VTT PUBLICATIONS 347

A haptic rendering system
for virtual handheld
electronic products

Tommi Anttila
VTT Electronics

TECHNICAL RESEARCH CENTRE OF FINLAND
ESPOO 1998

ISBN 951-38-5232-6 (soft back ed.)
ISSN 1235-0621 (soft back ed.)

ISBN 951-38-5233—4 (URL: http://www.inf.vtt.fi/pdf/)
ISSN 1455-0849 (URL: http://www.inf.vtt.fi/pdf/)

Copyright © Valtion teknillinen tutkimuskeskus (VTT) 1998

JULKAISIJA — UTGIVARE — PUBLISHER

Valtion teknillinen tutkimuskeskus (VTT), Vuorimiehentie 5, PL 2000, 02044 VTT
puh. vaihde (09) 4561, faksi (09) 456 4374

Statens tekniska forskningscentral (VTT), Bergsmansvéagen 5, PB 2000, 02044 VTT
tel. véxel (09) 4561, fax (09) 456 4374

Technical Research Centre of Finland (VTT),
Vuorimiehentie 5, P.O.Box 2000, FIN-02044 VTT, Finland
phone internat. + 358 9 4561, fax + 358 9 456 4374

VTT Elektroniikka, Elektroniikan piirit ja jarjestelmat, Kaitovayla 1, PL 1100, 90571 OULU
puh. vaihde (08) 509 111, faksi (08) 551 2320

VTT Elektronik, Elektroniska kretsar och system, Kaitovayla 1, PB 1100, 90571 ULEABORG
tel. vaxel (08) 509 111, fax (08) 551 2320

VTT Electronics, Electronic Circuits and Systems,
Kaitovayla 1, P.O.Box 1100, FIN-90571 OULU, Finland
phone internat. + 358 8 509 111, fax + 358 8 551 2320

Technical editing Kerttu Tirronen

LIBELLA PAINOPALVELU QOY, ESPOO 1998

Anttila, Tommi. A haptic rendering system for virtual handheld electronic products. Espoo 1998,
Technical Research Center of Finland, VTT Publications 347. 69 p.

uDC 681.3.07:681.3.06:519.68
Keywords virtual prototypes, virtual reality, 3D modelling, haptic rendering, force feedback

A virtual prototype is a fully digital computer model that simulates a product’s
visual appearance, sound properties, the functionality of the user interface and
its behaviour as closely as possible. Touch interaction, however, is one of the
main information sources when we explore objects and interact with our
environment. For this reason a haptic rendering system that enables the user to
receive force and tactile feedback from 3D graphical models is studied. Haptic
rendering gives the user the ability to sense the virtual prototype’s physical
properties such as shapes, materials and button properties. Haptic rendering
with a stereographic view provides a realistic and comprehensive simulation of
the physical user interfaces of products. An experimental haptic rendering
system is developed for virtual prototypes of small-sized handheld electronic
and telecommunication devices. The system provides tactile and force feedback
from user-to-product interaction through a simulated user interface of the target
product. The developed haptic rendering system is based on distributed
architecture. The visual rendering process is executed on a separate computer
from the haptic rendering process, which leaves more computational power for
these processes. The haptic rendering system implemented is evaluated by
haptically rendering a virtual prototype of a future cellular phone. The process
for creating such a virtual prototype starts by designing a CAD model. The
model is then converted to Open Inventor format which is the format used with
haptic and visual rendering. The functionality and haptic properties are added to
the converted model with a special tool to produce a haptically renderable
functional virtual prototype. Experiences showed that adding functionality and
haptic properties to static Open Inventor models and modifying these models is
quick and easy. The realism of the sensations received from haptic rendering
may be further developed by implementing a virtual fingertip which allows
simulation of various fingertypes.

PREFACE

This study was carried out during 1997 as a part of the Virtual Reality
Prototyping project (VRP) at the Technical Research Centre of Finland (VTT).

I would like to express my gratitude to the supervisors of this work, professor
Petri Pulli and associate professor Kari Kuutti from the University of Oulu for
their valuable comments to this study. | am also deeply grateful to the advisor of

this work, Marko Salmela M. for his guidance and contribution during the study.

I would also like to thank Mikko Kerttula and Harri Kyllonen from VTT
Electronics for their assistance.

Finally, thank you Titta for your support.
Oulu 1.2.1998

Tommi Anttila

CONTENTS

ABSTRACT
PREFACE
1. INTRODUCTION

2. DESIGN OF A HAPTIC RENDERING SYSTEM
2.1 Principles of haptic rendering
2.2 Requirements of haptic rendering
2.3 The virtual fingertip
2.4 The Phantom haptic device
2.5 Constraints on the haptic rendering system
2.6 Architecture design

3. IMPLEMENTATION OF THE HAPTIC RENDERING SYSTEM
3.1 Software components
3.1.1 Open Inventor
3.1.2 I-Collide
3.1.3 Armlib
3.1.4 Ghost
3.2 Architecture alternatives
3.2.1 Fully Distributed Architecture
3.2.2 Haptic Server Architecture
3.2.3 Single Workstation Architecture
3.2.4 Visual Server Architecture
3.2.5 Comparison of different architecture alternatives

4. EVALUATION OF THE IMPLEMENTED HAPTIC RENDERING

SYSTEM

4.1 Haptic rendering model creation
4.2 Use of the haptic rendering system
4.3 Quality of the haptic rendering

4.4 Performance evaluation

5. DISCUSSION
5.1 Haptic rendering experiences

14
16
18
20
24
26
28

31
31
32
33
35
37
39
39
41
44
45
47

50

51
54
57
59

61
61

5.2 Benefits
5.3 Problems
5.4 Further development

6. SUMMARY

REFERENCES

62
62
63

65

67

3D
Armlib
C++
CAD
DC
Ghost
GSM

haptic

HF

HMD
HW
I-Collide
I/10

Java
Open GL
Open Inventor
PC

SGl

SwW

TCP
UDP
VAS

VR
VRML
VRP
VTT

LIST OF SYMBOLS

Three dimensional
A haptic library

An object oriented programming language
Computer Aided Design

Direct Current

A haptic library

Global Systems for Mobile Communications, a
mobile phone system

To touch or having to do with the sense of touch;
tactile.

Haptic Feedback

Head Mounted Display

Hardware

A collision detection library

Input / Output

An object oriented programming language

A software interface to graphics hardware

3D graphics library

Personal computer

Silicon Graphics Inc.

Software

Transmission Control Protocol

User Data Protocol

Virtual Acoustics Simulator

Virtual Reality

Virtual Reality Modelling Language

Virtual Reality Prototyping

Valtion Teknillinen Tutkimuskeskus (Technical
Research Centre of Finland)

1. INTRODUCTION

There is a need to compress product development cycles and reduce costs when
developing new products. Especially in the area of electronics that incorporate
embedded computer systems, increased product complexity and global
competition together with shortened product life cycles have given rise to
exploration of new approaches. Virtual prototyping tries to overcome set
challenges by providing a fully digital model of the simulated device. It uses
simulatable computer models of a product which are referred as virtual
prototypes [1].

The virtual prototype simulates a product’s visual appearance, sound properties
the functionality of the user interface and its behaviour as closely as possible.
Virtual prototyping reduces the need for costly physical prototypes by providing
product testing and evaluation without or in combination with physical models.
The properties of virtual prototypes can be easily changed which makes it
possible to quickly test many different design alternatives for the final product.
A further advantage is that re-evaluation of the created virtual prototype is
quick, what allows the designer to test more prototypes than would be with
conventional physical prototypes. When the first physical model is produced,
the need for changes should be minimal and the produced physical model should
be very near to the final product. Virtual prototyping improves the accuracy and
quality of the prototype to meet the needs of the customer and the market [1].

Conventional virtual prototyping, however, lacks the simulation of the physical
properties of a real product in user-to-product interactions. Visual 3D models of
virtual prototypes do not permit touch interaction, which is one of the most
intuitive and expressive means for humans to interact with their environment. In
our daily lives, touch interaction is used in many ways to interact with our
environment. We explore objects by touching them and receive large amounts of
information about their shape and materials, without paying special attention to
it [2]. Visual virtual prototypes do not reveal the physical properties of the
product or design errors that are connected to the physical properties of the
product. Physical prototypes in turn show what the product looks and feels like,
but do not usually provide the functionality of the end-product.

Haptic rendering [3] closes the gap between physical prototypes and visual
virtual prototypes by giving the user the ability to sense the physical properties
of virtual prototypes. It gives the user an opportunity to receive force and tactile
feedback from 3D images of virtual prototypes and enhances that way the
realism of virtual prototypes. Usually feedback from computer models is limited
to visual and sound feedback, and manipulation of the models is performed with
the keyboard and mouse. A haptic device is used for tracking the user’s position
and actively exerting forces on the user. It is the only interface that provides a
two-way information flow between the user and a computer. With haptic
rendering, testing of the virtual prototype’s physical parameters such as material
properties, button properties (size, shape, material, spring constant) is possible.
Haptic rendering provides a realistic and comprehensive simulation of the
physical user interfaces of products. It is much more effective for understanding
if one can touch and use the virtual prototype rather than just see it and
manipulate it with a mouse. A stereographic view with haptic rendering should
provide the user the possibility of thinking that the rendered virtual prototype is
as realistic as the physical model.

Haptic rendering increases the testability of virtual prototypes. As it is possible
to change different material parameters, button parameters and the size of
different objects, it is quicker and therefore easier to achieve good product
designs without or together with real physical models. Without haptics, a
significant amount of information is not available about the physical
characteristics of the product. Haptic rendering of a virtual prototype provides a
more complete view of the final product than conventional virtual prototyping
based merely on visual techniques. Beside product development, haptic
rendering can also be applied to many other fields such as medical applications,
nanomanipulation, telerobotics, military applications and entertainment [3, 4].

Figure 1 shows different forms of human-computer interaction with virtual

prototypes. It also shows examples of how different simulation models can
simulate different properties of a virtual prototype.

10

Interaction Visual Rendering Behavioural Simulation
Tracking Haptic Rendering Functional Simulation
Control Auditory Rendering Structural Simulation
Kinematics Simulation
- Auditory Other Distributed Simulation
Virtual - .) B Y
- Prototype Simulation Simulation Communication
Visual Model Models Inter-Operation
User Feedback
SN Lo HW
Auditory 3D Simulation Simulation
Feedback o visua_l Model Models
Rendering
Touch Model
Manipulation
S EE— SW
_ Simulation
Haptic - Models @tworking
Feedback) i
E— Simulation Logical IESLE
Model Simulation
Models
User Interface
Techniques
Virtual Reality Digital Simulation
Techniques Techniques

Figure 1. Human-computer interaction with virtual prototypes.

This work was carried out at VTT Electronics in the Virtual Reality Prototyping
project (VRP) [5] and it was a part of research and development work on the
VRP environment. The VRP project concentrates on developing virtual
prototyping technology for product development in the area of electronics and
telecommunications. The VRP project uses new virtual reality techniques to
increase testability of virtual prototypes. The goal of this work was to create a
haptic rendering system that provides haptic rendering of complex-shaped
virtual prototypes of small, usually handheld, electronic and telecommunication
devices. A very important aim was also to synchronise visual and haptic
simulations so that no discernible delays between the visual and haptic
environments would occur.

The objective of the haptic rendering system is to provide as realistic as possible

sensations of the simulated prototype. To simulate the physical properties of an
electronic product, several features should be haptically renderable (Figure 2):

11

e shapes

* buttons

» surface stiffness

» surface friction

e movable parts (sliders etc.).

Tactile
feedback
Materials: Plastic,
Glass, &
ete. — Movable objects
Force Feedback ¢ le'llit;](;r:ssy
shape and [)
surface stiffness.\

Figure 2. Haptically renderable properties of a cellular phone.

To enable the haptic rendering of the physical shape and the user interface of
electronic and telecommunication products, the following tasks were set to:

» Define the architecture and the components for a haptic rendering
systemthat would provide a stable and accurate environment for the haptic

rendering of complex-shaped virtual prototypes.

« Implement the haptic rendering systemutilizing selected software and
hardware components.

12

« Develop interfaces and modelling process supporifThe implemented
haptic rendering system should provide easy generation and modification of
virtual prototypes with haptic rendering capabilities. The system should take
into account special features that are related to the physical properties of
small handheld electronic products.

e Evaluate the implemented haptic rendering system by testing
performance and rendering properties.

This study concentrates first on describing haptic rendering and the software and
hardware components that are required for a haptic rendering system. The
constructive part of this work concentrates on finding and implementing an
appropriate architecture for a haptic rendering system, and developing the
selected architecture to be feasible for usability tests and development of new
electronic products.

The haptic rendering system implemented is evaluated by haptically rendering a
virtual prototype of a future cellular phone. The process for creating and
modifying such a virtual prototype is described. Also the problems and
experiences from haptic rendering in the implemented system are described.

13

2. DESIGN OF A HAPTIC RENDERING
SYSTEM

The VRP project (Virtual Reality Prototyping) at VTT Electronics is aimed at
developing virtual prototyping technology for product development in the area
of electronics and telecommunicatioviirtual reality techniques are used for
providing a realistic rendering of the simulated product features and a user-
interface to interact with virtual prototypes [5]. Concentration on small handheld
electronic products allows adequate haptic rendering with present day high-end
haptic devices.

A research environment has been constructed to study virtual prototyping
(Figure 3). A virtual prototyping environment can consist of several computers

each dedicated to a particular simulation area. Communication between different
simulations is a socket-based [6].

Sound
Files

Audiotory VRP
Rendering AudioEngine E
Virtual =
VRP Editor Prototype
Logical Pentium PC
VRP Viewer Model or

Visual
Rendering
Haptic
Simulation

Rendering
Model

SPARCStation

VRP HFClient

@ TCP/UDP)

a) .
VRP Communication System
U J

w
@
S
a
=
)
~

VRP VAS
3D Acoustic
Simulation

Figure 3. Schematic representation of the virtual prototyping environment at
VTT Electronics.

VRP HFServer
VRP CM | = Communication Module
HFClient | = Haptic Feedback Client

Haptic
= Haptic Feedback Server] Rendering

VRP VAS | = Virtual Acoustics Simulator Pentium PC

Pentium PC

Acoustics
Simulation Model

14

The VRP project aims to develop a virtual prototyping environment with basic
functions. An integration framework connects different simulations and existing
software and hardware to virtual prototypes. A component management system
quickens and eases the development of virtual prototypes by providing reusable
virtual prototype components. Haptic rendering system requires special
equipment to render virtual prototypes (Figure 4).

L ——=
e |
B
=
i
i

1
‘l.
i

-
i

?;amir-ei

Figure 4. Virtual prototyping environment at VTT Electronics. 1) A haptic
device, for receiving tactile and force feedback from virtual prototypes and for
manipulating them by touch. 2) 3D glasses, to get a stereoscopic image of the
simulated virtual prototype. 3) Efficient workstation, for haptic and visual
rendering. 4) A head position tracker to find out the position of the head. When
the user moves his/her head to look at the virtual prototype from the side, the
visual scene changes so that it is possible to look at the object from different
directions. 5) A soundcard with loudspeakers to output sound effects from the
virtual prototypes.

15

2.1 Principles of haptic rendering

In the VRP project, haptic rendering means continuous measuring of the user’s
fingertip position and applying appropriate forces to user’s index finger with the
the used haptic device. The haptic rendering loop must be executed at a
frequency of approximately 1000Hz to be able to give credible sensations of the
simulated prototype (Figure 5) [7]. At slower update frequencies, virtual walls
may feel unstable or soft, which decreases the level of realism.

Force vector
1000 Times Human
Computer Model Per Second Manipulation

Fingertip Position

Figure 5. Haptic rendering loop.

The way in which a force vector is applied, can be based on the plane and probe
model [8]. The plane and probe model applies forces to the probe (and the user’s
fingertip) depending on the probe’s relative position to virtual planes (Figure 6)

[4].

16

Above surface,
Force = 0 On the surface,

Force = 0

Below the surface,
Force = surface stiffness
* penetration depth (Nm)

Figure 6. Applying forces in the plane and probe model.

Virtual planes are defined by local approximations of the actual surface. In this
method, as accurate as possible local approximation should be maintained to get
a good sensation of varying virtual surface [8]. An example of local
approximations, when the user moves his finger in the direction of the arrow, is
presented in Figure 7.

Virtual
N Planes
Virtual surface NI Local approximations

of virtual surface

Figure 7. Local approximation method.

When the user moves the probe on a virtual plane, the plane equation is updated
frequently to create a sensation of shape. When the correct virtual plane that the
user is touching has been found, a resisting spring force towards the probe is
defined by the penetration depth. As a result, the user can feel a virtual wall
whose stiffness depends on the used parameters and properties of the haptic
device [4].

17

Some applications need a different approach from virtual planes to achieve
realistic haptic rendering. For example, moving objects that are under the
influence of complex force-fields require a virtual spring model. A virtual spring
pulls the user’s finger towards the point of contact. Multiple virtual springs can
together create a torque-effect [4].

2.2 Requirements of haptic rendering

Virtual prototypes of electronic products can be very complex-shaped. The
ability to render these prototypes stable and accurate, sets high performance
requirements on the computer used. The haptic rendering environment must be
efficient enough to render complex virtual prototypes useful for virtual
prototyping. Real-time visual and haptic rendering of realistic virtual prototypes
is required.

Speed

The haptic rendering loop must be executed at a frequency of approximately
1000Hz to be able to give credible sensations of the simulated prototype. The
visual update rate of 25Hz must be reached for smooth animation of visual
scene. Haptic and visual scenes must be synchronised so that no perceivable
delays occur when manipulating the haptic or visual environment. This is very
important for the degree of realism that the rendering environment can provide.

Haptic properties

Haptic rendering should as closely as possible enable creation of the same
physical properties as the actual physical product has. Rendering of static shapes
includes all possible surface shapes such as shape primitives (cones, cubes,
cylinders and spheres) and more complex shapes constructed from separate
planes. With these it is possible to create any kind of static virtual prototype.

To achieve realistic sensations for the simulated product, haptic rendering of

material properties is essential. A static virtual prototype without any surface
friction makes the simulated prototype material feel like oiled glass [8]. With

18

material parameters, it is possible to simulate sensations of plastic, rubber and
other materials. Simulation of surface properties contains haptic rendering of

e static friction
e dynamic friction
e surface stiffness.

Surface stiffness defines the hardness of the surface. Generation of hard surfaces
requires special attention to the safety and stability of the rendering
environment. A haptic device has the power to destroy or damage itself and hurt
the user when faults occur [8]. In these situations, hard surfaces may increase
the generated power that the haptic device applies.

Movable objects

Virtual prototypes must also contain movable objects. This means mapping of
the model shapes to buttons, sliders and dials. Movable objects must be
synchronised between the visual and haptic environment so that no perceivable
delays occur when manipulating dynamic objects. When the user manipulates
for example a button in the haptic virtual prototype, also the visual prototype
changes synchronously. Then if the button is pushed to some predefined depth,
event can be sent to the appropriate event handler for example to update the
simulated product’s display.

Usability

Physical attributes must be precise and easily changeable. When modelling a
virtual button for example, changing slightly the spring force of the button may
give a better feel to the product user-interface. After iterating the appropriate
spring constant, it should be easy to construct a similar physical model.
Selecting materials for different parts of the final product should also be easier
after testing different materials with a virtual prototype.

To make more informative usability tests with small handheld electronic
devices, some kind of approximation of the user’'s fingertip with haptic
rendering is required. This would allow, for example, tests on if a button is too
small to be pressed, or if buttons are too close to each other to be easily used.

19

2.3 The virtual fingertip

Haptic applications usually present the user’'s haptic fingertip as a small point,
which can go through or get stuck in the tiniest holes in a 3D model [8, 9]. The
visual fingertip is usually shown to be bigger than the haptical virtual fingertip
for visibility reasons. This causes various problems in haptic rendering. When
the user’'s fingertip is haptically presented as a small point, stable haptic
rendering of a virtual prototype is harder. The user’s finger is allowed to go
inside little features, which in turn sets greater speed requirements on the haptic
rendering to collision detection and back loop. Also, in cases when the size
difference between the haptic and visual fingertip presentations is big, the user
tends to make estimation errors.

A virtual fingertip [7] is an approximation of the user’s physical fingertip. It
presents the user's haptic and visual fingertips as equal-sized. For simplicity
reasons, the virtual fingertip can be presented as a sphere, which quite well
matches the properties of a human fingertip. The size of the sphere should be
easily changed to simulate different finger types. This is very useful when
making product usability tests.

Figures 8-13 below describe the most common problems and incorrect
behaviour that occur when the haptic and visual fingertips are different sizes.
Figures 8-13 a) describe the situation where the haptic fingertip is a small point
and the visual fingertip is a larger sphere. Figures 8-13 b) describe same
situations when the haptic and visual fingertips are equal in size.

20

Visual fingertip

Haptic fingertip
a) b)

Figure 8. User’s finger on a virtual surface. Figure 8a) shows how half of the
virtual fingertip is allowed to be and slide inside a virtual plane. This does not
look very realistic, showing a solid looking object is not solid after all. Figure
8b) shows the correct functioning.

Ea e

Figure 9. Small hole on a virtual surface. Figure 9a) shows a case, where the

user gets stuck in a small hole on the surface. The virtual fingertip should not be

able to get stuck in small holes as shown in 9b) because the rendering of these
shapes is very power consuming. It has also an effect on the stability of the

haptic rendering system. In most cases, it is better to close these small holes to
improve the quality of haptic rendering.

21

a) b)

Figure 10. A narrow gap between virtual prototype’s parts. Figure 10a) shows
how the user’s fingertip can slip inside and through a virtual prototype from a
small gap between parts when the user thinks that the haptic and visual
fingertips are of equal size, unlike in 10b) where the user’s finger is not allowed
to go through the prototype. Because of this, special care must be taken when
assembling the virtual prototypes from the virtual objects. Adjacent parts in a
virtual prototype must be tightly joined to close these small holes.

a) b)

Figure 11. Pushing a button. Figure 11a) shows a case where the user sees a
bigger finger-object than it haptically actually is and gets a false feeling that the
fingertip is stabily pushing a button. This is not however the case. Often this
false feeling of stability causes the user to slip from a button. In Figure 11b), the
haptic fingertip is the size as the visual and problems do not occur as easily.

22

Figure 12. Pushing buttons that are near each other. Figure 12 shows a case
where the user pushes the buttons that are near each other. In Figure 12a) the
user is allowed to be partially inside other buttons. Some problems are quite
similar to those described in Figures 8, 9 and 10 but also another problem
occurs. The user is not able to push the multiple buttons at the same time as in
the real world. Figure 12b) shows the correct functioning in this situation.

oy

Figure 13. Pushing a button that is in a hole. Figure 13a) shows how the user is
able to push the button deeper than should be possible. Figure 13b) shows what
would happen in the real world: the button is too deep to be pushed for a finger
of this size or the button is too small.

The virtual fingertip increases the stability of the haptic rendering by avoiding
incorrect haptic rendering of small details as shown above. It also increases the
realism and improves the amount and quality of the information from virtual
prototype usability tests. It gives for example information as to whether the
buttons are too small to be pushed, if the buttons are too close each other or too
small.

23

2.4 The Phantom haptic device

The haptic device is the basic component in haptic rendering. It defines the

haptic interface between the user and computer: what kind of sensations the
user can receive. The selected haptic device for the VRP project, Phantom, uses
a passive thimble as a user interface [10]. The mechanics of the Phantom are
shown in Figure 14 [11]. The system consists also of a separate power amplifier

cabinet and an 1/O card that connects the Phantom to a computer that controls it.
With a single Phantom haptic device, tactile and force feedback can be received

with one finger.

Mechanical
linkage

motors

jk///tthMe

Figure 14. The Phantom haptic device.
The Phantom uses a small wrist centred workspace which is adequate for use

with virtual prototyping of small handheld electronic devices. A passive thimble
as a user interface means that the rotation angles of the users fingertip are not

24

measured but it is only possible to measure the position. There is, however, an
option for an encoder gimbal for the Phantom to measure rotation angles [11].

Forces are sent to the user’s fingertip via a lightweight aluminium linkage with
three DC brushed motors. The position is determined by 3 optical encoders
mounted on motors. The peak maximum force that the Phantom can produce is
8.5N [11] and the maximum continuous force is about 1.5N [10]. These values
should be sufficient to produce realistic sensations of virtual prototypes with
hard surfaces when reasonable forces are used by the user. At the design phase
of the Phantom, the main focus has been on achieving low mass, low friction,
low backlash, high stiffness and good back-driveability [10]. These properties
enable accurate rendering of shapes and frictions.

A single thimble as a user interface decreases the realism of the sensation that
can be achieved. The most natural interface would include all the fingers in
haptic rendering. It is however possible to use two Phantom haptic devices with
the thumb and index-fingers at the same time to achieve a grasp-effect as shown
in Figure 15 [11].

Figure 15. Grasp effect with two Phantoms.

25

The Phantom can be controlled with PC computers and SGI workstations. There
is also a super extended workspace Phantom with larger maximum forces and
workspace available for rendering larger virtual prototypes [11]. Other
commercial haptic devices with same cost/quality ratio are not really available.
Phantom specifications [11] are described in Table 1:

Table 1. Phantom specifications.

Property Standard Expanded Super Expanded
Workspace Workspace Workspace
Phantom System| Phantom System | Phantom System

Nominal position| 0.03mm 0.03mm 0.02mm

resolution

Workspace 13x18x25 cm 19.5x27x37,5 cm 42x59x82 cm

Backdrive 0.04 N 0.04 N 0.02N

friction

Peak Force 8.5N 8.5N 22N

Closed loop 3.5 N/mm 3.5N/mm 1 N/mm

stiffness

Inertia < 75¢g < 75g <1509

2.5 Constraints on the haptic rendering system

Constraints on a haptic rendering system are set by the properties of the haptic
device used, the software and hardware components, and the processing power
of the computers that are used for haptic rendering. As described before, a

haptic rendering loop must be executed at least at the frequency of 1000Hz and

the required processing power increases when the complexity of the rendered

virtual prototype increases or the size of the details decreases.

The haptic device used defines the maximum stiffness of the virtual surface. The
peak maximum force that the Phantom can produce and the maximum
continuous force are quite close to those of human capabilities. The maximum
force of the human finger is 40N but people rarely exert more than 10N. In

26

normal usage, the average force that the human finger produces is about 1N
[10].

In the VRP project, the haptic and visual environments are not overlapping for
several reasons. First, the technique used for stereographic rendering is not able
to bring the 3D image far from monitor screen so that user would be able to see
the image clearly without strict concentration. The 3D image has to be brought
far from the monitor screen for safety reasons, so that the Phantom cannot reach
the monitor screen and break it in any situations. A head mounted display
(HMD) would visually enable bringing visual and haptic spaces together.
Because the basic Phantom does not have the ability to measure rotation angles
and the fact that the contact point is not at the fingertip but it is rather at the
midpoint of the user’s finger where the rotation of the finger does not effect the
position of the visual user’'s fingertip, this is not used. When the user's
manipulation finger is in contact with a virtual surface, physically it would be
partly inside the virtual prototype and when the user rotates his/her finger at the
surface of the object there would be no effect. For this reason, visual and haptic
prototypes are apart as shown in Figure 16.

Visual Visual Haptic
. user's .
environment fingertip environment
T~
lrm >
|
|
Monitor :
|
|
A
Visual Haptic
N -
3D image model

Figure 16. Haptic and visual spaces separated

27

The Phantom limits the touching capability to one finger with one Phantom
haptic device. This reduces usage possibilities and the realism of the haptic
rendering.

Versatility of the surface friction parameters defines the capability to create
credible material simulations. When there are multiple parameters that have an
effect on the simulated surface, setting the appropriate values is more difficult
but there should also be a possibility to achieve more realistic material
sensations. Also the capabilities of the haptic device used effects the realism of
the created sensations of materials.

2.6 Architecture design

The architecture of a haptic rendering system plays an important role in the
performance of haptic rendering. An underperforming hardware architecture
causes communication delays and therefore decreases the maximum complexity
of a virtual prototype. It also effects the accuracy and stability of the haptic
rendering. Software architecture defines which tactile and force feedback is
possible to simulate and how realistic it is. The basic processes needed for
haptic rendering in virtual prototyping are shown in figure 17.

Object positions

and orientations Control data

Visual v 25Hz——Ccore Haptic
Simulation Application Rendering
J Control data L Position data L B
25Hz [I 1Khz
\\ //
\ /
Collision reports\\ _---"Collision reports
~— -
\ /
\ !
\ |
Object positions and orientations, ' ‘ Object positions and orientations,
user's fingertip position user's fingertip position
v v
Collision
Detection

Figure 17. Basic processes of haptic rendering.

28

Core applicationis used to initalize and control other processes that are
included in the haptic rendering system. After initialization, the core
application’s task is to keep haptic and visual environments synchronized so that
no delays between haptic and visual environments occur. In some cases, the core
application also controlsollision detection

As can be seen, the communication rate betweenishal simulationprocess
andcore applicationis relatively slow that it is possible to separate the visual
simulation process into another computer from other processes. The core
application’s task is then to send position and orientation data to the visual
simulation process to synchronise haptic and visual environments. Separating
the visual simulation process into a different computer from other processes may
considerably increase the performance of the haptic rendering.

Collision detectiormay be a separate process or it can be a part diafites
rendering process. If it is not a part of the haptic rendering, a decision about
where to run this process must be made. Collision detection may be a heavy task
when the haptic rendering is applied for a complex 3D visual model.

Separating collision detection off to a different computer from the haptic
rendering process increases the communication overhead which in turn can
introduce delays and lead to problems in the quality of the haptic rendering. The
frequency with which the loop, from measuring the user’s fingertip position to
collision detection and sending forces to user’s fingertip, is executed defines
how small details can be haptically rendered. If this loop is not fast enough,
small details remain unrendered or are rendered incorrectly. Incorrect rendering
happens when the user’s finger moves too fast so that correct virtual surfaces
cannot be determined in time. In these cases, the user’s fingertip is able to go
inside or through a virtual object. Separation of these tasks into different
computers however leaves more computational power for these tasks, which in
some cases may lead to a better result.

The core applicationis not necessarily itself a heavy process, which means that

it can be executed with, or encapsulated to, one of the other processes. In the
case where collision detection is not a part of the haptic rendering process, the
core applicationandcollision detectiorprocesses may be combined.

29

Haptic renderingrequires a lot of computational power. The speed at which the
haptic process loop is executed defines the stability of the stiff virtual walls. It
may be reasonable to separate it off to a different computer, at least from the

visual process.

30

3. IMPLEMENTATION OF THE HAPTIC
RENDERING SYSTEM

The task of haptic rendering consumes very much computer power. One of the
main issues in virtual prototyping is the ability to render complex shaped haptic
prototypes. This ability depends not only on the available processor power but
also on the selected architecture.

The software architecture defines the haptic properties that can be rendered in a
haptic rendering environment. The hardware architecture divides the selected
software components to different computers and therefore defines the available
processing power for different processes and communication delays between
those processes.

3.1 Software components
A haptic rendering system should have the following basic software components

e a haptic renderer

* a 3D graphics renderer

« acollision detection algorithm
* acommunication system.

A haptic renderer creates haptic illusions of 3D objects. It is used for calculating
the position of user's fingertip and the force and tactile feedback that is
generated for the user through the haptic device used. The haptic renderer also
defines what kind of haptic properties can be simulated.

The purpose of a collision detection algorithm is to give information on all
collisions between virtual objects. Based on this information the object’s motion
should be constrained so that objects should not be able to pass through each
other. A lack of efficiency in the collision detection algorithm may be a
bottleneck in the haptic rendering of complex virtual prototypes. [IBE
requirements of the collision detection algorithms may change. For example,

31

some algorithms demand that objects must have closed volume or objects must
be convex.

A 3D graphics renderer is not essential in haptic rendering but it is very
important in virtual prototyping. It is also recommended that a stereoscopic
viewing system is used because of the increased reality of the simulated
interaction with a virtual prototype and better matching of sensoral inputs.

The communication system plays an important role at the distributed approach
of haptic rendering system. Depending on how the decoupling has been
implemented, communication may require very fast throughput times.

3.1.1 Open Inventor

Open Inventor is an object-oriented 3D graphic toolkit based on OpenGL [13]. It

is a library of objects and methods used to create interactive graphic
applications. The basic idea is to create 3D objects from which all information is
stored in a scene database. An Open Inventor scene is based on a hierarchical
tree of nodes. Nodes represent geometries, materials, translations and behaviour
of 3D objects. Nodes can be grouped and then effects can be applied to these
subtrees: to visually render the scene from a node tree, or apply user defined
methods to the node tree.

Visual simulation in a Silicon Graphics workstation with Open Inventor offers
different viewers and stereographic rendering of 3D objects. Usage of
stereographic rendering gives a more realistic view of the simulated world as it
seems that the simulated prototype is floating in front of the monitor screen.
Figure 18 shows an example viewer of Open Inventor. Thumbwheels are used
for rotating, moving and scaling the object.

32

WIS el e

Figure 18. Scene of pen-shaped GSM phone with an Open Inventor viewer.

Open Inventor models can be made functional. This means that, for example,
buttons on a virtual GSM phone can be clicked with a mouse, and the display of
the simulated prototype is updated when a button has moved to a predefined
depth.

A nodetree can be created with Open Inventor by loading an Open Inventor
format file. Open Inventor also provides a good method for extending loading
capabilities from the basic Open Inventor format. It is possible to create one’s
own classes and then parse these classes to the node tree [14]. This provides a
good way of extending parsing methods of, for example, a haptic library.

3.1.2 I|-Collide

I-Collide is a collision detection algorithm that uses a two level approach based
on pruning multiple object pairs using bounding boxes and then performing
exact collision detection between selected pairs [12]. At a lower level, the
algorithm maintains a pair of closest features for each convex polytype pair, and
calculates the distance between the features to detect collision. This is used to
determine the contact status between polytypes. Only distances between user

33

selected polytype pairs are significant so that all pair's distances of all pairs do
not have to be maintained. The pruning algorithm reduces the number of
pairwise collision tests by eliminating distant polytype pairs. The method for
finding closest feature pairs is based on Voronoi regions [15].

I-Collide has some major constraints that should be considered when selecting a
collision detection algorithm for haptic rendering. Constraints of the I-Collide
are

» temporal coherence
* convex polytypes
» closed-volume objects.

The temporal coherence requirement means that objects can not travel too large
distances between successive collision tests. When the speed of objects is high,
the time between collision tests should be very small. This should be considered
when selecting architecture of the haptic rendering system. For example, fast
movement of the fingertip in the haptic scene may result in incorrect
information in collision tests which in turn may lead to too large forces. A
similar effect may happen when the rendered details are so small that even a
slow movement of the finger causes frequent updating of the virtual plane.

Major drawbacks in |-Collide are also the constraints of convex and closed-
volume objects. Concave objects must be divided to convex ones which makes
automatic loading of virtual prototypes from a file more complicated. It is also
very difficult to fill small holes from objects constructed of thousands of virtual
planes if this matter has not been considered at the time of design of the original
prototype with CAD.

The usage of I-Collide requires first that all 3D objects have to be instantiated.
Then the decision has to be made about which pairs of objects should be tracked
for possible collisions. Then it is possible to update the object positions and
make collision tests [16].

34

3.1.3 Armlib

Armlib is a tactile and force feedback library that provides a simple and efficient
function interface to control the Phantom, the Sarcos Research Corporation
Dextrous Master Arm, and the Argonne Remote Manipulator haptic devices [8].
Armlib provides functions to control, acquire position and other information
from the Phantom. Forces are sent to the Phantom directly or via virtual planes
and springs. Armlib also provides a facility to implement surface materials to
virtual planes.

Virtual planes have been implemented in Armlib by using local approximations
of surfaces. In this method, as accurate as possible local approximation should
be maintained to get a good sensation of the varying virtual surface. When the
user moves his/her finger on the virtual surface, the plane-equation should be
updated frequently depending on the speed that the user moves his/her finger.

Armlib is based on a client-server architecture by separating haptic and
application processes as shown in Figure 19. This should leave more processor
power for visual and haptic processes as they are separated. It is, however,
guestionable if this increases or decreases the maximum complexity of the
virtual prototype that can be rendered. As has been previously described, the
loop from the haptic rendering (measure the position of user’s fingertip) to the
collision detection (find the plane that the user is colliding with) and back (send
forces to the user’s fingertip) defines, how small details can be rendered in a
haptic rendering system. With complex virtual prototypes, the client-server
architecture may increase communication delays by more than the time achieved
by separating the processes to get more computational power.

35

Workstation

User-Point Positions L
- > Core application,

Collision Detection,

Virtual Planes, Visual Rendering
Plane Parameters,
Control Commands

4—
ArmLib Server Side TCP/UDP ArmLib Client Side
¥ I
. Torque
User—|P0|nt Commands
v Haptic
. Feedback
Phantom Haptic Interface User
User
Manipulation

Figure 19. Armlib client-server system.

The basic communication protocol between the Armlib-server and client is
TCP/UDP. The protocol does not guarantee that all packets will get through but
when a secure message change is required, the function library internally
implements secure message changing. The benefit from this protocol is that it is
possible to achieve very fast communication lead-times because of the lack of
acknowledgement messages [17].

The Armlib-server measures the position of the user’s fingertip and sends it to
the Armlib client depending on the selected position reading mode. The data
reading mode is selected before reading the data. In asynchronous mode, the
server sends the position of the Phantom gimbal as fast as possible to the client
whether or not the client uses the data. In synchronous communication, the
client sends a request to the server that processes the message and sends
acknowledgement back to the client. In this case, the client must wait while the
message makes a round trip and the server performs the desired action. All basic
interactions between the client and the server are accomplished in this way.
Reading the position may also be sent via synchronous communication, but this
is not recommended

36

After acquiring the position of the Phantom gimbal, the user application should
decide what kind of effect should be applied to the gimbal. There are three basic
ways to send forces to the Phantom [8]

* To send forces directly to the Phantom by giving the x-, y- and z-force in
Newtons

* To send virtual planes to the Phantom by giving the normal to the plane and
the stiffness of the surface in Newtons/meter

e To attach a virtual spring to the Phantom gimbal by giving the spring
constant of the attached spring.

Armlib provides simulation of different surface properties. With Armlib, it is
not only possible to change the stiffness of a plane but also the friction that the
user feels when moving his/her finger on the surface of the object. The friction
model is based on five different parameters which should enable the creation of
realistic surface materials.

Armlib provides also a primitive way of implementing a virtual fingertip. It can
be created from separate probe points which can be constrained by different
virtual planes.

3.1.4 Ghost

Ghost [9] is an object-oriented 3D haptic toolkit used with a Phantom haptic
device. It offers a C++ library of objects and methods that can be used to
construct different haptic applications.

The rendering of a haptic scene has been made easy. Ghost provides a means of
constructing a static haptic scene by reading it from a VRML 1.0 or Open
Inventor format file, or by coding the scene directly to the application. When the
scene is ready, Ghost automatically takes care of rendering the haptic scene after
calling an appropriate method.

In Ghost, core application and haptic processes are executed on the same
computer. Ghost does not provide or require any particular visual rendering
method and does not therefore define where the visual process should be
executed. Examples supplied with Ghost used OpenGL for visualisation and all

37

processes were executed on the same computer. Ghost contains a collision
detection algorithm so that no separate collision detection algorithm is required
or possible to use. This also eliminates the need for a separate plane selection
method after collision detection as is required with Armlib.

The haptic rendering process gets as much processor time as it needs with
Ghost. When not enough processor power is available for haptic rendering

process, the application is killed for safety reasons. When there is processor
time available from the haptic process, other processes can be executed.
Callback methods can be used for receiving control from the haptic process

when, for example, a button has been pushed and an event should be sent.
Callback methods are also used for updating the visual scene at a sufficient rate.

The main haptic features that can be rendered with Ghost are
» shape primitives: cubes, spheres, cylinders and cones

« complex shapes constructed from separate planes (PolyMesh)
e static and dynamic friction

* buttons
« dials
» sliders

* haptic smoothing
» gspecial effects: inertia, buzz and constraint.

A smoothing parameter defines how the edge between separate planes is

smoothed. Figure 20 shows how a virtual angular surface can be smoothed to
correspond a rounded surface.

actual surface

smoothed surface

Figure 20. Smoothing an angular surface.

38

The haptic scene in Ghost is a hierarchical tree of nhodes. Ghost does not provide
the means to read extended dynamic Ghost nodes (buttons, dials, sliders,
smoothing, frictions and special effects) from a file. This makes automatic
creation of useful virtual prototypes more complicated. The Ghost haptic library
does not support virtual fingertip, which may be the biggest drawback of this
haptic library when used for usability testing of simulated physical user
interfaces.

3.2 Architecture alternatives

Selecting the best software and hardware architecture is highly desirable when
trying to simulate complex haptic virtual prototypes with realistic haptic
sensations. Hardware architecture depends largely on the required
computational power, whereas software architecture design always requires
basic components for at least haptic and visual rendering. Also separate
communication and collision detection software components may be required.

When selecting hardware architecture, questions arise about how many
computers are required and what platforms should be selected. As the number of
computers rises, computing power also rises. However, improper allocation of

software components between computers may also increase communication
overhead and delays remarkably. It is also more convinient to carry out

simulation when there are only a few computers.

When the proper software components have been selected and an efficient
architecture for software processes is used, it is possible to achieve accurate and
stable haptic rendering of complex virtual prototypes.

3.2.1 Fully Distributed Architecture

The Armlib haptic library is a central component in this architecture approach.
Other required components are Open Inventor, for visual rendering and I-Collide
for collision detection. These three heavy processes are separated onto different
computers so that they can get as much processing power as needed. The haptic
process runs on a 100MHz Pentium PC dedicated to it, the visual rendering is

39

executed on a Silicon Graphics Indigo2 workstation and collision detection on a
Sun workstation.

When using three computers, communication delays may become too long.
Therefore the use of software components and the location of main application
and virtual plane selection are the most important issues. Architecture design is

shown in Figure 21.

— .
Pentium PC Sun Sparc SGI Indigo 2

I-Collide
Collision
detection

!

Control Commands

User-Point

Phantom Haptic Interface

Torque Commands

Haptic

Feedback
User

User

Visual

Core Application, VRP Visual
Plane Selection (TCP/UDP. Server
User-Point Position U J
g Position and
Virtual planes, orientation data
Coptrol Commands Open
Armlib Haptic (=) Armlib Inventor/” Visual
Haptic puc TCP/UDP: Haptic Rendering
Server \Rendering U J Client

Feedback

CrystalEyes Stereoscopic
System

Manipulation

Figure 21. Fully distributed architecture.

Armlib divides application and haptic processes onto separate computers. This
architecture moves also visual process to a separate computer. This architecture
maximises the available processing power to processes. At the same time it does
however also increase communication delays which effects the quality of the
haptic rendering.

This architecture was not tested because of the need for three computers, which

seemed too much for convinient use. It was decided that architectures with
fewer computers should found.

40

3.2.2 Haptic Server Architecture

This approach uses a distributed architecture and the base component in it is the
Armlib haptic library. In this architecture a 100MHz Pentium PC handled haptic
rendering of the virtual prototype and a Silicon Graphics Indigo2 workstation
handled core application, collision detection and visual rendering of virtual
prototypes as shown in Figure 22.

VRP Core E
Application — =
Collision
Pentium PC Detection SGl Indigo 2
User-Point Positions
- > -
irtual Plane Open Visual
Virtual Planes, Selection <— Inventor Rendering
Plane Parameters,
- Control Commands
Armlib) — i
Haptic Haptic
Server \ Rendering {rcpiuop } ArmLib Client Side ‘
1 1
User-Point Torque Commands
‘ i Haptic
Feedback i i
Phantom Haptic Interface User Visual CrystalEyes Stereoscopic
User Feedback System
Manipulation

Figure 22. Haptic server architecture.

Haptic rendering is started by loading and parsing an extended Open Inventor
format file in the viewer application. In addition to basic Open Inventor classes,
extended Inventor database classes had to be created

e create haptic buttons

» include surface materials and frictions in the simulation

* register shape objects to collision detection data structure
e query I-Collide for results of the collision test

» update object positions in visual simulation.

Haptic buttons contain information about the pushing direction, spring constant
of the button and the depth when button event should be sent. Surface material

41

nodes contain information about surface stiffness and parameters that together
create sensations of static and kinetic friction.

After parsing the Open Inventor node tree, all shape nodes are registered to the
I-Collide collision detection library. The registration method created registers
the shape-object’s planes one by one in the collision detection data structure.
Next, the communication modes have to be initialised. Communication modes
for reading the user’s fingertip position and sending of virtual planes have to be
initialised before starting the main application loop. Use of an asynchronous
position read method increased considerably the throughput of the system
compared to synchronous read.

The main loop of a core application process is described in Figure 23. The
user’'s fingertip position is read as quickly as possible. Then the collision
detection finds with which objects the user's fingertip is colliding. The actual
collision planes have to be calculated to be able to send them in the correct form
to the Armlib server. Before sending planes to Armlib server, previous useless
planes have to be turned off and only the new planes that are not already
activated are sent to the Armlib server.

42

—ﬁ Read users fingertip position ‘

v

‘ Make collision detection ‘

Calculate plane equations
of colliding planes

> Compare i-th old plane to
new colliding planes
No Found? No *
Yes S_top i-th old
virtual plane
Yes

Compare i-th new plane
to old planes

¢ No——0w0 5,
Start new
No Yes virtual plane

0

Figure 23. Main application process flow.

The main benefits of this architecture were that the software components were
extendible and the distributed nature of the system allowed efficient rendering
of simple haptic virtual worlds. The main weaknesses of the architecture were
the constraints of closed volume objects, the lack of haptic shape primitives
such as cubes and spheres, and the lack of haptic smoothing. The architecture
used was efficient enough to simulate simple haptic worlds. The architecture
was successfully tested with a virtual prototype of a simple mobile phone that
included a cubic cover, 12 cubic buttons and a display, with surface materials.
The maximum performance of the architecture was not tested but the rendering
of complex virtual prototypes supposedly needs more computational power than
this architecture with the computers used had. It is questionable if this

43

architecture allocation is efficient for complex virtual worlds. The
communication delay between the haptic rendering process and collision
detection with virtual plane selection may be too long.

3.2.3 Single Workstation Architecture

The central component in this architecture was the Ghost haptic software
development toolkit. Ghost is used for haptic rendering and no separate collision
detection algorithm is required. The only additional required component is for
visual rendering. In this architecture all simulations are performed in one
computer that takes care of the main application and the haptic and visual
rendering.

Because all simulations are executed in one computer, clearly this computer
should have a large amount of processor power. In the VRP project, the PC
computer used was an Intergraph TZ425 that had two 266MHz Pentium I
processors, 128Mb:s of operating memory and a powerful 3D graphics card
(Realizm z13-T) for visual rendering [18].

Tests were made to see if all the simulations could be performed in one
computer with a complex virtual prototype. The haptic rendering was handled
by Ghost and the visual simulation was handled by a test program that used
OpenGL. Tests showed that it was not feasible to do all the simulations in one
PC. Haptic rendering of a complex virtual prototype without any dynamic
behaviour could not maintain the stability and accuracy needed. The inability to
use stereographic glasses with the Open Inventor on the PC platform was also a
serious problem.

The benefits at this architecture are

e only one computer is needed

» the approach does not require any communication with other computers and
therefore it also lacks communication delays

» separate collision detection is not needed.

These advantages compared to the previous architectures makes this architecture
very attractive. The need for only one PC makes the architecture highly portable

44

and convinient. The drawback is that when simulating complex virtual
prototypes, a very powerful computer is needed.

3.2.4 Visual Server Architecture

The main component at this architecture is the Ghost haptic software
development tookit. To be able to simulate complex virtual prototypes,

distributed architecture is used. The separation of the processes is shown in
Figure 24.

= — E
=

Pentium Il PC Control Commands SGI Indigo 2
<—
VRP Haptic VRP Visual
and Visual {rcpiupp Server
Client (il

R ——
User-Point Positions,
synchronization data

Open

(I-sial_lpct)if:,T Haptic Inventor Visual
] Renderin
Server Rendering endering

1 |
User-Point Torque Commands
| Haptic
Feedback ! .
Phantom Ha ptic Interface User Visual CrystalEyes Stereosco pic
User Feedback System
Manipulation

Figure 24. Visual server architecture.

The separation of the processes is based on the communication speed need and
the characteristics of the computers used. The double-processor PC had more
calculation power than the Indigo 2 workstation, whereas, the Indigo 2 had
better visual rendering capabilities. TCP/UDP was used to minimise the
communication delay from PC to SGI.

Communication between computers needs only 30Hz frequency from PC to SGI

to be able to smoothly animate a haptic world. Control commands from the SGI
come at a very slow rate (0.01 ... 1.0Hz) and they are used only in special cases

45

when the user rotates or translates a visual and therefore also a haptic
environment.

This architecture has several beneficial properties

e computationally heavy rendering processes can be separated into different
computers that have adequate capabilities to handle the chosen processes

* haptic rendering of complex virtual prototypes is possible

* no need for a separate collision detection algorithm

» stereographic view is available

e short communication delays

» stable and accurate haptic rendering

« ability to haptically simulate static and kinetic frictions

* haptic smoothing is enabled.

The main weakness in this architecture is the need for two computers. The
advantages are however so great that this approach was selected for further
development. This architecture contains three processes as shown in Figure 25.
There is one extended Open Inventor format file that is loaded by haptic and
visual processes. Additional Open Inventor classes were created to be able to
load

e haptic buttons
» surface materials
» haptic smoothing coefficient from a file.

The distributed nature of the architecture and inability to expand Ghost's
Inventor format file loading capabilities required additional classes that enabled
us to

¢ communicate with the visual server

» parse the haptic scene from an extended Open Inventor file
» easily rotate and translate haptic and visual environments synchronously.

46

=
SGI Indigo 2 Pentium Il PC
Visual Application Haptic
Process Process Process
Scene n Open |Scene
Creation \ Inventor file v|Creation

i
v

Visual - NCore Haptic
Application ! "|Application Rendering

Visual

Rendering Haptic
State

Update
30Hz

|

—

1KHz

30Hz

Figure 25. Processes of Visual server architecture.

Haptic rendering is started by loading an extended Open Inventor format file by
application and visual processes. Next, the communication protocol is initialised
between visual and application processes. Then, the visual process is blocked
until the first position data is received from the application process.

The application process initialises the haptic process and reparses the haptic
scene that has been loaded by Ghost. This reparsing is required for reading
smoothing, materials and buttons from a file. When the haptic scene is improved
with this additional data, the haptic process is started. The application process
then sends position and orientation data about the user’s fingertip and other
objects to the visual process.

The haptic process has the highest process priority in the PC which means that
the application process gets processing time when the haptic process grants it.

3.2.5 Comparison of different architecture alternatives

This chapter summarises previous architecture chapters by providing tables that
present the used components and characteristics of different architecture

47

alternatives. Table 2 shows components that have been
architecture alternatives.

Table 2. Used software components.

used with different

SW component

Fully distribute
architecture

dHaptic server
architecture

Single
workstation
architecture

Visual server
architecture

Open yes yes nolyes *) yes
Inventor

I-Collide yes yes no no
Armlib yes yes no no
Ghost no no yes yes

*) was not used at the tests, but is possible to use.

Table 3 shows the characteristics of different architecture alternatives. The
characteristics are mainly defined by the software used and the hardware
components.

The main weakness of the Fully distributed and Haptic server architectures was
the inability to render complex-shaped virtual prototypes. The Fully distributed
architecture also required too many computers to be convinient for use.

The weaknesses in the Single workstation architecture were the inability to
render complex-shaped virtual prototypes and to use stereographic glasses. The
first constraint was set by the processing power of the computer used. This
architecture however looks very attractive for use with simple virtual prototypes.

Based on the properties shown above, the Visual server architecture was
selected. The most important factor in the selection was that the Visual server
architecture is the only architecture that provides a stable and accurate rendering
of complex-shaped virtual prototypes with the computers that were available in
the VRP project during the development of the haptic rendering system.

48

Table 3. Characteristics of architecture alternatives.

Characteristic Fully Haptic server | Single Visual server
distributed architecture | workstation | architecture
architecture architecture

Number of used 3 2 1 2

computers

Separate collision | yes yes no no

detection required

Separate yes no no yes

communication

method required

Separate plane yes yes no no

selection algorithm

required

Stereographic view | yes yes no yes

available

Support for stable | no no no yes

haptic rendering of

complex-shaped

objects

Haptic smoothing no no yes yes

Haptic buttons yes yes yes yes

Surface frictions yes yes yes yes

Virtual fingertip yes yes no no

49

4. EVALUATION OF THE IMPLEMENTED
HAPTIC RENDERING SYSTEM

The main objective of haptic rendering in the VRP project was the ability to
render a complex shaped electronic product. For this reason the Visual server
architecture was selected for the implementation of the haptic rendering system.

The haptic rendering system implemented was evaluated with a pen-shaped
cellular phone [19]. The Penphone was 14 cm long and its maximum radius was
lcm. It consists of five buttons and a display. The Penphone was constructed
from 11 different pieces. Small details 12 and 13 are included in the upper cover
and are discussed later. Different parts and the triangle count of each part are
described in Table 4.

—

—

—

O DO iy .)

Figure 26. Virtual prototype of pen-shaped cellular phone
1.
< P B B
---. Lo -I-E-E'\l_i"'z:l'.fﬁ_i.:-_ == 0

12.r 13

2.

e = - 5

3.) a.

Figure 27. Penphone taken to pieces.

50

As Figures 26 and 27 show, the Penphone has been constructed from closed
parts that are easily changeable. This separation into independent parts should
be considered at the CAD design phase to ease the modification from a CAD

model to a functional virtual prototype that can be haptically rendered.

Table 4. Penphone parts and the number of triangles in them.

Part Part Number of | 3D primitive Material

Number | Triangles in

part

cover, lower part| 1 364 face set hard plastic
cover, upper part| 2 1492 face set hard plastic
left knob 3 64 cylinder plastic
right knob 4 64 cylinder plastic
button, head 5 64 cylinder plastic
left small button | 6 64 cylinder plastic
left large button | 7 64 cylinder plastic
right large button| 8 64 cylinder plastic
right small button| 9 64 cylinder plastic
display board 10 60 6 X cube plastic
display cover 11 132 face set glass
microphone 12
receiver 13
Total 2496

4.1 Haptic rendering model creation

To acquire full benefit from virtual prototyping with haptics, the creation and
modification of haptic rendering models should be easy, convenient and quick.
The creation of a virtual prototype can be started with a conventional CAD
design program. To ease the transformation from a CAD model to a dynamic
virtual prototype, the CAD model should be created from parts as in the
Penphone (Figure 27, Penphone taken to pieces). This facilitates producing
different virtual prototypes when different compatible parts can be tested.

51

In Figure 28 [19], the lower cover, knobs and display parts could be the same in
all prototypes. Only the upper cover needs to be changed when creating different
virtual prototypes so that different sized and shaped buttons can be fitted. In the
early stages, buttons for different prototypes can be easily created from

cylinders.

Figure 28. Variations of a pen-shaped cellular phone designed by JP
Metsavainio Design Oy.

After creating the CAD model it must be converted to Open Inventor format.
When the prototype is in Open Inventor format, the static prototype created can
be haptically rendered with default material properties and without dynamics.

Once the virtual prototype’s parts have been created, they should be stored in a
component library. Then, when creating new virtual prototypes, the prepared
components or, for example, haptic materials could be selected from the
component library to quickly create new virtual prototypes.

52

Further development onto a prototype can be carried out with VpEditor [20]
(Virtual Prototype Editor) which is a tool created at VTT Electronics. VpEditor
is used for modifying Open Inventor format models and it provides two views of
the virtual prototype (Figure 29).

Figure 29. VpEditor view of penphone.

The left window shows the 3D visual representation of the virtual prototype.
The prototype can be zoomed, rotated and moved with thumbwheels or a mouse.
It provides also colour and material editors with which visual colours and
materials of different parts can be easily changed and a ransformation editor
which is used for scaling and repositioning parts.

The right window shows the internal representation of the 3D model. It is a
hierarchical tree of extended Open Inventor nodes. The values of nodes can be
edited to change for example the position or size of the parts. In Figure 29, the
transformation node of the display cover has been selected for editing. This
causes the display cover from both views to be framed with a red box and an
edit box to be opened. Then new values can be inserted and applied to both
scenes. New nodes can be created by selecting them from a menu. Nodes that
can be created include all basic Open Inventor nodes and special nodes for

53

virtual prototyping which have been created in the VRP project. These nodes for
example bring displays and haptic effects such as materials, friction, smoothing
and buttons to virtual prototypes.

The VpEditor can be used for tuning the virtual prototype’s visual and haptic
properties. It is a very good tool for fitting parts of the virtual prototype
together. Small details and therefore also small holes between virtual
prototype’s parts complicate haptic rendering. With the VpEditor, a virtual
prototype can be easily rotated and zoomed so that even the tiniest holes can be
noticed. Then parts can be moved and scaled to fill these holes. It is often better
to scale adjacent parts so that they slightly overlap. This improves the stability
of the haptic rendering system.

The whole process for creating and modifying a haptically renderable virtual

prototype has been described in Figure 30. When the original CAD model has
been constructed with the requirements of virtual prototyping in mind, the

process from a CAD model to a functional virtual prototype can be very fast.

Convert to Add functionality
Inventor and haptic
CAD design CAD format |Open Inventor [properties

model model

Functional
virtual
prototype

Modify virtual

prototype

Modify with
VpEditor

Figure 30. Virtual prototype creation process.

4.2 Use of the haptic rendering system
Figure 31 shows an example of how the user manipulates a virtual prototype

with the Phantom haptic device. The stereoscopic view makes user see the
simulated virtual prototype as floating in front of the screen.

54

Figure 31. Virtual prototype’s usability test with a haptic device.

The visual user interface is shown in Figure 32. The visual user’s fingertip has
been presented as a small green ball. The user can feel force and tactile feedback
when the green ball is in contact with the simulated virtual prototype. The user
can feel the shape of the simulated virtual prototype and also materials of
different parts. Buttons can be pushed and the display of the simulated prototype
is updated depending on the buttons pushed.

55

, User's fingerhip

Figure 32. Visual user interface of haptic rendering (Text and arrow pointing to
the user’s fingerip has been added to original image).

The virtual prototype can be rotated and moved by first selecting the desired
function with haptic Rotate and Translate buttons, and then
activating/deactivating the effect with the spacebar. The selected function button
is shown to be green on the screen (Rotate has been selected in Figure 32).
Actual rotating and moving is handled with the haptic device. When the user
moves his fingertip after activating the Translate effect, the simulated virtual
prototype moves correspondingly. When Rotate has been selected, the user can
rotate the prototype around its midpoint by moving his/her finger on a perimeter
of a virtual ball whose center is at the midpoint of the simulated virtual
prototype and radius is the distance between the midpoint of the virtual
prototype and user’s fingertip position.

In some cases, the user may get stuck inside the virtual prototype. In these cases,
haptic rendering can be stopped, and the user is able to pull the fingertip out, by
pressing the H key on the keyboard. Stopping the haptic rendering causes the
user to be unable to feel the simulated virtual prototype but can see the

56

movement of user’s fingertip. Then, when the user’s fingertip is outside the
virtual prototype, rendering can be continued by pressing the H key again.

Moving and rotating of a virtual prototype allows comfortable manipulation.
The prototype can be adjusted to positions that allow the efficient usage of
workspace of the haptic device used and also allows product usability tests when
the simulated virtual prototype is in different positions.

At the moment, haptic rendering and editing of virtual prototypes are separated

so that the rendering has to be stopped if the properties of a virtual prototype are
changed. The aim is however to increase the usability of the system by allowing

the user to dynamically change haptical parameters. The user could then select
the part to be manipulated and then for example choose predefined materials
such as wood and metal or define friction parameters to be applied to selected
part.

4.3 Quality of the haptic rendering

Evaluation of haptic rendering quality means evaluation of what can be rendered
and how realistic the rendered properties are. The quality of haptic properties
cannot be measured accurately. When evaluating haptics, the sense of touch is
the main indicator. Different people evaluate things differently but also
experience in using a haptic device effects how the quality of the haptic
rendering has been experienced. The evaluation of haptic properties is based on
the writer’'s experiences and comments from several users.

Those haptic properties that can be simulated with the selected software and
hardware architecture (Visual server architecture) are

e shapes

» stiffness of material
e static friction

» Kkinetic friction

e damping of material
e buttons

» sliders

57

» dials
* smoothing.

So what do these properties feel like? The first attribute to be evaluated is the
stiffness of the surface. It is important that when the user sees a prototype that is
to be made of hard plastic for example, the surface of the prototype also feels
hard. When pushing hard on hard surface, the user should not perceive
significant elasticity and should not be able to go through a virtual wall. When
the Phantom haptic device is used correctly, surfaces feel hard, but if we only
want to test the limits of the haptic device, it is possible to feel softness in a hard
surface. This testing of the limits of the haptic device is usually connected only
to the familiarising phase. After a little while the user tends to adapt to the
capabilities of the haptic device.

The shapes of virtual prototypes can be accurately defined. Prototypes can be
constructed from shape primitives (spheres, cubes, cylinders and cones) or more
complex prototypes constructed from separate planes.

Smooth surfaces from separate planes can be implemented with a smoothing
parameter. This parameter defines how the edge between separate planes is
smoothed. The effect of this parameter feels realistic. Really smooth surfaces
can be constructed with one constraint: smoothing tends to round also sharp
corners that should not be smoothed. In the VRP environment, smoothing can be
applied to separate parts. So with the Penphone prototype, it can be applied for
example to the upper cover. In this case, sharp edges at the button holes also
tend to be rounded. This causes drifting of the user’s fingertip under the button
where it can be trapped. The value of the smoothing parameter can be steplessly
applied so that a balance can be achieved.

The surface frictions in the VRP project are constrained by the properties of the
Ghost haptic library. It provides only two parameters for defining friction: static
and kinetic friction coefficients. With so few parameters, accurate creation of
different surface materials is problematic. However at the case of Penphone,
very realistic sensations can be received when user moves his/her fingertip from
the display of the penphone (glass material) to the cover of the penphone
(plastic). The difference between materials is very clear and materials feel
realistic.

58

4.4 Performance evaluation

The selected architecture was tested to find out how complex prototypes could
be properly rendered. Ghost automatically stops execution of the haptic loop if it
takes too much time, which means that the stability of the haptic rendering
cannot be maintained. Knowing this property, the maximum complexity of the
haptically rendered prototype can be determined.

Communication frequency from the haptic process to visual process was

measured to be able to figure out what is the visual update rate at different
prototype complexity rates.

Table 5. Performance evaluation.

Number of Haptic rendering Communication frequency between
Triangles rate [Hz] visual and haptic processes [Hz]
96 967-1130 21.25 - 32.25

2496 960-1125 21.25 - 32.25

6194 955-1121 21.25 - 32.25

12388 870-1100 21.25 - 32.25

18582 0-1013 21.25-32.25

The communication frequency between the visual and haptic processes seemed
to be the same at all complexity rates (Table 5). As can be seen, the complexity
of the rendered prototype effects on the haptic rendering rate. The maximum
number of triangles in the prototype does not, however, tell the whole truth
about the performance of the rendering environment. Although it seems that the
architecture used can render the Penphone (2496 triangles) easily, there are
some problems. The smaller the details in a virtual prototype are, the easier the
problems occur. When rendering small details of the most complex prototype
constucted from 18582 triangles, the stability of the haptic rendering could not
be maintained. Also the differences between maximum and mimimum rendering

rates at certain complexity level are caused by the same fact. The rendering rate
decreases when small details are rendered.

59

In the case of a Penphone, the tiny holes of the microphone and receiver caused
problems (Figure 27). When moving one’s finger in these small holes it was
possible to end up inside the prototype. This was caused by the fact that these
small holes are also constructed of virtual planes and when the user moves
his/her fingertip too fast, the collision detection algorithm fails to report
collision with the plane on time and the user is able to pass the surface before
the haptic rendering sets the surface active. Then, because the virtual prototype
of penphone is hollow, the user is trapped inside the virtual prototype. To get
out, the user deactivates the haptic rendering from the keyboard and after getting
out activates the haptic rendering again.

The physical size of a prototype effects on maximum renderable complexity of a
virtual prototype. Large prototypes are easier to render than equal-shaped
smaller prototypes. This is caused by the fact that when the user’s fingertip
moves on a virtual surface constructed from small planes, virtual planes must be
updated more frequently and so the collision detection algorithm has also to be
executed faster.

60

5. DISCUSSION

At the time of writing this thesis, the experimental haptic rendering system has
not yet been used in large-scale industrial product development projects. The
first projects are about to begin so that industrial experiences about the benefits
of applying haptic rendering to product development are only preliminary. The
rendering system implemented was however tested by several test users with
varying technical backgrounds. Based on the feedback from these users,
preliminary results about the realism achieved in the user-to-product interaction
are reported.

5.1 Haptic rendering experiences

The haptic rendering system implemented has been tested by several users with
varying technical background. Experiences vary on how realistic the haptic
rendering feel like. Some users get very good sensations about the haptic
rendering and are very enthusiastic and fascinated about the possibility to touch
and feel 3D models. These users think that the rendered virtual prototype is very
realistic. However, for some novice users perceiving 3D objects with this visual
rendering technique may cause some trouble, and this leads to incorrect use of
haptic device and therefore the haptic sensations cannot seem realistic. Between
these extremes is the majority of users but it seems clear that they are very much
closer to the enthusiastic and fascinated group.

As with any device, usage of the haptic device may require a little practise for a
user to be able to fully understand and get the full benefit from haptic rendering.
Some novice users may push virtual prototypes too hard when the user’s hand is
not relaxed or when the prototype has not been understood as a three
dimensional object. The opposite of this is that the user believes that he/she is
touching something even when the user’s finger is far from all surfaces. Some
users say that the Phantom’s own mass and inertia decrease the realism of haptic
sensations. After a little practising, manipulation of the virtual prototype the
with haptic device becomes more natural and the dimensions and physical
properties of the device and simulated prototype become clearer to the user.
Common enthusiasm and interest towards haptics also tends to give the user
better sensations from haptic rendering.

61

Experiences showed that realistic virtual prototypes could be created. The
creation of buttons was easy and the properties of buttons were easily
changeable. Creating realistic material sensations was more complicated. At
least realistic sensations of glass and plastic could be simulated. Shapes of
virtual prototypes could be accurately defined, but the processing power of the
computers used limited the minimum size of the details that could be accurately
rendered.

5.2 Benefits

As described in the beginning of this study, making physical prototypes is
expensive and time consuming. Physical prototypes are used for evaluation of
the physical properties of the prototype (shape, materials, user-interface).
Virtual prototyping provides a quick and cheap way of creating fully functional
prototypes and maodifying them. Haptic rendering increases the realism achieved
by providing touch interaction with virtual prototypes.

When visual and haptic environments are synchronised so that no perceivable
delays occur, haptic rendering with a stereographic view provides a very
powerful means for product usability tests. Product testing gets much more
realistic when the user is able to feel the product and push its buttons and feel
the spring forces and at the same time see the behaviour. In this way it is easier
to understand the products behaviour more thoroughly.

Similarily future products that can not be manufactured with the current
technology, can be designed and tested with virtual prototypes.

5.3 Problems

The stability of the implemented haptic rendering system is good when
simulating prototypes such as the Penphone. Only the smallest details cause a
little instability. These problems could be solved with the virtual fingertip.

62

The Phantom haptic device constrains the realism of sensations that can be
received by using a single thimble as a user interface. This does not allow the
most natural usage of small handheld electronic devices since the user is not
able to hold the device in his/her hand but only to manipulate it with one finger.
Despite this fact, the Phantom provides accurate haptic sensations for one
finger. When performing product usability tests, one finger is in most cases
sufficient for creating a realistic illusion of the user-to-product interaction.

The performance of the computers used constrains the virtual prototype’s shape-
complexity. This leads to finding distributed architectures that could provide
efficient haptic rendering without too long communication time delays between
the graphical and haptic rendering processes. The selected architecture for the
haptic rendering system seems to provide a good approach. There are no loops
that should be executed fast so that the communication frequency between the
separate computers is quite low.

5.4 Further development

The development of the presented haptic rendering system continues. One task
is to find realistic haptic rendering attributes to simulate materials for virtual
prototypes. At the time of, a virtual fingertip was under development. The
virtual fingertip will be implemented soon and the usability of the rendering
system will be improved by elaborating its user-interface. New features will be
introduced to allow interactive modification of haptic properties during haptic
rendering.

One way of improving the realism of haptic rendering could be a combination of
real and virtual worlds (Figure 33). In this case, the user can feel the virtual
prototype with the Phantom haptic device, as described previously, but also use
the other hand with a data glove for defining the orientation and position of a
virtual prototype by moving and rotating a smooth physical mock-up. This
would allow the user to hold a virtual prototype in his/her hand rather that see it
floating in the air. Buttons, materials and surface shapes could be virtually

63

created on the surface of the physical mock-up with the haptic rendering
technique. This technique would also require the use of a HMD.

Figure 33. Real and virtual worlds combined. 1) Data glove, to simulate virtual
hand and to accurately measure position and orientation of the user’'s hand and
fingers. 2) Physical mock-up, where position and orientation can be measured
with trackers. 3) Virtual prototype, which is overlapped with physical mock-up.
4) The Phantom haptic device.

Searching for new software and hardware components to improve implemented
haptic rendering system continues. At the moment, no new useful software
components have been found. Hardware component updating may be
concentrated on obtaining more powerful workstations and improving visual
rendering. It is clear that as the performance increase of computers continues,
also the rendering capabilities of the implemented haptic rendering system will
improve.

At the moment there are also no haptic devices on the market that would allow
force and tactile feedback for all fingers. Presumably these devices will be
available in the future when the number of delivered haptic devices increases,
prices of haptic devices drop and the technology develops.

64

6. Summary

In this study a haptic rendering system for the VRP virtual prototyping
environment was implemented. Four different architectures for a haptic
rendering system with the presented software and hardware components were
described. Based on the properties of architectures, the Visual server
architecture was selected. It separates the visual rendering process onto another
computer from the other processes, which seems to be the best approach when
aiming for short communication delays between processes. This allows stable
and accurate haptic rendering of complex-shaped virtual prototypes, which was
the primary goal. The software components in this architecture also enable
convenient creation of various haptic properties.

The implemented haptic rendering system was tested with a virtual prototype of
a pen-shaped cellular phone. Results showed that the rendering system was able
to simulate the selected prototype efficiently with the exception of minor
instability when rendering the smallest details. The process of creating a haptic
rendering model from a 3D model was based on converting a CAD model to
Open Inventor format and adding the functionality and the haptic properties to
this model with the VpEditor tool. Experiences showed that creating a
haptically renderable prototype from a static Open Inventor format model and
modifying it with the VpEditor is easy and quick.

The haptic rendering system separated haptic rendering and modification of a
virtual prototype. The haptic sensations created were quite realistic, taking into
account the properties of the haptic device and the graphics rendering system
used. Experiences on the selected haptic device, Phantom, showed that its use
may require a little practising for a user to be able to get full benefit from haptic
rendering. Also the realism achieved from the haptic rendering was constrained
by the simplicity of the one-finger user interface of the haptic device. However,

in most cases users were able to quite easily adapt to the properties of the
Phantom haptic device.

The further development of the system is focused on increasing the usability and
improving the realism of sensations. One way of improving the usability is to
partially combine haptic rendering and haptic model modification environments
to speed up the process of testing different haptic parameters with virtual

65

prototypes. Implementation of a virtual fingerip, which enables simulation of
various finger types, would increase the usefulness of haptic rendering by
providing more informative usability tests. To increase the realism of the
implemented haptic rendering system, a combination of real and virtual worlds
could be used. This would, for example, allow the user to pick up and hold a
virtual device in one hand and press the buttons with the other hand utilizing the

haptic device.

66

[1]

(2]

(3]

[4]

[5]

[6]

[7]

(8]

References

Kerttula M., Salmela M. & Heikkinen M. (1997) Virtual
Reality Prototyping - a Framework for the Development of
Electronics and Telecommunication Products. In: Proceedings
of the 8th IEEE International Workshop on Rapid Prototyping,
June 24-26, 1997, The Carolina Inn-Chapel, North Carolina.
IEEE Computer Society, Los Alamitos, California, 10 p.

Allen F. (1996) Adding Texture to Force-Feedback Displays:
A Review of Recent Research. University of Oulu, Department
of Information Processing Science, HCI & Group Technology
Laboratory, 108 p.

Burdea G. (1996) Force and Touch Feedback for Virtual
Reality. John Wiley & Sons, Inc., New York, USA, 339 p.

Mark W., Randolph S., Finch M., Van Verth J. & Taylor Il R.
(1996) Adding Force Feedback to Graphics Systems: Issues
and solutions. University of North Carolina at Chapel Hill,
USA, 6 p.

VRP project at VTT Electronics, http://www.ele.vtt.fi/projects
Ivrp/vrp.html(October 20, 1997) Copy available from author.

Kaksonen R. (1997) Programmer’s Reference for the VRP
Communication System, VRP Project Report, VTT
Electronics, Oulu, Finland, 41 p. (Copy available from author)

Ruspini D., Kolarov K. & Khatib O. (1997) The Haptic
Display of Complex Graphical Environments. In: Computer
Graphics Proceedings of the SIGGRAPH 97. ACM
SIGGRAPH, New York, USA, pp. 345-352.

Mark W., Randolph S., Finch M. & Van Verth M. (1996)

UNC-CH Force-Feedback Library, Revision C.2. University of
North Carolina at Chapel Hill, 54 p.

67

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Anonymous (1997) Ghost Software Developer’'s Toolkit,
Programmers Guide, Version 1.00. SensAble Technologies,
Inc., Cambridge, MA, USA, 40 p.

Massie T., Salisbury J. (1994) The Phantom Haptic Interface:
A Device For Probing Virtual Objects. In: Proceedings of the
ASME Winter Annual Meeting, Symposium on Haptic
Interfaces for Virtual Environment and Teleoperator Systems,
Chigaco, November 1994. Paper available from SensAble
Technologies, Inc., Cambridge, MA, USA, 7 p.

Phantom haptic device, http://www.sensable.¢Qutober 20,
1997) Copy available from author.

Cohen J., Lin M., Manocha D. & Ponamgi M. (1994) I-
COLLIDE: An Interactive and Exact Collision Detection
System for Large-Scale Environments. University of North
Carolina at Chapel Hill, USA, 8 p.

Wernecke J. (1994) The Inventor Mentor. Addison-Wesley
Publishing Company, Reading, Massachusetts, USA, 514 p.

Wernecke J. (1994) The Inventor Toolmaker. Addison-Wesley
Publishing Company, Reading, Massachusetts, USA, 301 p.

Lin M. (1993) Efficient Collision Detection for Animation and
Robotics. Department of Electrical Engineering and Computer
Science, University of California at Berkeley, CA, USA, 139 p.

Anonymous. |_COLLIDE USER’'S MANUAL - Release 1.1.
University of North Carolina at Chapel Hill, USA, 7 p.

Sinha A. (1996) Network programming in Windows NT / Alok

K. Sinha. Addison-Wesley Publishing Company, Reading,
Massachusetts, USA, 620 p.

68

[18]

[19]

[20]

Intergraph graphics workstations, http://www.intergraph.com/
(October 25, 1997) Copy available from author.

Komulainen O. (Forthcoming) Matkapuhelimen langaton
kayttoliittyma. Masters Thesis. University of Art and Design
Helsinki, UIAH. (Taiteen Maisterin tutkinnon lopputy0.
Taideteollinen Korkeakoulu, TAIK, Helsinki

Kyllonen H. (1996) Developing Open Inventor-based Virtual

Prototypes. VRP Project Report, VTT Electronics, Oulu,
Finland, 16 p. (Copy available from author)

69

	ABSTRACT
	PREFACE
	CONTENTS
	LIST OF SYMBOLS
	1. INTRODUCTION
	2. DESIGN OF A HAPTIC RENDERING SYSTEM
	2.1 Principles of haptic rendering
	2.2 Requirements of haptic rendering
	2.3 The virtual fingertip
	2.4 The Phantom haptic device
	2.5 Constraints on the haptic rendering system
	2.6 Architecture design

	3. IMPLEMENTATION OF THE HAPTIC RENDERING SYSTEM
	3.1 Software components
	3.1.1 Open Inventor
	3.1.2 I-Collide
	3.1.3 Armlib
	3.1.4 Ghost

	3.2 Architecture alternatives
	3.2.1 Fully Distributed Architecture
	3.2.2 Haptic Server Architecture
	3.2.3 Single Workstation Architecture
	3.2.4 Visual Server Architecture
	3.2.5 Comparison of different architecture alternatives

	4. EVALUATION OF THE IMPLEMENTED HAPTIC RENDERING SYSTEM
	4.1 Haptic rendering model creation
	4.2 Use of the haptic rendering system
	4.3 Quality of the haptic rendering
	4.4 Performance evaluation

	5. DISCUSSION
	5.1 Haptic rendering experiences
	5.2 Benefits
	5.3 Problems
	5.4 Further development

	6. Summary
	References

