VTT PUBLICATIONS 317

Local impact strength of various boat-building materials

Martin Hildebrand
VTT Manufacturing Technology

ISBN 951-38-5068-4 (soft back ed.) ISSN 1235-0621 (soft back ed.)

ISBN 951-38-5069-2 (URL: http://www.inf.vtt.fi/pdf/) ISSN 1455-0849 (URL: http://www.inf.vtt.fi/pdf/)

Copyright © Valtion teknillinen tutkimuskeskus (VTT) 1997

JULKAISIJA – UTGIVARE – PUBLISHER

Valtion teknillinen tutkimuskeskus (VTT), Vuorimiehentie 5, PL 2000, 02044 VTT puh. vaihde (09) 4561, faksi (09) 456 4374

Statens tekniska forskningscentral (VTT), Bergsmansvägen 5, PB 2000, 02044 VTT tel. växel (09) 4561, fax (09) 456 4374

Technical Research Centre of Finland (VTT), Vuorimiehentie 5, P.O.Box 2000, FIN-02044 VTT, Finland

phone internat. + 358 9 4561, fax + 358 9 456 4374

VTT Valmistustekniikka, Laiva- ja konetekniikka, Tekniikantie 12, PL 1705, 02044 VTT puh. vaihde (09) 4561, faksi (09) 455 0619

VTT Tillverkningsteknik, Skepps- och maskinteknik, Teknikvägen 12, PB 1705, 02044 VTT tel. växel (09) 4561, fax (09) 455 0619

VTT Manufacturing Technology, Maritime and Mechanical Engineering, Tekniikantie 12, P.O.Box 1705, FIN–02044 VTT, Finland phone internat. + 358 9 4561, fax + 358 9 455 0619

Technical editing Kerttu Tirronen

Hildebrand, Martin. Local impact strength of various boat-building materials. Espoo 1997, Technical Research Centre of Finland, VTT Publications 317. 28 p.+ app. 6 p.

UDC 929.125:620.1

Keywords boats, shipbuilding, materials testing, wood laminates, aluminium,

thermoplastics

Abstract

An impact test series is performed using an instrumented impact test method according to the standard ISO 6603.

The materials tested were those most frequently used in boat-building, such as plywood, fibre-reinforced plastic, ABS (acrylonitrile/butadiene/styrene), PE (polyethylene), PC (polycarbonate) and aluminium.

The impact strength of the materials is compared taking into account thickness and weight of the specimens.

Acknowledgements

This work was financed by the budget funds of VTT Manufacturing Technology, which is gratefully acknowledged.

The author would like to express his thanks to Jukka Henttu (Faculty of Wooden Boats in Hamina), Timo Hänninen (Terhi Oy) and Juha Siira (Juha Snell Oy) for their kind co-operation in providing tests specimens.

Contents

Abstract	3
1. Introduction	7
2. Tested Materials	9
3. Test method	11
4. Results	
4.1 Plywood	19
4.2 FRP laminates	
4.3 Thermoplastics	23
4.4 Aluminium	
5. Discussion	25
6. Conclusions	26
References	27

APPENDICES

Appendix A: Tested materials Appendix B: Test results

List of symbols

t thickness [mm]

 $q \hspace{1cm} square \hspace{1cm} weight \hspace{1cm} [kg/m^2]$

FRP fibre-reinforced plastic

ABS acrylonitrile/butadiene/styrene

PE polyethylene

PC polycarbonate

1. Introduction

Local impact strength is one of the various properties that should be considered in the design and dimensioning of boat structures.

It is however rare that explicit requirements for impact strength are seen in, for instance, classification rules. On the other hand, indirect requirements, which may be expressed in terms of minimum panel thickness, are more common.

There are many understandable reasons why direct requirements are not used, one of them being the lack of adequate test standards. Also, the phenomena associated with impact strength are complicated and, to a great extent, unexplored. A further difficulty is the complexity of the accurate determination of impact loads.

In this publication, the term 'impact' refers to the case of local impact between a solid object and the structure, resulting in a point-loading with a high loading rate. Wave slamming, of which the high loading rate also is typical, does not fall in this category, since the loading is usually spread over a larger area or a line and water cannot be considered a solid object.

Some of the impact loads to be expected in boats can be predicted, such as items falling on the deck or collisions with floating objects of certain shape, size and mass. However, it is clear that accidental overloads can not be excluded, especially with boats attaining high speeds.

This report compares the local impact strength of various materials which are used in boat building. It is important to note that material strength is only one parameter determining the impact strength of the boat hull. Structural details, such as the amount and size of internal stiffeners can play an important role when impact energy has to be absorbed. Especially in the case of sandwich structures, the core significantly contributes to the impact strength, depending on its thickness and material properties [1].

Generally speaking, the impact energy can be absorbed in various ways. The elastic energy may be significant, if the panels can absorb energy by deflecting and introducing vibration into the whole structure. Wheter the impact energy

can be absorbed by elastic response, and to what extent, depends on various factors, such as impactor speed, dynamic response of the structure and local stiffness and strength of the impact location. Typically, boat hulls have various points with very high local stiffness (for instance, near a bulkhead). Therefore, the possibility that most of the impact energy has to be absorbed locally by the material should be regarded as the worst case, yet a possible one.

2. Tested materials

The most commonly used materials in boat hulls are fibre-reinforced plastics (mostly glass-polyester), aluminium, thermoplastics (mostly ABS and PE) and wood. Table 1 shows the distribution of hull materials among the recreational and work boats manufactured in Finland between 1994 and 1996 and approved under the Nordic Boat Standard [2, 3].

Table 1. Distribution of hull materials among type approved recreational and work boats (Nordic Boat standard) built in Finland during 1994-1996. The total number of type approved boats built in this period is 22 038.

Hull material	Percentage
FRP (glass-polyester)	41
Aluminium	36
ABS	22
PE	1

It can be assumed that the majority of boats built in Finland without type approval are made of FRP.

This distribution is reflected in the choice of tested materials, which included various FRP laminates, ABS, aluminium and PE in different thicknesses. Additional materials being tested included polycarbonate (PC), which is used in windows and hatches, and different types of plywood, mostly used by amateur boat builders.

Table 2 shows the tested materials, including their measured thickness and square weight values.

Table 2. Material, thickness t and square weight q of the tested specimens.

	t	q		
	[mm]	$[kg/m^2]$		
Plywood				
Ply1	2.3	1.65	Aircraft (birch, 5 plies) (*)	
Ply2	3.0	2.34	Aircraft (birch, 6 plies) (*)	
Ply3	3.8	2.11	Asp-plywood (populus tremula, 3 p	olies)
Ply4	6.4	4.13	Combi (birch / softwood, 5 plies)	
Plywood	/ FRP			
Ply5	4.0	3.26	Aircraft (6 plies) (*) + FRP (**) on ou	ter face
Ply6	7.0	4.99	Combi (5 plies) + FRP (***) on outer	face
FRP / Pl	ywood /	FRP		
Ply7	7.8	5.92	Combi (5 plies), + FRP (**) on both	faces
FRP			fibre content / amount of continuou	s fibres (by weight)
FRP1	2.6	3.61	Glass mat-polyester	22 vol.%/0%
FRP2	3.5	5.58	Glass/aramid (93%/7%)-polyester	28 vol.%/54%
FRP3	3.8	6.37	Glass-polyester	41 vol.%/88%
FRP4	6.9	9.08	Spray-up laminate	20 vol.%/0%
FRP5	7.1	11.3	Glass-polyester	32 vol.%/52%
FRP6	7.7	11.0	Glass/aramid (90/10%)-polyester	23 vol.%/62%
FRP7	11.5	16.9	Glass-polyester	24 vol.%/43%
ABS				
ABS1	5.3	5.47		
ABS2	6.6	6.64		
ABS3	7.0	7.11		
PE			Simona PE-HWU	
PE1	6.0	5.67		
PE2	10.0	9.45		
PC				
PC	5.0	5.81		
Alumini	um			
Al1	2.0	5.40	AlMg3 H32	
Al2	4.0	10.8	AlMg3 H32	
A13	4.0	10.8	AlMg4.5 H32	

^(*)

grade III 1 ply stitched E-glass, $\pm 45^{\circ}$, 318 g/m², epoxy matrix (**)

3. Test method

A standardised impact test method which would be suitable for a wide variety of materials does not exist. However, it is necessary to choose one method in order to get comparable results between the different materials.

Among the standardised methods, the puncture test (falling dart) method according to ISO 6603 is widely used. This method includes procedures for performing both non-instrumented (Part 1) and instrumented (Part 2) tests [4, 5].

The ISO 6603 method was chosen also because of its suitable specimen dimensions providing relevant results for all the specimens tested in this series.

According to the standard, the ISO 6603 test method is applicable to rigid plastic specimens of thickness between 1 and 4 mm. However, it is stated that it can be used for specimens thicker than 4 mm, 'if the equipment is suitable, but the test then falls outside the scope of this part of ISO 6603'.

The majority of the specimens are thicker than 4 mm, but the equipment is in principle suitable for the tests as long as the amount of impact energy is high enough to penetrate also the thicker specimens.

The configuration of a test according to ISO 6603 is shown in Figure 1.

Figure 1. Test configuration presented in the ISO 6603 standard.

The shape of the impactor is a cylinder with a hemispherical tip. The diameter of the cylinder is 20 mm. The specimen support is a hollow cylinder with a 40-mm internal diameter.

The test specimen can be clamped onto the support, though the clamping device is optional. In the present test series, clamping was not used.

Figure 2. Instrumented falling weight impact tester.

The apparatus used for the tests is an instrumented falling weight impact tester shown in Figure 2.

The maximum falling height is 4 m, the falling mass being at present up to 80 kg. The resulting maximum impact speed is 8.7 m/s and the maximum available energy 2.8 kJ.

The total energy used in the present test series was below 600 J.

The apparatus is instrumented for measuring the acceleration during the impact. The measured acceleration data is transferred through a charge amplifier to a PC where it is directly post-processed. A low pass filter at 1000 Hz has been applied in the post processing.

With the instrumented method, the total absorbed energy is calculated from the measured force-time history. An example of the force and energy vs. displacement curve is shown in Figure 3.

Figure 3. Example of a force-displacement curve and a corresponding absorbed energy-displacement curve.

The impact strength is defined as the total absorbed energy to the point of maximum force. This force and the corresponding energy value are shown in Figure 3.

The specimens were dry and tested at room temperature.

4. Results

The results can be assessed in many ways depending on the purpose. It is relevant to compare the results both in terms of absolute values (absorbed energy values) and in relation to the specimen weight (specific absorbed energy values) and specimen thickness.

Figure 4 shows the absorbed energy values of the tested materials as a function of specimen thickness.

Figure 4. Absorbed energy as a function of specimen thickness.

Looking at Figure 4, we see that the differences in impact strength between the various materials are large, up to two decades for equal thickness.

Many structural items in boats are, at least to a certain extent, weight critical. Therefore, it is of more general value to compare the specific energy values

which take into account the mass of the structure. The comparison of specific impact strength of the tested materials is presented in Figure 5.

Figure 5. Comparison of specific impact strength (absorbed energy per square weight) of tested materials.

As is clearly shown in Figure 5, polycarbonate exceeds all other materials by far in terms of specific impact strength.

The ranking of the materials (from high to low specific impact strength) is PC, aluminium, ABS, PE, FRP and plywood.

Figure 6 compares the absolute values of absorbed energy of the tested materials.

Figure 6. Comparison of impact strength (absorbed energy) of tested materials.

In order to illustrate the differences in impact behaviour between the materials tested, the force-displacement curves are shown on the same scale (Figure 7).

Figure 7. Force-displacement behaviour of tested materials during the impact. Note the differences in specimen thickness (between 4 and 7.8 mm).

Figure 7 clearly shows that the reason for the high energy absorption of both aluminium and thermoplastic materials (PC, ABS and PE) is their plastic behaviour. Their maximum force values are achieved at a displacement which is 2.5 to 5 times higher than their thickness. Plywood and FRP, on the other hand, are relatively brittle materials and their maximum force values are achieved at displacement values close to their thickness.

In the following chapters, the results within the different material groups are discussed in more detail.

4.1 Plywood

The specific absorbed energy of the plywood specimens is compared in Figure.

Figure 8. Mean values and standard deviation (error bars) of the specific absorbed energy of plywood specimens. Note that the last three specimens (Ply5-7) are reinforced with FRP.

An interesting observation is that asp (populus tremula) and combi (birch-softwood) plywood have the same specific impact strength. The difference between the 2.3-mm (5 plies) and the 3.0-mm (6 plies) aircraft plywood is remarkable. One possible reason for the relative weakness of the 3.0-mm type is that it has two plies with the same orientation on top of each other in the middle, whereas the ply orientation changes between each ply in the 2.3-mm type.

Coating the outer face with a thin FRP laminate (one layer of glass-epoxy) increases the specific impact strength by a factor of 2.7 and 2.9 for aircraft and combi plywood respectively, whereas coating both faces of the combi plywood with FRP increases the specific impact strength by a factor of 5.5.

4.2 FRP laminates

Figure 9 compares the specific absorbed energy of the FRP specimens.

Figure 9. Mean values and standard deviation (error bars) of the specific absorbed energy of the FRP specimens. Note the considerable differences in fibre content and in amount of continuous fibres.

The large differences in specific impact strength shown in Figure 9 are partly due to differences in fibre content and amount of continuous fibres. All laminates are made of polyester resin.

It is not surprising that both a high fibre content and a high amount of continuous fibres produce higher specific impact strength values. This is illustrated in Figures 10 and 11.

Specific absorbed energy of FRP laminates as a function of fibre content

Figure 10. Specific absorbed energy as a function of fibre content.

Figure 10 shows that increasing the fibre content leads to an increase in specific impact strength. Note that there are substantial differences in the amount of continuous fibres (chopped strand mat vs. woven or stitched roving) within the laminates. The effect of the amount of continuous fibres on the specific impact strength is shown in Figure 11.

Specific absorbed energy of FRP laminates as a function of continuous fibre amount

Figure 11. Specific absorbed energy as a function of continuous fibre amount.

The two parameters shown in Figures 10 and 11 explain partly the differences in specific impact strength between the laminates. There are, however, also other parameters to be considered, such as the reinforcement lay-up. It is interesting to compare laminates 5 and 7 which contain the same reinforcements, except that laminate 7 has more chopped strand mat layers in the middle, which creates a 'mini-sandwich' lay-up. Due to this configuration, the specific impact strength is increased by 16%.

4.3 Thermoplastics

Figure 12 compares the specific absorbed energy of the thermoplastic materials ABS, PE and PC.

Figure 12. Mean values and standard deviation (error bars) of the specific absorbed energy values of the thermoplastic materials ABS, PE and PC.

The far higher specific impact strength of PC compared to ABS and PE is clearly shown in Figure 12. The specific impact strength of ABS is approximately 25% higher than that of PE and approximately 60% lower than that of PC.

The effect of the thickness on the specific impact strength of the ABS and PE specimens is negligible.

4.4 Aluminium

Figure 13 compares the specific absorbed energy of the aluminium specimens.

Figure 13. Mean values and standard deviation (error bars) of the specific absorbed energy values of the aluminium specimens.

The impact strength values of AlMg3 and AlMg4.5 provide interesting material for comparison. AlMg4.5 has a 12% higher impact strength. This difference is half of the difference in the respective breaking strength values (250 MPa vs. 310 MPa).

The effect of specimen thickness is considerable, as is evident when comparing the 2- and 4-mm thick AlMg3 specimens. The specific impact strength value of the 4-mm specimen is 39% higher than that of the 2-mm specimen.

5. Discussion

It has to be kept in mind that sufficient impact strength is not the only requirement governing the dimensioning of a boat hull. Other parameters, such as the flexural stiffness and strength of the hull panels, are usually in the foreground. These parameters depend on the panel thickness, the stiffener spacing and, naturally, the stiffness and strength values of the material.

Therefore, it is interesting to compare the impact strength results of the tested materials also with typical panel thickness values used in boat hulls. Table 3 shows a comparison of approximate hull bottom thickness values typically used in 4.5 m long motor boats with a maximum speed of 30 knots. The thickness values in Table 3 assume a dimensioning method corresponding to the Nordic Boat Standard [2].

Table 3. Corresponding hull bottom thickness values for different materials.

Typical bottom panel thickness for a 4.5 m motor boat with a				
	maximum speed of 30 knots			
	[mm]			
Plywood	9.0			
FRP	4.7 - 5.9 (*)			
ABS	5.3			
PE	6.0			
AlMg3	2.5			

(*) 4.7 mm for a laminate containing chopped strand mat and woven roving, 5.9 mm for a spray-up laminate

6. Conclusions

Based on the present impact test series of 23 different specimens containing plywood, FRP, ABS, PE, PC and aluminium, the following conclusions can be drawn:

- The differences in impact strength between different materials are large, up to two decades for equal thickness.
- Because most boat structures are at least to some extent weight critical, it is more relevant to compare the specific impact strength values than the impact strength values in absolute terms.
- In terms of specific impact strength, the ranking of the different materials is as follows (as percentage of the strongest material):
 - 1. Polycarbonate (100%)
 - 2. Aluminium (40 62%)
 - 3. ABS (36 40%)
 - 4. PE (29 31%)
 - 5. FRP (6 16%)
 - 6. Plywood with FRP reinforcement (6 14%)
 - 7. Plywood (2 3%)
- The reason for the higher specific impact strength values of aluminium and the thermoplastic materials (PC, ABS and PE) is their high degree of plastic deformation: the maximum force values occur at displacement values between 2.5 and 5 times the thickness. Plywood and FRP are more brittle, achieving the maximum force levels at displacement values close to those of their thickness.

References

- Hildebrand, M. 1996. Improving the impact strength of FRP-sandwich panels for ship applications. Espoo, Technical Research Centre of Finland, VTT Technical Report VAL B 138. 42 p.
- Nordic Boat Standard. 1990. Recreational boats less than 15 metres. Helsinki, Merenkulkulaitos.
- Nordic Boat Standard. 1990. Work boats less than 15 metres. Helsinki, Merenkulkulaitos.
- 4 ISO 6603/1-1985. Plastics Determination of multiaxial impact behaviour of rigid plastics Part 1: Falling dart method. 14 p.
- 5 ISO 6603/2-1989. Plastics Determination of multiaxial impact behaviour of rigid plastics Part 2: Instrumented puncture test. 12 p.

Appendix A: Tested materials

Speci-	Thickness	Remarks		
men	[mm]			
Plywood				
Ply1	2.3	Aircraft (birch, 5 plies) (*)		
Ply2	3.0	Aircraft (birch, 6 plies) (*)		
Ply3	3.8	Asp-plywood (populus tremula, 3 plies)		
Ply4	6.4	Combi (birch / softwood 3/2 plies à 1.4 mm)		
Ply5	4.0	Aircraft (6 plies) (*) + FRP (**) on outer face		
Ply6	7.0	Combi (5 plies as above) + FRP (***) on outer face		
Ply7	7.8	Combi (5 plies as above), + FRP (**) on both faces		
(*) grade I	II (**) Rein	forcement: 1 ply stitched E-glass, 318 g/m ² , ±45° to		
		plywood fibres, resin: West Systems epoxy 105/205		
FRP		fibre content		
FRP1	2.6	Glass mat-polyester 22 vol.%		
		Lay-up: M300 / JM300 / M300 / JM300 / M225		
		/H30		
		Resin: Neste G300, hand lay-up		
FRP2	3.5	Glass/aramid (93%/7%)-polyester 28 vol.%		
		Lay-up: M450 / 9811/M300 / ±45(200+200) /		
		9811/M300 / 9811/M300		
		Resin: Neste F207TPE, hand lay-up		
FRP3	3.8	Glass-polyester 41 vol.%		
		Lay-up: M300 / DB400/100-E01 / DBLT1150-E01 /		
		DBLT1150-E01 / DB800/M100-E01		
EDD4	<i>C</i> 0	Resin: Neste F207TPE, hand lay-up Sprayed glass-polyester laminate 20 vol.%		
FRP4	6.9	Sprayed glass-polyester laminate 20 vol.% Resin: Neste M105TB		
FRP5	7.1			
TKFJ	/.1	Glass-polyester 32 vol.% 2×CSM300 / 2×DBL800 / 8×CSM300 / 2×DBL800		
		Resin: Norpol 720-800, hand lay-up		
FRP6	7.7	Glass/aramid (90/10%)-polyester 23 vol.%		
11(1)	, . <i>,</i>	CSM225 / CSM450 / CSM450 / CSM300 /		
		900-0/90 / 900A-±45 / CSM225 / 900-0/90		
		Resin: Norpol 720-800, hand lay-up		
FRP7	11.5	Glass-polyester 24 vol.%		
- 111 /	11.0	2×CSM300 - 2×DBL800 - 12×CSM300 -2×DBL800		
		Resin: Norpol 720-800, hand lay-up		

Speci-	Thick-	Remarks
men	ness	
	[mm]	
ABS		
ABS1	5.3	
ABS2	6.6	
ABS3	7.0	
PE		
PE1	6.0	Simona PE-HWU
PE2	10.0	Simona PE-HWU
PC		
PC	5.0	
Aluminiu	ım	
A11	2.0	AlMg3 H32
A12	4.0	AlMg3 H32
A13	4.0	AlMg4.5 H32

Appendix B: Test results

The test results are documented below. The maximum force (F) and absorbed energy (E) values are shown in the first two columns and the respective mean values (x), standard deviation (s), relative standard deviation (v) in the last columns.

	xperimental results		Mean values		
F	Е	=	ABS1	F	Е
10	151	86.0		[N]	[J]
10:	229	85.0	X	10462	86.4
10	828	86.7	S	325	1.2
10	641	87.8	v [%]	3	1
F	Е		ABS2	F	Е
13	711	127.8		[N]	[J]
14:	272	118.3	Х	14087	120.7
14:	277	115.9	S	325	6.3
			v [%]	2	5
F	Е		ABS3	F	Е
15	311	128.8		[N]	[J]
15	127	131.5	X	14970	123.5
14	610	114.1	S	311	8.1
14	831	119.5	v [%]	2	7
[N]	[、	J]	Alu1	F	E
[N] F	[\ E		Alu1	F [N]	[J]
F			Alu1		
F 17	E	=		[N]	[J]
F 17-	451	100.8	x	[N] 17134	[J] 95.5
F 17-	451 152	100.8 97.7	X S	[N] 17134 327	[J] 95.5 6.7
F 17-	451 152 798	100.8 97.7	X S	[N] 17134 327	[J] 95.5 6.7
F 17- 17 16	451 152 798	100.8 97.7 88.0	x s v [%]	[N] 17134 327 2	[J] 95.5 6.7 7
F 17 17 16 [N]	451 152 798	100.8 97.7 88.0	x s v [%]	[N] 17134 327 2	[J] 95.5 6.7 7
F 17 17 16 [N] F 36	798 [.	100.8 97.7 88.0 J]	x s v [%]	[N] 17134 327 2 F [N]	[J] 95.5 6.7 7 E [J]
F 179 169 169 179 179 179 179 179 179 179 179 179 17	451 152 798 [, E	100.8 97.7 88.0 J] = 258.0	x s v [%] Alu2	[N] 17134 327 2 F [N] 36242	[J] 95.5 6.7 7 E [J] 267.8
F 179 169 169 179 179 179 179 179 179 179 179 179 17	451 152 798 [4 187	100.8 97.7 88.0 J] 258.0 263.7	x s v [%] Alu2 x s	[N] 17134 327 2 F [N] 36242 529	[J] 95.5 6.7 7 E [J] 267.8 12.4
F 17. 17 16 [N] F 36 36 35	451 152 798 [4 797 187 743	100.8 97.7 88.0 J] 258.0 263.7	x s v [%] Alu2 x s	[N] 17134 327 2 F [N] 36242 529	[J] 95.5 6.7 7 E [J] 267.8 12.4
F 179 169 169 179 179 179 179 179 179 179 179 179 17	451 152 798 [4 797 187 743	100.8 97.7 88.0 J] = 258.0 263.7 281.7	x s v [%] Alu2 x s v [%]	[N] 17134 327 2 F [N] 36242 529 1	[J] 95.5 6.7 7 E [J] 267.8 12.4 5
F 17. 17 16	451 152 798 [457 797 187 743	100.8 97.7 88.0 J] = 258.0 263.7 281.7	x s v [%] Alu2 x s v [%]	[N] 17134 327 2 F [N] 36242 529 1	[J] 95.5 6.7 7 E [J] 267.8 12.4 5
F 17. 17 16	451 152 798 [457 797 187 743	100.8 97.7 88.0 J] 258.0 263.7 281.7	x s v [%] Alu2 x s v [%]	[N] 17134 327 2 F [N] 36242 529 1	[J] 95.5 6.7 7 E [J] 267.8 12.4 5 E [J]

Experi	xperimental results Mea			Mean value	an values	
[N]	[J]		FRP1	F	Е	
F	E			[N]	[J]	
4	695	11.0	x	4554	10.1	
	439	9.1	s	106	0.8	
	537	10.3	v [%]	2	8	
	544	10.0	1, [, 4]	_		
			FRP2	F	Е	
F	Е		11012	[N]	[J]	
	652	30.4	x	14568	33.4	
	968	33.6	s	362	3.4	
	092	31.4	v [%]	2	10	
	560	38.1	V [/0]		10	
14	300	30.1	EDD3	F		
F	Е		FRP3		E	
		47.0		[N]	[J]	
	600	47.2	X	21036	46.2	
	520	46.4	S	616	1.7	
	645	47.5	v [%]	3	4	
20	377	43.7				
			FRP4	F	E	
F	E			[N]	[J]	
	137	45.1	X	15332	40.3	
14	875	38.7	s	1349	4.5	
14	472	39.0	v [%]	9	11	
13	921	34.3				
17	253	44.3				
			FRP5	F	E	
F	E			[N]	[J]	
32	243	54.7	x	31215	61.8	
30	856	58.1	s	1018	11.3	
	746	81.9	v [%]	3	18	
29	626	57.5				
31	604	57.0				
			FRP6	F	E	
F	Е			[N]	[J]	
	305	46.1	х	23210	56.1	
	283	52.3	s	2021	9.4	
	498	58.4	v [%]	9	17	
	661	52.8	1 [,0]			
	304	71.1				
			FRP7	F	E	
F	Е		I INF I	[N]	[J]	
	139	108.2	X	40539	108.3	
	386	105.3	S [0/1	2679	5.1	
	855	102.8	v [%]	7	5	
	015	116.2		-		
40	300	109.2				

		PE1	F	
			Г	E
	E		[N]	[J]
8546	74.2	х	8220	71.1
8114	69.8	s	231	2.3
8207	71.4	v [%]	3	3
8014	68.9			
		PE2	F	Е
	E		[N]	[J]
13884	128.5	х	14067	130.9
14029	131.2	S	151	1.7
14244	132.5	v [%]	1	1
14111	131.4			
		PC	F	Е
	E		[N]	[J]
18123	251.6	х		263.4
18910	275.2	s	556	16.7
		v [%]	3	6
		Ply1	F	Е
	E		[N]	[J]
828.7	2.7	х		2.4
		s	114	0.4
1047		v [%]	12	16
1053	2.1			
1030	2.1			
		Ply2	F	Е
	E		[N]	[J]
1069	2.1	x	1144	2.2
	2.9	s		0.4
	1.9	v [%]	7	17
	2.0			
		Ply3	F	Е
	E			[J]
1252	2.4	х		2.3
1187		s	235	0.6
1586	2.08	v [%]	19	27
985	1.6			
	3.3			
	8114 8207 8014 13884 14029 14244 14111 18123 18910 828.7 843.3 1047 1053 1030 1069 1276 1126 1126 1148 1102	8114 69.8 8207 71.4 8014 68.9 E 13884 128.5 14029 131.2 14244 132.5 14111 131.4 E 18123 251.6 18910 275.2 E 828.7 2.7 843.3 2.9 1047 2.2 1053 2.1 1030 2.1 E 1069 2.1 1276 2.9 1126 1.9 1148 2.0 1102 2.2 E 1252 2.4 1187 2.26 1586 2.08 985 1.6	8114 69.8 s 8207 71.4 v [%] 8014 68.9 PE2 E 13884 128.5 X 14029 131.2 s 14244 132.5 v [%] 14111 131.4 PC E E PIy1 E 828.7 2.7 X 843.3 2.9 s 1047 2.2 v [%] 1053 2.1 X 1069 2.1 X 1276 2.9 s 1126 1.9 v [%] 1148 2.0 Y [%] 1102 2.2 PIy3 E 1586 2.08 v [%] 985 1.6 V [%]	8114 69.8 s 231 8207 71.4 v [%] 3 8014 68.9 PE2 F Image: second color of the

Experimental results		tal results		Mean value	es
			Ply4	F	Ε
F		E		[N]	[J]
	2859	3.5	x	2605	4.4
	2257	2.9	s	236	1.5
	2560	3.7	v [%]	9	35
	2789	6.6			
	2561	5.6			
			Ply5	F	Ε
F		E		[N]	[J]
	3069	7.9	x	3194	8.2
	3695	9.2	s	454	8.0
	2622	7.5	v [%]	14	10
	2967	8.9			
	3616	7.4			
			Ply6	F	Ε
F		E		[N]	[J]
	4690	16.8	x	4627	16.2
	4371	14.4	s	271	1.2
	4868	16.6	v [%]	6	7
	4891	17.5			
	4315	15.6			
			Ply7	F	Е
F		E		[N]	[J]
	9579	34.2	x	8532	36.0
	8389	31.7	s	605	3.3
	8382	37.0	v [%]	7	9
	8302	40.4			
	8010	36.6			