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Abstract

In this thesis, theoretical modeling of certain aerosol systems has been presented. At first,

the aerosol general dynamic equation is introduced, along with a discretization routine

for its numerical solution. Of the various possible phenomena affecting aerosol

behaviour, this work is mostly focused on aerosol agglomeration. The fundamentals of

aerosol agglomeration theory are thus briefly reviewed. The two practical applications of

agglomeration studied in this thesis are flue gas cleaning using an electrical agglomerator

and nanomaterial synthesis with a free jet reactor.

In an electrical agglomerator the aerosol particles are charged and brought into an

alternating electric field. The aim is to remove submicron particles from flue gases by

collisions with larger particles before conventional gas cleaning devices that have a clear

penetration window in the problematic 0.1 - 1 µm size range. A mathematical model was

constructed to find out the effects of the different system parameters on the

agglomerator’s performance. A crucial part of this task was finding out the collision

efficiencies of particles of varying size and charge. The original idea was to use unipolar

charging of the particles, and a laboratory scale apparatus was constructed for this

purpose. Both theory and experiments clearly show that significant removal of submicron

particles can not be achieved by such an arrangement. The theoretical analysis further

shows that if the submicron particles and the large collector particles were charged with

opposite polarity, significant removal of the submicron particles could be obtained.

The second application of agglomeration considered in this thesis is

predicting/controlling nanoparticle size in the gas-to-particle aerosol route to material

synthesis. In a typical material reactor, a precursor vapor reacts to form molecules of the

desired material. In a cooling environment, a particulate phase forms, the dynamics of

which are determined by the rates of collisions and coalescence. In the thesis, it is first

theoretically demonstrated how the onset of dendrite formation and primary particle size

can be predicted by studying the characteristic time scales of collision and coalescence.
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Then it is shown how the linear rate law for coalescence can be approximately applied to

agglomerate structures by dividing the agglomerates into sections. The developed models

are then applied to a free jet material reactor. From the comparisons between theory and

experiment it is obvious that such a model is able to capture the effects of the system

parameters (temperature, velocity, volume loading of material and location of collection)

on the primary particle size of the produced material.
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NOMENCLATURE

a particle surface area
A cross-sectional area
A constant in the agglomerate power law
b proportionality constant in charge distribution
c , g, l shortening variables in the Fuchs collision frequency function
C proportionality function in initial neck growth equation
Cc slip correction factor
d particle diameter
d mean particle diameter
D diffusion coefficient
D0 diffusion coefficient prefactor
Df fractal dimension
& & &e e ex y z, , cartesian unit vectors

Eact activation energy for the diffusion coefficient
E0 amplitude of electric voltage
f frequency of alternating electric field
F rate of collisions
k Boltzmann’s constant
m mass concentration distribution
M total mass concentration of particles
M molar mass
n degree of homogenity of a homogenous function
n number density function
n average number of primary particles in an agglomerate
nm multicomponent number density function
N number of primary particles in an agglomerate
p pressure
q amount of charge
r particle radius
r0 primary particle radius
R removal term
R gas constant
Rm multicomponent removal term
S source term
Sm multicomponent source term
t time
T temperature
u,v particle volume
v average particle volume
v0 primary particle volume
vk volume of component k in a particle
vm molecular volume
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�v condensation rate
�vk condensation rate of component k

V control volume
w grain boundary width
x neck radius
*x position vector
&
�x velocity vector

x,y,z coordinates of position vector

α constant in the self-preserving growth law for average volume
β collision frequency function
δ surface thickness
ε collision efficiency
ε0 permittivity of vacuum
η size variable of the self-preserving distribution
φ proportionality constant for deposition
φ volume fraction of particulate matter
Φ reduction in fine mode concentration
λ mean free path
µ viscosity
ρ density
σ surface tension
σ factor that takes into account different charging cases
τ residence time in agglomerator
τc characteristic collision time
τf characteristic fusion time
ξ Coulomb correction factor for collision frequency function
ψ self-preserving distribution function
θ dimensionless excess surface area
Θ step function

Subscripts

a agglomerate
b grain boundary diffusion
coll collision
Coul Coulomb
l lattice diffusion
p primary particle
s surface diffusion
sph spherical
1 fine particle mode
2 large particle mode
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1. INTRODUCTION

Aerosols are suspensions of solid and/or liquid particles in gases. They are
formed by the conversion of gases to particulate matter or by the
disintegration of liquids or solids. The sizes of aerosol particles range from
a few nanometers to roughly hundreds of micrometers. The understanding
of the physical properties of aerosols is important in many areas of research
and industry, including materials processing, air pollution control, nuclear
safety, combustion engineering and cloud and atmospheric sciences.

In combustion processes aerosols may cause severe slagging and fouling
problems. Air pollution aerosols can have negative effects on e.g. human
health and visibility. On the other hand, aerosol routes provide a convenient
way of producing nanomaterials with properties significantly differing from
the normal bulk properties. Medicine can also be in the form of aerosols.
The basis of the new asthma inhalators lies in knowing the penetration
properties of the medicine particles into the human lung.

This overview focuses mainly on methods of modeling aerosol behaviour
and covers the author’s work on the subject originally reported in papers A-
G. A thorough introduction to previous work in this area is omitted in this
overview, since it is covered in the introduction of each paper, which are
attached. Predicting aerosol behaviour requires knowledge of the particle
sizes, concentration, chemical composition and morphology. Chapter 2
introduces the concept of the general dynamic equation (GDE), which is an
integro-differential equation describing the time evolution of the particle
size distribution. A numerical solution technique for the GDE is also
discussed.

Particle collisions play an important role in aerosol dynamics, and thus also
in the GDE. Chapter 3 introduces the basics of aerosol agglomeration.
Agglomeration is a process, in which particles collide and stick, thus
forming larger particles. If the particles coalesce into spherical form, the
process is usually termed coagulation. If coalescence does not occur,
agglomeration leads to the formation of dendritic structures. These dendritic
structures collide with a different rate, compared with spheres of same
volume. This is discussed at the end of the chapter.

The remaining chapters deal with two research problems, in which particle
collisions are the most important physical process affecting the evolution of
the size distribution. The first problem is an example of using aerosol
methods in air pollution prevention and is discussed in Chapter 4. It has
been found that many particle removal devices have a penetration window
in the range 0.1 - 1 µm. One idea for removing the particles in this
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problematic range is to use an electrical agglomerator, in which the particles
are charged and subsequently brought into an alternating electric field. The
purpose of this arrangement is to remove the submicron particles with the
larger particles, resulting from collisions caused by the oscillatory motion.

The second aerosol related research problem discussed in this thesis is the
possibility to produce nanoparticles in a controlled way by gas-to-particle
aerosol methods, which is discussed in Chapter 5. The particles are formed
by chemical reactions from the vapor phase and grow by collisions. The size
and shape of the formed nanoparticles depend on the relative rates of
collision and coalescence. Chapter 5 summarizes the basic theoretical
models with which it is possible to predict and control the size and shape of
the produced nanoparticle material.
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2. THE GENERAL DYNAMIC EQUATION (GDE)

The integro-differential equation that describes the dynamic behaviour of an
aerosol is usually termed the general dynamic equation for aerosols (GDE;
Friedlander, 1977). In its most general form, it describes the evolution of
the size distribution of aerosol particles as functions of particle size and
composition, but in many applications and numerical solution routines, only
the dependence on size is considered.

The processes that govern the temporal and spatial changes in the size
distribution are agglomeration, growth, source and removal processes.
Agglomeration is a process in which particles collide and form larger
particles. The most common phenomena that cause collisions are Brownian
motion, external forces and turbulence. Agglomeration will be studied in
more detail in the following chapters. The growth term accounts for the
increase or decrease in particle size because of condensation, evaporation or
reactions of gases with particle surfaces. Examples of the source and
removal processes are nucleation and deposition.

2.1. Continuous GDE for the number density function

The number density function ( )n n x v t= *, , , where & & & &x xe ye zex y z= + + is the

position vector and v the particle volume, is defined in such a way that
( )n x v t dxdydzdv*, ,  gives the number of particles with volume between v and

v+dv at location &x in the differential box dxdydz. It obeys the following
partial differential equation (the GDE for aerosol particles; Friedlander,
1977)

( ) ( )∂
∂

∂
∂

∂
∂

n

t
xn

v
vn

n

t
R S

coll
+ ∇ ⋅ + = 



 + +&

� � . (2.1)

The left hand side is comprised of terms describing the temporal and spatial
changes in the number density function as well as growth/shrinkage by
condensation/evaporation. Here ( )& & &

� � , ,x x x v t= is the velocity of a particle of

volume v at location &x and time t. The velocity &�x  can be set to take into
account the migration velocity caused by external forces and the diffusional
velocity caused by concentration gradients. Usually in simulating aerosol
dynamics, however, it is sufficient to set &

�x  to be equal to the gas velocity.
The first term on the right hand side describes the change in the number
density function caused by particle collisions or agglomeration. The form of
this term will be studied in detail in the next chapter. The last two terms
R(v,n(v), &x ,t) and S(v,n(v), &x ,t) are the removal and source terms,
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respectively. The most typical removal and source terms are deposition and
nucleation.

The GDE is in its general form an integro-differential equation, since the
collision terms are integrals of the size distribution function n. Thus,
numerical solutions are practically always necessary. Paper A deals with a
computer program ABC, which was written to simulate aerosol behaviour in
combustion processes. The computational procedure is sectional, i.e. the
size distribution is divided into a number of classes. For each size section
the size of the particles is described by the midpoint of the section (for this
reason the solution procedure is called a nodal point method in paper A) and
there is a differential equation for the number of particles in each section.
The numerical procedure is discussed in more detail in Section 2.3.

2.2 Multicomponent GDE

If the aerosol particles contain many chemical components and we wish to
keep track of the composition in addition to size, a different type of number
distribution is required. If the multicomponent number density function

( )n n x v v v tm m
m= *, , ,..., ,1 2  is defined in such a way that

( )n x v v v t dxdydzdv dv dvm
m m

*, , ,..., , ...1 2 1 2  gives the number of particles,

with the volume of component k between vk and vk+dvk , at location &x and at
time t in the differential box dxdydz, the GDE becomes (Gelbard and
Seinfeld, 1978):

( ) ( )∂
∂

∂
∂

∂
∂

n

t
xn

v
v n

n

t
R S

m
m

k
k

m

k

m m

coll

m m+ ∇ ⋅ + ∑ =








 + +

=

&� � .
1

(2.2)

The collision term depends on the amounts of all chemical components
through its dependence on particle size and density (see Section 3.1).
Equation 2.2 can be solved numerically by dividing both the size and
composition axes into discrete sections (Kim and Seinfeld, 1992). This is,
however, computationally extremely expensive. Another approach is to
average the compositions within each size section (Gelbard and Seinfeld,
1980; Sher and Jokiniemi, 1993). The compositions in different size
sections may be different and are allowed to vary as functions of time and
location, but each section is represented by only one averaged composition.
Then, if we have m size classes and n chemical components, we will have
mn differential equations to be solved. This is the method used in the ABC
computer code (paper A).
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2.3. Discretization of the GDE

In the ABC computer code, the flow field is approximated by a plug-flow
model. The discretization of the GDE is obtained by a finite volume
technique. Many of the calculations of interest are stationary. In the
following, the discretization technique in such cases is presented. The
discretization routines of RAFT (Im et al., 1987) and NAUA-HYGROS
(Jokiniemi and Sher, 1993) have been used as bases for the model.

If the GDE is integrated over a control volume V (Figure 2.1) located at xi,
where the flow is in the positive x-direction in a tube with a cross-sectional
area of A(x), the following form of the stationary GDE is obtained:

( ) ( )∇ ⋅∫ + ∫ = 





+ +








∫

&
� �xn dV

v
vn dV

n

t
R S dV

V V collV

∂
∂

∂
∂

. (2.3)

x(i) x

V

x(i+1)

Figure 2.1. Control volume approach to discretizing the GDE.

Here it is also assumed that all the variables are independent of y and z. The
first term can be transformed using Gauss’s law: ( ) ( )∇ ⋅∫ = ∫ ⋅& & &

� �xn dV xn dA
V A

.

The (deposition) removal term R is proportional to the number density
function n: R = -φn. The form of the source (nucleation) term S is discussed
in paper A. If, in addition, the volume V is very thin, we can approximate
V(xi) ≈ A(xi)⋅∆xi and equation 2.3 becomes:

A x n A x n

A x

v n v n

v

n

t
n S

i i j i j i i j i j

i i

i j i j i j i j

j coll ij
ij ij ij

+ + + − − −

+ + − −

−

+
−

= 





− +

1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

� �

� �

, , , ,

, , , ,

,

∆

∆
∂
∂

φ
(2.4)
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The discretization of the condensation/evaporation term results from similar
finite volume thinking as with the convecton term (the index j refers to the
radius coordinate).

The cross-sectional areas Ai +1 2  and Ai −1 2 , the particle velocities � ,xi j+1 2

and � ,xi j−1 2  as well as the particle growth rates � ,vi j +1 2 and � ,vi j −1 2 are

computed at the cell boundaries using the known geometrical and
physicochemical data, but the discretized size distribution is stored only at
the midpoints nij. The discretized size distribution values in the convection
and growth terms ni j+1 2, , ni j−1 2, , ni j, +1 2 and ni j, −1 2 are approximated by

their nearest upwind values, i.e. the first order upwind discretization is used:

n ni j ij+ ≈1 2, (2.5)

n
n v

n vi j
i j i j

ij i j
,

, ,

,

, �

, �
+

+ +

+
≈

<
>





1 2
1 1 2

1 2

0

0
(2.6)

By using the first order upwind discretizing technique, the solution method
is robust and ”reasonable looking” solutions are practically always obtained.
However, numerical diffusion decreases the accuracy of the solution.

The terms can now be grouped in such a way that the algebraic nature of the
solution procedure can be clearly seen:

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]

φij
i i j

i i j

i j

i j

i j i j

ij

j

i j

i j
j

i j i j

A x

A x v

v

v

v v

n

v

v

n
v

v n

+ + −
−






















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




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


=

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+

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
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−
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−S
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t

A x

A x
ni j

coll i j

i i j
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i j,

, ,

,
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�∂
∂ ∆

(2.7)

Case [1], [2] or [3] is applied according to the following criteria:

[ ] � , �
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+ −
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Case [3], where some particles grow and some evaporate, is possible
because of the Kelvin effect (Hinds, 1982). If the conditions are such that
all particles grow, then we have case [1] for all size classes j. The equation
for nij will then not include ni,j+1. The solution of any matrix equations can
therefore be avoided, since we can just start by solving the equation for ni1,
then ni2 and so on. If all particles evaporate and we have case [2] for all size
classes, we have a similar situation, except that then we start by solving the
equation for ni,max. If there exists a size class k such that all particles larger
than rk grow and smaller than rk evaporate, we start by solving for ni,k, after
which we proceed to ni,k-1 and ni,k+1, and so on.

This discretisation scheme, which is taken from RAFT (Im et al.,1987), is
semi-implicit in nature. In stationary systems, the solution marches along
the x-axis in small increments solving for the size distribution n at every x,
at the same time keeping track of the gas phase concentrations. The other
terms are treated implicitly, except for the nucleation and collision source
terms, in which size distribution values at xi-1 are used when calculating
term values at xi.

In the modeling of aerosol dynamics it is convenient to use a
sectionalization, in which the sections are evenly spaced on the logarithmic
axis (vi+1/vi = constant). Sometimes, however, a more accurate model for the
lower end of the size spectrum is needed and thus a discrete-sectional or
discrete-nodal point discretization is more appropriate (Wu and Flagan,
1988, Paper A). This means that the size axis is divided monomer by
monomer up to a certain prefixed size, after which the logarithmically even
spacing is applied.
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3. AGGLOMERATION OF AEROSOL
PARTICLES

Agglomeration is a process in which particles collide and form larger
particles. Thus, as a consequence of agglomeration the average particle size
increases and the total number concentration decreases. If the collided
particles coalesce to spherical form, the process is usually called
coagulation. If the particles do not coalesce but stick together, dendritic
agglomerates tend to form. Here we will use the term agglomeration for all
collision processes that result in the particles sticking together, regardless of
whether they coalesce or not. Coagulation is regarded as a special case of
agglomeration, where there is instantaneous coalescence after collision.

The most common phenomena that cause collisions are Brownian motion,
external forces and turbulence. In this chapter Brownian agglomeration and
kinematic agglomeration caused by electrical forces are studied in more
detail. The theoretical treatment of agglomeration consists of keeping count
of the number of particles as a result of the collisions (Schmoluchowski,
1917) and determining the collision frequency function as a function of
particle sizes, particle densities and system parameters.

As mentioned in Chapter 2, agglomeration is just one physical phenomenon
affecting the time evolution of aerosol systems. Here it is studied in more
detail, since it is the dominant particle growth mechanism for both the
electrical agglomerator system (papers B and C) and material synthesis
(papers D, E and F) processes.

3.1. The continuous agglomeration equation

Let n(v) be the particle size distribution function defined in the previous
chapter. Then the rate of collisions per unit volume of gas F(u,v) between
particles of size u and v is

( ) ( ) ( ) ( )F u v u v n u n v dudv, ,= β (3.1)

Here β(u,v) is the collision frequency function. It depends on particle sizes,
densities and system variables and will be introduced in more detail in the
next two chapters. If particle collisions are the only phenomenon affecting
the size distribution, we have the equation (Friedlander, 1977):

( ) ( ) ( ) ( ) ( ) ( )∂
∂

β βn v

t
u v u n u n v u du u v n u n v du

coll

v( )
, ,



 = − −∫ − ∫

∞1
2 0 0

(3.2)
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The first term is the rate of formation of particles of size v by smaller
particles of sizes u and v-u. The factor 1/2 must be introduced since
collisions are counted twice in the integral. The second term is the rate of
loss of particles of size v by collision with all other particles. The
multicomponent collision terms are a simple extension to equation 3.2.
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(3.3)

In the ABC model (Paper A), the agglomeration source terms for each
source term are computed by the following technique: All the particle size
pairs are gone through one by one. If the size of the particle resulting from a
collision falls between two nodal points, the resulting particle is divided
between those nodal points in such a way that number and volume are
conserved (size-splitting).

3.2. Brownian agglomeration

If particles are smaller than about 1 µm in diameter, they collide because of
their Brownian motion. The collision frequency function for this mechanism
can be expressed as (Fuchs, 1964):
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If the particles are large enough that they experience the surrounding gas as
a continuum, the particle size is said to be in the continuum regime. Then
the particle diameter is larger than the mean free path of the gas (≈ 0.07µm
for air in standard conditions). If the particle diameter is much smaller than
the mean free path of the surrounding gas, it is said to be in the free
molecular regime. The intermediate region is usually called the transition
regime.
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The continuum regime expression for the collision frequency function is
obtained by solving the diffusion equation of particles of volume v around
one particle of volume u that is assumed to be fixed using the relative
diffusion coefficient D(u)+D(v) (see Fuchs, 1964). The free molecular
collision frequency function is an expression derived by the kinetic theory
of gases assuming rigid elastic spheres. There is no simple collision
frequency function for the transition regimes that could be derived ”from
first principles”. Fuchs (1964) proposed an interpolation formula for the
whole particle diameter range that has been generally accepted:
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Here, with some algebra, it can be seen that the nominator of Equation (3.4)
is equal to the continuum regime expression in Equation (3.3). Thus the
denominator can be thought of as a correction to the continuum collision
frequency function. Also it is easily seen that (3.4) reduces to the free
molecular collision frequency function in (3.3) when di and dj are both very
small. To get a better feeling of how the collision frequency function
depends on the particle size, it is plotted in Figure 3.1.

From Figure 3.1. it can be seen that for equally sized particles, the collision
efficiency function β has a maximum at about 0.05 µm. For large particles
the value of β is low because of their low Brownian diffusivities. Very
small particles have high Brownian diffusivities, but the target areas for
collisions are very small. Finally, it is seen that β is much larger for a
collision of two unequally sized particles than for particles of equal size.
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Figure 3.1. Brownian collision frequency function β(d1,d2) for spherical
particles of density 1000 kg/m3 in air at 293 K and 1 atm using Equation
(3.4).

3.3. Kinematic agglomeration

In Brownian agglomeration, particles collide because of their different
velocities caused by random Brownian motion. If the velocity difference
that is the reason for collisions is caused by external forces (gravitation,
electrical forces etc.), the process is called kinematic agglomeration. A
common example of kinematic agglomeration is the process of collisions of
raindrops with atmospheric aerosol particles. The large raindrops have a
larger terminal settling velocity than the much smaller particles. Thus, the
falling raindrops sweep the area below them, collecting many of the
particles in their way.

The collision frequency function for kinematic agglomeration of particles
with diameters d1 and d2 is usually written in the following form:

( ) ( ) ( )β ε π
d d d d d d v v1 2 1 2 1 2

2
1 24

, ,= + − , (3.5)
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where v v1 2−  is the relative velocity between the particles. The meaning of

the collision efficiency ε(d1,d2) is evident from Figure 3.2. If the particle
moving with greater velocity would sweep all particles that are in its
geometrical path, ε would be 1. This is, however, not the case because of
the curved streamlines around the particles.

B

A

Figure 3.2. The collision efficiency ε is defined as the ratio of the effective
collision cross-section to the geometrical collision cross-section ε = A/B.

For gravitational sedimentation it is possible to derive an analytical
expression for ε that assumes Stokes flow and negligible inertia of the
smaller particle (Pruppacher and Klett, 1978):

( )ε d d
d

d d
d d1 2

1

1 2

2

1 2
1

2
, ;=

+






 << . (3.6)

This means that with significant differences in particle sizes, the collision
efficiency will be much lower than unity. If the external force is an electric
field and Coulombic forces must be accounted for, the situation becomes
more complicated. This problem is discussed in more detail in Chapter 4.

3.4 Agglomeration of non-spherical particles

If the particles that collide are solid and do not have enough time to
coalesce before recolliding, fractal-like structures start to form. They are
typically built from small almost spherical and equal-sized units, called
primary particles. Such structures are conveniently described by a power-
law relationship:
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where Df is the fractal dimension. Equation (3.7) gives the average number
of primary particles N of radius r0 in an agglomerate of volume v and
characteristic radius r (typically radius of gyration or mobility radius). For a
dense structure with spherical shape Df = 3, the factor A is found to be
nearly constant and of the order unity (Wu and Friedlander, 1993a). Both
experiments and numerical simulations have shown that Brownian
movement dominated agglomeration processes tend to produce
agglomerates with a fairly low fractal dimension, in the range 1.6 < Df <
2.2. It is obvious that such open structures collide and thus grow much more
rapidly than spherical particles of the same volume, especially in the free
molecular regime.

In the continuum regime, the effects of increased collision cross-section and
decreased Brownian mobility approximately cancel each other out and thus
there is not much effect on the collision frequencies (Koch and Friedlander,
1990). At present, there is no generally accepted expression available for the
collision frequency function of fractal-like agglomerates. However, a first
approximation can be obtained by replacing di in Equation (3.4) by

( )2 0 0
1

r v vi
D f (assuming A ≈ 1). Then we make the very strong assump-

tion that the same characteristic diameter di describes both the mobility and
capture properties of an agglomerate of any size.

In the free molecular and continuum limits this results in the following
collision frequency functions (Matsoukas and Friedlander, 1991):
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(3.8)

3.5. Self-preserving solution to the agglomeration equation

Friedlander and Wang (1966) pointed out that if the collision frequency
function is a homogenous function of degree n, that is if
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( ) ( )β λ λ λ βu v u vn, ,= (3.9)

then the transformation
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reduces the agglomeration equation (3.2) to an ordinary integro-differential
equation for ψ of η. This solution is called the self-preserving solution of
the agglomeration equation. It is an asymptotic solution ψ(η) towards which
all systems converge, regardless of the initial distribution. It is easily
checked that the collision frequency functions for the free molecular and
continuum regimes (3.3) or (3.10) are homogenous functions but the Fuchs
equation for the complete size spectrum (3.4) is not. If we wish to have a
general solver of the coagulation equation (3.2) for all possible particle size
ranges, we must use a discretization of the particle size spectrum and a
numerical solution as with the complete GDE, explained in Chapter 2. The
form of the self-preserving solution may be obtained by solving the
coagulation equation numerically up to the point where the size distribution,
expressed in the form ψ(η), remains fixed with some preset accuracy.

The free-molecular case will now be analyzed in more detail. By inserting
the free-molecular collision frequency function from (3.8) into the
agglomeration equation (3.2) and by integrating the equation from 0 to ∞,
we get an equation for the total particle concentration N(t). This can be
written in terms of the normalized variables (3.10) for the average
agglomerate volume v  to give (Matsoukas and Friedlander,1991; paper E)
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Here φ is the volume fraction of particulate matter (volume of
particles/volume of gas), n the average number of primary particles in an
agglomerate and α a constant, which depends on Df  approximately by the
following equation:
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Correlation (3.12) was obtained by solving the self-preserving distribution
ψ(η) numerically for different values of (constant) Df, then integrating
numerically and curve-fitting. Equation (3.11) shows the power of the self-
preserving analysis: For systems in the free-molecular regime that have
evolved for a sufficiently long time, the complete size distribution is
described by a single ordinary differential equation (3.11) for the average
agglomerate volume. A similar analysis can be carried out for the
continuum regime (Wu and Friedlander, 1993b; Vemury and Pratsinis,
1995).
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4. ELECTRICAL AGGLOMERATION

In removing flue gas particles at coal fired power plants, the efficient
collection of particles in the diameter range 0.1 to 1.0 µm remains to be
solved. The most commonly used flue gas cleaner under these
circumstances is the electrostatic precipitator (ESP). According to the
studies of Mohr et. al (1996), the total mass collection efficiency with the
ESP can be over 99.7 %, while the collection efficiency for the above
mentioned range can be only 85 %.

Much research has been done recently to solve this problem of significant
submicron penetration by utilizing a particle agglomerator before the ESP in
order to shift the particle size distribution in such a way that the resulting
particles can be efficiently collected (Eliasson and Egli, 1991, Kobashi,
1979). The possibility of accomplishing this by using particle charging and
an alternating electric field was studied in papers B and C and is briefly
reviewed here. In the alternating electric field the particles start to oscillate
with amplitudes and velocities depending on particle size and charging. The
different velocities cause kinematic coagulation between the particles,
hopefully removing most of the particles in the problematic size range.

In the experimental part of the project (paper B), unipolar charging was
used. In the theoretical treatment (paper C), however, studies were extended
to take into account bipolar charging as well. The experimental work was
later extended to agglomeration studies of bipolarly charged particles by
Laitinen (1994) and Hautanen (1995).

4.1. Parallel plate agglomerator

The basic idea of the agglomerator is simple (Figure 4.1). First, the particles
are charged unipolarly with a corona charger, after which they start to
oscillate in the alternating electric field of the agglomerator. Larger particles
have larger oscillation amplitudes and velocities than the smaller ones,
which is supposed to make them collide with each other. The experimental
system is presented in detail in paper B.

The Brownian agglomeration mechanism is too weak in this system to
remove the submicron particles by collisions with the large supermicron
particles, especially since the unipolar charging makes the effect weaker.
The aim of this setup is to remove the submicron particles by kinematic
coagulation, caused by the oscillating motion. To measure this effect, the
particle size distribution is measured after the agglomerator with the
alternating electric field on and off. Comparing the results enables us to
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separate the effect of the field from all other particle removal mechanisms
in the system (Brownian agglomeration, deposition).

corona charger agglomerator

Figure 4.1. Principle of agglomeration (here the case of unipolar
charging): Charged particles start to oscillate in the alternating electric
field. The amplitude and velocity differences cause collisions.

The laboratory agglomerator (Paper B) had the following characteristics:
• amplitude of electric voltage E0 = 710 000 V/m
• frequency of voltage f = 50 Hz
• residence time in agglomerator τ = 4 - 6 s
• total mass concentration of particles M = 1 - 2 g/m3

• geometric number mean diameter of fine particle mode d1 = 0.35 um

• geometric mass mean diameter of large particle mode d2 = 3.0 um

• reduction in fine mode concentration Φ = 3 - 8 %.

In the charger, the particle aquires a charge approximately proportional to
its surface area

( )q d bd= 2 (4.1)

where b is 7.9⋅10-6 C/m2. This means that a particle of 0.14 µm will have
approximately 1 elementary charge, a particle of 0.45 µm 10 elementary
charges, a particle of 1.4 µm 100 elementary charges and so on. The
quadratic dependence of particle diameter agrees qualitatively with field
charging theory (Hinds, 1982). In the following calculations, Equation 4.1
will be used for all particle sizes even if fractions of elementary charges are
impossible.

4.2. Effect of Coulomb forces on Brownian agglomeration

It is possible to derive an expression for the collision frequency function,
taking into account Coulomb forces between the particles (Fuchs, 1964).
The procedure results in a convenient equation where the effect of the
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electric charges can be expressed as a correction factor relative to the
neutral case:

( ) ( )β ξ βξCoul i j i jd d
e

d d, , ,=
−1

(4.2)

( )ξ
πε

=
+

q q

kT d d

i j

i j2 0

. (4.3)

The term ξ represents the ratio of the electrostatic potential energy at
contact to the thermal energy kT. The value of the correction term is plotted
in Figure 4.2 for the parameter values mentioned in the last section.
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Figure 4.2. Correction factor for the Brownian collision frequency function,
caused by Coulomb repulsion (left picture)/attraction (right picture).

4.3. Kinematic agglomeration of particles in an alternating
electric field

If the charge of a particle is proportional to its surface area (Equation 4.1), it
can easily be seen (Paper C) that the motion of the particle (diameter d) in
an alternating electric field (field strength E0cos(2πft), frequency f),
perpendicular to the gas flow can be described approximately with
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Now we see the cause of collisions. The amplitude of oscillation (and also
velocity) is linearly dependent on the particle diameter. Hence the large
particles have larger oscillation amplitudes and velocities than the small
ones.

In the electrical agglomeration study we are interested in the case where the
particles can be clearly divided into large (diameter > 1µm) collector
particles and fine particles (diameter < 1 µm). To find out how effective the
agglomeration process is, we must find out the volume that the large
particles sweep, thus collecting the fine particles that are in their way (Paper
C). This can also be conveniently approximated by using the coagulation
equation (3.2) with the kinematic collision frequency function (3.5). If the
number distribution of the fine particle mode is n1(d1) and of the
supermicron mode n2(d2), the equation

( ) ( )dn d
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is obtained, where the kinematic collision frequency function is
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Here we have used the time average velocity difference of the sinusoidal
motion for the term v v1 2−  in Equation 3.5. The constant σ takes into

account three possible charging cases:
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(4.8)

In paper B, only unipolar charging is studied. However, the same formalism
is easily applied to bipolar charging and the case of neutral, non-oscillating
small particles too. Equation (4.6) can now be solved for n1(d1), thus the
reduction in concentration of particles of diameter d1 is (m2(d2) is the mass
concentration of the supermicron mode):
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An important part of the theoretical study of kinematic coagulation is the
determination of the collision efficiency ε(σ,d1,d2) of two colliding droplets.
The collision efficiency is defined as the ratio of the effective collision
cross-section to the geometrical collision cross-section (Figure 3.2). The
analytical expressions of Fuchs (1964) and Pruppacher and Klett (1978) for
the collision efficiency in the case of gravitational coagulation are no longer
valid in the case where interparticle electrical forces are important.

The determination of collision efficiencies between raindrops and aerosol
particles in the atmosphere was an active research topic among cloud
physicists in the late ’60s and early ’70s (Pruppacher and Klett, 1978). In
most of these studies the equations of motion of the small aerosol particles
are integrated into the flow field generated by the falling motion of the
larger raindrops. By using a similar technique, the following equations are
obtained by curve fitting into numerical results (Paper C):
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Here b is a constant for the charge distribution (4.3) and b0 the ”reference
value” b0 = 7.9 ⋅10-6 C/m2 from the experiments (Paper B).

The curves are plotted in Figure 4.3 for different values of b/b0. Now, if the
collision efficiency ε(d1,d2) from equation (4.10) is inserted into Equation
4.9, the reduction in the submicron mode particle concentration for a given
mass distribution m2(d2) is readily obtained. Some sample calculations are
done in Paper C.
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Figure 4.3. Collision efficiencies of bipolarly charged (|q(di)| = bdi
2)

particles and the Fuchs collision efficiency for the case of neutral fine
particles.

4.4 Discussion

Based on the results of the previous section, unipolar kinematic
agglomeration in an alternating electric field is negligible, when the fine
particles to be collected and the large collector particles are charged with
the same polarity. In the experiments, however, (Paper B) some reduction in
the fine particle mode number concentration was observed. There are a few
possible reasons for this that were not taken into account in the model.

Firstly, a small fraction of the fine particles deposit on the agglomerator
walls because of their vibrating motion in the electric field. Secondly, the
charge distribution (4.1) is based on an experiment that measures the
average charge of the particles. This means that there are particles that have
a larger charge than (4.1) and those which are neutral or even of opposite
polarity. Thirdly, the electric field induces some polarization within the
particles, which increases the rate of Brownian collisions (Fuchs; 1964).
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Finally, the sinusoidal motion of the large and small particles is not exactly
in the same phase because of the inertia of the large particles (Paper C).
This means that in a short time interval, particles of the same polarity move
in opposite directions, which increases the collision efficiency dramatically.
Since it is already obvious from the simple theoretical analysis of the
previous sections and the experimental results that unipolar charging with a
subsequent alternating electric field will not be the solution for enhancing
available particle removal methods, a more detailed analysis, taking into
account all of the above mentioned effects, was not performed in this study.

The case of bipolar charging seems promising in terms of particle removal
efficiency. The sample calculations of Paper C show that, if the collector
particles and fine particles are of opposite polarity, significant reductions in
the fine particle mode concentrations can be obtained. In addition, since this
analysis considered only kinematic agglomeration, the fine particle
reduction should be even higher because of enhanced Brownian collisions
(see Figure 4.2). There is experimental evidence suggesting that actually it
is the enhanced Brownian agglomeration that could be used as the fine
particle removal mechanism - no electric field is needed. (Eliasson and Egli,
1991; Hautanen, 1995)
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5. COALESCENCE OF AEROSOL PARTICLES

As was already briefly mentioned in the introduction to Chapter 3, the rate
of coalescence is important in determining the characteristics of the
collision processes. By coalescence we mean here the rounding of initially
two distinct particles into one spherical particle. If coalescence is fast, only
spherical particles are encountered - then the collision-coalescence process
is called coagulation. If coalescence is slow, dendritic structures form and
the process is called agglomeration.

In the ceramics community, the coalescence process is usually called
sintering. In this context coalescence or sintering means the production of a
ceramic material by heating a powder. Upon heating, the particles in the
powder bond to one another yielding a higher strength. The temperature
required for coalescence to become evident is typically above one half of
the absolute melting temperature (German, 1996). The industrial interest in
sintering results from the change of many physical properties (for example:
strength, conductivity and corrosion resistance) accompanying particle
bonding.

The first quantitative models of coalescence were presented by Frenkel
(1945) and Kuczynski (1949). Most of the work since, reviewed nicely by
Kingery et al. (1976), Coblenz et al. (1980) and German (1996), is based on
their original formalism. This chapter will first briefly introduce the widely
used initial and final stage coalescence models and then summarize the
work of papers D, E and F concerning the modeling of simultaneous
agglomeration and coalescence. Finally, the gas-to-particle aerosol route to
controlled particle production is introduced. The ability to control the
particle size in superfine particle production is essential because of the size
dependence of many important material properties (Ichinose et al., 1992).

5.1. Initial solid state coalescence models

Here the system of interest consists of two separate spherical particles of
radius r, initially touching each other. The reduction in surface free energy
is the driving force for coalescence, the result of which being a single
spherical particle. The purpose of this chapter is to discuss the modeling of
the initial stages of sintering, i.e. the formation and growth of a neck
between the particles.
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rx

Figure 5.1. Neck formation between two spherical particles during the
initial stages of coalescence.

In classical sintering models (Coblenz et al., 1980) the growth of the neck
radius x (see Figure 5.1) by a single coalescence mechanism can be
described with the equation

( )x

r

C T

r
t

n

m






= (5.1)

where C(T) is a function that for a specific material and coalescence
mechanism depends only on temperature (Table 5.1). The parameters m and
n are constants that have different values for different coalescence
mechanisms (Table 5.1).

Table 5.1. Initial neck growth model parameters for various coalescence
mechanisms.

Coalescence mechanism C(T) m n
viscous flow 3

2

σ
µ

1 2

evaporation-
condensation ( )

6

2

3 2

2 3 2

σ
π ρ

pM

RT

2 3

lattice diffusion 64D M

RT
lσ

ρ
3 4

surface diffusion 225δ σ
ρ

D M

RT
s 4 5

grain boundary diffusion192wD M

RT
bσ

ρ
4 6

σ = surface energy R = gas constant ρ = density
µ = viscosity T = temperature D = diffusion coefficient
p = pressure δ = surface layer thickness      (l = lattice, s = surface
M = molar mass w = grain boundary width        b = grain boundary)
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The expression (5.1) for neck growth is based upon simplified geometries
for the growing neck that limits its applicability to a neck radius below
about x/r < 0.3. Even if the whole coalescence process cannot be described
in this way, an estimate of the order of the time needed for complete
coalescence (characteristic time for coalescence or fusion) can be obtained:

( )τ f

mr

C T
= . (5.2)

In addition, Equations 5.1 and 5.2 give us a feeling for how the coalescence
process proceeds and depends on particle size. From Equation 5.1 it is clear
that the neck grows rapidly at first and then the process slows down. This
will be discussed in more detail in the next section. From Equation 5.2 (and
Table 5.1) it is also obvious that coalescence takes longer for larger
particles. For coalescence by viscous flow the characteristic coalescence
time τf is proportional to the particle radius, and for the evaporation-
condensation and diffusion mechanisms the effect is even stronger.

5.2. Coalescence models for the final stages

In their numerical simulations of coalescence by viscous flow, Hiram and
Nir (1983) found that the neck radius x approaches its final value xsph

exponentially:

( )dx

dt
x x

f
sph= − −1

τ
. (5.3)

This equation was found to hold beyond the very short time interval during
which approx. 10% of the neck growth takes place.

Koch and Friedlander (1990) noted that an equation of the same form is
then valid for the surface area reduction in the final stages of coalescence:

( )da

dt
a a

f
sph= − −1

τ
(5.4)

where a is the total surface area of the coalescing pair of particles and asph is
the surface area of a spherical particle of the same volume. This result was
already theoretically derived by Frenkel (1945) for coalescence by viscous
flow and later by Friedlander and Wu (1994) for coalescence by solid state
diffusion. Their derivation was based on a solution for the diffusion
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equation inside the particle using spherical harmonics, with a boundary
condition relating the curvature and difference in pressure across the
surface. Their derivation resulted in the following form for the characteristic
coalescence time, which is of the same functional form as the time in Table
5.1, differing only by a constant factor of 4:

τ
π σf

m

kTv

D v
= 3

64
(5.5)

where T is the absolute temperature, v the particle volume, D the solid state
diffusion coefficient, σ the surface energy and vm the molecular volume.
Solid state diffusion is a thermally activated process and its temperature
dependence can be represented by an Arrhenius form (Kingery et al., 1976):

( )D T D
E

kT
act= −



0 exp . (5.6)

Even if Equation (5.4) is valid only for the final stages of coalescence, it is
frequently used to model the complete coalescence process because of its
convenient form, which becomes especially evident in studying systems
where coalescence is accompanied by simultaneous collisions with other
particles. The error of this assumption is discussed in Koch and Friedlander
(1990).

5.3. Simultaneous collision and coalescence

A convenient but simple technique to describe nonspherical particle
dynamics is to choose the surface area in addition to the volume as particle
size and shape variables. Let n(v,a,t) be the particle number concentration
per unit mass of gas in a volume range between v and v+dv and an area
range between a and a+da at time t. In the absence of condensation and
dilution by mixing, the general dynamic equation for the continuous size
distribution function becomes (Koch and Friedlander, 1990)
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(5.7)
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The collision frequency function β is assumed to be a function of particle
volume and area only. The second term of Equation 5.7 represents the
motion in area space due to coalescense. The right hand side is the change
due to collision. The step function Θ is required because the surface area of
the particle produced by a collision is greater than the sum of the minimum
surface areas asph(v) of the two original particles.

Using the exponential decay law for the surface area (Equation 5.4),
multiplying by a and integrating with respect to a and v (Paper D), the
following linear relationship for the total surface area per unit volume Asph

of all aerosol particles is obtained:

( ) ( )dA

dt v
A A

f
sph= − −1

τ
(5.8)

where A is the total surface area per unit mass of gas, v  is the average
particle volume and Asph is the minimum possible surface area (complete
coalescence) per unit mass of gas.

It is convenient to introduce a new variable θ (Paper D), which represents
the fractional deviation of the aerosol surface area from the state in which
each particle has relaxed to the spherical shape:

θ =
−A A

A
sph

sph

. (5.9)

Using θ as the surface area variable transforms equation 5.8 into the
following form:
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τ τ
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where τc is the characteristic collision time, defined by

1 1 1

3τ c sph

sph

A

dA

dt v

dv

dt
= − = . (5.11)

Studying this form of the equation gives a deeper insight to the problem of
simultaneous collisions and coalescence, at least in a cooling system. This is
due to the exponential nature of equation 5.10, in which the sign of the
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factor before θ determines the nature of the solution (see paper D). At the
beginning, when the temperature is high, the characteristic coalescence time
τf is shorter than the characteristic collision time τc. Then θ will stay close to
zero. When the temperature falls, the solid state diffusion coefficient
decreases very rapidly and at some point τf becomes greater than τc. Thus,
the nature of the solution changes and θ starts to grow rapidly. This is
approximately the point at which the primary particle size is determined,
and dendritic agglomerate stuctures start to form.

In some applications, much of the primary particle growth may occur within
large agglomerates. As the linear coalescence law (equation 5.4) is strictly
valid only for the final stages of coalescence, it is not expected to work well
for the coalescence of large agglomerates (of n primary particles). In paper
E, the applicability of the linear coalescence law is extended by applying it
to smaller domains (of m primary particles) of the agglomerate, instead of
the complete dendritic structure. By doing so, the following approximate
equations are obtained for the growth of the average agglomerate and
primary particle sizes:
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Equations 5.12 and 5.13 are coupled through n = vp/va , the value of which
also determines which right-hand-side is used equation 5.13. Although
approximate, equation 5.13 is intuitively correct in the sense that it reduces
to equation 5.8 if n is small, and does not depend on n if n is large. Equation
5.13 can be actually thought of as an interpolation between the two extreme
cases.
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5.4 Gas-to-particle aerosol technique for controlled nanoparticle
production

The unique properties of matter comprised of superfine structures have
raised a lot of attention in recent years (Ichinose et al. 1992, Siegel 1994).
Aerosol techniques provide a useful tool to produce high purity materials in
a controlled way (Pratsinis and Kodas, 1993). In the gas-to-particle aerosol
conversion process, precursor vapors react and form product particles that
grow further by collisions. Powders made by such techniques typically have
narrow size distributions and they consist of nonporous, spherical primary
particles. The gas-to-particle route for material synthesis is used on an
industrial scale, for example, in the production of pigmentary titania and
fumed silica.

High temperatures are usually required for the reaction of the precursor
vapor to produce molecules of the desired material. These molecules grow
by condensation or coagulation, retaining a spherical form if the collision
rate is slower than the coalescence rate. In the opposite situation,
agglomerates of spherical primary particles form. The high temperatures
required for the reaction are obtained typically in flame, furnace, plasma or
laser reactors.

An example of the gas-to-particle aerosol technique for nanophase material
production is the free jet described in paper F (Figure 5.2). The system
consists of a precursor vapor introduced as a jet into a methane-air flame, in
which the precursor reacts with oxygen to form metal oxide particles. The
particles grow by simultaneous collision and coalescence, the rates of which
determine the final primary particle size (papers D-G). The particle size is
controlled by using temperature, residence time and volume loading as
control parameters. The effect of material properties, especially the solid
state diffusion coefficient, is studied by performing the experiments with
three different materials: Titania, Alumina and Niobium Oxide. Based on
comparisons with model calculations it is obvious that even simple models
based on characteristic time scales can give valuable information on how
the process parameters affect the dynamics of the material synthesis process
(Paper G).
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Figure 5.2. The free jet material reactor is comprised of a precursor-
nitrogen jet, brought into a methane-air flame. Particles grow along the jet
axis until coalescence is quenched by ambient air.
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6. CONCLUSIONS

In this thesis, theoretical modeling of certain aerosol systems has been
presented. After starting from aspects of a general aerosol dynamics
solution routine, the focus of the thesis considers two applications, in which
particle collisions are the dominating dynamic mechanism and simple,
almost analytical theoretical models are within reach.

The first application is the electrical agglomerator, in which aerosol
particles are charged and brought into an alternating electric field. With this
arrangement the aim is to remove submicron particles from flue gases by
collisions with larger particles before conventional gas cleaning devices that
have a clear penetration window in the problematic 0.1-1 µm size range. A
model was derived for the removal of the submicron particles in an
agglomerator, in which the effect of electric charge on the collision
efficiencies was computed numerically.

The theoretical analysis performed clearly demonstrates that bipolar
charging is necessary to obtain significant removal of submicron particles
by such an arrangement. Optimally, the particles to be collected and the
larger collector particles should have opposite charges. The efficiency of
bipolar charging comes from two effects: 1) the motion of oppositely
charged particles in an alternating electric field is in opposite phase and 2)
oppositely charged particles attract each other.

The second application is controlling nanoparticle size in the gas-to-particle
aerosol route to material synthesis. In a typical material reactor, a precursor
vapor reacts to form molecules of the desired material. In a cooling
environment, a particulate phase forms, in which the particles grow by
collisions. At first, the collision rate is slower than the coalescence rate -
thus the particles remain spherical. The coalescence rate is a strong function
of temperature, and at some point the collision rate becomes faster. This is
where agglomerate stuctures start to form and approximately the point
which determines the primary particle size. These stages were demonstrated
using a laboratory scale free jet material reactor.

A theoretical model based on the simultaneous solution of collision and
coalescence is presented, which is based on the self-preserving solution to
the agglomeration equation and solid state coalescence models. It gives the
average agglomerate size and primary particle size as a function of location
in a given material reactor. Consequently, the onset of dendrite formation
and final primary particle size of the produced material are also predicted.
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From the comparisons between theory and experiment it is obvious that
such a model is able to capture the effects of the system parameters
(temperature, velocity, volume loading of material and location of
collection) on the primary particle size of the produced material, and can
thus be a valuable tool in producing nanomaterials of desired properties.
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