information.

Another solution to knowledge caption was to derive the knowledge
directly from operational systems. This solution was adopted in the LEPO
C++ prototype that gets its models directly from the interpreted PLC code.

In all cases the models were based on object networks. The algorithms
that create explanations were based on various kinds of search over the
graphs formed by these networks. The algorithms implement a number of
generic explanation tasks. We used the tasks as a framework for describing
the functions that the explanation mechanisms typically incorporate.

151

P4: How can this knowledge be communicated to people?

We proposed several techniques for interaction. These techniques were
outlined through a number of prototypes. The VICE prototype demonstrated
many of the essential techniques. It showed that the notion of explainable
objects can be effectively used to organise explanatory knowledge.
Dynamic hypertext serves well to communicate explanations, as it
corresponds with the structure of knowledge in models. Dialogue can be
managed with simple representations of context. Both non-computer experts
and knowledge engineers were content with the explanations based on these
techniques.

We constructed enhanced access mechanisms for hypertext
documentation and carried out a usability study with them. The results
obtained from the study suggested that hypertext is more effective in
communicating plant knowledge than traditional documentation. Means-end
models embedded in the documents helped on understanding of the
dependencies between the systems in plants.

Figure 47 summarises the essential techniques for explanation that have
been developed in this thesis.

Knowledge representations
are based on objects and

their relations.

Means-end models,
MFM, and contribution
models are essential

modelling techniques.

Design knowledge is
captured into models
at the time of design

for use in explanation.

The notion of explainable
objects is used to organise

explanatory knowledge.

Dynamic hypertext is used
as the interaction metaphor

and the medium.

Dialogue can be managed
with object-based

representations of context.

Context
can guide

explanation
planning.

PresentationModelling Knowledge

Figure 47. The essential explanation techniques developed in this thesis.

152

10.3 THE MAIN CONTRIBUTIONS

Many of the techniques presented in our papers and realised in the
prototypes have independently appeared as standard techniques: hypertext
as dynamically created explanation, the use of context in hypertext links,
and the notion of explainable objects.

The industrial interest in explanations is most apparent in the Lepo C++
prototype that is being embedded into a commercial product. Both Lepo
prototypes, implemented in Lisp and C++, showed novel ways of explaining
the behaviour of automation logic. The two prototypes used many of the
explanation techniques developed in this thesis.

The results – the various prototypes, the approval of the users, the
results from the field studies, the industrial interest, and the appearance of
the techniques in world-wide use – validate our research hypothesis. The
main contributions of this thesis can then be listed:

♦ The problem study shows that explanation is relevant in solving the
problems that people have in plants.

♦ The framework makes explicit the targets and classes of
explanation that must be considered in the support systems in
plants.

♦ The generic explanation tasks give a point of reference for
analysing and constructing explanations.

♦ The prototypes demonstrate that knowledge caption, modelling, and
communication can be based on object-oriented models that are
shown as contexted hypertext.

The framework of explanation presented in this thesis extends the views of
explanation and automation research. To our knowledge, this is the first
study that covers the field of explanation in plants from all the presented
viewpoints.

We believe that these results will help people understand technical
systems in plants. We show ways of improving automation with knowledge-
based systems. Once the concepts and techniques presented in this thesis
become commercially available, the users receive more help for their tasks.
With this support, the problems at the use of the plants can decrease. This
can in turn increase the safety, quality, and economy of plants.

153

10.4 DIRECTIONS FOR FUTURE RESEARCH

Our discussion of explanation in plants has revealed a number of questions
that have not been completely resolved. Topics that could benefit from
further research include:

Knowledge representation and reasoning

♦ Identification of new generic explanation tasks

♦ Improved modelling methods for explanations

♦ Complexity & efficiency analyses of explanatory algorithms

♦ Inclusion of explicit planning in the explanation creation process

♦ Application of the blackboard paradigm for creating explanations

♦ Meta-level explanation on the explanation mechanisms

♦ Implementation of explainable objects through agent technologies

Interaction

♦ Identification of proper rhetoric for plant explanations

♦ Solutions for navigation problems with hypermedia

♦ Better customisation and dialogue through user modelling

♦ Display mechanisms in automation systems for plant users

♦ Investigation of the possibilities of multimedia

Deployment into design and use

♦ Design tools that better facilitate design rationale capture

♦ Explanation of experiential knowledge collected in plants

♦ Cross-fertilisation between electronics design and automation

♦ Usability studies of explanations in plants

10.4.1 Applications outside the plant domain

The results can be applied in other domains besides industrial plants. Many
computer-controlled devices and appliances manifest problems that are very
similar to those in plants. We believe that the concepts and techniques
shown in this thesis are applicable in those fields. For instance,
telecommunication networks can be viewed of as systems to be explained at
three key levels (Figure 48).

154

O peration
centers

Software
m odules

Hardware
links

Processes

Autom ation

Support system s

Figure 48. Targets of explanation in telecommunication networks.

We believe that the framework for explanations is applicable outside the
plant domain. Its features – explanation types, tasks, and models – can be
generalised to several fields. As an example, consider the domains in Table
11. These are some of the areas that are frequently mentioned in technical
and scientific publications as candidates for increased computer automation
in the near future. For each of these areas, processes, automation, and
support systems can be identified that are similar to those found in plants.

Many professions are quickly becoming computer-aided, or even
computer-based. The people in these professions will increasingly
(sometimes exclusively) carry out their duties with the aid of computers.
Therefore they are becoming operators. As a consequence, they are very
likely to encounter problems that are most similar to those we have found in
plants, for instance distancing, information overload, and lack of design
knowledge. Explanation techniques, among other solutions, will be needed
in these fields to overcome the problems.

The knowledge types of the framework – factual, functional, and
strategic – are generic and not tied to the plant domain. In any of the areas
mentioned in Table 11, all these types may be needed for the reasons
detailed in Section 2.4. We believe that for any computerised system, its
users will ultimately want to know how the system works and why it works
the way it does.

155

Table 11. Examples of areas with increasing computer automation.

Domain Processes Automation Support systems
Finance Investments Computerised

trading
Market analysers &
forecasters

Telecommu-
nications

Transmission
networks

Switches, routers,
line equipment

Network management
centers

Health care Human life
processes

Pacemakers,
scanners, patient
databases

Signal/image
analysers, diagnosers,
remote operations

Road traffic Traffic flow Computerised roads,
smart cars, route
information systems

Traffic analysers,
congestion avoidance
systems, hazard
predictors

News agenciesWorld events Databases of facts,
stories, images

Translators, search
engines, news
analysers

Airspace Flight
management

Autopilots, approach
systems, collision
avoidance

Flight control centers,
route planners, safety
analysers

Habitation Energy &
safety
management

Intelligent buildings
with temperature &
lighting control,
alarm systems, and
home networks

Remote surveillance,
home control posts,
theft detection,
environmental
optimisers

The explanation tasks that we have defined in the framework are generic
enough to function in several domains. For instance, the Abstraction task
will suit any domain where there is an abundance of information, yet where
the problem space can be structured at several levels of detail. We believe
that the central technique for abstraction, means-end analysis, holds much
potential for analysing human-designed systems in general, not only plants.
Another intriguing possibility would be to apply the Behavioural diagnosis
task into control software outside the automation domain.

A central feature of the framework are the models. They are needed for
the generic tasks to produce explanations. Therefore the applicability of the
framework depends on the availability of models. Fortunately, in many
fields a tendency for computer-supported design and maintenance can be
seen. Application generators produce important amounts of software.
Product and design knowledge is becoming available in design databases,
and use time information is increasingly being logged in history databases.
Such databases can then be used as the input models for the tasks. The
models we propose (structural, functional, behavioural, and teleological) are

156

generic and, as reported in the artificial intelligence literature, applicable in
many domains.

10.4.2 Ubiquitous explanations

Perhaps the most generic concept put forward in this thesis is that of
explainable objects. We believe that this concept, although seemingly
obvious, fundamentally affects the way that knowledge in systems is
organised. It could be generalised to all kinds of software (explainable
software) or computer-controlled systems in general (explainable systems).
Negroponte [1995] seems to envisage this line of development:

“The future of any appliance is likely to be a stripped-down or buffed-
up personal computer. One reason to move in this direction is to make
appliances more friendly, usable, and self-explicating. ... The best
instructor on how to use a machine is the machine itself. It knows
what you are doing, what you have just done, and can even guess at
what you are about to do.”

Such trends as the ever decreasing size of electronics, the explosion in
networking, and the (slowly) rising intelligence level of software, may
ultimately lead to the situation where networked controllers are ubiquitous
in our environment. Such controllers could then contain explanatory
capabilities to talk about themselves and the machines they control. The
communication would take place through the information channels
available in the home, offices, or plants.

Information appliances [Juliussen 1997] may become an important part
of our everyday life in the near future. Such small embedded computers
could help in many of the tasks that we now have to carry out more or less
manually. The appliances will contain sufficient processing power, memory
capacities, and network connectivity to facilitate explanations.

The mechanisms proposed in this thesis have been built for larger
platforms, but the underlying techniques hold promise for being useful in
portable devices. A fundamental concern for explanation research in the
next century will be to embed explanatory capabilities into appliances. Such
capabilities may be needed not only in mobile instruments and portable
operator consoles found in plants, but also in cars, telephones, watches, and
network computers that we wear on ourselves – and ultimately in ourselves.

157

REFERENCES

Abadir, M.S. & Breuer, M.A. 1985. A Knowledge-Based System for
Designing Testable VLSI Chips. IEEE Design & Test, Vol. 2, No. 4, August
1985, pp. 56 - 68. ISSN 0740-7475

Adye, T. et al. 1992. The DELPHI experiment control. Proceedings of the
International Conference on Computing in High Energy Physics ´92,
Annecy, France, September 21 - 25, 1992. Geneva, Switzerland: European
Organization for Nuclear Research. Pp. 269 - 274. (CERN 92-07).

Alta Vista. AltaVista: Main Page. 1996 [cited December 15, 1996]
Available in the Internet: <URL:http://www.altavista.digital.com/>

Arnault, C. 1992. Object Oriented Systems in High Energy Physics.
Proceedings of the International Conference on Computing in High Energy
Physics ´92, Annecy, France, September 21 - 25, 1992. Geneva,
Switzerland: European Organization for Nuclear Research. Pp. 75 - 80.
(CERN 92-07).

Bainbridge, L. 1983. Ironies of Automation. Automatica, Vol. 19, No. 6, pp.
775 - 779. ISSN 0005-1098

Bannon, L. 1990. From Human Factors to Human Actors. In: Greenbaum,
J., Kyng, M. (eds). Design at Work: Cooperative design of computer
systems. Hillsdale, NJ: Erlbaum. 294 p. ISBN 0-8058-0611-3

Barentsen, K.B. 1991. Knowledge and Shared Experience. In: Proceedings
of the Third European Conference on Cognitive Science Approaches to
Process Control, Cardiff, U.K., September 2 - 6, 1991. Pp. 217 - 232.

Barillère, R. et al. 1993. CICERO: Control Information system Concepts
based on Encapsulated Real-time Objects – A study on Generic Control
Systems for Large Scale LHC Experiments. Geneva, Switzerland: European
Organization for Nuclear Research, December 21, 1993. 22 p. (CERN /
DRDC / 93-50).

Barman, D.K. 1992. Capturing Design Rationale with Semi-Structured
Hypertext. Working notes of the AAAI’92 Workshop on Design Rationale
Capture and Use, July 15, 1992, San Jose, CA. Pp. 15 - 21.

Barrow, H.G. 1984. VERIFY: A Program for Proving Correctness of
Digital Hardware Designs. Artificial Intelligence, Vol. 24, pp. 437 - 491.
ISSN 0004-3702

Bending, M.J. 1984. Hitest: A Knowledge-Based Test Generation System.
IEEE Design & Test, May 1984, pp. 83 - 92. ISSN 0740-7475

158

Berners-Lee, T., Cailliau, R., Luotonen, A., Nielsen, H.F. & Secret, A.
1994. The World-Wide Web. Communications of the ACM, Vol. 37, No. 8,
August 1994, pp. 76 - 82. ISSN 0002-0782

Berry, D.C. 1995. Explanation: The Way Forward. Expert Systems with
Applications, Vol. 8, No. 4, pp. 309 - 401. ISSN 0957-4174

Bisantz, A.M. & Vicente, K.J. 1994. Making the Abstraction Hierarchy
Concrete. International Journal of Human-Computer Studies 40, pp. 83 -
117. ISSN 1071-5819

Biswas, N.N. 1986. Computer-Aided Minimization Procedure for Boolean
Functions. IEEE Transactions on Computer-Aided Design, Vol. CAD-5,
No. 2, April 1986. Pp. 303 - 304. ISSN 0278-0070

Bonfatti, F., Gadda, G. & Monari, P. D. 1995. Re-usable Software Design
for Programmable Logic Controllers. ACM SIGPLAN Workshop on
Languages, Compilers and Tools for Real-Time Systems, La Jolla, CA, June
1995. In: ACM - SIGPLAN Notices 11, Vol. 30, November 1995, pp. 31-
40.

Bostick, D., Hachtel, G.D., Jacoby, R., Lightner, M.R., Moceyunas, P.,
Morrison, C.R. & Ravenscroft, D. 1987. The Boulder Optimal Logic Design
System. Proceedings of the IEEE international conference on computer-
aided design, Santa Clara, CA, November 9 - 12: Digest of technical papers.
Washington, DC: IEEE Computer Society Press, 1987. Pp. 62 - 65. ISBN 0-
8186-0814-5

Bradshaw, J.A. & Young, R.M. 1991. Evaluating Design Using Knowledge
of Purpose and Knowledge of Structure. IEEE Expert, Vol. 6, No. 2, April
1991, pp. 33 - 40. ISSN 0885-9000

Brayton, R.K., Rudell, R., Sangiovanni-Vincentelli, A. & Wang, A.R. 1987.
MIS: A Multiple-level Logic Optimization System. IEEE Transactions on
Computer-Aided Design, Vol. CAD-6, No. 6, November 1987. Pp. 1062 -
1081. ISSN 0278-0070

Brayton, R.K. 1987. Factoring logic functions. IBM Journal of Research
and Development, Vol. 31, No. 2, March 1987, pp. 187 - 198.

Brayton, R.K., Hachtel, G.D. & Sangiovanni-Vincentelli, A.L. 1990.
Multilevel logic synthesis. Proceedings of the IEEE, Vol. 78, No. 2,
February 1990. Pp. 264 - 300.

Broadbent, D.E., Fitzgerald, P. & Broadbent, M.H.P. 1986. Implicit and
explicit knowledge in the control of complex systems. British Journal of
Psychology 77, pp. 33 - 50.

Brown, M., Moosa, Z., Britton, P. & Filer, N.P. 1993. An Express Model for
Heuristic Classification. Personal communication.

159

Buchanan, B.G. & Shortliffe, E.H. 1984. Rule-based Expert Systems: The
MYCIN Experiments of the Stanford Heuristic Programming Project.
Reading, MA: Addison-Wesley. 748 p.

Buck, L. 1989. Human operators and real-time expert systems. Expert
Systems, Vol. 6, No. 4, November 1989, pp. 227 - 237.

Butler, H., Myers D.R., Von Rüden, W. & Yang, J. 1993. Beam-line
Operation Using an Industrial Control System and Distributed Object-
Oriented Hardware Access. Geneva, Switzerland: European Organisation
for Nuclear Research. 5 p. (CERN/ECP 93-22).

Campione, M. & Walrath, K. 1997. The Java Tutorial: Object-Oriented
Programming for the Internet [online]. Feb 19, 1997 [cited February 22,
1997]. Mountain View, CA: Sun Microsystems. Available on the Internet:
<URL:http://www.javasoft.com:80/nav/read/Tutorial/index.html>.

Card, O.S. 1992. Speaker for the Dead. London: Random House. 415 p.
ISBN 0-09-950320-4

Carroll, J. M. & Olson, J. R. 1988. Mental Models in Human-Computer
Interaction. In: Helander, M. (ed.). 1988. Handbook of Human-Computer
Interaction. Amsterdam: Elsevier Science Publisher B.V. Pp. 45 - 65. ISBN
0-444-88673-7

Cawsey, A. 1992. Explanation and interaction: the computer generation of
explanatory dialogues. Cambridge, MA: MIT Press. 232 p. ISBN 0-262-
03202-3

Chandra, D.N. 1992. Innovative design systems, where are we and where do
we go from here? Part I: Design by association. The Knowledge
Engineering Review, Vol. 7, No. 3, pp. 183 - 213.

Chandrasekaran, B. 1986. Generic Tasks in Knowledge-Based Reasoning:
High-level Building Blocks for Expert System Design. IEEE Expert, Vol. 1,
No. 3, Fall 1986, pp. 23 - 30. ISSN 0885-9000

Chandrasekaran, B., Tanner, M.C. & Josephson, J.R. 1987. Explanation:
The Role of Control Strategies and Deep Models. In: Hendler, A. (ed.).
Expert Systems: The User Interface. Norwood, NJ: Ablex. Pp. 219 - 247.

Chandrasekaran, B. et al. 1989. Explaining Control Strategies in Problem
Solving. IEEE Expert, Spring 1989, pp. 9 - 24.

Chandrasekaran, B. & Swartout, W. 1991. Explanations in Knowledge
Systems: The Role on Explicit Representation of Design Knowledge. IEEE
Expert, June 1991, pp. 47 - 49. ISSN 0885-9000

Chandrasekaran, B., Goel, A. & Iwasaki, Y. 1993. Functional
Representation as Design Rationale. IEEE Computer, Vol. 26, No. 1, pp. 48
- 56.

160

Clancey, W.J. 1983. The Epistemology of a Rule-Based Epert System - a
Framework for Explanation. Artificial Intelligence 20, May 1983, pp. 215 -
251. ISSN 0004-3702

Clarke, E.M., Emerson, E.A. & Sistla, A.P. 1986. Automatic Verification of
Finite-State Concurrent Systems Using Temporal Logic Specifications.
ACM Transactions of Programming Languages and Systems, Vol. 8, No. 2,
April 1986, pp. 244 - 263. ISSN 0164-0925

Conklin, E. J. 1987. Hypertext: An Introduction and Survey. IEEE
Computer, Vol. 20, No. 9, pp. 17 - 41.

Conklin, E.J. & Yakemovic, KC B. 1991. A Process-Oriented Approach to
Design Rationale. Human-Computer Interaction, Vol. 6, No. 3 & 4, pp. 357
- 391.

Crossman, E.R.F.W. & Cooke, J.E. 1974. Manual Control of Slow-
Response Systems. In: Edwards, E. & Lees, F.P. (eds.). The Human
Operator in Process Control. London: Taylor & Francis Ltd. Pp. 51 - 66.

David, J.-M. & Krivine, J.-P. 1989. Designing Knowledge-Based Systems
within Functional Architecture: the DIVA Experiment. In: Proceedings of
the Fifth Conference on Artificial Intelligence Applications, Miami, Florida,
March 6 - 10, 1989. IEEE Computer Society Press. Pp. 174 - 180.

Davis, R. 1984. Diagnostic Reasoning Based on Structure and Behaviour.
Artificial Intelligence, Vol. 24, pp. 347 - 410. ISSN 0004-3702

Davis, R. & Hamscher, W. 1988. Model-based Reasoning:
Troubleshooting. In: Strobe, H.E. Shrobe (ed.). Exploring Artificial
Intelligence: Survey Talks from the National Conferences on Artificial
Intelligence. San Mateo, CA: Morgan Kaufmann. Pp. 297 - 346.

De Geus, A.J. & Cohen, W. 1985. A Rule-based System for Optimizing
Combinatorial Logic. IEEE Design & Test, Vol. 2, No. 4, August 1985, pp.
22 - 32. ISSN 0740-7475

De Kleer, J. 1984. How Circuits Work. Artificial Intelligence, Vol. 24, pp.
205 - 280. ISSN 0004-3702

Durkin, J. 1996. Expert Systems: A View of the Field. IEEE Expert, Vol. 11,
No. 2, April 1996, pp. 56 - 63. ISSN 0885-9000

Engelmore, R.S. & Morgan, A.J (eds.). 1988. Blackboard Systems.
Wokingham, England: Addison-Wesley Publishing Company. 602 p. ISBN
0-201-17431-6

Enterline, L.L. 1988. Strategic Requirements for Total Facility Automation.
Control Engineering, Vol. Two, September 1988, pp. 9 - 12.

Falcione, A. & Krogh, B.H. 1993. Design Recovery for Ladder Logic. IEEE
Control Systems, Vol. 13, No. 2, April 1993, pp. 90 - 98.

161

Feiner, S.K. & McKeown, K.R. 1991. Automating the Generation of
Coordinated Multimedia Explanations. IEEE Computer, Vol. 24, No. 10,
October 1991, pp. 33 - 41. ISSN 0018-9162

Fikes, R. & Kehler, T. 1985. The Role of Frame-Based Representation in
Reasoning. Communications of the ACM, Vol. 28, No. 9, September 1985,
pp. 904 - 920.

Fikes, R., Gruber, T. & Iwasaki, Y. The Stanford How Things Work Project
[online]. Palo Alto, CA: Stanford University, September 23, 1994 [cited
November 2, 1997]. Available from Internet: <URL:http://www-
ksl.stanford.edu/htw/htw-long-overview.html>.

Filer, N.P. & Spink, M.A. 1987. Knowledge-based Control for VLSI Layout.
In: Proceedings of IEEE International Workshop on AI Applications to
CAD Systems for Electronics, Münich, Germany, October 1987. Pp. 119 -
136.

Filer, N.P. & Marshall, R.A.J. 1989. The Design of a Methodology for the
Intelligent Control of Simulation Using the Manchester Simulation Engine.
In: Proceedings of the European Simulation Meeting, Rome, Italy, June
1989. Pp. 163 - 168.

Filer, N.P., Mir, S. & Wray, D. 1991. Description of a Prototype
Knowledge-based Tool Exploiting Design Semantics. Technical report,
Jessi-CAD-Frame deliverable D1.1, Esprit Special Project 5082. 7 p.

Finch, F.E., Stanley, G.M. & Fraleigh, S.P. 1991. Using the G2 Diagnostic
Assistant for Real-time Fault Diagnosis. European Conference on Industrial
Applications of Knowledge-Based Diagnosis, Segrate (Milan), Italy,
October 17 - 18, 1991.

Fischer, G., Lemke, A.C. & McCall, R. 1991. Making Argumentation Serve
Design. Human-Computer Interaction. Vol. 6, No. 3 & 4, pp. 393 - 419.

Flasinski, M. 1994. Further Development of Zeus Expert System: Computer
Science Foundations of Design. Hamburg, Germany: Deutsches Elektronen-
Synchrotron. (DESY 94-048).

Flew, A. 1979. A dictionary of philosophy. London: Pan Books. 351 p.
ISBN 0-330-25610-6

Franke, D.W. 1991. Deriving and Using Descriptions of Purpose. IEEE
Expert, Vol. 6, No. 2, April 1991, pp. 41 - 47. ISSN 0885-9000

Garcia, O.N. & Chien, Y.-T. 1991. Knowledge-based Systems:
Fundamentals and Tools. Los Alamitos, CA, USA: IEEE Computer Society
Press. 495 p. ISBN 0-8186-924-4

162

Gautier, P.O. & Gruber, T.R. 1993. Generating Explanations of Device
Behaviour Using Compositional Modeling and Causal Ordering.
Proceedings of the Eleventh National Conference on Artificial Intelligence.
Cambridge, MA: MIT Press. Pp. 264-270. ISBN 0-262-51071-5

Genesereth, M.R. 1984. The Use of Design Descriptions in Automated
Diagnosis. Artificial Intelligence, Vol. 24, pp. 411 - 436. ISSN 0004-3702

Genesereth, M.R. 1993. From Dart to Designworld: a chronicle of research
on automated engineering in the Stanford Logic Group. Artificial
Intelligence, Vol. 59, pp. 159 - 165.

Gilbert, J.W. & Wilhelm, R.G. 1993. A Concurrent Object Model for an
Industrial Process-Control Application. Journal of Object-oriented
Programming (JOOP), Vol. 6, No. 7, November-December 1993, pp. 35 -
44.

Gilmore, W.E., Gertman, D.I. & Blackman, H.S. 1989. The User-Computer
Interface in Process Control. London: Academic Press. 313 p.

Gruber, T. R. & Russell, D. M. 1992. Beyond the Record and Replay
Paradigm for Design Rationale Support. In: Working Notes of the AAAI
'92 Workshop on Design Rationale Capture and Use, San Jose, CA, July 15
1992. American Association for Artificial Intelligence. Pp. 111 - 118.

Gruber, T.R. & Gautier, P.O. 1993. Machine-generated explanations of
engineering models: A compositional modelling approach. Proceedings of
the 13th International Joint Conference on Artificial Intelligence, Chambery,
France, 1993. San Mateo, CA: Morgan-Kaufmann, 1993. Pp. 1502 - 1508.

Gruber, T. HTW Demonstrations [online]. Palo Alto, CA: Stanford
University, March 8, 1995 [cited February 11, 1997]. Available from the
Internet: <URL:http://www-ksl.stanford.edu/htw/htw-demos.html>.

Gruber, T.R., Vemuri, S. & Rice, J. Virtual documents that explain How
Things Work: Dynamically generated question-answering documents. Palo
Alto, CA: Stanford University, 1995 [cited February 11, 1997]. Available
from the Internet: <URL:http://www-ksl.stanford.edu/people/gruber/virtual-
documents-htw/>.

Grudin, J. 1990. The Computer Reaches Out: The Historical Continuity of
Interface Design. In: CHI’90 Conference proceedings: Empowering People,
Seattle, WA, USA, April 1 - 5, 1990. SIGCHI Bulletin Special Issue (April
1990), pp. 261-268. ISSN 0736-6906

Guasch, A., Milne, R. & Sarrate, R. 1995. Relay Ladder Logic Diagnosis.
In: Artificial Intelligence in Real-time Control 1994. Elsevier Science
Publishers. Pp. 275 - 280. ISBN 0-08-042236-3

163

Halasz, F. 1988. Reflections on NoteCards: Seven Issues for the Next
Generation of Hypermedia Systems. Communications of the ACM, Vol. 31
No. 7, pp. 836 - 852.

Hamscher, W.C. 1991. Modeling Digital Circuits for Troubleshooting.
Artificial Intelligence, Vol 51, No. 1 - 3, October 1991, pp. 223 - 271.

Harmon, P. 1990. DESIGN++: An Expert System for Automating the
Engineering Design Process. Expert System Strategies, Vol. 6, No. 6, pp. 9
- 12.

Hasling, D.W., Clancey, W.J. & Rennels, G. 1984. Strategic explanations
for a diagnostic consultation system. International Journal of Man-Machine
Studies 20, pp. 3 - 19.

Hayes-Roth, F. & Jacobstein, N. 1994. The State of Knowledge-Based
Sytems. Communications of the ACM, Vol. 37, No. 3, March 1994, pp. 27 -
39. ISSN 0002-0782

Helander, M. (ed.). 1988. Handbook of Human-Computer Interaction.
Amsterdam: Elsevier Science Publisher B.V. 1167 p. ISBN 0-444-88673-7

Hong, S.J., Cain, R.G. & Ostapko, D.L. 1974. MINI: A Heuristic Approach
for Logic Minimization. IBM Journal of Research and Development, Vol.
18, No. 5, September 1974, pp. 443 - 458.

Hoc, J.-M. 1989. Strategies in controlling a continous process with long
response latencies: needs for computer support to diagnosis. International
Journal of Man-Machine Studies 30, pp. 47 - 67. ISSN 0020-7373

Hong, S.J. & Muroga, S. 1991. Absolute Minimization of Completely
Specified Switching Functions. IEEE Transactions on Computers, Vol. 40,
No. 1, January 1991. Pp. 53 - 65. ISSN 0018-9340.

Hughes, J.G. 1991. Object-oriented Databases. Hemel Hempstead,
England: Prentice Hall International. 280 p. ISBN 0-13-629882-6

Huuskonen, P. 1990. An Explanation Mechanism for a Diagnostic Expert
System Based on Functional Architecture. In: Djupsund, M., Salonen, P. &
Syrjänen, M. (eds.). Proceedings of the Finnish Artificial Intelligence
Symposium (STEP-90), Oulu, Finland, June 11 - 14, 1990. Oulu, Finland:
Finnish Artificial Intelligence Society & Blanko ry. Pp. 333 - 342.

IEC 1131-3. 1993. Programmable controllers - Programming languages.
International Electrotechnical Commission. 207 p.

IEEE 1076. 1987. VHDL Language Reference Manual. New York: IEEE.

IGES. 1988. Initial Graphic Exchange Specification IGES Version 4.0.
Washington DC: US Department of Commerce, National Bureau of
Standards. 515 p.

164

Ishack, G. 1993. Are we making the most of advanced digital control
systems? Nuclear Engineering International, January 1993, pp. 48 - 49.

ISO 10303-1. 1994. Industrial Automation Systems and Integration -
Product Data Representation and Exchange - Part 1: Overview and
Fundamental Principles. Geneve: International Organization for
Standardization. 17 p.

ISO 8879. 1986. Information Processing - Text and Office Systems.
Standard Generalized Markup Language (SGML). Geneve: International
Organization for Standardization. 155 p.

Jaako, J. 1996. The Extension of Multilevel Flow Modelling. Oulu, Finland:
University of Oulu. (Acta Univ. Oul. C 87). ISBN 951-42-4277-7

Jackson, P. 1986. Explaining Expert System Behaviour. In: Workshop on
Explanation. Alvey IKBS Expert Systems Theme, Guildford, England,
March 20 - 21, 1986. London: Alvey Directorate. Pp. 83 - 95.

Jeffery, K. 1996. Special Issue on the World Wide Web. ERCIM News No.
25, April 1996. European Research Consortium for Informatics and
Mathematics. Pp. 6 - 31.

Johannsen, G., Rijnsdorp, J.E. & Sage, A.P. 1983. Human-System Interface
Concerns in Support System Design. Automatica, Vol. 19, No. 6, pp. 595 -
603. ISSN 0005-1098

Johannsen, G. 1990. Towards a New Quality of Automation in Complex
Man-Machine Systems. In: Utkin, V. & Jaaksoo, Ü. (eds.). Proceedings of
the IFAC 11th World Congress on Automatic Control in the Service of
Mankind. 11. Tallinn, Estonia, Aug 13 - 17, 1990. Tallinn: IFAC. Pp. 435 -
441.

Johannsen, G. & Alty, J.L. 1991. Knowledge Engineering for Industrial
Expert Systems. Automatica, Vol. 27, No. 1, pp. 97 - 114. ISSN 0005-1098

Jovanovic, A & Maile, K. 1992. ESR - A Large Knowledge-Based System
Project of European Power Generation Industry. Expert Systems with
Applications, Vol. 5, pp. 465 - 477. ISSN 0957-4174

Juliussen, E. 1997. Computers (1997 Technology Analysis & Forecast).
IEEE Spectrum, January 1997, pp. 49 - 54. ISSN 0018-9235

Kaarela, K., Oksanen, J. & Lukkari, K. 1992. Laitosprojektin toteuttamisen
aikana ilmenevät tiedonsiirto-ongelmat. Internal project report (not
published). Oulu, Finland: VTT Electronics & University of Oulu. 36 p. (In
Finnish.)

165

Kaarela, K. & Oksanen, J. 1994. Operator Support System Based on an
Information Model. In: Proceedings of the 1994 Symposium on Human
Interaction With Complex Systems (HICS-94), Greensboro, NC, USA,
September 18 - 20, 1994. Greensboro, NC: NASA-CORE, North Carolina
Agricultural & Technical State University, and SPIE. Pp. 156 - 165.

Kaarela, K., Oksanen, J. & Takalo, J. 1995. An Information Model as a
Basis for Hypermedia-Based Plant Documentation. Computer Networks
and ISDN Systems, Vol. 27, pp. 751 - 764.

Kaarela, K. 1996. Enhancing Communication of Plant Design Knowledge.
Espoo, Finland: VTT. 110 p. + app. 81 p. VTT Publications 272. ISBN 951-
38-4930-9, ISSN 1235-0621

Kaindl, H. 1994. Object-Oriented Approaches in Software Engineering and
Artificial Intelligence. Journal of Object-oriented Programming, Vol. 6, No.
8, January 1994, pp. 38 - 45. ISSN 0896-8438

Katajamäki, M. 1991. Knowledge-Based CAD. Expert Systems with
Applications, Vol. 3, pp. 277 - 287.

Keravnou, E. & Johnson, L. 1986. Competent Expert Systems: a Case Study
in Fault Diagnosis. London: Kogan Page Ltd. 320 p.

Keränen, R., Tommila, T. & Heimbürger, H. 1988. The Safety of Process
Automation, Experiences and Methods. In: Man-Machine Systems:
Analysis, Design and Evaluation: Preprints of the IFAC/IFIP/IEA/IFORS
Conference, Oulu, Finland, June 14 - 16, 1988, Vol. 1. Helsinki: Finnish
Society of Automatic Control. Pp. 202 - 205.

Keuneke, A. 1991. Device Representation: The Significance of Functional
Knowledge. IEEE Expert, Vol. 6, No. 2, pp. 22 - 25.

Kim, W. 1990. Object-Oriented Databases: Definition and Research
Directions. IEEE Transactions of Knowledge and Data Engineering, Vol. 2,
No. 3, pp. 327 - 341.

Klein, M. 1993. Capturing Design Rationale in Concurrent Engineering
Teams. IEEE Computer, January 1993, pp. 39 - 47. ISSN 0018-9162

Kobsa, A. & Wahlster, W. 1989. User Models in Dialog Systems. Berlin:
Springer-Verlag. 471 p. ISBN 3-540-18380-9

Korhonen, R. 1991. Framework for Improving Quality and Efficiency in
Automation Design. Tampere, Finland: Tampere University of Technology,
Publications 85. 113 p. ISBN 951-721-761-7. ISSN 0356-4940

Korteniemi, A. 1989. An Expert System for Fault Diagnostics of Rotating
Machines. In: Proceedings of the Second Symposium on Expert Systems
Application to Power Systems, Seattle, Washington, USA, July 17 - 20,
1989.

166

Kowalski, R. 1979. Logic for problem solving. New York: North-Holland.
287 p. (Artificial Intelligence Series 7). ISBN 0-444-00368-1

Kowalski, A. & Lebensold, J. 1989. A Diagnostic Aid to Pulp Production.
In: Trivedi, M.M. Applications of Artificial Intelligence VII, Orlando, FL,
March 28 - 30, 1989. Bellingham, WA: SPIE. Pp. 858 - 866. (SPIE
Proceedings 1095). ISBN 0-8194-0131-5

Kramer, M.A. 1987. Expert Systems for Process Fault Diagnosis: A
General Framework. In: Reklaitis, G.V. & Spriggs, H.D. (eds). Foundations
of computer aided process operations: Proceedings of the First International
Conference on Foundations of Computer Aided Process Operations, Part
City, Utah, July 5 - 10, 1987. Amsterdam: Elsevier. Pp. 557 - 587. ISBN 0-
444-98925-0

Kurki, M. 1995. Model-based Fault Diagnosis for Mechatronic Systems.
Espoo, Finland: VTT. 116 p. VTT Publications 223. ISBN 951-38-4761-6,
ISSN 1235-0621

Laitinen, K. 1995. Natural Naming in Software Development and
Maintenance. Espoo, Finland: VTT. 99 p. + app. 70 p. VTT Publications
243. ISBN 951-38-4781-0, ISSN 1235-0621

Larsson, J.-E. 1992. Knowledge-based Methods for Control Systems.
Doctoral thesis. Lund, Sweden: Lund Institute of Technology. 236 p. ISSN
0280-5316

Le Goff, J.-M. 1993. Personal communication.

Le Strugeon, E., Tendjaoui, M. & Kolski, C. 1992. Knowledge Specification
and Representation for an “Intelligent” Interface Devoted to Process
Monitoring and Supervision. In: Preprints of the IFAC/IFIP/IMACS
International Symposium on Artificial Intelligence in Real-Time Control,
Delft, The Netherlands, June 16 - 18, 1992. Delft: IFAC. Pp. 245 - 250.

Lee, J. & Lai, K.-Y. 1991. What’s in Design Rationale? Human-Computer
Interaction, Vol. 6, No. 3&4, pp. 251 - 280.

Lee, J. 1992. Design Rationale Management Research. The Knowledge
Engineering Review, Vol. 7, No. 4, pp. 363 - 366.

Lees, F.P. 1974. Research on the Process Operator. In: Edwards, E. &
Lees, F.P. (eds) "The Human Operator in Process Control". London:
Taylor & Francis Ltd. Pp. 387 - 425.

Leitch, R. & Gallanti, M. 1992. Task Classification for Knowledge-Based
Systems in Industrial Automation. IEEE Transactions on Systems, Man, and
Cybernetics, Vol. 22, No. 1, January/February 1992. Pp. 142 - 152.

Lenz, M., Burkhard, H.-D., Pirk, P., Auriol, E. & Manago, M. 1996. CBR
for Diagnosis and Decision Support. AI Communications 9 (1996), pp. 138
- 146. ISSN 0921-7126

167

Lewis, R.W. 1996. Programming industrial control systems using IEC
1131-3. London: The Institute of Electrical Engineers. 293 p. (IEE Control
Engineering Series 50). ISBN 0-85296-827-2

Lind, M. 1990. Representing Goals and Functions of Complex Systems - An
Introduction to Multilevel Flow Modeling. Institute of Automatic Control
Systems, Technical University of Denmark, Report No. 90-D-38. 86 p.
ISBN 87-87950-52-9

Malhotra, P. & Seviora, R.E. 1992. Object Oriented Framework for
Generating Machine Understanding of a Digital System Design. In: Belli,
F. & Radermacher, F.J. (eds.) Industrial and Engineering Applications of
Artificial Intelligence and Expert Systems: 5th International Conference
(IEA/AIE-92), Paderborn, Germany, June 9 - 12, 1992. Berlin: Springer-
Verlag. Pp. 690 - 700. ISBN 0-387-55601-X

Malik, A.A., Brayton, R.K., Newton, A.R. & Sangiovanni-Vincentelli, A.L.
1988. A Modified Approach to Two-level Logic Minimization. Proceedings
of the IEEE international conference on computer-aided design (ICCAD-
88), Santa Clara, CA, November 7 - 10, 1988. Digest of technical papers.
New York: IEEE. Pp. 106 - 109. ISBN 0-8186-0869-2

McCoy, K.F. 1989. Highlighting a User Model to Respond to
Misconceptions. In: Kobsa, A. & Wahlster, W. (eds.) 1989. User Models in
Dialog Systems. Berlin: Springer-Verlag. Pp. 233 - 254. ISBN 3-540-
18380-9

McKeown, K.R., Wish, M. & Matthews, K. 1985. Tailoring Explanations
for the User. In: Aravind, J. (ed.). Proceedings of the Ninth International
Joint Conference of Artificial Intelligence (IJCAI’85), August 18 - 23,
1985. Los Angeles, CA: Morgan Kaufmann Publishers. Pp. 794 - 798.
ISBN 0-934613-02-8

Medvedev, G. 1991. The Truth About Chernobyl. London: I.B.Tauris & Co
Ltd. 274 p. ISBN 1-85043-331-3

Meyer, B. 1988. Object-oriented Software Construction. New York, NY:
Prentice Hall. 534 p. ISBN 0-13-629031-0

Milne, R. & Guasch, A. 1994. Automatic Diagnostic Development Based on
a Programmable Logic Controller. In: Applications and Innovations in
Expert Systems II. SGES Publications. Pp. 99 - 110. ISBN 1-899621-00-8

Milne, R., Nicol, C., Travé-Massuyès, L. & Quevedo, J. 1996. TIGER:
knowledge-based gas turbine condition monitoring. AI Communications,
Vol. 9, No. 3, 1996, pp. 92 - 108. ISSN 0921-7126

168

Mir, S. 1994. Heuristic Reasoning for an Automatic Commonsense
Understanding of Logic Electronic Design Specifications. Technical report
series UMCS-94-4-2, Department of Computer Science, University of
Manchester, England. 246 p. Also available in anonymous ftp in
ftp.cs.man.ac.uk, directory pub/TR.

Mittal, V.O. & Paris, C.L. 1995. Generating Explanations in Context: The
System Perspective. Expert Systems With Applications, Vol. 8, No. 4, 1995,
pp. 491 - 503. ISSN 0957-4174

Moon, I., Powers, G.J., Burch, J.R. & Clarke, E.M. 1992. Automatic
Verification of Sequential Control Systems Using Temporal Logic. AIChE
Journal, Vol. 38, No. 1, January 1992, pp. 67 - 75.

Moon, I. 1994. Modeling Programmable Logic Controllers for Logic
Verification. IEEE Control Systems, Vol. 14, No. 2, April 1994, pp. 53 - 59.
ISSN 0272-1708

Moore, J.D. 1989. A Reactive Approach to Explanation in Expert and
Advice-Giving Systems. Doctoral thesis, University of California, Los
Angeles, CA. 332 p.

Moore, J.D. & Swartout, W.R. 1990. Pointing: A Way Toward Explanation
Dialogue. In: Proceedings of the Eighth National Conference on Artificial
Intelligence (AAAI-90), Vol. 1, Boston, MA, USA, July 29 - August 3,
1990. Menlo Park: AAAI Press. Pp. 457 - 464. ISBN 0-242-51057-X

Moore, J.D. & Mittal, V.O. 1996. Dynamically Generated Follow-up
Questions. IEEE Computer, Vol. 29, No. 7, July 1996, pp. 75 - 86. ISSN
0018-9162

Mould, R.F. 1988. Chernobyl – The Real Story. Oxford, U.K: Pergamon
Press. 255 p. ISBN 0-08-035719-9

Neches, R., Swartout, W.R. & Moore, J.D. 1985. Enhanced Maintenance
and Explanation of Expert Systems Through Explicit Models of Their
Development. IEEE Transactions on Software engineering, Vol. SE-11, No.
11, November 1985. Pp. 1337 - 1351. ISSN 0098-5589

Negroponte, N.P. 1995. Being Digital. New York: Random House. 255 p.
ISBN 0-679-43919-6

Nielsen, J. 1990. The Art of Navigating Trough Hypertext. Communications
of the ACM, Vol. 33, No. 3, March 1990, pp. 296 - 310.

Nilsson, N.J. 1982. Principles of Artificial Intelligence. Berlin: Springer-
Verlag. 476 p. ISBN 3-540-11340-1

Norman, D. A. 1983. Some Observations on Mental Models. In: Gentner, D.
& Stevens, A. (eds.) Mental Models. Hillsdale, NJ: Lawrence Erlbaum
Associates. Pp. 7 - 14. ISBN 0-89859-242-9

169

Norman, D.A. 1988. The Psychology of Everyday Things. New York: Basic
Books. 257 p. ISBN 0-465-06709-3

Olsson, G. 1993. Operator-Process Interaction is more than HCI. In:
Smith, M. J. & Salvendy, G. (eds.) Human-Computer Interaction:
Applications and Case Studies. Proceedings of the Fifth International
Conference on Human Computer Interaction (HCI '93), Orlando, Florida,
August 8 - 13, 1993. Vol. 19A. Amsterdam: Elsevier Science. ISBN 0-444-
89540-X, ISSN 0921-2647

Oxman, S. 1993. Knowledge-Based Systems in Manufacturing. Intelligent
Software Strategies, Vol. 9, No. 12, December 1993, pp. 7 - 13. ISSN 1052-
7214

Paanasalo, J. 1996. Private communication.

Paris, C.L. 1987. Combining Discourse Strategies to Generate Descriptions
to Users along a Naive/Expert Spectrum. In: Proceedings of the 10th
International Joint Conference on Artificial Intelligence (IJCAI’87), Milan,
Italy, 1987. Los Altos, CA: Morgan Kaufmann. Pp. 626 - 632.

Paris, C.L. 1993. User Modelling in Text Generation. London, U.K.: Pinter
Publishers. 205 p. ISBN 0-86187-809-4

Paunonen, H. 1993. Developing the Operator’s Job Through Automation
Products. In: Proceedings of the 12th European Annual Conference on
Human Decision Making and Manual Control, Kassel, Germany, June 1993.
Pp. 1 - 6 of Session 9.

Paunonen, H. 1995. Decision making tools for changing paper production
organizations. In: The First Ecopapertech. An international conference on
papermaking and paper machine technology, Helsinki, Finland, June 6 - 9,
1995. Jyväskylä, Finland: Gummerus Kirjapaino Oy. Pp. 437 - 448. ISBN
952-90-6454-3

Peach, D. 1994. The L3 Gas System Operators Manual. CERN internal
document. Geneva, Switzerland: CERN, ECP Division. 120 p.

Perkins, W.A. & Austin, A. 1990. Adding Temporal Reasoning to Expert-
System-Building Environments. IEEE Expert, February 1990, pp. 23 - 29.
ISSN 0885-9000

Rasmussen, J. 1985. The Role of Hierarchical Knowledge Representation in
Decisionmaking and System Management. IEEE Transactions on Systems,
Man, and Cybernetics, Vol. SMC - 15, No. 2, pp. 234 - 243.

Rasmussen, J. 1986. Information Processing and Human-Machine
Interaction. Amsterdam: North-Holland. 215 p. ISBN 0-444-00987-6

Rautila, E. (ed). 1992. Prosessin hallinta – Automaation tehtäväkuvaus.
(Process Management – Automation Task Description). Helsinki: Suomen
Automaation Tuki Oy. 128 p. ISBN 951-96567-0-7. (In Finnish.)

170

Rettig, M. 1993. Cooperative software. Communications of the ACM, Vol.
36, No. 4, April 1993, pp. 23-28.

Rich, E. 1989. Stereotypes and User Modeling. In: Kobsa, A. & Wahlster,
W. (eds) 1989. User Models in Dialog Systems. Berlin: Springer-Verlag.
Pp. 35 - 51. ISBN 3-540-18380-9.

Riitahuhta, A. 1988. Enhancement of the Boiler Design Process by the Use
of Expert System Technology. Acta Polytechnica Scandinavica, Mechanical
Engineering Series No. 92. Helsinki: Finnish Academy of Technology. 122
p. ISBN-951-666-272-2. ISSN 001-687X

Rivlin, E., Botafogo, R. & Schneiderman, B. 1994. Navigating in
Hyperspace: Designing a Structure-based Toolbox. Communications of the
ACM, Vol. 37, No. 2, February 1994, pp. 87 - 96. ISSN 0001-0782

Rowan, D. 1989. On-line Expert Systems in Process Industries. AI Expert,
August 1989, pp. 30 - 38.

Rubinoff, R. 1985. Explaining Concepts in Expert Systems: the CLEAR
System. In: Proceedings of the 2nd conference on Artificial Intelligence
Applications, Miami Beach, FL, December 11 - 13, 1985. Los Alamitos:
IEEE Computer Society Press. Pp. 416-421.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. & Lorenser, W. 1991.
Object-oriented Modeling and Design. Englewood Cliffs, NJ: Prentice-Hall,
Inc. 500 p. ISBN 0-13-630054-5

Rytoft, C., Johansson, B., Bladh, K. & Hoggard, N. 1990. Aspects of Future
Process Control Systems. Control Engineering, Vol. 37, No. 9, pp. 135 -
138.

Sachs, P.A., Paterson, A.M. & Turner, M.H.M. 1986. Escort - an expert
system for complex operations in real time. Expert Systems, Vol. 3, No.1,
January 1986, pp. 22 - 29.

Sassen, J.A.M. 1993. Design Issues of Human Operator Support Systems.
Doctoral thesis. Delft, The Netherlands: Delft University of Technology.
226 p. ISBN 90-370-0090-8

Schneiderman, B. 1987. Designing the User Interface: Strategies for
Effective Human-Computer Interaction. Reading, MA: Addison-Wesley.
448 p. ISBN 0-201-16505-8

Sedgewick, R. 1989. Algorithms. Second edition. Reading, MA: Addison-
Wesley Publishing Company. 650 p. ISBN 0-201-06673-4

Seppänen, V. 1990. Acquisition and Reuse of Knowledge to Design
Embedded Software. Espoo, Finland: VTT. 218 p. + app. 10 p. VTT
Publications 66. ISBN 951-38-3579-0, ISSN 0358-5069

171

Sheridan, T.B. & Ferrell, W.R. 1974. Man-Machine Systems: Information,
Control, and Decision Models of Human Performance. Cambridge, MA:
MIT Press. 452 p. ISBN 0-262-19118-0

Sheridan, T.B., Vámos, T. & Aida, S. 1983. Adapting Automation to Man,
Culture, and Society. Automatica, Vol. 19, No. 6, pp. 605 - 612. ISSN
0005-1098

Sheridan, T.B. 1988. Task Allocation and Supervisory Control. In:
Helander, M. (ed.). Handbook of Human-Computer Interaction.
Amsterdam: Elsevier Science Publisher B.V. Pp. 159 - 173. ISBN 0-444-
88673-7

Singh, N. 1987. An Artificial Intelligence Approach to Test Generation. The
Kluwer international series in engineering and computer science; 19.
Norwell, MA: Kluwer Academic Publishers. 193 p. ISBN 0-89838-185-1

Sleeman, D. & Brown, J.S (eds.). 1982. Intelligent Tutoring Systems.
London, U.K: Academic Press. 282 p.

Slotnick, S.A. & Moore, J.D. 1995. Explaining Quantitative Systems to
Uninitiated Users. Expert Systems With Applications, Vol. 8, No. 4, pp.
475 - 490. ISSN 0957-4174

Smith, J.M. 1992. SGML and Related Standards: Document Description
and Processing Languages. Chichester, England: Ellis Horwood Limited.
151 p. ISBN 0-13-806506-3

Snaprud, M. & Kaindl, H. 1992. Knowledge Acquisition Using Hypertext.
Expert Systems With Applications, Vol. 5, No. 3 & 4, pp. 369 - 375.

Stassen, H. G., Johannsen, G. & Moray, N. 1988. Internal Representation,
Internal Model, Human Performance Model and Mental Workload. In:
Preprints of the IFAC/IFIP/IEA/IFORS Conference on Man-Machine
Systems, Oulu, Finland, June 14 - 16, 1988. Vol. 1. Finnish Society of
Automatic Control and International Federation of Automatic Control. Pp.
252 - 261.

Steels, L. 1990. Components of Expertise. AI Magazine, Summer 1990, pp.
28 - 49. ISSN 0738-4602

Stein, R. 1991. Browsing Through Terabytes. Byte Magazine, May 1991,
pp. 157 - 164.

Stephanopoulos, G. 1987. Intelligent Systems for Process Operations
Overview. In: Proceedings of the First International Conference on
Foundations of Computer Aided Process Operations, Park City, Utah, July 5
- 10, 1987. Amsterdam: Elsevier. Pp. 503 - 555.

Stephanopoulos, G. 1990. Artificial Intelligence in Process Engineering –
Current State and Future Trends. Computers in Chemical Engineering, Vol.
14, No. 11, pp. 1259 - 1270. ISSN 0098-1354.

172

Stephens, G.L. 1992. Advanced process management – a vision for the not
too distant future. Tappi Journal, March 1992, pp. 127 - 131.

Suitiala, R. 1993. Work-oriented Development of Interactive Software
Tools. Understanding the Work of Software Maintainers and Making an
Interactive Software Tool for Them. Espoo, Finland: VTT. 176 p. + app. 10
p. VTT Publications 139. ISBN 951-38-4257-9, ISSN 1235-0621

Swartout, W.R. 1983. XPLAIN, a System for Creating and Explaining
Expert Consulting Programs. Artificial Intelligence 21, September 1983,
pp. 285 - 325.

Swartout, W., Paris, C. & Moore, J. 1991. Explanations in Knowledge
Systems: Design for Explainable Expert Systems. IEEE Expert, June 1991,
pp. 58 - 64. ISSN 0885-9000

Takalo, J. 1995. Enhancing Access to Technical On-line Documentation
Through Information Modelling and Retrieval Techniques. Master's Thesis.
Oulu, Finland: University of Oulu, Department of Information Processing
Science. 81 p.

Tanner, M.C. & Keuneke, A.M. 1991. The Roles of the Task Structure and
Domain Functional Models. IEEE Expert, June 1991, pp. 50 - 57. ISSN
0885-9000

Thatcher, V. S. (ed). 1965. The New Webster Encyclopedic Dictionary of
The English Language: International Edition. New York: Grolier Inc. 972
p.

Tyrväinen, P. 1994. Domain Modelling for Technical Documentation
Retrieval. Helsinki: Finnish Academy of Technology. 171 p. (Acta
Polytechnica Scandinavica, Mathematics and Computing in Engineering
Series No. 64). ISBN 951-666-406-7, ISSN 1237-2404.

Van de Ree, R. V. 1994. SCWERE: Supervisory Control Systems. Doctoral
thesis. Delft, The Netherlands: Delft University of Technology. 214 p.
ISBN 90-900-7028-1

Weich, R. E. 1992. Utilizing CALS Standards to Achieve Effective
Information Management. CALS Journal, Vol. 1, No. 4 (Winter 1992), pp.
47 - 52.

Weisang, C. & Zinser, K. 1992. GRADIENT - an intelligent, knowledge-
based system for industrial process control. ABB Review 5, 1992, pp. 11 -
16.

Wexelblat, R.L. 1989. On Interface Requirements for Expert Systems. AI
Magazine, Vol. 10, No. 3, Fall 1989, pp. 66 - 78. ISSN 0738-4602

Vicente, K.J. 1992. Multilevel Interfaces for Power Plant Control Rooms I:
An Integrative Review. Nuclear Safety, Vol. 33, No. 3., July-September
1992, pp. 381 - 397.

173

Wick, M.R., Thompson, W.B. & Slagle, J.R. 1988. Knowledge-based
Explanation. Technical report 88-24, Computer Science Dept., Univ. of
Minnesota, Minneapolis, USA. 21 p.

Wick, M.R. & Slagle, J.R. 1989. An Explanation Facility for Today’s
Expert Systems. IEEE Expert, Vol. 4, No. 1, Spring 1989, pp. 26 - 36. ISSN
0885-9000

Winston, P. H. 1993. Artificial intelligence. Third edition. Reading, MA:
Addison-Wesley Publishing Company. 737 p. ISBN 0-201-53377-4

Woods, W.A. 1986. Important Issues in Knowledge Representation.
Proceedings of the IEEE, Vol. 74, No. 10, October 1986. Pp. 1322 - 1334.

Yang, S. & Ciesielski, M.J. 1991. Optimum and Suboptimum Algorithms for
Input Encoding and Its Relationship to Logic Minimization. IEEE
Transactions on Computer-Aided Design, Vol. 10, No. 1, January 1991. Pp.
4 - 12. ISSN 0278-0070

Zadeh, L.A. 1984. Making Computers Think Like People. IEEE Spectrum,
August 1984, pp. 26 - 32.

Zinser, K. & Frischenschlager, F. 1994. Multimedia’s Push Into Power.
IEEE Spectrum, July 1994. Pp. 44 - 48. ISSN 0018-9235

Årzen, K.-E. 1991. Knowledge-based Applications in the Process Industry:
Current State and Future Directions. In: Proceedings IFAC Workshop on
Computer Software Structures Integrating AI/KBS in Process Control,
Bergen, May 29 - 30, 1991.

Årzen, K.-E. 1993. Using multi-view objects for structuring plant
databases. Intelligent Systems Engineering, Autumn 1993, pp. 183 - 200.

	ABSTRACT
	PREFACE
	CONTENTS
	LIST OF ORIGINAL PUBLICATIONS
	GLOSSARY
	1 INTRODUCTION
	1.1 THE NEED FOR EXPLANATION
	1.1.1 Plant supervision
	1.1.2 Avoiding mental mismatches

	1.2 MODELS OF PLANT KNOWLEDGE
	1.3 PROBLEM STATEMENT
	1.3.1 Research problem
	1.3.2 Research hypothesis
	1.3.3 Research assumptions
	1.3.4 Research methods

	1.4 SCOPE OF THE RESEARCH
	1.4.1 Application areas
	1.4.2 Research areas

	1.5 OUTLINE OF THE DISSERTATION

	2 PROBLEM ANALYSIS
	2.1 PLANT DESIGN AND USE
	2.2 PROBLEMS IN PLANT DESIGN
	2.2.1 Communication
	2.2.2 Compatibility
	2.2.3 Low level descriptions
	2.2.4 Tool support
	2.2.5 Design knowledge

	2.3 PROBLEMS IN PLANT USE
	2.3.1 Tasks and tools
	2.3.2 Processes
	2.3.3 Automation
	2.3.4 Support systems

	2.4 REQUIREMENTS FOR EXPLANATION

	3 A FRAMEWORK FOR EXPLAINING PLANT KNOWLEDGE
	3.1 A TYPOLOGY OF EXPLANATION
	3.2 GENERIC EXPLANATION TASKS
	3.3 TASK FEATURES
	3.4 MODELS FOR EXPLANATION

	4 EXPLANATION AS OBJECT MODELLING
	4.1 EXPLAINABLE OBJECTS
	4.2 EXPLAINABLE TASKS
	4.2.1 The VICE system
	4.2.2 Explaining reasoning
	4.2.3 Explaining strategies
	4.2.4 Development support

	4.3 EXPLAINING RELATIONS
	4.4 MEANS-END MODELLING
	4.5 CONTRIBUTION MODELS
	4.5.1 Relaxing the levels
	4.5.2 Gas system example
	4.5.3 Weighted relations
	4.5.4 Dynamic relations

	5 EXPLANATION AS DESIGN RECOVERY
	5.1 MULTILEVEL FLOW MODELS
	5.2 THE P&ID ENVIRONMENT
	5.3 EXPLAINING DESIGN KNOWLEDGE
	5.3.1 Deriving explanations through relations
	5.3.2 Justifiable objects

	5.4 EXPERIENCES WITH THE JUSTIFIER PROTOTYPE

	6 EXPLANATION AS DIAGNOSIS
	6.1 BACKGROUND
	6.2 LEVELS OF LOGIC EXPLANATION
	6.3 THE LEPO C++ PROTOTYPE
	6.3.1 Filters
	6.3.2 Data histories
	6.3.3 Object models
	6.3.4 Simulation
	6.3.5 Explanation
	6.3.6 Human-computer interfaces

	6.4 COMPLEXITY ISSUES
	6.5 EXPERIENCES WITH THE PROTOTYPE
	6.6 FUTURE RESEARCH

	7 EXPLANATION AS INTERACTION
	7.1 HYPERTEXT
	7.1.1 Dynamic documents
	7.1.2 Hypertext for explanation
	7.1.3 Content generation

	7.2 ENHANCED HYPERTEXT
	7.2.1 Model-based hypertext
	7.2.2 A usability study

	7.3 CONTEXT
	7.4 DIALOGUE
	7.4.1 The explanation creation process
	7.4.2 The use of context

	7.5 EXPERIENCES WITH HYPERTEXT

	8 RELATED RESEARCH
	8.1 APPROACHES TO EXPLANATION
	8.1.1 Explaining tasks
	8.1.2 Explaining models
	8.1.3 Functional knowledge
	8.1.4 Targets of explanation

	8.2 EXPLANATION IN PLANTS
	8.2.1 Support systems
	8.2.2 Mental models of plant systems
	8.2.3 Design knowledge

	8.3 LOGIC EXPLANATION
	8.3.1 The diagnosis background
	8.3.2 Explanations of industrial logic
	8.3.3 Improved logic languages

	8.4 INTERACTION TECHNIQUES
	8.4.1 Hypertext
	8.4.2 Dialogue
	8.4.3 Rhetoric for explanation
	8.4.4 User modelling

	9 INTRODUCTION TO THE PAPERS
	9.1 EXPLAINING KNOWLEDGE IN A DIAGNOSTIC EXPERT SYSTEM
	9.1.1 Paper I: Explainable tasks, user profiles, and hypertext
	9.1.2 Paper II: Context for explanation generation and navigation

	9.2 EXPLAINING DESIGN KNOWLEDGE OF INDUSTRIAL PLANTS
	9.2.1 Paper III: Capturing design knowledge into models
	9.2.2 Paper IV: Bringing design knowledge to users
	9.2.3 Paper V: Explaining design knowledge from means-end models

	9.3 SUPPORT SYSTEMS IN HIGH ENERGY PHYSICS
	9.3.1 Paper VI: Human-machine interfaces in high energy physics control systems
	9.3.2 Paper VII: Modelling high energy physics control systems

	9.4 EXPLAINING AUTOMATION LOGIC (PAPER VIII)

	10 CONCLUSIONS
	10.1 RESULTS
	10.2 ANSWERS TO THE RESEARCH PROBLEMS
	10.3 THE MAIN CONTRIBUTIONS
	10.4 DIRECTIONS FOR FUTURE RESEARCH
	10.4.1 Applications outside the plant domain
	10.4.2 Ubiquitous explanations

	REFERENCES
	PAPERS

