
VTT PUBLICATIONS 366

TECHNICAL RESEARCH CENTRE OF FINLAND
ESPOO 1998

Practical development of
software configuration management for

embedded systems

Jorma Taramaa

VTT Electronics

Academic Dissertation to be presented with the assent of the Faculty of Science,
University of Oulu, for the public discussion in the Auditorium L10, Linnanmaa,

on November 7th, 1998, at 12 noon.

ISBN 951-38-5344-6
ISSN 1235–0621

Copyright © Valtion teknillinen tutkimuskeskus (VTT) 1998

JULKAISIJA – UTGIVARE – PUBLISHER

Valtion teknillinen tutkimuskeskus (VTT), Vuorimiehentie 5, PL 2000, 02044 VTT
puh. vaihde (09) 4561, faksi (09) 456 4374

Statens tekniska forskningscentral (VTT), Bergsmansvägen 5, PB 2000, 02044 VTT
tel. växel (09) 4561, fax (09) 456 4374

Technical Research Centre of Finland (VTT), Vuorimiehentie 5, P.O.Box 2000, FIN–02044 VTT, Finland
phone internat. + 358 9 4561, fax + 358 9 456 4374

VTT Elektroniikka, Sulautetut ohjelmistot, Kaitoväylä 1, PL 1100, 90571 OULU
puh. vaihde (08) 551 2111, faksi (08) 551 2320

VTT Elektronik, Inbyggd programvara, Kaitoväylä 1, PB 1100, 90571 ULEÅBORG
tel. växel (08) 551 2111, fax (08) 551 2320

VTT Electronics, Embedded Software, Kaitoväylä 1, P.O.Box 1100, FIN–90571 OULU, Finland
phone internat. + 358 8 551 2111, fax + 358 8 551 2320

Technical editing Leena Ukskoski

Libella Painopalvelu Oy, Espoo 1998

3

Taramaa, Jorma. Practical development of software configuration management for embedded
systems. Espoo 1998. Technical Research Centre of Finland, VTT Publications, 366, 147 p. +
108 p.

Keywords software engineering, software configuration management, embedded software,
embedded systems, process improvement, computer programs

Abstract

Software production problems have forced industrial organisations producing
embedded systems to assess and change the disciplines used to manage the
software process. The development of software configuration management
(SCM) is one of the solutions for problems concerning new product features.
SCM is also one of the software processes that requires improvements. The
importance of SCM is clearly understood by producers of embedded systems, but
there are difficulties to find the right procedures to apply and further develop
SCM in practice.

This thesis introduces a descriptive framework for SCM as a part of
development of more comprehensive software engineering practices of
embedded systems. The SCM framework covers version control, release-oriented
and change-oriented SCM. In addition to these SCM-specific procedures, there are
CM solutions for other product technologies and for global product management
including distribution.

The SCM framework has been evaluated and applied in co-operation with
several industrial embedded systems manufacturers in the field of mechatronics,
space instruments and other electronics applications. The framework can be
regarded as a starting point for the further development of a SCM maturity
model.

The tentative SCM maturity improvement levels are associated with the SCM
elements and related logistics processes, such as order/delivery and customer
data management. The maturity levels of the improvement range from low-level
version control to global product management including parallel solutions of
SCM and related elements.

4

The improvement of the SCM process calls for a maturity assessment and
improvement procedure. This research describes an inductive procedure,
PR2IMER, used in the first experiments as a part of the incremental approach.

5

Preface

This research was carried out at VTT Electronics. The foundation for the work
was laid during my stay at the University of Maryland at College Park in 1989 -
1990. The results of this visit produced the idea of constructing a reverse
engineering tool for PL/M code. The tool was implemented in the ARKEO project
in 1991 - 1993. This work also provided a more profound viewpoint on software
maintenance and its relation to software configuration management.

The Finnish project LOKKI, carried out in 1993 - 1994, addressed configuration
management in mechatronics applications, where the role of software is not as
central as in some other applications. A prototype of a software configuration
management system was built that indicated a need to proceed gradually from
version control to configuration management and maintenance.

The main context of this research was the ESPRIT project AMES, carried out in
1993 - 1996, which produced a set of tools, such as disabbreviation and domain
analysis tools, as parts of an application understanding toolset. The concept
‘application management’ that was used in modelling the application management
process led to a comprehensive view of the needs of this work.

The Finnish project LEIVO, which took place in 1994 - 1996, resulted in co-
operation with industry for proceeding incrementally towards developing
configuration management practices. Experiences with this project strengthened
the need for the use of various configuration management steps when developing
software configuration management practices in each company.

In the final phase of the research, in 1995 - 1997, the European Space Agency’s
(ESA/ESTEC) PMod project provided additional support for the evaluation of
software configuration management solutions in space applications.

I would like to thank my colleagues at VTT Electronics: Dr. Antti Auer, Mr.
Jukka Korhonen, Dr. Kari Laitinen, Mr. Raino Lintulampi, Ms. Minna
Mäkäräinen, Dr. Markku Oivo, Ms. Heli Puustinen, Mr. Hannu Rytilä, and Mr.
Matias Vierimaa. I also want to be grateful to all my co-operation partners of
other organisations, Dr. James Purtilo of the University of Maryland, Mr. Esa
Tuovinen of Honeywell Automation, Mr. Jussi Eronen of Datex-

6

Instrumentarium, Mr. Ari Tuunanen and Mr. Arto Sirén of Tamrock Drills, Mr.
Tommi Ketola, Mr. Kari Kumpulainen and Ms. Kati Suominen of Space
Systems Finland. In addition, I am also grateful to all the people in the AMES
project, which provided an excellent forum to exchange thoughts of the topics
of my dissertation.

Prof. Veikko Seppänen read several drafts of the dissertation and provided
several valuable comments. In addition, the co-operation with Prof. Seppänen
has been excellent for all these years. Mr. Malcom Hicks proof-read the
dissertation. Mr. Douglas Foxvog has checked my language in most of my
scientific papers. My sincerest thanks for them all.

I also wish to thank Prof. Reidar Conradi and Dr. Pekka Isomursu, the reviewers
of this dissertation, for their valuable and constructive comments, which have
led to a better construction of my dissertation. The work has been supervised by
Prof. Samuli Saukkonen. I wish to thank him for guidance and comments.

The research projects behind this work have been financed by TEKES, VTT
Electronics, and several companies. I am grateful for their support.

Finally, I wish to express my deepest gratitude to my family, Raija, Sakari and
Mirjami, for their support and patience to the family member who is always
sitting alone in the workroom.

Oulu, October 1998

Jorma Taramaa

7

List of original papers

This thesis includes seven original papers published or accepted for publication in
scientific journals or the proceedings of international conferences. They are
included here with the permission of their original publishers.

I Taramaa, J. and Oivo, M. Evaluation of Software Maintenance of
Embedded Computer Systems. In: D.W. Russell (ed.), International
Symposium on Engineered Software Systems, Malvern, Pennsylvania,
May 1993. Published by World Scientific Publishing Co., Singapore. Pp.
193 - 203.

II Taramaa, J. and Rytilä, H. A Solution of Reverse Engineering Process
Using Different Knowledge Categories for Preventive Maintenance.
Proceedings of the Seventh European Software Maintenance Workshop,
Durham, UK, September 1993. 10 p.

III Taramaa, J., Lintulampi, R. and Seppänen, V. Automated Assembly of
Machine Control Software. Mechatronics 1994. Vol. 4, No. 7, pp. 753 -
769.

IV Taramaa, J., Mäkäräinen, M. and Ketola, T. Improving Application
Management Process through Qualitative Framework. In: G.-L. Caldiera
and K. Bennett (eds.), Proceedings of the International Conference on
Software Maintenance (ICSM’95), Opio (Nice), France, October 1995.
Published by IEEE Computer Society Press, Los Alamitos, California. Pp.
327 - 336.

V Taramaa, J., Seppänen, V. and Mäkäräinen, M. From Software
Configuration to Application Management - Improving the Maturity of
the Maintenance of Embedded Software. Journal of Software
Maintenance: Research and Practice 1996. Vol. 8, No. 1, pp. 49 - 75.

VI Auer, A. and Taramaa, J. Experience Report on the Maturity of
Configuration Management for Embedded Software. In: I. Sommerville
(ed.), Proceedings of the 6th International Workshop on Software

8

Configuration Management (SCM6), Berlin, Germany, March 1996.
Published by Lecture Notes in Computer Science 1167, Springer Verlag,
Heidelberg, Germany, 1996. Pp. 187 - 197.

VII Vierimaa, M., Taramaa, J., Puustinen, H., Suominen, K. and Ketola, T.
Framework for Tool Evaluation for a Maintenance Environment. Journal
of Software Maintenance: Research and Practice 1998. Vol. 10, No. 3, pp.
203 - 224.

The author of this thesis is the principal author of the other papers than Paper VI
and VII. In both of these papers the author’s effort has been, however, essential.
Paper I indicates the role of software maintenance. Paper II provides a solution
for reverse engineering as part of software maintenance. Paper III introduces an
approach to build a software configuration management system. Paper V
extends the point of view from configuration to application management, taking
into account software maintenance aspects. Paper IV further relates application
management to process modelling. Paper VI provides experimental results of
industrial application the framework presented in Paper III and extended in
Paper V. Paper VII shows the results of the quantitative validation of the tools
proposed for the application management.

9

Contents

Abstract ...3

Preface ..5

List of original papers ...7

Contents ..9

List of acronyms..12

1. Introduction...17
1.1 Motivation and scope of research ..18
1.2 Research problem...20
1.3 Research methods...21
1.4 Focus of the thesis..27
1.5 Outline of the thesis ...28

2. Problem analysis ...31
2.1 Domain knowledge related to SCM ...31

2.1.1 Embedded computer systems ...32
2.1.2 Software engineering and related development techniques of

embedded systems ..36
2.2 Configuration management in software engineering37

2.2.1 General principles of SCM...37
2.2.2 Configuration management of embedded software......................44

2.3 Change related activities ..49
2.3.1 Maintenance in software engineering...49
2.3.2 Maintenance of embedded software...50

2.4 Process modelling for maintenance SCM ..53
2.4.1 Software maintenance process ...55
2.4.2 Software maintenance versus SCM..60
2.4.3 Extended software maintenance process
 - application management ...62

2.5 Other processes ..63
2.6 Related work ..66

2.6.1 Approaches to SCM practices ..66

10

2.6.2 European Space Agency’s (ESA) process models68
2.6.3 Software assessment paradigms ...71
2.6.4 Discussion...75

3. Requirements from industry..77
3.1 Requirements of machine control software..77
3.2 Requirements of space software...77
3.3 Requirements of electronics products ..78

4. SCM framework..79
4.1 Version control...82
4.2 Release-oriented SCM..82

4.2.1 Non-standardised and repeatable software manufacturing83
4.2.2 Software manufacturing with documentation83
4.2.3 Automated software manufacturing for mass-customisation84

4.3 Change-oriented SCM..85
4.3.1 Problem tracking management ...85
4.3.2 Request-driven change management ..86
4.3.3 Application management..86

4.4 Product data management ..87
4.4.1 Electronics related to configuration management88
4.4.2 Configuration management related to several product
 technologies ...90

4.5 Global product management ..90
4.6 Discussion ..91

5. Improvement of SCM ...93
5.1 Overview of SCM improvement levels..94

5.1.1 Version control-oriented levels - from step 1 to step 394
5.1.2 Software manufacturing-oriented levels - from step 4 to step 5 ..95
5.1.3 Change-oriented level - step 6 ..99
5.1.4 Total product management level - step 7 to step 11.....................99
5.1.5 Global product management level - step 1299

5.2 Improvement procedure for SCM ..100

6. Validation..102
6.1 Cases in SCM framework validation ...102

6.1.1 Mechatronic application...103

11

6.1.2 Space application..106
6.1.3 Other applications of electronics products108
6.1.4 Discussion of SCM framework validation108

6.2 Initial improvement experiences ..109
6.2.1 The AMES project: Improvement of change control109
6.2.2 The LEIVO project: Improvement of version control, software

manufacturing and delivery..116

7. Introduction to papers ...120
7.1 Paper I, evaluation of software maintenance and its improvement......121
7.2 Paper II, tool for software evolution and maintenance121
7.3 Paper III, a solution to the software configuration management
 problem ...122
7.4 Paper IV, process aspects of software maintenance.............................122
7.5 Paper V, levels of SCM practice improvement....................................122
7.6 Paper VI, experiences of the improvement framework using
 qualitative analysis..123
7.7 Paper VII, experiences of the improvement framework using

quantitative analysis ...123

8. Conclusions and further research..124

REFERENCES..127

ERRATA

APPENDICES
Papers I - VII

Appendices of this publication are not included in the PDF version.
Please order the printed version to get the complete publication
(http://www.inf.vtt.fi/pdf/publications/1998)

12

List of acronyms

AMES Application Management Environments and Support, a
project of the ESPRIT programme #8156

ARKEO Reverse engineering technology for embedded software, a
Finnish information technology project funded by TEKES
and Finnish industry and VTT Electronics

AU Application Understanding toolset, a part of the AMES
tools, developed by the University of Durham and VTT
Electronics

ASIC Application Specific Integrated Circuit, an
implementation technology of complex logic functions in
hardware

BIOS Basic Input/Output System, a set of instructions stored on
a ROM chip inside IBM PCs and PC-compatibles, which
handles all input-output functions.

BOM Bill-of-Material

BOOTSTRAP European software process assessment and improvement
methodology

CAD Computer-Aided Design

CAE Computer-Aided Engineering

CAM Computer-Aided Manufacturing

CASE Computer-Aided Software Engineering

CI Configuration Item

ClearCase SCM tool, developed by Rational Software Corporation
Inc.

CLU Object-oriented programming language developed at MIT

CM Configuration Management

13

CMM Capability Maturity Model for software processes, an
American software process assessment and improvement
programme and framework

Continuus SCM tool, developed by Continuus Software Corporation

CP Configuration Programming

DARPA Defense Advanced Research Projects Agency

DoD Department of Defence

DSP Digital Signal Processing

EPROM Erasable Programmable ROM

EPSOM European Platform for SOftware Maintenance, a
subproject of ESF

ESA European Space Agency

ESF Eureka Software Factory

ESPRIT European Strategic Programme for Research and
development in Information Technology

ESSDE European Space Software Development Environment

ESSI European Software System Initiative

ESTEC European Space research and TEChnology Centre at
Noordwijk, the Netherlands

EU European Union

Eureka Pan-European, market-oriented research and development
programme

EXPRESS Language for data description related to STEP standard

FPGA Field Programmable Gate Arrays (FPGAs), an
implementation technology of complex logic functions in
hardware

GQM Goal-Question-Metric

HOOD Hierarchical Object Oriented Design

HTML HyperText mark-up language

14

IAS Impact Analysis toolset, a part of the AMES project tools,
developed by Matra Marconi Space, France

IDEF0 Technique for specifying functional relationships, a
commercialised solution of SADT

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

ISO International Standardization Organization

LEIVO Practical improvement of software configuration and
version control, a Finnish information technology project
funded by TEKES and Finnish industry

LOKKI Assembly of machine control software, a Finnish
information technology project funded by TEKES,
Finnish industry and VTT

MIL Module Interconnection Language

MRP Material Requirement Planning

MS-ACCESS Database, developed by Microsoft Inc.

OVUM Independent research and consulting company

PDM Product Data Management

PL/M Programming Language for Intel 80x86 processors

PMod Study on Process Models for Space Applications, a
project of ESA’s Technology Research and Development
Programme

Polymake Configuration Builder, produced by Intersolv Inc.

PSS-05 ESA’s software engineering standard

PR2IMER Practical Process Improvement for Embedded Real-Time
Software, developed by VTT Electronics

ProcessWEAVER Process enactment tool, developed by Cap Gemini
Innovation

PROM Programmable ROM

15

PROMESSE PROcess Modelling in ESSDE, a project of ESA’s
Technology Research and Development Programme

PROTEUS Support for System Evolution, a project of the ESPRIT
programme #6086

PVCS Professional Version Control System, developed by
Intesolv Inc.

RCS Revision Control System, a version control system
developed by prof. Walter Tichy in Carnegie Mellon,
Pittsburgh, Pennsylvania

REDO Maintenance, Validation and Documentation of Software
Systems, a project of the ESPRIT programme #2487

ReverseNICE Reverse-engineering tool, a part of the AMES project
tools, developed by Intecs Sistemi Spa

Robochart Flow-diagram editor, produced by Digital Insight Inc.

ROM Read Only Memory

RT-SA/SD Real Time Extensions for Structured Analysis and Design
is a software engineering methodology

SADT Structured Analysis and Design Technique

SCCS Source Code Control System for UNIX systems

SCM Software Configuration Management

SCM-PR2IMER SCM-focused process improvement approach of
PR2IMER

SME Small or Medium Enterprise

SPI Software Process Improvement

SPICE Software Process Improvement and Capability
dEtermination

STEP ISO’s STandard for the Exchange of Product data

Tcl/Tk Scripting language for applications developed to run on
Sun Microsystems environments

16

TDIF Transfer Data Interface, a traceability data input format,
defined by the AMES project

TEKES Technical Development Centre of Finland

TPM Total Product Management in Technopolis, a project of
the EU/ESSI programme

TRILLIUM Software process assessment and improvement
methodology developed by Northern Telecom and Bell
Canada

TQM Total Quality Management

UNIX Operating System, trademark of AT&T

Webmaker FrameMaker cross-reference converter, developed by
Harlequin Group Limited

VHDL Hardware description language, originally developed by
DARPA.

VISCOUNT Virtual Software Corporation Testbed, a project of the
ESPRIT programme #25754

VTT Technical Research Centre of Finland

XCOPY PC/DOS copying command

17

1. Introduction

The software of embedded computer systems, embedded software, consists of
built-in computer programs for controlling high value-added products such as
switching and production control systems, space instruments, wireless
communication devices, home electronics goods, and mechatronic machines.
Definitions and taxonomies of embedded software are given by Karjalainen
(1987), Seppänen (1990) and George and Kryal (1996), for example.

The complexity of embedded software has vastly increased during the last few
years, as also has its size, reaching hundreds of thousands of lines of code in
some applications (Davis 1990; Hurst and Dennis 1996; Seppänen et al. 1996).
The evolution of embedded software in consecutive generations of mobile
phones in terms of typical size is shown as an example in Table 1 (Karjalainen
et al. 1996). The analogue-based solutions were implemented in 1980’s and
digital ones in 1990’s. This development is also indicated by analysis of
telecommunication products where as much as 75 per cent of the product’s
development costs was already directed at software in the beginning of 1990’s
(Weider et al. 1990).

Table 1: Increase of software size in mobile phones.

System type Generation Example of system Software size

Analogue 1
st

Nordic mobile phone system
(NMT)

some Kbytes

Analogue 2
nd

NMT tens of Kbytes

Digital 1
st

Global system for mobile
telecommunications (GSM)

hundreds of Kbytes

Digital 2
nd

GSM about 1 million bytes

An example of the direction of a specific application software is indicated by the
European Space Agency’s (ESA) on-board software development. The first
spacecraft in 1970’s included very simple and small control software, whereas the
current modern spacecrafts rely heavily on software, i.e. measurement
instruments, on-board control and telecommunication (Mortensen 1995).

18

Products based on embedded software are typically used for a long time and
require several modernisation cycles. A state of the art study concerning the
maintenance of embedded software indicated that the current software generation
will be used in many cases almost throughout the 1990's (Paper I). The average
age of embedded software in active use was about seven years, and there were
some items that had been used more than for twenty years.

In addition to the increase in software size and complexity, many companies have
faced a new situation in which software has come to occupy a central role among
their products.

The products based on embedded computer systems can be characterised by the
following changes in their features:

� The volume of products supplied has increased.

� Software belonging to the same product family may be used in a number of
products.

� There may be several versions of the same product, representing the
outcomes of different tool versions and possessing slightly different
features.

� The products are integrated as parts of various other systems.

� The volume of changes in the products has increased.

1.1 Motivation and scope of research

Software production problems have forced industrial organisations to assess and
change the disciplines used to manage the software process (Sommerville 1995;
Pressman 1996). Good examples of this development are provided by well-known
quality certification standard based on ISO 9000-3 (ISO 1990-3 1991), total quality
management (TQM) framework (Deming 1982) as well as software process
assessment and improvement programmes such as CMM (Humphrey 1988; Paulk et al.
1995), TRILLIUM (Bell 1994), BOOTSTRAP (Kuvaja et al. 1994) and SPICE
(ISO/IEC 15504 1995). Software process assessment and improvement programmes
also include a classification of software processes, although each classification is
slightly different. In all of them software configuration management (SCM) is an
independent process closely related to many other processes.

19

The purpose of SCM is to manage the evolution of large and complex software
systems by establishing and maintaining the integrity of software throughout its
life cycle. This means identifying the configuration of the software,
systematically controlling changes of the configuration, and maintaining
traceability of the configuration throughout its life cycle (Dart 1991; Tichy
1988).

It has been understood that SCM requires improvements as one of the software
processes (Berlack 1992; Buckley 1996; Forte 1993; Tichy 1988; Whitgift 1991;
Dart 1992a). Its importance is clearly understood in industry, but there are
difficulties in finding the procedures for adopting and improving it (Brown et al.
1995; Seppänen et al. 1994; Seppänen et al. 1996).

The change of the position of SCM is indicated by the sales of commercial SCM
tools and environments. According to OVUM (Rigg et al. 1995), the annual rate of
growth in SCM revenues is 50% and the market will rise to almost $1 billion by
1997. SCM has long been accepted as one of the activities contributing to software
engineering, but it has proved to be difficult to apply effectively until recently
(Rigg et al. 1995). The field of SCM typically discusses general technical
solutions (Forte 1993; Rigg et al. 1995).

Although commercial SCM solutions exist, there are specific dimensions, which
must be studied, and for which solutions need to be developed, e.g. new life cycle
models (Davis and Bershoff 1991) and architectural questions (MacKay 1995; van
der Hoek et al. 1996).

Incremental SCM improvement, where companies improve their SCM practices in
a stepwise manner, can be also regarded as a specific category. Ambriola et al.
(1990), for example, discuss SCM generations that have been produced by
different software development environments.

Although automatisation opportunities of SCM are understood fairly well today,
there is a need to evaluate the adoption of automated configuration tools (Dart
1995; Wein et al. 1995). Dart (1995; 1996) presents a framework that includes a
number of issues which have to be taken into account, such as technical, political,
risk-related and organisational issues. Our approach concentrates on technical
issues, since these form a distinct improvement target. Technical issues have to be

20

understood before it is possible to take other issues into account. The software
production organisation must also assess political, risk-related and personnel issues,
although this research does not deal with them.

We have developed an approach to SCM development, which has been evaluated and
applied in co-operation with several industrial embedded systems manufacturers. The
importance of SCM development arises out of the characteristics of the companies
(Papers I and VI). The development groups are typically small in size (5 - 20
developers) which does not make it possible to invest large amounts of effort in
software process development. In addition, existing software engineering environment
solutions, including SCM, force companies to make incremental steps in parallel with
their normal software development.

1.2 Research problem

SCM and software maintenance have been extensively discussed in the literature (e.g.
Arthur 1988; Bennett et al. 1991; Berlack 1992; Bershoff et al. 1979; Dart 1990 and
1991; Feiler 1991; Forte 1993; Lientz and Swanson 1980; Pressman 1996;
Sommerville 1995; Tichy 1988; Whitgift 1991). Some authors in particular have taken
embedded systems and their software as a specific SCM category, notably Adamson
(1990), Buckley (1996), Foster et al. (1989) and Lyon (1997).

The hardware of embedded computer systems makes the changes slightly different
from those applying to software based on standard workstation and PC hardware.
Software production and product manufacturing are closely related, because the
embedded software is one part of the physical product to be manufactured and
supplied. This means that SCM of embedded software has to be seen within a more
comprehensive framework, which includes interfaces with hardware and other
technologies as well as software production as a part of product development. The
changes made after delivery are typically corrections, giving rise to economic losses in
addition to other potential problems such as safety and security concerns (Leveson
1986; Liddiard 1994).

Changes made to embedded software can be regarded more as questions of evolution
than of maintenance. In addition to normal corrective actions, new software is often
developed by modifying existing configurations. The evolution is then both adaptive

21

and perfective. Adaptive maintenance relates software to environmental changes,
whereas perfective maintenance takes functional changes into account (Swanson
1976).

From the previous discussion we derive the research problem as follows:

Based on this statement of the topic, the following more specific questions can be
put forward:

Q1. What is the role of software evolution and maintenance in
products which include embedded software?

Q2 What activities are needed for managing configurations of
embedded software?

Q3 How is it possible to analyse SCM development of
embedded systems?

Q4 How is it possible to proceed in SCM improvement?

1.3 Research methods

The approach adopted here follows a constructive research model that includes
both conceptual and technical realisations. Since this research concentrates on
constructing the framework and on the further improvement of SCM, this
approach can be regarded as constructive. In addition, the work includes separate
technical solutions, which extend the research approach in a technical direction.

How can an industrial organisation cope with software configuration
management of embedded software taking into account the requirements set
by product evolution and maintenance?

22

Such a method represents one of the three approaches recognised in the context of
information systems development by Iivari (1991)1 .

The approach of this research can be also examined in a more comprehensive
framework. In terms of the classification of research methods presented by
Pertti and Annikki Järvinen (1995)2 it can be characterised as a combination of
the theory building method and the construction of a new reality. The former
includes analysing SCM practices and the latter the technical solutions used for
the various SCM environments.

Our assumption is that there is a need to develop software engineering
processes, in which SCM constitutes one of the targets to be developed. In
addition, software maintenance and evolution include special features upon
which embedded software has its own effects.

As depicted in Figure 1, the research method can be divided into the following
three phases:

1. Problem analysis: We analyse state-of-the-art practices in SCM and
software maintenance, taking the special features of embedded software
into account. Software maintenance is chosen as the main point of view in
process modelling. Product configuration practices and programming
languages add elements of their own to the research topic.

1 According to Iivari’s categorisation, there are three major research methods of

information systems: constructive (including conceptual and technical development),

nomothetic (including formal-mathematic analysis, experiments, and field studies), and

idiographic (including cases and action research) ones.

2 Pertti and Annikki Järvinen describe research work in five major categories. They first

separate mathematical research from the approaches intended to study the reality. The

latter is then further divided to conceptual-theoretical research and empirical research.

The empirical approaches can concern construction of a new reality or a past and present

one. The latter can still be considered with two different approaches: with theory testing

methods or with theory building methods.

23

2. Construction: An approach to the development of a descriptive
framework for SCM is suggested. In addition, this thesis introduces the
tentative improvement levels to SCM as a starting point for the further
development of a maturity model. Both are justified by the results of the
problem analysis.

3. Demonstration: The solution is produced and validated by case studies
in three projects. They include various kinds of embedded systems
applications, such as space instrument, mechatronic system, and other
electronic products. The SCM framework validation is made by these
three applications. In addition, the tentative SCM maturity improvement
levels associated with SCM elements are validated by two of the SCM
framework validation projects that include space instrument and
electronic products.

24

I s_based_on Consis ts_of

Cons is ts_of

P R O B L E M
A N A L Y S I S

D E M O N S T R A T I O N
O F

T H E S O L U T I O N

C O N S T R U C T I O N
O F

T H E S O L U T I O N

Is_
just i f ied_by

Is_
va l ida ted_by

S U B J E C T S

Ent i t y name

S C M
F R A M E W O R K
A N D
I M P R O V E M E N T

S C M
improvement

Improvement
levels

Improvement
p rocedure

Ent i t y name

I N D U S T R I A L
C A S E S

Space so f tware

Othe r
electronics
so f tware

Mecha t ron i c
so f tware

E m b e d d e d
sof twareS C M

f ramework

F ramework
solut ions

SCM e lemen ts
wi th levels

E m b e d d e d
Compu te r
Sys tems

Sof tware
Conf igura t ion
M a n a g e m e n t

So f tware
Ma in tenance

Sof tware
Process
Mode l l i ng
Produc t
Leve l
M a n a g e m e n t

P rog ramming
Languages

Rela ted work

Sof tware eng ineer ing
and re la ted
deve lopment
techn iques

Figure 1. The research method.

Since this thesis is based on previous experiences of SCM and its application in
industry and on several projects, their relations to this thesis are described by
Table 2.

 Table 2: Projects and their results related to this thesis.

Time Description of research
activity

Results Position in this thesis References

1985 - 90 Industrial projects at VTT

Electronics

Experiences about SCM and its
position in the development of
embedded software

Industrial experiences,
references in chapters 4
and 5

1990 Module interconnection

technology and its relation

to embedded software

Understanding of the module
interconnection technology

References of section 2.2 Taramaa and
Purtilo 1990

1992 - 93 The ARKEO project:

Reverse engineering

technology as a part of

software maintenance of

embedded systems

Position of software engineering
processes in the companies
producing embedded software

Reverse engineering solutions for
embedded software

Original paper I of this
thesis

Original paper II of this
thesis

References in chapter 2

Paper I

Paper II;
Rytilä 1994

1993 - 94 The LOKKI project: SCM

for mechatronics

applications

A SCM environment definition
and construction

Preliminary experiences of the
relation between SCM and PDM

Original papers III and V
of this thesis

Requirements of section
3.1

Validation results of
chapter 6

Papers III and V

Time Description of research
activity

Results Position in this thesis References

1994 - 96 The AMES project:

Application management

development – space

software as a case

Methodology, environment and
tool development for application
management

The first experiences of SCM
framework and incremental
improvement procedure

Original papers IV, V and
VII of this thesis

References in section 2.4

Requirements of section
3.2

Validation results of
chapter 6

Papers IV, V and
VII;
Mäkäräinen and
Taramaa 1995;
Taramaa and
Seppänen 1995;
Taramaa and Ketola
1995

1994 - 96 The LEIVO project:

Incremental development

of software configuration

practices

Experiences of SCM and
tentative maturity improvement
levels

Original paper VI of this
thesis

Requirements of section
3.3

Validation results of
chapter 6

Paper VI

1995 - 97 The PMod project:

Evaluation process

descriptions for the ESA’s

software engineering

solutions including SCM

Analysis and description of SCM
as a part of the more
comprehensive software process
description

Section 2.6.2 Taramaa 1997;
Stragapede et al.
1997

27

1.4 Focus of the thesis

The approach taken in this thesis concentrates on SCM in embedded systems,
relating the specific requirements and features of embedded software evolution
and maintenance to SCM. The main focus is on presenting a framework for use
when developing SCM for embedded computer systems. The framework takes
into account the special features imposed on SCM by these systems.

The presentation of the framework becomes difficult without any definition of
the SCM and related concepts. Therefore this thesis describes the basic SCM
concepts, maintenance process and its relations to SCM as well as more
comprehensive notion of application management which is related to software
maintenance and SCM. In addition, the relation to product data management is
described for indicating the need to relate SCM and PDM to each other. The
construction of SCM and application management environments has provided
experimental results, which have been applied when specifying the SCM
framework and improvement. The results of the construction of these
environments are depicted in Papers III and V.

The main part of validation concentrates on the SCM framework. It is evaluated
and applied in several industrial embedded systems applications in the field of
mechatronics, space and other electronics applications. The first results
regarding this framework are presented in Paper V, which deals with
mechatronics and space applications. The framework is applied more
comprehensively in Paper VI where the companies ranging from Small and
Medium size Enterprises (SME) to big companies with their dedicated quality
organisations provided electronics applications at different maturity levels of
improvement.

The tentative SCM maturity improvement levels associated with SCM elements,
such as version control, software manufacturing and change control, and related
logistic processes. The validation was based on two projects. The first project
was focused on use of qualitative analysis of current practices, GQM (Goal-
Question-Metric) for goals definition, quantitative measurements derived from
GQM plan. The validation in the other project was based on qualitative
evaluation. The maturity levels of improvement range from low-level version

28

control to global product management including parallel solutions of SCM
elements.

1.5 Outline of the thesis

In the second chapter of this thesis we discuss SCM and maintenance-related
activities. Maintenance aspects are emphasised, because they set particular
requirements for SCM. The related work is also dealt with by this chapter. SCM
in different software process assessment paradigms is analysed, such as CMM,
TRILLIUM, BOOTSTRAP and SPICE, as well European Space Agency’s
(ESA) software maintenance and SCM practices. In addition, some other SCM
specific approaches will be discussed.

The requirements set by the industrial partners are the focus of the third chapter
indicating the challenges set by these applications, i.e. mechatronics, space and
electronics applications.

The focus of the forth chapter is to provide a descriptive framework for SCM as
a part of development of more comprehensive software engineering practices.
The SCM framework covers version control, release-oriented and change-oriented
SCM. In addition to these SCM-specific procedures, there are CM solutions for
other product technologies and for global product management including
distribution.

The fifth chapter introduces the tentative SCM maturity improvement levels
associated with SCM elements, such as version control, software manufacturing
and change control, and related logistic processes. The improvement of the
SCM process needs a maturity assessment and improvement procedure. The
PR2IMER (Practical Process Improvement for Embedded Real-Time Software)
framework is used as an improvement procedure of SCM. The SCM framework
acts as a descriptive model for the current state analysis supporting the
understanding and analysis of SCM practices. The GQM based approach is
related as a part of PR2IMER for defining metrics.

29

The sixth chapter illustrates the first experiences of both SCM framework
validation and SCM improvement. The quantitative results have been presented
from the change control-oriented improvement part, where the tools developed
for application management were validated using GQM. The qualitative analysis
was carried out in version control, software manufacturing and order/delivery
data management.

A more profound description is given by original papers. From them there is an
introduction to the original papers included in chapter seven of this thesis. As an
introduction to the papers, we consider the role and state-of-the-art of software
maintenance of embedded systems (Paper I). Paper II shows the first results
developed for software maintenance, in particular, problem understanding. After
the definition and experiments of the SCM environment (Papers III, V and VI),
we extend our perspective to the software evolution and maintenance process
(Paper IV). Industrial cases are described in Papers III - VI. Paper IV deals with
a space instrument, Paper III with a mechatronic system, and Paper VI with
experiences gained in several other electronics applications and the first
experiences of the tentative maturity improvement procedure. Paper V deals
with a combination of space and mechatronics applications. Paper VII shows the
results of the quantitative validation done to the tools of the application
management environment as a part of the improvement procedure.

30

Table 3 shows in which way and in which chapter each research question is
described. The papers are also related to research questions.

Table 3: Questions and research method and results related to them.

Research
question

Description of
research activity

Description of
research method

and results

Chapters and
papers

Q1 Relate the role of

software evolution and

maintenance with SCM

Questionnaire and its analysis

Results: The role of software

maintenance and evolution

Chapter 2 and the

results in Papers I

and II

Q2 Investigate activities

that can be separated in

SCM

Analysis of references

Results: SCM concepts to be

used in this research

Chapter 2 and the

first results in Paper

III

Q3 Develop SCM

framework for

developing software

evolution and

maintenance practices

and provide evidence of

its usefulness

Construction of a new reality

of SCM development

Results: SCM framework

including levels of SCM

elements

Chapters 4 and 6 as

well as solutions

shown in Paper V

Q4 Investigate the SCM

improvement and

provide the first

experiments of its

usefulness

Application of a process

improvement to SCM

Results: SCM improvement

with improvement procedure,

program and solutions

Chapters 5 and 6 as

well as experiences

shown in Papers IV,

VI and VII

31

2. Problem analysis

This chapter provides a background of the technologies to be related to CM,
such as embedded systems, software engineering of embedded systems, SCM
itself and related concepts. In addition, the comparison of the related work is
provided at the end of this chapter.

Although software development for embedded systems involves a lot of specific
features, the basic embedded software development tasks are the same as in
software engineering in general. Embedded systems are seen as the domain to be
analysed in the relation to SCM. Therefore the introduction of SCM and change
related activities are divided into general and embedded software-specific parts.

Process modelling related to software maintenance and SCM is one of the topics
of this chapter. The process aspect can be regarded as an element unifying
software maintenance and SCM, i.e. software maintenance can be supported by
process definitions and descriptions, taking into account different maintenance
types that require different software processes, such as SCM.

The concepts that we are dealing with in the following sections are broadly set
out in Figure 2, which describes the relationships between embedded software,
life cycle concepts and process modelling.

2.1 Domain knowledge related to SCM

In this section embedded systems establish domain which is analysed from
different viewpoints. Embedded systems bring the specific features to SCM
which can be analysed in the target to be developed, i.e. embedded computer
system, and in the engineering technology to be applied, i.e. software
engineering.

32

Figure 2. The description of the concepts defined.

2.1.1 Embedded computer systems

Embedded computer systems (referred to as embedded systems) are products,
which are directly incorporated into electromechanical devices other than
general-purpose computer hardware, devices known as target systems. Their
primary purpose is to control the target system, very often within strict timing
constraints (Stankovic 1996).

In Figure 3 an embedded system, such as electronic product, is described as a
component of an environment which includes users, the target system to be
controlled and other systems with which there is need for communication.

Requirements
set for SCM in
section 2.2.2

Process modelling is related
to all software development
and maintenance in section
2.4

Requirements set for
change-related activities
in section 2.3.2

Process modelling

Software configuration
management
in section 2.2

Software
development
incl. evolution
in section 2.3

Software
maintenance in
section 2.3

Embedded
computer
system in
section 2.1.1

Software engineering in section 2.1.2

Software

33

U S A G E E N V I R O N M E N T

U S E R U S E R

U S E R I N T E R F A C E S

A P P L I C A T I O N

A P P L I C A T I O N P L A T F O R M

Basic funct ions (Software, ASICs,
Hardware)

C O M P U T I N G P L A T F O R M

Real-t ime operat ing system, device dr ivers

P R O C E S S O R H A R D W A R E
&

E L E C T R O N I C S

C O M M U N I C A T I O N P L A T F O R M

C O M M U -
N I C A T I O N
D E V I C E S

I N P U T
D E V I C E S

O U T P U T
D E V I C E S

O T H E R
S Y S T E M S

INPUT
O U T P U T

T A R G E T
(C O N T R O L L E D)
E N V I R O N M E N T

M A T E R I A L S P R O C E S S E S

P H E N O M E N A

E L E C T R O N I C
P R O D U C T

System
sof tware

Product fami ly
sof tware

Appl icat ion
sof tware

Figure 3. Embedded computer systems and their software categories.

34

In addition to the traditional control activities, embedded systems are also more
dedicated to data communication and processing in various telecommunication
applications (Hurst and Dennis 1996; De Micheli 1996).

The importance of embedded systems is indicated by the volume of the world's
total processor technology used for embedded applications. In 1995 more than
1.6 billion central processing chips were supplied for embedded computing
applications as compared with just 20 million for PC use. In addition, annual
growth in the future is estimated to be 20% per year (George and Kryal 1996).

The embedded system is further divided into main components:

� application platform including user interface and application software,

� computing platform including system software and hardware, such as ASICs
and FPGAs, and processor solutions with other electronics, and

� communication platform for external communication.

 Application functions of application platform are executed on a computing
platform by a wide variety of processing devices, such as processor hardware, or
automata based on FPGAs or ASICs. Processor hardware is ranging from
microcontrollers to 32-bit processors and special-processors, such as digital
signal processors (DSP). Software-based solutions are executed on processor
hardware, which uses other electronics, which includes e.g. data memories, and
buses for supporting information processing executed by computing platform.

 Embedded software falls into at least three major classes (Figure 4):

� system software, including the operating system, communication, device
control and platform-specific functions (e.g. initialisation tests, memory
loader, debugging aids etc. by which it is possible to deal with hardware
problems),

� product family software not unique to the application (to be used in products
of several kinds), and

� application software (specific to one application).

35

Conf igura t ionDescr ibes

Embedded
sof tware

Consis ts_of

Product fami ly
sof tware on an

appl icat ion
p la t fo rm

Sys tem
sof tware

Appl icat ion
sof tware on an

appl icat ion
p la t fo rm

Consis ts_of

Opera t ing
system on a
comput ing
p la t fo rm

Device dr ivers
on a

comput ing
p la t fo rm

Commun ica t ion
sof tware on a

communica t ion
p la t fo rm

Plat form-
specif ic

funct ions

Figure 4. Typical configuration of embedded software.

This taxonomy provides one way of distinguishing maintenance concerns, as
follows (Figure 3):

System software may be so specific that a change in the operating system or
hardware might require extensive modifications or a total rewrite of other code.

1. A new version of non-unique product family software may be incompatible
with the rest of the software.

2. Application software may become incompatible with the special system
software and hardware when new computing or communication platforms
are taken in use.

36

2.1.2 Software engineering and related development techniques of
embedded systems

Software engineering is defined as a systematic approach to the analysis, design,
implementation and maintenance of software. Software development is typically
described by different paradigms, which show the steps or stages in the
development of software (Boehm 1976; Agresti 1986; Boehm 1988;
Sommerville 1995; Pressman 1996).

Because of the essential role of software in embedded systems, the importance
of software engineering has been observed as an essential factor of the
embedded system to be developed and maintained. Embedded systems and their
several product technologies bring the own specific features to these paradigms.
Hardware/software co-design and concurrent engineering have been seen as the
most essential special features of embedded systems development.
Hardware/software co-design indicates the close relation in these technologies
and concurrent engineering tells the parallelism in the development of different
product technologies (Vidovic and Ready 1993; Savola et al. 1995; De Micheli
1996; Heikkinen 1997).

Therefore, software engineering of embedded systems includes specific
features, such as (Adamson 1990; Seppänen 1990):

� Software is one of the implementation technologies. Software-based
solution might be alternative to the hardware solution.

� Processor hardware resources can be limited because of big production
series and the weight and power requirements. This then impacts software
implementation opportunities.

� Tight real-time, safety and security requirements demand specific computer-
aided software engineering (CASE) tools.

37

2.2 Configuration management in software engineering

2.2.1 General principles of SCM

Configuration management (CM) is a discipline for organising and controlling
evolving systems. CM has its roots in the aerospace industry of the 1950s,
where it was used for guaranteeing the reproducibility of spacecraft (Tichy
1994). Nowadays product-level CM is an area of active research, as indicated by
Estublier et al. (1998), Tiihonen et al. (1995), and Westfechtel and Conradi
(1998).

SCM can be regarded as a special case of general CM, being distinguished from
it in two ways (Tichy 1988): software is usually easier and faster to change than
hardware, and SCM is potentially more automatable because of computer-aided
environments.

The reasons for the use of SCM are both technical and contractual (Bershoff et
al. 1980; Dart 1990). The technical aspects deal with the problems of software
evolution and lack of control and understanding regarding the components,
which create the configuration. Feiler (1991) further divides the technical SCM
aspects into two disciplines, management and development support ones. In a
management support discipline SCM deals with controlling changes to software,
and in a development one SCM provides functions for assisting developers in
performing co-ordinated changes to software. The previous discipline regards
SCM as a support for project managers, whereas the latter one supports
developers.

In addition to IEEE’s standards IEEE 1042 (1987) and IEEE 610 (1990), some
organisations, e.g., the Department of Defence (DoD) and ESA, have created
certain standards for SCM, such as DoD-STD-2167A (DoD 1988) and PSS-01
(ESA 1989) which have directly affected SCM practices. The duty to follow
standards has emphasised the role of SCM, creating a presumption for its
development. In addition, SCM has also emerged as one of the issues in the
quality-driven approach to software engineering (Sommerville 1995; Tervonen
1994).

38

According to the traditional definition of SCM given by (Bershoff et al. 1979)
and also used by the IEEE 828 (1990) SCM includes the following basic
elements:

� configuration identification - identifying and defining the configuration
items for the product,

� change control including configuration control - controlling all changes to
these items throughout the product's life-cycle,

� configuration status accounting - recording and reporting the status of
configuration items and change requests, and

� configuration audit - verifying and auditing the completeness and
correctness of these items.

The functional relations of the concepts are illustrated in Figures 5 and 6. This
traditional SCM definition, given by Bershoff et al. (1979) and IEEE 610
(1990), has been extended by Tichy (1988) and Dart (1991) to include
manufacturing issues, process management and teamwork. In this case software
manufacturing means the process of generating derived configurations by a
build mechanism. According to this extended definition, SCM is a discipline
whose goal is to control changes through the functions of: component
identification, change tracking, version selection and baselining, software
manufacture, and management of simultaneous updates. The manufacturing
aspects are referred to as release production in the ESA software engineering
standard (ESA, 1991) and release management and delivery in the ISO/IEC
standard 12207 (1995).

When relating Feiler’s (1991) classification to the previous SCM definitions,
traditional definition sees SCM more as management discipline and extended
one, in particular, including software manufacturing, as development discipline.

The basic concept of this SCM definition is that of a Configuration Item (CI),
which can be a unit or a collection of lower-level items. CIs can also be
regarded as specific instances of software products. As the terms are not well-
established, some authors use the concept ‘object’ to describe CI.

Versions of CIs are understood to be either variants or revisions (Tichy 1988).
More exactly Conradi and Westfechtel (1998) define a version to represent a

39

state of an evolving CI. Parallel variants of CIs are different implementations of
the same CI, such as items executable on different platforms or based on
different languages. An essential function from the point of view of variant
manipulation is merging, because it is a means of collecting together the results
of parallel versions. Serial revisions are CI steps that change with time.

SCM p lan

Defines

Software
conf igurat ion
management

Consists_of

Conf igurat ion
audi t

Manufactur ing or
assemblyChange control

SCM funct ion in workspace

Version control incl.
conf igurat ion

identi f icat ion and
configurat ion status

account ing

Figure 5. The basic elements of software configuration management.

Version control is an approach to the management of CIs stored in a repository
or archive. Work environments are created by extracting these from the
repository and conveying them to the workspace by a check-out command and
vice versa by a check-in command3. One of its practical benefits is that it saves
archive space, because versions of the same CI stored in the repository are based
on their incremental changes rather than being full copies.

3 The check-out/check-in commands are replaced by get/put commands in some version

control systems.

40

Cons is t_o f

Documen ts

Sof tware

Uses Are_ver i f ied
_ b y

Produces

Uses

Conf igura t ion
aud i t

Manu fac tu r ing o r
assembly

Uses
Check- in /
Check -ou t

Sof tware arch ive

Is_based_on

Conf igura t ions

b y

Change con t ro l

Vers ion contro l inc l . conf igurat ion ident i f icat ion and
conf igurat ion s ta tus account ing

SCM funct ion in workspace

Produces

Basel ine

Conf igura t ion
I tems

Uses

Bui ld
mechan ism b y

Figure 6. Software configuration management, concepts and procedures.

The classical version control systems are SCCS (Rochkind 1975) and RCS
(Tichy 1985). They have gained successors in both the commercial and the
research field (Dart 1991; Forte 1993; Rigg et al. 1995). The improvements to
SCCS/RCS developed later concentrate on revision and variant treatment and

41

the incremental storage mechanism (Hunt et al. 1996). The differences between
two versions are called delta.

The workspace, also called the work area, is used to manage copies of files
retrieved from the repository. As a descriptive computer technology definition, a
file in the workspace has been described as a cache copy (Tichy 1988; Feiler
1991). Workspace and repository solutions and their mutual relations can be
used to characterise modern version control systems (Belkhatir et al. 1994). The
solution classes range from check-out/check-in to integrated workspace-
repository solutions embedded in commercial data management systems. A
profound analysis of various workspace solutions is given by Conradi and
Westfechtel (1998).

Software manufacturing is based on build mechanisms, which are implemented
by a software assembly system. The terms are not yet well established. The ESA
standard, for example, names this phase release management and delivery (ESA
1989 and 1991). A software assembly mechanism uses a configuration, which
consists of CIs, linkages between CIs and compilation and linking commands
stored in a configuration file. An example of an assembly system is discussed in
Papers III and V. The system compares the time stamps of object and source
files and infers the commands to be executed for assembling the software. An
assembly system can speed up the process of producing delivery-specific
software packages considerably. Examples of this principle are the traditional
Make-based solutions (Feldman 1979) pioneered on UNIX systems and
supported by the SCCS and RCS version control systems. A Make utility
controls a build activity according to a configuration description, typically a
script that defines dependencies between parts of assembled software packages.
There are several corresponding tools available today, based on both public and
commercial solutions (Gulla et al. 1993; Rigg et al. 1995; Conradi and
Westfechtel 1998).

A baseline is a document or product that has been formally reviewed and agreed
upon and can serve as a basis for further development. A baseline can be an
assembly of CIs, an accepted configuration. A formal change control procedure
is required for modifying baselines (IEEE 610-1990; IEEE 828-1990).

42

One of the baseline categories is a release. It is a particular version of a CI that
is made available for a specific purpose (ISO/IEC 12207 1995). It is typically
certain promotions of CIs that are distributed outside the development
organisation (IEEE 1042 1987).

The managing of configurations and source code is essential but error-prone.
Whenever the source code is modified, software developers have to check if
some changes are required in the configuration. The programming-in-the-large
philosophy presented by DeRemer and Kron (1976) extended the role of
programming languages to higher abstraction levels. In this framework, Module
Interconnection Languages (MILs) were developed as a solution to the interface
problem (Prieto-Diaz and Neighbours 1986). MIL solutions can be regarded as
an advanced software build mechanism, which makes it possible to link
software modules implemented by different programming languages together
dynamically. In a change situation there is a risk that interfaces may become
inconsistent. MILs separate computation from connections between the modules
that implement the computation. In maintenance it is possible that the
connections are changed or the computations can be reused in other systems
with different connections.

The major problem of one of the original MIL descriptions presented by Tichy
(1988) is the difficulty of dealing with versions of interfaces, but there are
results indicating possibilities for applying the MIL concept to SCM, ranging
from programming language-based solutions such as Ada, CLU and Mesa to
true MIL-based solutions (Tryggeseth et al. 1995). The MIL language Polylith
developed by Purtilo (1994) was applied by the author to design descriptions of
embedded software, and the relationships between embedded software and
specific MIL descriptions were evaluated and tested using this MIL language
(Taramaa and Purtilo 1990).

In parallel, the integration of different Computer-Aided Design (CAD)
environments for electrical and mechanical parts has been supported by creating
the STEP (STandard for the Exchange of Product data) standard (ISO 10303-1
1994). One of the goals of this standard is to facilitate interoperability when
there is need to exchange standardised data product models. For the description
of data models there is a specific language EXPRESS (ISO 10303-11 1994)

43

which can be regarded as an implementation of interconnection of the CAD
descriptions (Estublier et al. 1998).

Some of the 'second generation' SCM tools, such as Cedar (Swinehart et al.
1986) and Gandalf (Habermann and Notkin 1986), also employed the MIL
approach (Ambriola et al. 1990), but they did not gain popularity, since the
industry was not ready to make use of such integrated, comprehensive software
engineering solutions in the mid-1980s, when the general trend was to develop a
software engineering environment that included solutions for all the software
engineering activities. Some MIL-based software engineering environments
have been developed, however. Sommerville and Dean (1996) give a
comprehensive overview of existing MIL languages, comparing these with the
capabilities of the MIL language PCL produced by the ESPRIT project
PROTEUS.

Interconnection presentations are nowadays classified more generally as
configuration programming (CP) languages, an illustrative survey and
comparison of which is given by Bishop (1994). The potential target area of CP
languages is dynamic configuration of large distributed applications, where they
have achieved some success (Thornton 1996).

Modern commercial SCM environments have also borrowed from configuration
solutions. Adele, for example, creates a configuration model before its
realisation (Estublier and Casallas 1994).

The above discussion is concerned with SCM procedures. In a more
comprehensive context, the SCM plan is a framework for instantiating a certain
SCM solution for a company. It defines each SCM element, with procedures and
their practical implementations. In the new ISO/IEC 12207 standard (1995)
SCM planning is taken as an equal SCM element to those mentioned in the
extended definition, called process implementation. More detailed guidance is
given by the IEEE 1042 (1987).

SCM solutions including the SCM elements described above are displayed in
Table 4. The SCM elements of the extended definition are extensions to
traditional definitions, while the comprehensive context elements are extensions
to extended definitions.

44

Table 4: A summary of SCM elements.

SCM definition

categories

SCM elements Description

Traditional

definition

Version control

 including configuration

identification and status

accounting

Solutions for configuration identification

and configuration status accounting

Configuration audit Verification and validation mechanisms

Change control Configuration control throughout the

product’s life cycle

Extended

definition

Software manufacturing based

on conventional builders

Traditional compiling and linking

technique

Software manufacturing based

on configuration languages

Dynamic linking technique

Teamwork Communication principles and

mechanisms

Comprehensive

context

SCM planning SCM described as a part of the defined

processes

2.2.2 Configuration management of embedded software

In the area of embedded software systems, the very first computerised SCM
solutions were adopted by the manufacturers of telecommunications and
aerospace systems (Berlack, 1992). These applications were so large that SCM
was not possible without computerised tools.

Since embedded computer systems are collections of tightly coupled hardware
and software components, efficient communication between the respective
representatives is necessary in configuration auditing, e.g. for defining
interfaces between hardware and software. Examples of these interfaces are
automation design related to software design in mechatronics applications and
electronics design related to software design in applications including digital
signal processing.

45

A relatively long delay in hardware availability for software development is also
typical of embedded applications, since parallel hardware development, such as
ASICs, might take much more time than software development (Mittag 1996).
These features have resulted in specific solutions for the development of
embedded software. Prototyping has proved beneficial (Agresti 1986; Boehm
1988; Pulli 1991), but it places special requirements on SCM, since the
functions implemented by the software evolve through prototypes (Niemelä et
al. 1995; Seppänen et al. 1995, Savola et al. 1995). In practice the special
requirements appear as specific CIs, such as special CASE descriptions,
combination of completed code and specification test results of various
heterogeneous prototypes. In addition to specific CIs, prototyping of embedded
software includes a strong concurrent approach (Pulli and Heikkinen 1993;
Heikkinen 1997). Software itself is developed in parallel with other
technologies, and for this reason efficient management of the various CIs needs
to make use of advanced SCM solutions, such as strong team co-ordination,
naming disciplines, minimising change risks, strong support of design history.

Safety and security requirements of embedded software need to be taken into
account. The analysis of these requirements demands the usage of specific
testing and simulation tools (Honka 1990; Latvakoski 1997). The results of
testing and simulation are input for configuration audit where the critical parts
of software are reviewed by a nominated board. The critical requirements are
defined by test specification, which acts as a reference to testing and simulation.

The software supply business is becoming increasingly focused on reuse (Davis
and Bershoff 1991; Gomaa 1993; Seppänen et al. 1993; Frakes and Isoda 1994),
SCM implies a need to record and control software configurations for different
projects and customers. The requirements for SCM are caused by the nature of
embedded systems, where the provision of suitable software calls for a strong
software manufacturing mechanism (Kemppainen 1986; Östlund and Forssander
1996). Implementation of the reusability mechanisms is one of the most
essential elements when fulfilling this requirement.

The special nature of software manufacturing can be seen in two aspects:
specific hardware-related CIs and the final result, i.e. the image, which will be
duplicated on several chips. Some examples of software assembly alternatives
originally presented in Paper III are given in Table 5.

46

Table 5: A list of potential assembly alternatives.

CONFIGURATION STRUCTURE CONTENTS

APPLICATION SOFTWARE the highest level assembly consisting of the
binary to be embedded, reporting binaries,
design descriptions, and other documents

DESIGN DESCRIPTIONS to be linked to the delivered software product
BINARY EMBEDDED
SOFTWARE

an assembly to be created by copying different
binaries, such as application tasks, real- time
operating system modules, communication
software, and initialisations

APPLICATION TASKS an assembly using a makefile consisting
... of application tasks, communication software,

real-time operating system, and hardware
modules

DOCUMENTS e.g. the usage guides of a product, to be linked
to the delivered software

INITIALISING an assembly using the conventional initialising
activities; similar to application tasks, but
consists of specific initialising functions as well as
hardware modules

DEFINITIONS
SOURCE MODULES
OBJECT MODULES

REPORTING an assembly using a makefile consisting of
of application tasks and the operating system
for non-real-time tasks

COMMUNICATION SOFTWARE
INCLUDE MODULES
OBJECT MODULES
BINARY MODULES an assembly using the makefile

HARDWARE DESCRIPTION MODULES
BINARY MODULES commercial binaries

REAL TIME OPERATING SYSTEM commercial code ranging from source code
DEFINITIONS to binaries
BINARY MODULES
COMMANDS

OPERATING SYSTEM FOR NON REAL TIME TASKS
BINARY MODULES commercial code ranging from source code
LIBRARY MODULES to binaries
INCLUDE MODULES

On the highest level there is the application itself, assembled from various

binaries such as application tasks, real-time operating system modules,

communication software and initialisation routines. The makefile at this level

only includes a copy operation performed in a specific order. The creating of

application processing modules with real-time features involves more typical

makefile features, such as the activation of compilers and linkers.

47

The close relation between software and hardware technologies is placing SCM
to a new situation. Developments in integrated circuit technology are altering
the traditional software development practices, since the work can now be also
based on system-on-silicon design solutions where the idea is to replace a
computer system with a chip (Heusala and Tiensyrjä 1995). In this situation an
efficient co-design including, e.g., control software, digital signal processing
software and VHDL descriptions producing ASICs and FPGAs, makes CM into
a versatile procedure with various tools to be linked to it. In addition, product
development is then closely directed by the silicon implementation architecture
and the software modules become equal to other more hardware-oriented
modules managed by the CM system.

The above description applies to electronics products, but the perspective can be
extended. The customer order for a product based on an embedded system will
include several technologies to be specified, designed and implemented and will
result in the assembly of mechanical as well as hardware components and the
embedded software. In addition, other product technologies and their design
descriptions, e.g. automation design descriptions of Paper III, are extensions to
configuration description. The relationships between the entities needed for the
production of embedded computer systems according to a customer order are
illustrated in Figure 7.

The trend for a movement towards the integration of different technologies,
including software, among others emphasises product-level information
processing. Product Data Management (PDM) systems are an example of this
development. CM is seen as a link for maintaining consistency between parts
implemented by various technologies, documentation and change data, from
design to manufacture and support. The developing of a comprehensive CM
system requires an understanding of the relations between the different
technologies. Dart (1992b) provides a good comparison between software and
hardware concepts in relation to PDM-based CM.

48

Customer Submits Order

Is_
submit ted

_to

Product Produces

Product
development

and
manufactur ing

Results_in

Product
documentat ion

Embedded
computer

system

Is_
instantiated_

by

Consists_of

Other product
technologies

Mechanical
parts

Hardware

Interconnects

S W - H W
interface

Software

by

Sof tware
conf igurat ion
managemen t

Product data
management fo r
hardware-
sof tware
technologies

Product data
managemen t
for embedded
computer
systems
engineer ing

Logist ics funct ions

Figure 7. An order resulting in a product and product documentation.

PDM systems originated from hardware CM systems during the 1990s through
the addition of SCM (Sherpa 1995). This is an important extension, particularly
when companies are developing integrated company-wide information systems
for different computer-based functions (Tiihonen et al. 1995). A good example
of the integration of several product development technologies is given by Deitz
(1990).

49

2.3 Change related activities

Control over changes is one of the basic SCM functions. Changes in the context
of software maintenance have most often been examined from an application-
independent viewpoint, because general evolution patterns can be found in all
software applications. The same approach is taken here, but extended to
embedded software applications.

2.3.1 Maintenance in software engineering

The importance of maintenance was underestimated until the late 1980s. Foster
et al. (1989), outlining the general attitude to software maintenance prevailing in
the 1970s and 1980s, note that it was seen simply as an activity carried out at
the end of the software development process or as a series of feedback lines
implying repetitions of certain activities, or even as a software engineering task
that could be completely ignored. This is indicated well by the first life-cycle
models, in which maintenance is seen as an activity performed only after the
development process. The IEEE software maintenance standard IEEE 1219
(1992) enforces this principle, stating that software maintenance is the
”modification of a software product after delivery to correct faults, to improve
performance or other attributes, or to adapt the product to a changed
environment”. This implies that changes made before delivery of the software
can be regarded as software evolution.

The general categories of adaptive, corrective, perfective and preventive
software maintenance were proposed in the late 1970s (Swanson 1976). In
adaptive maintenance the software is enhanced to adapt to environmental
changes, while corrective maintenance concentrates on diagnosing and
correcting errors, perfective maintenance like its adaptive counterpart, enhances
the software, but by altering its functionality, and preventive maintenance
considers the needs for software maintenance over a long period of time and
updates the software to anticipate future problems.

The work discussed by Belady and Lehman (1976) and Lehman (1980) can be
regarded as providing the foundation for a more comprehensive approach to
software maintenance in which changes are addressed throughout the software
life-cycle.

50

Many experiences have proved the usefulness of this point of view. Software
maintenance has been shown to account for between 40% and 70% of all
software expenditure (Foster 1993; Krogstie and Sölvberg 1994). In the
classical analysis by Lientz and Swanson (1980), 17% of all maintenance was
corrective, the rest being mainly perfective and adaptive. Corrective
maintenance can be seen in this taxonomy as ”pure” maintenance, while the
other types include greater or lesser measures of evolution. Later results have
been similar, with corrective maintenance typically amounting to about 20% of
all maintenance activities (Krogstie and Sölvberg 1994).

ESA has further extended the maintenance categories (Harjani and Queille
1992; Stefanelli and Stroobants 1991). User support answers explicit requests
for information from the user or corrects his misunderstandings, evolutive
maintenance evolves and/or expands the needs of the users by means of new
functions and anticipative maintenance is directed at problems with the use of
the software or with the evolution of its operational environment.

These three definitions include some overlapping with two of the four discussed
earlier, so that the categories of perfective and preventive maintenance need
more exact definitions. In this new classification preventive maintenance aims at
improving the maintainability of the software and perfective maintenance at
improving its non-functional properties. This is a more natural role for
perfective maintenance, since the changes and additions of new functions are
regarded as system and software evolution rather than maintenance. The
benefits of these categories can be observed when developing the maintenance
process by linking specific tools to it. The differences in nature between the
maintenance categories provide an opportunity to utilise this aspect in process
models.

2.3.2 Maintenance of embedded software

As implied by the above discussion, changes can involve several parts of the
embedded software: the operating system, communication and device control
(special system software), and common or application-specific parts of products.
In addition, changes in hardware requirements, specifications and design
solutions usually have some impact on the software, and vice versa.

51

The nature of maintenance in industrial organisations, in terms of the categories
perfective, adaptive, corrective and preventive, is analysed in Paper I, where it is
shown that 75% of the organisations performed perfective, adaptive and
corrective maintenance.

Each software and hardware component may have versions independently or as
a consequence of a modification made to another component. For example, if an
input/output controller chip is no longer available, the hardware design of a
sensor interface in an embedded system based on that chip may need to be
modified. A new version of the device driver program used to control the
interface would then have to be developed, although the rest of the software
may not require any modification. The resulting effect is that functionally
similar embedded software packages may include different components.

Changes to the control software of an embedded system after delivery to the
customer may be made according to different maintenance policies. If the
electrical board of a system is damaged, for example, the manufacturer of the
product may respond to the maintenance request either by replacing the
damaged board and its original control software package with a new copy, or by
supplying a new board that includes new device driver programs but the same
application software as in the damaged board.

Some changes may be made as part of corrective maintenance initiated by the
manufacturer of the product. If a software error has been found in one or more
items supplied, for example, a corrected version of the software may have to be
distributed to customers. Other changes may involve additional system features
required by a specific customer, so that a new software package may have to be
developed for that customer.

The integration of separate software products related to embedded software has
speeded up demands for better management of software maintenance. With the
increased numbers of interfaces between software products, maintenance has
become even more demanding. This has been emphasised especially with
embedded software, such as BIOS (Basic Input/Output System) software, with
that used as a part of PC applications serving as a good example of this situation
(Nummelin 1998). Although the PC hardware develops very fast, the BIOS
software has to look similar to applications.

52

Maintainability in embedded software can be achieved by various means. In
addition to change management and CM environment aspects, the target
software to be maintained is important (Oman et al. 1992). The connections
with the hardware make the maintenance of embedded software different from
that of non-embedded software. Embedded software can be developed from the
point of view of potential changes and enhancements (Adamson 1990), the
practices recommended being the use of relocatable code and data whenever
possible. The constants recorded in the ROM can be grouped together, and the
code itself uses these constants indirectly by reading them from a table using
pointers. Text strings are stored together, offering either a choice of languages
or the possibility of replacing one block of text with another.

In embedded systems the software often represents the result of an evolution-
oriented development process, including features of the different maintenance
categories, the resulting software, or image, is transferred to the electronics
manufacturer as part of the custom-made mask. This makes the economical
production of ROM chips by means of long production runs feasible, but it also
poses challenges for evolution-oriented development, since the software cannot
easily be changed later.

In some situations patching is the only way to modify software after chip
manufacture. Dynamic program-updating systems can make it possible to repair
bugs and enhance running software without the cost of system shutdown (Segal
and Frieder 1993). Typical examples are the solutions used in on-board space
software (Alonso and de la Puente 1993; Lopéz and Rodríguez 1995) and
telecommunications switching systems (Frieder et al. 1989; Hauptmann and
Wasel 1996). This approach is not yet recommended, but in some cases it is the
only feasible way to maintain software.

Programmable Read Only Memories (PROM) provide opportunities for a
different production cycle, because they do not need to be programmed until
they are added to the circuit board (Rosch 1994). This also places software
maintenance in a slightly different situation, because the software is not totally
connected with electronics manufacturing. On the other hand, although
evolutive software development is separate from electronics manufacturing,
there is a need to recognise the fact that the software cannot be changed after
storage in the memory.

53

Erasable PROMs (EPROMs) enable the same program to be produced several
times by erasing and reusing the program memory. The role of the software can
be regarded as comparable to that in traditional data processing applications
with a fixed processor platform. Flash memories have placed embedded
computer systems in a new situation because of their more flexible erasing and
reprogramming features compared with previous erasable memory solutions
(Grundmann 1997). The connection with electronics manufacturing technology
is not a firm one, although the change effects between hardware and software
disclose the basic features of the embedded system and its software, i.e. the
close connection with the hardware.

2.4 Process modelling for maintenance SCM

All software is produced by some process, but it is often an incoherent and
implicit one. When defining more explicitly processes the central description
elements of processes are activities to be done, artefacts to be produced and
used by a process, tools to be used to implement the process, roles to be defined
by responsibilities and rights, and agents to be related to roles (Conradi et al.
1994).

The development of software process technologies, i.e. methods and tools for
modelling and enacting software processes, emerged in the mid-1980s. One of
the best-known articles on this subject is that of Osterweil (1987). The spiral
model proposed by Boehm (1988) is also regarded as a blueprint for modern
process modelling approaches.

Process models are also used to describe the results of software process. When
related to various software processes, the comprehensive software process
model acts as a unifying element indicating how specific subprocesses are
related to each other, e.g. SCM to software development and maintenance.
Models can be categorised according to their nature, ranging from descriptive
and prescriptive to enacted ones. Enacting a software process model, which is
the target of active research and development, enables software engineers to
carry out the process according to the activities specified in its model. Process
improvement can be seen as a yet higher category in this taxonomy (Madhavji
1991; Christie 1994).

54

The plan of a specific process, e.g. the SCM plan, depicts the implementation of
a process. Thus the plans are related to processes and are used as tools for
management, since they include definitions of activities and procedures,
schedules for performing these activities, organisational responsibilities and
relationships with other processes. The relationships between these process
concepts are described in Figure 8.

S o f t w a r e
p rocess mode ls

K n o w l e d g e o f
e m b e d d e d

so f twa re and
app l i ca t ion

d o m a i n

A r e _ i m p l e m e n t e d
_ b y

P lans Cons is t s_o f

S u p p o r t i n g
p rocesses

Organ i sa t i ona l
p rocesses

P r i m a r y
p rocesses

Inc lude

M a n a g e m e n t

P rocess
es tab l i shment

De f i nes

A r e _ u s e d _ b y

us ing

us ing

Desc r ip t i on
m e t h o d

H a r d w a r e /
so f tware co -

des ign

b y

S o f t w a r e
eng inee r i ng

C o n c u r r e n t
eng inee r i ng

Process
mode l l i ng

P r o d u c e s

Process mode l s

A r e _
ins tan t ia ted_by

Process
i m p r o v e m e n t

Figure 8. Process concepts related to software engineering, its processes and
knowledge of embedded software.

55

The reference model of Figure 8 is based on the ISO/IEC 12207 standard
(1995), which categorises software processes into three major groups: primary,
supporting and organisational processes. Knowledge concerning embedded
software and its specific features in particular presented in sections 2.1 and 2.2
is related to software processes as an input to the implementation of plans. The
first category, primary processes, includes primary life-cycle process, e.g.
development, operation and maintenance. The second category, supporting
processes, consists of supporting life-cycle processes, e.g. SCM and quality
assurance. The last category, organisational processes, is used to establish and
improve the previous processes by providing sufficient resources such as
process establishment and management.

The SCM concepts presented at the beginning of this chapter, the plans
produced by the process model approach and software maintenance are further
related to each other in Figure 9. The following sections further analyse SCM
and related matters separately. Since the software maintenance process produces
the extensions for change control within SCM, the maintenance process will be
described in more detail. Software maintenance and SCM can be seen as a part
of a more comprehensive framework, called application management, which it
makes possible to take into account the effects of process establishment as
mediated via plans.

2.4.1 Software maintenance process

Several researchers have proposed models for the software maintenance process
(Bennett et al. 1991). One of the principal models presented in the mid-1970s
includes three main phases, understanding and modification of the existing
software and revalidation of the modified software (Boehm 1976).

As software engineering has become an industrialised process, request-driven
approaches have come to dominate the process of software maintenance. These
approaches recognise as the main phases those of request control, change
control and release control.

56

Pr imary
processes

Organisat iona l
processes

Suppor t ing
processes

Inc lude Inc lude Inc lude

Managemen t Are_used_by Plans

Contro ls Inc lude

SCM p lan

Def ines

SCM (in
sect ion 2.2)

Ma in tenance
processes (in
sect ion 2.4.1)

Appl ies (in
sect ion 2.4.2)

Appl ies

CIsProduces

Changes
Are_re la ted_to
(in sect ion 2.3)

Deve lopment
processes

Inc lude

Test ing

Requ i rement
analysis . . .

Implementat ion

Appl ica t ion management
(in sect ion 2.5.3)

Figure 9. Software processes related to SCM.

57

The international standards, e.g. IEEE 1219 (1993) and ISO/IEC 12207 (1995),
follow the same main structure. In addition to modification implementation,
ISO/IEC defines the maintenance process as including problem and
modification analysis, maintenance review/acceptance, migration and software
retirement. The ISO/IEC 12207 definition includes the same maintenance
phases as the previous definitions but is extended to cover the whole life-cycle
until retirement and to allow for more comprehensive integration.

A more detailed model for the maintenance process based on the above division,
as provided by the European Software Factory project ESF/EPSOM, is
presented in Figure 10 (Harjani and Queille 1992). This consists of change
control (the left side), implementation of changes, i.e. software manufacturing
(the lowermost point of the model), and testing of the results (the right side). It
can be regarded as an application of the request-driven approach, defining
specific subprocesses for software maintenance.

Figure 10. Software maintenance process.

A typical trigger for the maintenance process involves information about a
software problem or a request for change. The steps in the process, also called
pre-implementation activities, include problem understanding, localisation,
solution analysis and impact analysis. Problem understanding is focused on the
need to address the change, localisation concentrates on the target of the change,
solution analysis deals with one or more changes that are devised, and finally

Implementation

Acceptance testing

Trigger

Problem

understanding

Localisation

Solution

analysis

Impact

analysis

Regression testing

Re-insertion

58

impact analysis evaluates the consequences of the changes before
implementation.

These subprocesses can be supported by specific tools, examples of which are
presented in the following list. Most of them were produced in the ESPRIT
project AMES, which was focused on application management (AMES 1995):

� a hypertext-based application understanding (AU) toolset (Boldyreff et al.
1995; Laitinen 1995 and Laitinen et al. 1997; Vierimaa 1996; Paper VII)
and reverse engineering (ReverseNICE) tools (Battaglia and Savoia 1997;
Paper II) for problem understanding,

� a traceability platform for a navigation and display tool (Doize et al. 1994)
to assist localisation and solution analysis, and

� a tool for impact analysis (IAS) (Barros et al. 1995).

The AMES project included an experiment with an enacted process, which
related the tools listed above by means of a commercial enactment tool
(Taramaa and Ketola 1995). This experiment applied processes originally
presented by Stefanelli and Stroobants (1991) and pointed to several common
functions such as solution and impact analysis, implementation decision and
modification implementation. The beginning of the maintenance process
includes specific instantiations of problem understanding and localisation,
depending on the type of change request concerned (Figure 11).

The recent definitions of software life-cycle processes single out localisation,
also called software resolution (ISO/IEC 12207 1995), problem resolution
(ISO/IEC 15504 1995) or problem response system (Bell 1994), as a distinct
support process, which includes technical solutions made by problem tracking
systems. Problem tracking (also known as change, defect or bug tracking) refers
to the process of recording and tracking change requests and deciding which
changes to make to a software system (Chapin 1989). Problem tracking can be
implemented at different levels, such as error database, linkage between error
database and source files, construction of linkage between an error database and
versioned source files via a version control system, or the use of an error
database for further analysis and process improvement.

59

Figure 11. An example of the software maintenance process and its subprocesses based
on maintenance categories (Stefanelli and Stroobants 1991).

Problem reporting can be linked to all of these systems, ranging from a simple
error database to an advanced environment and including support for analysis
and process improvement. Process-oriented support of problem reporting has
already been developed in order to allow fast reporting of faults to the relevant
parties (Juopperi et al. 1995).

A corresponding approach to that of ESF/EPSOM has been developed by
Capretz and Munro (1992), who propose four software maintenance categories:
perfective, adaptive, corrective and preventive. By defining the maintenance
model, the phases through which a change should proceed during maintenance
are clearly defined.

ACTIVITIES

Problem understanding

Error analysis

Requirement change analysis

System limitation analysis

Environment change analysis

Dependency analysis

Maintainability analysis

Solution and Impact analysis

Implementation decision

Modification implementation,
tests, documentation update,
distribution & installation

 Corrective Perfective Preventive

 MAINTENANCE Evolutive Adaptive

60

Preventive maintenance can be implemented by means of reverse engineering
tools, for example, a situation described by Chikofsky and Cross (1990) and for
the case of embedded software by Paper II and Rytilä (1994).

2.4.2 Software maintenance versus SCM

When considering software maintenance, change control creates a link with
SCM, because change control of the SCM system implements functions
required by pre-implementation activities. Change control or change
management is a specific subject that is often held to be conceptually distinct
from the other SCM activities, but in the most advanced SCM environments it is
included as an inseparable part of the comprehensive SCM scheme. Change
management provides a process for evaluating, co-ordinating, approving (or
rejecting) and implementing changes to an established baseline version.

The relation between the maintenance process and SCM is depicted in Figure
12. Software maintenance requires change control solutions for specific pre-
implementation activities such as problem understanding, localisation, solution
analysis and impact analysis.

Based on the experiences obtained in the development, embedded systems-
specific features in use of these tools can be analysed as follows:

� Problem understanding: Application understanding toolset includes the
definition of domain-specific concepts where the structure of embedded
systems and software has to describe for making useful links to hypertext
descriptions. Reverse engineering tools are especially focused on real-time
software producing descriptions for HOOD and RT-SA/SD.

� Localisation and solution analysis: Navigation and display tool is general. It
is C language-specific.

� Impact analysis tool: Tool is C language-specific.

Taramaa and Ketola (1995) recount their first experiences of the instantiation of
SCM implemented by a process enactment tool, and the subject is dealt with
more thoroughly in an application-oriented pilot project where the central part
of the system is a problem tracking mechanism and the target the maintenance
of on-board software (Harjani et al. 1995b).

61

Figure 12. Relationships between the software maintenance process and SCM.

Tr igger
Re-insert ion

Acceptance test ing

Regression test ing

Prob lem unders tand ing

Local isat ion

Solut ion analysis

Impact analys is

Implementat ion

Is_ implemented
_by

Is_ implemented
_by

Is_ implemented
_by

Change
control

Manufactur ing or
assembly

Conf igurat ion
audit

Uses

Version control
incl. configuration identif ication

and configuration status accounting

Uses

Software archive (repository)

Sof tware conf igurat ion management (workspace)

Sof tware main tenance

62

2.4.3 Extended software maintenance process - application
management

Since the request-driven model does not stress different levels of abstraction in
the maintenance process, extensions have been developed such as the ESPRIT
project REDO (Bennett 1993), emphasising the business view.

The maintenance activity requires specific solutions for higher levels of
abstraction in management. The definition of application management proposed
by AMES (1995) is as follows:

"Application management is the contracted responsibility for the
management and execution of all activities related to the
maintenance and evolution of existing applications, with well-defined
service levels".

The maintenance process model developed by the AMES project (AMES
1994a) is divided into three levels that indicate the need to differentiate the roles
of people participating in the maintenance process (Figure 13).

Figure 13. The AMES model for application management (AMES 1994a).

S T R A T E G I C L E V E L

Strategy
Def in i t ion

Strategic
P lann ing

Prob lem
M a n a g e m e n t

Prepara t ion
of

In tervent ion

Closure of
In tervent ion

He lp
P rob lem

Qual i f icat ion
Ma in tenance
Intervent ion

Conf igura t ion
M a n a g e m e n t

Prob lem Repor t f rom
Users

Solut ions to
Users

T E C H N I C A L L E V E L

M A N A G E M E N T L E V E L

63

The strategic level emphasises that companies have their own strategies
concerning software maintenance. When relating to the software processes, this
level is an instantiation of process establishment, referred here as strategy
definition. The management level stresses control activity. In addition, it is the
responsibility of a project manager to transfer information to and from each of
the other levels. From the point of view of the software processes, this level
corresponds to the management of organisational processes. The technical level
of the application management involves implementation of the software
maintenance process, including SCM functions. Figure 12 can be regarded as a
more detailed description of the technical level.

Accordingly, it follows the ESF/EPSOM request-driven model and is associated
with REDO’s higher level business aspects, its strategic and management level.
A profound analysis and comparison with related approaches is given by
Boldyreff et al. (1994).

The application management model can be seen as a framework that must be
instantiated in each industrial environment. The example provided by Taramaa
and Ketola (1995) is of an instantiation of this process concerning ESA software
maintenance practices, based on the ESA software engineering environment
project ESSDE (Aumaitre et al. 1993; Coene 1992; Favaro et al. 1994).

2.5 Other processes

Like problem resolution, software documentation has been typically regarded as
a distinct support process, referred to as documentation (ISO/IEC 12207 1995)
or develop documentation (ISO/IEC 15504 1995) or internal/user
documentation (Bell 1994).

From the SCM viewpoint, it is essential to keep documentation consistent with
other configuration items. In particular, the link with configuration presupposes
valid documentary information on various development and maintenance
situations.

In addition to the engineering and its support processes, there are logistics
processes, such as purchasing, manufacturing/production and sales/marketing

64

processes that have to be taken into consideration (Figure 14). The engineering
processes cover several computer-aided activities, such as Computer-Aided
Engineering (CAE) and Computer-Aided Design (CAD) of several product
technologies, which are used in product development of embedded systems.
Manufacturing/production includes Computer-Aided Manufacturing (CAM)
solutions. In addition, the Material Requirement Planning (MRP) systems based
on the computerised Bill-of-Material (BOM) systems including product
structures have acted traditionally as a common framework for managing and
co-ordinating product data between manufacturing/production, sales/marketing
and purchasing processes. (CIMdata 1996)

Figure 14. Enterprise processes related to product data management.

The current trend is still increasing integration of these processes. In particular,
integration of CAE/CAD/CAM activities with MRP is making Product Data
Management (PDM) as more viable in industry. The logistics processes also
include data items, which have to relate to the software life-cycle processes. In
addition to product data, the data items common to these logistics processes
include customer data and delivery data. (Sherpa 1995).

S T R A T E G I C L E V E L

Strategy
Def in i t ion

Strategic
P lann ing

Prob lem
M a n a g e m e n t

Prepara t ion
of

In tervent ion

Closure of
In tervent ion

He lp
P rob lem

Qual i f icat ion
Ma in tenance
Intervent ion

Conf igura t ion
M a n a g e m e n t

Prob lem Repor t f rom
Users

Solut ions to
Users

T E C H N I C A L L E V E L

M A N A G E M E N T L E V E L

65

The software development from the point of view of SCM has been typically
left undefined at the product level, although embedded software forms one of
the technologies of the comprehensive PDM. The main targets to be developed
at this level are all product-related issues as opposed to software only that the
Figure 15 shows by relating software and SCM to the whole product
configuration and PDM.

Figure 15. SCM related to PDM.

…
…

Embedded software
created by software

manufacturing
mechanism based on

Application software

Communication
software

Hardware
description

Real-time operating
system

Product Data
Management of

embedded computer
system

Embedded software
(image)

Printed circuits
design

Integrated circuits
design,

i.e. ASICs, FPGAs

Electrical and
mechanical design

Attachment of
embedded
software as
image to
memory

BOM system

MRP system

SCM PDM

66

2.6 Related work

The best examples of the approaches to SCM practices are provided by Feiler
and Dart. Feiler (1991) views SCM as transactions with the SCM workspace,
while Dart (1990) presents a set of factors related SCM which have to be
assessed when taking automated SCM systems into use, adopting an approach
which concentrates on situations in which companies are automating their SCM
systems.

The modelling-based approaches act as a unifying factor for different software
processes. In space applications much effort has been invested in process
development projects to model the software engineering practices to be used,
and SCM has been one of the processes developed. Since SCM is related to
other software process activities, this application area provides a practical view
of advanced SCM solutions.

Assessment-based software improvement approaches provide a comprehensive
view of the software process, i.e. an opportunity to improve both the software
process as a whole and its specific subprocesses, including SCM.

The related approaches are evaluated below with regard to the framework
created in this research, including SCM concepts, elements and levels, relating
the elements to the levels and considering the improvement of SCM practices.

2.6.1 Approaches to SCM practices

At the beginning of the nineties, both Feiler and Dart published a profound
analysis concerning SCM and problems in its use.

Feiler’s SCM models

The starting point of Feiler’s SCM taxonomy (Feiler and Downey 1990; Feiler
1991) is to separate SCM basic elements and to see different levels to
implement them. Feiler has described SCM by means of four models:

� Check-out/Check-in model, which provides version control of individual
system components,

67

� Composition model, which focuses on improving the construction of system
configurations through selection of alternative versions,

� Long transaction model, which emphasises the evolution of systems as a
series of configuration versions and the co-ordination of concurrent team
activity, and

� Change set model, which promotes a view of configuration management
focused on logical changes.

The check-out/check-in model is known as a traditional SCM model. It provides
support for versioning of individual components and concurrency control by a
locking mechanism. Feiler notices that this version control with manual
repository manipulation is one the models to be applied, for example, by the
first commercial tools. The composition model includes two main steps, i.e. the
definition of configuration structure and qualification of the right versions of
each component. This model is focused on software manufacturing with
advanced building mechanisms. The long transaction model emphasises the role
of workspace which consists of a working configuration and a series of
preserved configurations. Creating specific workspaces for separate developers
or development teams can be regarded as a way to manage concurrency. The
change set model emphasises support for managing changes throughout the life
cycle of each product family software.

Dart’s adoption model for SCM

The model proposed by Dart (1995) is focused on the idea that SCM systems
have been developed starting out from the in-house SCM systems with manual
procedures and policies originally used in the past. The presentation provides a
better understanding of SCM, a common vocabulary for it and commercial tools,
while the future presents challenges for the further development of SCM,
including specific viewpoints such as technical, process-oriented, political
standardisation and managerial aspects (Dart 1992a).

Based on this vision, Dart has further developed and extended the framework
presented in 1992. She sees this framework as an extension of a more general
technology transfer approach, and names the viewpoints to be analysed as
technical, managerial, process-related, organisational, cultural, political,

68

people-related and risk-related. She also analyses the risk-related aspects (Dart
1996).

The similarity between Dart's work and the present research lies in the
incremental adoption of new SCM features. Dart concentrates comprehensively
on a number of factors, which have to be taken into account in SCM
improvement. The position of technical issues is not emphasised, but she
appreciates the difficulties attached to current software development
environments, particularly large ones. Small technical steps demand
comprehensive analysis of the software development environment.

2.6.2 European Space Agency’s (ESA) process models

The starting point for the ESA life cycle specification is its PSS-05 standards
(ESA 1989 and 1991). The situation can be regarded as analogous to that of the
DoD-STD-2167A and ISO9001 standards. ESA's software engineering practices
have been developed further in the ESSDE projects (Favaro et al. 1991;
Aumaitre et al. 1993), including specific solutions for software maintenance
(Stefanelli and Stroobants 1991) and SCM (Aumaitre et al. 1993).

The ESA/ESTEC project PROMESSE, as described by Harjani (1993), has
produced process models that include entity-relationship definitions for SCM
and change control, and also their process descriptions. The AMES project
(AMES 1995) has further developed the process model for software
maintenance, starting from the concept of software change request (SRD)
(Harjani et al. 1995a). An example of this model is presented in Paper IV.

The role of the ESA projects is slightly different from that of assessment
projects. ESA's goal is to fix all software engineering functions, since most of
its projects are based on collaboration. To define a common process model for
all functions is seen as a way of improving software development practices in its
projects in general. SCM practices form one of the most significant elements
used to define this collaboration.

69

The ESA approach provides an example of how to develop software engineering
practices. The main message is that life-cycle process modelling creates a basis
on which it is possible to distinguish specific viewpoints such as SCM, quality
assurance and validation & verification. The ESA/ESTEC process modelling
project PMod (Stragapede et al. 1997) provides a formalism derived from
SADT/IDEF0 and a solution in which the SCM subprocesses are isolated and
described from their own points of view. Examples of these descriptions are
given in Figures 16, 17 and 18 (Taramaa 1997).

UR.Phase

SR.Phase

AD.Phase

DD.Phase

TR Phase

SCMP/SR

SCMP/AD

SCMP/DD

SCMP/TR

Change
Control

SPR SMR, SRN

IT 5/start

IT 4/start

IT 3/start

IT 2/start

IT 1/start

SW Code Uni tsEI 1

Release of
SW Product

Figure 16. SCM phasewise subprocesses, as recognised in PMod.

Legend:

UR.Phase = User Requirements Phase

SR.Phase = Software Requirements Phase

AD.Phase = Architectural Design Phase

DD.Phase = Detailed Design Phase

TR Phase = Transfer Phase

IT = Input Trigger

SCMP = Software Configuration Management Plan

EI = External Input

SPR = Software Problem Report

70

<input>
Definition of

SCMP for
the next Phase

Master
library

Static
library

Internal verification
< >

review

SCMP for
the next
Phase

CM

SWPM,PAE SPM,SWPM,US and /or
CL,PAE,SWEs,TEs,HWE,
ISVV

Figure 17. The levelled phasewise subprocesses (e.g. UR.Phase, SR.Phase, ..,
TR.Phase) of Figure 16.

Problem
Analysis

SPR

Preparation of
SCR or NCR

Preparation
of SCO

Change
Analysis
Review

Change
Analysis

NCR

SCR

SCA SCO
Change

Implementation
SMR
SRN

Change
Implementation

Review

Static
library

SRB

CMO SRB,SWPM/
T L , S W E

SRB

SRB, ,SWPM/TL,
SWE,TE, ISVV

SRB

SWEs,TEs

Figure 18. Change control subprocess.

Legend: TE = Test Engineer

CM = Configuration Manager HW = Hardware Engineer

SCMP = Software Configuration Management Plan ISVV = Independent Software Verification and Validation

SWPM = Software Product Manager

Legend:

SPR = Software Problem Report SWE = Software Engineer

SCR = Software Change Request SCA = Software Change Analysis

NCR = Non-Conformance Report SCO = Software Change Order

CMO = Configuration Management Office TE = Test Engineer

SRB = Software Review Board ISVV = Independent Software Verification and Validation

SWPM = Software Product Manager SMR = Software Modification Report

TL = Team Leader SRN = Software Release Note

71

In the ESA’s models SCM can be seen in the following ways:

� SCM planning processes (Figures 16 and 17),

� release production, which is dedicated to the quality assurance subprocess,

� change control processes (Figures 16 and 18), and

� version control processes, such as check-in/check-out operations, of which
there is an example in Figure 18 described by the symbol connected to
“Master/Static library” indicating implicitly check-in operation.

From the point of view this research, ESA's work provides a strong
process-oriented approach describing relations between different software
processes. Its process descriptions imply a technical solution for version control.

The framework can be seen in the ESA modelling in two ways. On the one
hand, the majority of the SCM concepts and elements can be found in the ESA
models, and on the other, the ESA models do not include any maturity
framework or any improvement paradigm. Like the assessment paradigms, the
ESA models do not point to any procedure for implementing SCM.

2.6.3 Software assessment paradigms

Assessment of the software process is becoming a development target of its own
in the community engaged in developing embedded systems. Solutions based on
quality standards have been developed, many of them conforming to the ISO
9001 standard (ISO 9000-3 1991) and others, especially in the US, being
applications of the Capability Maturity Model for Software (CMM) (Humphrey
1988; Paulk et al. 1995), the background to which is formed by the American
standard DoD-STD-2167A. The European BOOTSTRAP model (Kuvaja et al.
1994) combines the ISO9001, CMM and ESA models, emphasising process
assessment, and conforms to the assessment framework developed by SPICE
(ISO/IEC 15504 1995). There is also a domain-specific assessment framework
TRILLIUM, developed for telecommunications (Bell 1994).

CMM

CMM, which was produced by SEI for software maturity assessment, is
organised into five maturity levels: Initial, Repeatable, Defined, Managed and

72

Optimising. Each level comprises a set of process goals of capability and is
composed of a number of key process areas, each organised into five sections,
called common features, which in turn contain what are called the key practices.

The key process areas are defined as residing at a single maturity level, in
accordance with Table 6. The basic functions of SCM form one of the key
process areas at the repeatable level, as Level 3 consists of set of software
engineering functions that include SCM. Therefore, achieving the third level
requires documentation, standardisation and integration of SCM-related
activities.

Table 6: The CMM key process areas of each maturity level.

Level Key Process Areas
5 - Optimizing Defect Prevention

Technology Change Management
Process Change Management

4 - Managed Software Quality Management
Quantitative Process Management

3 - Defined Peer Reviews
Intergroup Co-ordination
Software Product Engineering
Integrated Software Management
Training Program
Organization Process Definition
Organization Process Focus

2 - Repeatable Software Configuration Management
Software Quality Assurance
Software Subcontract Management
Software Project Tracking and Oversight
Software Project Planning
Requirements Management

1 - Initial -

SCM is described in more detail in process-specific descriptions of CMM,
where its fulfilment is based on the solutions proposed for achieving four goals
(Paulk et al. 1995): software configuration management activities are planned
and selected software work products are identified, checked and made available.
Changes to identified software work products are checked and the groups and

73

individuals affected by them are informed of the status and content of the
software baseline.

Although there are more detailed descriptions available on how to achieve these
goals, it is difficult to create an overall view of the relations between the different
items. In that sense, CMM and its SCM descriptions do not include any explicit
definition of the procedure for finding a solution to the SCM question.

At level 4 the organisation has to set quantitative goals for both software products
and processes. Maintainability is one of the product quality characteristics
developed at this level. On the process side, process performance information is
expected to include SCM. Level 5 is not dedicated to any specific software
process, but each separate process activity has now arrived at a stage where it is
possible to optimise it.

Compared with the framework put forward in the present research, CMM can be
characterised as follows:

� CMM does not define explicitly concepts and elements, such as version
control, software manufacturing, change control, since it concentrates on
duties which the organisation has to fulfil and which CIs have to manage etc.,

� CMM has a comprehensive maturity framework, where SCM is one of the key
process areas, and

� Key process area “Process Change Management” can be regarded as an
improvement procedure, although it is independent from any specific process.

SPICE

The other improvement paradigms have borrowed their maturity level ideas from
CMM. SCM can be found in all the paradigms. SPICE, which tries to combine
experiences obtained in the development of previous improvement paradigms,
describes the software processes as comprising development, management,
customer support and quality as well as technology transfer. SCM is located
among the support processes (SUP.n) in this categorisation, the others being
documentation, quality assurance, problem resolution and peer reviews. The
subprocesses of CM are:

74

� Establish configuration management library system,

� Identify configuration items,

� Maintain configuration item descriptions,

� Manage change requests,

� Control changes,

� Build product releases,

� Maintain configuration item histories, and

� Report configuration status.

 This means resolving all the SCM levels ranging from version control to change
control, although the list does not indicate in which order these items have to be
resolved in each environment. In addition, the definition leaves the possibility
open to define a detailed solution for each. SPICE can be compared with the
present framework in the following terms:

� SPICE defines SCM concepts and elements as work products in more detail
than CMM,

� As CMM, SPICE has a comprehensive maturity framework, where SCM is
one of the support processes, and

� SPICE has a process area called organisation process (ORG.n), which
includes process improvements as one of the subprocesses.

TRILLIUM

A central concept of the TRILLIUM assessment paradigm is a capability area.
There are eight capability areas within the TRILLIUM model. Each capability
area contains practices, so called roadmaps, which are sets of related practices
within the product development process. Each roadmap represents a significant
capability for a software development organisation, such as CM. A more detailed
discussion of CM activities of the TRILLIUM model is given by Paper VI.

Since TRILLIUM is derived from CMM, it includes many similar features, and
thus it is closely related to CM improvement, i.e. the central CM concepts are
defined but there is no order laid down for employing neither these concepts nor
any technical solution.

75

2.6.4 Discussion

Since this research examines SCM elements, maturity levels and improvement
presenting the solutions creating the SCM framework and tentative SCM
maturity improvement levels validating them, these three things have been taken
as the columns of Table 7.

The related work has contributed both ideas and practical solutions to this
research. The assessment paradigms address SCM. ESA’s solutions proposed
for space applications provided practical approaches and methods for SCM as a
part of the software development and maintenance process. Feiler’s and Dart’s
work to SCM provided ideas for an incremental approach. Feiler's models show
the possibility to see SCM by various models, which include parts of the SCM
elements. Dart's starting point is that companies have already taken commercial
SCM tools into use and their commitment to SCM is therefore very strong.
Incremental improvement can be found in the approaches of Feiler and Dart,
and also in the assessment-based paradigms, where the maturity levels are based
on a more comprehensive maturity context.

A summary of the related activities is provided in Table 7. The related items are
derived from Table 4, which illustrates a summary of SCM elements. In
addition, process improvement is related to Table 7.

76

Table 7: SCM features of the related work.

Related
approaches

Definition of
SCM elements

Definition
of SCM
levels

Definition of
improvement

process

Feiler’s model
(Feiler and
Downey 1990;
Feiler 1991)

Configuration languages have been left
out of scope

SCM planning has been left out of
scope

The strong emphases is in version
control, change control, software
manufacturing and teamwork

Yes, four
levels

No

Dart’s model

(Dart 1990; 1991,
1992a, 1995)

Configuration languages have been left
out of scope

The basic SCM elements have been
defined by Dart (1991)

Partly
related to
Feiler’s
work

Partly, the
matters to be

taken into
account in SCM

improvement
have been
defined

ESA models
(Coene 1992;
Favaro et al. 1994)

Configuration languages have been left
out of scope

Version control, configuration audit,
change control, software
manufacturing have been defined by
Favaro et al. (1991)

No No

CMM (Humphrey
1988; Paulk et al.
1995)

Version control, configuration audit,
change control, software
manufacturing have been defined in
base practices

Planning, in general, is the basic
concept in the processes to be assessed

No, all are
parallel in

base
practices

Partly

SPICE (ISO
15504 1995)

Like CMM No, all are
parallel in

base
practices

Partly

77

3. Requirements from industry

The need to study and develop practical SCM solutions in the field of embedded
computer systems has arisen through co-operation with a number of industrial
embedded systems manufacturers.

This chapter illustrates the requirements related to SCM of three embedded
systems application domains. Paper III shows experiences gained in
mechatronics applications, Paper IV concentrates on a space application, and
these two applications are related to each other in Paper V. Paper VI presents
results obtained with several other electronics products, mainly in the field of
SMEs.

3.1 Requirements of machine control software

The first case deals with machine control software. The main focus is to support
customer-specific product variations. The central goal to be required is to
support the assembly of reusable software components according to the goal of
the LOKKI project. The main goal can be further divided into more detailed
requirements (Paper III):

� use of modern communication media, sophisticated microcontroller chips
and intelligent sensors and actuators has increased the need to manage
software more flexibly,

� need to serve customers in increasingly smaller market segments whose
special needs have to be constantly maintained, and

� need for repairing and modernising systems many times after delivery.

3.2 Requirements of space software

The second case deals with space instrument software where the main goal was
to develop support for application management. The space instrument software
development is typically carried out in co-operation with several partners, where
ESA or the prime contractor demands a solution for SCM of subcontractor
(Murrach 1998).

78

The cases, in particular space applications of two project partners, created an
essential part of the AMES project from which the SCM-related requirements
can be derived (Paper IV):

� need for managing several modernisation cycles,

� need to understand relationships with other product technologies in addition
to software, and

� need to take account of better application-specific requirements.

These needs have implicit or explicit relations to SCM, which can be made
more visible. This thesis relies on the hypothesis that embedded system has to
change throughout its lifetime, so that systematic procedures for evolving
industrial SCM schemes are also needed.

3.3 Requirements of electronics products

The third case category includes several embedded software applications. The
starting point of the LEIVO project was the preliminary version of the
incremental improvement framework, which we used in improvement of SCM-
related aspects, although the associated companies had different starting level of
SCM. In addition, the role of software in this case is more essential compared to
the first case because of applications. The requirements of these applications
ranged from simple version control solutions to fully automatic PDM systems.
The requirements identified at the beginning of the LEIVO project can be
summarised as follows (Paper VI):

� need for managing parallel changes,

� need for impact analysis, because the hardware is often designed and
implemented simultaneously with the software,

� need for a better understanding of software.

79

4. SCM framework

The previous chapters outlined a view of the concepts of software maintenance
and evolution and of SCM. These concepts include cause-and-effect relations,
e.g. the fact that the construction of an assembly system for software
manufacturing presupposes solutions for version control.

The framework for SCM practices described in this chapter has been driven by
the needs of industry shown in the previous chapter. The incremental
development of CM practices ranges from version control to product-level CM,
and as each step includes specific features, they are illustrated in detail. The
definition of the SCM framework demands a specific procedure, for which the
levels are created.

The levels of CM are created on the basis of the results presented in Papers III -
V (Figure 19). The first version of the approach was published by Taramaa and
Seppänen (1995), whose basic goal was to determine the concepts required for
practical SCM and to define their content.

The short description related to Figure 19 is given in this main chapter. A more
detailed description is provided by the following sections.

The lowest CM levels in Figure 19 represent the version control solutions, with
the steps in software manufacturing above them on the left. Their common
factor is that they involve features concerning software releases but do not
especially deal with evolution based on changes and post-delivery functions.
These levels create a basis for the development of software evolution and
maintenance practices.

The highest level of release-oriented SCM in Figure 19, i.e. automated software
manufacturing for mass-customisation, can be regarded as running parallel to
change-oriented SCM, since the basis for the development of evolution and
maintenance practices has already been created. Software assembly systems in
many companies are complicated and their development can be distinguished
conceptually from change-oriented SCM, since the solutions concentrate on the
management of various configurations, the application of reusability and the
construction of advanced user interfaces for finding the right component.

80

Figure 19. A framework of CM procedures for the development of embedded
systems.

Product-related Configuration Management

Neither SCM nor
version control

Repeatable
 software manufacturing

Software manufacturing
with documentation

Automated
software manufacturing
 for mass-customisation

Non-standardised software
manufacturing

Repeatable
 version control

Non-standardised version
control

Versioning by
”XCOPY ”

Request-driven
change management

Application
management

Version control

Change-oriented CM

Software-related Configuration Management

Software

Hard product
technologies

Release-oriented CM

Problem tracking
management

CM related to several product technologies

Electronics related to
configuration management

Global
product management

81

Change-oriented SCM should be preceded by at least standardised, repeatable
software manufacturing, in addition to which the technical solutions of problem
tracking have to be created before any change management practices are
implemented. Problem tracking management constitutes the lowest level of
change-oriented SCM and lays a foundation for the deep problem analysis
required for change management.

Change-oriented SCM can be regarded as parallel with release-oriented software
manufacturing, which provides the basic software assembly solutions, since
there is no direct dependence between them.

Since software development is typically an iterative process, including the
evolution needed for achieving the software to be released, a relation must be
demonstrated between release and change-oriented CMs. There is no single,
obvious order of the levels, as release and change-oriented SCMs can be partly
developed independently and in parallel, depending on the resources available.
The development of change-oriented SCM features such as various tools
consistently presupposes a certain form of software manufacturing. The next
subsections will indicate one of the potential orders that can be used in CM
development.

When transferring to the product level the main issue is PDM and the solutions
supporting it. PDM systems are typically used to manage hardware-oriented
configuration performed by computerised design systems such as
CAD/CAE/CAM. The product-level items are important. The integration of
software development into PDM in particular requires the construction of
interfaces, i.e. CASE descriptions are then seen as existing on the same level as
other computerised design presentations. Modern PDM solutions have not yet
addressed the question of software-specific parts.

The highest level shows solutions for distributed configuration mechanisms,
which become necessary when the providers of computerised design results are
to be located geographically in different places.

82

4.1 Version control

Copying, e.g. a PC/DOS command XCOPY, represents the lowest-level manual
solution for SCM, and the quality of the results depends greatly on the
experience and personal capabilities of the software engineers.

Version control provides a means to maintain specific instances of software
products developed for different environments, and its use is supported by the
saving achieved in memory space and formalised identification practices. Based
on experiences gained in two joint projects with Finnish industries, the common
practice seems to be that the version control tool is used differently in separate
software development projects for the same company. This can be called
non-standardised version control. This will, in practice, introduce new problems
when parts of the software are needed in other projects, or when the CM process
is being improved. Practical experiences with work on embedded systems
version control are recounted by Sperry (1992) and Kooshian (1994). The
development of a companywide quality system can be supported by making
guides for the use of version control, i.e. ”standardised and repeatable version
control”. This can be regarded as a more advanced level (Paper IV).

The embedded features of embedded software can be seen as specific CIs which
have to be controlled, such as software-hardware interface documents,
hardware-related modules, simulation results as a part of prototyping, images as
a result of software manufacturing.

Related to version control, safety and security concerns are reflected in
configuration audit, which sets strict requirements to verification and validation
mechanisms. These mechanisms provide input for decision making of
configuration audit often demanding the fulfilment of various safety and
security standards.

4.2 Release-oriented SCM

Release-oriented SCM concentrates in software manufacturing where it is
possible to find solutions at different levels ranging from simple individual,

83

non-standardised until automated, comprehensive software manufacturing
mechanisms.

4.2.1 Non-standardised and repeatable software manufacturing

The activities for producing a software release create the own levels of SCM
framework. These levels deal with improvement of software manufacturing, i.e.
to integrate version control into a software assembly system that contains
configuration builders such as compilation and linking tools. Automatic
assembly requires the management of a variety of different revisions of files by
means of a configuration builder. The most common method of dealing with
multiple versions is to add labels to a set of file versions and to compile the
whole set using a batch command. Solutions based on makefiles are common in
UNIX environments. The programming language-oriented environment such as
Borland C++ environment already provides a build mechanism. Examples of the
use of makefiles are given in Paper III and by Flynn (1995).

From the viewpoint of embedded software, the main benefit of using automatic
configuration builders is to control the complex compilation process. In some
cases the software must be pre-processed through three or even four compilers,
using different parameters.

Nowadays it is easy to start using SCM systems with build mechanisms, because
several such systems are commercially available (Forte 1993). Problems appear
if there are several different SCM systems in the same company. As in the
standardisation of version control as repeatable, CM also benefits from
standardised practises.

4.2.2 Software manufacturing with documentation

The management of various life-cycle documents to be produced during
software development is a natural part of software assembly. Typical documents
are specifications, designs, user guides and test specifications and results.
Embedded software-specific documents are software-hardware interface
documents and simulation specifications and corresponding test results.

84

In general, all baselines produced during the life-cycle create a software item in
configuration. To separate the production of different life-cycle documents from
these items would be very laborious, as the documents would not follow the
same baselines as the software. The various documents are very often seen as an
intermediate result in software development and maintenance. The creation of
this practice requires an effort of its own to keep the documentation of all the
life-cycle aspects at the same level as the software. The incorporation of
documents to configuration descriptions is therefore a consequence of progress
in the document management process.

4.2.3 Automated software manufacturing for mass-customisation

Reusability and distribution are important questions in software engineering, and they
can be related to SCM once the basic SCM problems such as version control and
manufacturing have been solved. They are independent development targets and can be
regarded as parallel from the point of view of SCM.

Commercial SCM systems nowadays provide solutions for manufacturing binary files,
but companies need specific, tailored solutions for their own environments. This is
typically the case with high-volume products in which there are small differences from
one order to another and manufacturing is based on a combination of reusable software
components and components with new features developed especially for a new specific
need.

New software life-cycle paradigms such as prototyping also place similar demands on
SCM as reusability, since the result of prototyping may be a component, which has to
be linked to the rest of the software for early simulation.

If the embedded software packages to be delivered as parts of products differ from each
other, there will be a need to develop practices for collecting the right features for each
order but in such a way that the details of the version control mechanism remain
hidden. Typical solutions are based on commercial SCM systems, which create the
core around which companies construct product-specific features. Knowledge-based
solutions have also been shown to be useful in these situations (Hakkarainen et al.
1988). They are also recommended, e.g. Cagan (1994).

85

Like document management in software manufacturing, reusability forms a
specific dimension on which the ways of producing, finding and using reusable
components vary considerably. Reusability ranges from design patterns
(Buschman et al. 1996) to code generation and parametrization.

In addition to reusability, distribution aspects impose requirements of their own
at this level. In distributed applications there may be a need for dynamic
configuration of separate nodes, and various MIL languages have been
developed for this purpose, languages that contain support features for
distributed applications in addition to SCM activities, e.g. support for
multilingual and dynamic re-configuration.

4.3 Change-oriented SCM

Change-oriented SCM concentrates in change control or change management
where it is also possible to find solutions at different levels ranging from simple
problem until application management where the maintenance process is
implemented comprehensively.

Change management is a specific task that is often conceptually separated from
SCM activities and referred to as the problem/software resolution process.
According to definitions (ISO 12207), the problem resolution process is a
process for analysing and resolving the problems.

In the most advanced SCM environments change management is included as an
inseparable part of the SCM scheme and implemented by means of problem
tracking systems which has been also applied in this framework.

4.3.1 Problem tracking management

Problem tracking is the first level of change-oriented SCM. Its solutions range
from a simple problem, the recording of an error/bug or defect, to advanced
databases, which are, related to the other SCM activities. In simple solutions the
recorded error data are used manually in software change activities, whereas the
advanced database solutions are an essential and integrated part of the other
aspects of SCM. The lowest-level problem tracking systems run parallel to

86

release-oriented SCM. In addition, the problem tracking system is a predecessor
to request-driven change management.

Modern commercial SCM systems are being expanded by incorporating
problem tracking as one feature in them (Forte 1993). Another feature is the
connection with process improvement mechanisms, since the problem tracking
database is a central element as a source of metrics information when
developing process improvement practices.

4.3.2 Request-driven change management

Up to this level version control and SCM incorporate different features. The
next level involves the creation of a mechanism for maintenance, i.e. for
integrating version control and software manufacturing with change control. We
call this request-driven change management. A typical change management
system is an in-house database in which change requests are recorded and
managed. Often the data base structure is not well organised and does not
support any problem/defect tracking.

The long development and maintenance phases of embedded systems imply that
the persons maintaining the system are most likely not the ones who developed
it. In addition, the initial system documentation may no longer match the actual
design and code, which further complicates the maintainer's problem. Different
pre-maintenance tools, such as problem understanding, reverse engineering,
traceability and impact analysis tools, can also be used. Their use is currently
based on the maintainer's own ability to apply them.

4.3.3 Application management

Application management is the extension of SCM by taking the maintenance
process into account more comprehensively. The efficient implementation of
application management requires process-based solutions, e.g. the examples
given by Taramaa and Ketola (1995) based on the work done in the AMES
project (AMES 1995).

At the application management level, specific tools are used for subfunctions of
the maintenance process such as problem understanding, localisation, impact

87

analysis and solution analysis which already acted separately in request-driven
change management. The main extension compared with request-driven change
management is related to process aspects and management at a higher level of
abstraction. The process-oriented approach provides an opportunity to manage
the use of tools more efficiently than in request-driven management, where the
user still has to activate separate tools.

The process approach is a hot topic today. Most process-driven approaches are
focused on modelling sequential events, and are typically prescriptive. This kind
of process may appear to be restrictive in nature, however. In the process
thinking it can be called control-oriented. The process should be more
descriptive, providing guidelines for different maintenance situations. Such a
process can be called data-oriented.

4.4 Product data management

Product data management can be examined at two levels: management of
software and hardware, and management of the whole product, including all
product and manufacturing/production technologies.

Typical features facing development teams in product management are:

� location of different product data,

� integration of different PDM and related systems,

� data transfer, its logical and technical alternatives,

� various implementation alternatives.

 Figure 20 illustrates the alternatives of the relations between PDM and SCM
systems. This figure depicts different practical aspects of these environments,
i.e. location of product data and distribution of PDM and SCM systems. In the
environments the following alternatives can be found:

� There are various implementations of PDM and SCM locating in different
sites and there is need for data transfer (connection 1 between PDM and
SCM, and connections 2, 3, 7, 8 and 9 to various implementation).

88

� There are separate implementations of PDM and SCM locating in different
sites and there is need for data transfer (connection 5 between PDM and
SCM, and connections 4 and 6 for distribution are implemented by
environment-specific transfer mechanisms).

� There is a common implementation of PDM and SCM locating in different
sites, where data transfer has been implemented by a common PDM system
(connection 10).

4.4.1 Electronics related to configuration management

In the telecommunications field, for example, computer-aided implementation
can produce embedded software for digital signal processors and hardware
implemented by FPGAs and ASICs for use alongside software implemented by
the traditional processor technology. The differences can be found both in CIs,
which include a large number of simulation descriptions in addition to normal
algorithm models, and in manufacturing, which is based on VHDL. When
transferring to system-on-silicon principles, control software is one of the
technologies to be used to create the final product.

According to Soininen (1995), less attention has been paid to research into
change control in the context of hardware descriptions. The change management
tools applicable to maintenance are different because of the descriptions to be
updated. In addition, the different simulation descriptions, which are essential in
hardware design, entail specific features in the construction of change
management.

The concurrent engineering solutions adopted in co-design represent an
extensive challenge to process modelling. Heikkinen (1997) addresses the issues
that need to be taken into account when developing a SCM environment which
supports these complex process features, i.e. prototyping and assumption
reconciliations. Although these items cover software and hardware functions,
the mechanisms can also be applied when transferring to deal with concurrent
engineering related to other items.

The situation between electronics design and SCM is illustrated by connection 1
of Figure 20. Electronics CAD systems create one of the PDM related
CAD/CAM/CAE systems.

89

Figure 20. PDM and SCM solutions with various implementation alternatives.

1
Site 1PDM, re la ted CAD/CAE/CAM sys tems,

and MRP systems of th is s i te

SCM system of th is s i te

Site 2

Site 3Dis t r ibuted PDM, re la ted
CAD/CAE/CAM sys tems ,

and MRP sys tems o f
several s i tes

Dis t r ibuted SCM system
of several s i tes

23

4

5

6

Site 4

Site 5

Dis t r ibuted PDM, re la ted SCM system,
re la ted CAD/CAE/CAM sys tems,
and MRP systems of several s i tes

7

8 9

10

90

4.4.2 Configuration management related to several product
technologies

Considered in a wider framework, embedded systems also include other product
technologies, such as electrical and mechanical parts designed using specific
computer-aided methods and tools (Paper II). The integration of a number of
computer-aided tools, which support other development technologies and
logistics functions, places SCM developers in a totally new situation.

These technologies can also be developed under the heading of concurrent
engineering. One of the first European projects devoted to product-level
concurrent engineering is CONSENS, which can be regarded as promising
because of its starting point, that there are already viable and usable design
technology-based tools which need better formalism for information exchange
(Singh and Irvine 1995).

In Figure 20, site 1 illustrates the connection of one site between PDM, its
related and SCM systems.

4.5 Global product management

Distributed configuration mechanisms become necessary at this level, since
providers of computerised designs may be located geographically in different
places.

The concept of virtual corporation has been presented as a solution to the
question of global product management (Davidow and Malone 1992). The
virtual corporation has been also recognised as essential in software engineering
society (Boldyreff et al. 1996; van der Hoek et al. 1996; Noll and Scacchi 1997).

Figure 20 illustrates different possible relations of the heterogeneous PDM and
SCM environments. Site 1 of an environment indicates separate technical
solutions of PDM and related computerised implementations. Site 2 and 3 show
common solutions by which the PDM and related systems have been
implemented in several sites.

91

In Figure 20, from the SCM point of view the essential relations can be found
between SCM and others systems of site 1 (connection 1), between different
SCM systems of separate sites (connection 2), within the distributed SCM
environment (connection 4), between distributed as well PDM as related
systems to the distributed SCM system (connection 5), and PDM and SCM
within the PDM system (connection 10).

4.6 Discussion

The elements of the lowest SCM levels can be implemented by buying SCM
tools, including version control and building mechanisms, and by defining the
usage principles in a companywide software quality system. In addition,
problem tracking systems have been commercialised and are required to link
their solutions to the rest of the SCM. These solutions create a basis for the
more advanced SCM practices. The main effort can then be invested in
change-oriented CM, automated mass-customisation and further product-level
integration.

Automated SCM based on mass-customisation is assuming a still more central
role, in which the main problems to be solved are the role of design patterns,
code generation and modelling of various features. All of these are background
issues lying behind a sophisticated SCM system.

Change-oriented SCM consists of problem tracking, request-driven change and
application management. The main difference when transferring from
request-driven change to application management is the role of the software
process. Application management is strongly characterised by the process
viewpoint, which is adopted in order to manage various change situations.

Although the SCM framework has been presented in terms of levels, these
levels have to be tailored separately for each according to the nature of business.
Mass- customisation, for example, can assume slightly different role in each
company. One company may produce a lot of similar products with very small
changes in their functions, whereas another may develop products, which are
highly customer-specific, with a small number of common functions. Many
companies have made decisions in the past, which restrict their room for

92

manoeuvre in the future. This typically concerns technical solutions, which
restrict the available alternatives for future SCM environments.

93

5. Improvement of SCM

The importance of SCM is understood in industry, but there is as yet no clear
guideline on how to proceed when improving SCM practices. One of the biggest
problems is that most organisations have considerable existing software assets
to be maintained and this software has almost invariably been produced using a
large number of different methods, languages and tools, which makes its
management difficult (Paper VI).

Our approach is characterised by co-operation with companies which do not
themselves provide fundamental tool or method support for software
development and maintenance. Many companies are either SMEs or small
software engineering groups within larger companies. Companies with limited
software resources have started to employ SCM as a part of general quality
engineering practices only within the last few years. The starting point may be
very low, at the XCOPY level, as indicated by the project lying behind Paper
VI, for example.

On the other hand, there are a number of companies with software engineering
staff ranging from tens to hundreds of people (Paper I). These have typically
noticed the importance of industrialised software development and maintenance
by the mid-1980s improving separately SCM elements of their own software
engineering environments (Kemppainen 1986; Mukari 1988). SCM has been
one of the targets of this development (Hakkarainen et al. 1988; Lehtinen 1994;
Viskari 1995), which explains the higher starting level of some companies in the
improvement of SCM.

The SCM framework presented in the previous chapter can be regarded as a
descriptive model supporting the understanding and analysis of current SCM
practices. However, the improvement procedure to be shown below will
establish a starting point for the detailed improvement of SCM practices.

Since improvement can be directed at several SCM and related elements, these
elements have been first related to each other. The other part of this chapter is
focused on an improvement procedure PR2IMER that provides a general
approach for various processes to be improved.

94

5.1 Overview of SCM improvement levels

The improvement envisaged here consists of maturity levels defined by
SCM-related elements. The improvement of the SCM-specific elements is partly
parallel. Therefore the SCM elements have to be presented by the parallel
columns so as to show both parallel and incremental improvement. In addition,
we have included logistics-specific features as characterising SCM-related
elements to maturity improvement, because they have to be resolved in any
comprehensive CM solution. This was already indicated by the experiences
presented in Paper III.

In practice, the incremental improvement of SCM starts with an assessment of
the SCM process to determine current practices (Paper IV and chapter 4). This
is shown in Table 8, which creates a basis for the assessment of the LEIVO
project covering several companies at different levels (Paper VI). In addition to
version control, software manufacturing and change control, the assessed
aspects include order/delivery and customer data management.

These tables are based on previous mentioned experiences with the industrial
partners. The first version of the approach was published in Paper VI. The
following tables are more formalised and better related to the current
presentation than the first version given in Paper VI. The step numbers were
defined in the early phase of the LEIVO. Paper VI and this thesis use this
division of the steps, although the steps of Total product management have been
combined.

5.1.1 Version control-oriented levels - from step 1 to step 3

The levels presented in Table 8 are named according to SCM elements, although
they include the development of logistics functions in parallel with CM. The
lowest level is called "No product management", which means a largely manual
process without any formal storage of configurations, errors or logistics data.
When transferring to "Copying activity with manual versioning" version control
is assumed to be based on a computerised system and information on the other
related elements are recorded manually. At the next level, "Basic version
control", the companies are using various version control systems without
standardised or repeatable features. In software manufacturing the computerised

95

assembly systems are based on batch files and the logistics will show the first
computerised solutions. On the "Repeatable version control with makefile
mechanism" level, version control is standardised and the components in the
archive contribute to one project. The solutions in software manufacturing are
based on makefile builders, which are under version control, and the problem
database at this level is also linked to source files, which are under version
control. In the logistics-specific functions the order/delivery and customer data
are recorded in specific databases.

5.1.2 Software manufacturing-oriented levels - from step 4 to step 5

At the next SCM maturity levels the development is concentrated on software
manufacturing and change control. At the starting level, "Basic configuration
management", software manufacturing is totally under version control. The
technical solutions adopted in software manufacturing can still differ depending
on the product.

Table 8: The lowest levels of the SCM improvement and CM-related elements.

SCM-related elements
SCM-specific elements Logistics-specific processes

Levels of
improvement

Version
control

Software
manufacturing

Change
control

Order/Delivery
data

management

Customer
data

management
No product
management

No archiving Manual building
of products

No problem/error
lists

No information
stored on
deliveries

Invoice and
bookkeeping the
only source of
information

0 Backup system
may allow return
to older versions
One "latest"
version

One "latest"
version

Invoice &
bookkeeping the
only source of
order/delivery
information

Step 1

Copying activity
with manual
versioning

Manual
archiving using
packaging (ZIP)
or copying
(XCOPY)

Lists of
configurations

Manual
problem/error
lists

Manual
order/delivery
file on paper

Manual customer
files on paper

1 Source codes for
the main delivery
versions are
stored in a
common project
directory

96

Step 2

SCM-related elements
SCM-specific technical elements Logistics-specific processes

Levels of
improvement

Version
control

Software
manufacturing

Change
control

Order/Delivery
data

management

Customer
data

management
Basic
version control

Product has its
own archive

Change
information on
each CI is
documented
manually

Computerised
problem/error
data base

Computerised
order/delivery
register

Computerised
customer register

2 All source
revisions
retained and
accessible

Batch files used
in builds

Problem/error
counting metric

Order handling
& invoicing
systems
(purchase order
systems)

Release is
produced
automatically
from version
controlled code

Design
documentation
and user
documentation
under version
control

All releases and
test versions are
produced
automatically
from version-
controlled code

Step 3

Repeatable
version control
with makefile
mechanism

Archive
organised into
components

Products are
built using
makefile
mechanism

Problem/error
base with
problems linked
to source file

Order/Delivery
database

Database
contains delivery
information

3 Components
designed to be
reused within
one project

Makefile is
under version
control

Problems are
reported and
collected directly
to specific
product and
module versions.

All customer
contacts are
recorded

Step 4

Basic
configuration
management

4

Makefile
dependencies
reach all the way
to version
control

Order/Delivery
data contain
detailed
information on
products
supplied

Service request
concept
formalised

97

Step 5

SCM-related elements
SCM-specific technical elements Logistics-specific processes

Levels of
improvement

Version
control

Software
manufacturing

Change
control

Order/Delivery
data

management

Customer
data

management
Repeatable
configuration
management

5

Project
management
documentation
and quality
documentation
under version
control

Automated
dependency
generation

Problems linked
to specific
revisions of
source files

All
orders/deliveries
to each customer
can be traced , to
individual source
code modules

Problem
classification
system used to
produce
feedback to
inspection,
testing & coding

Step 6

Basic product
management

6

All versions of
build tools
retained

All
documentation
including
hardware and
other product
technologies in a
version-
controlled
database

Build
environment
configurations
are described in
makefiles

Problems linked
to specific
revisions of all
affected
documentation,
such as source
files, change
requests,
specifications,
etc.

Delivered
products can be
fully rebuilt later

Build
configuration is
stored in
database

Problem reports
are used to
optimise the
residual problem
level and testing

Build record
database (stores
source file
revisions used in
each assembly)

Request-driven
change control

98

Steps 7-11

SCM-related elements
SCM-specific technical elements Logistics-specific processes

Levels of
improvement

Version
control

Software
manufacturing

Change
control

Order/Delivery
data

management

Customer
data

management
Total product
management

7-11

Software
components are
reusable across
several products

Automated
configurable
assembly
systems

Problem reports
are used to
optimise the
software process

Delivery
database with
links to build
records and build
configuration
records

Service request
contains links to
all affected
source, design
and product
management
files

The whole
product is
configured
automatically

Build
configuration
tools of all
assemblies are
uniquely
identifiable

Application
management-
oriented change
control

Information
about customers'
environments is
stored

Assembly
systems are
based on MIL
languages
supporting
distribution

Step 12

Global product
management

12

Components are
reusable across
several
companies

Automatic
configuration of
third party
products

Software
components are
only one
category of
product
components

Software
configuration is
only one
assembly
category

In "Repeatable configuration management", version control can be extended to cover
project management and quality documentation. The automation used in software
manufacturing is comprehensive, i.e. all the assembly activities are predefined using the
make file mechanism and version control. The treatment of error data is more detailed
at this level, i.e. problems are linked to specific revisions of the source file. The
solutions to logistics functions at this level are linked to the source code supplied.

99

5.1.3 Change-oriented level - step 6

At the "Basic product management" level some items such as build tools and
part of the documentation can still lie outside version control. A comprehensive
version control is required in order to achieve this level. The extensions of
software manufacturing deal with the use of a more flexible build mechanism
and a database that includes all the configurations. Change control includes the
first solutions for supporting software evolution and maintenance, although the
tools are separate entities. The problem tracking management solutions are
linked to software documentation, and the problem tracking system is beginning
to be used in the optimisation.

5.1.4 Total product management level - step 7 to step 11

The total product management level covers efficient usage of reusable
components, an automated, configurable assembly system and applications
management.

The first two features form the basis for automated software manufacturing,
including mass customisation. Applications management includes extensions of
change control in which the tools are related to a predefined process description.
This level is not subdivided in Table 8, but one possible division is presented in
Figure 1 of Paper VI. At this level the solutions to the logistics functions are
closely related to the SCM solutions.

5.1.5 Global product management level - step 12

The geographical distribution is one of the key factors when transferring to
global product management. The main impacts of global product management
were indicated to be PDM, related CAD/CAE/CAM, and MRP systems, which
are in the focus of Table 8.

100

5.2 Improvement procedure for SCM

The improvement to SCM applied in this thesis is based on an inductive
approach in which the starting point is an understanding of the organisation and
its problems in order to set goals for making improvements. The understanding
is based on the SCM framework by which separate SCM elements can be
understand better in an industrial organisation. The PR2IMER (Practical Process
Improvement for Embedded Real-Time Software) approach for developing
application management solutions (Karjalainen et al. 1996) as presented in
Paper IV (Figure 21) can be regarded as an instance of the PR2IMER concept,
since it did not employ all the PR2IMER features.

Figure 21. Process improvement using the PR2IMER framework (Karjalainen et
al. 1996).

PR2IMER integrates software process analysis, modelling, improvement, and
measurement techniques to meet the critical quality requirements for developing
embedded systems. It consists of the following steps:

1. Quantitative and/or qualitative analysis of current software development
practices,

2. Definition of measurable goals for improving those practices,

3. Planning of successive and practical process improvement steps,

14

3 2

$QDO\VLV RI

WKH FXUUHQW
SUDFWLFHV

'HILQLWLRQ
RI JRDOV

IRU
LPSURYHG

SUDFWLFHV

3URGXFW
GHYHORSPHQW

3ODQ IRU
SURFHVV

LPSURYHPHQW
VWHSV

3LORWLQJ

8VH LQ
SURGXFW

GHYHORSPHQW

101

4. Piloting and trial use of the improved practices in product development
projects.

The purpose of software process analysis is to describe current software
development practices, to identify problems and to define objectives for
improvements. In our case, the objective was predefined as improvement of the
SCM/CM process. In addition, current SCM/CM practices were analysed using
the SCM framework presented in this thesis. The problem was therefore focused
on elements defined by the SCM framework.

The problems identified and requirements stated during the analysis of current
software development practices create the basis for the definition of measurable
goals. The GQM-based approach provides a way to develop new practices in
order to achieve the goals set and to produce metrics for measuring the
improvement in the process.

Since software process improvement measures are implemented stepwise, it is
necessary to have a clear view of the process to be improved. In this case the
SCM framework provides a starting point for analysing and understanding the
separate SCM elements. The improvement itself consists of SCM-oriented
elements, including specific technical solutions in accordance with the previous
section.

The revised software development process and related methods and tools were
further adopted in pilot projects. Improvements were measured according to the
GQM-based measurement.

102

6. Validation

This chapter illustrates validation of the SCM framework and the first
improvement experiences.

The SCM framework has been applied in three embedded systems application
domains. Paper III describes experiences gained in mechatronics applications,
Paper IV concentrates on a space application, and these two applications are
related to each other in Paper V. Paper VI shows experiences of electronics
applications.

In addition, the first improvement experiences have been provided via two
applications, space and electronics. Paper VII shows quantitative measurements
of tools applied in space applications. Paper VI presents results obtained with
several electronics products, mainly in the field of SMEs, related to maturity
improvement levels.

6.1 Cases in SCM framework validation

The SCM framework validation was based on three cases:

� SCM solutions in mechatronics applications (Papers III and V),

� Application management for a space application (Papers IV and V), and

� The more comprehensive validation with other applications of electronics
products (Paper VI).

In parallel, the SCM framework has also been applied in the EU/ESSI
(European Software System Initiative) project TPM (Total Product Management
in Technopolis) (Kilpi 1996).

103

6.1.1 Mechatronic application

The starting point was the lowest SCM level, XCOPY, and improvement was
based on the use of a commercial SCM system PVCS. Although version control
was used by the software itself and its relation to the quality system was
understood, insufficient guidance had been produced for its use. The main effort
was directed at the development of software manufacturing features for
release-oriented SCM. The prototype environment provided support for the
configuration of assembly systems. The work also produced the first results of
reusable software for the further improvement of release-oriented SCM.

The other parts of the development framework were beyond the scope in this
case, but order/delivery management and customer data management were
observed to be important elements of SCM development, e.g. the links between
product-level and SCM were recognised. The case disclosed the need to develop
the PDM system related to SCM. This result created a starting point to the ideas,
which enabled further development of the SCM framework.

The development of basic solutions for version control and advanced solutions
for software manufacturing in relation to the requirements provided an
opportunity to manage the software better. Table 5 is a result of this
development illustrating the potential assembly alternatives, i.e. configurations.

As a part of SCM development, a demonstration environment was constructed
for a mechatronics company (Paper III), in order to extend the separate
commercial tools to take into account requirements dictated by the application,
such as use of version control, documents and software to be archived,
construction of configurations and role of a build mechanism, as shown in
Figure 22.

104

Figure 22. A prototype of an assembly system.

USER INTERFACE
using Visual BASIC

M

i

c

r

o

s

o

f

t

W

i

n

d

o

w

s

software
components (CIs)

SCM
commands

software components

software packages
and components

Deliverable
software

User
commands

Microsoft ACCESS

Reports

assembly
commands

SOFTWARE ASSEMBLY
FUNCTIONS using Microsoft

C++ and Polymake

Intersolv PVCS

Microsoft ACCESS

MS-DOS operating system

User interface part

105

6.1.2 Space application

Space applications are evolutive, since development takes many years and
includes numerous adaptive, corrective and perfective changes before delivery,
after which changes are difficult to implement.

The space applications form a specific area in software manufacturing, since the
embedded software to be developed is unique. Normally it will be not reused in
company after delivery. The reusable aspects are not so important because of the
unique nature of the developed software. The major emphasis is in change
control during the evolutive software development.

This application displayed a repeatable version control level, since both
software and design and user documentation were under version control.
Software manufacturing in the context of release-oriented SCM was not an
important, since a simple assembly system based on SCCS and makefile was
sufficient for this application area. Order/delivery management and customer
data management were beyond the scope of this case.

The application management architecture was developed as a part of the AMES
project in accordance with Figure 23. The work concentrated on defining and
implementing the application management process and the tools to be
developed.

Because the AMES project belonged to the ESPRIT programme, it included the
emphases favoured by all the partners. The author and the colleagues of his
home and Finnish case company concentrated on a space application and the
construction of the AMES environment according to the requirements of this
application. The case study provided input for defining the AMES environment
and the relation between the SCM and maintenance concepts. Papers IV and V
give a more detailed description of the development work. Finally, the
applicability of the resulting tools was evaluated, as presented by Laitinen et al.
(1997) and Paper VII.

106

O
th

er
 A

M
 to

ol
s

O
th

er
 A

M
 to

ol
s

Trigger Re-insertion

Submit

Modification report

Traceability
 platform

AMES platform

Application management

Software
 archive

PLATFORM

Implementation

Acceptance testing

Regression testing

PROCESS

Problem understanding

Localisation

Solution analysis

Submit solution

Solution specification
 & Impact analysis

O
th

er
 A

M
 to

ol
s

D
ev

el
op

m
en

t t
oo

ls

A
pp

lic
at

io
n

un
de

rs
ta

nd
in

g
to

ol

O
th

er
 A

M
 to

ol
s

R
ev

er
se

 e
ng

in
ee

rin
g

to
ol

O
th

er
 A

M
 to

ol
s

N
av

ig
at

io
n

&
 D

is
pl

ay
 to

ol

O
th

er
 A

M
 to

ol
s

Im
pa

ct
 a

na
ly

si
s

to
ol

T
es

tin
g

to
ol

s

P rocess support tool (ProcessW EA VER)

Interoperability service SCM
tool

Figure 23. Application management architecture.

107

6.1.3 Other applications of electronics products

The final case studies were made in several companies with applications in
electronics, telecommunications and machine and process automation. These
case studies provided the input for the development of the revised maturity
framework to be presented in the next chapter.

The starting point here was to analyse the current status of the SCM practices
according to the PR2IMER framework. This provided an overall view of the
SCM elements. Since several companies with quite different SCM requirements
participated in the project, we first had to establish a general view of current
SCM practices. With this in mind, the SCM framework provided a way of
analysing SCM practices. More detailed requirements for SCM improvement
were formulated during the project.

6.1.4 Discussion of SCM framework validation

The above applications and their SCM development showed that it is necessary
to understand each main SCM element and to deal with these elements
separately. In most applications the separate improvement of SCM elements was
unavoidable, since:

� Insufficient resources were available for parallel improvement of the SCM
elements.

� There were dependency relations between SCM elements. E.g. version
control and software manufacturing have to achieve a standardised
procedure before an efficient improvement can be achieved in change
control.

� Improvement of software manufacturing also requires advanced solutions
with regard to documentation. Linking documents to configuration requires
procedures for guaranteeing the consistency of documents with software.

� Improvement of change control requires a documented maintenance process
in each company.

� Transfer to product data management requires that SCM solutions should
have been reached with regard to version control, software manufacturing
and change control.

108

6.2 Initial improvement experiences

The SCM improvements were validated in two projects, AMES (AMES 1995)
and LEIVO (Paper VI). The first only concentrated on change control as a part
of application tools and management for space applications (Paper VII). The
other concentrated on version control, software manufacturing and
order/delivery data management in connection with a number of electronics
products (Paper VI). The validation of the first project was based on use of
qualitative analysis of current practices, GQM for goals definition, quantitative
measurements derived from GQM plan. The validation in the other project was
based on qualitative evaluation.

6.2.1 The AMES project: Improvement of change control

The functional relationships perceived in the development of the change
control-oriented environment are shown by Figure 24. The AMES project
proceeded in three lines: applications analysis, tools development, and
application management process development.

Applications requirements derived from application analysis created a basis for
tools evaluation, which were made using scenarios, which described briefly the
evaluation steps. The process development was one of the tasks. It was based on
the previous ESA’s process modelling work. The main effort of the AMES
project was invested to tools development (section 2.4.1) where one of the tools
should be a connecting part for all AMES and other tools covering process
aspects. The process support was not successfully implemented and it could
have not been really tested.

Analysis of the current practices

The preliminary version of the PR2IMER framework was used to develop a
space application, as a part of the AMES project. The analysis of current
practices was based on a qualitative method (Mäkäräinen and Taramaa 1995),
involving focused interviews with developers of both product and software
development environments. A sample of these results is shown by Paper IV.

109

Definition of goals for improved practices

The definition of improvement goals was based on requirements formulated
together with product developers (Mäkäräinen 1996). The plan for improving
applications management was implemented by scenarios where the application
understanding toolset was one of the evaluated tools (AMES 1994b).

Improvement and its analysis

The process enactment tool ProcessWEAVER (Fernström 1993) was used in the
pilot phase in accordance with Paper IV. The comprehensive view of the
prototype environment illustrated by Figure 23 provided support for application
management implemented with several specific tools. At the very end of the
project, the benefit was assessed via these tools using the GQM method (Paper
VII). According to GQM, defining metrics starts from goal definition as
indicated in Table 9.

Table 9: The basic template for the goal definition in GQM.

Basic statement: Instantiation:

Analyse the products (AU, ReverseNICE, IAS)

In order to evaluate them

With respect to the tool value

From the viewpoint of the maintainer.

110

Application
analysis

Tool
development

Process
development

Applications

AMES project
plan

Tool ideas
Previous process

development
work

Application
requirements

with scenarios

The tools
developed

The process
defined

Tools
evaluation

Criteria template

GQM approach

Defined values
for criteria

Metr ics
Application-

specif ic
characterist ics

Figure 24. Tools evaluation as a part of the change control improvement
project in AMES.

111

The evaluation was based on a framework, which included:

� criteria, and

� goals with explanatory questions and specific metrics.

The structure of the relationship is described in Figure 25.

Criter ia_1

Cri ter ia_2
Goal

Metr ic_1.1

Metr ic_1.2

Quest ion_1

.

.

.

.

Metr ic_1.s

Metr ic_2.1

.

.

.

Metr ic_m.1

.

.

.

.

.

.

Metr ic_m.2

.

.

.

Cri ter ia_3

.

.

.

.

.

.

Cr i ter ia_n

Quest ion_2.
.
.

.

.

.Ques t ion_m

Metr ic_m.u

Figure 25. The tools evaluation framework.

The evaluation is based on defined criteria in terms of factors, such as performance,
ease of use, tool integration/data exchange, robustness, functionality, and
documentation. Three levels of evaluation were used: LOW, NORMAL or GOOD.
LOW indicates that the tool does not have this function/property or is poor. NORMAL
indicates that the tool has the function/property in question but it is hard to use and the
results do not encourage continuous usage. GOOD means that the tool has this
property/function and it is well supported.

The criteria themselves are not sufficient, since the justifications are vague, i.e. LOW,
NORMAL or GOOD. Therefore the GQM approach was adopted to provide a more
explicit justification for the tool evaluation. The results of a GQM analysis generally

112

consist of various values related to the criteria by a n:m relation. It means that the same
metrics can justify several criteria and one criterion can use several metrics as its
justification.

The criteria were used to design questions and metrics for the evaluation, which means
that a list of questions and related metrics was created. Table 10 describes all the
questions and their associated metrics. The metrics can be partly tool-specific, e.g.
M3.1, which is specific to the AU toolset (AU), the reverse engineering tool
ReverseNICE (RN), and the impact analysis toolset (IAS).

Table 10: A sample of the GQM-based questions and metrics.

Question Metric Definition

Q1 What do the tools require from the system?

M1.1 Disk space required for the tool

M1.2 Disk space required for additional tools

M1.3 Resource usage

M1.4 Memory usage

M1.5 Number of available platforms

Q2 What do the tools require from the user during installation?

M2.1 Number of parameters to be configured

Q3 How much time does the tool need for its functions?

AU M3.1 Time to create code dependencies

AU M3.2 Number of dependencies found

AU M3.3 False dependencies found

AU M3.4 Time to create HTML data from code

AU M3.5 Number of HTML code files

AU M3.6 Number of HTML code lines

RN M3.1 Number of files

…

IAS M3.1 ReverseNICE TDIF (Transfer Data Interface) file size

…

Q4 How does the tool support ease of use?

M4.1 Input models value

M4.2 Navigation value

M4.3 Selection value

M4.4 Component activation value

M4.5 Application design principles value

M4.6 Controls, groups and models value

…

113

A sample of actual measurements in the AU toolset evaluation is shown in
Table 11.

Table 11: A sample of the metrics collected from the AU toolset.

No Metric Value Notes
M1.1 Disk space required

for the tool
13.9 MB

M1.2 Disk space required for
additional tools

25 MB
1 MB

Webmaker
Robochart

M1.3 Resource usage 1-2 MB
during
scripts,
1% CPU

Webmaker:
18-25 MB
35-82% CPU
Robochart 2 MB

M1.4 Memory usage 1.3 MB Webmaker 240 KB
Robochart 684 KB

M1.5 Number of available platforms 1 SunOS, domain analysis part
has Windows version

M2.1 Number of parameters to be
configured

1 Assuming external tools are
in path

M4.1 Input models value 3 Input is well supported for
mouse. Focus is sometimes
confusing.

M4.2 Navigation value 4 Navigation is well supported,
some problems with menu
functionalities.

M4.3 Selection value 2 There are only a few
advanced features.

M4.4 Component activation value 1 No mnemonics or short-cuts.

M4.5 Application design principles
value

1 Menus are not according to
standards. The options are
not shown via dialogue
boxes.

M4.6 Controls, groups and models
value

3 Generally according to
standards.

Each metric was calculated, and the results were used to support the evaluation
of the criteria. Each table indicates the metrics, results and possible additional
notes. The notes column includes information about the separate AU tools used
as a part of the AU toolset, such as Webmaker and Robochart. In addition,

114

metrics M3.1-M3.6 of the AU toolset were defined for each assessed software
(Paper VII, Table 5).

The final results included the rating of six criteria on the scale LOW, NORMAL
or GOOD. The following list is a sample of performance criteria, including
subcriteria, such as response time, installation, start up, capacity, efficiency, and
tool portability. Our evaluation produced the following rates:

Response Time: NORMAL

The response time of the AU tools is considered satisfactory. Webmaker
is the only tool, which requires a slightly longer execution time. A
graphical interface for the AU tools was created with Tcl/Tk. Because
Tcl/Tk is an interpretative language, the response times are slightly longer
than with interfaces using interpretative languages.

Reference metrics: M3.1 - M3.6

Installation: NORMAL

Installation of the tools is straightforward because most of them are in the
same directory. The AU tools do not check the system to locate
third-party utilities. The separate tools can be installed by the system
administrator or the user.

Reference metrics: M1.1, M1.5, M2.1

Conclusions

The research and experiments showed that the tools evaluation is needed but it
should be linked better to process where its is used. From the point of view of
process improvement the problem was that companies should describe their
software processes more explicitly for the requirements set in advance, such as
the need for managing several modernisation cycles and for taking better into
account of application-specific requirements.

115

ESA has defined a process model for space on-board software development, for
example for change control, but it demands tailoring in each organisation.
However, the tools evaluation provided practical results in the participating
organisations.

6.2.2 The LEIVO project: Improvement of version control, software
manufacturing and delivery

As the case studies in the other project included several parts, the role of the
analysis of the current practices was important. The improvement of SCM and
related elements was directed at version control, software manufacturing and
order/delivery data management. Change management was beyond the scope,
since these two SCM elements, version control and software manufacturing,
were sufficient, taking into account the effort to be expended. In some of the
case studies order/delivery data management was so essential that there was a
need preliminarily to relate it to the SCM improvement.

Analysis of the current practices

The analysis adopted a qualitative approach providing a non-formal way of
collecting information on current practices. The SCM framework nevertheless
provided a context to analyse the separate SCM elements. In this phase of the
SCM improvement the SCM elements of each company were related to the
SCM maturity levels defining the state-of-the art in version control and software
manufacturing. This phase of the LEIVO project also made results from all
seven companies commensurable. The potential commercial tools were also
analysed in parallel with this subphase, since they provided acceptable
foundations for companywide SCM environments.

 Definition of goals for improved practices

The goals for each company were very varied when defining goals of each
company, because of the companies' backgrounds and their previous
investments in SCM. The goals included the following items:

1. To evaluate the solution presented in Paper III and its possible utilisation in a
new SCM environment.

116

2. To increase adaptability, relating it to the current environment, which
implements SCM elements.

3. To improve the management of software products that do not belong to the
deliverable software itself.

4. To develop the automated mass-customisation of software manufacturing.

5. To develop repeatable SCM, including version control and software
manufacturing solutions.

The first goal dealt with a SCM environment totally based on commercial tools,
e.g. PVCS, Polymake or MS-ACCESS (Figure 22). In addition to version
control and software manufacturing aspects, the possible use of these tools
required an analysis of usability, platform, security and reliability with regard to
companies' current arrangements.

Improvement and its analysis

The results are shown in Table 12, where the dotted lines indicate the
improvement of a SCM or related element in each company. Some companies
concentrated entirely on improving their existing SCM environment by
replacing an old solution with a new one. Therefore there is no need to use any
dotted line indication in Table 12.

The SCM improvement can be assessed with regard to separate SCM-related
elements. In most cases the companies had already adopted a commercial
version control tool, although the version control solutions ranged from a
low-level version control (level 0) to basic product management solutions (level
6) where version control also covered a large amount of documentation. In
software manufacturing the companies concentrated at least on the definition
and use of standardised makefile-builders under version control (level 3),
although the common long-term goal was to create more flexible software
manufacturing solutions (level 6). Although order/delivery management and
customer data management were regarded as important, none companies had not
yet the ability to improve this element.

117

Table 12: The results of the evaluation of SCM practices and their improvement.

CM-related elements

SCM-specific elements Logistics-specific
process

Levels of
improvement

Version control Software manufacturing Order/delivery data
management

No product management

0

Electronics company-1 Electronics company-1 Electronics company-1

Step 1

Copying activity
with manual versioning

1

Machine/Process automation
company-1

Machine/Process
automation company-3

Step 2

Basic version control

2

Machine/Process
automation company-3

Machine/Process
automation company-1

Step 3

Repeatable version control

3

Electronics company-1

Machine/Process automation
company-1

Telecommunication
company-1

Machine/Process automation
company-3

Electronics company-1

Telecommunication
company-1

Machine/Process
automation company-3

Telecommunication
company-2

Step 4

Basic configuration
management

4

Telecommunication
company-1, 2 and 3

Machine/Process automation
company-2

Telecommunication
company-1, 2 and 3

Machine/Process
automation company-2

Telecommunication
company-1 and 3

Machine/Process
automation company-2

Step 5
Repeatable configuration
management

5
Step 6

Basic product management

6
Telecommunication
company-3

Telecommunication
company-1

Step 7
Total product management

7-11
Machine/Process
automation company-3

Machine/Process
automation company-3

118

Conclusions

This case project covered several companies and their SCM practices. This
made improvement more complex. In this situation the SCM improvement
levels and their SCM- and logistics-specific elements provided a way to discuss
more focused about company-specific solutions.

As the common feature was to increase repeatability and adaptability of the
SCM environments. This approach provided the possibility to focus more on
version control and software manufacturing solutions.

The approach also showed the need to analyse separately CIs of the companies,
which they have to store and relate to configurations. Since there was not yet
final solutions with them, the discussion about product-level CIs and their
relations with software configurations was not possible.

119

7. Introduction to papers

This chapter gives an introduction to the original publications included in this
dissertation (Papers I - VII). They have all been accepted in scientific journals
and volumes of conference proceedings within a four-year period. Paper I
provides the motive for the research and emphasises the importance of software
maintenance and related technical aspects. Papers II and VII describe technical
solutions developed for software maintenance. Paper III presents a solution for
SCM in the area of mechatronic systems, indicating at the same time the
problems affecting software engineering in a situation in which there are other
product technologies to be developed, and Paper IV considers process aspects as
a part of the development of software maintenance. Paper IV also outlines the
SCM improvement framework. Papers V and VI relate together various aspects
arising in the previous papers, providing details of the incremental development
steps in SCM and discussing experiences with the incremental approach. Paper
VII provides results of quantitative measurements, particularly concerning tools
for change control. The papers correspond to the research activities in the
manner set out in Table 13.

Table 13: Relations between research activities and the original papers.

Research
question

Description of the research
activity

Paper(s) Published in

Q1 Relate the role of software
evolution and maintenance to
SCM

I 1993

Q2 Investigate activities that can be
distinguished in SCM

II, III 1993, 1994

Q3 Construct a SCM framework for
developing software evolution
and maintenance practices and
provide evidence of its
usefulness

V 1996

Q4 Investigate SCM improvement
and conduct the first
experiments to show its
usefulness

IV, VI, VII 1995, 1996, 1998

120

7.1 Paper I, evaluation of software maintenance and its
improvement

Paper I describes a CMM type evaluation of the role of software maintenance of
embedded systems. The evaluation included 27 small and medium size
companies whose products ranged from simple instruments to large
telecommunication systems. The paper describes the evaluation method and
shows, how the evaluation results can be analysed and packaged for future use.
Packaging of the evaluation results was based on the work made by Oivo and
Basili (Oivo and Basili 1992; Oivo 1994). The main points in Paper I are:

� to describe the nature of software maintenance in the case of embedded
software,

� to show the importance of SCM in industry, and

� to relate the results to the improvement paradigm.

The work creates a basis for research into the roles of software maintenance and
SCM and shows that software engineering requires specific forms of
understanding, one of which is SCM.

7.2 Paper II, tool for software evolution and maintenance

Paper II provides a case in solving practical maintenance problems, when there
is need to better understand the existing software. The background of this paper
was to develop a reverse engineering tool for understanding of the old, weakly
documented software. The input for the reverse engineering process is PL/M
software. It is transformed to SA/SD-RT design models. The study concentrates
on:

� outlining a solution by which it is possible to support software
comprehension,

� to show the different code-level factors when developing more abstract
descriptions of software that do not depend on the programming language
used, and

� to acquire more information on the special characteristics of the
maintenance of embedded software.

121

7.3 Paper III, a solution to the software configuration
management problem

Paper III outlines a practical approach to the configuration and supply of
machine control systems. A configuration system for the management and
assembly of machine control software was built. This work emphasised the need
for the incremental development of SCM practices. In addition to software, a
need was found to consider other product technologies when developing the
management and assembly of machine control software.

This paper describes:

� product technologies to be developed in parallel with software,

� logistics functions to be taken into account, and

� features of the assembly system.

7.4 Paper IV, process aspects of software maintenance

Paper IV concentrates on an on-board space application which acted as one of
the cases for an application management environment called AMES. This paper
describes the framework where the AMES environment was developed. The
major elements of this paper consist of:

� a qualitative improvement framework,

� the analysis results of the application,

� the description of the AMES solution, and

� the description of a process model application management.

7.5 Paper V, levels of SCM practice improvement

Paper IV provides a basis for the incremental SCM improvement. This paper
includes a first version and examples applying the improvement procedure. In
this paper we relate both the mechatronics application presented in Paper III and
the space application presented in Paper IV to the incremental SCM
improvement.

122

The major aspects of this paper consist of:

� the description of the incremental SCM improvement, and

� the relation to the qualitative analysis as part of SCM improvement.

7.6 Paper VI, experiences of the improvement framework
using qualitative analysis

Paper VI discusses the experiences, which have been obtained in co-operation
with companies. The participating companies had very different SCM starting
levels point to SCM ranging from simple manual version control to full-
automatic CM systems with on-line change control. The use of commercial CM
systems was also increasing, although companies had already used various basic
version control systems in most cases. This provided a challenge and, on the
other hand, the framework formed a suitable starting point for the analysis of
each company.

The contents of this paper can be categorised into:

� the presentation of the improvement framework,

� the presentation of different elements related to CM, and

� the experiences provided by the companies.

7.7 Paper VII, experiences of the improvement framework
using quantitative analysis

Paper VII provides the experiences, which have been obtained in the final
evaluation of the tools of application management environment. The central
element of the evaluation has been a new framework including evaluation
criteria and Goal/Question/Metric (GQM)-based approach. They have produced
detailed information about each tool. The paper describes:

� the tools evaluated,

� GQM-based evaluation framework, and

� sample of evaluation results.

The results are a part of a detailed report of the AMES project.

123

8. Conclusions and further research

The development of SCM is one of the solutions for problems concerning
development and maintenance of more complicated embedded systems.
However, SCM requires improvements. The problem is to find the right
procedures to apply and further develop SCM in practice.

The goal of this research was to create an incremental approach for improving
SCM support and practices in the case of embedded systems, taking into
account the requirements imposed by evolution and maintenance of embedded
systems. This research has analysed SCM producing a SCM framework, which
was validated by industrial cases. In addition, the SCM framework provided a
starting point for the further development of a SCM maturity model, which was
also validated by industrial cases.

The SCM framework presented above was evaluated and applied in
co-operation with several manufacturers of industrial embedded systems in the
fields of mechatronics, space and other electronics applications. The main focus
was on software-specific issues, although a preliminary consideration was also
given of product and global data management.

The SCM framework consists of SCM-specific elements such as version
control, software manufacturing, change control, and of SCM-related logistic
processes. The maturity levels of this framework range from low-level version
control to global product management including parallel solutions for SCM
elements. Comparisons with some well-known approaches based on software
process assessment, software process modelling and SCM practices provided
indications of their positions in relation to SCM elements and SCM
improvement. These approaches typically include SCM elements together with
comprehensive solutions for process improvement, but they do not include such
a specific description of SCM maturity levels in relation to individual SCM
elements. In addition, the continuation to product level issues such as other
technologies lies beyond the scope of this thesis.

Although the SCM concepts are in principle well-known, this research
convinced the author of the difficulty of finding entirely unified concepts.
Version control and software manufacturing are becoming well understood, but

124

the relation between release and change-oriented SCM is vague, as emerges
when relating separate SCM items to each other. In addition, although there are
already several problem tracking tools commercially available, the role of the
database behind the problem tracking mechanism is not totally clear, since this
database is related to both SCM and process improvement.

Companies have several computer-based design solutions which support product
development, manufacturing and customer-related activities. The management
of product level data is undergoing major changes at present, because
companies are integrating the management of computer-based design solutions
and software is one of the fields that can be integrated better at the product
level. The highest level entails the global product aspects to be managed,
including the virtual corporation, which the future product development
business will have to take into account.

The approach adopted in this research followed a constructive model, including
both conceptual and technical realisations. The industrial co-operation projects
supported this approach, since the incremental development of SCM practices
requires a conceptual view of each technical part, such as version control,
release and change-oriented SCM parts. The technical realisations of version
control and software manufacturing are based on commercial tools.
Change-oriented SCM, excluding problem tracking databases, is still largely
based on the precommercial solutions described in this research. The advanced
commercial tool environment, such as ClearCase and Continuus, have produced
their own solutions.

Although each company had specific SCM goals, the main target was
standardised version control and software manufacturing practices, in spite of
the fact that change control solutions will assume the main role in future SCM
improvement. In release-oriented SCM the main interest will be in mass-
customisation, where MIL-based descriptions will be used in assembly systems
which require distributed solutions. The improvement of release production can
be regarded as running parallel to change control. The companies have to
resolve in which order improvements are to be made, as all of them are more
expending effort and time in adopting and transferring old solutions to a new,
advanced SCM environment. There are already commercial systems available,
but the main problem in adopting may well be the expensive involved. It is also

125

essential for SME companies to adopt an incremental approach. In addition,
there was a need to develop related processes, such as logistic and software
resolution-specific ones, and this makes improvement quite complicated.

Improvement of the SCM process also requires a software process improvement
(SPI) procedure of its own. In our case we adopted an inductive approach. This
procedure proved to be beneficial, since the development of specific software
processes such as SCM calls for concentration on SCM-specific features in
particular. In addition, process improvement will be one of the essential
development targets in software engineering in the future. Thus, each process,
including SCM, requires a specific analysis, as demonstrated in this research.
Different processes such as SCM requires their own maturity steps, and these
are examined in this thesis. SCM forms one of the processes to be improved in
the PR2IMER concept. PR2IMER provides a way to proceed in the improvement
process, but SCM-specific features have to be better understood and related to
each other. Our results will be transferred to part of the service package
SCM-PR2IMER, which will form a basis for industrial co-operation when
developing companywide SCM solutions.

The work presented in this thesis has produced the following new research
initiatives for the future:

� Increased SCM usage: The development of SCM related software
technology to other product technologies. Experiences from research and
industrial work up to now have been used to develop software and other
technologies for individual CM solutions. This will lead to difficulties in the
future, as companies want to produce more integrated products.

� Distributed SCM: New business solutions such as the virtual corporation
will also place new requirements on software engineering. This activity will
increase because of more use of subcontracting and because of better
communication mechanisms. A new EU/ESPRIT project VISCOUNT is
being launched partly on the basis of ideas presented in this paper to
develop distributed CM support.

� SCM as a support for distributed product solutions: Since mass-
customisation will characterise much of software manufacturing and the
solutions become more distributed, MIL languages will be increasingly
used. Commercial SCM systems will have to consider distribution of

126

embedded systems, and MIL technology will provide a worthy alternative
solution for it.

� SPI for SCM: The SCM improvement procedure will become part of the
SCM-PR2IMER service package. In addition to problems in understanding
the technical dependencies between different SCM elements, it is difficult
to understand the investments, effort and time required to achieve the
desired level. The procedure presented in this thesis can be regarded as an
initial way of visualising and assessing each SCM improvement activity.
One of the goals of the VISCOUNT project will be to evolve the
SCM-PR2IMER concept to meet future industrial improvement
requirements.

127

References

Adamson, M. 1990. Small Real-Time Design: from Microcontrollers to RISC
Processors. Sigma Press, Wilmslow, UK. 191 p.

Agresti, W. 1986. What Are the New Paradigms? In: Agresti, W. (ed.), New
Paradigms for Software Development. IEEE Computer Society Press,
Washington, D.C. Pp. 6 - 10.

Alonso, A. and de la Puente, J.A. 1993. Dynamic Replacement of Software in
Hard Real-Time Systems. In: Proceedings on the Fifth Euromicro Workshop on
Real-Time Systems, Oulu, Finland, June 1993. IEEE Computer Society Press,
Los Alamitos, California. Pp. 76 - 81.

Ambriola, V., Bendix, L. and Ciancarini, P. 1990. The Evolution of
Configuration Management and Version Control. Software Engineering Journal,
Vol. 5, No. 6, pp. 303 - 310.

AMES 1994a. AMES - Methodology and Process Model. AMES Participants,
Cap Gemini Innovation, Grenoble, France. Esprit 3 Project 8156, AMES
Deliverable D111, version 2.0, May 1994. 93 p.

AMES 1994b. AMES - Evaluation Scenarios. AMES Participants, Cap Gemini
Innovation, Grenoble, France. Esprit 3 Project 8156 AMES Deliverable D42,
version 1.0, December 1994. 101 p.

AMES 1995. AMES - Application Management Environments and Support.
Cap Gemini Innovation, Grenoble, France. Esprit 3 Project 8156, Technical
Annex, Version 3.0, November 1995. 85 p.

Arthur, L. 1988. Software Evolution: The Software Maintenance Challenge.
John Wiley & Sons, New York. 254 p.

Aumaitre, J.-M., Harjani, D.-R. and Dowson, M. 1993. PROMESSE - Final
Report, PROMESSE Project ESA 10081/92/NL presented in section 3.2.1
JG(SC). 51 p.

128

Barros, S., Bodhuin, Th., Escudié, A., Queille, J.-P. and Voidrot, J.F. 1995.
Supporting Impact Analysis: a Semi-Automated Technique and Associated
Tool. In: Caldiera G. and Bennett, K. (eds.), Proceedings of the International
Conference on Software Maintenance (ICSM’95), Opio (Nice), France, October
1995. IEEE Computer Society Press, Los Alamitos, California. Pp. 52 - 61.

Battaglia M. and Savoia, G. 1997. ReverseNICE: A Nice Way to Reengineer
Legacy Systems. In: T.-D. Guyenne (ed.), Proceedings of the 2nd International
Conference on Data Systems in Aerospace (DASIA’97), Seville, Spain, May
1997. European Space Agency (ESA) SP-409, Noordwijk, the Netherlands. Pp.
195 - 201.

Belady, L.A. and Lehman, M.A. 1976. A Model of Large Program
Development. IBM Systems Journal, Vol. 15, No. 3, pp. 225 - 252.

Belkhatir, N., Estublier, J. and Melo. W. 1994. ADELE-TEMPO: An
Environment to Support Process Modelling and Enaction. In: Finkelstein, A.,
Kramer, J. and Nuseibeh, B. (eds.), Software Process Modelling and
Technology. Research Studies Press Ltd, Taunton, Somerset, UK. Pp. 187 - 222.

Bell 1994, TRILLIUM - Telecom Product Development Process Capability,
Version 3.0. Bell Canada, December 1994. 116 p.

Bennett, K. 1993. An Overview of Maintenance and Reverse Engineering. In:
van Zuylen, H. (ed.), The REDO Handbook - A Compendium of Reverse
Engineering for Software Maintenance. John Wiley & Sons, Chichester, UK,
Chapter 2. Pp. 43 - 60.

Bennett, K., Cornelius, B., Munro, M. and Robson, D. 1991. Software
Maintenance. In: McDermid, J.A. (ed.), Software Engineer’s Reference Book,
Butterworth-Heinemann, Oxford, UK. Chapter 20. 18 p.

Berlack, R. 1992. Software Configuration Management. John Wiley & Sons,
New York. 346 p.

129

Bershoff, E.H., Henderson, V.D. and Siegel., S.G. 1979. Principles of Software
Configuration Management. Prentice-Hall, Englewood Cliffs, New Jersey.
385 p.

Bishop, J.M. 1994. Languages for Configuration Programming: a Comparison.
University of Pretoria, South Africa. Technical Report 94/04. 27 p.

Boehm, B.W. 1976. Software Engineering. IEEE Transactions on Computing,
Vol. 2, pp. 1226 - 1242.

Boehm, B.W. 1988. A Spiral Model of Software Development and
Enhancement. IEEE Computer, Vol. 21, No. 5, pp. 61 - 72.

Boldyreff, C., Burd, E.L. and Hather, R.M. 1994. An Evaluation of the State of
the Art for Application Management. In: Muller H.A. and Georges, M. (eds.),
Proceedings of the International Conference on Software Maintenance
(ICSM’94), Victoria, Canada, September 1994. IEEE Computer Society Press,
Los Alamitos, California. Pp. 161 - 169.

Boldyreff, C., Burd, E.L., Hather, R.M., Mortimer, R.E., Munro, M. and
Younger, E.J. 1995. The AMES Approach to Application Understanding: a case
study. In: Caldiera G. and Bennett, K. (eds.), Proceedings of the International
Conference on Software Maintenance (ICSM’95), Opio (Nice), France, October
1995. IEEE Computer Society Press, Los Alamitos, California. Pp. 182 - 191.

Boldyreff, B., Newman, J. and Taramaa, J. 1996. Managing Process
Improvement in Virtual Software Corporations. In: Proceedings of the Fifth
Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WET ICE), Stanford, California, June 1996. IEEE Computer
Society Press, Los Alamitos, California. Pp. 142 - 147.

Brown, A.W., Christie, A.M. and Dart, S.A. 1995. An Examination of Software
Maintenance Practices in a U.S. Government Organization. Journal of Software
Maintenance, Vol. 7, No. 4, pp. 223 - 238.

130

Buckley, F.J. 1996. Implementing Configuration Management - Hardware,
Software and Firmware, Second Edition. IEEE Computer Society Press, Los
Alamitos, California. 380 p.

Buschman, F., Meunier, R., Rohnert, H., Sommerlad, P and Stal, M. 1996.
Pattern-oriented Software Architecture, a System of Patterns. John Wiley &
Sons, Chichester, UK. 457 p.

Cagan, M. 1994. Untangling Configuration Management - Mechanism and
Methodology in SCM Systems. In: Estublier, J. (ed.), Software Configuration
Management: ICSE SCM-4 and SCM-5 Workshops Selected Papers, Lecture
Notes 1005 in Computer Science, International Workshop on Software
Configuration Management (SCM4), Baltimore, Maryland, May 1994. Springer-
Verlag, Heidelberg, Germany. Pp. 35 - 52.

Capretz, M.A.M. and Munro, M. 1992. COMFORM - A Software Maintenance
Method Based on the Software Configuration Management Discipline. In:
Kellner, M. (ed.), Proceedings of the International Conference on Software
Maintenance (ICSM’92), Orlando, Florida, November 1992. IEEE Computer
Society Press, Los Alamitos, California. Pp. 183 - 192.

Chapin, N. 1989. Changes in Change Control. In: Proceedings of the
International Conference on Software Maintenance (ICSM’89), Miami, Florida,
October 1989. IEEE Computer Society Press, Los Alamitos, California. Pp. 246
- 253.

Chikofsky, E.J. and Cross, J.H. 1990. Reverse Engineering and Design
Recovery: A Taxonomy. IEEE Software, Vol. 7, No. 1, pp. 13 - 17.

Christie, A.M. 1994. A Practical Guide to the Technology and Adoption of
Software Process Automation. Carnegie-Mellon University, Pittsburgh,
Pennsylvania. Technical Report CMU/SEI-94-007. 128 p.

CIMdata Inc. 1996. What Is Product Data Management?
http://www.std.com/Newbury/CIMdata/pages/what_is_pdm.htm. 2 p.

131

Coene, Y. 1992. A Generic Model for ESSDE Software Configuration
Management. ESSDE/STREP/A21, ESSDE Reference Facility Project, ESA
8900/90/NL/US(SC). 94 p.

Conradi, R., Fernström, C. and Fuggetta, A. 1994. Concepts for Evolving
Software Processes. In: Finkelstein, A., Kramer, J. and Nuseibeh, B. (eds.),
Software Process Modelling and Technology. John Wiley & Sons Inc.,
Chichester, UK. Pp. 9 - 31.

Conradi, R. and Westfechtel, B. 1998. Version Models for Software
Configuration Management. ACM Computing Surveys, Vol. 30, No. 2, pp. 232 -
282.

Dart, S.A. 1990. Spectrum of Functionality in Configuration Management
Systems. Carnegie-Mellon University, Pittsburgh, Pennsylvania. Technical
Report CMU/SEI-90-11. 38 p.

Dart, S.A. 1991. Concepts in Configuration Management Systems. In: Feiler,
P.H. (ed.), Proceedings of the 3rd International Workshop on Software
Configuration Management (SCM3), Trondheim, Norway, June 1991. ACM
Press, Baltimore, Maryland. Pp. 1 - 18.

Dart, S.A. 1992a. Past, Present and Future of CM Systems. Carnegie Mellon
University, Pittsburgh, Pennsylvania. Technical Report CMU/SEI-92-8. 28 p.

Dart, S.A. 1992b. Parallels in Computer-Aided Design Framework and Software
Development Environments Efforts. In: Newman, M. and Rhyne, T. (eds.),
Proceedings of the Third IFIP WG 10.2/WG 10.5 Workshop on Electronic
Design Automation Frameworks, Bad Lippspringe, Germany, March 1992.
North Holland, Amsterdam, the Netherlands. Pp. 175 - 189.

Dart, S.A. 1995. Adopting an Automated Configuration Management Solution.
In: the Eight International Workshop on Computer-Aided Software Engineering
(CASE’95), Toronto, Ontario, July 1995, an invited speech. 15 p.

Dart, S.A. 1996. Best Practice for a Configuration Management Solution. In:
Sommerville, I. (ed.), Software Configuration Management ICSE SCM-6

132

Workshop Selected Papers, Lecture Notes 1167 in Computer Science,
Proceedings of the 6th International Workshop on Software Configuration
Management (SCM6), Berlin, Germany, March 1996. Springer-Verlag,
Heidelberg, Germany. Pp. 239 - 255.

Davidow, W.H. and Malone, M.S. 1992. The Virtual Corporation: Structuring
and Revitalizing the Corporation for the 21st Century. Harper Business, New
York. 294 p.

Davis, A.M. 1990. Software Requirements - Analysis & Specification. Prentice-
Hall, Englewood Cliffs, New Jersey. 512 p.

Davis, A.M. and Bershoff, E.H. 1991. Impacts of Lifecycle Models on Software
Configuration Management. Communications of the ACM, Vol. 34, No. 8, pp.
104 - 118.

Deitz, D. 1990. Pulling The Data Together. Mechanical Engineering, Vol. 112,
No. 2, pp. 56 - 57.

De Micheli, D. 1996. Hardware Software Co-Design: Application Domains and
Design Technologies. In: De Micheli G. and Sami, M. (eds.),
Hardware/Software Co-Design, NATO ASI Series, Vol. 210. Kluwer Academic
Publishers, Dordrecht, the Netherlands. Pp. 1 - 28.

Deming, W.E. 1982. Out of the Crisis. MIT Centre for Advanced Engineering
Study, Cambridge, MA.

DeRemer, F. and Kron, H.H. 1976. Programming-in-the-Large Versus
Programming-in-the-Small. IEEE Transactions on Software Engineering, Vol. 2,
No. 2, pp. 80 - 86.

DoD 1988. DoD-STD-2167A, Defense System Software Development,
Department of Defense, February 1988.

Doize, M.-S., Voidrot, J.-F. and Escudie, A. 1994. Traceability Data Models.
AMES Project Deliverable D213, version 2.0, Grenoble, France: Cap Gemini
Innovation and Matra Marconi Space, November 1994. 75 p.

133

ESA 1989. PSS-01-11 issue 1, Configuration Management and Control for ESA
Space Systems. European Space Agency, Noordwijk, the Netherlands. 93 p.

ESA. 1991. PSS-05-0 issue 2. ESA Software Engineering Standards, Issue 2.
European Space Agency, Noordwijk, the Netherlands. 130 p.

Estublier, J. and Casallas, R. 1994. The Adele Configuration Manager. In:
Tichy, W.F. (ed.), Configuration Management. John Wiley & Sons, Chichester,
UK. Pp. 99 - 133.

Estublier, J., Favre, J-M. and Morat, P. 1998. Toward SCM / PDM integration?
In: Magnusson, B. (Ed.), System Configuration Management, Lecture Notes
1439 in Computer Science, International Symposium on System Configuration
Management (SCM8), Brussels, Belgium, July 1998. Springer-Verlag,
Heidelberg, Germany. Pp. 75 - 94.

Favaro, J., Coene, Y. and Casucci, M. 1994. The European Space Software
Development Environment Reference Facility Project: A Status Report. ACM
SIGSOFT, Software Engineering Notes, Vol. 19, No. 2, pp. 68 - 71.

Feiler, P. and Downey, G. 1990. Transaction-Oriented Configuration
Management. Carnegie Mellon University, Pittsburgh, Pennsylvania. Technical
Report CMU/SEI-90-7. 60 p.

Feiler, P. H. 1991. Configuration Management Models in Commercial
Environments. Carnegie Mellon University, Pittsburgh, Pennsylvania. Technical
Report CMU/SEI-91-7. 54 p.

Feldman, S.I. 1979. Make - A Program for Maintaining Computer Programs.
Software - Practice and Experience, Vol. 9, No. 3, pp. 255 - 265.

Fernström, C. 1993. ProcessWEAVER: Adding Process Support to UNIX. In:
Osterweil L. (ed.), Proceedings of the 2nd International Conference on the
Software Process, Berlin, Germany, February 1993. IEEE Computer Society
Press, Los Alamitos, California. Pp. 28 - 40.

134

Flynn, J.M. 1995. MAKEing Projects. Embedded Systems Programming, Vol.
8, No. 9, pp. 42 - 65.

Forte, G. 1993. Software Configuration Management. CASE OUTLOOK, Vol.
7, No. 2, pp. 3 - 45.

Foster, J.F. 1993. Cost Factors in Software Maintenance. University of Durham,
School of Engineering and Computer Science, UK. Ph.D. Thesis. 138 p.

Foster, J.R., Jolly, A.E.P. and Norris, T. 1989. An Overview of Software
Maintenance. British Telecom Technology Journal, Vol. 7, No. 4, pp. 37 - 46.

Frakes, W.B. and Isoda, S. 1994. Success Factors of Systematic Reuse. IEEE
Software, Vol. 11, No. 9, pp. 15 - 19.

Frieder, O., Herman, G.E., Mansfield, W.H. and Segal, M.E. 1989. Dynamic
Program Modification in Telecommunication Systems. In: Proceedings of the
Seventh International Conference on Software Engineering for Tele-
communication Switching Systems (SETSS89), Bournemouth, UK, July 1989.
IEE, London, UK. Pp. 168 - 172.

George, G.W. and Kryal, E. 1996. The Perception and Use of Standards and
Components in Embedded Software Development - A report for the OMI
Software Architecture Forum, July 1996, Draft, 28 p, in the www address:
http://www.osaf.org/library/market.pdf.

Gomaa, H. 1993. A Reuse-Oriented Approach for Structuring and Configuring
Distributed Applications. Software Engineering Journal, Vol. 8, No. 2, pp. 61 -
71.

Grundmann, W. 1997. Flash Memory Technology and Techniques. In:
Proceedings of the Embedded Systems Conference, September 1997, Santa
Jose, California, Volume 1. Miller Freeman Inc., San Francisco, California. Pp.
393 - 414.

135

Gulla, B., Martinsen, S.-A. and Dahlsengen E. 1993. Survey of SCM and Make
tools. SINTEF, Trondheim, Norway. PROTEUS Project Technical Report P-
WP-A223-BG001-SIN.4, January 1993. 34 p.

Habermann, A.N. and Notkin, D. 1986. Gandalf: Software Development
Environments. IEEE Transactions on Software Engineering, Vol. 12, No. 12, pp.
1117 - 1127.

Hakkarainen, K. Kemppainen, P. and Karjalainen, A. 1988. A Knowledge-
Based Configurer for Embedded Computer Systems Software - Real Life
Experience. In: Proceedings of the International Workshop on Artificial
Intelligence for Industrial Application, Hitachi City, Japan, May 1988. IEEE
Computer Society Press, Washington, D.C. Pp. 608 - 613.

Harjani, D-R. and Queille, J-P. 1992. A Process Model for the Maintenance of
Large Space Systems Software. In: Proceedings of the International Conference
on Software Maintenance (ICSM’92), Orlando, Florida, November 1992. IEEE
Computer Society Press, Los Alamitos, California. Pp. 127 - 136.

Harjani, D.-R. 1993. PROMESSE - ESA Software Development Process
Models Specification. PROMESSE Project ESA 10081/92/NL/JG(SC). 181 p.

Harjani, D.-R., Queille, J.-P., Taramaa, J. and Ketola, T. 1995a. AMES
Methodology and Process Model for the Aerospace Domain. Esprit 3 Project
8156 AMES Deliverable D1.2.1, April 1995. 51 p.

Harjani, D.-R., Martelli, A. and Aquilino, D. 1995b. Lessons Learnt from
Putting Process Modelling Techniques into Practice. In: Proceedings of
Software. 5 p.

Hauptmann, S. and Wasel, J. 1996. On-line Maintenance with On-the-fly
Software Replacement. In: Proceedings of the 3rd International Conference on
Configurable Distributed Systems (CDS96), Annapolis, Maryland, May 1996.
IEEE Computer Society Press, Los Alamitos, California. Pp. 70 - 80.

136

Heikkinen, M. 1997. A Concurrent Engineering Process for Embedded Systems
Development. VTT Publications 313. Espoo, Finland: Technical Research
Centre of Finland (VTT). Licentiate Thesis. 93 p.

Heusala, H. and Tiensyrjä, K. 1995. Covalidation Approaches According to
Embedded System Classification. In: Computer-Aided Validation Engineering
(CAVE’95) Workshop, Kenmare, Ireland, December 1995. 3 p.

van der Hoek, A., Heimbigner, D. and Wolf, A.L. 1996. A Generic, Peer-to-Peer
Repository for Distributed Configuration Management. In: Proceedings of the
18th International Conference on Software Engineering (ICSE18), Berlin,
Germany, March 1996. IEEE Computer Society, Los Alamitos, California. Pp.
308 - 317.

Honka, H. 1990. A Simulation-based Approach to Testing Embedded Software.
VTT Publications 124. Espoo, Finland: Technical Research Centre of Finland
(VTT). Licentiate Thesis. 118 p.

Humphrey, W.S. 1988. Characterizing the Software Process: A Maturity
Framework. IEEE Software, Vol. 5, No. 3, pp. 73 - 79.

Hunt, J.J., Vo. K.-P. and Tichy, W.F. 1996. An Empirical Study of Delta
Algorithms. In: Sommerville, I. (ed.), Software Configuration Management
ICSE SCM-6 Workshop Selected Papers, Lecture Notes 1167 in Computer
Science, Proceedings of the 6th International Workshop on Software
Configuration Management (SCM6), Berlin, Germany, March 1996. Springer-
Verlag, Heidelberg, Germany. Pp. 49 - 66.

Hurst, W. and Dennis, J. 1996. Report on the Major Issues and Concerns of
Industry Group Associations and Their Members on the Future Use of
Embedded Microprocessors with Their Respective Industries - A report for the
OMI Software Architecture Forum, July 1996, Draft, 53 p, in the www address:
http://www.osaf.org/library/issues.pdf.

IEEE 1042-1987. IEEE Guide to Software Configuration Management Plans
(ANSI). The Institute of Electrical and Electronics Engineers, Piscataway, New
Jersey. 92 p.

137

IEEE 610.12-1990. IEEE Standard Glossary of Software Engineering
Terminology (ANSI). The Institute of Electrical and Electronics Engineers,
Piscataway, New Jersey. 83 p.

IEEE 828-1990. IEEE Standard for Software Configuration Management Plans
(ANSI). The Institute of Electrical and Electronics Engineers, Piscataway, New
Jersey. 16 p.

IEEE 1219-1992. IEEE Standard for Software Maintenance (ANSI). The
Institute of Electrical and Electronics Engineers, Piscataway, New Jersey. 39 p.

Iivari, J. 1991. A Paradigmatic Analysis of Contemporary Schools of IS
Development. The European Journal of Information Systems, Vol. 1, No. 4, pp.
249 - 272.

ISO 9000-3. 1991. Quality Management and Quality Assurance Standards - Part
3: Guidelines for the Application of ISO 9001 on the Development, Supply and
Maintenance of Software. ISO/IEC Copyright Office, Geneva, Switzerland.
13 p.

ISO 10303-1. 1994. Industrial Automation Systems and Integration - Product
Data Representation and Exchange - Part 1: Overview and Fundamental
Principles. ISO/IEC Copyright Office, Geneva, Switzerland. 17 p.

ISO 10303-11. 1994. Industrial Automation Systems and Integration - Product
Data Representation and Exchange - Part 11: Description Methods: The
EXPRESS Language Reference Manual. ISO/IEC Copyright Office, Geneva,
Switzerland. 208 p.

ISO/IEC 12207. 1995. Informational Technology - Software Life Cycle
Processes, International Standard. ISO/IEC Copyright Office, Geneva,
Switzerland. 57 p.

ISO/IEC 15504. 1995. SPICE - Software Process Assessment - Part 5:
Construction, Selection and Use of Assessment Instruments and Tools, Version
1.00. ISO/IEC Copyright Office, Geneva, Switzerland. 130 p.

138

Juopperi, J., Lehtola, A., Pihlajamaa, O., Sladek, A. and Veijalainen, J. 1995.
Usability of Some Workflow Products in an Inter-organizational Setting. In:
Proceedings of IFIP WG8.1 Working Conference on Information Systems for
Decentralized Organizations, Trondheim, Norway, August 1995. Chapman &
Hall, London, UK. Pp. 81 - 95.

Järvinen, P. and Järvinen, A. 1995. On Methods in Research Work. Tampere,
Finland: Opinpaja. 140 p. (in Finnish)

Karjalainen, J. 1987. A Classification Scheme for Embedded Computer
Systems. In: Proceedings of the 14th Annual Conference of IEEE Industrial
Electronics Society (IECON’88), October 198, Singapore. IEEE Society Press,
Washington, D.C. Pp. 427 - 435.

Karjalainen, J., Mäkäräinen, M., Komi-Sirviö, S. and Seppänen, V. 1996.
Practical Process Improvement for Embedded Real-Time Software. The Journal
of Quality Engineering, Vol. 8, No. 4, pp. 565 - 573.

Kemppainen, P. 1986. An Environment for High-Volume Production of
Embedded Systems Software. Department of Electrical Engineering, University
of Oulu, Finland. Licentiate Thesis. 75 p. + app. 20 p.

Kilpi, T. 1996. Evaluating the Maturity of Software Product Management: A
Case Study in Three Companies. In: Proceedings of the Ninth Australian
Software Engineering Conference (ASWEC’96), July 1996, IREE Society. 9 p.

Kooshian, S. 1994. Managing Software Teams in a Hardware-Oriented
Company. In: Proceedings of the Sixth Annual Embedded Systems Conference,
September 1994, Santa Clara, California, Volume 1. Miller Freeman Inc., San
Francisco, California. Pp. 495 - 501.

Krogstie, J. and Sölvberg, A. 1994. Software Maintenance in Norway: A Survey
Investigation. In: Muller H.A. and Georges, M. (eds.), Proceedings of the
International Conference on Software Maintenance (ICSM’94), September
1994, Victoria, Canada. IEEE Computer Society Press, Los Alamitos,
California. Pp. 304 - 313.

139

Kuvaja, P., Similä, J., Kraznik L., Bicego A., Saukkonen S. and Koch, G. 1994.
Bootstrap: Europe's Assessment Method. Blackwell, Oxford, UK. 149 p.

Laitinen, K. 1995. Natural Naming in Software Development and Maintenance.
VTT Publications 243. Espoo, Finland: Technical Research Centre of Finland
(VTT). Ph.D. Thesis. 99 p. + app. 70 p.

Laitinen, K., Taramaa, J., Heikkilä, M. and Rowe, N.C. 1997. Enhancing
Maintainability of Source Programs through Disabbreviation. The Journal of
Systems and Software, Vol. 17, No. 5, pp. 117 - 128.

Latvakoski, J. 1997. Integration Test Automation of Embedded Communication
Software. VTT Publications 318, Espoo, Finland: Technical Research Centre of
Finland (VTT). Licentiate Thesis. 98 p. + app. 28 p.

Lehman, M. 1980. Program, Life-cycles and Laws of Software Evolution.
Proceedings of IEEE, Vol. 68, No. 9, pp. 1060 - 1076.

Lehtinen, K. 1994. Software Configuration Management for Embedded
Software in Mobile Phone. Department of Information Technology,
Lappeenranta University of Technology, Finland. Master‘s Thesis. 64 p + 21
app. (in Finnish)

Leveson, N. G. 1986. Software Safety: Why, What and How? ACM Computing
Surveys, Vol. 18, No. 2, pp. 125 - 163.

Liddiard, J. 1994. An Introduction to Safety Critical Systems. Embedded
System Engineering, Vol. 2, No. 2, pp. 38 - 42.

Lientz, B. and Swanson, S. 1980. Software Maintenance Management - A Study
of the Maintenance of Computer Application Software in 487 Data Processing
Organizations. Addison-Wesley Publishing Company, Reading, Massachusetts.
213 p.

Lopéz, P. and Rodríguez, A.I. 1995. Patching On-Board Ada Software. In: T.-D.
Guyenne (ed.), Proceedings of an International Symposium on On-Board Real-
Time Software (ISOBRTS’95), Noordwijk, the Netherlands, November 1995.

140

European Space Agency (ESA) SP-375, Noordwijk, the Netherlands. Pp. 69 -
75.

Lyon, D.D. 1997. Practical CM, Draft Revision L of Publication. Raven
Publishing Company, Pittsfield, MA. 301 p.

MacKay, S.A. 1995. The State of the Art in Concurrent, Distributed
Configuration Management. In: Estublier, J. (ed.), Software Configuration
Management: ICSE SCM-4 and SCM-5 Workshops Selected Papers, Lecture
Notes 1005 in Computer Science, International Workshop on Software
Configuration Management (SCM5), Seattle, Washington, April 1995. Springer-
Verlag, Heidelberg, Germany. Pp. 180 - 193.

Madhavji, N.H. 1991. The Process Cycle. Software Engineering Journal, Vol. 6,
No. 5, pp. 234 - 242.

Mittag, L. 1996. Trends in Hardware/Software Codesign. Embedded Systems
Programming, Vol. 9, No. 1, pp. 36 - 45.

Mortensen, U. 1995. Opening Address. In: T.-D. Guyenne (ed.), Proceedings of
an International Symposium on On-Board Real-Time Software (ISOBRTS’95),
Noordwijk, the Netherlands, November 1995. European Space Agency (ESA)
SP-375, Noordwijk, the Netherlands. Pp. 7 - 8.

Mukari, T. 1988. Software Production for Cellular Mobile Phone Systems.
Department of Electrical Engineering, University of Oulu, Finland. Licentiate
Thesis. 64 p. + app. 15 p.

Murrach, W. 1998. Configuration Control for Embedded System, In:
Proceedings of the 3rd International Conference on Data Systems in Aerospace
(DASIA’98), Athens, Greece, May 1998. European Space Agency (ESA) SP-
422, Noordwijk, the Netherlands. Pp. 223 - 229.

Mäkäräinen, M. and Taramaa, J. 1995. Quality Aspects in Evolution of Real-
Time Embedded Software. In: Ross. M., Brebbia, C.A., Staples, G. and
Stapleton, J. (eds.), Quality Management. Software Quality Management III
Vol. 1, Proceedings of the 3rd International Conference on Software Quality

141

Management, Seville, Spain, April 1995. Computational Mechanics
Publications, Southampton, UK. Pp. 313 - 320.

Mäkäräinen, M. 1996. Application Management Requirements of Embedded
Software. VTT Publications 286, Espoo, Finland: Technical Research Centre of
Finland (VTT). Licentiate Thesis. 99 p.

Niemelä, E., Taramaa, J. and Seppänen, V. 1995. Integration of Prototyping and
Target System Development for Embedded Machine Control Software. In:
Hamza, M.H. (ed.), Proceedings of the 14th IASTED International Conference,
IGLS, Austria, February 1995. International Association of Science and
Technology for Development - IASTED, Anaheim, California. Pp. 12 - 17.

Noll, J. and Scacchi, W. 1997. Supporting Distributed Configuration
Management in Virtual Enterprises. In: Conradi, R. (ed.), Software
Configuration Management: ICSE’97 SCM-7 Workshop, Lecture Notes 1235 in
Computer Science, International Workshop on Software Configuration
Management (SCM7), Boston, Massachusetts, May 1997. Springer-Verlag,
Heidelberg, Germany. Pp. 142 - 160.

Nummelin, G. 1998. Succeeded Implementation of PDM System. In: PDM
Summit’98 Seminar, Espoo, Finland, June 1998. IIR Finland, Helsinki.
Handouts. 26 p (in Finnish).

Oivo, M. and Basili, V.R. 1992. Representing Software Engineering models:
The TAME Goal Oriented Approach. IEEE Transactions on Software
Engineering, Vol. 14, No. 6, pp. 758 - 773.

Oivo, M. 1994. Quantitative Management of Software Production Using Object-
oriented Models. VTT Publications 169, Espoo, Finland: Technical Research
Centre of Finland (VTT). Ph.D. Thesis. 72 p. + app. 67 p.

Oman, P., Hagemeister, J. and Ash, D. 1992. A Definition and Taxonomy for
Software Maintainability. University of Idaho, Software Engineering Lab,
Idaho. Technical Report 91-08. 30 p.

142

Osterweil, L. 1987. Software Processes Are Software Too. In: Proceedings of
the 9th International Conference on Software Engineering (ICSE9), Monterey,
California, March 1987. IEEE Computer Society Press, Los Alamitos,
California. Pp. 2 - 13.

Paulk, M.C., Weber, C.V., Curtis, B. and Chrissis, M.B. 1995. The Capability
Maturity Model: Guidelines for Improving the Software Process. Addison-
Wesley, Reading, Massachusetts. The SEI Series in Software Engineering.
441 p.

Pressman, R.S. 1996. Software Engineering - A Practitioner’s Approach, Forth
Edition. McGraw-Hill, New York. 852 p.

Prieto-Diaz, R. and Neighbours, J. 1986. Module Interconnection Languages.
Journal of Systems and Software, Vol. 6, No. 4, pp. 307 - 334.

Pulli, P. 1991. A Interpreter for Heterogeneous Prototypes. VTT Publications
79, Espoo, Finland: Technical Research Centre of Finland (VTT). Ph.D. Thesis.
46 p. + app. 76 p.

Pulli, P. and Heikkinen, M. 1993. Concurrent Engineering for Real-Time
Systems. IEEE Software, Vol. 10, No. 11, pp. 39 - 44.

Purtilo, J.M. 1994. The Polylith Software Bus. ACM Transactions on
Programming Languages and Systems, Vol. 16, No. 1, pp. 151 - 174.

Rigg, W., Burrows, C. and Ingram, P. 1995. Ovum Evaluates: Configuration
Management Tools, OVUM report. OVUM, London, UK. 364 p.

Rochkind, M.J. 1975. The Source Code Control System. IEEE Transactions on
Software Engineering, Vol. 1, No. 4, pp. 364 - 370.

Rosch, W.L. 1994. The Hardware Bible, Third Edition. Sams Publishing,
Indianapolis, Indiana. 1202 p.

Rytilä, H. 1994. Reverse Engineering Technology as a Tool of Embedded
Software - A solution from PL/M code to Structure Charts. VTT Research

143

Notes 1593. Espoo, Finland: Technical Research Centre of Finland (VTT).
Master’s Thesis. 84 p. + app. 16 p.

Savola, R., Pulli, P., Heikkinen, M., Seppänen, V., Kurki, M. and Taramaa, J.
1995. Concurrent Development of Multi-Technology Products - Integrating
Virtual and Executable Models. In: Sobolewski, A.J. (ed.), Proceedings of the
Concurrent Engineering 95 (CE95), Johnstown, Pennsylvania, June 1995.
Concurrent Technologies Corporation, Oakland, California. Pp. 645 - 651.

Segal, M.E. and Frieder, O. 1993. On-the-Fly Program Modification: Systems
for Dynamic Updating. IEEE Software, Vol. 10, No. 2, pp. 53 - 65.

Seppänen, V. 1990. Acquisition and Reuse of Knowledge to Design Embedded
Software. VTT Publications 66, Espoo, Finland: Technical Research Centre of
Finland (VTT). Ph.D. Thesis. 218 p. + app. 10 p.

Seppänen, V., Matsumoto, Y. and Pesonen, P. 1993. Conceptual Modeling of
Families of Real-Time Systems. In: Proceedings of the 5th Euromicro
Workshop on Real-Time Systems, Oulu, Finland, June 1993. IEEE Computer
Society Press, Los Alamitos, California. Pp. 14 - 19.

Seppänen, V. Tuomikoski, T., Hintikka, P., Seppänen, P. and Väänänen, K.
1994. Embedded Software Engineering Megatrends, Technical Report of the
SULAKO project. VTT Electronics, Oulu, Finland. 47 p.

Seppänen, V., Niemelä, E. and Taramaa, J. 1995. CACE + CASE = Better
Reuse of Mechatronic Software. In: Muller, H.A. and Norman, R.J. (eds.),
Proceedings of the Eight International Workshop on Computer-Aided Software
Engineering (CASE’95), Toronto, Ontario, July 1995. IEEE Computer Society
Press, Los Alamitos, California. Pp. 289 - 295.

Seppänen, V., Kähkönen, A-M., Oivo, M., Perunka, H., Isomursu, P. and Pulli,
P. 1996. Strategic Needs and Future Trends of Embedded Software. TEKES
Technology Review 48/96, Helsinki, Finland. 94 p.

Sherpa Corporation. 1995. Discipline in Software Development - White Paper,
WPCC001 version 1, January 1995. 7 p.

144

Singh, A.K. and Irvine, M.D. 1995. CONSENS - An IT Solution for Concurrent
Engineering. In: Sobolewski, A.J. (ed.), Proceedings of the Concurrent
Engineering 95 (CE95), Johnstown, Pennsylvania, June 1995. Concurrent
Technologies Corporation, Oakland, California. Pp. 635 - 644.

Soininen, J-P. 1995. VHDL and Software Maintenance. VTT Electronics, Oulu,
Finland. Technical Report. 16 p. (in Finnish)

Sommerville, I. 1995. Software Engineering, Fifth Edition. Addison-Wesley
Publishing Company, Wokingham, UK. 742 p.

Sommerville, I. and Dean, G. 1996. PCL: A Configuration Language for
Modelling Evolving System Architecture. Software Engineering Journal, Vol.
11, No. 2, pp. 111 - 121.

Sperry, T. 1992. Checking out Version Control. Embedded Systems
Programming, Vol. 5, No. 6, pp. 67 - 69.

Stankovic, J.A. 1996. Real-Time and Embedded Systems. ACM Computing
Surveys, Vol. 28, No. 1, pp. 205 - 208.

Stefanelli, L. and Stroobants, L. 1991. Investigation of O&M activities, ESSDE
Reference Facility Project ESTEC/ESSDE/STREAP/A11, Issue 1.1. 55 p.

Stragapede, A., Sarlo, L. and Coppola, P. 1997. Software & Systems Process
Modelling in the European Industrial Space Standardization Context. In: T.-D.
Guyenne (ed.), Proceedings of the 2nd International Conference on Data
Systems in Aerospace (DASIA’97), Seville, Spain, May 1997. European Space
Agency (ESA) SP-409, Noordwijk, the Netherlands. Pp. 449 - 454.

Swanson, E.B. 1976. The Dimensions of Maintenance. In: Proceedings of the
2nd International Conference on Software Engineering (ICSE2), San Francisco,
California, October 1976. IEEE Computer Society Press, Washington, D.C. Pp.
492 - 497.

145

Swinehart, P.T., Zellweger, R., Beach, J. and Hagmann, R.B. 1986. A Structural
View of the Cedar Programming Environment. ACM Transactions on
Programming Languages and Systems, Vol. 8, No. 4, pp. 419 - 490.

Taramaa. J. and Purtilo J. 1990. Development of Embedded Software Using
Interconnection Technology. University of Maryland, College Park, Maryland.
Technical Report Series, UMIACS-TR-90-55, CS-TR-2455. 27 p.

Taramaa, J. and Seppänen, V. 1995. A Roadmap from Configuration to
Application Management. In: Ross. M., Brebbia, C.A., Staples, G. and
Stapleton, J. (eds.), Quality Management. Software Quality Management III
Vol. 1, the 3rd International Conference on Software Quality Management,
Seville, Spain, 3-5 April 1995. Computational Mechanics Publications,
Southampton, UK. Pp. 111 - 120.

Taramaa, J. and Ketola, T. 1995. Process Modelling and Software Maintenance
Aspects from the Point of View of Subcontractor in a Space Application. In: T.-
D. Guyenne (ed.), Proceedings of an International Symposium on On-Board
Real-Time Software (ISOBRTS’95), November 1995. European Space Agency
(ESA) SP-375, Noordwijk, The Netherlands. Pp. 145 - 152.

Taramaa, J. 1997. Evaluation of an Extended Software Process Model for Space
Applications. In: T.-D. Guyenne (ed.), Proceedings of the 2nd International
Conference on Data Systems in Aerospace (DASIA’97), Seville, Spain, May
1997. European Space Agency (ESA) SP-409, Noordwijk, the Netherlands. Pp.
455 - 460.

Tervonen, I. 1994. Quality-Driven Assessment: A Pre-review Method for
Object-Oriented Software Development. University of Oulu, Department of
Information Processing Science, Research Papers, Series A 19, Oulu, Finland.
Ph.D. Thesis. 133 p. + app. 7 p.

Thornton, J.D. 1996. Practical Description of Configurations for Distributed
Systems Management. In: Proceedings of the 3rd International Conference on
Configurable Distributed Systems (CDS96), Annapolis, Maryland, May 1996.
IEEE Computer Society Press, Los Alamitos, California. Pp. 36 - 43.

146

Tichy, W. 1985. RCS - A System for Version Control. Software - Practice and
Experience, Vol. 15, No. 7, pp. 637 - 654.

Tichy, W. 1988. Tools for Software Configuration Management. In: Winkler
J.F.H. (ed.), the German Chapter of the ACM Vol. 30, International Workshop
on Software Version and Configuration Control, Grassau, Germany, January
1988. Teubner Verlag, Stuttgart, Germany. Pp. 1 - 20.

Tichy, W.F. 1994. Preface of Configuration Management. In: Tichy, W.F. (ed.)
Configuration Management. John Wiley & Sons, Chichester, UK. 2 p.

Tiihonen, J., Soininen, T., Männistö, T. and Sulonen, R. 1995. State-of-the-
Practice in Product Configuration - A Survey of 10 Cases in Finnish Industry.
In: Tomiyama, M., Mäntylä, M. and Finger, S. (eds.), Proceedings of the First
IFIP WG 5.2 Workshop on Knowledge Intensive CAD-1 (KIC-1), Espoo,
Finland, September 1995. Pp. 147 - 164.

Tryggeseth, E., Gulla, B. and Conradi, R. 1995. Modelling Systems with
Variability Using the PROTEUS Configuration Language. In: Estublier, J. (ed.),
Lecture Notes 1005 in Computer Science, Software Configuration Management:
ICSE SCM-4 and SCM-5 Workshops Selected Papers, International Workshop
on Software Configuration Management (SCM5), Seattle, Washington, April
1995. Springer-Verlag, Heidelberg, Germany. Pp. 216 - 240.

Vierimaa, M. 1996. A Hypertext Approach to Application Understanding: A
Maintenance Perspective. VTT Publications 274, Espoo, Finland: Technical
Research Centre of Finland (VTT). Master’s Thesis. 76 p.

Vidovic, N. and Ready, J. 1993. A Design Framework for Hardware-Software
Co-Design of Embedded Systems. Real-Time Magazine 93/4, pp. 77 - 92.

Viskari, J. 1995. A Rationale for Automated Configuration Status Accounting.
In: Estublier, J. (ed.), Software Configuration Management: ICSE SCM-4 and
SCM-5 Workshops Selected Papers, Lecture Notes 1005 in Computer Science,
International Workshop on Software Configuration Management (SCM5),
Seattle, Washington, April 1995. Springer-Verlag, Heidelberg, Germany. Pp.
180 - 193.

147

Wein, M., MacKay, W.M., Gentleman, W.M., Stewart, D.A. and Gauthier, C.A.
1995. Evolution is Essential for Software Tool Development. In: Muller, H.A.
and Norman, R.J. (eds.), Proceedings of the Eight International Workshop on
Computer-Aided Software Engineering (CASE’95), Toronto, Ontario, July
1995. IEEE Computer Society Press, Los Alamitos, California. Pp. 196 - 205.

Weider, D., Yu, D., Smith, P. and Haung, S.T. 1990. Software Productivity
Measurements. AT&T Technical Journal, Vol. 69, No. 3, pp. 110 - 120.

Westfechtel, B. and Conradi, R. 1998. Software Configuration Management and
Engineering Data Management: Differences and Similarities. In: Magnusson, B.
(Ed.), System Configuration Management, Lecture Notes 1439 in Computer
Science, International Symposium on Software Configuration Management
(SCM8), Brussels, Belgium, July 1998. Springer-Verlag, Heidelberg, Germany.
Pp. 95 - 106.

Whitgift, D. 1991. Methods and Tools for Software Configuration Management.
John Wiley & Sons, New York. 252 p.

Östlund, L. and Forssander, S. 1996. Management of a Flexible Software
Production Based on Reusable Components. In: Proceedings of the Fifth
European Conference on Software Quality, Dublin, Ireland, September 1996.
Irish Quality Association and European Organization for Quality, Dublin,
Ireland. Pp. 395 - 407.

Appendices of this publication are not included in the PDF version.
Please order the printed version to get the complete publication

 (http://www.inf.vtt.fi/pdf/publications/1998)

Errata

Is:
Cover page Practical development of software configuration

management for embedded system

Should be:
Practical development of software configuration
management for embedded systems

Page 55, First chapter Is:
of 2.4.1 Bennett et al. 19910

Should be:
Bennett et al. 1991

Page 135, Reference Is:
Harjani, D.-R., Martelli, A. and Aquilino, D. 1995b. Lessons
Learnt from Putting Process Modelling Techniques into Practice.
In: Proceedings of Software. 5 p.

Should be:
Harjani, D.-R., Martelli, A. and Aquilino, D. 1995b. Lessons
Learnt from Putting Process Modelling Techniques into Practice,
In: Proceedings of Software Process Improvement Conference
(SPI’95), Barcelona, Spain, December 1995, EU/ESSI
Conference, 5 p.

Table 3 of Paper VI Arrows are missing

The following page shows the arrows of Table 3 of Paper VI

Table 3: The results of the evaluation of CM practices and their development.

Configuration items
(modules)

Product data Delivery Data Custom
er Data

Error
records

No product
management

0

Electronics company-1 Electronics company-1 Electronics company-1

Copying
activity with
manual
versioning

Machine/Process
automation company-1

Machine/Process
automation company-1

1
Basic version
management

2

Machine/Process
automation company-3

Machine/Process
automation company-1

Standardised
version
management

3

Electronics company-1
Machine/Process
automation company-1

Telecommunication
company-1
Machine/Process
automation company-3
Telecommunication
company-2

Traceability
over module,
product and
error data

Telecommunication
company-1
Machine/Process
automation company-3

Electronics company-1

Basic
configuration
management

4

Telecommunication
company-1, 2 and 3
Machine/Process
automation company-2

Telecommunication
company-1, 2 and 3
Machine/Process
automation company-2

Telecommunication
company-1 and 3
Machine/Process
automation company-2

Standardised
configuration
management

5
Basic product
management

Telecommunication
company-3

Telecommunication
company-1

6
Total product
management

7-11

Machine/Process
automation company-3

Machine/Process
automation company-3

	Abstract
	Preface
	List of original papers
	Contents
	List of acronyms
	1. Introduction
	1.1 Motivation and scope of research
	1.2 Research problem
	1.3 Research methods
	1.4 Focus of the thesis
	1.5 Outline of the thesis

	2. Problem analysis
	2.1 Domain knowledge related to SCM
	2.1.1 Embedded computer systems
	2.1.2 Software engineering and related development techniques of embedded systems

	2.2 Configuration management in software engineering
	2.2.1 General principles of SCM
	2.2.2 Configuration management of embedded software

	2.3 Change related activities
	2.3.1 Maintenance in software engineering
	2.3.2 Maintenance of embedded software

	2.4 Process modelling for maintenance SCM
	2.4.1 Software maintenance process
	2.4.2 Software maintenance versus SCM
	2.4.3 Extended software maintenance process - application management

	2.5 Other processes
	2.6 Related work
	2.6.1 Approaches to SCM practices
	2.6.2 European Space Agency’s (ESA) process models
	2.6.3 Software assessment paradigms
	2.6.4 Discussion

	3. Requirements from industry
	3.1 Requirements of machine control software
	3.2 Requirements of space software
	3.3 Requirements of electronics products

	4. SCM framework
	4.1 Version control
	4.2 Release-oriented SCM
	4.2.1 Non-standardised and repeatable software manufacturing
	4.2.2 Software manufacturing with documentation
	4.2.3 Automated software manufacturing for mass-customisation

	4.3 Change-oriented SCM
	4.3.1 Problem tracking management
	4.3.2 Request-driven change management
	4.3.3 Application management

	4.4 Product data management
	4.4.1 Electronics related to configuration management
	4.4.2 Configuration management related to several product technologies

	4.5 Global product management
	4.6 Discussion

	5. Improvement of SCM
	5.1 Overview of SCM improvement levels
	5.1.1 Version control-oriented levels - from step 1 to step 3
	5.1.2 Software manufacturing-oriented levels - from step 4 to step 5
	5.1.3 Change-oriented level - step 6
	5.1.4 Total product management level - step 7 to step 11
	5.1.5 Global product management level - step 12

	5.2 Improvement procedure for SCM

	6. Validation
	6.1 Cases in SCM framework validation
	6.1.1 Mechatronic application
	6.1.2 Space application
	6.1.3 Other applications of electronics products
	6.1.4 Discussion of SCM framework validation

	6.2 Initial improvement experiences
	6.2.1 The AMES project: Improvement of change control
	6.2.2 The LEIVO project: Improvement of version control, software manufacturing and delivery

	7. Introduction to papers
	7.1 Paper I, evaluation of software maintenance and its improvement
	7.2 Paper II, tool for software evolution and maintenance
	7.3 Paper III, a solution to the software configuration management problem
	7.4 Paper IV, process aspects of software maintenance
	7.5 Paper V, levels of SCM practice improvement
	7.6 Paper VI, experiences of the improvement framework using qualitative analysis
	7.7 Paper VII, experiences of the improvement framework using quantitative analysis

	8. Conclusions and further research
	References
	Errata

