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ABSTRACT

Fracture toughness values obtained from standardized tests, with strict specimen
size requirements to produce specimen size independent results, are used in the
process of fracture toughness assessment of structural components. Often results
from the standardized tests can not be applied to real flaws due to different flaw
geometries in test specimen and structure or the properties of the examined
material are such that strict specimen size requirements of the standards are in
practise impossible to fulfill. In both cases the main cause to problems arises from
combined constraint characteristics of the flaw and specimen type.

In this study a wide range of specimen and flaw dimensions were examined both
by experimental tests and computational finite element analysis for constraint
assessment. The methods for taking into account specimen and flaw dimensions
are introduced and applied to investigated configurations. These methods include
constraint correction or indexing methods, namely T-stress, Q-parameter and
small-scale yielding correction (SSYC) and statistical treatment for specimen size
effect in case of cleavage fracture. Experimentally studied configurations were
Charpy-size impact specimens with a/W ranging from 0.05 to 0.5, static 3-point-
bend (3PB) specimens with thickness ranging from 5 to 300 mm and plates in 4-
point-bending (4PB) with elliptical surface cracks on the tension side. All flaws
were fatigue precracked. Computationally analysed configurations included 3-
dimensional surface-edge notched 3PB specimens (SE(B)) with deep (a/W = 0.5)
and shallow (a/W = 0.1) crack configurations and compact tension (CT)
specimens with a/W = 0.6. The W/B ratios for SE(B) and CT specimens were 1, 2
and 4. The W/B = 2 configuration was also analysed as side grooved. The strain
hardening exponent (n) of the deformation plasticity material model had values 5,
10 and 20. Computationally analysed were also two sizes of elliptical surface
cracks in a 4PB plate with material strain hardening exponent n = 10. For the 4PB
plates a formula for fracture toughness (Jc) calculation was proposed.

The conducted 3-dimensional finite element analyses of the cracked
configurations were more detailed than any analysis in previously published
literature. Thus analyses revealed a great deal of new information of the in-plane
constraint behaviour inside the specimen. Toughness scaling models (= SSYC)
and J-Q trajectories were created and their evolution as functions of specimen
dimensions, material hardening properties and applied loading were investigated.
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The SSYC and J-Q approach were found to describe constraint properties
adequately. This finding received partial verification from the experimental tests,
where SSYC was found to be superior in comparison to Q-parameter and T-stress.
The statistical treatment for specimen thickness description was very promising
and a development for that method was proposed.

Based on the results, the differences in apparent fracture toughness values
obtained from various different specimen configurations can be better understood
and taken into account.
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NOMENCLATURE

σij stress field

Aij, Bij , Cij  constant matrices

r, R distance from the crack tip (polar coordinate)

θ angle from the crack plane (polar coordinate)

K, Kc, KIc stress intensity factor

fij , gij , hi matrices of functions

εij strain field

n strain hardening exponent

Sij stress tensor

Eij strain tensor

J, Jc, Jic J-integral

Γ integration path around the crack tip in the calculation of
J-integral

W strain energy density

T traction vector in Rice’s J-integral (not to be confused with T-
stress)

u displacement vector

ds an element of arc length along Γ

Π potential energy

T, Te, Ti, Tii T-stress or its components

t’, B, β biaxiality coefficient

σθθ hoop stress

σ0, σy yield strength

ai, η, m, M coefficients

δij Kronecker delta
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Q Q-parameter

ui displacement field

ε0, εpl yield strain, plastic strain

α, In material constant

F, G, h functions

σ, σc, σf (critical fracture) stress

CTOD, δ, δc (critical) crack tip opening

A area

φ constraint factor

B thickness of the through-thickness crack specimen (not to be
confused with biaxiality coefficient)

b ligament length of the through-thickness crack specimen

W specimen width

a crack length

P, Pf probability

σw Weibull stress (Weibull, 1939)

e base of the natural logarithm ( = 2.71828...)

P, PL applied load, limit load (not to be confused with probability)

U, Upl energy, plastic energy

σflow flow stress

V volume

cσ principal stress contour

E, E’ Young’s modulus (≈ 210 GPa in plane strain and ≈231 GPa in
plane stress for steel)

Mom applied moment

t plate thickness

2b total plate width
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c half length of the surface crack on the plate surface

SSY(C) Small-Scale Yielding (Correction)

FEM Finite-Element Method

FE(A) Finite-Element (Analysis)
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ORIGINAL FEATURES

The following features of this thesis are believed to be original:

1. Very detailed 3-dimensional finite element analyses of SE(B) and CT
specimens were conducted. The author is unaware of any previous research
where this much refined mesh was used for 3-dimensional crack tip
modelling. The determination of the in-plane scaling models and J-Q
trajectories as functions of specimen thickness coordinate with current
accuracy is unique. A refinement for the statistical treatment of fracture
toughness data was derived.

2. Similarly detailed analyses of elliptical surface cracks were conducted and
similar in-plane constraint parameters were derived. The mesh refinement
together with the accuracy of the calculation procedures in the post-
processing programs provided in-plane information of elliptical crack
behaviour in a unique way. This enabled 3-dimensional comparison
between in reality existing surface flaws with flaw geometries in
standardized specimens.

3. Together with the computational analyses of surface cracks, a set of
experimental tests were conducted. These analyses both established and to
some extent verified a formula for the calculation of fracture toughness of
a surface flawed plate under bending loading.

4. An extensive set of tests with a wide range of specimen configurations and
loadings was performed in order to study different specimen and flaw
behaviour and to investigate methods for recognizing specimen size effects
in the test results.
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DISSERTATION

This dissertation consists of an introductory report and four appended publications
(Appendices I - IV):

Publication 1 Nevalainen, M. & Dodds, R. H. 1996. Numerical
investigation of 3-d constraint effects on brittle fracture in
SE(B) and C(T) specimens. International Journal of  Fracture,
Vol. 74, No. 2, pp. 131 - 161.

Publication 2 Nevalainen, M. 1997. Fracture toughness comparison
between a semielliptical surface crack in a 4PB plate and a
through thickness crack in a 3PB fracture toughness test
specimen. Espoo: Technical Research Centre of Finland. 34
p. (VTT Publications 303.)

Publication 3 Nevalainen, M., Wallin, K. & Rintamaa, R. 1994. Crack
depth effects measured by dynamic fracture toughness tests.
In: Fracture Mechanics. 24th Vol. ASTM STP 1207, John D.
Landes, Donald E. McCabe and J. A. M. Boulet (eds.).
American Society for Testing and Materials, Philadelphia,
PA. Pp. 108 - 130.

Publication 4 Nevalainen, M. & Wallin, K. 1994. The effect of crack depth
and absolute thickness on fracture toughness of 3PB
specimens. In: ECF 10 − Structural Integrity: Experiments,
Models and Applications, Vol. II.
K.-H. Schwalbe and C. Berger (eds.). London: European
Structural Integrity Society. Pp. 997 - 1006.
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1  INTRODUCTION

1.1 PROBLEM DESCRIPTION

The topic of this thesis is related to fracture mechanics, which is a branch of
science dealing with micromechanics and strength of materials. Fracture
mechanics is applied in order to calculate the fracture toughness of a cracked
component or specimen, creating a singular stress field at the tip of the crack.
Fracture toughness describes the ability to resist fracture and is dependent on
component geometry, loading and material properties at the operational
conditions.

In practice, steel components are in many cases too large and too expensive to be
tested as such in their operating conditions for their fracture characteristics. Thus,
it is more beneficial to divide the fracture toughness determination in two stages:
firstly, the determination of the fracture toughness of the material as a functon of
the test temperature and perhaps other operating conditions and secondly,
application of a geometry dependent factor to obtain the fracture toughness of the
component or its weakest part.

Specimens that can be tested in laboratories and are inexpensive enough to be
broken in large numbers are used for the first stage of the fracture toughness
determination. Currently, there exist numerous standards for the fracture
toughness testing of metallic materials. Common to all standards is a requirement
of large enough specimen size in order to obtain test results dependent solely on
material properties, not on the geometry or the size of the specimen. The
minimum size requirement is usually expressed as the ratio of the fracture
toughness to the yield strength, multiplied by some constant, M⋅JC/σY. The reason
for this size requirement is to maintain a large elastically behaving material
volume around the plastically behaving region near the specimen crack tip. This
condition is generally referred to as small scale yielding (SSY) in comparison to
the unwanted large scale yielding (LSY). Under large scale yielding the specimen
boundaries affect the crack tip stress field by relaxing the triaxial stress state and
increasing the apparent fracture toughness. This phenomenon is referred to as the
constraint effect.

Problems are encountered with the size requirement. Usually low strength
materials have high fracture toughness and so the minimum required specimen
size for those materials may be very large, in some cases of the order of several
meters. This leads to the need of larger testing machines which increases costs. On
the other hand, in some cases the specimen size is limited due to manufacturing
process or material availability. For example, irradiated specimens must be small
due to limited volume of the irradiation chambers and strong neutron flux
gradients. Thus, the maximum irradiated specimen size becomes far smaller than
required by the standards. Due to the above mentioned reasons, testing of
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standardized specimens is in some cases uneconomical or impossible and smaller
specimens have to be tested to get an idea of the fracture toughness level. This
results in a problem of obtaining a geometry independent result from the test
results obtained with too small specimens, i.e. the removal of the geometry effect.

In real operating components and structures the flaws are seldom straight through
thickness cracks as in standardized test specimens. Often real cracks are long and
shallow, beginning and ending at one surface of the structure. A pressure vessel is
a typical structure with this kind of flaw geometry. This brings another difficulty
into fracture toughness estimation. Not only the geometry of the component, but
also the geometry and size of the flaw affect the fracture toughness determination.
For shallow cracks the constraint effect increases the apparent fracture toughness
very much due to the short distance from the crack tip to the free surface.

There are two, parallel ways to investigate the geometry effect on fracture
toughness: experimental and computational analysis, the latter referring often to
Finite Element Method (FEM). This thesis includes both types of approaches.
Experimental fracture toughness values have been determined for specimens with
either varying thickness (B), varying ratio of crack depth to specimen width (a/W)
or varying flaw geometry from through thickness to elliptical surface cracks.
Extensive finite element analyses (FEA) have been applied for models with
geometries ranging from standardized specimens to plates with surface flaws,
having specimen thickness, crack size and material strain hardening exponent as
parameters. Also effects of side grooving have been studied.

Three types of approaches have been applied to find out the constraint correction
for different geometries, namely T-stress, Q-parameter and small-scale yielding
correction (SSYC). Also statistical treatment for specimen thickness effect in case
of cleavage fracture was investigated. The approaches were applied both for
experimental and computational results.

1.2 PRESENT STATUS OF FRACTURE MECHANICS

One milestone of fracture mechanics was the introduction of the J-integral in the
late 1960’s (Rice, 1968). No later than 1973 Larsson & Carlsson presented first
arguments about the effect of specimen geometry on the value of the calculated J-
integral. The issue was then acknowledged (for example Rice, 1974), but did not
cause significant discussion, if measured as the number of related published
articles. During the 70’s and 80’s the topics of constraint effect and correlations
between small and large specimen results were studied quite actively, for example
within the American Society for Testing and Materials: Special Technical
Publication (ASTM STP) series, but the T-term remained approximately two
decades as the only parameter for constraint description. The introduction of the
Q-parameter (O’Dowd & Shih, 1991 and 1992) and the SSY-correction (Dodds et
al., 1991) finally expanded the on-going discussion of the constraint effect.
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Several empirically and computationally oriented articles concerning the effect of
specimen thickness and ratio of crack depth to specimen width (a/W) on measured
fracture toughness have been published during last ten years. Most of the
empirical analyses have involved correlations between small and large specimen
fracture toughness results in the ductile-to-brittle transition region. Some
examples are the Heavy Section Steel Technology Program (HSST) sponsored by
Nuclear Regulatory Commission (NRC) (Theiss et al., 1994) and the international
program initiated by Japan Society for the Promotion of Science (JSPS) and
Materials Properties Council (MPC) including participants from Asia, America
and Europe (Iwadate & Yokobori, 1994 and Van Der Sluys & Miglin, 1994).
Computational analyses have mostly described specimen boundary effects on the
near crack-tip stress distribution.

The first significant review of the status of research being conducted on surface
cracks was the American Society of Mechanical Engineers (ASME) symposium
”The Surface Crack: Physical Problems and Computational Solutions” in 1972
(Reuter et al., 1990). In 1986 ASTM and Society for Experimental Mechanics
(SEM) initiated a joint effort to identify the international state-of-the-art of
research on surface flaws, which resulted in two symposia. Papers of analytical,
numerical and experimental analyses were presented, but the majority of
presentations dealt with elastic stress intensity factor determination, while
research on nonlinear behaviour was very limited. One evident explanation for
this is the need to predict surface crack growth under fatigue loading.

With the increased accessability of powerful (super)computers the interest to
model 3-dimensional specimens (and components) with surface cracks has grown.
Active reaseach has been focused on the development of stress states inside a
standardized specimen and evolution of crack-tip constraint conditions along a
curved crack front. Cracking of bimaterial interfaces, subclad cracking, multiple
parallel cracks in a component and development of the weight function method for
stress intensity factor calculation for arbitrary shaped crack fronts are among the
other areas of active reasearch.
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2  CRACK TIP CHARACTERIZATION

The characterization of the crack-tip stress and strain fields is fundamental in
fracture mechanics, since the crack tip fields and perhaps their interference with
the boundary effects determine the fracture process. In the following some
significant publications during the development of fracture toughness analysis are
referenced.

Williams (1957) presented a serie expansion of the crack tip stress field, Eq. 1.

σ θ θ θij ij ij ij
A r B C r= + + +−( ) ( ) ( ) .../ /1 2 1 2 , (1)

where r and θ are the polar coordinates at the crack tip. The first term in the
expansion is singular and the most dominant term close to the crack tip, where r
→ 0. The second term is independent of the r coordinate and the rest of the terms
are positive powers of the r and thus have very little effect on the crack tip stress
field.

The basis of fracture mechanics is the elastic analysis of the crack tip region which
shows a unique stress-strain field with a singularity at the crack tip. The strength
of the crack tip singularity is the stress intensity factor K, Eq. 2. The crack tip
region can then be characterized by one parameter and fracture is assumed to
occur for some critical value of K (Kc).

σ
π

θij ij

K

r
f=

2
( ) (2)

For example, the ASTM standard for plane strain fracture toughness determination
(ASTM, 1996) uses the stress intensity factor for fracture toughness determination
provided that the plastic zone near the crack tip is very small compared to other
dimensions of the test specimen.

A direct extension of fracture mechanics concepts to cases of large scale yielding
would assume again the existence of crack tip singularity. Hutchinson (1968) and
Rice & Rosengren (1968) (referred to as HRR) proved that a singularity does exist
which is uniquely dependent on the material flow properties. In solved cases of
crack tip fields, they suggested dependence of stress and strain fields on distance r
from the crack tip and on strain hardening exponent n, Eqs. 3.

s q

e q
ij

n n

ij

ij

n

ij

r S

r E

µ

µ

- +

- +

/( )

/( )

( )

( )

1

1 1
(3)

Rice (1968) proposed existence of a path-independent J-integral, Eq. 4.

J Wdy T
u

x
ds= − ⋅



∫

∂
∂Γ

(4)
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J-integral characterizes the crack tip area without focusing attention directly at the
crack tip, which provides a more practical method for analysing fracture. The
value of the J-integral depends on the near tip stress and strain fields. The path
independent nature of the integral allows an integration path, Γ, sufficiently far
from the crack tip, to be substituted for a path close to the crack tip region. Rice
proved path-independence of the J-integral for a material model obeying
deformation theory of plasticity. Hayes (1970) showed that for incremental
plasticity theory the J-integral demonstrates approximate path-independence
within the plastic region.

Experimental determination and evaluation of the J-integral were conducted by
Begley & Landes (1972) and Landes & Begley (1972). They presented how the J-
integral can be experimentally determined from the load-deflection diagram. They
proposed that the J-integral could be used as a ductile fracture criterion, subject to
certain not-well-defined limitations. They provided experimental evidence
suggesting that fracture initiation could be correlated with attainment of a critical J
value in a wide but limited range of specimen sizes and geometries. Different
specimen configurations develop different crack tip fields. For example, surface-
edge-cracked bend specimen (SE(B)) exhibits a high triaxial tension on the plane
ahead of the crack, while center-cracked panel (CCP) develops straight 45° slip-
lines proceeding from the crack tips to the free surfaces. Different crack tip fields
affect the microstructural mechanisms of ductile cracking, void growth and
coalescence. The nonuniqueness in crack tip fields determined from small strain
formulations was found for the nonhardening idealisation. When strain hardening
was included, asymptotic analysis led to crack tip singular fields which were
unique to within a scalar amplitude factor and the J-integral served as a measure
of this amplitude (McMeeking & Parks, 1979). Begley & Landes (1972) argued
that since virtually all materials exhibit some strain hardening, J should
characterize the near-tip fields at least up to the beginning of crack extension.

The foundation of the J-integral is on the static component of the ‘energy-
momentum tensor’, introduced by Eshelby (1956) to characterize generalized
forces on dislocations and point defects in elastic fields (Rice, 1968). In a two-
dimensional elastic body the value of the J-integral is often connected to the value
of the partial derivative of the potential energy (Π) with respect to the crack
length, a (Rice, 1968), Eq. 5.

J
a

= − ∂Π
∂

(5)

However, Santaoja (1992 and 1996) has shown that the crack tip singular field in
elastic medium contributes an additional term to Eq. 5. Santaoja criticized the
validity of Eq. 5 for cases where small-scale yielding conditions exist at the crack
tip. He also reminded that the potential energy (Π) is a concept of pure elastic
deformation and conservative loading. Thus, independent of the scale, no material
dissipation, e.g. plastic yielding, is allowed to exist when potential energy is
examined (Santaoja, 1996).
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McMeeking & Parks (1979) proposed specimen size limitations for J testing
requiring all specimen dimensions to exceed M⋅J/σ0, where M = 25...50 for bend
and CT-specimens and M = 200 for center-cracked panels. They argued that the
imposition of size or deformation limitations for J is more or less arbitrary due to
gradual loss of J-dominance as load increases. An alternative technique leading to
similar conclusions was developed by Shih & German (1981) who compared the
asymptotic plastic field of cracks in tension and bending with the HRR field.

Specimen size limitations are related to the loss of constraint at the crack tip stress
fields due to specimen boundary effects. In the following, approaches for
constraint description currently in use are presented.
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3  METHODS FOR CONSTRAINT CORRECTION

3.1  T-STRESS

Larsson & Carlsson (1973) analysed finite element models of various cracked
specimens and compared the results with the results obtained from a boundary
layer model. They studied the point of the loading where the first element in the
model starts to yield in a linearly elastic - ideally plastic material and found out
that the stress intensity factor at the beginning of the yielding is specimen
geometry dependent. Thus, the boundary layer model was not capable to describe
accurately crack tip deformation in real specimens made of low strain hardening
material and the first term in the expansion (Eq. 1) was not sufficient to describe
the crack tip fields in different cracked geometries. Larsson & Carlsson (1973)
concluded to present the stress field very much like in Eqs. 1 and 2, but they
denoted the non-singular components as T and divided it to a constant and a r-
dependent component, Eq. 6.

σ
π

θij

I

ij ij ij

K

r
f T T r= + + ∞( )

( ) ( )
/2 1 2 0 (6)

In Eq. 6 only the Tx component (to the direction of the crack, on the crack plane)
of Tij0 is non-zero. The Tx for various geometries can be determined as a
difference in x-direction stress determined by using the specimen geometry model
and boundary layer model (blm), Eq. 7.

T r rx x specimen x blm= −σ σ( , ) ( , )0 0 (7)

Rice (1974) studied further the effect of T-stress on fracture parameters. He
discovered that the T-stress has no effect on the J-integral, but positive (negative)
T-stress decreases (increases) plastic zone size and CTOD compared to the
previous models not including the T-stress effect. Rice (1974) also suggested use
of a new non-singular stress parameter, S, for the three-dimensional analyses. S
would act perpendicular to the principal plane of deformation influencing the
transition to a non-plane strain yielding mode involving through-thickness
deformation. In general, S = νT.

Harlin & Willis (1988) investigated few cracked geometries analytically and
applied both theoretical cleavage and ductile failure criteria to find out the
transition from the brittle to ductile fracture as a function of temperature,
assuming that temperature has effect principally on flow stress. They found a scale
effect dependent on fracture criterion. If fracture toughness was assumed to
depend on critical normal stress, the crack could have been ten times smaller than
if the fracture was assumed to depend on critical hydrostatic stress, to be still
determined by the stress intensity factor, K. In other words, the introduction of
non-singular T- and S-stress affected the size limit of a ‘long’ crack, characterized
solely by K.
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For a boundary layer model of radius R, Harlin & Willis (1988) presented a
relation between T-stress and the stress intensity factor, Eq. 8.

( )
T t

R

a

K

R

I
1

1

2

1

2

= 



'

π
, (8)

where t’ is the biaxiality coefficient. The relation between T1-term and the
singular stresses to be applied at the boundary r = R of the boundary layer mesh
demonstrates the relative importance of T1 as the crack size decreases. For cracks
which are sufficiently small, the boundary layer formulation ceases to provide a
representation for the near-tip field in a specimen, because attainment of a
specified KI would require an applied stress large enough to cause plasticity to
spread far from the crack tip. However, there is an intermediate range of crack
sizes for which the T1-effect is both significant and representative of specimen
behaviour.

Harlin & Willis (1988) supposed that practical applications may involve
competition between a negative T1-stress and a positive S3-stress. An example was
provided by a semicircular surface flaw, loaded by a thermal shock induced by
rapid surface cooling. This would induce biaxial tension in planes parallel to the
surface and hence the value of S3 at the deepest point of the flaw would contain a
contribution from the tensile stress normal to the plane of the flaw. The T1-stress
would likely be negative as in the case of the edge crack in plane strain. Which
non-singular term would dominate is unknown.

Leevers & Radon (1983) introduced a biaxiality parameter B, through which the
T-stress is defined, Eq. 9.

B
T a

K
= π

(9)

Bilby et al. (1986) investigated the effect of the second-order term on large
geometry change deformation field within 2⋅CTOD. Negative T-stresses were
shown to reduce the level of maximum hydrostatic stress ahead of the crack. Void
growth rate decreased and ductility enhanced due to the loss of triaxiality ahead of
the crack tip.

Betegòn & Hancock (1991) correlated loss of J-dominance with the second term
in the asymptotic expansion of the elastic field. They characterized the effect of
the T-stress on the small-strain region surrounding the blunting zone. In this
context, the loss of J-dominance was associated with compressive (negative) T-
stresses which introduce a corresponding second-order term into the nonlinear
asymptotic expansion, of which the HRR field is simply the first term. The
second-order term causes the stresses ahead of the crack to fall for negative T-
stresses while remaining close to the HRR field for positive T-stresses and
maintaining J-dominance. Single parameter characterization (J-dominance) was
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thus concluded to be a feature of geometries which show positive biaxiality
parameters (B). Specimens which have negative biaxialities were predicted to
loose J-dominance at a deformation level which depends on T. The biaxiality
parameter, B, is a specimen configuration dependent parameter. Values of B for
various specimen geometries are presented by Leevers & Radon (1983) and Al-
Ani & Hancock (1991).

Betegòn & Hancock (1991) approximated the effect of T-stress on hoop stress as:
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where the ai:s depend on strain hardening exponent, n.

Al-Ani & Hancock (1991) analysed edge-cracked bars in tension and bending.
The ratio of the crack depth to the specimen width, a/W, seemed to govern the J-
dominance. In bend specimens with a/W < 0.3 and in tension-loaded specimens
with a/W < 0.5, the J-dominance was lost, associated with the development of
plasticity to the cracked face before full ligament plasticity. Specimens with
deeper cracks seemed to maintain the J-dominance until large-scale plasticity,
because plasticity developed through the ligament without spreading to the
cracked face. Again, the loss of J-dominance was attributed to compressive T-
stresses, while specimens which exhibited tensile T-stresses retained J-dominance
in accord with modified boundary layer formulations. It should be noted that for
the shallow cracks the J-dominance was lost before a < 200⋅J/σ0, which is earlier
than proposed by McMeeking & Parks (1979) for deeper cracks.

Du & Hancock (1991) represented numerical results of modified boundary layer
formulations as slip-line fields. The full Prandtl field was achieved with tensile T-
stresses which caused plasticity to appear on the crack flanks and envelope the
crack tip. The stresses were independent of T as further deformation could not
change the flow field or the stress level at the crack tip. The crack tip stress σθθ

directly ahead of the crack was 0.5% and 0.1% lower than the Prandtl value
(2.97⋅σ0) for T=0 and T=0.443, respectively, the deviation being dependent on
material parameters such as Poisson’s ratio, ν. This situation corresponds to the
non-hardening limit of the HRR field characterized by J. Compressive T values
were shown to reduce the stress triaxiality within the plastic zone at the crack tip.
This effect was associated with the appearance of an elastic wedge at the crack
flanks, so that plasticity did not completely envelope the crack tip and the stress
field required two-parameter characterization.

Sham (1991) presented how T-stress can be determined by the so-called second
order weight functions through a work-conjugate integral. He presented tabulated
T-stress values for various specimen configurations.
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Tvergaard & Hutchinson (1994) applied an elastic-plastic crack growth model,
with a traction-separation law specified on the crack plane to characterize the
fracture process, to study the effect of T-stress on fracture resistance. They
discovered that with compressive T-stresses the plasticity contributes significantly
to crack growth resistance even at low peak stress values. As compressive T-stress
increases from zero to the yield strength the plasticity effect increases radically
and crack growth resistance increases. The increase of tensile T-stress from zero
to half of the yield strength produces only a negligible decrease in crack growth
resistance. These results are in accord with results of Du & Hancock (1991).
Operational range of T-stress was discovered to be from zero to negative T-
stresses, while changes in T-stress in the tensile range have only small effects on
fracture toughness.

Hancock et al. (1993) tested a series of cracked specimen configurations to
correlate the geometry dependence of crack tip constraint in full plasticity. They
found that at a small crack extension the toughness is dependent on the crack tip
constraint determined by T. The loss of constraint in center-cracked panels
increases radically as crack grows, compared to constraint loss in 3PB specimens,
due to the effect of constraint on the slope of the resistance curves. By use of the
T-stress the resistance to crack tip tearing of very dissimilar configurations can be
placed in order. An enhanced geometry dependent toughness and resistance to
tearing was found to associate with specimens of negative T-stress.

Parks (1991) discussed the three T-terms which arise in 3-D crack problems. He
generalized the T-stress effect on linear elastic stress distribution in the vicinity of
the crack front location:
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He also proposed an equivalent stress, Te, corresponding to Tij . In the form of Eq.
12, the Te does not violate the von Mises yield criterion based on yield stress, σ0:

( )σ0 33

2

11 33 11

2

13

23> − + + ≡T T T T T Te
(12)

3.2  Q-PARAMETER

O’Dowd & Shih (1991 and 1992) developed the idea of a J-Q annulus. Within the
J-Q annulus the full range of high- and low-triaxiality crack tip stress and strain
fields are shown to be members of a family of crack tip field solutions
parameterized by Q when distances are measured in terms of J/σ0. The stress
distribution and the maximum stress depend on Q alone while J sets the size scale
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over which large stresses and strains develop. The Q-family provides a framework
for quantifying the evolution of constraint as plastic flow progresses from small-
scale yielding to fully yielded conditions.

O’Dowd & Shih (1991) analysed a boundary layer model in which the remote
tractions were given by the two term linear-elastic solution, Eq. 13.
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For a fully yielded crack geometry, they presented the stress, strain and
displacement fields in the form:
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where fij , gij  and hi depend on dimensionless combinations of material parameters.

For a linear-elastic, power-law hardening material they presented the following
two-term expansion for mode I stresses within the small-strain formulation for
distances sufficiently close to the crack tip but still outside the zone of finite
strains:
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The second-order term in Eq. 15 was obtained by subtracting the applied J scaled
HRR distribution from the two-term expansion (Eq. 13), which was assumed to be
the exact solution. The examination of the second-order term revealed that 0 < q <
0.071 for 4 ≤ n ≤ 20. Thus, the r-dependence of the second-order term could be
neglected and Eq. 15 approximated:
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where Q is essentially a stress triaxiality parameter, since second-order stress
terms on the diagonal are almost equal and off-diagonal terms are relatively small
on the angular sector θ< π/2. A negative Q value decreases hydrostatic stress by
Q⋅σ0 from the Q = 0 reference state and a positive Q value has an inversed effect.
This can be written as:

σ σ σ δ
ij ij HRR ijQ= +( ) 0 , for r > J/σ0 and θ< π/2 (17)

The second, hydrostatic term in Eq. 17 is independent of distance and angle. Xia
et al. (1993) showed that the second term actually represents the effect of the four
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higher order terms in the elastic-plastic near-tip fields, while O’Dowd (1995)
stated that the number of higher order terms needed depends on applied
constitutive relation. The Q values for many different geometries have been
presented by O’Dowd & Shih (1994).

To extend the validity of Eq. 17 it was expressed by means of the SSY solution
which matches the HRR stress distribution at r/(J/σ0) = 2 and θ = 0 as the Q = 0
distribution, Eq. 18 (O’Dowd & Shih, 1991). The Q value is always determined at
r/(J/σ0) = 2, which is outside the finite-strain region, but still within the J-Q
annulus. The J-Q annulus is defined as the region of outer boundary rJ-Q, where
Eqs. 17 and 18 accurately describe the field.

σ σ σ δ
ij ij Q ijQ= +=( ) 0 0 , for r > J/σ0 and θ< π/2 (18)

The SSY reference distribution Q = 0 in Eq. 18 is not applicable for accurate
quantification of the field near and within the finite-strain region for studies of
micromechanisms of fracture. For such applications the reference distribution
should be obtained from a finite-deformation analysis. However, for distances
r/(J/σ0) > 2 the difference between the finite- and small-strain Q = 0 distributions
is negligible. Also, the difficulty with material description is avoided by taking the
SSY solution as a reference solution (O’Dowd, 1995). Equation 18 has been found
to be a good description of the fields even for materials which do not display
power-law hardening. If a high constraint measure, JIc, is to be used as the
reference toughness, then use of SSY field (T = 0) as the reference distribution is
sensible, because this is the field which specimen experiences rather than the HRR
field (O’Dowd, 1995). To better take into account the constitutive relation,
O’Dowd (1995) added a third, strain hardening dependent, term to Eq. 17:

σ σ σ δ σ δ
ij ij HRR ij ija n Q= + ⋅ +( ) ( )0 0 0 , for r > J/σ0 and θ< π/2 (19)

Operationally, Q can be defined as the difference between the full-field solution
for σθθ  and the HRR field at r/(J/σ0) = 2 and θ = 0:

Q HRR≡ −σ σ
σ

θθ θθ( )

0

 , at θ = 0 and r = 2J/σ0 (20)

Q can be evaluated from any of the stress components and at any angle in the
forward sector π/2 < θ < 3π/2, but for definition the σθθ  is a sensible choice.

O’Dowd & Shih (1991) studied biaxially loaded center-cracked panels and 3PB
specimens and found out that the Q value depends on the geometry and extent of
plastic yielding. For certain crack geometries Q reaches a steady-state value when
fully plastic conditions are approached. -2 < Q < 0.2 covered every stress
distribution that was generated. They suggested that not only the fracture
toughness but also the resistance curve could be determined as a function of Q
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[Jc(Q) and JR(∆a,Q)]. Different specimen configurations could be placed on a
single toughness curve as a function of the Q-parameter.

From dimensional analysis (O’Dowd & Shih, 1992) deduced a one-to-one
correspondence between T-stress and Q-parameter:

Q F T n= ( / ; )σ0 , (21)

where F additionally depends weakly on dimensionless combinations of material
parameters. Equation 21 is valid only when remote stresses are applied by Eq. 13.
They define a K-T annulus as a region bounded by rK-T, where fields are accurately
descibed by Eq. 13. They also define that under SSY conditions the plastic zone
lies well within the K-T annulus. The relation between Q and T-stress is
approximated by Eq. 22, which applies primarily for n = 5...10, but the
dependence of the Q-parameter on strain hardening exponent is weak.
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where ai:s are dependent on n. The resemblance of Eqs. 10 and 22 should be
noted. O’Dowd & Shih (1994) extended the expression in Eq. 22 to a cubic form,
deleted the constant term and defined ai:s to be functions of strain hardening
exponent, n:

Q a n T a n T a n T= + +1 0 2

2

3 0

3( )( / ) ( )( / ) ( )( / )σ σ σ (23)

They also presented the parameters ai tabulated.

Ainsworth & O’Dowd (1994) proposed simple relationships for T and Q, which
are not dependent on strain hardening, Eq. 24. These relationships are actually
equivalent to what has been suggested by Du & Hancock (1991) for elastic-
perfectly plastic materials:

Q T= /σ 0  when T/σ0 < 0    and    Q T= 0 5 0. /σ  when T/σ0 > 0 (24)

O’Dowd & Shih (1992) presented that for finite-width crack geometries under
large-scale yielding conditions Eq. 21 is not applicable, because Q depends also
on remote loading and specimen geometry:
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where L is the relevant crack dimension.

O’Dowd & Shih (1992) analysed center-cracked panels (CCP) with varying
biaxiality ratios and 3PB specimen configurations with various crack lengths. For
CCP:s the stress and strain fields strongly resembled members of the Q-family.
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The resemblance persisted for distances up to approximately r/(J/σ0) = 5.
However, the excessive crack-tip blunting resulted in a reduced zone of J-Q
dominance. Despite the reduction, the J-Q annulus was considerably larger than
the J-annulus.

For 3PB geometry with a/W = 0.1 the Q behaviour was very much like in CCP:s,
but for 3PB geometry with a/W = 0.5 there seemed to be a reduction in J-Q
annulus at fully yielded conditions (J/σ0 > 0.05b). This was explained to be due to
global bending stress distribution decreasing the zone of dominance of the crack
tip stress field. For a/W = 0.5 and 0.7, Q was sensitive to the choice of distance at
extensive yielding and under these circumstances the Q value is not well defined
(O’Dowd & Shih, 1992).

O’Dowd & Shih (1992) introduced Jc
∞, which refers to the value of Jc for a long

crack (a → ∞). Jc
∞ corresponds to the value of Jc under SSY conditions when T =

0. Somewhat related to the SSY correction method (see section 3.3) they express
the ratio of the two J values:
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In Eq. 26 the decrease of Q value associated with the loss of constraint increases
the apparent J value depending exponentially on the strain hardening exponent.
Interestingly, the constraint loss is not dependent on the distance from the crack
tip, r.

O’Dowd (1995) generated J-Q toughness curves for initiation of cleavage fracture
and ductile tearing. A simple cleavage toughness locus may be constructed based
on the attainment of a critical hoop stress at a critical distance ahead of the crack.
Assuming that the critical distance rc is within the J-Q annulus, a fracture
toughness curve is obtained:
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where a0 is from Eq. 19 and JIc is the toughness measured in a specimen with Q =
0. For initiation of ductile tearing O’Dowd (1995) postulated a critical crack tip
opening criterion:

δ
σc

cd n Q
J= ( , )

0

, (28)

where 0.5 < d < 1, for n = 10. By taking δc = 0.5⋅Jd
Ic/σ0, where JdIc is the J value at

which ductile tearing initiates when Q = 0 and re-arranging the terms, led to:
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3.3  SMALL-SCALE YIELDING CORRECTION (SSYC)

Dodds et al. (1991) and Anderson & Dodds (1991) investigated the specimen size
requirements in the brittle-to-ductile transition region. They utilized elastic-plastic
finite element analysis to quantify the size dependence of cleavage fracture
toughness and developed size criteria for single-parameter fracture toughness
characterization. Crack tip stress fields obtained from specimens of finite size
were compared to the corresponding stress fields obtained from a small-scale
yielding model. Critical J and CTOD values, relative to the small-scale yielding
value, were predicted as a function of specimen size, strain hardening exponent
and ratio of crack depth to specimen width, a/W. They studied 3PB specimen
configurations with a/W ranging from 0.05 to 0.5 and strain hardening exponent
of a Ramberg-Osgood power law expression ranging from 5 to 50.

Dodds et al. (1991) took into account the micromechanism of cleavage fracture.
Most of the micromechanical models (for example Wallin et al., 1984a and b) are
based on the statistical weakest-link theory, which assumes that cleavage failure is
controlled by the largest or most favourably oriented fracture-triggering particle,
involving a local Griffith instability of a microcrack. The instability criterion
implies fracture at a critical normal stress near the tip of the crack. The size of the
volume under critical normal stress affects the probability of cleavage fracture
through the nature of statistical existence of a critical microstructural feature near
the crack tip.

Finite deformation analyses for the SSY model and for 3PB specimens with a/W =
0.5 by McMeeking & Parks (1979) predicted the location of maximum tensile
stress on the crack plane at approximately 2...4⋅CTOD ahead of the deformed
crack tip. Thus, the fracture process zone for cleavage fracture lies beyond the
neighbourhood of the blunted crack tip and the region over which the asymptotic
HRR field is adequate to describe the stress distribution (Dodds et al., 1991).
Differences in stresses for the SSY model predicted by the notch tip blunting
analyses and by the small-strain analyses become negligible for r > 2...3⋅CTOD.
These observations supported use of the small-strain theory for predicting the
stress fields ahead of the crack tip for stress-controlled cleavage fracture process.
For cleavage fracture Anderson & Dodds (1991) suggested that stress fields at
2...10⋅CTOD should be taken into consideration when comparing the SSY model
and finite configurations. Thus, the finite-element mesh refinement must be
adequate for this purpose.

In two-dimensional plane-strain analysis the area under critical normal stress
around the crack tip can be expressed as a function of the applied J-integral:
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where φ is a constraint factor, dependent on the applied stress and specimen
geometry and the function h is integrated around the crack tip. φ = 1 for the SSY
solution and φ < 1 for finite specimen configurations. The effective J-integral,
JSSY, in large-scale yielding relates the area inside the principal stress contour to
the small-scale yielding case:
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The JSSY in Eq. 31 is the value of a finite geometry J that would result in the area
A, if the crack tip plastic zone was small compared to other dimensions. From
Eqs. 30 and 31 the ratio between the two J values can be expressed as:
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J
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SSY

= 1
φ

  (32)

When generated for specific material properties and specimen sizes, results of the
form in Fig. 1 can be used to scale fracture toughness data between specimen
configurations. The curves serve two purposes: the geometry dependence of
fracture toughness data for various different a/W ratios through correlations to a
single a/W ratio or to the SSY model and commonly available test results for
standardized, deeply notched specimens may be scaled for assesment of shallow
flaws (Dodds et al., 1991). However, use of Fig. 1 for scaling purposes for real
defects is still theoretical due to commonly complex 3-dimensional shapes of real
flaws.

The evolution of fracture toughness for various specimen configurations in Fig. 1
permits a relatively straight-forward construction of the relationship between
stresses in finite specimens and SSY model for a given material and geometry:
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where the functions Hi, defined using stress on the symmetry plane, for example,
are represented by curves in Fig. 1 (Dodds et al., 1991).
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Figure 1. Scaling models for SE(B) specimens with different a/W ratios (Dodds et
al., 1991).

Dodds et al. (1991) plotted the shapes of the constant principal stress contours at
various loading levels for both SSY and 3PB models. The shape of the contours in
non-dimensionalized coordinates proved to be identical within the limits of finite
element mesh refinement for all analysed models and loadings, while the contour
size (in non-dimensionalized coordinates) in finite configurations decreased as
loading was increased. This implies that the SSY stress fields can be written as a
product of two separable functions of crack tip coordinates r and θ:
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This relationship appeared to be valid for 2⋅CTOD < r < 20⋅CTOD.

The J/JSSY ratio at a fixed J value seemed to be insensitive to the principal stress
value used for determining the contour. Thus, it seemes that critical applied J
values could be corrected for constraint loss by means of a single scaling factor:
the applied J and J/JSSY ratio seemed to completely characterize the principal
stress distribution ahead of the crack tip. Also, the scaling factor seemed to be
insensitive to the r and θ coordinates.

For every specimen configuration and strain hardening combination there seemed
to be a saturation point after which the effective driving force for cleavage fracture
did not increase as loading was increased. After the saturation point, the likelihood
for cleavage fracture decreased potentially and was possible only after some
ductile tearing bringing more material to be sampled for finding a fracture
triggerer, as previously shown by Wallin (1985).
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Anderson & Dodds (1991) recommended following specimen size limits for
cleavage fracture in deeply notched bend specimens:

B b a
Jc

Y

, , ≥ ⋅200
σ

(35)

or

B b a c, , ≥ ⋅300 δ (36)

These size requirements are significantly less stringent than those of standard
ASTM E399-90 for KIc determination, but more restrictive than size requirements
of standard ASTM E813-89 for JIc determination.
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4  METHOD FOR THICKNESS CORRECTION

The cleavage fracture model involves cracking of some brittle particle in a grain
or its boundary and subsequent crack growth into the adjacent grains. Thus, the
cleavage fracture of a cracked specimen requires two conditions: existence of a
brittle particle within the crack tip process zone and high enough stress state to
break the particle and drive the crack into surrounding grains. The distribution of
the brittle particles in a material sample is random. Increasing the material volume
statistically increases the number of the brittle particles in that volume. The size of
the volume within the crack tip process zone, where existence of the brittle
particles is critical with respect to the cleavage fracture, depends on the size of the
principal stress contour ahead of the crack tip where stress is higher than cleavage
fracture stress and on the specimen thickness which determines the length of that
contour in the specimen thickness direction, i.e. the volume.

Ritchie et al. (1973) investigated the relation between local fracture criterion and
macroscopic fracture toughness for 4-point-bend specimens with sharp precracks,
at a wide temperature range. The significant feature was that cleavage stress level
was exceeded locally at the crack tip even before fracturing, so that not only the
value of σf but also the size scale over which the fracture criterion was met was
considered. They also studied how size of the finite radius of the notch tip affects
the microstructurally significant length scale compared to the fatigue precrack.

Batdorf & Crose (1974) developed a weakest-link theory for macroscopically
homogeneous isotropic material containing randomly oriented microcracks
uniformly distributed in a location, assuming that fracture depends only on
macroscopic stress normal to the crack plane. They expanded as a Taylor series a
function representing the number of cracks per unit volume failing at a specific
value of normal stress. They obtained the coefficients for the Taylor series from
tensile tests, but their ultimate goal was to incorporate the obtained model into a
FEM code to be able to analyse computationally also multiaxial stress states.

Evans (1978) developed a general approach for the statistical analysis of fracture
under multiaxial stress state, but in a mathematically less complicated way than
Batdorf & Crose (1974). Evans (1978) invoked a critical coplanar strain-energy
release-rate fracture criterion and considered distributions of penny-shaped cracks
in random and preferred orientations.

Beremin (1983) introduced the Weibull stress σw (Weibull, 1939) as a fracture
parameter. Beremin (1983) derived a local criterion for the prediction of cleavage
fracture based on analyses of a wide range of experiments and finite element
calculations for a nuclear pressure vessel steel. Under SSY conditions, the
cumulative failure probability criterion was found to predict correctly the
temperature dependence of KIc as well as the size effect on fracture toughness.
Also, Beremin (1983) applied the model for multiaxial stress states as
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implemented in a computer program. He obtained good results in predicting the
warm prestress effect in completely yielded specimens.

Mudry (1987) extended the approach of Beremin (1983) with plane-strain finite
element analyses to include large-scale yielding effects on the Weibull stress. Size
and deformation limits for fracture testing followed from deviation of the
specimen Weibull stress from small-scale yielding values.

Wallin et al. (1984a) presented the WST-model, in which they assumed that
statistically distributed carbides control fracture toughness. They presumed that
macroscopic fracture nucleates in a volume between the crack tip and elastic-
plastic boundary. They used the Griffith crack advancement criterion as a fracture
criterion and considered the radius of the carbide as a critical factor with respect to
the probability of cleavage fracture initiation.

The probability for cleavage fracture initiation in case of a sharp crack according
to Wallin et al. (1984b) can be written as:
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where Pf is the fracture probability, KI is the stress intensity, Kmin is a lower
limiting fracture toughness (≈ 20 MPa√m for steels) and K0B is a thickness and
temperature-dependent normalization factor. For a constant temperature condition
Wallin et al. (1984b) wrote:
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where B1 and B2 are respective specimen thicknesses.

Wallin (1984) applied Eq. 38 to fracture toughness test results of a brittle ceramic
(SiC) material. He discovered very promising results; with 88 data points, the 90%
accuracy of the analysis was as good as 4%. Additionally, Wallin (1985) applied
Eq. 38 to results of various metallic materials in the literature and discovered
further proof for the validity of the formula.

Recasting Eq. 38 in terms of J yields:
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where the J equivalent of Kmin has been neglected as a small term (Jmin << Jc-(1)).
The development of the model assumes that each point along the crack front
experiences the same local J value and corresponding SSY stress field.
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5  APPLICATION OF METHODS

In this chapter conducted tests, computational analyses and application of
constraint correction methods to the test and analysis results are summarized.
Detailed test and analysis methodologies are described in the appended papers,
while here the scope and scale of the conducted research to some extent is
presented.

5.1  EXPERIMENTAL AND COMPUTATIONAL ANALYSES

The research consisted of a wide scale of test and analysis applications. The
experimental programme included both static and dynamic testing, while the
characteristic specimen dimension ranged from 5 mm to 300 mm. The flaw types
in the specimens were typically straight, through thickness cracks, but also a set of
specimens with elliptical surface cracks was included. Computational analyses
consisted of 3-dimensional linear and non-linear finite-element analysis of 3PB-,
CT- and surface flawed specimens, while the 3PB- and CT-specimens were also
analysed 2-dimensionally. The research programme is summarized in Tables 1 - 3.
In Table 3 is summarized the characteristic dimension ratios of investigated
through-thickness cracked specimens.

Table 1. The experimental programme.
_____________________________________________________________

Dynamic tests: Impact tests at the brittle-to-ductile transition and upper
shelf regions with fatigue precracked and side-grooved
10⋅10⋅55 mm 3PB specimens with approximate a/W = 0.05,
0.1, 0.3 and 0.5. The test material was A533B Cl. 1 pressure
vessel steel.

Static tests: 4PB testing of fatigue precracked specimens with a/W =
0.5, while the width and length of the specimens were 40
mm and 200 mm, respectively. The specimen thicknesses
were 5, 10, 20, 100, 200 and 300 mm and the three thinnest
configurations were totally 20% side-grooved. The test
temperature was at the brittle-to-ductile transition region
and the test material was moderate hardening structural
steel.

4PB testing of plates with elliptical surface cracks. The
relative specimen dimensions were aimed to be the same as
for the second 4PB plate in Table 2. The brittle-to-ductile
transition curve was determined and the test material was
mild steel. A transition curve for the material was also
obtained by testing standardized 25 mm thick 3PB
specimens.

____________________________________________________________
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Table 2. The computational analysis programme. (lin. = linear analysis, non-lin.
= non-linear analysis, n = strain hardening exponent. For 3PB- and CT-
specimens: W = width, B = thickness, a = crack length, S-G = side-grooved (n =
10). For 4PB plates: c = half of the crack width, b = half of the specimen width, t
= specimen thickness.)

3PB Specimens

a/W = 0.1 a/W = 0.5

W/B = 1 lin., non-lin. (n = 5, 10, 20) lin., non-lin. (n = 5, 10, 20)

W/B = 2 lin., non-lin. (n = 5, 10, 20), S-G lin., non-lin. (n = 5, 10, 20), S-G

W/B = 4 lin., non-lin. (n = 5, 10, 20) lin., non-lin. (n = 5, 10, 20)

Plane-strain lin., non-lin. (n = 5, 10, 20) lin., non-lin. (n = 5, 10, 20)

CT-Specimens

a/W = 0.6

W/B = 1 lin., non-lin. (n = 5, 10, 20)

W/B = 2 lin., non-lin. (n = 5, 10, 20), S-G

W/B = 4 lin., non-lin. (n = 5, 10, 20)

Plane-strain lin., non-lin. (n = 5, 10, 20)

4PB plates with elliptical cracks

b/t = 2

a/c = 0.357, c/b = 0.175, a/t = 0.125 lin., non-lin. (n = 10)

a/c = 0.333, c/b = 0.375, a/t = 0.25 lin., non-lin. (n = 10)

__________________________________________________________________
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Table 3. The matrix of characteristic dimension ratios of investigated through-
thickness cracked specimens (DYN = dynamic testing, STAT = static testing and
FEA = finite element analysis).

B/W=
0.125 0.25 0.5 1.0 2.5 5.0 7.5

a/W=0.05 DYN

0.1 FEA FEA FEA
DYN

0.3 DYN

0.5 STAT FEA
STAT

FEA
STAT

FEA
DYN

STAT STAT STAT

0.6 FEA FEA FEA
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5.2 APPLIED CONSTRAINT CORRECTIONS

5.2.1  Impact tests

The T-stress for each test result was calculated by the formula given by Kirk et al.
(1993), Eq. 40.
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   for 0.025 ≤ a/W ≤ 0.9 (41)

Kirk et al. (1993) obtained Eq. 41 by fitting a polynom to the data of Al-Ani &
Hancock (1991), who reported β as a biaxiality parameter. By combining Eqs. 9
and 41 and K solution for an SE(B) specimen with a span-to-width ratio of 4:1 by
Tada et al. (1985), Kirk et al. (1993) obtained Eq. 40 for the linear relation
between T-stress and applied load, P.

The Q parameter was determined based on the Q - J/(aσ0) relations for SE(B)
specimens with strain hardening exponent n = 10 by O’Dowd and Shih (1992).

The SSY correction of the test results was obtained according to Anderson &
Dodds (1991). JSSY was calculated according to function in Eq. 42, in which
parameters A and m were provided by Dodds (1991).
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Additionally, data was analysed by taking into consideration the fracture
probability based on the statistical cleavage fracture model by Wallin (1991).
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5.2.2 Static tests

Thickness effect

In the original, not thickness-corrected data the thickness effect is evident as
apparent fracture toughness increases with decreasing thickness. The side-
grooving did not seem to affect constraint in thickness direction in a detectable
amount.

Two methods were applied in attempts to remove the thickness effect: the method
based on statistical probability of cleavage fracture (Wallin, 1991) and the method
based on effective thickness derived from 3-dimensional FE-analysis by Dodds
(1993).

Elliptical flaws

For the plate specimens with elliptical flaws no method to determine the specimen
fracture toughness nor geometrical constraint correction was available. The FE-
analysis results of the plate specimens were utilized in deriving an equation for the
fracture toughness and for taking into account the constraint and thickness effect.
For comparison, standardized 25 mm thick 3PB specimens of the same material
were also tested in order to compare the results.

5.2.3 Computational analyses

SSY-correction and J-Q approach were applied to results of both 2- and 3-
dimensional non-linear FE-analyses summarized in Table 2. The stress, strain and
displacement output of each node from the FE-program were given as input to
complicated FORTRAN post-processing programs which calculated and plotted
required constraint parameters. The calculation was basically done 2-
dimensionally, while for 3-dimensional models the calculation was conducted for
each planar layer separately. The planar layers were in normal planes with respect
to the crack front in each front position both in through thickness and elliptical
crack models. The FORTRAN-code consisted basically of routines for calculating
the presentative stresses and strains and their related parameters and the relations
presented by O’Dowd & Shih (1991, 1992) and Anderson & Dodds (1991).
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6  RESULTS

6.1  PLASTIC η-VALUES

The ηpl values for Eq. 43 were determined from non-linear FE-analyses as ηmax

and ηavg corresponding to maximum ηpl value at the crack front and crack front
average value, respectively. ηpl was determined based both on plastic load-line
displacement (lld-pl) and plastic CMOD (δ-pl) (Appendix 1).

J J J
K

E

U

bBel pl
I

pl

pl= + = − +
2 21( )ν η  , (43)

where Jel and Jpl denote the elastic and plastic contributions to J and Upl defines
the unrecoverable plastic work of the applied load.

In deep notch SE(B) and CT specimens, ηpl values for thickness average J agreed
well with those found in plane-strain analyses and with those in current testing
standards. Only a small effect of strain hardening was detected. The 3-dimensional
ηpl values based on lld-pl for shallow notch SE(B):s revealed approximately 20 -
25% variation over the hardening range (n = 5...20), while ηpl values based on δ-pl
showed only a 4 - 5% variation (Appendix 1).

The ηmax value corresponding to maximum J value for all SE(B) and CT
specimens was calculated at the center of the crack front, except for one
configuration: a/W = 0.1 and W/B = 1, for which ηmax ( and correspondingly
highest constraint) occurred approximately at x3/(B/2) = 0.53 location (Appendix
1).

The plastic η values were also derived for the surface cracked plates. The ηpl

seemed to behave in an inverse way compared to the SE(B) and CT specimens,
because ηpl decreased with increasing crack depth.

6.2  T-STRESS

Based on the results of dynamic fracture toughness tests, T-stress is a linear-elastic
parameter best suited for constraint indexing. Low a/W specimens with large
compressive T-stress produced high apparent fracture toughnesses, while deep
notched configurations with zero or somewhat tensile T-stresses gave low, more
material dependent toughness results. Perhaps unexpected was that apparent
fracture toughness began to distinctly increase at quite high compressive T-stress
values, T/σ0 level being approximately -0.7. At lower T/σ0 ratios, the T-stress lost
its influence, since plastic deformation and in some cases even ductile tearing
began to considerably increase measured fracture toughness values far beyond
values measured with specimens behaving more in a linear-elastic way. However,
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T-stress provided a good base for estimating the level of scatter in apparent Jc

values as a function of initial specimen dimensions for sufficiently high a/W
ratios, although it was not able to give quantitative estimates (Appendices 3 and
4).

6.3  J-Q TRAJECTORIES

3-dimensional FE-analyses revealed that for the deep notch SE(B) and CT
specimens, Q values are positive at low loads except near the outside surface
(Figure 2). Over the center portion of the specimen thickness, Q ≥ 0 condition
existed strictly for deformation levels b > 140⋅Javg/σ0 (for W/B = 1 and n = 10),
while larger deformation produced negative Q values. The plane-strain results for
this configuration indicated constraint loss at lower levels of deformation, b >
170⋅J/σ0. Q values at various distances ahead of the crack tip on the midplane
showed steadily increasing radial dependence under increasing load. All deep
notch SE(B) and CT specimens exhibited similar levels of Q dependence on r at
large deformations (Appendix 1).

Figure 2. Constraint in terms of Q-parameter for plane-sided, deep notch (a/W =
0.5) SE(B) specimen having W/B = 1 and n = 10 (Publication 1).
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Q values for the a/W = 0.1 SE(B) configurations revealed an immediate loss of
constraint upon loading (Figure 3). The plane-strain results agreed reasonably well
with the W/B = 1 configuration. The Q values were much more radial-distance
independent than for deep notch configuration. No practical size or deformation
limit existed to maintain Q ≥ 0 condition after load was applied, while all of the
shallow notch J-Q trajectories fell within a relatively narrow band of very low
constraint (Appendix 1).

Figure 3. Constraint in terms of Q-parameter for plane-sided, shallow notch (a/W
= 0.1) SE(B) specimen having W/B = 1 and n = 10 (Publication 1).

Following observations were made for SE(B) specimens in Appendix 1: (1) the
deep notch W/B = 1 and 2 trajectories are nearly identical for n =10 with a
somewhat larger difference for n = 5; (2) side grooves in the W/B = 2 deep and
shallow notch configurations provide small increases of constraint on the
midplane at high deformation levels and have insignificant effect early in the
loading; (3) deep notch specimens having W/B = 4 show a severe constraint loss
on the midplane upon initial loading while the relative effect in shallow notch
configurations is much less severe; (4) all of the shallow notch J-Q trajectories fall
within a relatively narrow band of very low constraint; (5) strain hardening
variations from n = 5 to 10 have a small effect on the 2-dimensional and 3-
dimensional trajectories at higher loads - for a specified J value, reduced
hardening makes Q more negative. Further examination revealed that strain
hardening influences the J-Q trajectories most strongly at low-to-moderate loads.
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The results of J-Q trajectories for CT specimens led to following observations: (1)
side grooves have a slight effect of lowering constraint at high load levels on the
specimen midplane; (2) side grooves increase constraint significantly at other
locations relative to the plane-sided specimen; (3) strain hardening affects
constraint somewhat for the standard W/B = 2 specimen at high loads with a
larger effect for the thinner specimen (W/B = 4); (4) Q ≥ 0 conditions exist strictly
for deformation levels b > 100⋅Javg/σ0 in the standard W/B = 2 configuration. The
increased elastic T-stress of the CT specimen relative to the deep notch SE(B)
specimen leads to the 25% increase in deformation before SSY conditions break
down (Appendix 1).

The J-Q trajectories showed that Q values close to the side surface of the deep
notched SE(B) specimen fall below values obtained close to free surface of the
surface cracked specimens in bending, which is probably due to constraining of
the uncracked surface next to the crack. At the center of the crack front, the Q
values for elliptical surface cracks are negative straight upon loading, while Q is
more negative for the shallower crack. As loading increased, the Q-values for
surface cracks began to saturate to a constant level. For both examined surface
cracks, there seemed to be a relatively narrow scatter for J-Q trajectories
corresponding to the center portion of the crack front, while behaviour of the J-Q
trajectories closer to the free surface clearly deviated from that behaviour. The
shape of the J-Q trajectories for the shallower surface crack early in the loading
showed similar behaviour as those for the shallow notch SE(B) specimen. It seems
obvious, that J-Q trajectories are well suited for the analysis of the constraint
evolution in the elliptical surface cracks under bending loading (Appendix 2).

Experimentally, the Q-parameter for small Charpy-size impact specimens was not
very effective in describing constraint. J-Q relationship was different for each
configuration, although scatter especially between a/W = 0.5 and a/W = 0.3
configurations was not large. However, the initial Q value predicted poorly the
obtained fracture toughness for an individual specimen based on a/W. Results
indicated that for this type of specimens under dynamic loading, the fracture
toughness is not solely a function of the Q-parameter (and geometry), but also a
function of the J-level. This observation decreases the quantitative nature of the
Q-parameter and presents it more as a qualitative indexing parameter, in the same
way as T-stress for these specimens (Appendices 3 and 4).
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6.4  TOUGHNESS SCALING MODEL (= SSYC)

6.4.1  Analysis results

All deep notch SE(B) specimens showed a strong dependence onσc once large-
scale yielding conditions began to prevail, but with a smaller dependence with
higher strain hardening (Figure 4). Strain hardening had a much greater relative
effect on the toughness scaling model than on the J-Q trajectories once SSY broke
down. For SE(B) specimens with lower strain hardening, large increments of
applied J were needed to produce small changes in J0 values. The dependence of
the scaling model onσc at very large deformations makes attempts to correct for
constraint loss in deep notch SE(B) specimens questionable, although it appeared
that for moderate-to-high hardening materials useful engineering approximations
are possible at deformation levels in the range Javg/bσ0 ≈ 0.01 - 0.015. The scaling
model clearly maintained sufficient independence ofσc early in the loading to
support proposals for size/deformation limits (b > M⋅Javg/σ0) to insure SSY
conditions at fracture although the gradual loss of constraint introduces
subjectivity into the process (Appendix 1).

Figure 4. Dependence of toughness scaling ratio on specified principal stress
value for plane-sided, deep notch (a/W = 0.5) SE(B) specimen having W/B = 1
and n = 10 (Publication 1).
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For all the shallow notch SE(B) configurations, applications of the scaling model
to correct for constraint loss appeared much more promising with a strong
independence onσc to Javg/J0 ratios approaching 6-7 and 4-5 for n = 10 and 5,
respectively (Figure 5). The 3-dimensional scaling models were in relatively good
agreement with the plane-strain results (Appendix 1).

Figure 5. Dependence of toughness scaling ratio on specified principal stress
value for plane-sided, shallow notch (a/W = 0.1) SE(B) specimen having W/B = 1
and n= 10 (Publication 1).

The CT specimens responded essentially in the same way as deep notch SE(B)
specimens with very minor effects of the side grooves on the scaling model on the
midplane. The plane-strain results matched better the 3-dimensional results than in
the case of deep notch SE(B) specimens (Appendix 1).

The scaling models for the two studied elliptical surface cracks showed deviation
from the SSY behaviour well before deep notch SE(B) specimen, while the larger
surface crack maintained SSY conditions up to larger crack front averaged
deformation, Javg (Figure 6). The scaling models seemed to describe constraint of
the surface cracks reasonably well. The transition from the better SSY conditions
following behaviour at the center of the crack to almost no-constraint conditions
close to the surface was quite smooth for the large surface crack, while for the
shallower crack the behaviour at the center of the crack front departed clearly from
the behaviour closer to the free surface. The scaling models in terms of the
average J at the whole crack front seemed to be dependent on the maximum crack
depth (Appendix 2).
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Figure 6. The toughness scaling models for the surface cracks in a plate and the
through thickness crack in SE(B) specimen. The ratio of the principal stress to the
yield stress is 3.0. b is the ligament length of the SE(B) specimen (= 25.4 mm)
(Publication 2).

The toughness scaling models based on plane-strain static analyses corrected
surprisingly well the constraint variation in experimental impact tests with fatigue
precracked Charpy-size specimens with varying a/W ratio. This observation gave
further confidence for the SSY correction method as a real experimentally
applicable method for constraint correction, since it succeeded in the task where
T-stress and Q-parameter did not manage as well. Together with the statistical
treatment, the SSYC method presented the obtained data in a homogeneous form
with little scatter (Appendices 3 and 4).

6.4.2  Specimen size requirements

The maintenance of SSY conditions over a substantial part of the specimen
thickness to higher J levels than found in the plain-strain analyses indicated that M
= 200 limit (Eq. 35) on measured Jc values for deep notch specimens may be
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lowered to M ≈ 50-75 for moderate hardening, which brings the analytically
determined value into closer accordance with the experimental observations
(Appendix 1).

When considering the specimen size limit based on 3-dimensional toughness
scaling models, the M-factors corresponding to strict SSY, 10% and 20%
deviation from the SSY conditions (Eq. 44) were determined for deep notch
SE(B) and CT specimens (Appendix 1).

b M
Javg≥ ⋅( . , . , . )1 0 1 1 1 2

0σ
(44)

When compared to M = 200 in Eq. 35, even the strict SSY M-values (M1.0) for
high-to-moderate hardening materials (n = 5 and 10) are clearly less stringent. Of
all M-values determined for investigated 3-dimensional configurations, only M1.0

for low hardening material (n = 20) SE(B) specimen is more stringent than M =
200. All other M-values approve much smaller specimen dimension for fracture
toughness determination.

In all cases, the CT specimens had smaller M values than corresponding SE(B)
specimens having the same W/B and n, which imply the maintenance of SSY
conditions to greater levels of deformation (Appendix 1).

6.5  THICKNESS EFFECT

The 3-D analyses revealed much greater through-thickness variations in crack
front stresses for deep notch specimens than for shallow notch specimens. Stress
triaxiality on the specimen midplane of deep notch specimens remained at SSY
levels to higher local J values than indicated by the plane-strain models. Crack
front stresses near the outside surfaces of plane-sided specimens fell well below
midplane levels and plane-strain levels (Appendix 1).

For shallow-notch SE(B)s with W/B = 1 and 2, the plane-strain analyses provided
remarkably good descriptions of stresses ahead of the crack tip; this lack of
thickness effect perhaps explains the surprisingly good J-Q correlations and
toughness constraint corrections for such specimens.

The statistical treatment for the experimental results of static tests with strongly
varying specimen thickness proved to be very good. The treatment was able to
present test results well within the confidence limits of 5% and 95% fracture
probability (Appendix 4).

6.5.1  Effective thickness

A 3-dimensional form of the toughness scaling model is proposed which reflects
both the statistical effects of volume sampling due to thickness differences and the
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constraint loss on crack-front stress fields due to large scale yielding. At a given
loading level determined by J, a specific principal stress contour σ1/σ0 =σc,
encloses the tip at each location at the crack front. A(s,σc) denotes the area σc

enclosed by the contour, which lies in the principal normal plane to the crack front
location s along the front. At location s = smax, the enclosed area attains a
maximum value Amax≡ A(smax,σc). The volume of material along the crack front
over which the principal stress exceedsσc is given for a straight crack front by
Eq. 45 (Appendix 1).
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The replacement of the actual specimen thicknesses appearing in Eq. 39 with
effective thicknesses, Beff = V/Amax is suggested. In most studied configurations
Amax occurred at the center of the specimen, but not in every case. The front
location at which Amax occurs has the maximum ‘in-plane’ constraint and the
Beff/B defines the equivalent fraction of the specimen thickness subjected to that
constraint level. It was shown that Beff/B decreased from near unity under linear
elastic conditions, for plane-sided specimens, to nearly deformation independent
value once large-scale yielding conditions prevailed. Moreover, Beff/B remained
reasonably insensitive to a range of realisticσc values. The Beff/B ratio varied
significantly with W/B for fixed a/W and n: the ratio decreased with increasing
W/B, while greater amount of strain hardening elevated values of Beff/B. For low
a/W SE(B) specimen, the side grooving increased Beff relatively more than for
deep notched SE(B) and CT specimens due to initially low overall in-plane
constraint in low a/W configurations.

For non-side grooved SE(B) specimens, values of Beff/B lied in the range of 0.4 -
0.8 with a dependence on the a/W and W/B ratios and material flow properties.
Perhaps surprisingly for specimens with side grooves, Beff/B exceeded slightly the
value of the corresponding plane-sided specimen even though the front length
decreased by 20%.

The concept of Beff can be extended to correlate surface crack and through
thickness crack configurations. This has been conducted in Appendix 2, where the
ratio of the effective and real crack front lengths proved to be higher for the
surface cracked plates than for the 3PB specimen.

6.5.2  Development of thickness correction

To accommodate the potentially strong influence of constraint loss from ‘in-plane’
effects, a replacement of Jc-(1) in Eq. 39 with J0(Jc-(1)) is proposed, where J0 is
calculated by plane-strain SSY analyses. A measured fracture toughness, Jc, is
then constraint and thickness corrected to a SSY condition with a convenient
reference thickness (B = Bref) by using the formula:

J J J B Bc eff ref0 0= ⋅( ) /  , (46)
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where the quantity Bref may be assigned a convenient value of 25 mm, which is in
accord with specifications of current standards for fracture toughness
determination. The corrected set ofJ0 values from different specimens are then
given equal weight in further statistical treatments of toughness values to define
confidence bounds etc. (Appendix 1).

The key features of the development include the reasonably strong independence
of Beff/B and J0(Jc) on the selectedσc for low constraint specimen configurations
in most need of the correction. In deep notch SE(B) and CT specimens, SSY
conditions often exist on the midplane at fracture and only the effective thickness
correction is required. For these specimens, Beff/B remains reasonably independent
on σc. Finally, given a value ofJ0 for the material, the corresponding Jc-value for
a specific fracture specimen may be computed by using the reverse of the above
described process: the Beff/B and J0(Jc) corrections must be known for the fracture
specimen (Appendix 1). In Appendix 2 an attempt has been made to correlate
surface cracked plate results with 3PB specimen results by using Eq. 46.

6.6  FRACTURE TOUGHNESS FOR SURFACE CRACK

Based on the 3-dimensional FE analyses for the two studied surface cracks, a
formula for the calculation of surface crack fracture toughness was proposed in
Appendix 2 (Eq. 47). The elastic part was based on work of Newman & Raju
(1984), while the plastic part was based on work done by momentum through
plastic straining, normalized by the ligament area. The empirical results provided
verification to the formula.
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7  DISCUSSION

7.1 SIGNIFICANCE OF RESULTS

This thesis work falls into the very active research area of present fracture
mechanics. It includes the comparison of the three most common methods for
constraint description with and without statistical thickness correction. The
usefulness of the methods has been first verified and then the two most powerful
methods for constraint characterization, the J-Q locus and the SSY correction,
have been studied in detail by applying 3-dimensional finite element analyses. The
conducted 3-dimensional analyses are direct development to the 2-dimensional
analyses, on which the characterization of crack-tip stress distribution has been
previously based on. Based on the analyses, significant results of the in-plane
constraint conditions were obtained and new M-factors were introduced (see Eq.
46), which are one basis in the development of the new ASTM standard proposal
for fracture toughness determination in the transition range. The same analysis
methodologies have been applied also to the semielliptical surface crack extending
the current knowledge of surface crack characterization and correlation with
through-thickness crack geometries. In short, the work presented in this thesis is
focused on currently significant problems of fracture mechanics and can be seen
as one step towards understanding the transferability of fracture mechanical
quantities.

7.2 ASSESSMENT OF RESULTS

Narasimhan et al. (1988) have undertaken numerical finite element and
experimental interferometric investigation to assess 3-dimensional effects and
HRR dominance near a crack front in a ductile 3-point bend specimen. The
excellent agreement between numerical and experimental results assured them of
the correctness of their calculations. Despite differences in the material parameters
(n = 22 and σ0 = 1030 MPa) the through thickness variation of the J-integral and
CTOD correlate well with the results of Publication 1 (Appendix 1). Similar
results have been also reported by Nakamura et al. (1989) and Brocks &
Olschewski (1986). DeLorenzi & Shih (1983) and Faleskog (1994) found an
abrupt increase in J value close to the side-grooved surface of a CT-specimen.
Same observation was made also in Publication 1. It seems that a side-groove acts
as a stress concentrator when deformation is primarily elastic, but with increased
loading the J at the specimen center begins to grow faster and becomes more
critical than the J close to the side-groove. It seems that all 3-dimensional finite
element results of standardized specimens support each other, but the refinement
of the analyses of Publication 1 makes them special and unique. The finite
element analysis is always a discretization of the real structure, which brings some
error to the results. The error decreases with the refinement of the model, but
never vanishes completely. Also, modelling of the nonlinear behaviour is not
exact.
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The modelled SE(B) specimens have been 50.8 mm wide, while thickness has
ranged from 12.7 mm to 50.8 mm. The results seem to scale very well, since the
SSYC of Publication 1 corrects the results of two different size specimens equally
well in Figs. 7 and 8. In Fig 7 are presented the original and the SSY-corrected
results of Publications 3 and 4 (W = B = 10 mm) and in Fig. 8 are some original
and SSY-corrected results of the HSST program (W = 100 mm and B = 50...100
mm). The material has been A533B Cl. 1 steel in both studies. The material
properties in the development and production phases in Fig. 8 are different due to
the heat treatment, so the thickness effect can not be evaluated.
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Figure 7. Original and small-scale yielding corrected impact test results. The
original results are from Publications 3 and 4 (Appendices 3 and 4), while the
SSYC is based on 3-d results given in Publication 1. The SSYC data points have
been shifted at a/W axis for clarity.
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Figure 8. The original and small-scale yielding corrected test results of the HSST
program. The original results are presented by Theiss et al. (1994) and the SSYC
is based on results of Publication 1. The SSYC data points are shifted at a/W axis
for clarity.

There are not many published 3-dimensional elastic-plastic analyses of surface
cracks, and most of them deal with surface crack in a plate or pipe under tension
or combined tension-bending loading. The author could not find any other 3-
dimensional nonlinear finite element analysis of a surface cracked plate under
four-point-bending, so the assessment of the results is conducted by comparison to
results obtained from slightly different analyses.

Parks & Wang (1988) and Parks (1990) analysed both semicircular and
semielliptical surface cracks in a plate under remote tension loading. They
discovered that the J distributions along the crack front in these crack types are
clearly different, but for a specific crack type the change in strain hardening
exponent ( n = 5 to 10) or in remote stress level does not affect J distribution
significantly. They showed that low remote stress level for a semielliptical surface
crack creates relatively higher J value at and close to the free surface (φ < 15°)
than high remote stress level, which agrees with the observation in Publication 2
(Appendix 2). Same kind of result is also presented by Franco & Gilles (1992),
who analysed 3-d surface cracks under pure bending in elastic-plastically behaving
pipe. Franco & Gilles found out that the J-integral at the deepest point of the crack
front is always higher than J at the surface and that the ratio increases with
increasing applied loading. Kumar & German (1988) present limited results of the
same kind, obtained both with 3-d FEM and elastic-plastic estimation method for
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a semielliptical crack in the inside surface of a pipe under remote tension loading.
Faleskog et al. (1991) obtained also a same kind of J distribution for a combined
tension-bending loaded plate with a semielliptical surface crack. Overall,
investigated 3-d elastic-plastic analyses of a surface crack under tension or
bending loading give very similar results supporting and verifying each other.

The FE-analysis of a surface crack does not differ much from the analysis of a
standardized through-thickness crack specimen. The biggest difference is the
modelling of the crack front, while rest of the analyses can proceed in a similar
way. One way to assure oneself that there are no significant errors in the model is
to run a linear-elastic analysis and compare results with the results of Newman &
Raju (1984). Newman & Raju give stress-intensity factor solutions for a variety of
curved crack shapes under several loading types and are widely referenced in the
literature. In the finite element models of Publications 1 and 2 only the model
geometry has been changed, while rest of the analysis procedures are identical.
Thus, the differences in the crack-tip behaviour are only due to the geometry.
Same arguments about the discretization and refinement errors apply for the
surface crack analysis as for the through-thickness crack analysis.
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8  CONCLUSIONS

Detailed 3-dimensional finite element analyses have been conducted for
standardized surface-edge cracked 3-point bend specimen (SE(B)), compact-
tension specimen (CT) and surface-cracked plate in 4-point bending. The effect of
specimen and flaw size and material hardening properties have been extensively
analysed to reveal their effect on specimen constraint behaviour, characterized by
toughness scaling models and J-Q trajectories.

Experimental tests for a wide range of specimen and flaw types have been
conducted to verify effectiveness of constraint correction and indexing methods
currently in use. Also, a statistical treatment has been applied for specimen
thickness effect.

Based on FEM analyses on standardized specimens, specimen size limitations for
brittle-to-ductile transition region have been proposed. Use of an effective
thickness (Beff) for average constraint correction has been suggested and a
development for the statistical treatment procedure has been proposed and applied
for investigated specimen geometries.

Conducted experiments proved that small-scale yielding correction (SSYC) and
statistical treatment for specimen thickness effect are applicable for specimen size
correction in actual specimens, while T-stress and Q- parameter seemed to serve
better as qualitative indexing parameters.

Based on FEM analysis for elliptical surface cracks in plates under bending and
verified by conducted experiments, a formula for fracture toughness calculation
for the plate was proposed.

Comparison of in-plane behaviour in analysed specimens proved that J-Q
approach and SSYC are well applicable for FEM-based analysis of constraint
behaviour. Surface crack was found to loose its constraint well before deep notch
SE(B) specimen in terms of applied deformation, while size of the surface crack
seemed to govern its constraint behaviour.

Based on the results, the differences in apparent fracture toughness values
obtained from specimens with different configurations can be better understood
and taken into account.
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SUMMARY OF APPENDED PUBLICATIONS

Publication 1 (Appendix 1) presents very detailed finite element analyses of
standardized fracture toughness test specimens (3PB- and CT-specimen). The
constraint variation along the 3-dimensional crack front has been modelled by
means of small-scale yielding correction (SSYC) and J-Q approach as functions of
specimen and crack dimensions and strain hardening exponent of the applied
deformation hardening material model. Both methods for constraint description
yielded similar type of results. The constraint characteristics of a configuration
were found to be strongly related to the variations of principal stress contours
around the crack tip as a function of thickness position. The size of the principal
stress contour corresponding to the stress value critical with respect to cleavage
fracture appeared to decrease at crack front positions closer to the free side surface
of the specimen, compared to high constraint conditions at the center of the crack
front. Side grooving did not decrease the constraint loss significantly. By
considering the size of the principal stress contour with respect to specimen
thickness, a definition for effective specimen thickness was derived, referring to
the volume in which critical conditions for cleavage fracture initiation exist. Thus,
the effective thickness seems to be a good parameter for ranking the specimen
configurations with respect to susceptibility for cleavage fracture.

Publication 2 (Appendix 2) presents a similar type of analysis for two
semielliptical surface cracks in a plate in four-point bending as Publication 1 for
standardized specimens. The plate dimensions and strain hardening exponent of
the deformation hardening material model were the same, while only the effect of
the surface crack dimensions on the constraint characteristics were studied. The
wider and deeper (i.e. larger) surface crack seemed to follow better the SSY
conditions to larger deformation levels than the smaller surface crack in terms of
toughness scaling models and J-Q behaviour. A comparison of the constraint
characteristics between both surface cracks and a standardized three-point bend
specimen with a/W = 0.5 was conducted. It appeared that the surface cracks loose
their constraint at much lower deformation levels in terms of normalised J-integral
than the standardized fracture toughness test specimen, which indicates that
standardized tests produce too conservative fracture toughness estimates with
respect to realistic semielliptical flaws in components. A formula for the J-integral
for the surface crack was derived and a test serie with both standardized
specimens and surface cracked plates was conducted to give verification to the
formula. Determined brittle-to-ductile transition curves for both specimen types
indicated that the transition region for the surface cracks is at lower temperature
range than the transition region for the three-point bend specimens. Combined
constraint and thickness correction was applied to the test results in order to obtain
specimen geometry independent fracture toughness values.
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Publication 3 (Appendix 3) presents empirical test results of Charpy-size impact
specimens with varying precrack a/W ratios. The original, uncorrected test results
showed a strong dependence on a/W ratio. The loss of constraint was attempted to
correct by using T-sress, Q-parameter and small-scale yielding correction (SSYC)
methods. The SSYC seemed to be most succesfull in the task, being able to give
quantitative constraint correction, while T and Q served best as qualitative
indexing parameters.

In Publication 4 (Appendix 4) the results of Publication 3 were presented with
results of a static test serie of 4PB specimens with specimen thickness ranging
from 5 to 300 mm. The apparent fracture toughness was found to increase with
decreasing thickness. Both a statistical thickness correction and an effective
thickness correction were applied to the test results presenting the results in a
uniform way with only small scatter.



55

REFERENCES

Ainsworth, R. A. & O’Dowd, N. P. 1994. Constraint in the failure assessment
diagram approach for fracture assessment. Proc. of the 1994 Pressure Vessels and
Piping Conference, Minneapolis, MN, USA. New York: ASME. Pp. 137 - 145.

Al-Ani, A. M. & Hancock, J. W. 1991. J-dominance of short cracks in tension and
bending. Journal of Mechanics and Physics of Solids, Vol. 39, No. 1, pp. 23 - 43.

Anderson, T. L. & Dodds, R. H. 1991. Specimen size requirement for fracture
toughness testing in the transition region. Journal of Testing and Evaluation,
JTEVA, Vol. 19, No. 2, pp. 123 - 134.

ASTM Standard E399-90. Standard test method for plane-strain fracture
toughness of metallic materials. Annual Book of ASTM Standards, 1996, Vol.
3.01.

Batdorf, S. B. & Crose, J. G. 1974. A statistical theory for the fracture of brittle
structures subjected to nonuniform polyaxial stresses. Journal of Applied
Mechanics, Transactions of ASME, Vol. 41, June, pp. 459 - 464.

Begley, J. A. & Landes, J. D. 1972. The J integral as a fracture criterion. Fracture
Toughness, Proceedings of the 1971 National Symposium on Fracture Mechanics,
Part II. ASTM STP 514. Philadelphia, PA: American Society for Testing and
Materials. Pp. 1 - 20.

Beremin, F. M. 1983. A local criterion for cleavage fracture of a nuclear pressure
vessel steel. Metallurgical Transactions 14A, November, pp. 2277 - 2287.

Betegòn, C. & Hancock, J. W. 1991. Two-parameter charaterization of elastic-
plastic crack-tip fields. Journal of Applied Mechanics, Vol. 58, No. 1, pp. 104 -
110.

Bilby, B. A., Cardew, G. E., Goldthorpe, M. R. & Howard, I. C. 1986. A finite
element investigation of the effect of specimen geometry on the fields of stress
and strain at the tip of stationary cracks. Size Effects in Fracture. London:
Institution of Mechanical Engineers. Pp. 37 - 46.

Brocks, W. & Olschewiski, J. 1986. On J-dominance of crack-tip fields in largely
yielded 3d structures. International Journal of Solids and Structures, Vol. 22, No.
7, pp. 693 - 708.

DeLorenzi, H. G. & Shih, C. F. 1983. 3-d elastic-plastic investigation of fracture
parameters in side-grooved compact specimen. International Journal of Fracture,
Vol. 21, pp. 195 - 220.

Dodds, R. H. 1991. Private communication.



56

Dodds, R. H. 1993. Unpublished research.

Dodds, R. H., Anderson, T. L. & Kirk, M. T. 1991. A framework to correlate a/W
ratio effects on elastic-plastic fracture toughness (Jc). International Journal of
Fracture, Vol. 48, No. 1, pp. 1 - 22.

Du, Z.-Z. & Hancock, J. W. 1991. The effect of non-singular stresses on crack-tip
constraint. Journal of Mechanics and Physics of Solids, Vol. 39, No. 4, pp. 555 -
567.

Eshelby, J. D. 1956. The continuum theory of lattice defects. Solid State Physics,
Advances in Research and Applications. Vol. 3. New York: Academic Press Inc.
Pp. 79 - 144.

Evans, A. G. 1978. A general approach for the statistical analysis of multiaxial
fracture. Journal of The American Ceramic Society, Vol. 61, July - August, pp.
302 - 308.

Faleskog, J. 1994. Crack growth in elastic-plastic materials. Dissertation.
Stockholm, Sweden: Royal Institute of Technology. 20 p. + app. 148 p.

Faleskog, J., Zaremba, K., Nilsson, F. & Öberg, H. 1991. An investigation of two-
and three-dimensional elasto-plastic crack growth experiments. Defect
Assessment in Components - Fundamentals and Applications, ESIS EFG9. Blauel,
J. G. & Schwalbe, K.-H. (Eds.). Mechanical Engineering Publications. Pp. 333 -
343.

Franco, C. & Gilles, P. 1992. Three-dimensional elastic-plastic analysis of small
circumferential surface cracks in pipes subjected to bending loads. Fracture
Mechanics: Twenty-Second Symposium (Volume II), Atluri, S. N., Newman, J.
C., Raju, I. S. & Epstein, J. S. (Eds.). American Society for Testing and Materials.
Pp. 183 - 205.

Hancock, J. W., Reuter, W. G. & Parks, D. M. 1993. Constraint and toughness
parameterized by T. In: Hackett, E. M., Schwalbe, K.-H. and Dodds, R. H. (Eds.).
Constraint Effects in Fracture. ASTM STP 1171.  Philadelphia, PA: American
Society for Testing and Materials. Pp. 21 - 40.

Harlin, G. & Willis, J. R. 1988. The influence of crack size on the ductile-brittle
transition. Proceedings of the Royal Society of London, Vol. A415, pp. 197 - 226.

Hayes, D. J. 1970. Some applications of elastic-plastic analysis of fracture
mechanics. Ph.D. Dissertation. London: Imperial College, University of London.

Hutchinson, J. W. 1968. Singular behaviour at the end of a tensile crack in a
hardening material. Journal of Mechanics and Physics of Solids, Vol. 16, pp. 13 -
31.



57

Iwadate, T. & Yokobori, T. 1994. Evaluation of elastic-plastic fracture toughness
testing in the transition region through Japanese interlaboratory tests. Fracture
Mechanics: Twenty-Fourth Volume, ASTM STP 1207, Landes, J. D., McCabe, D.
E. & Boulet, J. A. M. (Eds.). American Society for Testing and Materials. Pp. 233
- 263.

Kirk, M. T., Koppenhoefer, K. C. & Shih, C. F. 1993. Effect of constraint on
specimen dimensions needed to obtain structurally relevant toughness measures.
In: Hackett, E. M., Schwalbe, K.-H. and Dodds, R. H. (Eds.). Constraint Effects in
Fracture. ASTM STP 1171. Philadelphia, PA: American Society for Testing and
Materials. Pp. 79 - 103.

Kumar, V. & German, M. D. 1988. Nonlinear analysis of surface cracks in
cylinders. Analytical, Numerical and Experimental Aspects of Three Dimensional
Fracture Processes: Joint ASME/SES Applied Mechanics and Engineering
Sciences Conference, Berkeley, CA, June 20 - 22, 1988. ASME AMD-Vol. 91.
New York: ASME. Pp. 63 - 87.

Landes, J. D. & Begley, J. A. 1972. The effect of specimen geometry on JIc.
fracture toughness. Proceedings of the 1971 National Symposium on Fracture
Mechanics, Part II. ASTM STP 514. Philadelphia, PA: American Society for
Testing and Materials. Pp. 24 - 39.

Larsson, S. G. & Carlsson, A. J. 1973. Influence of non-singular stress terms and
specimen geometry on small-scale yielding at crack tips in elastic-plastic
materials. Journal of Mechanics and Physics of Solids, Vol. 21, pp. 263 - 277.

Leevers, P. S. & Radon, J. C. 1983. Inherent stress biaxiality in various fracture
specimen geometries. International Journal of Fracture, Vol. 19,  pp. 311 - 325.

McMeeking, R. M. & Parks, D. M. 1979. On criteria for J-dominance of crack-tip
fields in large-scale yielding. In: Landes, J. D., Begley, J. A. and Clarke. G. A.
(Eds.). Elastic-Plastic Fracture. ASTM STP 668. Philadelphia, PA: American
Society for Testing and Materials. Pp. 175 - 194.

Mudry, F. 1987. A local approach to cleavage fracture. Nuclear Engineering and
Design, Vol. 105, pp. 65 - 76.

Nakamura, T., Shih, C. F. & Freund, L. B. 1989. Three-dimensional transient
analysis of a dynamically loaded three-point bend ductile fracture specimen.
Nonlinear Fracture Mechanics: Volume I - Time-Dependent Fracture, ASTM STP
995, Saxena, A., Landes, J. D. & Bassani, J. L. (Eds.), American Society for
Testing and Materials. Pp. 217 - 241.

Narasimhan, R., Rosakis, A. J. & Zehnder, A. T. 1988. Three dimensional fields
for a through crack in an elastic-plastic solid: numerical analysis and comparison
with interferometric measurements. Analytical, Numerical and Experimental



58

Aspects of Three Dimensional Fracture Processes: Joint ASME/SES Applied
Mechanics and Engineering Sciences Conference, Berkeley, CA, June 20 - 22,
1988. ASME AMD-Vol. 91. New York: ASME. Pp. 239 - 254.

Newman, J. C. & Raju, I. S. 1984. Stress-intensity factor equations for cracks in
three-dimensional finite bodies subjected to tension and bending loads. Virginia,
U.S.A: NASA. 38 p. (NASA Technical Memorandum 85793.)

O’Dowd, N. P. 1995. Applications of two parameter approaches in elastic-plastic
fracture mechanics. Engineering Fracture Mechanics, Vol. 52, No. 3, pp. 445 -
465.

O’Dowd, N.  P. & Shih, C. F. 1991. Family of crack-tip fields characterized by a
triaxiality parameter. I. Structure of fields. Journal of Mechanics and Physics of
Solids, Vol. 39, No. 8, pp. 989 - 1015.

O’Dowd, N. P. & Shih, C. F. 1992. Family of crack-tip fields characterized by a
triaxiality parameter. II. Fracture applications. Journal of Mechanics and Physics
of Solids,  Vol. 40, No. 5, pp. 939 - 963.

O’Dowd, N. P. & Shih, C. F. 1994. Two parameter fracture mechanics: Theory
and applications.  In: Landes, J. D., McCabe, D. E. and Boulet, J. A. M. (Eds.)
Fracture Mechanics. ASTM STP 1207. Philadelphia, PA: American Society for
Testing and Materials. Pp. 21 - 47.

Parks, D. M. 1990. A surface crack reviev: elastic and elastic-plastic behaviour.
Surface Crack Growth: Models, Experiments, and Structures, ASTM STP 1060,
Reuter, W. G., Underwood, J. H. & Newman, J. C. Jr (Eds.). American Society for
Testing and Materials. Pp. 9 - 33.

Parks, D. M. 1991. Three-dimensional aspects of HRR-dominance. In: Blauel, J.
G. and Schwalbe, K.-H. (Eds.). Defect Assessment in Components -
Fundamentals and Applications, ESIS/EGF9. London: Mechanical Engineering
Publications. Pp. 205 - 231.

Parks, D. M. & Wang, Y.-Y. 1988. Elastic-plastic analysis of part-through surface
cracks. Analytical, Numerical and Experimental Aspects of Three Dimensional
Fracture Processes: Joint ASME/SES Applied Mechanics and Engineering
Sciences Conference, Berkeley, CA, June 20 - 22, 1988. ASME AMD-Vol. 91.
New York: ASME. Pp. 19 - 32.

Reuter, W. G., Underwood, J. H. & Newman, J. C. Jr. 1990. Overview. Surface
Crack Growth: Models, Experiments, and Structures, ASTM STP 1060. Reuter,
W. G., Underwood, J. H. & Newman, J. C. Jr. (Eds.). American Society for
Testing and Materials. Pp. 1 - 5.

Rice, J. R. 1968. A path independent integral and the approximate analysis of
strain concentration by notches and cracks. Journal of Applied Mechanics,
Transactions of the ASME, June, pp. 379 - 386.



59

Rice, J. R. 1974. Limitations to the small scale yielding approximation for crack
tip plasticity. Journal of Mechanics and Physics of Solids, Vol. 22,  pp. 17 - 26.

Rice, J. R. & Rosengren, G. F. 1968. Plane strain deformation near a crack tip in a
power-law hardening material. Journal of Mechanics and Physics of Solids, Vol.
16, No. 1, pp. 1 - 12.

Ritchie, R. O., Knott, J. F. & Rice, J. R. 1973. On the relationship between critical
tensile stress and fracture toughness in mild steel. Journal of Mechanics and
Physics of Solids, Vol. 21, pp. 395 - 410.

Santaoja, K. 1992. Some remarks upon fracture mechanics. Espoo: Technical
Research Centre of Finland. 66 p. + app. 8 p. (VTT Publications 100).

Santaoja, K. 1996. Rectilinear crack growth in hyperelastic materials. Espoo:
Technical Research Centre of Finland. 77 p. + app. 13 p. (VTT Publications 275).

Sham, T.-L. 1991. The determination of the elastic T-term using higher order
weight functions. International Journal of Fracture, Vol. 48, pp. 81 - 102.

Shih, C. F. & German, M. D. 1981. Requirements for a one parameter
characterization of crack tip fields by the HRR singularity. International Journal of
Fracture, Vol. 17, No. 1, pp. 27 - 43.

Tada, H., Paris, P. & Irwin, G. 1985. The stress analysis of cracks handbook. 2nd
ed.  St. Louis, Missouri, USA: Paris Productions Inc. 500 p.

Theiss, T. J., Shum, D. K. M. & Rolfe, S. T. 1994. Interim results from the heavy
section steel technology (HSST) shallow-crack fracture toughness program.
Fracture Mechanics: Twenty-Fourth Volume, ASTM STP 1207. Landes, J. D.,
McCabe, D. E. & Boulet, J. A. M. (Eds.). American Society for Testing and
Materials. Pp. 131 - 151.

Tvergaard, V. & Hutchinson, J. W. 1994. Effect of T-stress on mode I crack
growth resistance in a ductile solid. International Journal of Solids and Structures,
Vol. 31, No. 6, pp. 823 - 833.

Van Der Sluys, W. A. & Miglin, M. T. 1994. Results of MPC/JSPS cooperative
testing program in the brittle-to-ductile transition region. Fracture Mechanics:
Twenty-Fourth Volume, ASTM STP 1207. Landes, J. D., McCabe, D. E. &
Boulet, J. A. M. (Eds.). American Society for Testing and Materials. Pp. 308 -
324.

Wallin, K. 1984. The scatter in KIc-results. Engineering Fracture Mechanics, Vol.
19, No. 6, pp. 1085 - 1093.

Wallin, K. 1985. The size effect in KIc results. Engineering Fracture Mechanics,
Vol. 22, No. 1, pp. 149 - 163.



60

Wallin, K. 1991. Statistical modelling of fracture in the ductile-to-brittle transition
region. In: Blauel, J. G. and Schwalbe, K.-H. (Eds.). Defect Assessment in
Components - Fundamentals and Applications. ESIS/ ECGF9. London:
Mechanical Engineering Publications. Pp. 415 - 445.

Wallin, K., Saario, T. & Törrönen, K. 1984a. Statistical model for carbide induced
brittle fracture in steel. Metal Science, Vol. 18, No. 1, pp. 13 - 16.

Wallin, K., Saario, T., Törrönen, K. & Forstén, J. 1984b. Mechanism based
statistical evaluation of the ASME reference fracture toughness curve. Proc. of
Fifth International Conference on Pressure Vessel Technology, San Francisco,
California, U.S.A., 9 - 19 September 1984. Vol. II. Materials and Manufacturing.
New York: ASME. Pp. 966 -  974.

Weibull, W. 1939. The phenomenon of rupture in solids. Stockholm, Sweden:
Royal Technical University. 55 p. (Ingeniörsvetenskapsakademiens handlingar nr
153).

Williams, M. L. 1957. On the stress distribution at the base of a stationary crack.
Journal of Applied Mechanics, Vol. 24, March, pp. 109 - 114.

Xia, L., Wang, T. C. & Shih, C. F. 1993. Higher-order analysis of crack-tip fields
in power law hardening materials. Journal of Mechanics and Physics of Solids,
Vol. 41, pp. 665 - 678.

Appendices of this publication are not included in the PDF version.
Please order the printed version to get the complete publication
(http://www.inf.vtt.fi/pdf/publications/1997/)


	ABSTRACT
	PREFACE
	NOMENCLATURE
	CONTENTS
	ORIGINAL FEATURES
	DISSERTATION
	1 INTRODUCTION
	1.1 PROBLEM DESCRIPTION
	1.2 PRESENT STATUS OF FRACTURE MECHANICS

	2 CRACK TIP CHARACTERIZATION
	3 METHODS FOR CONSTRAINT CORRECTION
	3.1 T-STRESS
	3.2 Q-PARAMETER
	3.3 SMALL-SCALE YIELDING CORRECTION (SSYC)

	4 METHOD FOR THICKNESS CORRECTION
	5 APPLICATION OF METHODS
	5.1 EXPERIMENTAL AND COMPUTATIONAL ANALYSES
	5.2 APPLIED CONSTRAINT CORRECTIONS
	5.2.1 Impact tests
	5.2.2 Static tests
	5.2.3 Computational analyses


	6 RESULTS
	6.1 PLASTIC h-VALUES
	6.2 T-STRESS
	6.3 J-Q TRAJECTORIES
	6.4 TOUGHNESS SCALING MODEL (= SSYC)
	6.4.1 Analysis results

	6.5 THICKNESS EFFECT
	6.5.1 Effective thickness
	6.5.2 Development of thickness correction

	6.6 FRACTURE TOUGHNESS FOR SURFACE CRACK

	7 DISCUSSION
	7.1 SIGNIFICANCE OF RESULTS
	7.2 ASSESSMENT OF RESULTS

	8 CONCLUSIONS
	SUMMARY OF APPENDED PUBLICATIONS
	REFERENCES
	Appendices

