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Abstract

The tensile behaviour of brittle materials can be enhanced by fibres. The
cracking stress may increase, but the main influence is higher ductility after
cracking. In some cases the material may also exhibit multiple cracking and
tensile strain hardening behaviour thereafter.

A computational tool for analysing structures made of fibre-reinforced brittle
materials was developed, starting from the micromechanical properties of fibres,
matrix, and interface. The constitutive model is fairly general, including both
single and multiple fracture, the fracture mode being either fibre rupture or
pullout.

The study is divided into three parts: First, the mechanics of a single fibre is
analysed. Second, the statistical tensile behaviour is evaluated by taking all fibre
locations and orientations into account. Third, the macromechanical constitutive
relation is incorporated into a finite element program for structural analysis.

The fundamental assumption in the single fibre analysis is the existence of a
symmetry fibre within the matrix segment between cracks. This assumption
enables the pullout analysis of a short fibre bridging several cracks. The strain
energy of fibre and matrix, matrix fracture energy, fibre debonding energy, and
frictional pullout energy are all included in the model. The theoretical value of
the bond modulus was studied by means of the finite element method and
dimensional analysis. Its value was found to be several orders of magnitude
higher than the experimentally measured values reported in the literature.

The macromechanical behaviour is derived from several single fibre analyses by
integrating over all possible fibre locations and orientations. The fibre
orientation introduces additional phenomena: number of fibres bridging the
crack, snubbing effect at the fibre bending point, and matrix spalling. The
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snubbing effect increases the stress in the composite, while the other two have a
decreasing effect. Matrix spalling considerably increases the crack width. The
fundamental assumption is that the fibres carry axial stresses only. The result is
a complete constitutive tensile relation of composite: stress–strain or stress–
crack width curve, as well as a prediction of crack spacing. For the effects due
to fibre orientation, a systematic experimental procedure should be developed.

The tensile model was extended into two and three dimensions by using the
finite element method with smeared and discrete crack concepts and a multi-
surface plasticity theory. The statistical tensile relation represents the behaviour
normal to the crack. Automatic generation of interface elements on an existing
geometry was developed to facilitate the modelling of discrete cracks after
smeared crack analysis. The increase in the peak load of flexural members due
to fibres, as measured in experimental tests, could be reproduced, which
supports the validity of the approach proposed in this study.
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List of symbols

A surface of fibre end distribution
Af area of fibre

Af
i area of fibre type i

Am area of matrix

Am
i area of matrix in pullout analysis

�Am
i area of matrix in calculation of composite stress

d diameter of fibre
Ef modulus of elasticity of fibre

Em modulus of elasticity of matrix

F F1 2, tensile force distributions in fibres

Gdb debonding energy of interface between fibre and matrix

Gdb
i debonding energy of interface between fibre and matrix before

dynamic slip
h characteristic length

�K
ψ κ

2A Em m

l segment length or fibre embedded length
l f fibre length

l l1 2, lengths of debonded zones

li
* length of fibre end segment overlapping or not overlapping its

symmetry fibre
P P P1 2+ , total load in the two-fibre model

P P1 2, forces in the fibres at the crack

�Q 1
2+ A E

A E
m m

f f

S slip between fibre and matrix
s half of crack spacing
T tensile force in matrix
t f frictional shear flow

ui dynamic slip of fibre within matrix segment

Vf fibre volume fraction
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Vf
i fibre volume fraction of fibre type i

Vm matrix volume fraction

w crack width
wloc localised crack width

wul closing crack width

x co-ordinate along segment

∆ ∆i
l

i
r, relative displacement of fibre from left and right side of the crack i

εc composite strain

ε f strain in fibre

εm strain in matrix

εm average strain in matrix

κ bond modulus
�λ � �KQ

λ1
� ( � )K Q − 1

λ2
� ( � )K Q + 1

µ snubbing friction coefficient
ψ perimeter of fibre
ϕ fibre angle from perpendicular to crack due to matrix spalling

σc composite stress

σf stress in fibre at crack

σf average stress in fibre at crack

′σ f stress in fibre behind bending point

σm
a aggregate bridging stress

θ fibre orientation angle from perpendicular to crack
τ shear stress between fibre and matrix
τ f frictional shear stress between fibre and matrix

τ f
i initial frictional shear stress between fibre and matrix

τu bond strength of interface between fibre and matrix
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1. Introduction

The tensile behaviour of brittle materials can be enhanced by fibres. Fibres can
be added, for example, into concrete and other cementitious materials, ceramics,
and brittle plastics. In this study only cementitious matrices are considered, but
the results should also be valid for other brittle matrix composites.

There is an active search for new applications of fibre-reinforced cementitious
composites. At present they are used e.g. in tunnel linings, pavements, and
industrial floors because of better crack control. In addition, pipes, claddings,
and thin roofing tiles have been reinforced with fibres. One application which
has been widely studied is a structural beam with fibres as shear reinforcement
instead of stirrups. Parallel to the search for new applications attempts have
been made to enhance the properties of the composites. The enhanced properties
usually include increased ductility and increased cracking stress. Recently
interest has developed in tailoring strain-hardening composites (Li and Leung
1992, Maalej and Li 1995).

Developing new applications for fibre-reinforced brittle matrix composites often
involves structural analysis. The structural engineer needs to know the material
constitutive relation. Fibre-reinforced brittle materials exhibit highly non-linear
behaviour due to cracking. Therefore, linear elastic analysis can only
approximate the true behaviour. On the other hand, if the stress–crack opening
relation is available the efficiency of the material can be better exploited. In
material design it is most important to know what happens in the material and
which parameters affect the constitutive behaviour.

Fibres used in brittle materials may be short or continuous, depending on the
manufacturing process. Short fibres are gaining more interest because they can
be added to a fresh mix, although the efficiency of continuous fibres is better.
The advantage of short fibres is that they pull out from the matrix, leading to
high ductility, contrary to continuous fibre composites which fail by fibre
rupture. Fibre materials may include steel, glass, carbon, synthetic materials
such as acrylic, aramid, polyester, polyethylene, polypropylene and nylon, and
natural fibres such as cellulose, coconut, bagasse and sisal. In addition to fibre
material and length, the fibre diameter and shape influence the composite
behaviour by affecting the surface area and the bond respectively. Moreover,
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other fibre parameters affecting the composite action are the fibre volume
fraction and fibre distribution. Different fibres also have different interaction
with the matrix material.

Fibres in the mix distribute more or less randomly within the composite.
Therefore the material can be considered homogeneous. The amount of fibres
that can be added to the mix is quite low, the volume fraction typically being
less than 3%. High fibre contents result in mixing and compaction problems and
require special mixing or placing techniques. With low fibre contents the
stiffening effect of the fibres before cracking is usually negligible. The fibres
are effective mainly after cracking by bridging the cracks. They may also
increase the cracking stress. In compression the effects of the fibres are usually
negligible or the compressive strength may even decrease slightly.

When designing new composites the effects of different parameters should be
known. The number of parameters can, however, be rather high as described
above, requiring an expert to take them all into account. It is also impracticable
to conduct experiments on all possible combinations of parameters. Therefore a
computer program estimating the effects of different micromechanical
parameters on the composite behaviour would be most useful in tailoring new
materials.

The objective of this study is to develop a fairly general computational model to
analyse fibre-reinforced brittle materials. The model should include both single
and multiple fracture, the failure mode being fibre rupture or pullout. Moreover,
the theory should be valid for low and high fibre contents, short or continuous
fibres, different fibre distributions, and various fibre and matrix materials.
Different energy terms should also be included. Energy is dissipated in matrix
fracture and in fibre debonding and pullout. Also, the strain energy of the fibres
and the matrix affects the behaviour of the composite.

This research is restricted to computing the constitutive behaviour under tensile
loading, which represents the relation in the direction of the first principal
stress. The compressive or shear behaviour is beyond the scope of this study.
Matrix cracks are assumed to form perpendicular to the tensile load and extend
over the cross-section. The cracking stress is assumed to be known. No fibre
rupture or debonding is allowed before the first matrix crack. The fibres
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considered are discontinuous, straight and smooth with a negligible flexural and
shear stiffness. The effects of residual stresses, radial compressive load, Poisson
contraction, or temperature on the interaction between fibre and matrix are not
considered in this study. In finite element analyses, only static monotonous
loading is considered. The compressive stiffness is estimated using the rule of
mixtures, and a small constant value for the shear stiffness is chosen. Fibres at
the crack are assumed to be perpendicular to the crack in the finite element
model, so that their pullout behaviour does not affect the shear stiffness of the
crack.

Quite a number of analytical models exist for the fibre pullout problem
(Budiansky et al. 1986, Lim et al. 1987, Wang et al. 1989, Hsueh 1990, Stang et
al. 1990, Leung and Li 1991, Naaman et al. 1991, Leung 1992). These models
are one-dimensional, with many common features. They include a shear-lag
model in the full bond case, gradual debonding, and frictional sliding. In their
study, Wang et al. (1989) considered only frictional bond. Lim et al. (1987) and
Naaman et al. (1991) deduced the force distributions in the fibre and matrix, but
derived an erroneous relative displacement at the fibre loaded end. Leung and Li
(1991) and Leung (1992) developed a two-way debonding theory, in which the
debonding can progress from both fibre ends. The pullout theories can be used
to model the stress–crack width relation of composites failing by single fracture
(Lim et al. 1987, Wang et al. 1989, Li et al. 1991, Li, V.C. et al. 1993, Kullaa
1994). In these models, fibres are analysed independently of surrounding fibres.

In the following, computational models for multiple cracking are briefly
reviewed. The classical ACK theory by Aveston, Cooper and Kelly (1971) was
first developed for composites with continuous aligned fibres, assuming a
frictional bond. With the model, a tri-linear stress–strain curve can be produced,
and the minimum crack spacing computed. The ACK theory was later extended
by Aveston and Kelly (1973) taking into account elastic bond and partial
debonding. Moreover, the crack spacing was derived for composites with non-
parallel, continuous fibres assuming frictional bond only. Aveston et al. (1974)
further extended the ACK theory by deriving the strength and crack spacing of
composites with either continuous or short fibres in a random planar array
assuming a frictional bond. Also in the theory by Kullaa (1994) a frictional bond
was assumed for composites with short random fibres. With the theory, the non-
linear stress–strain curve can be computed. A drawback of the model is that the
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force in the fibre can be totally transferred to the matrix. Moreover, crack
localisation was not considered, nor the contribution of the broken fibres taken
into account. Tjiptobroto and Hansen (1993a, 1993b) investigated the
mechanism of strain hardening of composites with random discontinuous fibres
and derived the critical fibre volume fraction and elastic strain limit using the
energy changes associated with cracking. Li and Leung (1992) stated the
conditions for steady-state and multiple cracking based on the fracture
mechanics approach. Li, S.-H. et al. (1993) utilised the energy approach of
fracture mechanics to explain the increased matrix cracking stress during
multiple cracking of composites with continuous aligned fibres. Most of the
existing theories cannot produce the non-linear stress–strain relation due to fibre
pullout. Moreover, the contribution of broken fibres has not been taken into
account. In addition, analysis of hybrid composites has not been reported.

In structural analysis it is difficult to model all fibres in the composite, although
an attempt was recently made by Bolander Jr. and Saito (1997) who used a
random geometry lattice model onto which each fibre was projected. Therefore
the statistical tensile macromechanical relation is used to describe the material
behaviour normal to the crack. If the relation is known, the structural behaviour
can be estimated using the finite element method. Due to cracking and the non-
linear behaviour thereafter, special algorithms are required. Theories of cracking
have been developed for finite element analysis, including the smeared and
discrete crack models (see e.g. Willam et al. 1987 and Rots 1988). Recently a
multi-surface plasticity model was proposed by Feenstra (1993).

The study is divided into three successive parts: First, the crack bridging
analysis of a single fibre is developed using the micromechanical material
properties of fibres, matrix, and interface (App. I, II, III). Second, a statistical
analysis is performed including all fibres with different locations and
orientations or different fibre types (hybrid composite) to obtain the
macromechanical tensile behaviour (App. IV). Third, the computed non-linear
constitutive relation is incorporated into finite element analysis, representing the
stress–strain relation normal to the crack (App. V).
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2. Single fibre analysis

Composites failing in single fracture are typically modelled using the fibre
pullout model (Figure 1a). In the pullout model, fibres are considered to be
independent of the surrounding fibres. To the author's knowledge, a closed-form
elastic solution of the pullout problem is not yet available. Therefore the
problem is often approached with a one-dimensional model, in which the fibres
and the matrix are assumed to carry tensile stress only whereas the shear stress
is transferred by the interface between fibre and matrix.

Figure 1. Fibre models in a) pullout, or single fracture, and b) multiple
fracture.

The relative simplicity of the one-dimensional model with fibres being
considered independent makes the approach most inviting. The assumption of
independent fibres is justified if the stress gradient between adjacent fibres in a
composite is small (Leung 1992). This approach enables analytical derivation of
the average stress in the composite as a function of the crack width, if frictional
shear stress is assumed (Li, V.C. et al. 1993). If full bond and gradual debonding
are considered, the average stress can be numerically computed by analysing
different fibre embedded lengths separately. Moreover, the effect of fibre
distribution on the composite stress can be presented with a fibre orientation
factor (e.g. Wang et al. 1989, Jain and Wetherhold 1992, Li, V.C. et al. 1993).

2.1 Two-fibre system

In multiply-cracked discontinuous fibre composites with a fibre bridging several
cracks, the fibre forces at the adjacent cracks may differ and thus be out of
balance (Figure 1b). It follows that the shear stress in the matrix halfway
between fibres must be different from zero because of stress transfer from the
fibre to surrounding fibres. This means that the fibre cannot be analysed
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independently, but the interaction must be taken into account. Therefore a
fictitious two-fibre system is introduced, with two fibres being analysed
simultaneously. Fibre 1 is the primary fibre, while fibre 2 represents
surrounding fibres (Figure 2a). Therefore an average fibre force distribution for
fibre 2 should be chosen. However, the average force distribution in the fibre is
not known à priori. For the equilibrium condition, the choice of the force in
fibre 2 at either crack is arbitrary. For simplicity, therefore, fibre 2 is idealised
as having a force distribution which is a mirror image of that in fibre 1 (Figure
2b). The problem with two symmetrical fibres is relatively simple to analyse and
satisfies the force equilibrium. However, the assumption of a symmetry fibre
may lead to inaccuracy in relative fibre displacements if the force in fibre 2 is
much different from the average. In the average sense the error presumably
decreases when deriving the statistical macromechanical behaviour considering
all fibre embedded lengths.

l

Fibre 1

Fibre 2

x

Figure 2. a) Hexagonal fibre arrangement and b) fictitious two-fibre system
(App. III).

Let us study two adjacent fibres of the same type but mirror images of one
another within a segment of length l so that the total force balance is satisfied at
the crack. Using the free body diagram shown in Figure 2b, the equilibrium
condition of the composite cross-section can be written:

F x F x T x P1 2 2( ) ( ) ( )+ + = (1)

where P=P1+P2, the sum of the fibre forces at the crack, or the total load, F1(x)
and F2(x) are the tensile forces in fibres 1 and 2, respectively, and T(x) is an
average tensile force in the matrix around one fibre. It should be noted that

a) b)
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F1(0)=F2(l)=P1 and F1(l)=F2(0)=P2. If the fibres and the matrix are linear elastic,
obeying Hooke's law, the local strain difference between fibre 1 and the matrix
can be derived using Equation 1 (App. II):

( )ε εf m
m mA E

QF P F1 1 2
1

2
− = − +�

(2)

where

�Q
A E

A E
m m

f f

= +1
2

A corresponding equation can be derived for εf2–εm. Ef and Em are the moduli of
elasticity of the fibre and the matrix, respectively, Af and Am are the cross-
sectional areas of the fibre and the matrix, respectively, and εf1, εf2, and εm are
the tensile strains in fibre 1, fibre 2 and the matrix, respectively. The
constitutive equation of the fibre/matrix interface is still needed to obtain the
relative displacements between the fibres and the matrix. Initially, in the full
bond case, the bond–slip law is linear with a bond modulus κ (Aveston and
Kelly 1973, Budiansky et al. 1986, Lim et al. 1987, Nammur and Naaman 1989,
Leung and Li 1990, Stang et al. 1990, Naaman et al. 1991, Li and Chan 1994):

τ κ= S (3)

where τ is the interfacial shear stress and S is the slip, defined as the
displacement of the fibre relative to the matrix halfway between two fibres, and
can be derived from:

S
dF

dx
= =τ

κ κ ψ
1 (4)

where ψ is the fibre perimeter. The force–displacement relation of the fibre at
the crack can alternatively be derived using the finite element method.
Combining the pullout model with the results from the finite element analysis,
the bond modulus κ can be solved. Its value depends on the fibre diameter, fibre
volume fraction, and moduli of elasticity of the fibre and the matrix. Therefore a
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parametric study was performed using the dimensional analysis (App. I). The
result was a parametric plot, shown in Figure 3, from which the value of κ can
be read.

Debonding is assumed to initialise if the interface shear stress exceeds the bond
strength as proposed by Naaman et al. (1991), Lim et al. (1987), and Leung and
Li (1991). Stang et al. (1990) and Leung (1992) also proposed a fracture-based
debonding theory, and compared the two theories. They found that the analyses
were identical provided the effective shear strength was defined separately for
both theories. From the shear stress distribution in fibre pullout, it was shown
that debonding can proceed both from the loaded and from the embedded end
(Leung and Li 1991). This two-way debonding is also included in this study.
After debonding the interfacial shear stress is assumed to be a constant frictional
shear stress τf. Only after the fibre is fully debonded within the segment is the
debonding energy or the slip-dependent friction taken into account with a
decaying frictional shear stress. This approach is discussed in Section 2.4.

0.1

1

10

0.0001 0.001 0.01 0.1 1

100

10
1

0.33
0.2

0.1
0.01

BHE

κd/Em

Ef/Em

Vf

Figure 3. Normalised bond modulus versus fibre volume fraction with different
fibre and matrix moduli ratios. The dashed line is from Budiansky et al. (1986)
with d=1 mm, Em=21 GPa, and l=30 mm (App. I).
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Figure 4. Distributions of fibre forces where both ends are debonded less than
in mid-segment (App. III).

In the two-fibre system with a symmetry fibre there are three possible cases for
the fibre force distribution in every cross-section, depending on the bond
(Figure 4 is used as an example):

• Full bond in both fibres (l1<x<l-l 1):

F x Ae Be Ce De
P

Q
x x x x

1
1 1 2 2

1
( )

�

= + + + +
+

− −λ λ λ λ (5)

• Full bond in fibre 1, fibre 2 debonded (l-l 1<x<l-l 2):

[ ]F x Ge He
Q

P F xx x
1 2

1
( )

�

( )
� �

= + + −−λ λ (6)

• Frictional bond in fibre 1:
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F x
P t x x l

P t x l l l x l
f

f
1

1 1

2 2

0
( )

,

( ),
=

+ < <
+ − − < <





(7)

where

λ

λ

λ
ψ κ

1

2

1

1

2

= −

= +

=

=

� ( � )

� ( � )

�
� �

�

K Q

K Q

KQ

K
A Em m

and tf is the frictional shear flow (tf=τfψ), the sign of which depends on the
direction of friction. Corresponding force distributions can be written for fibre
2. The coefficients A, B, C, D, G, and H are linear functions of P1 and P2 and
can be determined from the symmetry and continuity conditions of the fibre
force.

2.2 System equations

In order to apply the two-fibre theory to the analysis of composite materials, the
forces Pi in the fibre at the cracks (Figure 5) should be derived from the crack
widths. Therefore a compatibility condition is needed, which is stated as
mutually equal crack openings in the strain hardening stage, whereas in the
softening stage one crack opens while the others close:

∆ ∆i
l

i
r

iw− = (8)

where ∆ i
l  and ∆ i

r  are the relative displacements of the fibre on the left and right
side of crack i, respectively, and wi is the width of crack i. For example, ∆ i

l  for
fibre 1 in Figure 4 is (App. III):

∆ i
l

x l l f m
l l

l
S dx= + −= − −∫2

2
1( )ε ε (9)
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Figure 5. Model of crack bridging (App. III).

The first and second terms on the right hand side of Equation 9 can be obtained
using Equations 4 and 2, respectively.

In case of a dynamic mechanism of fibre pullout, the rigid body displacements ui

within the matrix segments are also unknown (Figure 5). For example, if fibre 1
slips to the right in Figure 4, it follows that l2=l. The first term S x=0  in Equation

9 is the unknown ui for which Equation 4 cannot be used since the fibre is
debonded. An additional equation is therefore needed, which is derived from the
relation between fibre forces at adjacent cracks:

P P t li i f= +−1 (10)

Equation 8 is a system of equations from which the unknown variables Pi and ui

can be solved. Thereafter the distributions of the stress in the fibre and the
matrix and the shear stress of the fibre/matrix interface can be derived and the
debonding criterion tested.

The analysis of fibre ends leads generally to an infinite number of equations,
because when using symmetry fibre idealisation the fibre force at the crack next
to the fibre end depends also on the subsequent fibre. To overcome this
problem, a simplified approach has been developed in which the fibre segments
not overlapping their symmetry fibre (l1

*  and ln
*  in Figure 5) are analysed with

the single fibre theory. This approach is justified because the two adjacent fibre
regions are pulled out in the same direction, which is the case also in the single
fracture. It may, however, cause inaccuracy compared with the two-fibre system,
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the error increasing as the moduli ratio of the fibre and the matrix or the fibre
volume fraction increases.

The proposed model enables both single and multiple fracture. In fact, also in
the multiply-cracked case fibres with a high inclination angle bridge a single
crack only. Analysis of these fibres is similar to the pullout theory in single
fracture, if the fibres extend less than halfway between the cracks. In the ACK
theory put forward by Aveston et al. (1971), only sudden failure due to fibre
rupture can be analysed. The two-fibre system makes it possible to analyse both
fibre rupture and pullout. After fibre rupture the contribution of broken fibres
can also be taken into account. In addition, hybrid composites can be modelled.

2.3 Hybrid composite

If hybrid composites with two or more fibre types are analysed, two different
definitions of the matrix cross-sectional area should be distinguished. In fibre
analysis, the matrix area Ai

m occupied by a single fibre of type i is:

A
V

V
Am

i m

f
f
i= (11)

where Vf and Vm are the volume fractions of all fibre types and the matrix,
respectively, and Ai

f is the cross-sectional area of fibre type i. However, if the
tensile stress in the matrix is computed, the force transferred from a single fibre
of type i must be divided by a different matrix area:

�A
V

V
Am

i m

f
i f

i= (12)

where Vf
i is the volume fraction of fibre type i. The areas Am

i  and �Am
i  in

Equations 11 and 12 are equal if a single fibre type is analysed. It is also worth
noting that the composite with a single fibre type can also be analysed as a
hybrid composite by dividing the fibres into two or more groups.
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2.4 Energy terms in fibre analysis

Tjiptobroto and Hansen (1993a) studied the strain-hardening mechanism in
concrete reinforced with discontinuous fibres using an energy approach. They
considered the following energy changes during cracking: matrix fracture
energy, fibre debonding and frictional pullout energy, and the strain energy of
the fibres and the matrix. In the following, different energy terms are discussed,
including how they are taken into account in the present model.

The elastic strain energy of the fibre and the matrix is taken into account by
Hooke's law in the pullout theory. The constant interface frictional energy
during pullout is also considered. The debonding energy can be taken
approximately into account with a decaying frictional stress. Ba•ant and
Desmorat (1994) suggested a softening relation for debonding, similar to the
tension softening for concrete. The debonding energy is defined as the area
below the interfacial shear stress–relative slip curve. The bond–slip relation
used in this study is very similar to that of Naaman et al. (1991), allowing an
instantaneous drop of shear stress from bond strength τu to the initial frictional
shear stress τi

f (Figure 6). The frictional shear stress is then held constant within
the matrix segment during the progressive debonding process. Thereafter
arbitrary dependence of the frictional shear stress on dynamic slip can be
assigned. The decreasing friction due to mechanical abrasion can be modelled
with the same method (Naaman et al. 1991). It should be noted that the basic
physical concepts and magnitude of slip are very different in the two models.
The breakdown mechanism is directly associated with the fracture energy of the
interface with a high strength degradation rate in the breakdown zone. The rate
of the slip-dependent friction is lower and related to the damage suffered by the
fibre or the matrix during frictional sliding (Li and Stang 1997).

The limitations of this approximate modelling of the debonding energy must be
studied. It is done in the following by investigating the debonding energy at the
fibre loaded end during progressive debonding in fibre pullout. According to
Wang et. al (1989) the displacement of the fibre loaded end at the onset of
pullout is
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S
l

E d
f
i

f

=
2 2τ (13)

where d is the diameter of the fibre and l is the fibre embedded length. In
Equation 13 the contribution of the matrix is neglected. If the initial shear stress
τi

f is constant, the debonding energy dissipated at the fibre loaded end at the
onset of dynamic slip is

G Sdb
i

f
i

f= −( )τ τ (14)

which is represented by the hatched area in Figure 6. The approximate slip-
weakening concept is valid if the debonding energy in Equation 14 can be
considered small compared to the total debonding energy (light shaded area in
Figure 6). From Equations 13 and 14 it can be seen that this is the case for low
values of fibre embedded length or crack spacing, and for low τi

f – τf and high
fibre modulus and diameter. Consider, for example, the FR-DSP material (App.
V), with τi

f=6 MPa, τf=4 MPa, l= 3 mm, Ef=210 GPa, d=0.15 mm. The
debonding energy before dynamic slip derived from Equations 13 and 14 is
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Figure 6. Assumed bond–slip relation between fibre and matrix. The shaded
areas represent the total debonding energy and the debonding energy dissipated
during the progressive debonding process.
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Gi
db=6.9 N/m, which is only 6% of the reported Gdb=120 N/m. In this case there

must be a large transition zone between the undebonded and debonded regions
(Leung and Li 1991) and the model can be used without significant error.

The matrix fracture energy release is modelled using the fictitious crack model
by Hillerborg et al. (1976). The energy is defined as the area below the tension-

softening curve (σm
a w−  curve), which is usually a decaying curve. In this study

the relation is generated using the theory of Tran Tu and Kasperkiewicz (1994).

The additional stress Vm m
aσ  and strain V Em m

a
mσ  are then added to the pullout

relation similarly to the aggregate bridging action in the study by Li, V.C. et al.
(1993). Matrix fracture energy also affects the cracking stress of the composite
(Aveston et al. 1971, Li and Leung 1992, Tjiptobroto and Hansen 1993b).
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3. Macromechanical tensile behaviour

For structural analysis the behaviour of a single fibre is not very useful, whereas
the macromechanical constitutive relation of the composite is of greater interest.
The objective of this chapter is to derive the statistical tensile stress–strain
relationship of brittle matrix composites for numerical analysis. The
macromechanical behaviour can be obtained by considering a representative
volume element (RVE) with a fibre volume fraction Vf in every cross-section.
The cracks are assumed to extend over the whole cross-section, crossed by
randomly distributed fibres.

The main assumptions and restrictions concerning the fibres are that they are
separate, straight, and smooth. Moreover, in case of inclined fibres, they are
completely flexible carrying axial stress only. If deformed or bundled fibres are
analysed, the bond properties or fibre diameter can be adjusted respectively in
order to approximate the pullout behaviour, but the model should be used with
caution. If the bending or shear energy of the fibre is significant, the model may
lead to erroneous results by neglecting the flexural and shear stiffness or by
failing to predict the fibre rupture due to bending.

The tensile stress σc in the cracked composite can be evaluated from the average
fibre tensile stress σ f  at the crack in the direction normal to the crack:

σ σc f fV= (15)

Consider a case where the embedded ends of fibres at the crack are uniformly
distributed over surface A. The average fibre stress can be obtained by
integration over all fibre locations l and orientations θ:

σ σ θ ϕ θµ θ ϕ
f

f
f

A

l

A l
l e dA dl

f

= ′ −∫∫1 2
0

2
( , ) cos cos( ) (16)

where A depends on the fibre distribution. If the distance between cracks is 2s,
′σ f is the stress in the fibre at the crack obtained from the single fibre analysis

with crack spacing 2s/cosθ. The crack width in the fibre analysis is the total
crack width minus the additional crack opening due to matrix spalling.
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Figure 7. Effects of fibre orientation: a) number of fibres at crack, b) pulley
effect, and c) matrix spalling.

In Equation 16 three effects due to fibre orientation are taken into account
(Figure 7). First, Wang et al. (1989) showed that the number of fibres bridging
the crack is proportional to cosθ (Figure 7a), which is always less than or equal
to one, decreasing the average fibre stress and the stress in the composite.

Second, fibre snubbing is modelled by a frictional pulley at the fibre bending
point, µ being the snubbing friction coefficient (Li, V.C. et al. 1993). The stress
in the fibre at the crack, according to the classical belt friction theory, is then

′σ µθ
f e , if it is ′σ f  immediately behind the bending point (Figure 7b). Because

the term eµθ  is always greater than or equal to one, the snubbing effect
increases the fibre stress and the stress in the composite. The increased fibre
stress may also cause fibre rupture, further cracking, or matrix spalling. It
should be noted that the pulley effect is independent of the curvature radius,
which makes the pulley model particularly attractive because the radius is
generally not known.

Matrix spalling is caused by local loads at the fibre bending point. As a result,
the matrix may split under the indentation load and form a wedge spall (Li
1994). Matrix spalling changes the geometry at the crack, allowing an inclined
position of the fibre at the crack (Bartos and Duris 1994) with an inclination
angle ϕ (Figure 7c). Because of the altered geometry the fibre has a shortcut,
causing additional crack opening. Therefore the crack width and the composite
strain increase. Because of a lower curvature angle, the additional stress due to
the pulley effect decreases. Moreover, provided the fibre acts like a rope, the
stress component normal to the crack is lower than the tensile stress in the fibre.
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Due to these two effects the stress in the composite decreases, which may also
allow survival of the fibre from rupture.

Independently of and since the present study, a fairly similar theory of fibre
orientation effects has been presented by Leung and Ybanez (1997) in which the
elongation of the free part of the fibre is also considered. However, its
contribution to the crack width is usually insignificant with relatively low
spalled lengths.

The results obtained with the proposed model agree well with the ACK theory.
Using the present theory, the complete stress–strain curve can be computed
regardless of the fibre length, orientation, failure mode, or number of fibre
types. Therefore the proposed model can be considered an extension of the
ACK model.

In the analysis of a strain-hardening engineered cementitious composite (ECC)
with randomly oriented discontinuous polyethylene fibres, the snubbing friction
coefficient and matrix spalled length were introduced, which are not included in
the ACK theory. Reasonable agreement with the experimental results was
obtained (App. IV). However, the analysis resulted in too low a crack spacing,
which was found to be fairly sensitive to the estimated spalled length.
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4. Finite element modelling

With finite element modelling the constitutive tensile behaviour of fibre-
reinforced brittle materials can be extended into two or three dimensions to
analyse complex structures under general loading. The idea of a fictitious crack
model by Hillerborg et al. (1976) describing the crack propagation with a tensile
softening relation makes it possible to analyse complex cracking structures with
the finite element method. The relation can be used e.g. in smeared or discrete
crack models. These models have been widely used for plain concrete with a
decaying tensile softening relation. In addition, a combined plasticity model can
be used, with separate yield conditions in tension and compression regimes.
These approaches were used in this study for fibre-reinforced cementitious
composites (FRC), with the sole exception that the stress–crack opening relation
is different from that of plain concrete. The tensile behaviour of FRC is not
invariably descending but may also have ascending regions. This is not,
however, in contradiction to the methods; the approach is justified since
cracking is the main phenomenon for both materials.

Initially, the positions of cracks in the structure are not known. Rots (1988)
suggested that a predictor analysis be made using smeared crack analysis to
obtain the locations and orientations of the main cracks (Figure 8a). Thereafter a
corrector analysis is performed using the discrete crack approach with the
cracks being modelled with interface elements. The geometry must therefore be
modelled twice, which may delay the analysis process. In this study a procedure
is developed to automatically generate the interface elements on the existing
geometry. The geometry of the cracks can be created using line objects (Figure
8b). Although the plane elements adjacent to the interface elements may become
distorted, the method removes the obstacle of re-modelling the structure (Figure
8c). The generation algorithm can also be used to model the ordinary
reinforcement with interface elements representing the bond–slip relation.
Moreover, holes, outer boundary, or other details of the structure can also be
generated (Kullaa and Klinge 1995).

The definition of tensile strain for smeared crack analysis differs depending on
the fracture mode. If the composite fails in single fracture, the tension softening
curve can be used in the same manner as for plain concrete (Ba•ant and Oh
1983, Rots 1988). The strain consists of the elastic strain of the intact material
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and the crack width w divided by a characteristic length h: ε εc m w h= + . It
should be noted that h is not a material property but is related to the element
size.

In the case of a strain-hardening composite failing in multiple fracture, scaling
according to element size should be executed only for those terms comprising
the characteristic length h. At the strain hardening stage, the strain consists of
the average matrix strain and the crack width: ε εc m w s= + 2 , both components
of which can be interpreted as true strains in the smeared crack analysis. The
strain no longer depends on the element size but on the crack spacing 2s, being
thus a material property.

Figure 8. Automatic mesh refinement from smeared crack model to discrete
crack model. a) Crack pattern in smeared crack analysis, b) position of discrete
cracks, and c) discrete cracks modelled on the existing geometry.

c)

b)

a)
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During crack localisation in the multiple cracking stage, the strain consists of
three terms: the average matrix strain, the closing crack widths wul equal for all
cracks, and the additional crack width of the opening crack wloc:
ε εc m ul locw s w h= + +2 . When using the smeared crack concept, it must be
noted that only part of the crack width depends on the characteristic length h,
while the other part depends on the crack spacing. The components of the strain
with different values of h are illustrated in Figure 9. At the strain hardening
stage the strain is seen to be independent of the characteristic length, whereas
during crack localisation it is strongly element-related. It should be noted that
the unloading pattern of the closing cracks also has an effect on the tensile
softening relation. In Figure 9 secant unloading is presumed.

c)

b)a)

Figure 9. Strain components in a multiply-cracked composite with different
values of  characteristic length h. a) Stress–strain; b) stress–crack width; c)
stress–smeared strain relations (App. V).
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Structures analysed in the present study included steel fibre-reinforced beams
containing different fibre volume fractions and exhibiting multiple fracture;
kevlar fibre beams of different sizes and fibre contents without ordinary
reinforcement; a reinforced beam where kevlar fibres replaced the stirrups; and
a concrete pipe under a diametral line load, either without fibres or reinforced
with Wirex or Dramix fibres.

The analyses were performed using the cracking models in the DIANA finite
element package. A detailed description of the analyses is given in App. V. A
distinct increase in the peak load due to fibres could be produced. Moreover, the
computations gave a similar size effect of beams to that observed in the
experiments. The correct tensile relation proved essential for predicting
correctly the flexural behaviour. In particular, the shape of the post-peak tensile
relation has a significant influence on the load–deflection behaviour. The
smeared and discrete cracking models were seen to work nicely with these
applications. With more complicated structures, however, other problems may
arise. The reinforced beams with fibres replacing the stirrups introduced
difficulties e.g. in the convergence and modelling of the dowel action of the
reinforcement. The increase of peak load due to fibres could nonetheless be
produced. However, such analysis is still beyond the realm of engineering
practice and cannot be used to verify the computed tensile relation.
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5. Discussion

There is in retrospect much to be gleaned from the various parts of the research,
just as there are subjects open to further study. These are discussed below.

5.1 Fibre analysis

The advantages of the two-fibre system include the ability to model
discontinuous fibres and their pullout in the multiply-cracked stage. Fibre 2 is
defined as a symmetry fibre, although in reality it should represent the average
surrounding fibre. The choice of the symmetry fibre is justified by the average
decrease in error when analysing all fibre embedded lengths. The symmetry
fibre approach also makes it possible to extend the theory to hybrid composites.
The error due to the symmetry fibre assumption may, however, be significant if
the properties between each fibre type vary considerably.

The comparisons between the single- and two-fibre models (App. II) are
somewhat questionable, because the single-fibre model does not satisfy the
equilibrium conditions and cannot therefore be used for a multiply-cracked
composite. In case of multiple cracking the two-fibre theory should be preferred
even with a low accuracy requirement, since the relative error of the single fibre
system was studied in the full bond stage only. Applying the single fibre theory
may fail to predict the macromechanical behaviour and therefore cause larger
errors than those reported.

One difficulty with short fibres is due to the fibre ends. The simplified approach
used for fibre ends was shown to be liable to inaccuracy, restricting the validity
of the model to low fibre contents or moduli ratios. This is not a problem with
typical fibre reinforced cementitious composites but may cause inaccuracy with
some ceramic composites with high fibre contents.

The value of the bond modulus was determined by the finite element method for
fibre pullout. The analysed values were estimated to be pertinent also to the
two-fibre theory. However, whether the bond modulus is of same magnitude
also for a two-fibre system was not studied.
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The system equations are based on the deformation theory, meaning that the
unloading path is roughly the same as the loading path in fibre pullout. This may
cause inaccuracy, which is probably negligible in a single fracture after the
peak, because the crack opening due to pullout of the shorter embedded end of
the fibre far exceeds the displacement of the longer embedded length. However,
if the interface exhibits slip-hardening behaviour, the permanent crack opening
may be significant at the onset of unloading, the significance decreasing with an
increasing pullout length. In this study only interfaces with slip-softening
behaviour were considered. In multiple fracture the error can be minimised by
defining a permanent crack opening for the closing cracks. Incremental
equations should nonetheless be developed if unloading is to be more
thoroughly investigated.

The tensile softening relation due to the matrix fracture energy is added to the
computed average stress in the composite. Strictly speaking, the stress in the
matrix at the crack should already be taken into account in the boundary
conditions of the two-fibre theory. However, contribution of the matrix is only
significant at low crack widths, whereas fibres contribute up to a crack width of
half the fibre length. It is also believed that the error in the stress–strain relation
of the composite is not significant if the matrix contribution at the crack is only
later considered.

The slip-weakening behaviour of the interface due to debonding is only taken
into account after the fibre has fully debonded within the matrix segment. The
frictional shear stress thereafter depends on the rigid body displacement, or
dynamic slip of the fibre within the segment. A more correct way would be to
take the varying shear stress already into account during the debonding process.
The size effect in the fibre pullout could then be studied. Nevertheless the
debonding energy was successfully considered with the simplified approach for
the material called “fibre-reinforced densified small particles” (FR-DSP) (App.
V).

In the analysis of hybrid composites the area of the matrix is computed using the
geometric properties only. Presumably the stiffness ratio of the fibres also
affects the matrix area occupied by a single fibre. Consider, for example, a
hybrid composite with two types of fibre of similar geometries and volume
fractions, but different moduli of elasticity. The area of the matrix occupied by
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the stiffer fibre is probably larger than that of the flexible fibre. This is not,
however, taken into account in the proposed model.

5.2 Macromechanical model

In the statistical analysis some simplifications were adopted. First, once new
cracks form, the computing is started from the beginning and the debonded
lengths are zeroed. Second, the cracks are assumed to be of equal width and
spacing. Third, cracking takes place at constant average stress in the matrix. The
latter assumption may result in too low a crack spacing and multiple cracking
process to occur at a constant, instead of at an ascending stress of the composite.
These computational simplifications are not believed to cause major error in the
subsequent structural analysis.

A systematic experimental procedure should be developed to measure and
distinguish the effects of fibre orientation. In the most analyses in this study the
pulley effect and matrix spalled length were estimated as they were not
available. Moreover, the matrix spalling criterion should be included in the
proposed model. Due to the estimated parameters, the validity of the proposed
methods for modelling the two phenomena cannot be assessed.

The macromechanical parameters are computed from the average stresses and
strains, which are approximated by numerical integration. In this study the
rectangular rule of integration was used, which is very simple but the accuracy
of which must be checked. The general accuracy is difficult to assess because it
is affected by the load level, crack spacing, fibre distribution, pulley effect,
matrix spalling, and possible rupture of fibres. The accuracy was estimated
using examples in App. IV, section 3.1. First, in single fracture mode, the
relative error of the orientation factor, for which the exact solution is available,
was studied varying the number of inclination angles. Using 5 and 7 angles, the
relative error was 1.6% and 0.8%, respectively. Equal accuracy was obtained
using a snubbing friction coefficient µ=0 and µ=0.25. For two-dimensional fibre
distribution the error was more than three times lower. The error in average
stress in the fibre was estimated by varying the number of embedded lengths and
comparing the result with that obtained with 100 embedded lengths. With 5 and
7 integration points the relative error was 0.5% and 0.12%, respectively.
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Second, in a multiply-cracked composite, with 5 and 7 orientation angles the
relative errors of the stress in the composite were 1.4% and 1.02%, respectively,
compared to the stress obtained with 100 angles. Using 5 and 7 fibre embedded
lengths led to 0.58% and 0.24% relative error, respectively, compared with
using 100 embedded lengths. However, in case of fibre pull-out, with such a
small number of integration points the error of the strain in the composite at the
peak was much higher, exceeding 10%. The error in the peak stress was
nevertheless negligible.

More sophisticated integration rules could also be used. Simpson's rule of
integration or the Romberg algorithm could be more efficient than the
rectangular rule (e.g. Cheney and Kincaid 1994). Gaussian integration formulae
are also accurate and could be used for variable θ. However, for variable l,
integrations between both 0 and l f/2, and between s and s+lf/2 must be
performed (App. IV). With Gaussian integration formulae the values of the
integrand should be evaluated separately at different points depending on the
integration limits.

In practical computation the number of cracks per fibre is limited due to the
increasing computational time. If the fibre bridges more than 32 cracks, the
computation may take too long depending on the number of integration points.
Normally the limit of 32 cracks per fibre is not exceeded except with continuous
fibres, in which case another program can be used with the assumption of equal
forces in the fibres at adjacent cracks. Then only one segment between two
cracks need be considered and no integration in respect of fibre embedded
length need be performed. This implies that anchorage at the fibre ends is
provided and that the fracture mode is invariably fibre rupture.

5.3 Structural analysis

The finite element method was applied to flexural members under proportional
loading. The experimental behaviour could be reproduced, which justifies
utilisation of the used cracking models. For non-proportional loading the
analysis would involve further aspects, such as unloading and the crack shear
stiffness. Also, in shear-critical problems, e.g. when using fibres as shear
reinforcement, the effect of the shear stiffness of the crack should be studied. In
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complex problems with several cracks and more than one equilibrium path,
automatic incremental algorithms should be further developed. Moreover, the
dowel effect of the main reinforcement should be investigated.

Finite element applications concerned problems in two dimensions only. The
method is, however, also valid for three-dimensional problems. It should be
noted that the constitutive model in most problems was still computed using a
three-dimensional fibre distribution. This is a significant advantage as fibres are
usually distributed in three dimensional array, but two-dimensional finite
element analysis is sufficient for most problems. Finite element applications in
three dimensions were left for future research.
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6. Conclusions

The objective of this research was to develop a computational tool for analysing
fibre-reinforced brittle matrix composite materials and structures. The main
conclusions are listed below.

1. The micromechanical model is available for material design and analysis.
The model can predict the effects of several micromechanical parameters on
the tensile behaviour of the composite. The model can be used e.g. in
tailoring strain-hardening materials. In addition, the macromechanical
tensile constitutive behaviour can be used in structural analysis.

2. The two-fibre theory makes it possible to analyse the multiple fracture of
brittle matrix composites reinforced with discontinuous fibres. With the
model the fracture mode of fibre rupture or pullout can be analysed. To the
author's knowledge this is the first micromechanical model to produce the
non-linear stress–strain relation of multiply-cracked discontinuous fibre
composites.

3. The analysis of hybrid composites with two or more fibre types is
mathematically quite straightforward.

4. The contribution of broken fibres is considered in the model.

5. Fibre ends are analysed with a simplified model, which may cause
inaccuracy in the results if the fibre volume fraction and the ratio of the
elastic moduli of the fibre and the matrix are high (Vf >30%, Ef /Em>100). In
typical cementitious composites these limits are not exceeded. The approach
of analysing fibres independently in the single fracture mode is also justified
within these limits.

6. The theoretical bond modulus can be read from a curve if the fibre volume
fraction, fibre diameter, and the elastic moduli of the fibre and the matrix
are known.

7. The basis for computing the macromechanical tensile behaviour is two-fibre
analysis. The effects of fibre orientation are taken into account with simple
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models, which do not affect the fibre analysis. Therefore the theory is fairly
easy to program. The number of fibres bridging the crack is smaller due to
fibre orientation, thus decreasing the stress in the composite, whereas the
frictional pulley effect does the opposite. Matrix spalling reduces the pulley
effect and increases the crack opening. When analysing a strain-hardening
engineered cementitious composite (ECC) in tension, it was noticed that
matrix spalling alone could explain the extremely high strain capacity. The
models of the fibre orientation effects are yet to be verified against
measured properties, some of which were unavailable in this study.

8. Several energy terms are included in the constitutive model. In addition to
the strain energy of the fibres and the matrix, the matrix fracture energy,
fibre debonding energy, and frictional pullout energy are also considered.
Including the fibre debonding energy produces a decaying post-peak relation
observed in the experiments.

9. The present model agrees well with the ACK theory and its extensions.
With the ACK model the complete stress–strain curve can only be computed
for continuous, aligned fibres. The present model is therefore an extension
to the ACK theory since it can produce the constitutive relation independent
of fibre length, orientation, failure mode, or number of fibre types.

10. In two-dimensional finite element analysis the enhancing effect of the fibres
could be reproduced by using the crack normal stress–crack opening
relation, to which the computed macromechanical constitutive tensile
behaviour was applied. The cracking algorithms were seen to be directly
available for fibre-reinforced brittle materials, provided multi-linear
constitutive behaviour is allowed as an input. The discrete crack analysis
usually gives better results than the smeared crack model and the multi-
surface plasticity model exhibits better convergence than the fixed smeared
crack model.

11. The correct size effect of fibre-reinforced beams could be reproduced using
the discrete crack concept.
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12. The automatic generation routine greatly simplifies the creation of discrete
crack elements. The same routine can be also used in the generation of
reinforcing bar elements and other geometrical details.

13. Subjects left for further study include more accurate formulations for the
effects of matrix tensile softening, debonding energy, and unloading on the
fibre analysis.

14. In this study the applications were limited to cement-based composites. The
model, however, is not restricted to these but may be used with other brittle
matrix composites. The validity for analysing other composites, such as
fibre-reinforced ceramics, has yet to be studied.
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7. Summary of the appended papers

Paper 1 (App. I) deals with the fibre pullout problem in the full bond stage.
Because perfect bond is assumed, the problem can be considered linear elastic.
However, no elastic solution of the pullout problem is available. Therefore the
finite element method is used to derive the relationship between the force and
relative displacement at the fibre loaded end. This relation is then used in the
one-dimensional fibre pullout theory to solve the bond modulus κ, which is
defined as a slope between the interfacial shear stress and the fibre relative
displacement. Its dependence on the fibre diameter, fibre volume fraction, and
moduli of elasticity of the fibre and the matrix was studied. By using
dimensional analysis a normalised function for the bond modulus could be
evaluated, with two non-dimensional material parameters. A parametric study
was then performed by varying the non-dimensional parameters in the finite
element analysis and solving the bond modulus thereafter from the non-linear
equation. A parametric plot was presented, from which a numerical estimation
for the bond modulus can be read.

Paper 2 (App. II) introduces a fictitious two-fibre system for multiple fracture,
where fibres can bridge several cracks. A full bond is assumed. In the two-fibre
system two fibres are assumed to locate as mirror images of each other so that
the force equilibrium at cracks is satisfied. A simplified one-dimensional model
is chosen. The problem leads to a fourth order differential equation for the fibre
force within the matrix segment between cracks. Equation can be solved, and
the unknown coefficients determined, if the fibre forces at the cracks are known.
The relations are then derived between the fibre forces and displacements at the
cracks. The solutions from the two-fibre system are compared with those of the
single fibre theory. Also studied is a case where the fibre embedded length is
shorter than the distance between cracks.

Paper 3 (App. III) extends the fictitious two-fibre theory of Paper 2 by
considering progressive debonding and frictional sliding. The bond between the
two fibres and the matrix in a cross-section may be either elastic or frictional. It
may also be a mixture, so that for one fibre the bond is elastic while for the
other it is frictional. Corresponding equations are deduced and all possible bond
combinations within a matrix segment evaluated. Fibre ends can introduce
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inaccuracy due to a simplified theory, in which the non-overlapping fibre
segments are analysed independently as a single fibre.

When the relations between the fibre forces and displacements at the cracks are
evaluated separately for every matrix segment, the fibre forces at the cracks can
be solved using the compatibility condition of equal crack widths. Once the
fibre forces at the cracks are solved, the stress distributions in the fibre, matrix
and the interface can be evaluated. The problem is non-linear due to debonding,
which occurs if the interfacial shear stress exceeds the bond strength.

Paper 4 (App. IV) describes how the statistical macromechanical behaviour can
be deduced from the single fibre analysis. The computational model is fairly
general, including both single and multiple fracture, the fracture mode being
either fibre rupture or pullout. Moreover, hybrid composites with several fibre
types can be analysed. Fibre content, length, or distribution are not restricted.
On the other hand, fibres are assumed to be separate, straight, smooth, and fully
flexible.

The fibre orientation introduces additional phenomena: number of fibres at the
crack, snubbing effect, and matrix spalling. Their effects are modelled for every
fibre orientation. By integrating over all fibre positions and averaging, the
statistical stress in the composite can be evaluated. The cracking criterion is
tested using an average tensile stress in the matrix halfway between the cracks.
The result is a non-linear tensile stress–strain or stress–crack width relation of
the composite.

Paper 5 (App. V) is an application study in which the statistical tensile
behaviour is extended into two dimensions using different cracking models in
the DIANA finite element package. The tensile model represents the stress–
crack opening relation. In case of a strain hardening composite with multiple
fracture two stages must be distinguished. In the hardening stage the strain is a
material property, whereas in the softening state the strain depends also on the
element size. The three approaches used in this study are the smeared and
discrete crack concepts and a multi-surface plasticity model.

It has been suggested that a smeared crack predictor analysis be done first,
followed by a discrete crack corrector analysis. Because modelling of the
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interface elements representing discrete cracks leads to re-modelling of the
geometry, a method is introduced with which the interface elements can be
generated on the existing geometry. Moreover, based on the same algorithm the
reinforcing bars can be created with interface elements connecting them to the
plane elements and representing the bond–slip behaviour.

The applications are flexural members subjected to proportional loading: a steel
fibre-reinforced beam which exhibits multiple fracture, kevlar fibre beams with
and without ordinary reinforcement, and a concrete pipe under a diametral line
load, either without fibres or reinforced with Wirex or Dramix fibres. The
tensile behaviour of all materials was computed from the micromechanical
properties using the proposed model. The behaviour observed in the
experiments could be reproduced, which supports the validity of these methods
for analysing fibre-reinforced brittle materials.
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