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Abstract

Cardiovascular variability signals provide information about the functioning of
the autonomous nervous system and other physiological sub-systems. Because
of large inter- and intra-subject variability, sophisticated data analysis methods
are needed to gain this information. An important approach for analysing signals
is the analysis in the frequency domain.

In this thesis, spectral analysis of cardiovascular variability signals was
addressed by two different approaches. The first approach was based on
univariate spectral analysis. The novelty of the approach is the quantification of
the shift in spectral powewithin a frequency bandlhree different estimators

for the spectral shift were compared. The band-wise mean and median
frequencies were found to provide better performance than the parameter used
in earlier studies, namely central frequency. The band-wise median frequency
was successfully applied to real clinical data.

In the other approach multivariate closed-loop analysis of the cardiovascular
system was studied. A framework based on linear time series modelling and
spectral decomposition was presented. The application of multivariate
autoregressive (MAR) modelling on real cardiovascular data was addressed in
detail, and a method for overcoming the problem of correlating noise sources in
MAR modelling was applied successfully. A non-causal model for controlling
the effect of respiration on cardiovascular system was proposed. Practical
considerations of applying multivariate linear time series modelling to real
cardiovascular data were discussed. Methods were demonstrated using real data.






One day an extremely bad hangover woke Fiodor up in the middle of the
night. He was terribly thirsty. Without putting on the light he went into
the kitchen, felt a bottle on the shelf and started to drink. Having gulped
the very first mouthful he realised he had made a mistake - it wasn’t
water in the bottle, as he had thought, but kerosene.

Fiodor however had mastered Zen so well that he found the courage not
to correct the mistake, and calmly drank up the whole contents.

Vladimir Shinkarev:” Maxim and Fiodor”
(translated by Tatjana Puskelmann)
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1. Introduction

Periodicities present in cardiovascular variability signals, such as heart rate
(HR) and blood pressure (BP), have been studied for generations, and even more
extensively during the last three decades (Kamath & Fallen 1993). Interest has
increased because of several factors. The main driving force has been the
observation that these periodicities reflect the functioning of the autonomous
nervous system (ANS) and hence physiological or pathophysiological processes.
Alterations in cardiovascular rhythms have been linked with various
physiological or medical provocations, like changes in posture (e.g. Turjanmaa
et al 1990, Saul et al 1991, Taylor & Eckberg 1996), hypovolemic stress (e.g.
Triedman et al 1993), isometric (e.g. Taylor et al 1995) and dynamic (e.qg.
Yamamoto et al 1991) exercise, mental stress (e.g. Roy & Stephoe 1991),
introduction of vasoactive drugs (e.g. Saul et al 1990) and pharmacological
autonomic blockade (e.g. Saul et al 1991), just to mention a few. Even more
interestingly, altered oscillations have been linked with several pathologies, e.g.
sudden infant death syndrome (Hon & Lee 1963), diabetes mellitus (Bennett et
al 1978, Kitney et al 1982, Freeman et al 1995), myocardial infarction (Kleiger
et al 1987), hypertension (Guzzetti et al 1988, Pagani et al 1988, Parati et al
1988), myocardial dysfunction (Malliani et al 1991), and reinnervation after
cardiac transplantation (Fallen et al 1988). Also, they have been linked with
different sleep stages (Scholz et al 1993), level of workload (Jorna 1992),
personal fitness (Jorna 1985) and smoking (Hayano et al 1990).

The increased research on cardiovascular variability has become possible and
attractive thanks to the vast technological progress in measurement devices and
computational power. Currently, acquisition of rhythms in HR and BP may be
carried out non-invasively, safely and accurately using the standard
electrocardiogram (ECG) and devices like the Finapress (Ohmeda, Inglewood
Cliffs, New Jersey, USA), and signals may be easily digitised and stored on a
personal computer which provides sufficient computational power for most
analyses. There are also commercial products which provide a readily integrated
platform for acquiring and analysing these signals. Hence, a window to
otherwise elusive human central neural integrative mechanisms is open to
practically any researcher or clinician.
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Despite the intensive research efforts, clinical use of cardiovascular variability
analysis is still limited. This is largely due to the general complexity of the
human physiology which is reflected in the signals. This complexity gives rise
to large inter-subject variability and disposes the signals to measurement
artefacts and noise due to other physiological activities. Hence, no consensus or
clear definitions for the analysis methods have been found. Only simple time-
domain parameters, like SDNN (standard deviation of the all normal-to-normal
(NN) heart intervals), or RMSSD (square root of the mean squared differences
between adjacent NN intervals) are slowly reaching a standardised position
(Task Force of ESC & NASPE 1996). The details for the application of more
advanced parameters are still the subject of heated debate.

Among the advanced parameters used for the quantification of the HR and BP
variability are the parameters derived by spectral analysis. Analysis of
cardiovascular variability signals in the frequency domain has been one of the
most intensively applied methods since the early 70’s (Sayers 1973). Despite
this long time period, no standardised methods have been agreed upon. A recent
Task Force report (Task Force of ESC & NASPE 1996) makes an attempt
towards reaching a standardisation of the analysis methods for univariate
spectral analysis but, it still fails to reach recommendations that would not be
subject to serious criticism. Hence, detailed methodological knowledge,
concerning questions like signal pre-processing and the spectral estimation
method, etc., is still needed to carry out spectral analysis of cardiovascular
signals.

As the cardiovascular system is inherently a multivariable one, use of a
multivariable approach for the analysis would appear to be quite a natural
choice. A recent Task Force report denotes multivariate analysis of
cardiovascular variability as one of the most promising approaches (Task Force
of ESC & NASPE 1996). During the last decade there have been some efforts
towards multivariate modelling of cardiovascular system (Kalli et al 1986,
Baselli et al 1988b, Turjanmaa et al 1990, Gronlund et al 1995, Barbieri et al
1996b), but as yet no breakthrough has been made. This is largely due to the
complicated nature of the multivariate methods. To gain widespread use in
biomedical research, any analysis method proposed must be robust, valid and
reproducible by other research groups (Saranummi et al 1997). The multivariate
methods proposed so far fail to meet these requirements. Some methods have
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been criticised as biased (Kalli et al 1988a), while some lack adaptability due to
their custom structure (Baselli et al 1988b). No methods have been validated in
large clinical studies. To gain the use of multivariate modelling in the analysis
of the cardiovascular system, research based on a solid theoretical foundation
and building on general system theory is needed, and collaborative studies by
clinicians and engineers have to be carried out to validate the methods.
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2. Background

2.1 The early days of cardiovascular variability signals

Periodic fluctuations in arterial BP were observed first by Stephen Hales (1733).
During his classical experiment Hales noticed rhythmic changes in the level of
blood in a glass pipe connected to the carotid artery of a horse. He did not relate
these variations to respiration or anything else but merely described them (Hales
1733):

When it was its full height, it would rise and fall at and after each pulse
two, three, or four inches; and sometimes it would fall twelve or fourteen
inches, and have there for a time the same vibrations up and down at and
after each pulse, as it had, when it was its full height; to which it would
rise again, after forty or fifty pulses.

In the same also, Albrecht von Haller (1778) recognised that there exist
fluctuations in HR, too, and that these fluctuations are in synchrony with
respiration. After this finding it took till 1847 before fluctuations in BP were
connected to respiration. The observation was made by Carl Ludwig (1847),
who recorded physiological signals from dogs and horses on smoked drums.
Ludwig explained the finding by the direct mechanical effect of intrathoracic
pressure changes on BP. This explanation became obsolete when improved
measurement technology enabled accurate quantification of BP and
intrathoracic pressures: the BP fluctuations were too large to be just a result of
purely the mechanical effect of intrathoracic pressure on arteries. A century
after Hales, Traube (1865) documented in mechanically ventilated curarized
dogs the occurrence of rhythms after the ventilator was turned off. The animal
studies carried out by Hering (1869) around the same time showed the
contribution of vasomotion on BP waves: he showed that the rhythmical waves
persisted after the exclusion of heart from the circulation. These studies drew
the early picture of respiratory-related cardiovascular variability.

BP rhythms slower than respiratory rate, with a period of about 10 seconds,

were observed first by Cyon (1874), but carry the name of Dr Mayer, who
observed these respiratory-independent oscillations three years later (Mayer
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1877) - yet still ascribed them to respiration! The independence of the

respiration-related, so-called Traube-Hering waves, and slower Mayer waves
was suggested five years after Mayer's study by Fredericq (1882), and was
much later on supported by Scweitzer (1945). The foundation of the analysis of
short-term cardiovascular variability was completed by Burton and Taylor

(1940), who discovered the third main oscillatory component, with a period

slower than 0.05 Hz.

2.2 Short-term autonomous control of cardiovascular
system

The aim of the cardiovascular system is to provide sufficient blood for tissues
and especially the vital organs under all conditions. To carry out this demanding
task, a variety of different interacting control systems are needed. In this thesis,
only the short-term control of the cardiovascular system is presented. This
control includes mechanisms which are capable of acting with a delay lasting
from milliseconds to some minutes.

The heart is the prime actor of the cardiovascular system, causing the blood to
flow and hence BP. Although the inherent rhythmicity of the heart is due to a
natural pacemaker situated in the sinoatrial node, the rhythm is continuously
modulated by the input fromympathetic and parasympathetierve impulses
delivered from the brain to the sinus node (Kamath & Fallen 1993). Together,
the sympathetic and parasympathetic nervous branches comprise the peripheral
ANS. Specifically for the heart, sympathetic nerve fibres terminate at the sinus
node pacemaker, conduction system, atria, ventricles and coronary vessels,
while the parasympathetic fibres of the vagus nerve terminate at the sinoatrial
and atrioventricular nodes, atrial and ventricular musculature and coronary
vessels (Kamath & Fallen 1993). The final pace of the heart is defined by the
balance between sympathetic and parasympathetic impulses, such that an
increase in sympathetic nerve impulses speeds up the HR while increased
parasympathetic activity tends to slow down the HR. The latencies of the
sympathetic and parasympathetic branches differ significantly, the former
having a typical response delay of a few seconds and the latter providing faster,
near-immediate response to stimulations (Eckberg 1995).

18



BP is a consequence of the contraction of the heart, which forces the stroke
volume into the aorta (Guyton 1986). Because of vascular resistance this initial
flow causes the BP inside the vascular tree. The pumping action of the heart
together with peripheral resistance maintains a continuous pressure difference
between the arterial and venous site of the vascular system, which is a
prerequisite for tissue perfusion (Guyton 1986). The principal relation between

mean BP, stroke volume (SV) and total peripheral resistance (TPR) is that of
Ohm'’s law (Poiseuille 1828):

BPyean= SV* HR* TPR (1)

Hence, BP is dependent on HR, the force of the contraction of the heart and the
state of the vascular bed. The main determinant of the SV is the degree of the
filling of the heart and hence the venous return (Frank-Starling mechanism)
(Braunwald et al 1967). The TPR is controlled by vasoconstriction and
vasodilation predominantly by the sympathetic ANS branch (Kamath & Fallen
1993). Via local control of vascular resistance the regulation of the blood flow
distribution between the different tissues is achieved (Guyton 1986).

The ANS is characteristically a feedback control system. Although the central
command controls the overall behaviour, several reflexes provide rapid
feedback mechanisms to respond effectively to specific demands (Kamath &
Fallen 1993). The most intensively studied of these reflexes is the (arterial)
baroreflex. The baroreflex is based on pressure or stretch receptors
(baroreceptors) located in the heart, carotid sinus, aortic arch and other large
vessels (Karemaker 1987). These stretch receptors are sensitive both to mean
arterial pressure and to the pressure derivative (Karemaker 1987). The reflex is
mediated by a specific baroreflex arc (Kirchheim 1977), and both the
parasympathetic and the sympathetic firing are affected by baroreceptor
stimulation (Rea & Eckberg 1987). The baroreflex modulation of vagal firing of
the sinus node causes a fast and opposing change in HR and myocardial
contractility due to a change in arterial BP (Karemaker 1987, Eckberg & Sleight
1992). In humans, the baroreflex latency has been reported to be between 200
and 600 ms (Eckberg & Sleight 1992). Hence, it provides a fast regulating
mechanism for stabilising the BP level.
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The other cardiovascular reflexes include low-pressure sensitive cardiopulmonal
baroreceptors and chemoreceptors responding to metabolic needs (Karemaker
1987, Eckberg & Sleight 1992, Toska 1995). Furthermore, renal control of
blood volume and the renin-angiotensin-aldosteron system (Toska 1995) and
thermoregulation (Sayers 1973) may play a role in short-term cardiovascular
regulation.

In healthy normal subjects, in normal conditions, HR increases and BP
decreases during inspiration while the opposite is true during expiration.
Respiratory influence enters cardiovascular variability in several ways. At the
brain stem level, respiration modulates the sympathetic and parasympathetic
efferent activity to the heart and vasculature through direct coupling between
the respiratory and autonomic centres and through modulation of central
sensitivity to baroreceptor and other afferent inputs (Saul et al 1991, Eckberg &
Sleight 1992, Toska 1995). The efferent modulation of HR by respiration is
carried out both by the parasympathetic and the sympathetic branches of the
ANS, the former being dominant in respiratory frequencies over 0.15 Hz, and
the relative importance of the latter increasing with decreasing respiratory rate
(Saul et al 1991). At the direct mechanical level, intrathoracic pressure changes
modulate arterial and central venous pressures and flows and affect preload and
afterload, which in turn affect SV and hence BP (Saul et al 1991, Toska 1995).
Furthermore, direct mechanical stretching of the sinus node and baroreceptors
due to respiration may play a role in modulating the HR (Schmidt & Thews
1983, Toska 1995). The closed-loop coupling between HR and BP also plays a
role in the respiratory variability of HR and BP. Respiratory sinus arrhythmia
proceeds to BP as alterations in RR interval affect the resulting BP by the run-
off effect and Frank-Starling mechanism (feed-forward) (Smith & Campine
1980, Guyton 1986, Taylor & Eckberg 1996), while the arterial baroreflex
causes variations in HR when BP changes (feed-back) (deBoer et al 1987, Saul
et al 1991).

2.3 Analysis of cardiovascular variability signals
In this chapter a short review over the methodology of analysing short-term

cardiovascular variability signals is given. Short-term variability is defined as
the variability reflecting the short-term control of the cardiovascular system,
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expressed by the time series in the recordings of the length between a few
minutes and a few tens of minutes. The analysis of longer data sequences is
referred to only when appropriate from the short-term analysis point of view.

2.3.1 Cardiovascular variability signals

Instantaneous HR, or HR time series, is defined as a reciprocal of the time
difference of the successive heart beats. In the supine healthy human, the mean
value of the inter-beat interval is typically around 1000 ms, and the standard
deviation (SD) 60 ms (Task Force of ESC & NASPE 1996). To guarantee
proper identification of the HR variability, the resolution g ms should be
achieved (Task Force of ESC & NASPE 1996). In certain pathologies, even
better resolution is needed (Kitney et al 1982, Merri et al 1990). In practise, this
requirement implies use of good-quality ECG and robust definition of the
fiducial point of the QRS-complex (Task Force of ESC & NASPE 1996).
Usually, the peak of the R-wave is used as the fiducial point. Interpolation
methods may be used to increase the localisation resolution and hence to
enhance the HR series accuracy (Bianchi et al 1993, Loula et al 1994). The
resulting time series is called the RR-series, or RR interval (RRI) series, the
reciprocal of which is the HR series. Due to this non-linear relation between
RRI and HR signals (Figure 1) linear gquantification of HR variability is
somewhat dependent on the choice of signal. Paradoxically, in case the of a
different mean HR between the tests to be compared, the quantified HR
variability may sometimes increase if HR is considered, but decrease if RRI is
selected instead, or vice versa (Castiglioni 1995).

A continuous BP signal may be recorded invasively by intra-arterial catheter, or
non-invasively by a device utilising the Penaz principle (Penaz 1973). The non-
invasive method provides a resolution comparable to invasive recordings for
spectral analysis (Omboni et al 1993) and is becoming more and more popular
due to its ease-of-use and patient safety. Usually, the continuous BP signal is
parametricised into a beat-to-beat time series of systolic BP (SBP; the maximum
BP during each beat) diastolic BP (DBP; the minimum BP during each beat),
and mean arterial pressure (MAP; true mean pressure between two successive
diastolic time instants). Also pulse pressure (PP = SBP-DBP) may be used (Saul
et al 1991). The parametrisation is carried out to emphasise the partially
differing control mechanisms of DBP and SBP.
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Figure 1. Non-linear relationship between HR and RRI.

In non-hospitalised subjects, respiration is usually quantified by measuring
instantaneous lung volume (ILV) instead of the effective variable, intrathoracic
pressure. The ILV is usually measured either by strain gauge over the chest
(Baselli et al 1988b, Saul et al 1989, 1991) or by the transthoracic electric
impedance method (Triedman et al 1995). Both methods provide inexpensive
and non-invasive modalities. The strain gauge method is more sensitive to
movement artefacts, while the impedance method may reflect also some
variations of blood volume inside the chest (AAMI 1989). To obtain more
accurate respiratory waveforms, an ergospirometer may be used (Tulppo et al
1996). This method is, however, somewhat uncomfortable to the subject and
may hence affect his/her psychophysiological state.

Also other cardiovascular or cardiovascular-related signals have been
considered for the analysis of their short-term variability. Toska (1995) analysed
beat-to-beat SV, cardiac output (CO) and TPR measured by the ultrasound
Doppler method during physiological provocations in the time domain.

Gronlund et al (1995) used transcephalic electrical impedance together with
ILV, SBP and HR to analyse control of cerebral circulation in new-born babies.
Recently, Barbieri et al (1996a) included central venous pressure in their model
of cardiovascular control. Many groups have studied the co-occurrence of
cardiovascular rhythms and muscle sympathetic activity (Eckberg et al 1985,
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Wallin et al 1994). In addition, cardiovascular variability has been related to
signals such as electroencephalograph (EEG) during anaesthesia (Loula et al
1994), electro-oculograph, EEG and electromyograph (EMG) to assess vigilance
(Varri et al 1994), and leg EMG to study sleep disorders (Vermeiren et al
1995a), just to mention a few cases.

2.3.2 Signal pre-processing

The inherent property of the beat-to-beat cardiovascular time series is their non-
equidistant sampling in time. Hence, application of frequency domain analysis
methods to these signals needs special attention. One way to solve the problem
is to carry out the frequency domain analysis in the cycles/beat-plane instead of
the usual cycles/second-plane (Hz-plane) (Sayers 1973, Baselli et al 1986,
Malliani et al 1991). In this approach, all the signals are sampled at heart beats
(R-waves) (Baselli et al 1986, 1988a) and the analysis is carried out directly on
these signals. The transition to Hz-plane is made by dividing the cycles/beat-
abscissa by the mean inter-beat interval. This transform is based on the
assumption of zero HR variability and is hence non-uniform in every case of
practical interest. It has been shown that this approach leads to spectral
sideslopes and distortion on the Hz-plane depending on the amount of HR
variability (deBoer et al 1984, Rompelman 1986, TenVoorde et al 1994).
However, no studies have shown any practical importance for this distortion
presented, and hence the method is in general use (Baselli et al 1994, Malliani et
al 1991, Task Force of ESC & NASPE 1996). The second approach to overcome
non-equidistant sampling is to use resampling methods to transform the time
series into equidistantly sampled signals (Task Force of ESC & NASPE 1996).
Two main approaches are introduced: the interpolation-resampling approach
(Luczag & Laurig 1973) and window-averaging-resampling (Rompelman 1986,
Berger et al 1986). The interpolation between consecutive heart beats may be
carried out in a step-wise manner (Luczag & Laurig 1973), linearly (Luczag &
Laurig 1973), or by spline function (Saul et al 1991). Proper resampling
methods do not suffer from the distortion (Berger et al 1986) and provide an
equal time scale for signals of beat-to-beat (e.g. HR and SBP) and other (e.g.
ILV or sympathetic nerve activity) origin. The price paid for this is the
increased computational load.
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Figure 2. Derivation of beat-to-beat parameters from ECG and BP signals.

Table 1. Different constructions of the cardiovascular time series.

Authors Correspondence to Figure 2
SBP(i)* DBP(i)*
Baselli et al 1986, 1988 SBP(i+1) DBP(i)
de Boer et al 1987 SBP(i+1) DBP(i+1)
Rompelman & TenVoorde 1995 SBP(i) DBP(i)

* Notations referring to Figure 2. Notations of different authors are described as referring
to each RR(i) in Figure. This shows how different authors indicate the fiducial points in
ECG and BP signals.

To accurately analyse intersignal properties, special care must be taken to
restore the phase relationships between the signals. This means the use of linear
phase filters with equal delay for all the signals, but it also emphasises the
construction of the beat-to-beat series, i.e. what are the exact time instants of the
fiducial points detected at the signals [e.g., RR(i): the R-wave beginning or
ending each RR(i) (Eckberg 1995)] and what is the mutual correspondence
between them (Table 1). The selection of construction affects the phase
relations between the signals. Unfortunately, there exists no consensus on the
topic and the use of different constructions hampers the comparison of different
studies.

The final step in data pre-treatment includes data validation and removal of
unwanted parts of the signal. Generally, any sequences containing artefacts,
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ectopic beats, or other random-like physiological disturbances are excluded
from the analysis unless this exclusion introduces a significant selection bias
(Task Force of ESC & NASPE 1996). Proper interpolation methods may be
used to decrease the effect of missing data or random physiological events
(Kamath & Fallen 1995).

2.3.3 Spectral analysis

Power spectral density (PSD) of a signal is a linear transformation of a signal

from the time plane to the frequency plane and describes the distribution of the
signal power over the frequency plane. The complex spectrum of a signal is a
complete presentation of the second order properties of the signal (mean and
correlation function) (Picinbono 1993). In the case of a random, or stochastic,

signal the PSD is also a stochastic variable. Spectral estimation of stochastic
signals is dealt with intensively in the literature (Marple 1987, Kay 1988).

The spectral analysis of cardiovascular signals is based on the stochastic
approach. The main consequence of this is the presumption of local stationarity
of the signal (Kay 1988). Local stationarity means that the correlation function
is unchanged during the recording and that the length of the recording is
significantly longer than the correlation time (Picinbono 1993). In a stationary
signal, expectation values may be accurately estimated by time averaging and
hence from a single recording (Picinbono 1993). The presumption of stationarity
is well recognised in analysing cardiovascular variability signals (Task Force
ESC & NASPE 1996), and formal tests for the second-order stationarity are
generally applied (Bendat & Piersol 1986, Task Force ESC & NASPE 1996).

Two different PSD estimation methods are most often used with cardiovascular
signals: Fast Fourier Transform (FFT) based methods (Sayers 1973, Akselrod et
al 1981) and AR spectral estimation (Baselli & Cerutti 1985). The main
advantage of the FFT based methods is their computationally efficient
implementation compared with AR methods (Task Force ESC & NASPE 1996).
The AR methods, in turn, are claimed to provide 1) smoother and more easily
interpretable spectral shapes (Task Force ESC & NASPE 1996), 2) better
spectral resolution in the case of short data lengths (Kay 1988), and 3)
straightforward decomposition of spectra into root components without the need
for predefined spectral bands (Baselli et al 1987, Malliani et al 1991). In
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general, both methods provide very comparable results (di Rienzo et al 1989,
Task Force ESC & NASPE 1996).

The mainstream of studies apply traditional spectral estimation methods, like
FFT or AR methods, directly to beat-to-beat time series, or then to resampled
data (Task Force ESC & NASPE 1996). Fourier transform based spectral
estimation methods applicable directly to non-equidistantly sampled data have
been proposed by Rompelman et al (1982), deBoer et al (1984) and recently by
TenVoorde et al (1994). These methods have not been widely applied despite
their having some advantageous properties (TenVoorde et al 1994).

Usually three main spectral components of HR and BP short-term variability are
recognised in humans:

1) high frequency (HF) component, around 0.15 - 0.4 Hz, arising mainly due to
respiratory influence (Hyndman et al 1971, Eckberg & Sleight 1992);

2) low frequency (LF) component, around 0.05 - 0.15 Hz, referring to Mayer
waves and usually associated with baroreceptor function (Akselrod et al
1985, deBoer et al 1987), pressure-pressure feedback loop (Baselli et al
1988a, 1994, Taylor & Eckberg 1996) and vasomotor activity (Hyndman et
al 1971); and

3) VLF component, around 0.01 - 0.05 Hz, the origin of which is largely
unknown but is proposed to be associated with thermoregulation (Sayers
1973, Kitney et al 1985), vasomotor activity (Kamath & Fallen 1993), or the
renin-angiotensin system (Akselrod et al 1981).

The different latencies of the sympathetic and parasympathetic ANS branches
are largely responsible for the fact that frequency domain analysis may be
effectively utilised to analyse ANS function: the functioning of different
branches is partially separable in the frequency domain. The HF component is
associated mainly with parasympathetic activity (Akselrod et al 1985, Saul et al
1989, 1991), but the LF component is dominated both by sympathetic and
parasympathetic control (Akselrod et al 1985, Saul et al 1991, Taylor & Eckberg
1996).
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The parameters computed from the PSD estimates of short-term variability are
usually the spectral power of different frequency bands and the LF/HF ratio
(Task Force ESC & NASPE 1996). The LF/HF ratio has been claimed to
provide a measure of so-called sympatho-vagal balance (Pagani et al 1986,
Malliani et al 1991), but this statement is also criticised for lack of a
physiological foundation (Eckberg 1995). The spectral power may be
normalised, i.e. divided by the total spectral power under the LF and HF band to
reduce the intersubject or intertest total power variability (Task Force ESC &
NASPE 1996). The normalisation may in certain situations, however, mask the
real patterns of changing regulation (Taylor & Eckberg 1996).

No studies have shown any practical significance as regards the selection of the
spectral analysis method (FFT or AR spectral estimation) as long as the method
selected is properly applied and the spectral powers on different frequency
bands are considered as the output variables.

2.3.4 Multivariate spectral analysis

Multivariate spectral analysis allows quantification of the intersignal correlation

in the frequency domain by means of cross-spectral analysis (Baselli et al 1986).
The cross-spectral density function is defined as a Fourier transform of the
cross-covariance function between the signals (Kay 1988). Hence, it may be
used to assess the correlation between the signals at different frequencies. As to
correlation analysis in general, it does not state anything about the cause-effect
relationships between the signals. In an open-loop system, when the cause-effect
relationship is knowm priori, the analysis may be extended to provide transfer
functions between the signals (Ljung 1987). In practical applications the cross-
spectral density function is usually converted to coherence function, phase
spectrum, or transfer function.

Analysis of weighted squared coherence function between HR and respiration
was proposed by Porges at al (1980). Since then on the cross-spectral analysis of
cardiovascular variability has gained increasing attention, and especially
squared coherence and phase spectrum between cardiovascular signals have
been studied in multiple works (e.g. deBoer et al 1985, Berger et al 1989a, Saul
et al 1989, 1991). The computation of these functions by multivariate AR
(MAR) spectral analysis was introduced by Baselli et al (1986). An important
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application of cross-spectral methods has been the analysis of baroreflex
sensitivity by cross-spectral analysis of RRI and SBP (Robbe et al 1987).

Berger et al (1989a) computed the open-loop transfer functions between the
input and output signals. The coherence function is used as a frequency-
dependent measure of linear coupling between the signals; a squared coherence
value greater than 0.5 has been considered as the limit of confidence for transfer
function measures, e.g. transfer phase (Kamath & Fallen 1993). Phase spectral
and transfer function analysis has lead to fundamental results especially in
analysing respiratory sinus arrhythmia or respiratory variability of BP (Berger et

al 1989a, Saul et al 1989, 1991, Taylor & Eckberg 1996). However, it has been
justifiably criticised as unable to depict the interactions between the closed-loop
variables like BP and HR (Saul et al 1991, Taylor & Eckberg 1996).

2.3.5 Multivariate modelling

Unlike multivariate spectral analysis, multivariate modelling provides a means
to analyse cause-effect relationships present in a system. Roughly speaking,
multivariate models of cardiovascular signals may be divided into two
categories: 1) models for the analysis of cardiovascular variability data and 2)
models imitating the behaviour and structure of the cardiovascular system in
order to gain an understanding of the functioning of the system. In this thesis,
the emphasis is laid on the former category.

The models for the analysis of the cardiovascular system try not to imitate the
structure of the real system but rather to describe and quantify the interactions
between the acquired signals. These models may be further divided into two
sub-categories: open- and closed-loop models.

Sophisticated open-loop ARMA (AR moving average) modelling was applied
by Triedman et al (1995) to analyse the effects of SBP and respiration on HR
using impulse response estimates. Their ARMA model explains HR through
linear transfer functions from BP and ILV. A further developed version of the
model was recently introduced by Perrott and Cohen (1996). The special feature
of the new model was its anti-causal respiratory effect: ILV was allowed to
affect HR with a negative delay of max. 5 seconds. This made it possible to
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Figure 3. MAR model of three-variable systgns represent measured
signals,g:s unknown disturbances awq:s the transfer functions between
signals. (From publication IV) (Suoranta & Rantala 1991)

control the reported phase lead of HR to ILV due to central control mechanisms
of HR (Saul et al 1989, 1991).

A need for models capable of depicting the closed-loop interactions between
signals was recognised a decade ago (Akselrod et al 1985). Kalli et al (1986,
1988b, Turjanmaa et al 1990) proposed MAR modelling of cardiovascular
closed-loop interactions between HR and BP (Figure 3). In their approach, the
guantification of the interactions between different variables was based on noise
source contribution (NSC) analysis; the NSCs provide a division of spectral
power in each signal into relative shares originating in different variables (for
details, see chapter 4.2.3). Since then the method has been extended to cope
with more variables and applied for the analysis of cardiovascular control of
neonatal lambs (Kalli et al 1988a, Gronlund et al 1991) and human neonates
(Gronlund et al 1995). Recently, Barbieri et al have applied bivariate (1996a,
1996b) and trivariate (1995) MAR modelling to estimate the gain of interactions
between HR, BP and ILV. The MAR modelling provides an approach that is
easy to adapt to different sets of variables (Kalli et al 1986, 1988a). The most
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critical factor limiting its use is the assumption of the noise source
independence; if this assumption is not fulfilled, the estimation of intersignal
interactions becomes biased (Kalli et al 1988a).

A more sophisticated custom model was proposed by Baselli et al (1988b). This
linear model described closed-loop interactions between SBP and HR together
with respiratory influence. The analysis of interactions was based on spectral
decomposition and estimation of intersignal gains. The model has been applied
to experimental data from conscious dogs and humans in different physiological
conditions (Baselli et al 1994).

Appel et al (1993) introduced a model comparable to Baselli's approach.
Recently, they have developed the model further (Appel et al 1989, Mullen et al
1997). Their model is based on AR moving average (ARMA) equations and in
structure comes close to the MAR model with exogenous input, or the MARX
model. The main difference is that their model is effectively divided into two
branches of very different time scale: an HR branch with a sampling frequency
of 3 Hz and an arterial BP branch with a sampling frequency of 90 Hz. The
former branch describes the ANS control of HR while the latter depicts the
mechanical effects of HR and respiration on BP. The separation is further
emphasised by the inclusion of a sinus node block in the model, allowing for the
use of HR as a variable in analysing the ANS control, and the use of an impulse
sequence modelling the firing of the sinus node in analysing the mechanical
function of the circulatory system. The analysis of interactions was based on the
estimated inter-signal impulse responses.

The studies published so far on multivariate time series modelling of
cardiovascular signals are predominantly methodological papers which try to
emphasise the proper function of the model and which are based on a relatively
limited number of subjects. Hence, no fundamental physiological findings using
these methods have yet been published. Despite that, multivariate modelling has
been considered one of the most encouraging fields of cardiovascular signal
analysis (Task Force ESC & NASPE 1996).

The other class of models consists of physiologically established mathematical

models of the cardiovascular system. Probably the first model of the short-term
variability of HR was introduced by Hyndman (Hyndman et al 1971). Interest in
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modelling has continued ever since, and several different approaches have been
proposed, including both linear (deBoer et al 1985, 1987, Saul et al 1989, 1991)
and non-linear models (Kitney 1979, Leaning et al 1983, Akkerman et al 1995,
TenVoorde et al 1995). The modelling has usually been considered successful
when the model could reproduce (cross-)spectral properties of the experimental
data in various conditions (deBoer et al 1987, Saul et al 1989, 1991, TenVoorde
et al 1995). The aim of these modelling studies has been to gain an
understanding of the cardiovascular system function and to provide a theoretical
foundation for hypothesis building.

2.3.6 Time-variant spectral analysis

The methods mentioned above assume stationary data. However, the need to
analyse signals during dynamic conditions, too, is largely recognised. To
overcome the assumption of stationarity, Bianchi et al (1993, Mainardi et al
1995) introduced time-variant AR spectral analysis of cardiovascular signals.
Novak and Novak (1993) proposed the use of Wigner distribution to analyse the
signals in the time-frequency plane. These methods allow one to analyse
spectral power variations in nonstationary conditions, such as physiologically
dynamic provocations (Pola et al 1995). Kitney and Darvish (1995) gave a short
review over the time-frequency methods applied to cardiovascular variability
signals, and concluded that they provide ‘an important development'.

Recently, time-variant multivariate modelling has been applied to study the
cardiovascular system. Mainardi et al (1993) and Barbieri et al (1996b) used
time-variant MAR modelling to study cardiovascular responses during syncope
and tilt, respectively.

Another approach to meet the need for dynamic analysis in the frequency
domain has been complex demodulation which provides time tracking of the
signal phase and amplitude around a given frequency (Shin et al 1989).
Complex demodulation has been used to track respiratory related changes in the
amplitude of HR variability (Shin et al 1989), amplitude of LF and HF
oscillations in HR and BP during a tilt test (Hayano et al 1993) and for the
assessment of phase relationships between HR, BP and ILV (Vermeiren et al
1995b).
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As with multivariate modelling, time-variant analysis has not yet been largely
adapted for clinically oriented studies; rather the emphasis has been on
methodological development and trials on small numbers of subjects.

2.3.7 Non-linear methods

Inherent non-linearity of the cardiovascular system is a long-known

phenomenon (Levy 1971). Still, the vast majority of studies assume linearity
during stationary conditions when signals are exhibiting only small variations
around their mean values (Cerutti et al 1994). The significance of non-linearity
is assumed to play a significant role mostly in dynamic conditions or long-term
recordings (Cerutti et al 1994). This is supported by findings that in stationary
short-term conditions linear models may explain typically >65 % (Baselli et al

1994), or even more (Appel et al 1989), of the variability of the signals.

Furthermore, the assumption of linearity, though not strictly justified, has in any
case been the basis for most of the physiologically significant findings in the
field so far.

Recently, interest in non-linear analysis has increased. Studies have shown non-
linearity to play a significant role not only in long-term recordings but also in
stationary short-term conditions (Korhonen & Turjanmaa 1995). Chon et al
(1996) estimated that 10 - 15 % of the HR variability in static conditions is
associated with the non-linear couplings. Quantification of the non-linearity
during short-term conditions has been proposed by using non-linear time series
models, like non-linear extensions of ARMA models (Bennett et al 1993), but
especially the Volterra-Wiener series (Marmarelis 1993). Loula et al (1994)
applied the Volterra-Wiener theory to compute second- and third-order kernels
from the respiratory input to the HR output, and Chon et al (1996) identified
second-order kernels in the case of a dual-input (ILV and BP) to HR. These
studies have demonstrated that the short-term variability of cardiovascular
signals exhibits significant non-linear components and that these components
may be identified. The major problem with this approach, in addition to the
more complex methods to be applied, has been and is still the physiological
interpretation of the results.

During the last few years, application of chaos theory, also called non-linear
dynamics, to cardiovascular variability signals has gained explosive popularity
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(Cerutti & Signorini 1996), as has the research on chaos theory in general
(Gleick 1987). Measures to estimate complexity and sensitivity to initial
conditions of a non-linear system from the time series data have been applied
predominantly to long-term HR variability data only, mainly due to the demands
set for data length by the estimation methods (Cerutti & Signorini 1996). Only a
limited number of studies have been carried out with short-term data (Kaplan et
al 1991), and so far, interesting observations from the long-term data, like
increased risk of death after myocardial infarction (Bigger et al 1996), have not
been repeated in short-term conditions.

2.4 Estimation of spectral shift in myoelectric signals

Estimation of the characteristic frequency of the spectrum of a signal is a
common problem while analysing myoelectric signals (Stulen & DelLuca 1981,
DelLuca 1985, Hagg 1991). Lindstrém et al (1970) showed that the spectral shift
(i.e. change in characteristic frequency of the spectrum) describes the changes in
myoelectric signals during fatigue more accurately than the tracking of the
signal power. There are three commonly preferred candidates for the
characteristic frequency: the mode, the mean and the median frequency of the
spectrum (Stulen & DelLuca 1981). The mode frequefgy, is the frequency

of the maximum power, i.e. the highest spectral peak, of the power spectrum
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The median frequencyyep, is the frequency which divides the spectrum into
two regions with equal power:

fumeD o (4)
[s(ndi= [

f=Tumeo

Superficially, the mode frequency might appear to be most appropriate estimate
for the characteristic frequency. However, in the case of a stochastic process,
like a myoelectric or cardiovascular variability signal, this is not the case. The
variance of the spectral estimate would strongly influence the estimation
accuracy of the mode (Stulen & DelLuca 1981) and the coefficient of the
variation for the estimate of the mode has been empirically found to be five
times higher than that for the mean frequency for myoelectric signals obtained
from the human diaphragm (Schweitzer et al 1979). Hence, the mode frequency
is not usually used in spectral shift estimation. The mean and median
frequencies provide comparable results in analysing muscle fatigue by
myoelectric signals (DelLuca 1985) and they have been found to be highly
correlated with real myoelectric data (Hagg 1991). The median frequency has
been claimed to be least sensitive to noise (Stulen & DelLuca 1981), but Hagg
(1991) concluded that there is little reason to select one over another due to
methodological errors.

2.5 Author’s former research on the topic

This thesis is based on our former research (Takalo et al 1994a, 1994b,
Gronlund et al 1995) in which some specific methodological problems were
addressed and others came to light. This chapter briefly describes the work in
order to provide a closer understanding of the set-up of this thesis.

2.5.1 Univariate spectral analysis of HR and BP variability in
border-line hypertensive and mildly hypertensive subjects

Takalo et al (1994a, 1994b) applied univariate spectral analysis to HR and BP

signals to quantify differences in cardiovascular regulatory mechanisms
between normotensive (NT), borderline hypertensive (BHT) and mildly
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hypertensive (HT) subjects under standard laboratory conditions with the
subjects in supine, sitting and standing positions and during sleep.

Rationale.According to the guidelines of World Health Organisation (WHO
Expert Committee 1978), NT are those whose SBP mmHg and DB£90
mmHg, HT those whose SBP60 mmHg or DBB95 mmHg and BHT those

who do not fall in either of the previous categories. Most subjects with
borderline hypertension will not progress to permanent, established
hypertension (Julius 1991). It would be beneficial if the subjects with increased
risk of cardiovascular morbidity could be identified among those who have
elevated BP. Spectral analysis of HR and BP can provide information about
autonomic nervous system function in hypertension (Malliani et al 1991).
Guzzetti et al (1988) found by spectral analysis of HR variability enhanced
sympathetic and depressed vagal activity in mildly hypertensive subjects. An
increased sympathetic tone in BHT subjects has been documented by different
experimental methods (Julius 1991). For example, Anderson et al (1989)
observed an increased sympathetic nerve activity in direct intraneural recordings
in BHT subjects. Furthermore, autonomic abnormality is typically found in
young subjects with borderline hypertension, but not necessarily in established
hypertension (Julius 1991). The phenomenon of abnormal spectral
characteristics may hence be transient, or at least different, with BHT and HT
groups, and division into two groups (NT and HT), or any mis-categorisation of
the subjects, may effectively mask any findings of the ANS function analysis.

The study set-upthree carefully classified groups - NT, BHT and HT - were
studied in standardised conditions, i.e. during quiet laboratory conditions in
three different postures (supine, sitting, standing) and during sleep. The
different postures provided standard and repeatable activation to ANS, and the
performance in strictly controlled laboratory conditions aimed to standardise the
other inputs to ANS. The subjects were allowed to breathe spontaneously,
which minimised any autonomic disturbance due to paced breathing. ECG and
intra-arterial BP were measured from the subjects by using the Oxford method,
and the signals were transformed into resampled (linear interpolation, 1 Hz
resampling frequency) beat-to-beat time series of HR, SBP and DBP. Spectral
analysis of BP and HR variability was carried out in each poshir8Q0). In
principle, analysis of BP variability could be more sensitive for detecting
changes in sympathetic nervous system function than the analysis of HR
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variability which may be more efficient in detecting parasympathetic (vagal)
dysfunctions (Akselrod et al 1985, Japundiz et al 1990, Taylor & Eckberg
1996).

Spectral estimatiorAR spectral estimation with a high model order was used in
order to guarantee accurate quantification of the complex cardiovascular
rhythms present in HR and BP signals. The model order was selected to be 30.
This exceeds that given by the most usually employed model order selection
criteria, like the Akaike Information Criterion (AIC) (Akaike 1974). A typical
model order proposed by the AIC is from 10 to 15 with the time series analysed
in these studies. The reason for this selection lies in the fact that the model order
selection criteria are optimised for pure AR time series, and with non-AR or
noisy data they have a tendency to underestimate the model order needed
(Landers & Lacoss 1977, Marple 1987, Kay 1988). Hence, with real HR or BP
data, the model order proposed by some objective criterion, like AIC, is not
always sufficient to resolve all the spectral details present in the signal (Pinna et
al 1996). Pinna et al (1996) propose an iterative and interactive procedure to
optimise the model order, but this procedure is not attractive in the case of large
data sets due to its need for subjective judgement of the goodness of the model.
Kay (1988) states that model order may be increased up to N/3 or N/2 (N being
the data length) without any danger of spurious peaks in spectral estimate due to
overestimated model order. Hence, we selected a constant model order of 30,
which significantly exceeds that proposed by AIC but provides a reasonable
resolution for spectral details in all the cases studied and does not introduce the
chance of spurious spectral shapes due to artificially high model order. This
selection allowed an accurate and robust spectral estimation by an automatic
procedure.

Spectral analysisin the spectral analysis, our main attention was on the
guantification of the LF rhythms around 0.1 Hz, which are generally associated
with baroreceptor function (Akselrod et al 1985, deBoer et al 1987), pressure-
pressure feedback loop (Baselli et al 1988a, 1994, Taylor & Eckberg 1996) and
vasomotor activity (Hyndman et al 1971). These oscillations are mediated by
both the sympathetic and parasympathetic nervous systems (Akselrod et al 1985,
Saul et al 1991, Taylor & Eckberg 1996) and may hence be modified by changes
in either branches of the ANS. In general, the parasympathetic control plays the
more dominant role the higher the frequency in the frequency-domain, and the
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sympathetic control becomes relatively more important when the frequency is
decreased (Saul et al 1991). To gain more exact quantification of these rhythms,
the LF band was further divided into two sub-bands;,L{©.02 - 0.075Hz) and

LFrigh (0.075 - 0.15Hz) (Robbe et al 1987, Parati et al 1988).

Resultsln the BHT group, either the relative power on thgl.Band is greater,

or that on the LRy, band smaller than in the NT or HT groups. This finding is
the most significant on the DBP oscillations and suggests that the HR and BP
oscillations on the LF band are shifted to lower frequencies in the BHT group
compared with the NT and HT groups.

Conclusion.The observed changes in the spectral powers suggested that there
exists a shift in the frequency of oscillations on the LF band (0.02 - 0.15 Hz) in
the BHT group compared with the NT and HT groups. To quantify this kind of
phenomenon, the calculation of spectral power in different bands does not
provide an optimal method but rather some other methods had be found.

2.5.2 Multivariate modelling

In Gronlund et al (1995) we used MAR modelling to quantify intersignal
relationships of HR, BP, transcephalic impedance and respiration in neonates
with cerebral haemorrhage. MAR modelling was applied as proposed by Kalli et
al (1986, 1988a) and mean NSC was analysed in different spectral bands. The
main finding of this study was the observation that the inherent variability of the
transcephalic impedance, which reflects the intra-cerebral blood circulation, was
lower in babies with haemorrhage than in healthy ones. This was interpreted as
a possible marker of pressure passivity in the cerebral circulation following
peri-intraventricular haemorrhage. Despite this finding which supports the use
of MAR modelling in the analysis of the cardiovascular system, we met the
problem denoted earlier by Kalli et al (1988a): with real cardiovascular data the
noise sources in the identified MAR model tended to become correlated, which
created some unreliability in the results. The exact amount of this error has not
been studied. To benefit from the potential of multivariate linear modelling in
cardiovascular research, the error had to be analysed and methods to overcome
the problem had to be developed.
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In addition, we noted that the mean NSC analysis did not provide a convenient
parametrisation of the inter-signal relationships in the case where the spectrum
of the system is not broad-band: if the spectral energy is not distributed over the
whole frequency band of interest, the mean NSC tended to be sensitive to
numerical inaccuracies (non-published results). This is due to the fact that the
model identification tends to fit better those frequencies with more spectral

power than those with less power. In the analysis of mean NSC, all the

frequencies gain equal weight. This increases the sensitivity of the mean NSC
analysis to modelling inaccuracies. As the cardiovascular signals like HR and
BP tend to be narrow-band signals if no special methods, like broad-band
respiration (Berger et al 1989b), are applied, this predisposition of the mean
NSC becomes inconvenient. Hence, more robust parametrisation of multivariate
modelling results had to be defined.

38



3. Aims of the thesis

The scope of this thesis was the frequency-domain analysis of short-term
variability of HR, BP and respiration signals using time series modelling. The
objectives of the study were to:

1. define simple parameters to quantify the spectral shift in HR and BP
variability signals,

2. apply linear multivariate time series modelling for frequency domain
analysis of interactions between cardiovascular signals,

3. develop portable modelling approaches which utilise generally available
algorithms and software,

4. define simple, robust and clinically interpretable parametrisation of the
multivariate modelling results,

5. address practical considerations of applying linear multivariate modelling for
the analysis of cardiovascular interactions.
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4. Summary and discussion on
publications

This thesis consists of five publications related to the analysis of cardiovascular
variability signals in the frequency domain, especially concerning HR and BP.
Publication | addresses quantification of the spectral shift on a limited spectral
band and introduces a new parameter to quantify this spectral shift. In this
summary, the estimation of the band-wise spectral shift is discussed in some
more detail. Publications Il - V deal with multivariate time series modelling of
cardiovascular variability signals. Publications Il aHd present a general
framework for linear multivariate modelling of physiological signals,
cardiovascular signals being the application field of interest. Publication IV
presents a method for overcoming a problem of noise source dependence in
MAR modelling of the cardiovascular system. Publication V introduces a new
model for analysing the closed-loop interactions between HR and BP and to
guantify respiratory effects on cardiovascular dynamics.

4.1 Quantification of spectral shift

In this thesis, spectral analysis was applied to HR and BP signals to quantify
differences in cardiovascular regulatory mechanisms between NT, BHT and HT
subjects under standard laboratory conditions with the subjects in supine, sitting
and standing positions and during sleep. This objective has guided the study.
Concerning univariate spectral analysis, the aim of this thesis was to develop a
robust method for quantifying the spectral shift observed on the LF band in

BHT subjects (Takalo et al 1994a).

4.1.1 Estimation of band-wise spectral shift in cardiovascular
variability signals

Estimation of spectral shift of myoelectric signals by monitoring the

characteristic frequency of the signal spectrum is a widely used method for
measuring muscular fatigue (DeLuca 1985). Several estimators of the
characteristic frequency of the entire spectrum of the myoelectric signal were
presented in Chapter 2.4. In the case of a myolectric signal, the whole frequency

40



range of the spectrum reflects the same physiological process, namely the
muscle action potentials. Hence, it is relevant from the physiological point of

view to estimate spectral shift over the entire spectrum. In the case of

cardiovascular variability signals, different physiological processes are involved

in the generation of the oscillations. The oscillations may be partly separated in
the frequency domain (Task Force ESC & NASPE 1996) and consequently,
alterations in different physiological processes may be detected in alterations in
different spectral bands in the frequency domain. Hence, detection of spectral
shift caused by different physiological processes needs focusing on different
spectral bands.

To focus on the quantification of the spectral shift within a specific spectral
band, three estimators of the characteristic frequency were studied: the band-
wise meanffeay), the band-wise mediaffiytp), and the band-wise centrd)(
frequencies The central frequency has been proposed by Baselli et al (Baselli
et al 1987) and thereafter used in some studies (Pagani et al 1986, 1988,
Guzzetti et al 1988). The computation of fhés based on the decomposition of

the AR spectrum into root components with poverand frequencyf; and
computing a weighted mean of the frequencies of the roots:

> fiR
= IZP- (5)

fC

wherei is an index of the roots which fall inside the frequency band of interest
(Mainardi et al 1995) Usually only components which exceed 5% of the total
power of the spectrum are accounted for (Pagani et al 1986). The band-wise
fuean is defined as the centre of gravity of the spectral band:

! The same abbreviations as used in Chapter 2.4. are used here for simplicity of notation.
From here on, these abbreviations refer to band-wise estimates.

2 The details of computing tHe were verified by personal communication with Dr Luca
Mainardi (Polytechnic University of Milan, Milan, Italy).

41



f2

fS( f) df
_ f':rf1
fMEAN T (6)
J’S( f) df
=1,

The band-wisdygp is introduced as the frequency which divides the spectral
band into two regions with equal power:

TDS(f)df: JZ-$'Ddf (7)

f=tumeo

These estimators aim to locate the characteristic frequency of the oscillations
within a specified frequency band. The spectrum within a frequency band may
be considered as a distribution function with limited tails. The shape of the
distribution is strongly dependent on the signal, spectral estimation and selected
frequency band (Figures 4 - 5). The optimal location parameter is dependent on
the shape of the distribution function and selected criteria for optimality. For
example, the sample median is the maximum likelihood estimate of location
with the Laplacian distribution, while the sample mean is that of the normal
distribution (DeGroot 1975, Suoranta 1995). In practice, the selection of an
optimal estimator is often ambiguous, and instead we need to select an
appropriate estimator. This problem has been discussed by Suoranta (1995).

In Figures 4 - 5, AR spectral estimates of the HR signal are presented together
with fyean fuep andfe estimations on the LF band [0.04 - 0.15 Hz (Task Force
ESC & NASPE 1996)]. The AR model order is varied from that proposed by
AIC (Akaike 1974) to 30 and 50. The higher model orders should in principle
provide more realistic spectral estimates with real data (Chapter 2.4.1). It may
be noted that the shape of the spectral distribution on the LF band is highly
dependent on the model order, and with higher model orders the band contains
typically multiple peaks. Consequently, especially fihées seen to be strongly
dependent on the selected model order, whilefthg and thefyep show less
variations with the model order.
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Figure 4. Typical HR spectral estimates with different AR model orders (data
length 300). In leftmost panels, vertical lines indicate spectral band between
0.04 - 0.15 Hz. In rightmost panels, vertical lines indidgte (dashed line),

fmean (dotted), andc (dashed-dotted). Model order is: a) and d) 7, according to
AIC (Akaike 1974); b) and e) 30; c) and f) 50. Note dependence of spectral
shape, and consequently in particularfgfon model order.
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Figure 5. Another set of typical HR spectral estimates with different AR model
orders (data length 210). In leftmost panels, vertical lines indicate spectral
band between 0.04 - 0.15 Hz. In rightmost panels, vertical lines indjgate
(dashed line)fyean (dotted), andc (dashed-dotted). The model order is: a) and
d) 10, according to AIC (Akaike 1974); b) and e) 30; c¢) and f) 50.
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To study the performance of these three location estimators with real data, the
data of publication | was reanalysed and band-Wwjsg, fuep andfc computed.
Supine, sitting and standing positions were considered. Goodness of the
parameters was assessed in four terms:

1. Parameter standard deviation is the standard deviation of the parameter
computed over 100 overlapping (3.3 %) periods301) of stationary data
(N=1301). Stationary data was generated by first fitting an AR model (model
order 30) to real time series data and then generating data by filtering
synthetic stationary white noise with the AR model coefficients. This
procedure made it possible to obtain stationary data which match the spectral
characteristics of the real cardiovascular data. In parameter computation, AR
spectral estimation (model order 30) was used.

2. Sensitivity of the parameter to variations in the model order is defined as a
standard deviation of the parameter computed by estimating the spectrum of
each time series using several AR model orders. The model orders 10, 15,
20, 25, 30 and 40 were used.

3. Sensitivity of the parameter to variations in the frequency band is defined as
a standard deviation of the parameter computed for each time series by
estimating the parameter using several frequency band limits. Variations in
the LF band limits were introduced as described in publication | (lower limit
between 0.02 and 0.06 Hz, upper limit between 0.11 and 0.15 Hz, resulting
in 9 different estimations).

4. Ability of the parameter to discriminate between the NT, BHT and HT
groups. F and P values were obtained by ANOVA for repeated
measurements. Discrimination power was analysed with different model
orders and frequency bands, but model order 30 and frequency band 0.04 -
0.15 Hz were used in the final analysis.

The use of real data from various postures and subject groups guaranteed that a
large variety of realistic spectral shapes were represented in the analysis.
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Table 2 Mean parameter standard deviation of the different characteristic
frequency estimators with varying model order. Unit i§ H2.

SBP

DBP

HR

fMEAN
fMED

fMEAN
fMED

fMEAN
fMED

Supine Sitting Standing

NT BHT HT NT BHT HT NT BHT HT Mean

3.2 35 3.1 3.4 34 3.0 2.8 2.5 3.0 3.1
5.0 5.9 4.8 51 55 4.5 4.4 3.8 4.0 4.8
52 55 4.7 5.2 55 4.6 3.9 3.6 4.3 4.7
3.6 3.5 3.4 3.1 2.9 3.2 2.8 2.6 2.7 31
5.6 5.9 5.7 53 4.6 4.8 4.2 3.8 3.7 4.8
55 55 5.3 5.2 4.3 4.4 3.9 3.7 4.0 4.7
3.3 3.2 3.6 3.3 3.2 3.9 3.1 2.8 2.8 3.3
5.1 53 6.1 5.7 6.0 5.8 4.5 4.2 4.1 5.2
7.0 7.0 7.4 6.6 6.4 6.6 5.6 4.8 5.0 6.3

Table 3. Mean standard deviation of the different characteristic frequency

estimators with varying model order. Unit is*1Az.

SBP

DBP

HR

fMEAN
fMED

fMEAN
fMED

fMEAN

fMED
fc

Supine Sitting Standing

NT BHT HT NT BHT HT NT BHT HT Mean

1.9 2.1 1.8 1.8 1.6 1.7 1.1 1.1 1.4 1.6
2.6 3.2 2.8 2.4 2.6 2.6 1.4 1.3 1.4 2.6
7.4 7.2 8.2 7.1 7.3 8.1 4.2 4.0 4.0 6.4
1.8 1.9 1.7 1.6 1.4 1.5 1.1 1.1 1.0 1.5
2.5 3.2 2.6 2.4 24 24 1.5 1.4 1.3 2.2
7.3 8.9 6.7 7.0 6.9 6.5 4.0 4.4 4.1 6.2
3.1 29 2.7 2.3 2.0 2.1 1.8 1.3 1.5 2.2
4.1 3.8 3.6 3.5 3.1 3.2 25 1.8 2.2 3.1
8.4 8.5 6.7 8.9 8.7 9.0 6.5 5.6 7.0 7.7

Table 4. Mean standard deviation of the different characteristic frequency
estimators with varying frequency band. Unit i$’ Hy.

Supine Sitting Standing
NT BHT HT NT BHT HT NT BHT HT Mean

SBP fuean 6.4 7.5 7.0 5.8 6.3 6.3 3.6 3.7 3.8 5.6
fvep 5.6 8.1 6.7 5.0 6.0 5.8 2.3 2.4 2.1 4.9

fc 7.9 9.5 8.5 7.5 7.8 8.3 4.6 4.8 4.8 7.0

DBP fumean 6.5 7.5 6.9 59 6.0 6.2 3.7 4.0 3.9 5.6
fyven 5.7 8.2 6.8 5.3 5.0 5.6 2.6 2.6 2.2 4.9

fc 8.0 9.1 8.5 7.7 7.6 7.8 4.7 4.8 4.7 7.1

HR fumean 9.9 10.0 9.5 10.1 9.8 8.6 7.6 7.0 7.5 8.9
fvep 11.1 11.0 10.7 12.0 11.0 9.3 7.4 6.5 6.7 9.5
fc 11.5 12.6 12.0 12.6 11.5 11.3 9.1 8.4 9.4 10.9
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Table 5. Group mean values of the different characteristic frequency estimators.
Unit is 10° Hz.

Supine Sitting Standing
NT BHT HT NT BHT HT NT BHT HT

SBP fvean 88 84 86 88 83 84 85 82 83
fvep 84 80 84 85 79 80 82 78 79

fc 85 82 82 85 80 81 82 79 81

DBP fumean 87 83 86 86 82 84 85 82 82
fmep 84 80 84 83 78 79 82 78 79

fc 85 79 83 84 80 80 83 79 80

HR fvean 96 93 95 92 87 89 88 84 85
fvep 94 89 94 90 84 86 85 81 81

fc 95 94 93 91 87 88 87 81 83

Table 6. Discrimination power of the different characteristic frequency
estimators obtained by ANOVA of repeated measurements.

fMEAN fMED fC
F P F P F P
DBP 7.88 0.0005 6.52 0.0017 7.15 0.0009
SBP 7.37 0.0008 5.85 0.0033 6.15 0.0024
HR 5.52 0.0045 5.74 0.0036 5.00 0.0074

The results are reported as mean values for each posture and subject group in
Tables 2 - 6. Théyean Showed the lowest parameter standard deviation (Table
2). Thefyep and thefc showed equal standard deviation with BP time series, but
with HR time series the formdrad a lower standard deviation than the latter.
With real data and low model order (<25), theould not always be computed

as the spectral estimate did not show poles on the LF band. When the model
order was selected by the AIC, 23 out of 276 HR spectral estimations did not
have a pole on the LF band. The cases which did not show spectral peaks on the
LF band with all the model orders tested are excluded from the results in Table
3. Thefc showed clearly the highest sensitivity for the model order or the
frequency band variations (Tables 3 - 4). Tfian showed a lower sensitivity

to model order variations than thgp (Table 3), while the sensitivity of these
parameters to frequency band variations was equal (Table 4).

The parameter standard deviation and especially the sensitivity to model order
or frequency band variations were highest in the HR spectral estimates. This
indicates that the HR spectral shapes are somewhat different to those of BP on
the LF band. There were no clear between-group differences in the behaviour of
the estimates. In the standing position, the standard deviation and sensitivity of
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the parameters were lower than in the sitting or supine positions. This may be a
consequence of the enhanced LF component in standing position reported
earlier (Turjanmaa et al 1990). This phenomenon suggests that in the standing
position an elevated sympathetic modulation may give rise to more regular LF
oscillations which, in turn, may be seen as clearer spectral shapes. Estimation of
the characteristic frequencies with clear spectral shapes may not be as sensitive
to variations in spectral estimation and frequency band selection as is the case
with more complex shapes.

The different parameters provided comparable group mean values (Table 5),
though there was a tendency fgep <fc <fuean. The selection of the model
order and frequency band limits did not show a strong influence on the
discrimination power of the estimates (data not shown). There were no
significant differences in the discrimination power of the different estimates
(Table 6).

It may be summarised that the band-wWiseas found to be the poorest estimate

of the characteristic frequency due to its higher sensitivity to model order and
frequency band variations. Another disadvantage ofdheas the fact that it

can not be estimated if the AR spectral estimate does not show poles on a
selected frequency band. The band-wigen andfyep were found to provide
comparable results, the former showing slightly better performance in general.

4.1.2 Summary and Discussion of publication |

The band-wisdyep was successfully applied to the HR and BP variability data
on the LF band. The frequency limits were optimised for the maximal group
differences between NT, BHT and HT groups. The finding of our previous
study (Takalo et al 1994a) was confirmed: the frequency shift in the LF
oscillations occurred in the BHT group when compared with the NT and HT
subjects. The study showed the importance of focusing on the spectral shift in
the spectral analysis of cardiovascular signals.

Earlier studies have not reported any spectral shift in hypertension whin the
was used to quantify the frequency of oscillations (Pagani et al 1986, 1988,
Guzzetti et al 1988). This may be partly due to methodological factors. In this
thesis it was found that tHg was the poorest estimate of the spectral shift. This
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is further emphasized if a low model order as usually suggested by AIC is used:
with low model orders thé: may be strongly sensitive to the model order
selection (Figures 4 - 5) and even not computable if no spectral pole is found on
the frequency band of interest (Table 2). This may mask the inter-group
differences. To quantify the shift, more robust estimates, such dggtaeor

fuep, should be employed.

4.1.3 Implications

Former studies (Takalo et al 1994a, 1994b) and publication | emphasise the
importance of appropriate methodology in the analysis of HR and BP
variability. In particular:

* The selection of a high enough model order in the AR spectral analysis is
needed to resolve the spectral details of the real data. Usually, a higher
model order than that proposed e.g. by the AIC is needed. The upper limit
has been stated to be between 33 - 50 % of the data length (Kay 1988).

* One needs to focus on the frequency content rather than the power of the
signal spectrum to discriminate the BHT group from NT and HT groups.

* Quantification of the band-wise characteristic frequency may be carried out
by computing parameters likgean, fuep or fc. Of these, thdc provides the
poorest performance. THgeany andfyep provide comparable results, the
former showing slightly better performance.

» Thefyean andfyep are simple to compute, and they can always be computed
in any given spectral estimate and frequency band. They can be computed on
the FFT based spectral estimates, too.

» The spectral estimation method and in particular selection of the frequency
limits influence the estimation of the band-wise characteristic frequency.
Care should be taken to apply appropriate spectral estimation methods and to
select the desired spectral band.
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4.2 Multivariate modelling

In this thesis, multivariate modelling methods were developed for analysing
interactions between HR, BP and respiration. First, a general framework for
linear multivariate time series modelling of physiological signals is presented.
Then, the framework is used by adapting two special sub-class models for the
modelling of cardiovascular signals, namely an MAR model and an MAR model
with an exogenous AR input, or an MARXAR model. The models are presented
from the theoretical point of view, their properties are discussed and examples
using real data are presented. The application of the models to large amounts of
physiological data is beyond the scope of this thesis.

4.2.1 Rationale

The cardiovascular system is inherently a multivariate closed-loop system.
Hence, the need for multivariate closed-loop analysis methods to study the
system was recognised long ago (Akselrod et al 1985). The main advantage of
multivariate closed-loop modelling over univariate or open-loop modelling is its
theoretical ability to describe intersignal relationships in a realistic manner.
During the last decade, efforts have been made to develop closed-loop
modelling methods to analyse the cardiovascular system (Kalli et al 1986,
Baselli et al 1988b, Mullen et al 1997, Barbieri et al 1996a). Common to all
these approaches has been the use of linear time series modelling between the
acquired signals to describe closed-loop relationships. There are several reasons
for the use of linear time series models for a non-linear system:

e during static short-term conditions, the cardiovascular system may be
reasonably well approximated by a linear system. When the conditions are

changed, a new model is identified (piece-wise linear approach)

» linear system theory has a strong theoretical foundation compared with the
non-linear system theory

 linear analysis produces results that may be physiologically interpreted.

Yet, no closed-loop modelling approach has been implemented outside
methodological studies. This may be speculated to be due to several reasons.
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Most importantly, any method to reach wide-spread use in biomedical research
must be based on sound theory and must be methodologically adaptable by other
researchers (Saranummi et al 1997). The modelling approaches presented so far
may be criticised as not fully meeting these conditions. MAR modelling,
proposed by Kalli et al (1986) and later applied by Gronlund et al (1995) and
Barbieri et al (1996a), provides an attractive method since it is easily adapted to
different sets of signals and may be identified by standard procedures (Kalli et
al 1988a). However, the analysis of interactions between signals is based on the
assumption of independent noise sources in the model, a condition which is
seldom met within cardiovascular data (Kalli et al 1988a). This causes some
bias in the results and hence limits the use of the method. The advanced custom
model proposed by Baselli et al (1988b) does not suffer from the problem of
noise source dependence as the model involves a mechanism for handling the
co-existing variability in the SBP and RRI, namely the O-delay transfer path
from SBP to RRI. Despite this inclusion, the model has failed to gain a
widespread use, perhaps due to its custom structure and identification
procedure. The application of the model to a different set-up of signals is
laborious. Finally, the recent approach by Mullen et al (1997) introduced a
sophisticated model which separately studies the mechanical and neural
interactions between HR, BP and ILV, and also includes a non-linear element
for mimicking sinus node function. The approach is based on the assumption of
mutually independent noise sources, and may hence suffer from the same
problems as the MAR modelling approach by Kalli et al (1988b).

The objective of this thesis was to develop multivariate analysis methods that
would overcome the problems faced by previous approaches. One of the driving
principles of the study was to gain approaches which do not suffer from the
methodological deficiencies mentioned above, which are based on general
system identification theory and which may be adapted by using the generally
available software tools, like Matlab®. The final objective was to define
methods that can be relatively easily applied in different set-ups and with large
numbers of subjects to study.
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4.2.2 Basic concepts
Only discrete time domain theory is presented in this thesis. The notation used
in this thesis is adapted from Ljung (1987). The most central concepts are
repeated here for clarity.
A vector signalu(t) = [uy(t) W(t) ... u(t)]" is anL-variate signal which obtains

new values at each time instantor simplicity of notation, we usually write
instead olu(t). Any transfer functions are presented by using a delay operator

q~'u(t) = u(t-1) (8)

which allows the notation for multivariate filtering operation:

y(t)= ; oK) Wt - k) = ; Gt

=[5 o ) = B Y
where we introduce a notation for matrix polynomial
c (10)

G(q) = ; a(k) g™

In the eq. 9 - 10, d(k), k=1...0} is the L x L matrix polynomial which
introduces the coefficients of the multivariate filter. According to Ljung’s
notation,G(q) (or justG) is called the transfer function of a linear system. The
term transfer function is usually reserved for the z-transforng(@j,{k=1...c},

but in this notation the difference does not tend to be observed (Ljung 1987).

The transfer function in the eq. 10 is transformed into frequency function by the
substitutiong=€'“, where F<w=<T Thewis called normalised frequency and can
be transformed into normal frequency domaindby= 2rdf/f,, wheref; is the
sampling frequency.
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4.2.3 Framework

In publication 1l, a general multivariate linear modelling concept is adapted
from Lung’s presentation (Ljung 1987):

A@)y(t) = F(a)B(qu() + D (JC(ae( ) (11)

Figure 6. Schematic presentation of general linear time series model (From
publication II).

where polynomial#\(q), C(g) andD(q) have the identity matrik in their zero-

delay term. Vector signalg, u and e represent output, input and unknown
disturbance signals of the system, respectively (Figure 6). The model combines
the most commonly used linear time series models and hence emphasises their
mutual similarity. The most important property of the model in the eq. 11 is its
convergence with the real transfer functions of almost any causal, linear, time-
invariant, stationary system in the sense that

Aun (E9)Fy 5 (€7)By (&) - G( &)

-1 i -1 {w LW j (12)
AM,N (em)DM,N (é )CMN (é ) - H( én)
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uniformly in w asN>>M - o (Ljung 1987).G and H are the real system
transfer functions from the input to the output, and from the disturbance to the
output, respectively, ant! and N refer to model order and data length,
respectively. Hence, provided that the data length is sufficient, and the model
has high enough an order to approximate the real system properties, the model is
capable of describing the system properties arbitrarily well in frequency domain.
The same holds true of those reduced models which include some sub-group of
the model coefficientsA, B, F] and [A, C, D]. These models include MAR
model @ coefficient only), the MARXAR modelA, B, andF) and dynamic
adjustment modelsA(andD). This lays a solid theoretical foundation for the
multivariate linear time series modelling.

The analysis of interactions between different variables is based on spectral
decomposition. Suoranta (1990) provides a complete presentation of the spectral
decomposition in the case of the MAR model. In this thesis, the presentation is
extended for the general linear model structure presented in the eq. 11.

The analysis of interactions is based on the mutual independence of the model
noise sourceg and the independence of the past inpt-K)] and the noise

sources. Assuming the inputi(t-k) to be uncorrelated with the disturbaree
the effect ofu on the spectrum of the outpytS,. (), is

S, (@) = To(e) §(w) To(e”) (13)
where * denotes matrix conjugate transp&es the spectrum af and
Ts(€7) = A7(€°)F (&")B( &) (14)

is the total transfer function matrix from the input to the oututgfers to the
eq. 12). Provided that are mutually uncorrelate®, is diagonal and the effects
of eachu; may be studied separately by the partial spectra

Sy, () = T5(€7) S, () T,(€7) (15)
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where Sis the input spectral matrix where other elements are zero, except
S.i(n,m =S§,(n,m whenn=m=i (mandn being the column and row indexes,
respectively). Similarly, the effect of the disturbaram the output spectrum is

Sy:e((*)) = TH (eiw)ZTH(éw)* (16)
where
T, (€°) = A7(e”)D7'(&")C( &) 17)

> is the variance-covariance matrix of the white noise sowgcdefining the
spectra of the white noises. Againgiére mutually uncorrelated (s diagonal),
their effect may be studied individually by noise conditioned spectra or partial
spectra:

S, (W) = T, ()2, T, () (18)

where the elements & are zero, excepf; = %(n,m whenn =m=1i. To
analyse the relative contribution of each disturbadte the variability in each
signalx, normalisation of the partial spectrum may be utilised. This yields the
concept of NSC (Kalli et al 1988a, Oguma 1981)

Syj:ei ((’0)

i (w) = S, (w)

(19)

whereS;.; is the partial spectrum gf originating from the noise soureg(eq.
18) and Sjis the spectrum of;. The contribution of the inputy may be
computed by replacing,;.¢ by §;. ;i

The mean NSC, i.e. the meanlgfover some frequency range, has been used in
some studies (Kalli et al 1988b, Turjanmaa et al 1990, Gronlund et al 1991,
1995). The problem with the mean NSC is its sensitivity to numerical
inaccuracies. The least squares model identification yields to a better fit on the
frequencies with more spectral power. However, when computing the mean
NSC, all the frequencies gain equal weight. This is inconvenient if the spectrum
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of the system contains frequencies with low power and hence low weight in
model identification. Instead, we may use the NSC ratio (NSCR) (Suoranta &
Rantala 1991), which states how much of the signal powgiirinthe frequency
range froma, to «, originates from the noise source of the other varigble

W,

I Syj:ei ((x))d(x)
M (w,,0,) = [~ (20)
I S,; (w)dw

[AETAN

In the eq. 20, the NSC is weighted by the actual variability present in the signal
on each frequency, and hence the NSCR is more robust than the mean NSC.

The analysis of spectral decomposition has several advantages:

» Frequencies with high power are more dominant in spectral decomposition
analysis compared with frequencies of low power. This supports the least
squares model identification, which yields a better fit with the high power
ranges of variability.

* The method provides decomposition into root components of variability
which is actually present in a signal.

 When applied in a band-wise manner (NSCR), the analysis is relatively
insensitive to model order variations, provided that the model order is high
enough (publication V).

It should be noted that any single transfer function (or impulse response)
between the variables may be computed directly from the model coefficient
matrices and that the models presented allow the analysis of transfer functions
as well (Ljung 1987). However, the quantification of single transfer functions is
more sensitive to modelling inaccuracies than spectral decomposition analysis.

The assessment of the goodness of the model involves both numerical validation
and final validation. Numerical validation means inspection of the justification
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of the assumptions made priori (whiteness and mutual independenceeof
etc.). The multiple correlation coefficient (Ljung 1987)

N “(1)
S ki

N (21)
RAC

expresses the proportion of the total variabilityyirthat is explained by the
model. This proportion is often called the prediction ratio. It may be used for
assessing the goodness of the model for the data especially when comparing the
performance on the same data of competitive models. It should be noted that the
model may fit the data perfectly even though the prediction ratio is <1. The final
validation of the goodness of the model aims to discover whether the model is
good enough for its purpose. As discussed in publication I, this task is highly
context-dependent and usually involves subjective validation (Ljung 1987).

4.2.4 MAR modelling

MAR modelling provides a simple and well-known method for studying

intersignal properties of a closed-loop system. Originally, the method was
applied for analysis of the dynamics of a nuclear reactor (Oguma 1981, 1982,
Upadhyaya et al 1980). Kalli et al (1986) proposed the method for the analysis
of the cardiovascular system. They used the first canonical version of the model:

y(t) = —Za(k) Wt K) +et) =

Ma

gd@ﬂhm=d0@
A y(1) = &(1)

Ma

Adg) =1 + ;a(k) q“

(22)

The model describes the present valug ab a linear combination of thpast
values of the signal plus the prediction error. This form of the model may be
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unambiguously identified when given the model ofdigrand the signay, i.e.

no other definitions are needed (Ljung 1987). The model may be identified by
solving a set of linear equations, e.g. by a multivariate extension of the well-
known Levinson algorithm (Kailath 1985). These facts, together with the
principle presented in the eq. 12 make MAR modelling especially attractive.
However, the noise sources of the model in the eq. 22 usually become
dependent when applying the model to cardiovascular data (Kalli et al 1988a).
This makes the analysis of intersignal interactions biased. One method for
making the noise sources independent is based on another canonical
implementation of the MAR model, namely (Suoranta 1990)

a(0) y(t) = —Z alk) Y(t- K) +dt) =

2a(k> y(t—K) = gt) =
: (23)
AQ)Y(t) = e(t)
A =Y (kg

The difference between eqgs. 22 and 23 is that in the eq. 22 the zero-delay term
of A is no longer, but has ones (1s) on the main diagonal and possibly non-
zero values elsewhere. To keep the model stable, no closed-loop transfer is
allowed on the zero-delay (Baselli et al 1988b). This condition is met when the
zero-delay term of the model(0), is organisable into the forra(0,i,j)=1 with

all'i =j, anda(0,,j)=0 with allj>i (lower triangular form), oa(0,i,j)=0 with all

j<i (upper triangular form). This form is no longer unambiguous since the
directions of the zero-delay transfer paths have to be dedimpeidri. However,

this makes it possible to include the noise source dependence in the model
coefficients, and hence to make the noise sources independent.

The method proposed for identifying the model is based on a four-step
procedure:
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1. Organise the signals in data vecyoby using physiological knowledge so
that the immediate transfer mechanisms (zero-delay term) can be allowed
from the signals with smaller index to the signals with higher index.

2. ldentify the conventional MAR model (eq. 22) by a standard model
identification procedure (e.g. Levinson algorithm).

3. Apply Cholesky decomposition (Kay 1988, Suoranta 1990) to decompose the
noise source covariance matfixinto ¥ = SDS, whereD is a diagonal
matrix with D(1,1) = %(1,1), D(i,i) < Z(i,i) for all i>1, andS is a lower
triangular matrix with ones (1s) on the main diagonal.

4. UseD as a new noise source covariance matrix and transfer the model
coefficientsA(q) identified in step 1 into new ones by multiplying from the
left by S*. This transformation yields another canonical presentation of the
system spectra in which the noise sources of the model are made definitely
independent (diagonal noise source covariance matrix).

This procedure has several advantages: 1) it relies on generally available and
well-known procedures (Levinson algorithm, Cholesky decomposition); 2) it
makes the noise sources in the model definitely independent by including the
independence in the model coefficients; 3) it does not affect model stability
(Hannan & Deistler 1988). The disadvantage is that it needs carnedbori
knowledge in order to yield correct results.

4.2.5 Summary of publications Il - IV

In publication IV, the bias caused by noise source dependence in the MAR
model is analysed and a method for making the noise sources definitely
independent is presented. It was found that the noise source dependence may
lead to serious errors (>100%) in NSCR analysis of HR, SBP and ILV signal
interactions. The MAR modelling approach presented above was demonstrated
to be suited for analysing intersignal relationships between HR, SBP and ILV. It
was shown that the method works, i.e. it effectively makes the model noise
sources independent. The results drawn from a single subject do not allow
profound conclusions from the physiological point of view, but it can be seen
that the analysis provides a reasonable assessment of cardiovascular control.
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In publication Ill, the MAR modiéing was demonstrated with a different set of
signals, namely with ILV, HR, DBP and SBP. The study confirmed the findings
of publication IV: the method presented is capable of making the noise sources
independent, and hence it enables the use of MAR modelling even in the case
where highly dependent variables (DBP and SBP) are used simultaneously in
the model. Furthermore, time-variant MAR modelling and dynamic adjustment
modelling of cardiovascular data were demonstrated. The dynamic adjustment
modelling part was an application of the model proposed by Baselli et al
(1988b). The time-variant MAR modelling was based on the conventional form
of the model (eq. 22). The application demonstrates the ability of MAR
modelling to adapt to various needs.

4.2.6 MARXAR model and summary of publication V

Despite its advantages, the MAR modelling has some disadvantages, too. First
of all, it is not necessarily the structurally optimal model for studying
cardiovascular dynamics. The MAR model is a model in which all the signals
explain each other, i.e. transfer functions are allowed in all directions. However,
this is not necessarily physiologically feasible. Especially, there is no evidence
that a transfer mechanism from HR or BP to respiration exists. Theoretically,
with a causal system and without any disturbances in measurements, this would
not be a problem, but the non-existing transfer paths would reach zero-gain in
identification. However, with real data, this may cause some problems.
Respiratory activity is usually assessed by measuring the ILV signal which
reflects the mechanics of the lungs. The ILV signal is then used in modelling to
represent the total respiratory input to the cardiovascular system, the input
which actually includes both the function of the respiratory centre and the
mechanics of the lungs. Due to the central effects of the respiratory activity on
the cardiovascular system, the change in HR during inspiration has been
reported to precede the change in ILV (Saul et al 1989). This supports the
assumption that there is some delay in transmission of the central command
from the respiratory centre to the ILV signal (Perrott & Cohen 1996). Thus, the
ILV may be considered as a delayed representative of the total respiratory input
to the cardiovascular system. In causal modelling this may cause problems: the
delay may shift the non-zero part of the cross-correlation function between ILV
and HR (or ILV and BP) into negative which, in turn, means a shift of the
transfer power from the transfer functidtyriv (Or Hgpav) t0 Hivur (O
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Hiv:sp). This means that the physiologically non-existing transfer pathgqk

or Hysp) may become non-zero. In addition, any disturbances correlating to
HR or BP, and entering the ILV signal, may cause similar kinds of effects. For
example, the impedance method for measuring ILV may reflect some
cardiovascular variability due to variations in intrathoracic blood volume
(AAMI 1989). In publicationdll and IV, these factors may cause the observed
effect of HR and BP variability on the ILV signal. To overcome this problem, a
more advanced model structure than that of the MAR model is needed.

In publication V, a new model for the analysis of cardiovascular interactions,
namely the MARXAR model (Fig. 7), was introduced to overcome the problems
with MAR modelling. The model introduces a negative delay in the ILV signal
to control the ‘non-causal’ respiratory effect, i.e. the phase-lead of HR to ILV.
In addition, the ILV signal is handled as a pure input to the system, i.e. no
transfer paths from HR or BP to ILV are allowed. This structure mimics more
closely the real physiological functioning of the cardiovascular system. The
model is the first one to combine the non-causal respiratory input, proposed by
Perrott and Cohen (1996), and closed-loop modelling. The model introduces
also a phase-lead of SBP to ILV which has not been observed with real data.
This was allowed to keep model identification simple. In principle, it should not

€u
ILV
q2

™ ]

HR SBP

Figure 7. Schematic presentation of MARXAR model. (From publication V).
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produce any problems as there exist no known influences of SBP on ILV; the
coefficients corresponding to negative delays should become negligible with
real data if no phase-lead of SBP to ILV occurs.

The model structure is that of the MARX model where the inputs are modelled
as univariate AR processes, and the closed-loop process between HR and SBP is
modelled by a MAR process presented in the eq. 23. The model structure has a
strong physiological relevance, but it still relies on standard model structures.
This enabled development of a model identification procedure which relies on
generally available algorithms and software tools. This makes the model easily
adaptable to other set-ups with slightly different signals or by other researchers.

The model identification procedure, the effect of model order and the stability
of the NSCR estimates were studied. The analysis was based on simulation data,
but also experimental data was considered. A linear simulation system was
designed to match the general structure of the model (input-output relations) but
to differ by transfer function structures (zero-pole transfer functions in the
simulation system vs. all-zero transfer function blocks in the model). This
design was to test the ability of the model to describe the dynamic interactions
in case exact matching with system parameters is not possible. Model
performance was studied by comparing the estimated NSCR estimates to
theoretical values as a function of model order.

The results are presented in Figs. 8 - 11. It was found that the NSCR estimates
were accurately estimated by the model in all the simulation cases studied,
provided that the model order was sufficiently high (Figs. 8 - 9). The model
order required was significantly higher than the order of the simulation system.
This was due to different structures of the single transfer functions in the
simulation system and the model. Moreover, it was found that after reaching a
sufficient model order, a further increase in the order did not significantly affect
the NSCR estimates. The NSCR estimates tended to vary as a function of the
model order until a sufficient order was reached, and then stabilise. The
sufficient order exceeded the values given by the objective model order
selection criteria, such as the AIC (Akaike 1974). With simulation data, the AIC
gave typically values of 5 - 7 fdl, and smaller values fdvlz, while the NSCR
estimate convergence required valivgge12 andMg=>7.
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The behaviour of the NSCR estimates was the same for experimental data (Figs.
10 - 11). With small model orders the NSCR estimates tended to vary as a
function of the model order, but when the model order increasktl3®5 and
Mg=20 the estimates stabilised. A high model order was needed especially on
the LF band, while on the HF band the stabilisation was reached with smaller
model orders.

It should be noted that these estimations of sufficient model order exceed the
model orders used in most previous studies which use objective criteria in
selecting the model order (Kalli et al 1988b, Baselli et al 1988b, 1994, Barbieri
et al 1996a). This finding that a relatively large model order is needed to
accurately depict the dynamics of the cardiovascular system is not very
surprising. It is a well-known property of the objective model order selection
criteria that they tend to underestimate the model order when the real system
transfer functions differ from those of the model by structure (e.g. all-zero vs.
all-pole structure) (Ljung 1987, Kay 1988). As a high order of an all-zero
system is needed to approximate a low order all-pole system, a high-order
MARXAR (or MAR model) is required to portray the dynamics of a different
linear system (like the simulation system in publication V), or the real
cardiovascular system.

In publication V, the effect of different kinds of changes in the parameters of the
system on the NSCR estimates was also demonstrated. The results show that the
NSCR analysis is capable of describing slight changes in the system dynamics
in an interpretable and robust way.
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Figure 8. Effect of model order on NSCR estimates computed from simulation
data. Solid lines present NSCR estimates for each variable according to model
identification (mean + SD), while dashed lines show correct NSCR values.
Mg=7 and M==5.
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Figure 9.Effect of model order on NSCR estimates computed from simulation
data. Solid lines present NSCR estimates for each variable according to model
identification (mean + SD), while dashed lines show correct NSCR values.
Ma=12 and M=5.
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Figure 10. Effect of model order on NSCR estimates computed from
experimental data, subject in supine (a - d) and standing (e - h) positions. Lines
present NSCR estimates for each variable as a function of the model order.
Mp=20 and M=10.
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Figure 11. Effect of model order on NSCR estimates computed from
experimental data, subject in supine (a - d) and standing (e - h) positions. Lines
present NSCR estimates for each variable as a function of the model order.
Ma=25 and M=10.
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4.2.7 Interpretation of spectral decomposition analysis

Publication V showed the NSCR analysis to be robust over a large scale of
model orders. In addition, it is related to actual variability present in a signal.
Hence, it may not be as sensitive to modelling inaccuracies due to narrow-band
signals as is, e.g., transfer gain analysis. This makes it an attractive method for
guantifying multivariate modelling results. The analysis of NSCRs enables
decomposition of the signal spectrum into root components of different origin.
Assuming a complete model, a variajgleeaches a high gain in NSCR analysis

if and only if 1) the variable, is directly influenced by an external source of
variability (external means here some source which is not included in the model
as a variable) and 2) there exist transfer mechanisms from the varidble
other variabley;, i#j. Hence, an increase in the NSCR estimate fraimy; may

be because of:

1. increased external modulation of the variaple

2. increased gain of the transfer functions frgrto other variables (directly, or
via other variables, tg)

3. decreased external modulation of other variables
4. decreased gain of other transfer functions than thoseyirom

The NSCR analysis quantifies only the original origin of the variability and does
not allow direct assessment of the actual transfer pathways. For example in the
models in publications Ill - V, the effect of respiration on HR and SBP
variability is entirely attached to the NSCRs from ILV, despite the fact that
some of the effects may be transferred to SBP via HR (Saul et al 1991, Taylor et
al 1996). The actual transfer pathways may be analysed by accompanying the
NSCR analysis with, e.g., the analysis of transfer gain functions and, most
importantly, witha priori physiological knowledge.

The NSCRs providerelative decomposition of the variability into root
components. Hence, the analysis should be completed with spectral analysis to
assess what the amount of actual variability in each signal and in each frequency
range is. For example, in publication Ill, the NSCR analysis shows that
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respiration is the most important origin of the DBP variability in the HF range,
as it is with the HR and SBP variabilities (publicatidin Figure 2). NSCR
analysis interpreted without spectral analysis might lead to the misinterpretation
that all the involved signals - HR,DBP,SBP - exhibit similar variability in that
range. However, the spectral analysis indicates (publication I, Figure 3) that
the variability of DBP in the HF range is much less than that of HR or SBP.
This example shows that appropriate interpretation of the multivariate
modelling results requires combining information from multiple sources.

The role of pure inputsl in the model is usually more straightforward to
interpret than the role of noise soureeshe noise sources represent external
stimulations of the variable, e.g. autonomous control acting primarily on that
variable. For example, of the variables included in the models presented in this
thesis (publications Il - V), aahomous modulation of the vasculature controls
primarily the SBP, while neural modulation of the sinus node controls primarily
the HR. Hence, an increase in the sinus node modulation should be seen as an
increase in the NSCRs from HR to other variables, and an increase in vascular
modulation as an increase in the NSCRs from SBP.

4.2.8 Limitations

Simple black-box linear modelling of a complex physiological system
necessarily involves many deficiencies. Some of them have been mentioned
above, but here the most important ones are summarised and briefly discussed.

Nonlinearities

The cardiovascular control system and the transfer mechanisms between the
different variables are nonlinear. For example, baroreceptor function has been
found to have typical sigmoid-shaped response curve to arterial pressure
(Karemaker 1987), the mechanical interactions involved in heart contraction
exhibit nonlinear relations between BP and RRI (run-off effect, Frank-Starling
mechanism) (Guyton 1986), respiratory sinus arrhythmia has been found to have
a non-linear relation to tidal volume and respiratory frequency (Selman et al
1982), etc. In addition, the relationship between HR and RRI is nonlinear
(Figure 1). Because of these nonlinearities, a linear model is by default just a
linear approximation of the real system dynamics. However, it has been argued
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that a linear approximation is justified over small ranges of operation (Kithey &
Gerveshi 1982, Cerutti et al 1994). This assumption is supported by studies
which apply time series modelling in stationary short-term conditions in human
subjects and report the prediction ratio of the model: Baselli et al (1994) report
the mean prediction ratio 75 - 84% with their linear model, while Chon et al
(1996) report only 13% difference in the prediction ratio between a linear and a
nonlinear model. The results of the present thesis agree with these studies:
prediction ratios 81 - 99% were found with linear modelling. Hence, most of the
dynamics of the signals may be regressed by a linear model in stationary short-
term conditions. This supports the justification of linear approximation in short-
term steady-state conditions. However, the difference in nature between the
nonlinear physiological system and the linear model should be recognised when
applying the modelling.

Incompleteness of the model

In practice, it is not possible to measure all the different variables involved in
cardiovascular control. Hence, any time series model remains an incomplete
representation of the true system. This hampers the interpretation of the results.
If the missing variable affects only one included variable, its influence is
completely represented by the noise source attached to that variable. However,
in practice the missing variables may contribute to existing variables via various
pathways with different delays. These influences sum up to the modelled
transfer paths and noise sources in a complex way. A simultaneous external
stimulation of many variables is seen as noise source correlation, while an
influence entering different variables with different delays is seen as an artificial
transfer mechanisms between these variables. Hence, the NSCR analysis may be
affected by variables not included in the model in a complex way. This
emphasises the need of in-depth understanding of both the physiology and the
modelling methods while interpreting the results.

Use ofa priori knowledge

A priori knowledge of physiology is involved both in constructing the model
and defining the zero-delay transfer directions, and in interpreting the results.
Consequently, there is a chance of biased results & ph®ri knowledge is not
correct. Hence, the modelling approach presented has limitations in yielding
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fundamental results concerning the cardiovascular system. The most suited
application of the methodology is the quantification of closed-loop interactions
in various physiological or pathophysiological states where the basic
mechanisms of interactions are quite well known.

Stationarity and model order selection

The time-invariant modelling presented assumes the data to be stationary. As
true stationarity is never achieved in finite length recordings, the concept of
local stationarity (Picinbono 1993) has to be applied: the system is studied
under conditions during which the statistical properties of the signals do not
change. If this yields records significantly longer than the correlation time of the
system, the recording may be assumed locally stationary (Picinbono 1993), and
the time-invariant modelling may be applied. In the cardiovascular system the
maximum duration of a stationary recording is typically up to 10 minutes even
during stable conditions. This sets certain limits on the accuracy of the
modelling: the information content of a finite length recording is limited. This,

in turn, sets limits for the convergence of the model with the real system (eq.
12). In publication V it was found that relatively large model orders are needed
to model the cardiovascular dynamics. On the other hand, the data length sets a
limit for the maximal model order. An upper limi¥/R/L, whereN is the data
length andL the number of variables, has been proposed for the model order
(Kay 1988).

In publication V, it was shown that the NSCR estimation is not sensitive to
model order overestimation. The same may not hold true with transfer function
analysis or analysis of impulse responses. Increasing model order increases
variance of the model parameters (Ljung 1987). Hence, some optimisation of
the model order may be needed if analysis is to be extended beyond spectral
decomposition analysis.

Data quality

A factor limiting the potential of the model to describe the true system is the
data quality. This means not only a high signal-to-noise ratio but also richness
of the data from the information content point of view. Least squares model
identification methods have most accuracy at those frequencies with most
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spectral power and the estimates outside these frequencies are not reliable. The
cardiovascular variability signals are usually band-limited, i.e., their spectral
power is concentrated around a few frequencies. If physiologically feasible,
special methods, such as broad-band respiration (Berger et al 1989b), may be
used to broaden the spectral content of the signals and to overcome this
problem. Moreover, the selection of the appropriate sampling frequency of the
variability signals is a trade-off between the time resolution and the modelling
efficiency. From the time series modelling point of view, the sampling
frequency should not be higher than the time constants of the system (Ljung
1987). On the other hand, increasing the sampling rate may allow more accurate
recognition of phase differences between the signals. A limiting factor in the
selection of the sampling frequency is that we can obtain new samples of the
heart function only at each new heart beat. The selection used in this thesis, 1
Hz, may be considered appropriate as it is close to the natural rhythm of the
heart at rest. While analysing real patient material, experimenting with different
sampling frequencies should be carried out to reach an appropriate trade-off.

4.2.9 Implications

Publications Il - V yield some practical suggestions for the multivariate
modelling of the cardiovascular system:

e Linear multivariate time series modelling seems to provide a reasonable
approximation of the cardiovascular system during stationary short-term
conditions.

» Independence of the noise sources in a closed-loop model is a pre-requisite
for the analysis of the system interactions. Dependence may cause
remarkable bias in the results.

» Inclusion of the immediate transfer paths in the model is essential to make
the model noise sources independent. A simple method presented may be
used to identify a MAR model with definitely independent noise sources.

» Ease of application and theoretical convergence with any linear causal time-

invariant stationary system dynamics makes the MAR model an attractive
modelling tool for the cardiovascular system. However, it may not be an
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optimal model when pure input variables (e.g. respiration) are included in the
model.

* The possible phase-lead of the HR to the ILV may cause problems in causal
modelling. Special care should be taken to control the role of respiration in
the modelling. A non-causal MARXAR structure was proposed for analysing
the effect of respiration and the closed-loop interactions between the HR and
the BP.

* Relatively high model order is needed to depict the dynamics of the
cardiovascular system by linear modelling. The model order required is
significantly higher than that suggested by objective model order selection
criteria.

e Spectral decomposition analysis and NSCR analysis provide information
about the intersignal relationships between the cardiovascular variables. The
information is directly related to the actual variability present in the signals,
which makes the analysis easier to interpret.

* The NSCR analysis is robust over a wide range of model orders when a
sufficient model order is reached and exceeded.

4.3 Author’s contribution to publications

The field of biomedical research is a multidisciplinary one and successful
research in the area demands the collaboration of researchers from different
fields. Because of that, this thesis work has been carried out partly at VTT
Information Technology (the former Medical Engineering Laboratory of the
Technical Research Centre of Finland) and partly at the Department of Clinical
Physiology, Tampere University Hospital. The research work described has
been carried out in very close co-operation with the clinicians, and part of the
study (publication 1) has been managed by them at Tampere University
Hospital.

In publication | the author was the only technical expert participating in the
analysis carried out. The author had the main responsibility for designing and
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defining the analysis methods and he authored the analysis software. Especially,
the author proposed the use of high-order AR spectral estimation and the use of
fuep to quantify the frequency shift on the LF band.

In publications II-V the author has been the principle authopulmlication I

the author elaborated the presentation of the general linear stochastic time series
modelling framework for physiological signal analysis. The co-authors
presented the multivariate dynamic adjustment and time-variant modelling parts
of the paper (chapters 2.4.2 and 2.4.3). In publicdtidhe author carried out

the MAR modelling case, including laboratory measurements, data processing,
modelling and analysis, and was the main author of the introduction and
discussion. The presentation of the multivariate dynamic and time-variant
modelling parts (chapters 2.2 and 2.3) was carried out by the co-authors. In
publication IV the author proposed the application of the Cholesky
decomposition method to make the noise sources of the model mutually
independent, designed the study set-up, participated in the laboratory
measurements, authored the analysis software, performed the data analysis and
drew the main conclusions. Publication V was the work solely of the author, but
in collaboration with the clinicians from Tampere University Hospital.
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5. General discussion and conclusions

The spectral analysis of cardiovascular variability signals has been under
intensive research for three decades. These analyses are gradually reaching the
stage of clinical applications, and the methods are becoming more standardised.
Yet, application of spectral analysis for research or clinical purposes needs
special care to be taken in order for proper methodologies to be used. Despite
some recommendations published recently (Task Force of ESC & NASPE
1996), all the details of analysis can often not be defined without an in-depth
knowledge of the methods. For example, when using AR spectral estimation, no
clear rule-of-thumb can be given for the model order selection. This thesis, and
some other reports published in the recent past (Kay 1988, Pinna et al 1996),
criticise the straightforward use of certain objective criteria in the model order
selection. The existence of these kinds of open methodological questions
underlines the importance of co-operation between physicians and engineers in
the analysis of cardiovascular variability signals.

Because of long-lasting and intensive research in the spectral analysis of
cardiovascular variability signals, no revolutionary methodological findings
were expected. Usually, the spectral analysis is carried out by analysing the
spectral power in certain pre-defined frequency ranges. Our experimental
finding in Takalo et al 1994a and publication | was that in BHT subjects there is
a shift in the frequency of oscillatiomssidethe LF band. This shift may not be
detected by conventional analysis of spectral power only. This emphasises the
need for methods to quantify also the frequency of oscillations in addition to
their power. In this thesis, three methods were compared to quantify this
spectral shift. The outcome was the principle result of this thesis in univariate
spectral analysis: band-wi$g=p andfyean provide more robust quantification

of this shift than thé: which has been used in various previous studies.

Multivariate modelling has been addressed as one of the most promising
approaches to the analysis of cardiovascular variability signals (Task Force of
ESC & NASPE 1996). In this thesis some efforts were made to bring the
methodology towards application in clinical research. The model identification
procedures and the parametrisation of the modelling results were designed for
this purpose. Still, when applying the methods to real experimental data, it
should be kept in mind that the approach presented is designed more to draw
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guantitative parameters related to the functioning of the cardiovascular control
system than to be a realistic model of the underlying system. In particular, one
should bear in mind the limitations in the performance of the linear models, the
most important of which are related to the demands for stationarity, appropriate
data length and quality and justification of the linearity assumption in different
circumstances. The system identification cycle presented in publication II
should always be followed in order to guarantee that the results obtained are
correctly interpreted.

Insensitivity of spectral decomposition analysis to the changes in model order is
a useful characteristic. The selection of model order is considered one of the
most difficult problems in multivariate modelling. An important fact came to
light: when multivariate modelling is used for data description rather than
control purposes, it is not harmful to overestimate the model order within limits,
but an underestimation may yield erroneous results. In publication V, a
saturation of the NSCR estimates at a certain level was found when the model
order was increased. This was true for both the simulation and the experimental
data. If this is a general phenomenon with cardiovascular variability data, it
might be utilised as a foundation for developing a simple model order selection
criterion.

At present, only spectral decomposition analysis was applied for the analysis of
interactions. In the future, use of other parameters like transfer functions and
impulse responses should be considered and their behaviour in relation to the
selected model order should be studied. In addition, the frequency content of the
spectral decomposition might be studied using parameters stigh @ fuean,

as with the univariate spectral analysis. These studies might define other robust
parameters to describe the model dynamics. Another interesting research
direction in the analysis of the cardiovascular control system would be the
consideration of other variability signals in addition to HR, BP and respiration.
Recently, advances in impedance cardiography have greatly improved its
reliability, and there exist devices which allow non-invasive beat-to-beat
monitoring of SV (Kddbi et al 1997). This allows direct measurement of one of
the most important variables in the dynamics of the cardiovascular system and
hence could yield significant new insights into the control system. The methods
presented in this thesis may be adapted with minor modifications to include SV
or any other related signal.
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In the present thesis, the multivariate modelling methods developed were

applied to real experimental data only for demonstration purposes. In future

studies, the methods should be validated against real physiological data from a
relatively large number of subjects. Only after that can the methods presented
considered valid and reliable.

In this thesis, a new parameter for quantifying spectral shift in HR and BP
signals, namely band-wise median frequencyy&y, was proposed and applied

to the analysis of experimental data from BHT and HT subjects. In addition, a
general framework for multivariate linear modelling of cardiovascular signals
was presented. The use of spectral decomposition for analysing the intersignal
relationships in the model and methods for enhancing the MAR modelling were
proposed. Finally, a new type of linear model for modelling cardiovascular
dynamics was introduced. Identification procedures relying on generally
available software tools were developed both for the new MAR model form and
for the MARXAR model. The behaviour of the models was analysed, and the
effect of model order selection was analysed with the MARXAR model. It may
be concluded that the multivariate modelling approach was developed
sufficiently to allow its future application to experimental data sets.
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Errata in publications

Publication II, page 2, 3rd paragraph:

We divided the spectrum into three bands because it has been
shown that the short-term variability in HR is affected by three
major physiological factors attributable to respiratory, pressure
vasomotor (at around 0.1 Hz) and thermal vasomotor (at around
0.05 Hz) activities. There is evidence that even the renin-
angiotensin system may play a significant role in short-term
cardiovascular control (at around 0.04 Hz). So there are certainly
more than two oscillations involved in BP and HR variability
above 0.03 Hz.

Publication II, equation 1:

A@)y(t) = F(q)B(qu() + D™(JC(ge( )
Publication II, equation 7:

Aun (E°)Fy (€°)Byy (&) - G( &)

Al\_/llN (em))D';llN (éw)CM N (én) - H( é0)
Publication II, equation 9:

To(e¥) = A7(€°)F 7 (€”)B( &)
Publication II, equation 12:

T, (€)= A7(e”)D (& )C( &)

Publication II, equation 18:

VI o

y(k) = —Z a(i) (k i) +€k)



Publication IV, equation 1:

VI p

;a(i)y(k —i) = &k)
Publication 1V, equation 10:

Correct reference is toUBRANTA andRANTALA, 1991.
Publication IV, Table 2:

NSCR from SBP to SBP in standing position, in MF range should
be 119/74 (conventional/corrected).

Publication IV, page 4 (orig. 202), left column, 2nd paragraph:
Correct reference is toANNAN andDEISTLER, 1988.

Publication V, equation 6:

g ig=< WIE

A=Y aig’; Bg= Y g Kq=1+5 f()q
1=0 i==2 1=1
Publication V, page 2.2. Model identificationznd numbered issue:

Use MATLAB-function arx.m in System Identification
Toolbox [8] to identifyA’(q), B’ (q) ande’ (t) according to (4).



	Abstract
	Preface
	Contents
	List of publications
	List of symbols and abbreviations
	1. Introduction
	2. Background
	2.1 The early days of cardiovascular variability signals
	2.2 Short-term autonomous control of cardiovascular system
	2.3 Analysis of cardiovascular variability signals
	2.3.1 Cardiovascular variability signals
	2.3.2 Signal pre-processing
	2.3.3 Spectral analysis
	2.3.4 Multivariate spectral analysis
	2.3.5 Multivariate modelling
	2.3.6 Time-variant spectral analysis
	2.3.7 Non-linear methods

	2.4 Estimation of spectral shift in myoelectric signals
	2.5 Author’s former research on the topic
	2.5.1 Univariate spectral analysis of HR and BP variability in border-line hypertensive and mildly hypertensive subjects
	2.5.2 Multivariate modelling


	3. Aims of the thesis
	4. Summary and discussion on publications
	4.1 Quantification of spectral shift
	4.1.1 Estimation of band-wise spectral shift in cardiovascular variability signals
	4.1.2 Summary and Discussion of publication I
	4.1.3 Implications

	4.2 Multivariate modelling
	4.2.1 Rationale
	4.2.2 Basic concepts
	4.2.3 Framework
	4.2.4 MAR modelling
	4.2.5 Summary of publications II - IV
	4.2.6 MARXAR model and summary of publication V
	4.2.7 Interpretation of spectral decomposition analysis
	4.2.8 Limitations
	4.2.9 Implications

	4.3 Author’s contribution to publications

	5. General discussion and conclusions
	References
	Errata in publications

