
VTT PUBLICATIONS 375

Embedded middleware:
State of the art

Eila Niemelä, Tomi Korpipää & Arno Tuominen

VTT Electronics

TECHNICAL RESEARCH CENTRE OF FINLAND
ESPOO 1999

ISBN 951–38–5359–4 (soft back ed.)
ISSN 1235–0621 (soft back ed.)

ISBN 951–38–5360–8 (URL: http://www.inf.vtt.fi/pdf/)
ISSN 1455–0849 (URL: http://www.inf.vtt.fi/pdf/)

Copyright © Valtion teknillinen tutkimuskeskus (VTT) 1999

JULKAISIJA – UTGIVARE – PUBLISHER

Valtion teknillinen tutkimuskeskus (VTT), Vuorimiehentie 5, PL 2000, 02044 VTT
puh. vaihde (09) 4561, telekopio (09) 456 4374

Statens tekniska forskningscentral (VTT), Bergsmansvägen 5, PB 2000, 02044 VTT
tel. växel (09) 4561, telefax (09) 456 4374

Technical Research Centre of Finland (VTT),
Vuorimiehentie 5, P.O.Box 2000, FIN–02044 VTT, Finland
Telephone internat. + 358 9 4561, telefax + 358 9 456 4374

VTT Elektroniikka, Sulautetut ohjelmistot, Kaitoväylä 1, PL 1100, 90571 OULU
puh. vaihde (08) 551 2111, faksi (08) 551 2320

VTT Elektronik, Inbyggd programvara, Kaitoväylä 1, PB 1100, 90571 ULEÅBORG
tel. växel (08) 551 2111, fax (08) 551 2320

VTT Electronics, Embedded Software, Kaitoväylä 1, P.O.Box 1100, FIN–90571 OULU, Finland
phone internat. + 358 8 551 2111, fax + 358 8 551 2320

Technical editing Leena Ukskoski

Libella Painopalvelu Oy, Espoo 1999

3

Niemelä, Eila, Korpipää, Tomi & Tuominen, Arno. Embedded middleware: State of the
art. Espoo 1999, Technical Research Centre of Finland, VTT Publications 375. 102 p. +
app. 7 p.

Keywords embedded systems, middleware, information systems

Abstract

Java, WWW, Internet and CORBA technologies will be enabling software
technologies which make it possible to develop independent applications capable
of communicating over various kinds of networks. Thus, embedded programs
form networked client/server applications. Within these applications, they perform
tasks, functioning as a part of a larger entity in a distributed network.

Currently, firms have their own specialized solutions which require considerable
maintenance resources. During development phase, the interoperability and
extendibility of the systems are not given enough attention. Because of this, the
solutions become rapidly obsolete. For several enterprises, a standardised solution
for communications is in demand.

Middleware is a general term that has come to represent a variety of distributed
computing services in application development environments. Middleware
products operate between the application logic and the underlying physical
network. Embedded middleware provides standard communication services and
object-oriented integration interfaces for networked embedded applications.

The maturity of the commercial middleware products based on CORBA is
insufficient and some of the services required in embedded systems are still
unavailable. DCOM-based OPC will be a suitable solution for base stations that
control data acquisition, monitoring and presentation. However, before it can be
considered a suitable solution for client application executed in laptops or
handheld PCs, OPC requires commercially available driver software.

Embedded middleware requires communication services for remote procedure
calls, events and messaging. If the system is connected to the Internet or other
open networks, naming and security services are required as well. These services,
and the generic interfaces which isolate the middleware from the operating system
and protocols, have to be provided as component-based software which enables
restricted adaptability during product life cycle. In future, applications will be
composed of different types of components such as Java beans or applets, ActiveX
components or CORBA components. Each of these component types requires its
own interface technology.

4

Preface

This report is based on a technology survey in the VERSO project during the
spring 1998 at VTT Electronics. The objective of the VERSO project was to
investigate new software technology concepts for networked embedded
applications. The project was carried out by surveying the advanced middleware
technologies and by developing a new middleware concept for embedded
networked applications. The VERSO project is a three- year strategic research
project funded by VTT Electronics.

This state-of-the-art report describes the results of a technology survey
concerning current techniques for networked systems based on client/server
architectures and middleware software. One of the main trends in embedded
systems is system integration by Internet. Therefore, the focus is on the Web and
object technologies as well as on commercially available integration software for
heterogeneous networked systems.

Oulu, Finland, July 1998

Eila Niemelä Tomi Korpipää Arno Tuominen

VTT Electronics

Embedded Software

5

Contents

ABSTRACT...3

PREFACE ..4

CONTENTS...5

LIST OF ABBREVIATIONS ..8

1. INTRODUCTION..11

2. BACKGROUND OF HETEROGENEOUS NETWORKED
SYSTEMS..13
2.1 CLIENT/SERVER ARCHITECTURE..13

2.1.1 2-tier and 3-tier client/server architectures14
2.1.2 Middleware...15

2.2 DISTRIBUTION MEDIA...17
2.2.1 LAN and WAN...18
2.2.2 Cellular data communication..19

2.3 OPERATING SYSTEMS...21
2.3.1 Requirements for the client-side...21
2.3.2 Requirements for the server-side ..21
2.3.3 Operating systems for clients..24

2.3.3.1 Windows 95 (Microsoft) ..24
2.3.3.2 Windows NT workstations (Microsoft)..........................25
2.3.3.3 Java OS (Sun) ...25
2.3.3.4 Windows CE (Microsoft) ...26

2.3.4 Operating system products for servers..27
2.3.4.1 NetWare 4.1 (Novell) ...27
2.3.4.2 NT server (Microsoft)...27
2.3.4.3 OS/2 Warp server (IBM) ..27
2.3.4.4 Unix ..28

2.3.5 Summary...28
2.4 FRAMEWORKS AND COMPONENTS...28

2.4.1 CORBA (Common Object Request Broker)29
2.4.2 COM and DCOM (Distributed Component Object Model)31
2.4.3 CORBA with DCOM ...34
2.4.4 Real-time CORBA..35
2.4.5 Desktop Management Interface ..38
2.4.6 Distributed Management Framework ...38
2.4.7 OCX and ActiveX...39
2.4.8 Java Beans and Java applets ...40
2.4.9 OPC ..43

2.5 WEB CLIENT/SERVER...44
2.5.1 Security...46

6

2.5.2 Electronic payments..47
2.5.3 Java objects in Web ..47

2.5.3.1 Protection mechanisms ...48
2.5.4 Embedded WebBrowsers..49
2.5.5 Embedded WebServers...51

2.6 COMMUNICATION MECHANISMS..55
2.6.1 Synchronous communication..55
2.6.2 Asynchronous communication ...56

2.6.2.1 Events ...56
2.6.2.2 Messaging...57

2.6.3 Communication mechanisms..57
2.6.3.1 Remote procedure call ..57
2.6.3.2 Remote method invocation...61
2.6.3.3 InfoBus ...66
2.6.3.4 Message Oriented Middleware67

2.7 STANDARD INTERFACES..69
2.7.1 IDL..69

2.7.1.1 Structure..69
2.7.1.2 Compilers..70

2.7.2 MIDL ..71
2.7.3 Common Gateway Interface ...73
2.7.4 Database interfaces ...73

2.7.4.1 ODBC ...73
2.7.4.2 JDBC ..74

2.7.5 Application interface library...75
2.7.5.1 JAPI ..75

2.8 JAVA CLIENTS WITH CORBA ORBS...75
2.9 COMPOUND DOCUMENTS AND OBJECT WEBS..76

2.9.1 OpenDoc...76
2.9.1.1 OpenDoc terminology...77
2.9.1.2 OpenDoc and JavaBeans ..78

2.9.2 DCOM Object Web ..80
2.9.3 CORBA Object Web ..81
2.9.4 Trends in Web technology..81

2.10 INTEGRATING LEGACY SYSTEMS..82

3. COMMERCIAL IMPLEMENTATIONS FOR DISTRIBUTED OBJECTS...85
3.1 IONA’S ORBIX ...85
3.2 VISIGENIC’S VISIBROKER..85
3.3 EXPERSOFT’S CORBAPLUS..87
3.4 SOFTWARE AG’S ENTIREX ...87
3.5 COMPARISON BETWEEN COMMERCIAL MIDDLEWARE PRODUCTS...............89

4. EXPERIENCES CONCERNING THE USE OF COMMERCIAL
MIDDLEWARE...90
4.1 ORBIX AND VISIBROKER...90
4.3 CORBAPLUS..90

7

4.3.1 Problems Encountered..92
4.3.1.1 C++ ...92
4.3.1.2 Java ...92

4.3.2 Merits..92

5. EMBEDDED MIDDLEWARE SERVICES..94
5.1 INTERFACES..94
5.2 BASIC SERVICES..95

5.2.1 Communication services...95
5.2.2 Naming and trader service ..96
5.2.3 Security service...97

5.3 OPTIONAL SERVICES..97

6. SUMMARY ...98

REFERENCES...99

APPENDIX A. OPERATING SYSTEMS FOR EMBEDDED SYSTEMS

APPENDIX B. THIRD PARTY JAVA VIRTUAL MACHINES / JDKS

APPENDIX C. HPC PRODUCTS WITH WINDOWS CE 2.0

8

List of abbreviations

ADE Application Development Environment
AIP Active Internet Platform
API Application Programming Interface
ATM Asynchronous Transfer Mode
AWT Abstract Windowing Toolkit
BLOB Binary Large Object
CDMA Code Division Multiple Access
CGI Common Gateway Interface
CICS Customer Information Control System [IBM]
CMC Common Mail Calls
CMIP Common Management Information Protocol [OSI]
CORBA Common Object Request Broker Architecture
CPI-C Common Programming Interface for Communications
DBMS Database Management System
DCE Distributed Computing Environment [OSF]
DCOM Distributed Component Object Model
DCS Data Capture System
DME Distributed Management Environment
DMF Distributed Management Framework
DMI Desktop Management Interface
DNS Domain Name Service
DTP Distributed Transaction Processing
EDI Electronic Data Interchange,
 Electronic Document Interchange [DEC]
FDDI Fiber Digital Device Interface
 Fiber Distributed Data Interface
FAT File Allocation Table
FSM Finite State Machine
FTP File Transfer Protocol
GSM Global System for Mobile Communications
GUI Graphical User Interface
HDML Handheld Device Markup Language
HPC Handheld PC
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
IETF Internet Engineering Task Force
IIOP Internet Inter-ORB Protocol
IIS Internet Information Server
IMS Information Management System
IPC Interprocess Communication
IPX/SPX Internet Packet Exchange/Sequenced Packet Protocol

CORBA is a registered trademark of Object Management Group, Inc.

9

IOR Interoperable Object Reference
ISAPI Server Application Programming Interface [Microsoft]
ISDN Integrated Services Digital Network
ISO International Standards Organization
ITU International Telecommunication Union
JDBC Java Database Connection
JOE Java Object Environment
LAN Local Area Net
MAPI Messaging API
MIME Multipurpose Internet Mail Extensions
MMU Memory Management Unit
MOA Message Object Adapter
MOM Message-Oriented Middleware
MOMA Message-Oriented Middleware Association
MORB UI Management ORB
NDIS Network Driver Interface Specification
NDR Network Data Representation
NetBEUI Transfer protocol used with IBM/Microsoft LANs
NetBIOS Interface for transfer protocols with several OSs [IBM]
NSAPI Netscape’s Server Application Programming interface
OCX OLE Custom Control
ODBC Open Database Connectivity [Microsoft]
ODI Open Datalink Interface [Novell]

Open Device Interconnect [NetWare]
OLE Object Linking and Embedding
OMG Object Management Group
OOUI Object Oriented User Interface
OPC OLE for Process Control
ORB Object Request Broker
OSI Open Systems Interconnection Model
PCMCIA Personal Computer Memory Card International Association
PIDL Pseudo Interface Description Language
POA Portable Object Adapter
POSIX Portable Operating Systems Interface
PPP Point-to-Point Protocol
PVC Permanent Virtual Circuit
QoS Quality of Service
RMI Remote Method Invocation
RPC Remote Procedure Call
S-HTTP Secure Hypertext Transfer Protocol
SCADA Supervisory control and data acquisition
SDK Software Developer’s Kit
SFA Server Framework Adapter
SGML Standard Generalised Markup Language
SLIP Serial Line Internet Protocol
SMDS Switched Multimegabit Data Services
SMP Symmetric Multiprocessing
SMTP Simple Mail Transfer Protocol
SNA System Network Architecture

10

SNMP Simple Network Management Protocol [IETF]
SQL Structured Query Language
SSI Static Invocation Interface
SSL Secure Session Layer
SVC Switched Virtual Circuits
TCP/IP Transmission Control Protocol/Internet Protocol
TI-API Transport-Independent API
TLI Transport Layer Interface
UDP/IP User Datagram Protocol/Internet Protocol
UI User Interface
URL Unified Resource Locator
UUID Universal Unique Identifier
VRML Virtual Reality Modelling Language
W3C World Wide Web Consortium
WAIS Wire Area Information Server
WAN Wide Area Network
WAP Wireless Application Protocol
WPMS Workflow and Process Management Systems
XMP X/Open Management Protocol
XOM X/Open Management APIs, X/Open Object Manager
X.400 Data Exchange protocol, BLOBs, EDI, CMC API
X.500 Directory Services, Security

11

1. Introduction

Owing to the standardisation and price reduction of embedded system platforms,
state-of-the-art hardware technology is becoming increasingly accessible. Similar
development can be detected with software; although fitting together software
from various vendors may prove troublesome.

In future, software systems will be based on Java, WWW, Internet and CORBA.
These technologies enable developing independent applications capable of
communicating and interoperating over networks. This being the case, embedded
programs form networked client-server applications. Within these applications,
the programs perform as parts of a larger entity in a distributed network.

Nowadays, firms have their own specialised solutions, which requires
considerable maintenance resources. Development is not given sufficient
emphasis and therefore, the solutions become rapidly obsolete. Therefore,
standardised solutions for communication are required.

Embedded middleware, a standardised object-oriented application interface for
supporting distribution of networked embedded applications, would solve the
networking problems of communication applications. Firms have a demand for an
embedded middleware framework that would enable building up embedded
networked systems. Such systems enable using new operations models such as
remote testing, updating, and marketing during product life cycle.

This report is a state-of-the art survey concerning the middleware and techniques
used in client/server architectures. The purpose of this report is to

• describe different middleware technologies used in information systems,

• evaluate technologies which are commercially available for embedded Web-
based systems,

• describe features and experiences of commercial products for heterogeneous
distributed client/server systems and

• define what services are required by embedded client/server systems which are
based on component-based software architecture and standard interfaces.

 Chapter 2 describes the background of heterogeneous client/server architectures as
well as current solutions applied for achieving interoperability. Architectures,
distribution media, operating systems and software are discussed.

12

 Chapter 3 focuses on commercial products which can be used in heterogeneous
client/server information systems. Products covered include three ORBs and a
DCOM based solution.

 Chapter 4 describes experiences gained of the evaluated commercial middleware.

 Chapter 5 describes the services required in embedded middleware.

 Chapter 6 offers some conclusions based on the theory and experiences.

13

 2. Background of heterogeneous networked
systems

2.1 Client/server architecture

 Clients and servers are separate logical entities that work together over a network
in order to accomplish a task. The typical characteristics for client/server systems
are the following (Orfali et al. 1996):

• Client/server is a relationship between server and client processes. The server
process provides services for clients, which are the consumers of services.

• A server controls clients’ access to shared resources.

• Servers are passive in that they stand by for messages from clients. Clients
initiate the dialogue by requesting a service.

• Client/server software masks the server location from the clients. A program
can be a client, a server, or both.

• The client/server software is independent of hardware and operating system
software platforms.

• Clients and servers are loosely coupled and interact through a message-passing
mechanism. The server code and data are centrally maintained in order to reach
independent clients.

• The services are encapsulated to the server which can be upgraded without
affecting the clients. The server determines independently how perform the
requested task.

• Client/server systems can be scaled horizontally and vertically. Horizontal
scaling refers to adding and removing clients. Vertical scaling refers to
employing faster or greater multiple servers.

 There are several types of client/server systems owing to the diversity of target
applications. A file server lends itself to sharing files across a network. Database
servers return the results of each SQL command to the client. The processing code
and the data are located on the same machine. With a transaction server, the
client/server application can be built by writing the code for both the client and the
server components. Groupware servers address the management of semi-
structured information. In most cases, applications are created by using scripting
language and form-based interfaces. As for an object server, the client/server
application is written as a set of objects, which communicate by using Object
Request Brokers (ORB). The World Wide Web is a universal client/server

14

 application which consists of thin, portable, universal clients that communicate
with fat servers by using HTTP (Hypertext Transfer Protocol), which is a protocol
resembling RPC (Remote Procedure Call).

2.1.1 2-tier and 3-tier client/server architectures

 The most typical functional units in a client/server architecture are the user
interface, the business logic, and the shared data. In 2-tier client/server systems,
the application logic is hidden either inside the user interface on the client side, or
within the database on the server, or both. For example, file servers and database
servers with stored procedures are 2-tier clinet/server architectures.

 In 3-tier client/server systems, the application logic is executed in the middle-tier
and remains separated from the data and the user interface. 3-tier client/server
systems are more scaleable, robust, and flexible. They can also integrate data from
multiple sources. The Web, TP Monitors and distributed objects are examples of
3-tier clinet/server systems. They manage the application processes independently
both from the database and the GUI front-end. In a networked embedded system
area, a typical 3-tier client/server architecture consists of

• a data acquisition and process control tier, which is a hard real-time level,

• a data analysis and storage tier, which is often a soft real-time level, and

• an interface and co-ordination tier without real-time requirements.

 As an example of a 3-tier client/server architecture, the Open Object Web
combined with embedded systems is presented in Figure 1. Clients use
component-based browsers to visualise or execute HTML documents, forms, Java
applets, Java beans, compound documents and shippable places through OpenDoc
titles. If an OpenDoc title is a shippable place, it can contain ActiveXs, OpenDoc
parts, Java applets, and regular HTML content. Clients communicate via the
Internet by using different protocols such as HTTP and CORBA IIOP. The second
tier services both HTTP and CORBA clients. CORBA objects encapsulate the
application’s logic by for example storing and analysing measured data. The
objects interact with clients via a Java ORBlet or through any regular CORBA
ORB that can run IIOP over the Internet. They can also communicate with existing
hard real-time applications on the third tier by using CORBA wrappers for
heterogeneous communication media (Niemelä & Holappa, 1998).

15

Internet
TCP/ IP

Web Browsers

H T T PJava
Applets &

Beans

H T M L &
Forms

C O R B A
IIOP

C o m p o u n d
Documents ,

Sl ippable p laces

CORBA I IOP &
C o m p o u n d

Doc.

Tier 1 Tier 2 Tier 3

H P C

H P C

H P C

HTTP/
I IOP O R B

H T M L
Documen ts

Apps
Apps
Apps

O R B

CGI

CO
RBA

CORBA App l ica t ions

RT-
Moni tor ing
& Contro l

RT-Data
Logg ing

Ma inMemory
D B

D B M S

 Figure 1. The 3-tier client/server architecture of the Open Object Web in
embedded systems.

 2.1.2 Middleware

 Middleware is a general term referring to a variety of distributed computing
services in application development environments. Middleware products operate
between the application logic and the underlying physical network and encompass
a wide range of services and products including message-queuing, application
development environments, object development environments, database access,
distributed transaction processing, message communications, and RPC-based
communications. Many of these products and services provide overlapping
functionality. However, in order to acquire all the necessary tools to develop and
deploy an enterprise-wide distributed application, several vendors have to be
contacted. Middleware services can be classified as follows (MOMA, 1998):

• Application development environments (ADEs) include rapid application
development tools and cross-platform development tools. ADEs provide a
high-level development language and include tools that facilitate cross-
platform applications by accommodating differences in operating environments
and user interfaces. ADEs require additional services such as network
communication, application partitioning and distribution services, as well as
component location services. These services can be included in the ADE, or the
ADE may rely on other middleware and communication products.

• Object development environments are designed for developing reusable
software components. In a distributed environment, components interact
through an object request broker (ORB). ORBs can interact also with, and rely

16

• on other forms of middleware for application communication and distributed
services.

• Database management systems need middleware which allow developers to
view disparate data sources in a consistent way. Database middleware is
targeted at providing a solution for two-tier architectures where the data flow
across the network to and from a database server on a remote machine.

• Message-Oriented Middleware (MOM) is an enabling software layer between
the business applications and the network infrastructure. It supports high-
performance interoperability of large-scale distributed applications in
heterogeneous environments. In addition, it supports multiple communication
protocols, languages, applications, as well as hardware and software platforms.
It resides between the business applications and the network infrastructure, or
between applications themselves. MOM refers to the process of data and
control distribution through the exchange of messages. It provides message
passing or message queuing models, supporting both synchronous and
asynchronous communications. Time dependent and time-independent
processing, as well as memory and disk-based systems are available.

• Electronic mail offers point-to-point storage and forward technology that
generally requires a desktop and a LAN-centric environment. Key standards in
this area include X.400, X.500, SMTP, MAPI, and MIME.

• The Remote Procedure Call (RPC) is a well-established method for
distributing application processing while simultaneously concealing the
complexities of networking communications. In a RPC, control is passed from
one procedure to another, and the call is blocked until control is returned,
which means that RPC communication is inherently synchronous.
Asynchronous communication is managed by using threads. RPCs generally
provide data format translation services.

• Distributed Transaction Processing (DTP) systems typically target high-end
businesses with critical customer requirements. DTP systems offer services that
focus on application management, administrative controls, and application-to-
application message passing. DTP includes global transaction co-ordination,
distributed 2-phase commit, resource manager support, co-ordinated recovery,
high availability, security, and workload balancing. The key DTP standards are
driven by ISO OSI and X/Open Company Ltd.

• Workflow and process management systems (WPMS) are designed to
facilitate the automation of repetitive processes within an organisation or
enterprise. These systems focus on how work is passed from one state to
another (routing algorithms), how the routing decision is made (rules), and
what are the relationships between the steps (roles played by each step of the
process). WPMSs are usually state-table based or database-engine based,

17

• depending on how they store routing, rules, and role information. One of the
key organisations in this area is the Workflow Management Coalition.

• Other Distributed Services are typically based on middleware solutions. They
include time services which ensure that all internal clocks in distributed client
and server machines are synchronised within an acceptable level of variance.
Directory services provide the essential elements to be named and identified,
thereby enabling location and routing independence. Security services provide
authentication, authorisation, auditing, and encryption.

• Mobile Computing refers to the capability of distributing application solutions
over wireless networks. Wireless message-oriented middleware uses messages
to communicate between applications and across the wireless networks,
without the necessity to embed low level communications protocols in the
application. The middleware can support multiple protocols, accessibility to
wire-line applications, multiple hardware and software platforms. Furthermore,
it enables making modifications to the underlying environment without the
need to alter the application.

• Generic application platforms for distributed systems, e.g. flexible
manufacturing systems, data acquisition and diagnostics systems etc., consist of
highly independent applications at different real-time levels, co-operating with
each other through standard communication services, e.g. an embedded
middleware.

2.2 Distribution media

The middleware should hide the diversity of protocols and communication media.
Multiprotocol API facilitates developing client/server applications that run over
multiple protocol stacks. A standard interface between network interface and
protocols is required by middleware developers (Figure 2). This implies that the
developers can use or change the distribution media and protocols without
affecting the applications.

The logical network driver provides a single interface for all the network adapters,
and is required between the transport stack and network drivers. Microsoft/3Com's
NDIS and Novell’s ODI are the two most widely supported de-facto standards for
interfacing protocol stacks to network adapter device drivers.

The transport-independent APIs are located on top of the transport stacks and
enable plugging applications into a single interface that supports multiple
protocols. The sockets interface and the transport layer interface (TLI) are the
most widely used TI-APIs (Windows, NetWare, Unix). The following stacks can
be used: SNA and TCP/IP in CPI-C API and NetBIOS, IPX/SPX, TCP/IP in
Named Pipes.

18

The protocol matchmakers enable an application, which is written for a specific
transport, to run across other networks. They eliminate the need for gateways, as
can be seen for example with IBM’s AnyNet product. (Orfali et al. 1996).

Transport- Independent API
(New Appl icat ions)

Matchmaker
(Legacy

Applications)

Protocol Stacks

Logical Network Driver

Networks

SNA
TCP/IP
IPX/SPX
NetBIOS

NDIS
ODI

AnyNet

Sockets
TLI
CPI-C
Named Pipes

Figure 2. The bottom layers of the middleware.

2.2.1 LAN and WAN

The most common types of LANs and WANs are presented in Table 1. The
Ethernet is widely used (75 % market share), but Fast Ethernet is growing rapidly.
The use of ATM (Asynchronous Transfer Mode) is limited but growing, due to the
increasing number of multimedia applications which require rapid data and video
transfer. SMDS is used mostly in Europe as a precursor to ATM. SMDS supports
variable-length packets that can be broken into ATM-size fixed cells in order to
facilitate the transfer. Currently available SMDSs run at 45 Mbit/s. As for
WANs in USA, Frame Relay is currently the most popular packet-switching
technology. Frame Relay can route variable-length packets over existing
routers at speeds between 1.54 / 20.4 Mbit/s. In addition, Frame Relay routes and
assigns error checking to be executed by upper protocol layers (Orfali et al. 1996).

Currently, it would appear that ATM local area networks will be used only in
special applications that require strict QoS management. ATM technology appears
to be dominant in backbone networks, but in LANs, Gigabit Ethernet solutions
will be dominant, owing to simpler implementation and greater cost effectiveness.

19

Table 1. LAN and WAN transmission technologies.

Type Speed Typical applications Used as

WLAN 1-2 Mbps (IEEE802.11
compliant)

data, audio, video LAN

WLAN 11 Mbps, IEEE is
working for a standard

data, audio, video LAN

Ethernet 10 Mbit/s data, audio, video LAN

Token Ring 4/16 Mbit/s Data LAN

Fast Ethernet 100 Mbit/s data, audio, video LAN

FDDI 100 Mbit/s data, audio, video LAN

Gigabit Ethernet 1 Gbps data, audio, video LAN

ATM 25 Mbit/s -
2.4 Gbit/s

data, voice, video LAN,
WAN

Frame Relay 1-2 Mbit/s Data WAN

ATM is a packet-switching protocol that achieves very high speed by using fixed-
length data cells or packets on the top of virtual circuits. Permanent Virtual
Circuits (PVCs) are statically assigned; Switched Virtual Circuits (SVCs) are
dynamic. A virtual circuit guarantees a good quality of service, bandwidth and
priority included. (Orfali et al. 1996).

Wireless LANs enable short-range (i.e. max. of few hundred meters)
communications for laptops and handheld devices, with typical speeds of 1-2
MBps to 11 MBps. Although WLANs are usually used to extend existing LANs,
they also provide standalone networks for ad hoc networking or for mobile
environments.

2.2.2 Cellular data communication

Cellular communication enables a remote access between mobile terminals and
the Internet. World-wide mobile cellular access is not yet available but for many
practical applications, cellular coverage (e.g. GSM having coverage in 100
countries) is sufficient (World-wide coverage with low speed data will become
possible via e.g. Iridium satellite system). The diversity of cellular standards
follows major market areas which divide the world into the following user

20

systems: Europe (GSM, GSM1800), Japan (JDC, PHS) and USA (IS-95, IS-54,
GSM-1900). However, for the purposes of end-users, speed, reliability, connection
manner, package and circuit connection are the only relevant features.

Mobility in cellular systems cannot be achieved without expenses. If compared to
fixed telephone line communications, mobile cellular systems have some limiting
features. For example, costs for Internet usage are higher in cellular connections
than in fixed line connections. This is a severe limitation for recreational web
browsing, if not for professional usage.

 In addition, if analog modems are used, the transmission speed is about one-
fourth of that offered by fixed telephone lines, while it is much higher with ISDN
cards. Therefore, various groups are working to enable faster speed over digital
cellular networks. For example, it is very likely that in a few years’ time, GSM
will provide data transmission rates up to 384 kbits/s for urban areas.

The shortcomings of wireless technology performance can be attributed to limited
bandwidth. Bandwidth limitations can be eliminated by

• Optimising bandwidth usage by stripping graphics and nonessential data from
transmission.

• Creating a document-formatting language for wireless-applications.

• Creating new networks equipped with more bandwidth.

 One solution that optimises wireless connections is Spyglass’s Prism, a content
conversion product which downloads and displays data two to four times faster.
Web pages are cached and only those elements which are altered, are updated
from the server.

 Unwire Planet has developed the UP.Link Platform, which includes Handheld
Device Markup Language (HDML). HDML is similar to HTML but has been
scaled down and optimised for secure wireless Internet or intranet transmissions
over packet-sized devices.

 ITU is working on open standards that will enable wireless multimedia
communications with bandwidth-on-demand capabilities. Wireless vendors have
created a Wireless Application Protocol (WAP) which makes mobile wireless
Internet technology open and scalable. The specification covers layers 4, 5, and 6
of the OSI stack, as well as security features. WAP is based on UP.Link Platform.
(Parker 1998).

21

 2.3 Operating systems

 2.3.1 Requirements for the client-side

 Client programs require an object-oriented user interface which is an extension of
the operating system’s user interface. This being the case, the Object-Oriented
User Interface (OOUI), and the operating system can not be clearly distinguished.
Reality-simulation is managed by drag-and-drop mechanism, icons and direct
manipulation. Compound documents (OLE, OpenDoc) exist already, but 3-D
compound documents (such as VRML, Virtual Worlds) are yet to be realized.
Owing to Web technology, servers can send Java-manipulated HTML pages to
their clients. Shippable compound documents can contain shippable places, which
form Java components. Unlike a page, a place does not disappear after switching
pages; on the contrary, it can exist on the desktop for as long as is required.

 OOUI clients set the following requirements for the operating system (Orlafi et al.
1996):

• Local/remote transparency request/reply mechanism.

• File transfer mechanism which enables text, pictures, movies and database
snapshots to be moved.

• Pre-emptive multitasking.

• Task priorities.

• Interprocess communications.

• Threads for background communications with server and for receiving
callbacks from servers.

• OS robustness, including intertask protection and re-entrant OS calls.

• Window 3.x GUI, OOUI and compound documents.

2.3.2 Requirements for the server-side

 The server which serves multiple clients sets the requirements for the operating
system concerning real-time scheduling, task execution or service management
(Table 2).

22

 Table 2. Classified requirements for servers.

 RT Scheduling Pre-emptive scheduling allows fixed time slots for the
execution of each task and enables easier creating of safer
server programs.

 Task priorities enable servers to differentiate the level of
service on basis of client priority.

 Concurrence control with semaphores is used to
synchronise the actions of independent server tasks and
shared resources.

 Task Execution Interprocess communications (IPC) allow independent
processes to exchange and share data.

 Threads provide the concurrence control within a process
itself and are used to create event-driven server programs.

 Intertask protection. The operating system must protect
tasks from interfering with each other’s resources.
Protection also extends to the file system and calls to the
operating system.

 Service
Management

 Multi-user high-performance file system. The file system
must support multiple tasks and provide locks to protect the
integrity of the data. In addition, a large number of open
files must be supported without a decrease in performance.

 Efficient memory management is needed for large
programs and large data objects which must be easily
swapped to and from disk, preferably in small granular
blocks.

 Dynamically linked run-time extensions must be supported
by a mechanism which, without recompiling, provides
additional services at run time

23

 There are also some extended services that provide flexible access to shared
information and make the system easier to manage and maintain (Figure 3). The
extensions must provide a rich set of protocol stacks that allow communication
with a large number of client and other server platforms. (Orfali et al. 1996).

 File and print services must be provided over the network. Binary large objects
(BLOBs) require extensions of intelligent message streams (protocols) and object
representation formats. Databases and file systems must be able to store and
access BLOBs. Network resources must be locatable by name. Furthermore, the
extensions must provide a way for clients to locate servers and their services on
the network by using a global directory service. A client requires an authentication
service to identify itself to the server. An authorisation service determines if the
authenticated client is given permission to obtain a remote service. The extensions
must provide an integrated network and a system management platform. The
system management includes services for configuring a system and facilities for
monitoring the performance of all elements, including distributing and managing
software packages on client workstations. The operating system extensions must
provide a mechanism which co-ordinates the global time and synchronises client
and server clocks.

 Transaction services are required for a robust multi-user Database Management
System. The system can be supported by a Transaction Processing Monitor (TP
Monitor) for managing stored procedures as atomic work units that execute on one
or more servers.

 For Internet services the server requires Hypertext Transaction Protocol (HTTP)
daemons, Secure Sockets Layer (SSL), firewalls, Domain Name Service,
Hypertext Markup Language (i.e. HTML)-based file systems, and electronic
commerce frameworks (which, however, are optional). The extended services of
the operating system must include object interchange services and object
repositories. (Orfali et al. 1996).

24

DBMS, TP Moni tors and Objects

Transact ion
Process ing

W e b
Server

D B M S
Server

Object
Or iented
Serv ices

Procedures

Dist r ibuted Comput ing Envi ronment

Global
Director ies

Global
T ime

Authent icat ion
Sys tem

Management

Network Operat ing Systems

Remote
File R P C

Remote
Print

B L O B s

Communicat ion Serv ices

NetB IOS
N a m e d
Pipes

TCP/ IPS N A

 Figure 3. Server programs’ requirements for the extended operating system.

 2.3.3 Operating systems for clients

2.3.3.1 Windows 95 (Microsoft)

 Pros:

 OOUI, pug-and-play, hardware autodiscovery, network neighbourhood, remote
registry editor, built-in SNMP agent, minimal TCP/IP stack, NetBEUI, IPX/SPX
and PPP.

25

 Cons:

 Inconsistent OOUI (mixed OOUI and GUI paradigms), built on DOS (16-bit
application, no crash protection, limited multitasking, no pre-emptive scheduling),
not robust enough for corporate client market. (Orfali et al. 1996).

 2.3.3.2 Windows NT workstations (Microsoft)

 Pros:

 32-bit client OS, pre-emptive multitasking, multithreading, memory protection,
transactional file system, completed network: TCP/IP, NetBEUI, IPX/SPX, PPP
and AppleTalk. C2-level security, and NT 4.0 supports DCOM.

 Cons:

 Resource hog (minimum of 16 Mbytes of RAM and 512 Mbytes of disk) and an
expensive client platform. Poor support for the following: laptops (limited
PCMCIA support and power management), emulation of DOS and 16-bit
Windows applications, device drivers. Difficult configuration owing to lack of
support for virtual device drivers (VxDs) and plug-and-play components. (Orfali
et al. 1996).

 2.3.3.3 Java OS (Sun)

 Real-time operating system industry standardises on PersonalJava and
EmbeddedJava which are designed for environments with limited resources, with
the addition of specific features required by consumer applications. (Sun 1998).

 Pros:

 Dynamic linking and loading (remote updates and batching), object-oriented,
security and reliability features, portability across platforms. PersonalJava API
includes: Java Virtual Machine, Java classes, internationalization (I18N) support,
Java beans, Java applets, networking, and PersonalJava AWT. Java AWT is
targeted at and tuned for consumer product purposes.

 Cons:

 Slow performance; it has benchmarked as slow as 1/40th the speed of C++.
Windows systems would appear to require at least 20M of RAM to run Java
adequately. A Java virtual machine with a Motif-based GUI, MPEG, JPEG,
Internet support and other class libraries runs to over 11MB of code. A smart-card
Java requires a dozen kilobyte. Personal and Embedded Java will be somewhere
between the two mentioned last. (Dibble, 1997).

26

 Applications:

 Hand-held computers, set-top boxes, game consoles, mobile hand-held devices
and smart phones. The platform is scalable and configurable including a Java
Virtual Machine, a set of core libraries, and optional libraries. Runs also on
enterprise Java platforms.

 2.3.3.4 Windows CE (Microsoft)

 Pros:

 Low memory costs due to a ROM file system from which OS is booted. RAM is
used only for stack, heap, and global variables. Typical memory requirements are
2 KB of ROM, and between 300KB and 1MB of RAM. OS supports
multithreading and multitasking with memory protecting (MMU required). It
supports TCP/IP, UDP/IP and SLIP protocols as well as WinSock 2.0. A PPP
layer will be underneath the IP stack for a serial cable and modem, and IrDA 1.0
stack for infrared connections. (Murphy, 1997).

 User interaction is supported by a display, a touch panel or mouse, a keyboard,
audio output and PC cards. Windows CE supports both volatile and non-volatile
storage systems and includes a FAT file system and ATA drivers. A custom block
device driver can be used with the FAT file system for providing a block storage
device on the Flash card. Windows CE SDK is a subset of the Microsoft
Foundation Classes (MFC). Windows CE 2.0 with ActiveSync synchronises data
between a HPC (Handheld PC) and Windows-based computers. Beta of the
Windows CE Toolkit for Visual J++ 1.1. is available. (Murphy, 1997).

 Cons:

 No nested interrupts (interrupt latency), no hard RT OS. No support for the
Network Driver Interface Specification (NDIS). No support for modifying the
protocol stacks. Adding third party built-in peripherals or drivers to a Window CE
is not possible, except by supplying drivers for PC Cards and using Windows CE
SDK. A new file system cannot be added.

 Applications:

 Handheld computers, consumer products and various non-consumer products.
(Murphy 1997).

 A summary of the operating systems for embedded applications is presented in
Appendix A.

27

 2.3.4 Operating system products for servers

 2.3.4.1 NetWare 4.1 (Novell)

 Pros:

 Effective, well-supported file server, global directory, threads across processors
(NetWare 4.1 SMP), C2-level security in future releases, built-in support for the
Internet, including a server-side Java environment.

 Cons:

 Lack of openness, poor application support; NetWare Loadable Modules in
NetWare 3.1, limited memory protection, lack of memory management, virtual
memory not provided, no support for pre-emptive multitasking. (Orfali et al.
1996).

 2.3.4.2 NT server (Microsoft)

 Pros:

 Additional features to the NT workstations: file/print server support, built-in
Internet server, disk mirroring and striping, SMP. Processors: Intel, Alpha,
PowerPc, MIPS. TCP/IP, support for NetWare, Network OLE, enhanced security,
multiprotocol routine and ISDN communications. Natural server in Microsoft
environments. Easy installation, management and configuration.

 Cons:

 Limited scalability, no enterprise directory server. Security holes, limited backup
facilities , unsatisfactory enterprise services and support. (Orfali et al. 1996).

 2.3.4.3 OS/2 Warp server (IBM)

 Pros:

 32-bit OS (including Lotus Notes and CORBA services, database, middleware,
system management and communications offerings) is as well-equipped as its
Unix counterparts, but easier to install, use, and manage. Fast file and print server,
OOUI (installed with autodetecting hardware, configuration, and system
management), disk mirroring, remote administration, remote software distribution,
backup server, and software metering. Eagle: database, Lotus Notes, Internet
commerce, TP Monitor, CORBA object services, DCE security and directory.

28

 Cons:

 Intel-only platform, maximum file size of 2 Gbytes, maximum disk partitions of
512 Gbytes (multimedia). C2 level security, unicode support (for
internationalisation), support for megaclusters, transactional file systems, and
memory-mapped files are unavailable (although may be included in OS/2 Merlin
Server). (Orfali et al. 1996).

 2.3.4.4 Unix

 Pros:

 Scalable from the desktop to the supercomputer. Java, CORBA, 64-bit standard in
the future.

 Cons:

 45 variants of Unix, lack of binary compatibility, functional difference among the
Unixes.

 Running the same OS on clients and servers makes LANs simpler to administer.
Similarly, moving programs between clients and servers is more simple. The
same installation procedures can be used. (Orfali et al. 1996).

 2.3.5 Summary

 Operating systems vary both in the client and the server side with reference to
software flexibility, supported protocols and their interfaces, concurrence support
by multitasking, multithreading and memory protection, required memory size and
offered memory protection. In many respects, this is reflected on the requirement
to isolate the operating-system-dependent and protocol-dependent parts from the
embedded middleware. However, this enables changing underneath software
platform with minimum side-effects to the embedded middleware itself.
Furthermore, services common to both the operating systems and the protocols
should be identified. If a generic solution for embedded middleware is explored,
only these combined features should be considered to form the basis of the
middleware.

 2.4 Frameworks and components

 Distributed computing relies on a set of services for accessing and managing
shared services, information, and computing resources. Application components
require the following types of distributed services (Krieger & Adler 1998):

29

• Remote communication protocols enable components to interact at the
application layer. Protocols can be synchronous or asynchronous.

• Directory services provide a global scheme for naming, organising, and
accessing shared services and resources.

• Security services protect shared resources by authentication and authorisation
and block third parties from intercepting messages.

• Transaction services co-ordinate concurrent updates and ensure that updates
leave data in correct and consistent states.

• System management services provide a unified set of facilities for monitoring,
managing, and administering services and resources across the enterprise.

 The existing standards support the framework development for distributed
computing by providing specifications for all or for some of the required services.
In addition, services for specialised application components are provided. This
section describes commonly used frameworks and components which they
support.

 2.4.1 CORBA (Common Object Request Broker)

 Object Management Group (OMG) has specified a de-facto standard for the
CORBA framework. It provides an integration infrastructure for distributed
business objects. The Object Management Architecture (OMA) describes the
enterprise integration by providing a component-based software environment
which uses the services generated by the underlying Object Request Broker
(ORB). The OMA is divided into three major components: lower-level
CORBAservices, intermediate-level CORBAfacilities, and CORBAdomains
which are used by distributed application objects.

 CORBA has the following objectives (Sigel 1996):

• To provide a location-independent software platform for distributed objects,

• to provide a language-independent application development environment,

• to provide platform-independent communication mechanisms, i.e. operating
systems, and protocols that do not affect applications,

• to provide a standard interface description language and a thin layer of wrapper
code for legacy applications,

• to maximise programmer productivity by transparent distribution and by easily
accessible components,

30

• to re-use software by black-box and white-box methods,

• to enable mixing and matching tools within a project by smooth
interoperability.

 The key characteristics that enable a software component plug-and-play to exist as
an object in the CORBA environment are encapsulation, inheritance, and
polymorphism.

 The encapsulated software component consists of two distinct parts: an interface,
which the component presents to the outside world, and implementations, which
are kept hidden. The interface presents the contract of the object. If the interface
contains more than one implementation of an object, the object can be substituted
by another. The client would remain unaware of the alteration, since the responses
to its messages would not change. Encapsulation enables CORBA to provide
location transparency. A client sends the invocation to the local ORB, and not to
the target object itself. Finally, the ORB routes the message to its destination.
Encapsulation is the cornerstone of CORBA. It is used also when legacy
applications are wrapped.

 Inheritance is an object-oriented method that reduces the workload of designers
and programmers, since it enables existing object templates to serve as the basis
for new ones. Object-oriented languages take advantage of inheritance which is
included in CORBA as well. By polymorphism, an operation is invoked on a set
of objects. The operation generates different outcomes, since with each object, the
message triggers individual methods. As inheritance and polymorphism enable
CORBA to work with object-oriented tools and languages, these features have
been included in OMG IDL (Siegel 1996).

 CORBAservices provides basic functionality required by any object (Figure 4).
CORBAfacilities provides upper-level services common for all application
domains. CORBAdomains include domain-dependent services. These, in their
turn, use the services provided by CORBAservices and CORBAfacilities.
Applications can use services generated by all of the levels. Services can also be
added into each category in order to provide all necessary services.

31

CORBA Domains

CORBA Facil i t ies

CORBA 2 ORB

Application
(Business)

Objects

CORBA Services

Naming

Events

Pers is tence

Life cycle

Concur rence

Relat ionships

Distr ibuted
Documen ts

Transact ions

Propert ies Licensing

T ime

Securi ty

Initializing
Mult iple Interface and

Composi t ion

Messag ing

Col lect ions

Informat ion
Managemen t

Sys tem
Managemen t

Task Managment

Financing

Medic ine

Internet

Bus iness

Manufactur ing

Mult imedia
Conferenc ing

Telecommunicat ion

Others

External izat ion

Query

Trader

 Figure 4. An overview of the CORBA framework.

 2.4.2 COM and DCOM (Distributed Component Object Model)

 COM (Component Object Model) by Microsoft provides a system aimed for
providing joint functionality between applications. COM performs this
requirement by dividing an application into a series of objects that can be passed
around and used by any other application. COM is the technology underlying OLE
(Object Linking and Embedding) which enables data from a number of different
applications to appear in the same document. (Blaszczak 1997).

 Component Object Model is a specification that describes what an object is, how
it functions during its lifecycle, and how it communicates with the outside world.
COM is a binary specification: it is not a language, and it does not require the
usage of any particular language. Any language which has support for arrays of
function pointers and which can call functions through those pointers, can be used
directly. This includes languages like C, C++, and Pascal. Other languages that do
not have direct support for function pointers, like VB and J++ (Microsoft’s Java
implementation), have extensions that allow them to call or create COM objects.
J++ has classes that use native code for accessing COM objects whereas VB has
developed a syntax that hides function pointers from the user. (Grimes 1997).

 The terminology employed by COM and OLE is rather complicated. COM
objects are different from C++ objects, even though one could use a C++ object to
represent a COM object in code. COM objects are recognised by the system; in
contrast, the system cannot be guaranteed to identify C++ objects that float
around. The operating system does not provide the applications with any standard
method of communicating what C++ objects are currently active. The term

32

 ‘object’ has one meaning for users and another for developers. By ‘object’, OLE
users refer to the material that is embedded in another document. From the
programmer’s point of view, an embedded ‘object’ stands for at least one COM
object. The object can, however, consist of several COM objects, which in their
turn almost always include more than just one C++ object. The term ‘method’ is
similarly overloaded. To a C++ developer, it refers to a member function of a
class. In COM, a ‘method’ is a specified function in an interface. This is not
perfectly compatible with the C++ definition, since a given object may have many
interfaces and each of these interfaces has many interchangeable methods. In
COM, an interface is a collection of methods and an individual method is strictly a
function. (Blaszczak 1997).

 COM permits grouping together associated functions to form an interface which
can be named and registered. A COM interface includes function prototypes and a
protocol for their use. No specific implantation is defined . (Grimes 1997).

 A COM class defines the implementation of one or more interfaces and acts as a
template or recipe by which COM objects can be produced. COM objects are
instantiated from COM classes and combine the implementation defined by that
class with instance data specific to the object in question. This feature resembles
the relationship between classes and objects in any object- programming language.
COM is a language-independent binary standard. (Grimes 1997).

 All COM objects must implement an interface called IUnknown, which provides
lifetime management as well as the ability to query objects for functionality. A
client can ask a COM object whether it supports a particular interface; if so, it will
return an interface pointer to the client. (Grimes 1997).

 COM was designed especially for protected memory systems and for passing data
between applications located on different machines. As interface methods, COM
uses the DCE RPC definitions of [in] and [out] parameters. Both of the
definitions are one-way, but in [in, out] parameters, data is passed bidirectionally.
All parameters, whether standard data types or buffer pointers, must be specified
as one of these. (Grimes 1997).

 The IUnknown interface has the following functions (Grimes 1997):

 HRESULT QueryInterface (REFIID iid, void** ppvObject);
ULONG AddRef(void) ;
ULONG Release(void) ;

 COM servers are executables that implement one or more COM objects; COM
objects implement one or more interfaces. COM objects share functionality
between various client applications. Somewhere, there is a code that can be used
by several processes simultaneously. Inproc server stands for in-process. In other
words, the object is executed in the same process space as the client, and hence the

33

 server code must be implemented in DLL. In-process servers are fast and efficient.
The drawback, however, is typical of DLL: the ‘foreign’ object is run in client’s
protected memory space, with the same privileges as any other client code. This
requires that the object must be executed in a way that is compatible with the
client. In particular, it must have the same threading model as the client. Similarly,
since the object has complete access to the client’s memory, an errant object can
crash the entire process. The process is extremely dependent on the inproc server
and sensitive about the how it calls it. (Grimes 1997).

 Microsoft has implemented DCE RPC into its own operating systems. Microsoft
RPC is compliant with DCE RPC. This means that although Microsoft RPC
provides (almost) all the facilities of DCE RPC, its programs require some
additional software to communicate with DCE RPC programs. Microsoft has its
own agenda for handling security and naming services, which explains the
requirement for additional software. With a few exceptions such as attributes like
[async], Microsoft’s IDL-compiler (i.e. MIDL) supports all functions of the DCE
IDL compiler. (Grimes 1997).

 Directory services is the mechanism by which a server can be found on the
network. DCE uses the Cell Directory Service (CDS) for dividing the network into
administrative units and for providing a hierarchical naming system. These units
store security information concerning which users can log on, and include a
central repository (i.e. the Directory Service) for the current servers to register
themselves. NT administers computer groups through domains which are
analogous to DCE cells. The domain has log-on facilities and can therefore define
groups so that particular users can be given access to particular resources. DCE
provides a naming service which, when a DCE client requests a server, enables
locating the server machine and the running server. This is carried out via an
intermediate program, called a CDS clerk, which resides on the local machine.
When the client wants to find the server, it sends a request to the clerk which
checks its local cache. If the clerk cannot find the name, it sends a query to the
CDS server located on a networked machine. The CDS server uses the database of
its named server, called a clearinghouse. If the CDS finds the server, it returns this
information to the CDS clerk, which caches the result and passes it on to the
client. A CDS cell can have more than one clearinghouse, and individual
clearinghouses can hold information about locations of the other clearinghouses.
The CDS clerk can utilise this information to extend its search further, if the
server cannot be located at first attempt (Grimes 1997).

 The same applies to NT. Microsoft RPC uses a service called ‘the locator’ for
providing this functionality. The locator uses a dynamic database of running
servers. When a request is made for a particular server, the locator checks its own
database first. If the server cannot be found, the locator will then forward the
request, via RPC, to a designated master locator. If the master locator fails to find
the RPC server, it sends a mailslot broadcast to all the computers in the domain. If
one of these computers finds the server, it replies to the master locator via a
directed mailslot. All of the replies are collated, and the location of the server is

34

 returned to the client locator. This is done by VIA, which passes the location back
to the client. (Grimes 1997).

 The COM architecture for object distribution is similar. When a client wants to
connect to a server object, the server’s name is stored in the system registry. In
reference to distributed objects, the server can be implemented as an in-process
.DLL, a local executable module, or as an executable module, or .DLL running
remotely. A component called Service Control Manager (SCM) is responsible for
locating and running the server . Making a call to an interface method in a remote
object involves co-operation from several components. An interface proxy is a
piece of interface-specific code that resides in the client’s process space and
prepares the interface parameters for transmittal. It packages or marshals the
components so that they can be recreated and understood in the receiving process.
The interface stub resides in the server’s process space. It is a piece of interface-
specific code and reverses the work of the proxy. The stub unpackages or
unmarshals the transmitted parameters and forwards them to the server. It also
packages reply information to be sent back to the client. The actual transmission
of data across the network is handled by the RPC runtime library and a channel
which is a part of the COM library. The channel works transparently with different
channel types and supports both single and multi-threaded applications.
(Microsoft 1995).

 Since DCOM is identical to COM, COM objects or clients can be used with
DCOM without recompilation (Grimes 1997).

 Although DCE RPC does not provide support for objects, it can be used as an
underlying mechanism for object distribution. With reference to Windows and
Solaris, DCOM sits on Microsoft RPC. The Open Group is currently developing
DCOM which runs on top of true DCE RPC for other platforms, particularly DCE
Unix. This implies that DCE features, if not already available in DCOM, will
appear at some time. The features will include DCE security (Kerberos) and DCE
authentication. DCOM is effectively a version 2 of the Microsoft RPC, which can
be detected even from the names of its structures. The main structure in DCOM
packet is ORPC, short for Object RPC. (Grimes 1997).

 2.4.3 CORBA with DCOM

 The COM/CORBA Interworking Specification by OMG is a standard for
interoperability between ActiveX and CORBA. The interworking specification
contains two parts. The first part specifies OLE Automation-CORBA
interoperability (i.e. ActiveX-CORBA). OLE Automation was designed for users
wanting to manipulate objects in scripting languages such as Visual Basic. The
second part specifies DCOM-CORBA interoperability. Automation-CORBA
interoperability consists of a subset of DCOM interfaces.

35

 For each part, the specification includes two levels of interoperability: mapping
and interworking. One-way-interoperability is called a mapping solution, and a bi-
directional (two-way) solution is called an interworking solution. By using a
mapping solution, a CORBA object can be made available to ActiveX. However,
Corba cannot have ActiveX objects (Expersoft 1998).

 2.4.4 Real-time CORBA

 Initial submissions have been made for RT CORBA (January 1998). In Table 3, a
summary of the proposed extensions for RT CORBA is presented (Alcatel et al.
1998; Lockheed Martin 1998; Highlander Communications 1998; Objective
Interface Systems 1998; Northern Telecom & Iona Tech. 1998):

 Table 3. Summary of the proposed extensions for RT CORBA.

 Feature Alcatel et al. Lockheed
Martin

 Highlander
et al.

 Objective
Interface
Systems, Inc.

 Northern
Telecom,
Iona
Technologies

 Extensions Interceptor Facility Implementors
should document
typical and max.
execution times
of RT-CORBA
services and
PIDL operations

 Explicit
binding

 Scheduled
entities

 threads, requests,
replies, messages,
transport end-points

 process, threads,
messages

 threads Threads thread
(tasks),
provided by
the OS,
dispatch_pri
ority

 Scheduling
services

 SCOS: pluggable
schedulers

 Encapsulated
scheduler (ES),
fixed priority

 Thread
priority
management
(OS-RTPOA
priorities)

 Thread priority,
pre-emptive
scheduling

 Propagating
priorities

 Interceptor
categories (client,
server, POA,
transport, thread,
initialisation,
message
interceptors);
priorities and their
ceiling, QoS

 Execution and
communication
priorities (client,
communication
and server),
passed in GIOP

 RT QoS,
Realtime
Common
Object
Service

 RTQoS; GIOP
and priority

36

 Feature Alcatel et al. Lockheed
Martin

 Highlander
et al.

 Objective
Interface
Systems, Inc.

 Northern
Telecom,
Iona
Technologies

 APIs for RT threads,
Request queue,
Transport
Management,
Buffer
Management,
Interceptor

 Encapsulated
scheduler,
Resource
management,
Flexible
communications

 RT threads,
Protocols, ORB,
Current,
RTPOA

 RT threads,
action,
executive
(abstract state
machine), bind
(QoS)

 RT_POA

 Resource control APIs for end-to-
end QoS

 NVList, name and
quantity, Get,
Free, Release

 Maximum
resources
defined

 Thread control priorities,
management,
storage, pools

 priority selection Priorities,
management

 priority
selection, sync
and async thread
control

 thread pools
(fixed, high
water)

 Transport
management control

 TMAPI: create,
delete, get/set
attributes,
open/close
connection.
Transport
attributes

 Open/close
connections,
parameter
passing,
connection
management,
queues

 ORB-API:
access and
specify protocol
information

 MsgQueues

 Protocol control ORB Flexibility
Enablers;
pluggable
protocols (Object
Reference
Component and
OCI Open
Communication
Interface)

 Berkeley Socket
protocol,
selectable
protocol mapping,
service
management

 Set and get
protocol
parameters,
add prior the
creation of
RTPOA,
dynamic
protocol
selection

 TCP and IIOP
cannot be used
to build
predictable
distributed
systems

 REO (Remote
execution
object) for a
protocol-pair,
get_protocol
(REO_Name)

 Memory control Buffer API (not
ready)

 Constant
definitions

 InitMemory Constant
definition for
buffers, stacks

 ORB resource
control

 StrategyFactory

 Interface

 Queue and
locking
techniques

 ORB-API RT_POA-API:
threads, pools,
dispatcher
concurrence
and queues

37

 Feature Alcatel et al.1 Lockheed
Martin 2

 Highlander
et al.3

 Objective
Interface
Systems, Inc.

 Northern
Telecom,
Iona
Technologies4

 POA Simplified and
extended POA

 POA, Extensions
not defined.
Dispatch task
within BOA or
POA.

 RTPOA,
extended POA
with priorities

 RT_POA

 Synchronisation ORB and
application data
by mutexes,
semaphores,
multiple
readers/single
writer, condition
variables; object
factory

 Timers, mutexes Referred to
Concurrence,
Timing,
Transaction,
Event, Security
and Messaging
services

 Ceiling locking,
dynamic
priorities,
mutexes and
semaphores in
executive, sleep

 Asynchronous
invocation

 Query async
request status by
polling, one-way,
upcall

 Async Event
notification

 Other
considerations

 POSIX POSIX, Emb-
CORBA

 POSIX

 1 Alcatel, Hewlett-Packard Company, Lucent Technologies, Inc. Object-Oriented Concepts, Inc.

Sun Microsystems, Inc., Tri-Pacific. Collaboration with Deutsche Telekom AG, France Telecom,

Humboldt-University, Mitre, Motorola, Inc., and Washington University. The specification is

based on combined experience of prototypes and products from the submitters: ChorusORB r5,

HP, Fixed Priority Scheduling, Pluggable Protocols, and TAO.

 2 Lockheed Marting Federal Systems, Inc. The specification is based on a real-time, fault tolerant

CORBA for use in defense applications called HARDPACK.

 3 Highlander Communications, L.C., Visigenic Software, Inc. The specification is based on the

experience in the CORBA domain and the real-time domain.

 4 The submission is based on the companies’ experience of implementing and deploying CORBA

in real-time systems. Used internally as a component of several product developments with

Nortel’s ORB.

38

 The Message Transfer Interface in the Alcatel et al. submission is based on the
following commonly used design patterns: Connector, Acceptor and Reactor. In
addition, the specification includes some examples of how scheduling service is
intended to be used.

 2.4.5 Desktop Management Interface

 The Desktop Management Interface (i.e. DMI 2.0), published by the Desktop
Management Task Force (DMTF), defines a standard way for DMI agents to send
management information across a network and ORBs. In addition, it defines IDL-
specified APIs that can be invoked via the DCE RPC. DCE is an OSF protocol
and provides security and naming across networks, as well as threads, distributed
time, and a Distributed File System (DFS). DMI allows a component to define
events within the MIF (Management Interface File). It defines also a standard
interface for setting an event filter in the Service Layer. The event filter provides
generic agent services, utilising the local MIF database.

 The MIF facilitates managing, registering, installing, and uninstalling software
applications on PCs, Macs, and workstations. The focus is on a computer system
that specifies preinstallation file lists, software IDs and CRC signatures, version
numbers, installation dependencies, and support information. With MIF, agents
have a possibility to check hardware and software environments, install
applications, inform a user where to get support, and finally, to uninstall redundant
programs . (Orfali et al. 1996).

 2.4.6 Distributed Management Framework

 OSF’s DME (Distributed Management Environment) has taken a new approach by
building the Object Management Framework (OMF) on CORBA and OMG
services. The OMF transcends the traditional manager/object relationship. An
object may at any time assume one of two roles: that of a client requesting a
service, or that of a service provider. The communication between objects may
occur over any standard CORBA ORB that uses DCE for its core
communications. The legacy systems are encapsulated by adapter objects. An
application object can invoke operations on the adapter by using the typical
remote invocations and proxy methods, which are invoked on the adapter call
XMP (X/Open Management Protocol), in order to perform SNMP (IETF’s Simple
Network Management Protocol) or CMIP (OSI’s Common Management
Information Protocol) functions. The adapter object provides a higher level of
abstraction for the legacy objects. Tivoli Management Environment is a
commercial version of this architecture.

39

 2.4.7 OCX and ActiveX

 An OLE component is defined by a class that implements one or more interfaces
and by a class factory (i.e. the interface that knows how to produce a component
instance of that class.) An OLE component is not a predefined, self-contained unit,
but rather a group of interfaces.

 An OLE Control (OCX) is a custom control that contains a set of predefined
interfaces. OCXs often have User Interfaces (UIs) which allow developers to set
values for variables within the OCX. In addition, OCXs have methods which are
callable routines within the OCX. An OCX is a well-defined, medium-grained
component that is packaged like an OpenDoc part. However, unlike OLE
containers, an OCX cannot embed any other parts. An OCX is a set of contracts
between an OLE visual component and its container. It cannot function
independently like an executable, as it is controlled by OLE containers such as
Visual Basic, PowerBuilder, Delphi, Microsoft Excel, Microsoft Word and
iXpress. OLE/COM provides all the facilities to locate, load, inquire, and remove
OCXs. (Orfali et al. 1996).

 An ActiveX is a minimalist OLE object for the Internet. OLE’s component
categories define the interface which an ActiveX supports. An ActiveX is a fine-
grained component; OCX is a medium-grained component and OLE containers
are large-grained, application-size components. (Expersoft 1998; Orfali et al.
1996).

 ActiveX Controls are lightweight COM objects without the necessity to carry all
the characteristics of OLE Controls. The mapping is one-way: an OLE Control is
an ActiveX control, but an ActiveX Control is not necessarily an OLE Control. At
one level, ActiveX is the active content, a way of making web pages that provide
more than just text and pictures. (Grimes 1996).

 ActiveX controls can run in a variety of containers, for example Visual Basic,
Visual C++, Microsoft Access, Microsoft Internet Explorer, Delphi and Netscape
Navigator. ActiveX controls feature two-way communication with their
containers, and therefore the controls can interact with each other via scripting on
the page. There are four ways to write an ActiveX control (Johns 1996.):

• Microsoft Foundation Classes (MFC)

• ActiveX Template Library

• BaseCtrl framework

• Visual J++ (COM objects only)

 MFC controls are neither large, nor small. While developing controls that do not
require the full functionality of an OLE control, it is useful to investigate what
other options are available after prototyping in MFC. To run an ActiveX control
written with MFC, the correct version of the MFC and C runtime DLLs must be

40

installed on the user system. The DLLs total at over one megabyte. Internet
Explorer 3.0 ships with version 4.1 of the MFC DLLs. For hooking an ActiveX
control to a web page, JavaScript or VBScript can be used. (Johns 1996.)

 MFC controls are considerably simpler than MFC applications. The most simple
MFC control has only the following three classes (Table 4) (Johns 1996):

 Table 4. The main classes of MFC controls.

 Description Class Derived from

 Control module ColeControlModule CwinApp

 Control window ColeControl CWnd

 Property page COlePropertyPage Cdialog

 Internet Explorer 3.0 implements two mechanisms to ensure that users can load
and run controls without harming their systems. To begin with, it verifies the
signature of any code it installs. Secondly, the browser checks if the control is
marked safe for initialling and/or safe for scripting. Code signing requires only
about 3,5K and as a result, it will not significantly affect the download time for
web pages (Johns 1996).

 Unlike Java applets, ActiveX controls can access the full power of the machine.
There are two categories of safety: safe for scripting and safe for initializing. Safe
for scripting means that regardless of what scripts do to manipulate a control, the
user’s machine will not be harmed. Safe for initializing means that regardless of
what data gets passed from the web page to the control, the user machine will not
be harmed. (Johns 1996).

 Code signing is the process of adding data to the control in order for the Internet
Explorer to verify:

• the identity of the author and

• that the control has not been modified after signing.

 Signing a control requires an electronic certificate provided by a certificate
authority (CA). The certificate and the private key must be carefully protected.

 2.4.8 Java Beans and Java applets

 JavaBeans is a platform-neutral component architecture for the Java application
environment. It is used for developing or assembling network-aware solutions for

41

 heterogeneous hardware and operating system environments, either within the
enterprise or across the Internet (JavaBean 1998). The objective of the JavaBeans
APIs is to define a software component model for Java. Within this model, third
party ISVs are able to create and ship Java components to end users, who in their
turn can merge the components into applications (JavaAPI 1998).

 JavaBeans extends a so-called "Write Once, Run Anywhere" approach to reusable
component development. JavaBeans are connected, via bridges, to other
component models such as ActiveX and OpenDoc. As a result of this, software
components that use JavaBeans APIs allow transporting to containers including
Internet Explorer, Visual Basic, Microsoft Word, Lotus Notes, etc.
(JavaBean1998; JavaEmb 1998).

 JavaBeans is portable, and can run without modification on any platform with
appropriate virtual machine layer. It functions also if embedded into either an
ActiveX or OpenDoc component, although it is then limited by the platform which
supports these components. In a similar manner as the ActiveX component,
JavaBeans supports properties, events, and Bean state persistencies. Owing to its
object nature, JavaBeans supports inheritance. The derivatives contain the same
properties and event managers as their base class (JavaEmb 1998).

 Some JavaBean components can be used as building blocks in composing
applications. Some components will be used for more regular applications, which
can then be merged together to form compound documents. These two aspects are
overlapping (JavaAPI 1998).

 Individual Java Beans will vary with respect to the functionality they support, but
the following features are typical of a Java Bean (JavaAPI 1998):

• Support for “introspection” which enables a builder tool to analyse how a bean
works.

• Support for “customisation”: while using an application builder, the user can
customise the appearance and behaviour of the bean.

• Support for “events” in order to form connections between beans.

• Support for “properties”, both for customisation and for programmatic use.

• Support for persistence: a bean can be customised in an application builder
and then have its customised state saved and reloaded.

 A bean is not required to inherit from any particular base class or interface.
Visible beans must inherit from java.awt.Component if they are intended to be
added to visual containers. Invisible beans are not required this (JavaAPI 1998).

 Beans are appropriate for software components that can be visually manipulated
and customised to achieve an effect. Class libraries are an appropriate way of
providing functionality which is useful to programmers, but which does not
benefit from visual manipulation (JavaAPI 1998).

42

 The three most important features of a Java Bean are the set of properties it
exposes, the set of methods it allows other components to call, and the set of
events it fires. Basically, properties are named attributes associated with a bean.
They can be read or written by applying the appropriate methods on the bean. The
methods that a Java Bean exports are normal Java methods which can be called
from other components or from a scripting environment. Events provide a way for
one component to communicate to other components that something interesting
has happened (JavaAPI 1998).

 Different platforms will vary in their ability to support the full JavaBean API.
However, when a platform is unable to provide the full functionality, it must
provide a reasonable, harmless default instead. This means that JavaBeans
component writers can program to a consistent set of APIs and trust them to
function everywhere (JavaAPI 1998).

 The three primary network access mechanisms that will be available to Java Beans
developers on all Java platforms are (JavaAPI 1998):

• Java RMI. The distributed system interfaces can be designed in Java and
clients and servers can be implemented against those interfaces. Java RMI
calls will be automatically and transparently delivered from the client to the
server.

• Java IDL. The Java IDL system implements the standardised OMG CORBA
distributed object model. All system interfaces are defined in CORBA IDL
interface definition language. Java stubs can be generated from these IDL
interfaces, allowing Java Bean clients to call IDL servers, and vice versa.

• JDBC. The Java database API, JDBC, allows Java Bean components to access
SQL databases. These databases can either be on the same machine as the
client, or on remote database servers. Individual Java Beans can be written to
provide tailored access to particular database tables.

 Java Beans are subject to the standard Java security model. The basic run-time
model for Java Bean components requires that they run within the same address
space as their container (JavaAPI 1998).

 A Java applet is a Java program that can be included in an HTML page. In this
respect, its behaviour is quite similar to that of an image. When a Java-compatible
browser is used to view a page containing a Java applet, the applet's code is
transferred to the receiving system and executed by the browser (JavaApp 1998).

43

 2.4.9 OPC

 OPC (OLE for Process Control) was developed in order to satisfy the demand for
integrating plant floor data into business systems. Plant floor devices and data
have to be easily accessible instead of forming standalone “islands” without
methods for distribution. What is required is a common way for applications to
access data from any device on the plant floor, thereby creating a seamless data
access in a manufacturing environment (OPC Taskforce 1996).

 OLE for Process Control keeps hardware providers separate from software
developers. It assigns data collection and distribution to one single developer. The
developer provides software components for those devices which provide data to
clients in a standard manner. Developers can write the software components in C
and C++, and these components can be used by business application developers
for example in Visual Basic without concern for the actual data access (OPC
Taskforce 1996).

 OPC is based on Microsoft’s OLE/COM technology. The specification describes
the OPC COM Objects and their interfaces which are implemented by OPC
Servers. OPC Servers are provided by different vendors. The code written by the
vendor determines the devices and data to which each server has access, the way
in which data items are named and the details about how the server physically
accesses that data (OPC Taskforce 1996).

 Within each server, the client can define one or more OPC Groups. This provides
a way for the clients to organise the data in which they are interested. Within each
group, the client can similarly define one or more OPC Items which represent
connections to data sources within the server (OPC Taskforce 1996).

 OPC interfaces can be used at both the lowest and the highest level. On the lowest
level, raw data from the physical devices can be transferred into a SCADA or
DCS. On a higher level, data from the SCADA or DCS can be added into the
application. OPC is a specification for two sets of interfaces: the OPC Custom
interfaces and the OPC Automation interfaces. OPC Automation interfaces are
generally used by programs created by some form of scripting language. OPC
Custom interfaces are generally used in programs made by C++ to attain
maximum performance (OPC Taskforce 1996).

 OPC Server will generally be a local or a remote EXE including code that is
responsible for data collection from a physical device (OPC Taskforce 1996).

44

 2.5 Web client/server

 Hypertext Web came into being in 1993, when Mosaic’s graphical Web browser
introduced the first client/server application environment on the top of the
Internet. Extended inter-action between Web with HTML forms and the CGI
(Common Gateway Interface) server protocol began two years later. New and
more secure protocols such as SSL (Secure Socket Layer), Secure HTTP (S-
HTTP), and firewalls were also introduced. Java is the first step towards creating
a client/server Object Web. The next step requires Java equipped with a
distributed object infrastructure: CORBA ORBlets, OLE COMlets, and compound
document frameworks such as OLE and OpenDoc. (Orfali et al. 1996).

 Portability, platform-independence, and content-independence are based on four
technologies at the top of the Internet infrastructure:

• graphical Web browsers,

• HTTP RPC,

• HTML-tagged documents, and

• URL global naming convention.

 The URL consists of a protocol scheme, server address, port number and target
resource. The protocol scheme tells the Web browser which Internet protocol to
use. In addition to HTTP (Web’s native protocol, web pages and server programs),
URL supports Gopher (precursor to the Web, hierarchical menus), FTP (files),
News (newsgroup or article), Mailto (mail to a designated e-mail address), and
WAIS (domain name of a target database and list of search criteria) (Orfali et al.
1996).

 HTML is rooted in the ISO SGML standard. An HTML document is an ordinary
text file whose appearance is controlled by embedded tags. Tags are non-case-
sensitive commands surrounded by angle brackets. A tag pair contains a
command. The HTML protocol standards specifies the features of HTML
documents (HTML 1.0, 2.0 and 3.0). World Wide Web Consortium (W3C) issues
piecemeal standards for new features such as tables, applets, frames, and active
objects.

 The Hypertext Transfer Protocol (HTTP) introduces self-describing messages by
using a variant of the Internet Mail’s MIME (Multipurpose Internet Mail
Extensions) protocol, which provides extensible mechanisms for transmitting
multimedia e-mail. MIME supports seven types of data: plain text, audio, video,
still images, messages, and application-specific data. HTTP /1.1 consists of
several extensions to HTTP 1.0 (Orfali et al. 1996).

 In 3-tier client/server Web-style, the server passes a method request and its
parameters to the back-end programs by using a CGI (Common Gateway
Interface) protocol. The back-end program (e.g. DBMS, Lotus Notes or TP

45

 Monitor) executes the request and returns the results in HTML (2.0 or 3.0) format
to the Web server by using CGI protocol. The Web server acts as a conduit
between Web client and back-end programs. CGI technology enables Internet
clients to update databases on back-end servers. Furthermore, the databases can be
used in electronic commerce. (Orfali et al. 1996).

 A form consists of three components: the HTML document as the input form, the
server CGI application that acts on the data from the input, and the reply
document a user sees after submitting the form. The HTML for the reply
document is dynamically generated by the CGI program. The action attribute of
the form describes the URL to which the form’s content is sent. The URL must be
the name of a CGI program or a script. CGI-bin is a special executable directory
where CGI programs reside. The CGI-bin is usually located under the web
master’s direct control. Figure 5 represents an end-to-end client/server scenario
using HTTP-POST method and a CGI program. (Orfali et al. 1996).

WebBrowser WebServer
Environment

Variables
CGIPrograms D B

Submi t

Post

Wri te envi ronment

Execute

Read env i ronment

Standard input

Standard output

Return HTML f i le

Interact ions

 Figure 5. An end-to-end client/server scenario with CGI.

 Windows CGI 1.1 specification is a Windows-friendly version of the CGI
protocol. The HTTP server uses a WinExec call to launch the CGI program. This
protocol uses a set of files to exchange information instead of environment
variables or standard input/output. (Orfali et al. 1996).

46

 2.5.1 Security

 Secure Sockets Layer (SSL) is a secured socket connection that provides a security
layer between the TCP/IP transport and sockets, without involving the
applications. In the Netscape implementation, the HTTP server that implements
SSL must run on socket address 443 as opposed to the standard 80.

 The SSL protocol provides

• private client/server interactions which use encryption,

• server authentication, and

• reliable client/server exchanges via message integrity checks that detect
tampering.

 S-HTTP is a security-enhanced variant of HTTP. S-HTTP adds application-level
encryption and security on top of ordinary sockets-based communications. Clients
and servers use a MIME-like protocol to encrypt the contents of the messages. S-
HTTP provides the following security features (Orfali et al. 1996):

• It authenticates both clients and servers.

• It checks for server certificate revocations.

• It supports certificate chaining and certificate hierarchies.

• It supports digital signatures.

• It allows an application to negotiate the security levels it needs.

• It provides secured communications through existing corporate firewalls.

S-HTTP marks individual documents as private or signed. In contrast, SSL
ensures that the channel of communication between two parties is private and
authenticated. SSL and S-HTTP can coexist if S-HTTP is layered on top of SSL.
Terisa Systems offers a toolkit that supports both S-HTTP and SSL. (Orfali et al.
1996).

Microsoft has published its own security specification called Private
Communications Technology (PCT), but is also planning to support both SSL and
PCT in its forthcoming Internet products. (Orfali et al. 1996).

A firewall is a gatekeeper between the Internet and the private network. There are
two types of firewalls: packet-filtering routers and proxy-based application
gateways. A packet filter mechanism provides a basic level of network security at
the IP level and is implemented in routers. Packet filters drop, reject or accept
packets in accordance with the rules they have been programmed to follow.

47

Another guideline contributing to this process is the IP header of the current
packet (Orfali et al. 1996).

Proxy firewalls, i.e. application firewalls, are the most secure form of firewall. All
informing Internet traffic is funnelled to the appropriate proxy gateway for mail,
HTTP, FTP and etc. The proxy makes the decisions based on context,
authorisation, and authentication rules. It operates at the highest level of the
protocol stack and functions as a relay between the Internet and the private
network. Transparent proxies are completely transparent to end-users. Additional
security is provided by combining router and proxy techniques. (Orfali et al.
1996).

2.5.2 Electronic payments

Most banks have created their electronic payment infrastructure on top of SSL and
S-HTTP. CyberCash uses its own secure channel with the bank and uses neither
SSL nor S-HTTP, but instead realises on its own encryption. VirtualPIN can
similarly be used as an alias for a personal credit card, since the application itself
includes a credit card number and an e-mail address. Every purchase made by
VirtualPIN is confirmed by First Virtual, the supplier of the VirtualPIN
application.

Digicash provides e-cash, the Internet equivalent of cold hard cash. E-cash bills
can be acquired from a bank account and are used for anonymous purchases. E-
cash cannot be used for credit purchases.

EDI-MIME specification will enable exchanging invoices over the Internet. It
defines a common method for sending EDI documents on the Net. In addition to
SSL and S-HTTP, there are two standards-based security options: the MIME
Object Security Services (Moss), known also as Privacy Enhanced Mail, and
Pretty Good Privacy (PGP). Both offer encryption, authentication, and privacy
features.

Visa and Mastercard are working on a common solution called Secure Electronic
Transaction (SET). Joint Electronic Payments Initiative (JEPI), as announced by
W3C and CommerceNet, seeks to achieve compatibility among the different
electronic payment schemes - including e-cash, e-checks and electronic credit
cards. (Orfali et al. 1996).

2.5.3 Java objects in Web

HotJava is a special Web browser that can interpret Java-generated code. Netscape
and Spyglass have adopted some features of HotJava.

The following scenario portrays a Web client/server interaction including a Java
applet (Orfali et al. 1996):

48

1. A Web browser requests the applet as it encounters the new HTML
<APPLET> tag.

2. The browser initiates a separate TCP/IP session to download each applet it
encounters within a Web page.

3. The browser loads the applet into client memory and executes it.

4. The browser deletes the applet from memory when it exits the Web page.

In addition to exchanging traditional content (text, graphics, audio, and video),
Java enables Web applications to exchange mobile code. Other examples of
mobile code systems are Safe-Tcl, Colusa’s Omniware and General Magic’s
Telescript. Microsoft provides a portable version of its Visual Basic Script (VB
Script) engine. Mobile code systems are the founding technology for mobile
agents. A mobile code system is expected to provide the following services (Orfali
et al. 1996):

• Safety. The system must be able to control the environment of an applet, i.e. its
access to memory, system calls, and server function calls.

• Portability. The system must provide cross-platform memory management,
threads, synchronisation, communications, and GUI services including a
compound document framework.

• Life-cycle. The system must provide a run-time environment for loading,
unloading, and executing the code.

• Distribution. The system must provide facilities for moving applets across the
network. In addition, it must prevent mobile code from exposure to viruses.

Java is only a partially compiled language, since 80% of the compilation work
involves creating the bytecode. The remaining 20% is interpreted by the Java run
time. The client machine includes a Java verifier which runs the tests for the
bytecodes. After testing, the loader transfers the bytecodes to an interpreter. Just-
in-time compilers are designed to improve Java performance.

2.5.3.1 Protection mechanisms

Memory layout decisions are made during run time. The Java compilation codes
access memory via symbolic names. These are resolved to real memory addresses
at run time by the Java interpreter (late-binding). The verifier protects the Java
run-time environment from a range of external threats. The loader divides the set
of Java classes into separate name locations: one for classes from the local file
system, and others for each network source (separation). Access control lists
(ACLs) are used for additional levels of security on top of language and run-time

49

base. Either imported code, or code which is invoked by imported code, controls
read and write access to files. With HotJava browsers, security mode is used to
set security levels: none - applets cannot access the network; applet host allows
applets to access data on the home server from which they originate. Firewall
mode allows applets to access resources that are located outside the firewall.
Unrestricted mode allows applets to connect any host on the Internet. (Orfali et al.
1996).

Web browser controls the life cycle of an applet by invoking Init after loading and
by invoking Start to begin preparation for run. Paint asks the applet to display the
contents. Stop and Destroy are used to instruct the applet to terminate all its
threads, stopping the execution, and releasing resources. The APPLET tag
contains the required information (code, width, height, codebase, align) that
connects the Web browser to the embedded applet. (Orfali et al. 1996).

Active objects can also be inserted inside an HTML document by using
Netscape’s EMBED tag for compound document embedding and Microsoft’s
DYNSRC attribute for video and audio. HTML 2.0 provides IMG tag for inserting
media into HTML documents. INSERT tag (from W3C) is an universal tag to be
used for inserting different kinds of objects such as HTML images, Java applets,
OLE components, OpenDoc parts, media handlers, in addition with a wide rage of
plug-ins. (Orfali et al. 1996).

Java bytecode engines are available as PicoJavas, MicroJavas and UltraJavas.
The Java “operating system” consists of Java language, Java libraries, JDBC and
ORBs. Java Beans, plug-ins, applets and Java IDL are provided for desktop Java
applications. Java ORBlets are Java component services provided for CORBA
infrastructure. Sun is developing Java Object Environment (JOE) which is a
portable CORBA ORB written entirely in Java. JOE allows any Java applet to
access any CORBA services. Java ORBs are available also from some ORB
vendors (Iona, PostModern, Expersoft, Visigenic). PostModern’s BlackWindow
was the first Java ORBlet on the market. It implements the client and server sides
of a CORBA 2.0 ORB in less than 100 Kbytes of Java bytecode. (Orfali et al.
1996).

2.5.4 Embedded WebBrowsers

The operating system for embedded web browser should support Unix or POSIX
API. A microkernel architecture can be used to provide a POSIX API (for
example, QNX/Neutrino basic POSIX OS services in about 32k of code). Java
runtime-engine favours an essentially POSIX-compliant OS with asynchronous
I/O, generic thread support, file system, networking support, and windowing
system (Hildebrandt 1997).

50

At present, the following embedded Web browsers are available (www-links are
included in the references):

1. Spyglass Device Mosaic 2.0

• Designed to run on VxWorks, pSOS, QNX, LynxOS, OS-9, and PowerTV

• 633kb code space

• Under 2Mb of memory

• Modular design -> scalable

• A minimal amount of platform dependent code -> portable

• Can display HTML documents encoded with any character set

• Fully HTML 3.2 compliant

• HTTP 1.0 compliant

• GIF, animated GIF and JPEG support

• Basic authentication, cookies and server push support

 2. HotJava by SUN (JavaProd. 1998)

• 2 versions: The HotJava Browser is a full featured, lightweight Web
browser with a highly-customisable user interface. The HotJava HTML
component is a JavaBeans component for displaying HTML. It can be
embedded into other applications or coupled with a custom user interface

• Written completely in Java

• Runs on any JDK 1.1.4-compliant Virtual Machine

 3. ICE Browser (Icesoft 1998).

• ICE Browser is not compatible with Java version 1.02. Providing
backward compatibility is virtually impossible, since versions prior to 1.1
cannot interpret Java Beans.

• HTML 3.2 compliant

• NLS Internationalization

• Tables

• Frames

51

• HTTP Authentication

• Applets

∗ Applet communication between web pages by using ICE Connect

∗ Variable repository

∗ Passing objects to and from applets

∗ Persistence of variable repository between sessions

• Forms

• Forgiving HTML Parser

• Printer support

• Java archive (JAR) format support

∗ JAR archives for use in <APPLET> tag

∗ JAR files as contents resources. Accessing a JAR file URL retrieves
all resources, in a similar manner as with web sites.

• Superb scrolling performance

• Client side image maps

• Multithreaded for asynchronous loading and document parsing.

• Asynchronous image and applet loading

• Persistence - serialises current state

• Background images

• Document history

• Lightweight (only 120kb)

• Fast rendering.

2.5.5 Embedded WebServers

An embedded web server must function as a process that is subordinate to the
main purpose of the device. It is not necessarily required to support a very large
number of connected users, the usual number being from one to a few dozen.
Embedded web servers work with a fixed set of content which is usually “frozen”

52

at the time that the equipment is manufactured. The servers are required to run on
a broad range of equipment (Wingard 1997).

Embedded web servers use security primarily as a means to limit access to
sensitive information or configuration controls. A relatively straightforward way
to enforce access control to sensitive information is to implement access control
lists which are based on the clients’ IP addresses or DNS host names. Another
way to manage security is using digest authentication. In digest authentication, the
client transmits only a “digest”, which is a combination between user name,
password, URL named in the request method and “nonce” value supplied by the
server in the original challenge. The server forms its own version of the digest
from the same information and compares it to the offered digest (Wingard 1997).

The architecture must minimise the requirements for such system resources as
threads, since the Web server acts as a “secondary” feature of the system and
should not interfere with the primary purpose. Support for multiple connections
can be accomplished in a single processor/thread by implementing a finite state
machine, which processes an HTTP request as a sequence of discrete steps. The
FSM is run by a small scheduling system that uses lightweight task structures.
With this system, several connections can remain active at once. Each of these
connections is represented by a specified task in the scheduler (Wingard 1997).

One of primary tasks of the server is to perform mapping, which involves
transferring the server’s virtual name space into a physical name space (Wingard
1997).

The most common application for embedded Web server is providing an interface
for status-reporting, configuration, and control features of devices. When a request
arrives, the embedded server determines the status of the device and transforms
that information into an HTML page. After that, the information is returned to the
browser. One method to generate this HTML content is using server APIs, which
are conceptually similar to the APIs provided by mainstream Web servers
(Wingard 1997).

The flexibility of a server API enables applications to perform processing at
different stages. If the Web application is required to process large amounts of
data, this is an important advantage (Wingard 1997).

An embedded Web server should be equipped with a capacity to implement
standard functions of HTTP protocol. In addition, the server must be autonomous
from the type of the in-system communication network. Embedded Web server
should be a scalable software system and capable of satisfying a wide range of
time constraints. It can be built as a multiprocess system, which can run on one
processor in multiprogram mode, as well as on parallel multiprocessor or on a
distributed system (Sheinin et. al., 1998).

A distributed real-time operating system is required in supporting real-time
mechanisms for an embedded Web server. In addition, it should support

53

distributed parallel data processing. The network interface for communications
should be network-independent. Network protocols in real-time systems should be
protocols with small overheads, and should have small time latency (Sheinin et.
al., 1998).

On the following pages, Commercial Web servers are described (www-links in the
references):

1. Spyglass MicroServer 2.0 (Spyglass 1998).

• Delivered as Windows NT or Solaris source code. Designed to run on
LynxOS, QNX, OS-9, VxWorks, and pSOS

• HTTP 1.1 compliant

• Minimum configuration 10kb, full-featured 36kb

• Support for multiple simultaneous users

• Optional security, including basic and digest authentication

• Dynamic content generation and HTML translation utilities

2. Lava by Magma (Magma 1998).

3. EmWeb by Agranat Systems (Agranet 1998).

• Supports Solaris, SunOS, HPUX, Linux and Windows NT+95

4. Nuceleus WebServ by Accelerated Technology (Nucleus 1998).

• A general purpose HTTP server that can process multiple requests
simultaneously by interleaving buffers back to the web browser. This
function permits transferring data to the web browser. It does not,
however, require memory to store the entire HTML file during transfer.
Nucleus WebServ provides also the ability to upload files from the web
browser.

• HTTP 1.0 Compatible

• GET Method

• HEAD Method

• POST Method

• Extremely Small Size

• Fully Functional Server in Small Package

• Supports Multiple Concurrent Requests

54

• File upload (on-line document update)

• Document Compression

• Optional Encrypted Authentication

• Hard Encryption (DES)

• Java Applet Interface

• Dynamic Web Page Content

• CGI (plug-in) Support

• Forms support (POST Method)

• Server Side Include support

• NSAPI Like Plugin Interface

• Flexible Page Storage

• Pages in Memory or on Disk

5. RomPager by Allegro Software Development Corporation (Allegro 1998).

• The RomPager embedded web server functions with any OS or TCP
package and has been ported to a number of environments including the
ATI Nucleus, Epilogue, Lynx, Microtec VRTX, Pacific Softworks Fusion,
PSOS, QNX, SNMP Research and VxWorks stacks. RomPager has also
been ported to Windows, Macintosh and Unix development environments.
Since RomPager comes with its own internal scheduler, any OS can be
used to support the engine.

6. WebControl by Rapid Logic (Rapid 1998).

• WebControl is specifically designed to be RTOS and TCP stack
independent. It is compatible with a system which:

• has at least a rudimentary memory management system. If the system
can provide WebControl with initial memory block, WebControl's own
memory management system function after this.

• has at least a primitive TCP stack. WebControl requires only a
minimalist interface to a TCP port

7. Quiotix Embedded WebServer by Quiotix (Quiotix 1998).

• One basic requirement of Quiotix Embedded WebServer is a TCP/IP
protocol stack. It requires few other services from the embedded
environment, which allows it to work even in platforms without a real
operating system. (It will run well with an operating system as well.) The

55

standard QEWS distribution includes system-dependent modules for
Microsoft Windows, Sun Solaris, DEC Unix, and popular embedded
operating systems such as VxWorks, pSOS, and LynxOS. Source code and
complete documentation for porting to other environments are also
included.

• Full HTTP support

• Small, fast, and easy to integrate with environment

• Automatically generates a minimal server subset for each application.
Eliminates the need for multiple server products or "one size fits all"
compromises

• InternalCGI 1.1

• SSI

• Basic and Digest authentication, ACLs

• Automatic forms processing

• Image map support

• Virtual file system

• Host-based environment for content development

 2.6 Communication mechanisms

 This chapter describes the communication mechanisms used in different types of
middleware. The type of communication mechanisms required depends on the
application. Real-time applications use mostly asynchronous communication,
whereas embedded systems require synchronous communications as well.

 2.6.1 Synchronous communication

 In synchronous communication, the sender specifies the receiver and the message
is transmitted without delay. Normally, the sender waits for the reply and the
transmission is completed after a reply is received. CORBA and DCOM clients
use synchronous invocations in passing parameters to servers and stand-by for the
result information.

 CORBA SII (Static Invocation Interface) enables an invocation to be declared as a
one-way call, which simulates asynchronous message passing. The one-way

56

 invocations are processed as best effort, but the transmission to the end-point
cannot be guaranteed. The deferred-synchronous mode applied by DII (Dynamic
Invocation Interface) allows the sender to continue processing while the
invocations are being processed. At-most-once execution is the most reliable
characteristic.

 DCOM proxy and stub mechanism is very similar to the method by which
CORBA implements local/remote transparency. This method applies static stubs
on the client side and interface skeletons on the server side. DCOM requires that
every OLE component implements the Iunknown interface, which is used by
clients to determine at run time which interfaces a component provides, and the
connections between them. This corresponds the CORBA DII mechanism.

 2.6.2 Asynchronous communication

 2.6.2.1 Events

 Event-based communication is asynchronous communication without a queue at
the receiving end of the event. If the receiver is not available, the communication
fails, i.e. the event is lost. The object that supplies the event is called the supplier
and the receivers are called consumers. The event channel object decouples
communication between suppliers and consumers.

 Event service in CORBA supports a push model and a pull model at both ends of
the channel. A push supplier sends an event to the channel by invoking a push
operation, which the channel must accept. The pull supplier supports a pull server
interface. The channel functions as a client and requests an event from the
supplier, for example at timed intervals. A push consumer supports the push
server interface invoked by the channel client. Simultaneously, a pull consumer
invokes the pull operation on the channel. The pull operation responds to the event
if another event is on queue on the object channel. (Figure 6). The channel
maintains the event information in its queues until all the pull mode consumers
have received the event. (Siegel 1996).

57

Supplier EVENT CHANNEL

EVENT CHANNELSupplier

Consumer

Consumer
TryPull

Pull

PushPush

Pull

TryPull

 Figure 6. Event-based communication with push and pull models.

 CORBA Event service which co-operates with the Relationship service can be
used to implement publishing and subscribing capabilities. An event can
implement a dynamic linkage, in which an object is connected to a hot-link update
of information. Events can be used in a windowing environment to pass input
events synchronously to applications. In real-time systems, the notifications are
real-time. By using events, it is possible to decouple event suppliers and
consumers; another advantage is that events provide looser coupling among
objects. (Mowbray 1997).

 2.6.2.2 Messaging

 Messaging is asynchronous communication in which the sender does not know the
identity of the receiver but only the message queue in which it resides. Delivery to
the queue is guaranteed (minimum quality-of-service). CORBAs Messaging
Services are not yet defined, but two revised joint submissions have been sent to
the next meeting (deadline 31 March 1998).

 Message-based communication is used when large quantities of data must be
asynchronously transferred between the sender and receiver objects. This
communication model is normally used in mainframe and real-time systems.
Message-oriented middleware is based on this communication model. The main
benefit of this model is that the sender and receiver are loosely coupled and cannot
be simultaneously available. Messages are buffered in queues and delivered when
the receiver is available. Synchronisation at the application level guarantees
reliable communication..

 2.6.3 Communication mechanisms

 2.6.3.1 Remote procedure call

 RPC is the basic communication mechanism in CORBA, although it is widely
used in non-CORBA applications too. RPC itself has a close resemblance to the

58

session layer of the OSI model. It contains also aspects of its presentation layer,
since it converts user data into a platform independent format that is suitable for
transmission over the network. RPC is supported as a standard library in the
following environments: Sun ONC RPC, IBM AIX, OSF DCE RPC, Microsoft
RPC (which is DCE RPC compliant), and Novell’s TI-RPC. CORBA is based on
ONC (Open Network Computing), whereas DCOM uses its own RPC which is
based on DCE RPC. The main difference between ONC and DCE is that ONC
uses the object-oriented model whereas DCE is a procedural approach capable of
providing naming and security services. (Sydorowicz 1997).

 The communication is based on interface descriptions which are generated by an
interface generator. The interface generator, RPCgen, acts as follows: IDL ->
RPCgen -> server stubs, client stubs, header files, XDR data type conversion file.
RPC utilises generated XDR functions for encoding, decoding, and destroying
data. Data conversion forms a machine-specific definition to XDR representation,
which is called serialisation or marshalling. (Sydorowicz 1997).

 TI-RPC is a version of RPC. It interfaces with the transport layer by using the
Transport Layer Interface instead of sockets. TI enables having a consistent
programming interface across different machines and transport protocols. Earlier
versions of RPC supported TCP and UDP. TI-RPC enables specifying a transport
at any time, including prior to run-time. The strong point of RPC is its tolerance
for transport alterations. The transport can be modified to suit a particular
hardware choice without affecting the applications. (Sydorowicz 1997).

 RPC utilises XDR in converting complex data structures into transferable form.
Session layer functionality is provided by RPC library. (Sydorowicz 1997).

 RPC Specification (Open Group 1997) provides specifications for portability and
interoperability. Portability consists of API, stubs, and interface definition
language. Interoperability is defined by the protocol and service specifications.
The protocol specifications describe how RPC clients and servers communicate
and the service specifications describe a set of abstract services which must be
implemented by RPC run-time systems.

 RPC mechanism maps the local procedure call paradigm onto an environment
where the calling procedure and the called procedure are distributed between
different execution contexts. Usually, these contexts reside on physically separate
computers linked by communications networks.

 A procedure is defined as a closed sequence of instructions that is entered from,
and returns control to, an external source. Data values may be passed in both
directions along with the flow of control. A procedure call is the invocation of a
procedure. A local procedure call and an RPC behave similarly. There are,

59

 however, semantic differences due to several following properties of RPCs (Open
Group 1997):

• Server/client relationship (binding). While a local procedure call depends on
a static relationship between the calling and the called procedure, the RPC
paradigm requires more dynamic behaviour. As with a local procedure call, the
RPC establishes this relationship through binding between the calling
procedure (client) and the called procedure (server). However, in case of RPC
the binding usually depends on a communications link between the client and
server RPC run-time systems. A client establishes a binding over a specific
protocol sequence to a specific host system and endpoint.

• No assumption of shared memory. Unlike a local procedure call (which
commonly uses the call-by-reference passing mechanism for input/output
parameters), RPCs with input/output parameters have copy-in, copy-out
semantics, due to differing address spaces for calling and called procedures.

• Independent failure. Besides execution errors arising from the procedure call
itself, RPC introduces additional failure cases which originate from execution
on physically separate machines. Remoteness introduces issues such as remote
system crash, communications links, naming and binding issues, security
problems, and protocol incompatibilities.

• Security. Executing procedure calls across physical machine boundaries has
additional security implications. Client and server must establish a security
context based on the underlying security protocols, and they require additional
attributes in order to authorise access.

 The basic operations performed by a Remote Procedure Call (RPC) are:

• The Invoke service primitive is used to invoke an RPC.

• The Result service primitive is used to return the output and input/output
parameters at the end of a normal execution of the invoked RPC.

• The Cancel service primitive is used to cancel an outstanding RPC. This
operation forwards a client cancel request to the server application thread. If the
server application thread does not return within a caller-specified time, the RPC
fails. In most cases, this type of processing is specific to the associated protocol
machines.

• The Error service primitive can be used by the server manager routine to
indicate an error in the response to a previous Invoke indication.

60

• The Reject service primitive indicates that there is a problem with the
underlying communications or the RPC protocol machines. The reject reason
(parameter, Call_Reject_Reason) can indicate the state of a particular RPC and
therefore can determine whether the call has already been executed at the
server.

 The specification describes communication protocols that are RPC connection-
oriented or RPC connectionless. It includes also an abstract specification of the
underlying transport services required by the RPC protocols. It includes the format
specifications for those RPC Protocol Data Units (PDUs) which are used by the
protocols and common authentication verifier encodings. The Network Data
Representation (NDR) specifies a set of NDR data types and byte stream formats
in which clients and server are transmitted. IDL data types are mapped to NDR
data types. A RPC stub specification defines the stub characteristics required for
interoperation. In addition, the specification defines what information is stored in
and retrieved from name services.

 Table 5. UUID Format.

 Field NDR Data Type Octet # Note

 time_low Unsigned long 0-3 The low field of the
timestamp.

 time_mid Unsigned short 4-5 The middle field of
the timestamp

 time_hi_and_version Unsigned short 6-7 The high field of the
timestamp
multiplexed with the
version number.

 clock_seq_hi_and_
 reserved

 Unsigned small 8 The high field of the
clock sequence
multiplexed with the
variant.

 clock_seq_low Unsigned small 9 The low field of the
clock sequence.

 node Character 10-15 The spatially unique
node identifier.

 The specification defines a UUID (Universal Unique Identifier) format. A UUID
is an identifier that is unique across both space and time, with respect to the space
of all UUIDs. A UUID can be used for multiple purposes, from tagging objects
with an extremely short lifetime, to reliable identification of persistent objects
across a network.

61

 The generation of UUIDs does not require registration authority for each single
identifier. Instead, what is required is a unique value over space for each UUID
generator. This spatially unique value is specified as an IEEE 802 address which is
usually already applied to network-connected systems. Selecting this 48-bit
address can be done by obtaining an address block through the IEEE registration
authority. This UUID specification requires that an IEEE 802 address is available
(Table 5).

 IDL type includes definitions for a variety of data types. The endpoint mapper
protocol defines how the endpoint mapper listens on a well-known endpoint for
each supported protocol. Registered endpoints are listed in Endpoint Mapper
Well-known Ports. Conversation manager protocol and the remote management
interface have also been described. (Open Group 1997).

 The portability specification describes the behaviour that is common to all
implementation, providing the concrete syntax and semantics of the Application
Programmer’s Interface (API) to RPC. The specification consists of the RPC
programming model, data types used in the RPC API, the RPC run-time library
routines, IDL and its mapping to ISO C data types, and the stub characteristics
required for portability. (Open Group 1997).

 2.6.3.2 Remote method invocation

 In order to match the semantics of object invocation in distributed systems, RMI
(i.e. Remote Method Invocation) is required. In systems such as these, a local
surrogate (stub) object manages the invocation on a remote object (RMI 1998).

 RMI is a function which invokes a remote interface method on a remote object. A
method invocation on a remote object has the same syntax as a method invocation
on a local object (RMI 1998).

 Java RMI system is specifically designed to operate in Java environment. Other
RMI systems can be adapted to manage Java objects, but these systems cannot be
seamlessly integrated, since they require interoperability with other languages
(RMI 1998).

 The RMI system uses Java interfaces and a special “stub” compiler to provide
transparent access to remote objects. To begin with, an interface is defined by
specifying the methods which a remote object provides. Next, a server class is
defined to implement the interface. The stub compiler is invoked to generate
classes which act as connectors between a local representation of an object and an
object residing on the server. The RMI system also provides a naming service that
permits servers to bind object references to URLs (Morrison et al. 1997).

 Goals (RMI 1998):

• Seamless support for remote invocation on objects in different virtual
machines.

62

• Call-back support from server to Applet..

• Natural integration between distributed object model and Java language.

• Overt difference between the distributed object model and the local Java
object model.

• Rendering writing reliable distributed applications as simple as possible.

 RMI system should permit extensions such as garbage collection of remote
objects, server replication, as well as activating persistent objects to service an
invocation. These extensions should be transparent to the client, and should not
increase implementation requirements for the servers that use them. To support
these extensions, the system should also support (RMI 1998):

• Several invocation mechanisms.

• Various reference semantics for remote objects.

• Security managers and class loaders for safety.

• Distributed garbage collection of active objects.

• Capability for multiple transports.

 The RMI system consists of three layers: the stub/skeleton layer, the remote
reference layer, and the transport layer (Figure 7). The boundary at each layer is
defined by a specific interface and protocol. It is therefore independent of the next
layer and can be replaced by an alternate implementation without affecting other
layers in the system (RMI 1998).

 A remote method invocation from a client to a remote server object travels down
through the layers of the RMI system to the client-side transport, then up through
the server-side transport to the server (RMI 1998).

 The stub/skeleton layer is an interface between the application layer and the rest of
the RMI system. This layer transmits data to the remote reference layer via a
marshal stream abstraction. Marshal streams employ a mechanism called object
serialisation, which enables Java objects to be transmitted between address spaces
(RMI 1998).

63

Transport Layer

Remote Reference Layer

Stubs Skeletons

RMI
System

Application Client Server

 Figure 7. The RMI system.

 The remote object stub functions as a client-side proxy for the remote object. It is
responsible for (RMI 1998):

• Initiating a call to the remote object.

• Marshalling arguments to a marshal stream.

• Informing the remote reference layer that the call must be invoked.

• Unmarshalling the return value or exception from a marshal stream.

• Informing the remote reference layer that the call is complete.

 A skeleton for a remote object is a server-side entity that contains a method which
dispatches calls to the actual remote object implementation. It is responsible for
(RMI 1998):

• Unmarshalling arguments from the marshal stream.

• Making the up-call to the actual remote object implementation.

• Marshalling the return value of the call or an exception onto the marshal
stream.

 The appropriate stub and skeleton classes are defined at run time and are
dynamically loaded when needed (RMI 1998).

 The remote reference layer deals with the lower level transport interface. This
layer is also responsible for carrying out a specific remote reference protocol,
which is independent of the client stubs and server skeletons (RMI 1998).

 Each remote object implementation chooses its own remote reference subclass to
operate on its behalf (RMI 1998).

 The remote reference layer includes co-operating components for both the client-
side and the server-side. During each method invocation, the client and server-

64

 side components perform the semantics for specific remote reference (RMI 1998).

 The remote reference layer transmits data to the transport layer via abstraction of a
stream-oriented connection (RMI 1998).

 The transport layer of the RMI system is responsible for (RMI 1998):

• Setting up connections to remote address spaces

• Managing connections

• Monitoring connection “liveness”

• Listening for incoming calls

• Maintaining a table of remote objects

• Setting up a connection for an incoming call

• Locating the dispatcher for the target of a remote call and passing the
connection to this dispatcher

 The Java distributed object model (through RMI) is similar to the Java object
model in the following ways (RMI 1998):

• A reference to a remote object can be passed on as an argument or returned as
a result in any method invocation.

• A remote object can be cast to any remote interface sets that are supported by
the implementation. Casting is done by using the built-in Java syntax.

• The built-in Java instanceof operator can be used to test the remote interfaces
supported by a remote object.

 The Java distributed object model differs from the Java object model in the
following ways (RMI 1998):

• Remote object clients interact with remote interfaces, never with the
implementation classes of those interfaces.

• Non-remote arguments to and results from a remote method invocation are
transmitted by copy, because references to objects are useful only within one
virtual machine.

• A remote object is passed on by reference.

• Some of the methods defined by class Object include semantics that are
specialised for remote objects.

65

• Since the failure modes for invoking remote objects are inherently more
complicated than the failure modes for invoking local objects, clients must
resolve the additional exceptions that can occur during a remote method
invocation.

 The following comparison relates RMI to the base ORB of the CORBA system.
The other CORBA system services are beyond the scope of RMI (JavaFAQ 1998).

 Java RMI is not CORBA-compliant, but rather the "pure Java" solution. Interfaces
are defined in Java as opposed to CORBA's interface definition language (IDL)
which is language-neutral (JavaFAQ 1998)

 CORBA was designed for a language-independent distributed computing
environment in which the underlying systems are expected to be heterogeneous
and in which the objects are written in compiled languages. Java RMI, on the
other hand, was designed for a single language environment where the objects are
running in a homogeneous environment and where new code can be downloaded
at any time (JavaFAQ 1998).

 Differences arising from language dependence/independence can be detected in
each model. The CORBA object model is defined by IDL and differs from any
other object model in object-oriented language. Mapping the IDL object model
into the object model of a particular language involves considerable effort. Even
with C++, after which IDL was modelled, matching is not easily done (JavaFAQ
1998).

 On the other hand, Java RMI has no separate interface definition language; remote
interfaces are defined simply by using Java. This indicates that there is no
translation from one language to another, since the language will remain the same
as long as the Java object model is used (JavaFAQ 1998).

 The differences caused by heterogeneous and homogenous environments are
subtler. In the CORBA world, references are passed around and the code
associated with a particular reference has to exist on both sides of the call. Owing
to this, objects are passed as versions of declared types (as opposed to more
derived types), since only codes of the declared type can be guaranteed to exist on
the receiving side. For example, if a B-type object is passed on in a call which
requires an A-type object, the object is perceived as an A in the receiving end. If it
is further passed on as an A to a destination requiring a B, it will be rejected
(JavaFAQ 1998).

 Java RMI, on the other hand, always passes an object in its real type. If the code
does not exist on the receiving side, it is simply downloaded. In the scenario
above, when the object of type B is sent to a receiver asking for an A, it is still
perceived as type B. When passed along to a third receiver, the receiver accepts
the object as a representation of a B. If the right code for handling a B is not
available, that code will be loaded (with all the appropriate security checks)
(JavaFAQ 1998).

66

 Another major difference is that Java remote objects are garbage collected, which
is not possible with CORBA objects. CORBA objects are language independent,
and therefore have to be consistent with languages that do not support garbage
collection. A CORBA remote object, once it is created, exists until it is
terminated. One of the major complications in writing a CORBA server is
deciding when objects can be eliminated. As for Java RMI, object elimination is a
part of the Java garbage collection system, extended by the RMI system (JavaFAQ
1998).

 Yet another difference is that Java RMI does not match the interface repository of
CORBA.. This is not required, since all the objects are Java objects whose types,
methods, and fields are described by the loadable class files (JavaFAQ 1998).

 2.6.3.3 InfoBus

 InfoBus is a small Java API which permits data communication between
JavaBeans and co-operating applets on a Web page. The technology standardises
the manner in which applets and JavaBeans communicate within a Java Virtual
Machine. InfoBus is a small specification with only 30 method calls. Presently,
the implementation requires barely over 4k. InfoBus defines a small number of
interfaces between InfoBus compatible components, and specifies the protocol for
interface use (Infobus 1998).

 InfoBus 1.1 is available for JDK 1.1.X. Version 1.2 is compatible with JDK 1.2.

 InfoBus provides each applet with a mechanism to publish and receive data by
name. InfoBus uses generic interfaces that enable data exchange between two
mutually unaware applications. Which of the applications produces the data is
irrelevant. In other aspects, Infobus is functionally quite similar to Dynamic Data
Exchange (DDE) by Microsoft’s Windows (Infobus 1998).

 InfoBus architecture addresses interacting applets in one single Java Virtual
Machine (and unlike RMI), not across multiple JVMs (Infobus 1998).

 In contrast to an event/response model, where the semantics of an interaction
depend on understanding an applet-specific event and responding to that event,
with applet-specific callbacks, InfoBus interfaces have very few events and an
invariant set of method calls for all applets. The semantics of the data flow are
based on interpreting the contents of the data flowing across InfoBus interfaces, as
opposed to responding to events and names from callbacks or events (Infobus
1998).

 Components that form an InfoBus application can be divided into the following
three types (Infobus 1998):

• Data producers

67

• Data consumers

• Data controllers

 A data controller is an optional component that regulates or redirects the flow of
data between data producers and consumers. An individual applet can
simultaneously be both a data producer and a data consumer (Infobus 1998).

 InfoBus protocol for data exchange supports the following major elements
(Infobus 1998):

• InfoBus participation. Components are given a unique InfoBus context
identifier.

• Rendezvous on the data to be exchanged. Data producers announce the
availability of new data as it arrives. Data consumers solicit data from
producers on acquiring it.

• Data encoding. Different data producers manage different types of data while
consumers may request for this data in simple or complex ways. To
accommodate the needs of both producers and consumers, InfoBus defines a
determinate number of data access interfaces.

 In order for a data provider to establish participation in InfoBus, the object must
actively initiate the participation for sending or receiving data. Once the
connection is made, the object can send DataBusEvents to announce and obtain
data. If the DataBus Event has a data item name matching an item from a data
producer, the Event sends a response. Some data producers can provide only one
data item, some provide various items (Infobus 1998).

 Data Consumers can request data on start-up by sending a DataBusEvent to
InfoBus. The data consumer stands by for any data announcements from the
producer, and as a response to the announcement, issues a DataRequest event to
obtain the data (Infobus 1998).

 2.6.3.4 Message Oriented Middleware

 The CORBA 3.0 ORB will include the functions of Message Oriented
Middleware (MOM). CORBA provides the following functions for MOM (Orfali
et al. 1996):

• Uniform object-based interfaces. Currently, each MOM product provides its
own non-standard API. Most of these APIs are procedural. CORBA offers a
standard object interface, IDL support and a complete distributed object
infrastructure.

• Technology for describing the message content. Currently, the message
contents are opaque to MOM. CORBA enables MOM messages to be typed via
IDL and provides generic data types.

68

• Endpoint definitions for a message exchange. Currently, each MOM has its
own model of defining what constitutes an endpoint. An endpoint can be either
a queue, a process, or an object. In CORBA, an endpoint is a unique object
reference.

• Interoperable middleware. Each MOM vendor must define its own proprietary
wire-level protocols. CORBA IIOP defines wire protocols that enable
interoperation between products by multiple vendors. IIOP supports
transactions and security as well.

• Internet foundation. CORBA IIOP is becoming a standard Internet protocol.
CORBA will have well-known ports, URL mappings, and standard proxies for
firewalls.

• CORBA provides MOMs with a strong object foundation and standard
interfaces. CORBA will allow writing portable and interoperable MOM
applications.

 MOM allows clients to make asynchronous requests that do not block the client’s
execution thread. Writing and maintaining will be simple, since clients do not
require multithreading.

 MOM allows clients and servers to run at different times. This is a useful feature
in loosely-coupled inter-enterprise situations. Owing to the rising popularity of the
Internet, servers will be required to run in continuous mode.

 Disconnected clients will be able to accumulate outgoing transactions in queues
and perform a bulk upload as a connection with a server is established. MOMs
does not require clients and servers to be simultaneously available.

 MOM enables servers to determine when to select messages from their queues.
The servers can use objects (servants) to choose messages either on FIFO basis or
according to priorities. Filters are used in order to reject or re-direct unwanted
messages. Queues can be persistent or non-persistent, depending on QoS
definition.

 QoS attributes are defined by both sides. Clients can set the QoS based on an
individual call and they can define a callback object for managing the responses.
Queue-aware servers must provide a MOA (Message Object Adapter) which can
be derived from POA (Portable Server-Side Adapter). The MOA allows a queue-
aware server to control in what order it processes the received requests. Messages
themselves may be objects which can be stored, queried, retrieved, and passed
around by using CORBA 3.0’s pass-by-value, together with object services such
as Query and Persistence. CORBA MOMs will most likely be built on top of
IIOP, but will provide gateways to existing MOM products such as IBM’s
MQSeries, Digital’s MessageQ, PerLogic’s Pipers, Covia’s Integrator, and
Tibco’s TibNet. MOMs can be integrated with such CORBA Services as Events,

69

 Query, and Trader in order to provide powerful publish-and-subscribe systems for
the Object Web. (Orfali et al. 1997).

 MOM-style communications will make CORBA more flexible and time-tolerant.
A modern ORB should support both MOM and request-reply styles of
communication. SFAs (Server Framework Adapter) are language-specific
frameworks for the server-side of CORBA (e.g. SFA/C, SFA/C++, and SFA/Java;
maybe in CORBA 3.0). (Orfali et al. 1997).

 The OMG TC document for CORBA Messaging covers three general topics:
Quality of Service, Asynchronous Method Invocations and the specification of
interoperable Routing interfaces. The specification includes asynchronous support
for request transport and replies. The specification defines a set of new interfaces,
extensions to existing interfaces, and language mapping for asynchronous method
invocation (AMI). AMI is treated as a language mapping issue concerning client
side. The specification proposes also alterations and additions to GIOP, including
for example a definition of a standard Messaging Service Context and a new
standard routing IOR Component. IIOP will also include some of the features
available in MOM products, for example invocation and replies in a time
independent fashion. The OTS must also be modified to support a new
asynchronous model for transactions. (BEA Systems et al. 1998).

 2.7 Standard interfaces

 2.7.1 IDL

 Interface Definition Language defined by OMG is a language for describing the
interfaces of software objects. IDL is independent of programming languages, and
can be used to describe objects which are implemented by using a variety of
programming languages, compilers or operating systems.

 The IDL object specification is used for automatic generation of “stub” and
“skeleton” programs for the object. The stub provides an interface for other client
objects to request services from the object via an ORB. The skeleton acts as an
interface between the ORB and the object in its server role.

 In addition, the IDL specification includes information concerning all objects that
are connected with the ORB. The contents of the specification are also compiled
and stored in the repository service provided by the ORB.

 2.7.1.1 Structure

 The following definitions determine the syntax for the IDL:

70

• Interface Definition Structure

 [interface_attribute, …] interface interface_name { declarations }

• Import Declarations

 import file, …;

• Constant Declarations

 const integer_type_spec identifier = integer | value | integer_const_expression;

 const boolean identifier = TRUE | FALSE | value;

 const char identifier = character | value;

 const char* identifier = string | value;

 const void* identifier = NULL | value;

• Type Declarations

 typedef [[type_attribute, …]] type specifier type_declarator, …;

• Operation Declarations

 [[operation_attribute, …]] type_specifier operation_identifier
(parameter_declaration, …);

 [[operation_attribute, …]] type_specifier operation_identifier ([void]);

• Parameter Declarations

 [parameter_attribute, …] type_specifier parameter_declarator

 2.7.1.2 Compilers

 Commercial products that are CORBA-compliant include normally an IDL
compiler which generates C++, Java, or both. The following compilers are
independent of the CORBA product in question and provide a variety of
possibilities for implementation languages.

• IDLtoJava (Sun) [http://java.sun.com/products/jdk/idl/index.html]

 The IDLtojava compiler generates portable client stubs and server skeletons
that work with any CORBA-compliant Object Request Broker (ORB)
implementation, provided that it includes the Java IDL ORB and is equipped
with JDK™ 1.2. An ORB allows distributed web-enabled Java applications to
invoke transparent operations on remote network services, by using the

71

 industry standard Internet Inter-ORB Protocol (IIOP) defined by the Object
Management Group.

• Flick (University of Utah) [http://www.cs.utah.edu/projects/flux/flick/]

 Flick is a compiler (or a "stub generator") for an interface definition language
(IDL). It supports remote procedure call (RPC) and remote method invocation
(RMI) for either client/server systems or for distributed object systems. What
sets it apart from other IDL compilers is its capacity for a high degree of
optimisation. In addition, it is capable of supporting several IDLs, message
formats, and transport mechanisms. Currently, Flick has front ends for
CORBA, Sun ONC RPC, and Mach MIG IDLs, as well as middle and back
ends that support CORBA IIOP, ONC/TCP, MIG-style Mach messages, and
Fluke IPC (see below). Flick produces stubs in C language.

• IDL to Modula-3 Translator
[http://www.infosys.tuwien.ac.at/Research/Corba/sw-idl.html]

 The IDL to Modula-3 translator can translate OMG IDL definitions into
Modula-3 interfaces, which can be used to form "CORBA-compliant"
distributed applications.

 2.7.2 MIDL

 IDL is a language that has its origins in OSF DCE. It was originally used to define
functional RPC interfaces in DCE Microsoft RPC. In Windows NT 3.5, the
Microsoft Interface Definition Language (MIDL) compiler was extended to
support COM interfaces as well. For both RPC and COM interfaces, the MIDL-
generated code marshals the parameters, which have been passed onto a call stack,
into packets that can be transmitted across process or host boundaries. Therefore,
remote execution is possible. With the most recent version of MIDL, these same
interface descriptions can be used to generate type libraries. Type libraries are
binary descriptions of COM interfaces and implementations which are often used
in OLE automation. (Box 1996).

 MIDL produces headers and proxy-stub code in C (C++), but this does not imply
that only clients of these languages can utilise the object. One method would
involve converting the C header into such a version that would match the language
in question, but this is hardly a satisfactory solution. Genuine language
independence is achieved if an object provides a type library. This is based on the
fact that all mainstream languages have either transparent or direct access to the
type libraries and objects which they describe (Grimes 1997). Table 6 describes
some common IDL attributes used in COM (Box 1996).

72

 Table 6. Common IDL attributes in COM.

 Attribute Context Meaning

 uuid interface The IID of the interface, to be
used by QueryInterface

 object interface Indicates that the interface is a
COM interface, not a DCE RPC
function-based interface

 pointer_default(ptype) interface Sets the default pointer attribute
for pointers used in the interface

 local interface, method Prototype production for the
generated header file, no
proxy/stub implementation

 in parameter The parameter value must be
transmitted from the caller to the
object; can be combined with
"out"

 out parameter The parameter value must be sent
from the object to the caller; can
be combined with "in"

 ref parameter The pointer parameter always
points to valid memory (cannot be
null), never to the same memory
another method parameter

 unique parameter The pointer parameter points to
valid memory or is null, never
pointing to the same memory as
any other method parameter

 ptr parameter The pointer parameter points to
valid memory or is null, and may
point to the same memory as any
other method parameter

 size_is(cElems) parameter The pointer parameter is an array
that has a capacity for cElems
elements

 length_is(cElems) parameter The pointer parameter is an array.
The first cElems elements are
valid and should be marshalled

 string parameter The pointer parameter points to a
null-terminated string, and the
result of strlen or wcslen should
be used to determine the number
of valid bytes to be marshalled

73

 ALSTRA is a framework for rapid application development and deployment. It is
defined for team development and extends the Visual basic environment by
template-driven code generation. As an alternative to a Vbclient, ALSTRA can
generate a web client for Microsoft Transaction Server using HTML and Vbscript.
Business objects are generated as COM/DCOM server objects which are used by
both VB clients and web clients. (Digital 1998).

 2.7.3 Common Gateway Interface

 Common Gateway Interface (CGI) is a slow, cumbersome, and stateless protocol.
For this reason, it does not provide a good match for object-oriented Java clients
(see Figure 5). It renders Web clients smarter and more interactive, whereas Java
enables developers to create platform-independent client applications for mass
distribution over the Internet. However, Java does little to improve the server side.
The server can distribute some of its functions to the client by using applets it
controls, but primarily it is still an HTTP/CGI server engine.

 An electronic transaction is a process that requires multiple form submissions and
leads to an electronic payment. The state of the transaction is maintained across
form invocations. The CGI program processes a form and presents the user with
the next form. This continues until the user makes the final payment or aborts the
transaction. The CGI program stores information from old forms by using
invisible fields. Therefore, information from old forms can be transported into
new forms. In essence, the CGI program stores the state of the transaction in those
forms it sends back to the client, instead of storing the information in its own
memory. (Orfali et al. 1996).

 Some server vendors are trying to extend CGI with proprietary server APIs, e.g.
Netscape’s NSAPI, Microsoft’s ISAPI, NeXT’s WebObject Framework, and
Oracle’s Web Server API. JOE by Sun is designed for creating a CORBA-based
open Web server environment (Orfali et al. 1996).

 2.7.4 Database interfaces

 Databases have their own native APIs, but most of them support a generic ODBC
or/and JDBC as a generic interface as well.

 2.7.4.1 ODBC

 Open Database Connectivity (ODBC) is Microsoft’s API standard for SQL access
under Windows. Visigenic received a license from Microsoft for proved ODBC
SDKs on non-Windows platforms. In addition to Visigenic, Intersolv and
OpenLink offer ODBC driver suites on Windows and Unixes.

74

 These drivers match a variety of database servers. ODBC 2.0 defines API calls
that fall into three levels:

• Core provide 23 base calls that enable connection to a database, execute SQL
statements, fetch results, commit and rollback transactions, handle exceptions,
and terminate the connection.

• Level 1 provides additional calls that enable retrieving information from a
database catalogue, fetch large objects (BLOBs), and operate with driver-
specific functions.

• Level 2 provides additional calls for retrieving data. This is managed by using
cursors which include forward and backward scrolling.

 X/Open CLI includes ODBC’s Core and some of the functions described in Levels
1 and 2. Most database server vendors support the ODBC 2.x API in addition to
the native SQL API. ODBC drivers for the respective servers are also included.
The problem is that ODBC always seems to be the second option to the native
interfaces on the client and server sides.

 The most serious drawbacks are that the specification is controlled by Microsoft,
and evolves constantly. In addition, ODBC drivers are difficult to build and
maintain. The current drivers have different ODBC conformance levels, which are
not well documented. The ODBC layers introduce considerably overhead,
especially for SQL updates and inserts. Furthermore, they are not as fast as the
native APIs. (Orfali et al. 1996).

 2.7.4.2 JDBC

 The specification for Java Database Connection (JDBC) is published by Sun 1996.
JDBC is a set of Java classes that provides an ODBC -like interface to SQL
databases. JDBC uses a driver manager, which automatically loads the right JDBC
driver for interaction with a given database. Unlike ODBC, JDBC must address
the mobile code issues. A driver that is downloaded as an applet can only be
allowed access to its home database. An applet finds its JDBC driver by using a
URL-based naming scheme: jbdc:<subprotocol><domain name>. Sun will bundle
a JDBC driver manager with future releases of Java and it will also provide a
JDBC-to-ODBC bridge. In the future, JDBC might become a more important
database API standard than ODBC or OLE/DB. (Orfali et al. 1996).

75

 2.7.5 Application interface library

 2.7.5.1 JAPI

 Java libraries extend Java language by providing a portable environment for
writing thread-safe Java applications. Classes of Java.lang support basic Java
objects and native types which are always needed in every application. Java.io
supports reading and writing streams, files, and pipes. Java.net consists of classes
for network programming, including sockets, telnet interfaces, HTTP, and URLs.
Java.util has a collection of utility classes: dictionaries, hash tables, stacks, dates,
strings, etc. Java.awt is an abstract windowing toolkit (AWT) and provides a
portable GUI layer for writing applications. Java.applet is a subclass of AWT and
supports animation and audio. (Orfali et al. 1996).

 2.8 Java clients with CORBA orbs

 The ObjectWeb model is a 3-tier client/server application model that consists of
Java clients in the first tier, CORBA business object in the middle tier, and
traditional servers in the third tier (Figure 1).

 CORBA business objects provide the application logic and encapsulate existing
database, TP Monitor, and groupware servers by replacing CGI applications in the
middle tier. The Java client can communicate directly with a CORBA object by
using the Java ORB and by replacing HTTP/CGI as the middleware layer for
object-to-object communication. Because CORBA’s IIOP uses the Internet as its
foundation, HTTP and IIOP can run on the same networks (= live-and-let-live
environment). This implies that a Java ORB is incorporated with the Web
browser, and that HTTP continues to service HTML documents and the legacy
CGI applications. The benefits offered by CORBA are:

• CORBA avoids the CGI bottleneck, since client/server overhead is kept to a
minimum, especially in comparison to HTTP/CGI.

• CORBA provides a scalable server-to-server infrastructure. Server business
objects communicate by using the CORBA ORB, and can run on multiple
servers in order to provide load-balancing for incoming client requests.

• CORBA extends Java by a distributed object infrastructure. Currently, Java
applets cannot communicate across address spaces by using remote method
invocations. CORBA enables Java applets to communicate with other objects
across address spaces and networks and irrespective of the language (Orfali et
al. 1996).

76

 2.9 Compound documents and Object Webs

 However, in addition to Java and CORBA, the Object Web must be augmented
with compound documents as well. Compound document frameworks, such as
OLE and OpenDoc, provide two key technologies (Orfali et al. 1996):

• A visual component foundation for creating open Web browsers, and

• container technology for distributing, caching, and storing groups of related
components and their data, i.e. shippable places.

 Components and Java applets will be able to co-operate seamlessly within a
browser window. The contents of any component can be edited for drag and drop
within browser, as well as between the browser and the surrounding desktop. In a
compound document browser, components can take any shape, and they can be
moved and embedded.

 Compound documents provide an open, well-defined, and extendible architecture
for plug-ins. Java applets and Netscape plug-ins provide some form of in-line
rendering which means that they can display their contents within a web browser
window. Java applets and plug-ins can only display their visual contents within a
pre-assigned rectangular area. The contents cannot be freely embedded other
components, and it is not possible to move them around. Plug-ins function only
according to the rules of the browser which they were designed for (Orfali et al.
1996).

 2.9.1 OpenDoc

 OpenDoc is an open, multiplatform architecture designed for component software.
OpenDoc enables building lightweight container applications and component parts
called Live Objects. The emphasis is therefore on creating components that meet
a specific need, instead of investing time and resources in delivering a
complicated application. This approach improves desktop computing by providing
an object-based framework, which develops applications that are fully integrated
and interoperable across platforms and distributed networks (OpenDoc 1998;
PCweek 1998).

 OpenDoc is based on CORBA, which has been developed and maintained through
an open industry standard group OMG. OMG is currently defining a Compound
Document Framework which will essentially be an abstract standardisation of
OpenDoc. The OpenDoc technologies themselves are maintained by the open
industry group CI Labs, which welcomes new members to participate in
technology developing task forces (Braddock 1998).

 OpenDoc enables also seamless interoperation with Active/X objects by usage of
OpenDoc-glue. Active/X has made no such effort to interoperate with OpenDoc
(AFAIK). Both provide similar functionality, but since OpenDoc is based on a

77

 superior object system (IBM SOM/DSOM, which is an extension of CORBA), its
potential for distributed computing is probably greater (Braddock 1998).

 OpenDoc implementations already exist on Windows, Mac, AIX, and OS/2
platforms, which means its portability is secured. Active/X (OLE) is only
available on Windows platforms (AFAIK), though Microsoft is working on
porting it to Unixes and Macs. (Braddock 1998).

 2.9.1.1 OpenDoc terminology

 Document

 A collection of OpenDoc parts, assembled by a user or a developer. A part
becomes a document, if dragged from its document to the desktop. A document
becomes a part, if dragged from the desktop into an open document (ITU 1998).

 Part

 The fundamental building block of an OpenDoc document. This is the content that
users are able to see in their documents. The functionality in the associated part
editor or part service allows the user to manipulate the part. Part viewers allow the
user to view the part, although editing is excluded (ITU 1998).

 Container Application

 A monolithic application that has been modified to support embedded OpenDoc
part editors and part services (ITU 1998).

 Part Editor

 A part editor displays the contents of a part, facilitates content manipulation and
provides an user interface for modifying that content. This user interface may
include menus, controls, tool palettes, rulers, and other modes of interaction. A
text editor, for example, is a part editor (ITU 1998).

 Part Service

 A part service provides "back-ground" functionality for a part, and provides the
necessary user interface for manipulating the content of that part. Database access
functionality is an example of a service that could be added to an OpenDoc
document. Its user interface would be a menu item or a database query screen
(ITU 1998).

 Part Viewer

 A part viewer offers some features of the functionality provided by part editors: it
enables users to display and print the content of a part, although editing is not

78

 possible. Viewers can be useful in situations where documents are shared. For
example, if the recipient of a document does not have authorisation for some of its
content, or when the person sending the document does not want the recipient to
alter the document (ITU 1998).

 2.9.1.2 OpenDoc and JavaBeans

 JavaBeans is a new technology that Sun and IBM are currently developing. The
objective is to provide Java applications with similar compound document
functionality than currently available in both OpenDoc and Active/X. Its
implementation is "abstract", i.e. it can be based on either OpenDoc or Active/X
(OLE) (Braddock 1998).

 JavaBeans is useful for implementing small pieces of component software (called
beans). These include small interface elements such as buttons, check boxes,
scroll bars, lists, sliders, and text fields. This feature corresponds to Microsoft's
Visual Basic (Apple 1997).

 JavaBeans is useful also for creating non-visual components that provide services
to the developer. One relevant example of a non-visual component is the FTP-
service component. It has no visual interface. However, the component is able to
retrieve files from an FTP site, after having received their addresses from the
developer (Apple 1997).

 One characteristic of a Java bean is that the user can manipulate it (for example,
by clicking a button bean). However, moving or resizing the bean inside its
container is not possible. Similarly, neither adding a new button to the container,
nor changing the attributes of the button during actual usage are available. A bean
is limited to a rectangular shape, and two beans cannot overlap. In addition, a bean
including other beans cannot very well manipulate its own content outside the
embedded beans (Apple 1997).

 Live Objects are OpenDoc parts that have passed a certification process set up by
CI Labs. CI Labs, in its turn, is the group responsible for setting standards for
OpenDoc. Live Objects have several characteristics which are not available in
JavaBeans. Users can move and resize Live Objects within their containers. In
addition, the attributes of Live Objects can be altered. Adding or copying Live
Objects can be managed by a simple drag-and-drop operation. Furthermore, Live
Objects can have any shape and can overlap (Apple 1997).

 A more important difference with reference to JavaBeans is that by using
OpenDoc, larger component-based solutions can be created. The following
OpenDoc characteristics are not available in JavaBeans (Apple 1997):

• Multilevel undo and redo of actions.

79

• A document storage model based on Bento, a cross-platform file format that
can contain any type of data and can store alternate representations of a given
data type.

• Versatility in viewing data: Live Objects can store their data in standard
formats, which allows the same data in a document to be handled by different
editors, depending on the set-up and preferences of the user. The content of a
Java bean, on the other hand, is inextricably connected to the JavaBeans object
which is used to display it. The user is therefore not allowed to define how the
content can be viewed and manipulated.

• Binding enables a qualifying part editor of the user's choice to become
activated when the user clicks on a given type of data.

• Embedding, which enables one user to include certain data type, for example a
QuickTime movie, in an OpenDoc container document. Furthermore, one user
can send the document to another user, who in turn can open the document
and view the embedded data type.

 Once the necessary programming infrastructure is built, combining Java Beans
and Live Objects within the OpenDoc artefact is possible. This enables creating
component-based solutions quicker than with OpenDoc alone (Apple 1997).

 Table 7. Features of Java, JavaBeans and OpenDoc.

 Feature

 Java Java Beans OpenDoc

 Drawing *
 Platform independence *
 Security * *
 Lightweight embedding * *
 Lightweight layout * *
 Lightweight data interchange * *
 Lightweight persistent storage *
 Visual property editing *
 Simple scripting *
 Sophisticated OSA (Open Scripting
Architecture) scripting

 *

 Undo *
 Palettes *
 Shared menus *
 Replaceable editors *
 Arbitrary embedding *
 Sophisticated layout *
 Rich data interchange *
 Structured persistent storage *
 Language neutrality *
 Based on open standards *

80

 Creating interface elements is quicker with JavaBeans than with OpenDoc. To
begin with, Java language is easier to program in and debug than C++, which is
used in creating Live Objects. In addition, writing interface-element beans might
not be required at all. Since beans are inherently cross-platform, there will
probably be a developer-to-developer market for preconstructed, commonly used
interface-element beans (Apple 1997).

 Once the Java beans and Live Objects are available, it is possible to combine
them within the OpenDoc architecture in order to create complete and robust
component-software solutions (Apple 1997). In Table 7, features of Java,
JavaBeans and OpenDoc are compared.

 2.9.2 DCOM Object Web

 Microsoft Object Web is an Active Internet Platform (AIP), which consists of a 3-
tier client/server architecture. Clients are able to access the Internet via
component-based browsers such as the Internet Explorer 3.X. In addition to
ordinary HTML pages, the browser is able to play DocObject titles which are
three-ring binder documents containing pages. A page can contain OLE ActiveXs,
Java applets, Visual Basic applets, in addition to regular HTML content.
DocObjects can play inside other OLE containers. In theory, a title is a shippable
place. To achieve safety, Microsoft has signed up VeriSign to issue digital
signatures for ActiveXs components. A VeriSign certificate ensures that a
component has not been tampered with after leaving its creator. OLE document
titles can be created by using the Microsoft Internet Studio framework, which is a
drag-and-drop tool for assembling and laying out components within pages and
binders. Jakarta tool supports Java within the framework. Jakarta includes an
interactive debugger, App Wizard for generating new Java applications or applets,
Class View for browsing classes, and simple tools for importing foreign classes
such as Java classes or COM objects. (Orfali et al. 1996; DiLascia 1998).

 The second tier consists of Microsoft’s Internet Information Server (IIS), which is
bundled with NT server and is practically free. IIS provides an application
framework for running OLE-based business objects which enable invoking server
business objects via the Network OLE ORB. Business objects use OLE for
interaction. Legacy applications are supplied by ISAPI, ODBC, and APIs for CGI.

 The third tier consists of Microsoft’s BackOffice. Microsoft is planning to provide
an OLE-based TP Monitor (called the Component Coordinator) for organising
transactions across different resource managers. (Orfali et al. 1996).

 DocObjects are OLE documents that function as their own containers. A binder
can be saved, viewed, printed, copied and moved as a single entity. DocObjects
are being repositioned as mobile OLE component containers for the Internet.
DocObjects provide a standard method for traditional applications to plug

81

 themselves into a Microsoft Web browser’s window frame. A DocObject page can
contain lightweight OCXs - or ActiveXs - as well as other component types. A
DocObject provides its own storage and introduces new interfaces: IOleDocument
and IOleDocumentView on the component or OLE server side, and
IOleDocumentSite on the container side. Technically speaking, a OCX (or
ActiveX) is required to function as a self-registering DCOM object; it must
implement OLE’s IUnknows and IClassFactory interfaces. Component categories
enable controls to give directions to their containers (Orfali et al. 1996).

 Controls belonging to the InternetAware category load their data via asynchronous
monikers, which is a persistent naming service. Browsers use an asynchronous
moniker to download files by using separate background threads. The moniker
notifies the browser via a callback when it has completed the download. The URL
moniker is an implementation of the asynchronous moniker; it is used to
encapsulate Internet URLs. OLE’s URL moniker is remarkably similar to the
Cyberdog construct (Orfali et al. 1996).

 2.9.3 CORBA Object Web

 The technology in the open Object Web is very similar to Microsoft’s Object
Web, with the exception that all technologies are based on open standards. Object
Web is a 3-tier client/server architecture. Clients belong to Java components,
ORBlets, OpenDoc compound documents, and shippable places.

 Clients are able to access the Internet via component-based browsers (Cyberdog or
Netscape). An OpecDoc title is a shippable place; it is able to contain ActiveXs,
OpenDoc parts, Java applets, and regular HTML content. OpenDoc parts can
contain also OLE OCXs and ActiveXs.

 The second tier services both HTTP and CORBA clients. CORBA objects act as a
middle tier and encapsulate the application’s business logic. They interact with
clients by using IIOP over the Internet. The third tier includes TP Monitors,
DBMSs, Lotus Notes, etc. The second tier acts as a store for component titles and
shippable places which can be stored in shippable Bento files managed by a
ODBMS. Bento files function as user-defined data types which can run on
multiple operation systems; Bento files was designed to be a portable component
store. However, getting all these technologies to interact requires a great deal of
inter-vendor cooperation. (Orfali et al. 1996).

 2.9.4 Trends in Web technology

 The Web will be recreated on top of a distributed object bus; the two main
contenders for the bus are CORBA and DCOM. HTML will glue onto a
compound document container; the two contenders are OpecDoc’s Bento and

82

 compound files of OLE. The three contending camps for live component are
CORBA-enabled Java components, CORBA-enabled OpenDoc parts, and OLE
ActiveXs. As for the tool market area, the competition is between Symantec's
Java-based Cafe and Microsoft’s OLE-based Internet Studio.

 Intranets will extend the scope of corporate networks. Corporates are moving from
private networks to Intranets. The common Internet technology links up suppliers,
customers, and business partners. Corporations will increase their use of the
Internet’s wide-are security mechanisms (including SSL, S-HTTP, and public
keys).

 The Web will create a demand for small Internet PCs. In addition, there will be a
substantial demand for lightweight Java machines. Components and shippable
places will become the primary software distribution mechanisms in the Web PCs.
Java machines have the potential to outdo Microsoft Windows in many new
environments.

 Mobile BLOBs, applets and components run within “containers”. Scalable
ODBMSs are used to track relationships between objects and their containers.
Mobile containers or structured files will be used to ship groups of related objects
and BLOBs to any destination on the WWW. (Orlafi et al. 1996).

 The demand for mobile agents will in all likelihood increase rapidly, owing to
their ability to decrease network load, encapsulate protocols, and perform
asynchronous and autonomous execution. In addition, mobile agents offer
automatic re-allocation and tolerate changes in the environment with dynamic
flexibility. Furthermore, mobile agents are heterogeneous, robust and fault-
tolerant services which are used by networked applications. There are several
applications which will benefit from the services offered by mobile agents, for
example telecommunication, work flow process control, groupware, electronic
payments, and secure information brokering.

 2.10 Integrating legacy systems

 Wrapping techniques provide a way of integrating legacy systems with each other
and with new software. Object wrappers re-encapsulate the system in a
controllable form and isolate complex subsystems from each other. This technique
creates systems that are more adaptable. Wrappers can employ multiple
integration mechanisms such as files, sockets, remote procedure calls, and scripts.

 Object wrapping can be divided into the following categories (Mowbray & Zahavi
1995):

• Layering

• Data migration

83

• Reengineering applications

• Middleware

• Wrappers for architecture implementation, and

• Wrappers for mediators and brokers.

 Layering is the most basic level of wrapping. A layer is a mapping from one form
of application program interface (API) to another. The functionality of the
interface provided by layering depends on the APIs to the legacy system.. The
functionality of the legacy systems can be extended by adding wrapping code to
the layer. Layering also can be used to aggregate multiple legacy systems.
(Mowbray & Zahavi 1995).

 Data migration is used when systems have anomalies such as overlapping
database tables in their schemes. Migration involves moving the data to another
data mode. In this case, the wrapper consists of a layering code.

 When an application is wrapped, it can be reengineered one piece at a time, if
necessary. Wrapping enables replacing the old system components with object-
oriented components. (Mowbray & Zahavi 1995).

 The term middleware is used to describe a wide range of software for commercial
system integration. Distributed processing middleware is shifting towards
CORBA. Database and user interface middleware are upper middleware including
software. The software mediates between various database products and creates a
common access mechanism. In a CORBA-based software architecture, database
middleware should be wrapped in a similar manner as in other legacy systems.
(Mowbray & Zahavi 1995).

 Encapsulation is the most general form of object wrapping. It is a black
abstraction in which the interface hides the details of the underlying
implementation and separates the interface from implementation.

 At the architecture level, a wrapper is required to implement the architecture
design in all aspects. It should provide interoperability between architecture,
legacy subsystem, value-added functions, information (such as metadata, data
conversions) and other architecture features.

 The diversity of processing services introduces a requirement for a mediator or
brokerage service capable of aggregating various type of functions, such as the
following (Mowbray & Zahavi 1995):

• Access to disparate information sources and value-added services.

• Sophisticated search and data presentation algorithms to reduce client
complexity and to simplify the user interface.

• Data conversion between incompatible formats.

84

 Implementation trade-offs are often made at the expense of either performance or
flexibility. For instance, a simple conversion server provides rather poor
configuration flexibility, while requiring only one ORB hop. If the conversion is
not direct, and more formats are involved, this form is the most efficient one
(Figure 8.a). If each conversion server is separate, they can be placed on different
systems and this is as efficient as would be with only one server (Figure 8. b). The
broker provides additional flexibility since the service selection reasoning is
separated from both the conversion servers and the clients (Figure 8.c). This is the
most flexible solution since it enables placing conversion servers on separate
systems. The difference in reference to earlier solutions is extra network overhead,
while the cost is several hundred milliseconds per call.

CLIENT

Convers ion
Server

Conv1

Conv3 Conv2

O R B

CLIENT

Convers ion
Server

Conv1 Conv3 Conv2

O R B

CLIENT

O R B

Convers ion
Server

Convers ion
Server

Convers ion
Broker

Convers ion
Server

Conv1 Conv3 Conv2

Convers ion
Server

Convers ion
Server

a) b) c)

 Figure 8. Alternatives for implementing object wrappers.

85

 3. Commercial implementations for
distributed objects

 3.1 Iona’s Orbix

 Orbix by IONA Technologies a full implementation of the Object Management
Group's (OMG) Common Object Request Broker Architecture (CORBA). It
combines distributed systems with object orientation in order to provide a
distributed programming environment. It enables software interfaces to be defined
in a standard language, and renders them accessible from any location in a
distributed system. The communication mechanism is provided by the
environment; the role of the programmer is to design and implement one or more
server objects and a client which invokes the server (Buckner et al. 1997).

 Orbix is compliant with CORBA 2.0 standard and supports the standard IDL to
C++ mapping, which is defined by OMG as well as extended with a number of
added value facilities (University of Paderborn 1997).

 Orbix reduces substantially the costs of developing distributed applications and
integrating existing components. It enables a system to be constructed as a set of
interacting objects. Each of these objects is equipped with a well-defined
interface, and Orbix allows these objects to communicate easily with each other,
irrespective of details such as (University of Paderborn 1997):

• The hosts that these objects run on.

• The operating system that these hosts run.

• The programming language in which the objects are implemented.

 The latest Orbix release also implements a programming model tailored for
creating multithreaded applications. According to the officials, it supports also the
Internet Callback Mechanism (ICM) and Secure Sockets Layer (SSL) security
(IDG-Net 1998).

 3.2 Visigenic’s Visibroker

 Unlike other CORBA ORBs (such as Orbix) which require that a software
daemon is installed and configured on every node, VisiBroker is a fully dynamic
system. VisiBroker ORB eliminates the necessity for maintaining or updating
configuration files, therefore reducing the overhead requirement for installing and
managing applications (Visigenic 1998).

 The Location Service, which is a unique VisiBroker design, allows the dynamic
discovery of all available objects and Smart Agents on a network. Smart Agents

86

 provide a dynamic directory of all objects on a network. The Location Service can
query Smart Agents for either all object instances of a specific type or for a
particular instance of an object. Results can be returned as either object references
or as complete descriptions of the instance, including the name, host name and the
state of the object (Visigenic 1998).

 The Naming Service enables associating meaningful names with objects, while the
Event Service allows decoupling object communication. In addition, it enables
asynchronous data distribution to multiple objects (Visigenic 1998).

 VisiBroker supports IIOP over the industry-standard Secure Socket Layer (SSL)
protocol, and provides secure communication between clients and servers
(Visigenic 1998).

 Since VisiBroker fully implements the IIOP protocol, C++ client programs can
invoke methods on CORBA objects written in Java, and vice versa (Visigenic
1998).

 VisiBroker provides native support for single and multi-threaded applications. It
offers two multi-threading models that ensure a high level of scalability on the
server: the thread-per-session model and the thread pooling model (Visigenic
1998).

 Efficient communication is ensured by minimising the number of client
connections to the server. All requests from the same client are multiplexed over
the same connection, even if they originate from different threads. Client
connections are recycled for subsequent reconnects to the same server. As a result,
the need to incur overhead by creating new connections to replace released ones is
eliminated (Visigenic 1998).

 VisiBroker ensures that seldom-used objects are made available only when
needed. When a request is received, an Object Activation Daemon (OAD) is used
for dynamic and automatic launching of a server process. Additionally,
VisiBroker enables the creation of local object references (which is useful for
objects that are only valid for the lifetime of the process and do not need to be
registered with a Smart Agent). Since these objects are not registered, overhead
for such object references that do not require dynamic discovery is reduced
(Visigenic 1998).

 VisiBroker ORBs are fully CORBA 2.0-compliant and have native
implementations of the Internet Inter-ORB Protocol (IIOP). IIOP is the industry
communication standard for the Internet and intranets. This ensures high
performance and interoperability for distributed applications, including
interoperability with Web-based applications. VisiBroker's native implementation
of IIOP is efficient since it eliminates the necessity for a bridge to a proprietary
protocol (Visigenic 1998).

87

 VisiBroker is compliant with OMG-specified IDL mappings. The C++ compiler
complies with the 1.1 IDL to C++ mapping, and the Java compiler with the 1.0
IDL to Java mapping (Visigenic 1998).

 3.3 Expersoft’s CORBAplus

 CORBAplus is an interworking solution for CORBA and DCOM (including bi-
directionality and support for Automation and COM). In the following, a
description of CORBAplus product line is presented (Expersoft 1998):

• CORBAplus for C++ is a CORBA 2.0-compliant Object Request Broker
(ORB). It is used for developing enterprise-class distributed object applications.

• CORBAplus JavaTM Edition combines Java and CORBA, enabling creating
Internet and Intranet applications which span the enterprise.

• CORBAplus ActiveX Bridge creates a bridge from CORBA to COM by
providing Windows desktop clients with unprecedented levels of
interoperability and flexibility.

• CORBAplus Transaction Service is an object-oriented transaction processing
system that delivers such guaranteed data consistency as required for building
enterprise-class distributed object application environments.

• CORBAplus Enterprise Edition is the Net integration server - the industry's
first technology integration between CORBA-based ORB and message-
oriented middleware.

 3.4 Software AG’s EntireX

 EntireX is an open, enterprise-wide component server platform that functions by
speeding up development cycles and establishing flexible, modular application
landscapes. EntireX is a combination between Microsoft’s Distributed Component
Model technology (DCOM), powerful multi-platform integration and message
brokering capabilities.

 The EntireX provides the following services:

• DCOM for integration with the desktop.

• Broker for message-oriented middleware (MOM).

• Broker Services for the following enhancements: APPC Adapter for integration
of CICS and IMS environments via LU6.2, MQSeries Adapter as an interface
to IBM’s message-oriented middleware, and Attach Service for dynamic
replication and launch of servers.

88

• Software Developer’s Kit for mix-and-match development tools and interfaces
for all environments.

• Security interface to SAF for central access control.

• Runtime execution environment for applications created or equipped with
EntireX technology.

 Platforms: Servers with MVS, VSE, BS2000, UNIX and Windows NT. Clients
with Windows 3/95/NT, Macintosh, OS/2, OS/400, UNIX, OpenVMS, VSE,
MVS and BS2000.

 Interface description language is most likely MIDL with DCOM wrappers.

 Interfaces: ACI (Advanced Communication Interface) between the Broker and the
Broker Services, which implies that EntireX ActiveXControl, Java classes, and
DCOM Wrapper are available with the SDK. Communication supports MOM via
ACI stubs and RPC via RPC stubs (Figure 9). (SoftwareAG 1998).

 Figure 9. EntireX’s components on typical client platforms.

89

 3.5 Comparison between commercial middleware
products

 Features of commercial middleware are listed in table 8.

 Table 8. Available features of commercial middleware.

 Feature

 CORBAplus VisiBroker
3.0

 OrbixWeb 3

 Java
 C++
 Native IIOP implementation
 Firewall-enabled IIOP callback
 Static and dynamic invocation interfaces
 Interface and implementation repositories
 “In-process” server object instantiation
 Full support for HTTP-tunnelling
 IDL to C++ compiler
 IDL to Java compiler
 Java to IDL compiler
 Java to IIOP compiler
 Extended IDL data types
 Full server/callback support
 Local/remote administration of
implementation repository

 Local/transient and global/persistent object
references

 Support for single and multi-threading
 Optimized object binding and
communication

 Central repository for all configuration
information

 No configuration files
 Support for ORB extensions
 Secure object communication with SSL
 Sophisticated discovery of available objects
 Runtime can be transparently updated on the
fly

 Naming service
 Event service
 Available for Windows 95 & NT

 Requirement

 CORBAplus VisiBroker 3.0 OrbixWeb 3

 Java Virtual Machine JDK 1.0.2 ||
JDK 1.1.X

 JDK 1.1.X JDK 1.0.2 ||
JDK 1.1.X

90

 4. Experiences concerning the use of
commercial middleware

 4.1 Orbix AND VisiBroker

 Orbix has been applied in an earlier case study by VTT Electronics concerning
flexible manufacturing systems (Holappa 1998; Niemelä & Holappa 1998) .
Visibroker was only briefly evaluated and used also with Orbix.

 Installing and using VisiBroker was easy. There were no problems in establishing
connections between client and server when both ends were using the same ORB.
Connection between Visibroker on the server side and Orbix on the client side
was also attempted, but the attempt was unsuccessful. The problem appears to
involve different kinds of implementations in the CORBA Naming service. In
practice, the IIOP between two commercial CORBA implementations does not
function. Visibroker’s bank account example was used as an application.

 4.3 CORBAplus

 The evaluation was carried out by a simple two-tier architecture. The application
had a client-part and a server-part. The server was written in C++ and the client in
Java. The C++ part was written with Visual C++ 5.0, and the Java part with a text
editor and JDK1.1.5. The Web server used was OmniHTTPd v2.0a8 (Omnicron
1998).

 A distributed phone book of company employees was used as an application
example. The application uses the following IDL :

 struct Employee
 {

 string Name;
 string Abbreviation;
 string Phone;
 };
 typedef sequence<Employee> EmployeeList ;
 interface PhbServer
 {
 boolean AddEmployee(in string name, in string Abbr,
 in string phone);
 boolean GetEmployeeList(out EmployeeList mylist);
 boolean RemoveEmployee(in string Abre);
 boolean QueryEmployee(in string querystring,
 out EmployeeList mylist);
 string Hello ();
 };

91

 The server part uses Objectivity/DB for storing employee instances and creates
simple queries from given predicates. The result of the query is returned to the
client as a sequence.

 The client is a Java applet running on a Web Browser, either Netscape Navigator
4.05 or Internet Explorer 4.0. The client connects the server when a button
requesting an action is clicked. In Figure 10, a screen shot of the Java client GUI
running on Netscape Navigator is shown.

 Figure 10. Screen shot of the Java client.

 Java ORB initialisation was performed in the following code :

 public void InitializeOrb() {
 try {

 if(bFirstTime == true) {
 // Netscape’s default ORB override
 java.util.Properties p = new java.util.Properties();
 p.put("org.omg.CORBA.ORBClass",
 "com.expersoft.CORBA.ORB");
 // Initialize the Orb.
 orb = org.omg.CORBA.ORB.init(this, p);
 // This is the url we will connect to:
 String url = "iiop://ele302:10000/PhbServer1";
 orbObject = ((com.expersoft.CORBA.ORB) orb).
 string_to_object(url);
 // narrow
 phbsRef = PhbServerHelper.narrow(orbObject);
 bFirstTime = false;
 }
 else {
 // connect
 orb.connect(orbObject);

92

 }
 }
 catch (Exception exc) {
 exc.printStackTrace();
 }
 }

 4.3.1 Problems Encountered

 The evaluation was carried out by using the CORBAplus demo pack version 2.2.0.
Some of the problems may have been caused by the demo pack version.

 4.3.1.1 C++

• Sequence problems. No thorough examples were available. The product
support was very useful.

• Stub code generation. Unlike Orbix, C++ does not generate skeleton code.

• No debug libraries.

• Inadequate documentation.

 4.3.1.2 Java

• Inadequate documentation. No documentation for ORB classes.

• Problems with different versions of Web browsers. In some versions, the
default ORB had to be overridden. Older versions did not function at all.

• Problems with different versions of JDK’s (although these depend on JDK,
not on CORBAplus).

 4.3.2 Merits

 C++

• Adequate support. The response time of the product support was short.
• Gives a “mature impression”. The product seems complete.
• Works simultaneously with Orbix daemon. Interoperability was not tested.
• Naming and Event services are included.

93

 Java

• Possibility to override default ORB in Web browser either in applet code or in
the HTML file.

94

 5. Embedded middleware services

 Middleware, which is used as a generic software platform for embedded client
systems, requires communication services for remote procedure calls, events and
messaging (Figure 11). The services are applied to the CORBA service categories
(Mowbray 1997). Naming and security services are also needed if the embedded
systems are connected to Internet or to other open networks. These services, in
addition to the generic interfaces which isolate the middleware from the operating
system and protocols, have to be provided as component-based software. Since
applications are required to be different types of components (i.e. Java beans or
applets, ActiveX components and CORBA components), three application
interfaces should be supplied.

OS-
interface

RPC Service Message ServiceEvent Service
Security
Service

Naming
Service

COM Interface CORBA Interface Java Interface

TCP/IP or OSI etc.

MidAPI

MidTLI
TLI-interface

 Figure 11. Overview of the basic services of embedded middleware.

 5.1 Interfaces

 The embedded middleware is designed for use in different types of execution
platforms. Therefore, the software portability has to be supported by developing a
generic transport layer interface which can be used with Internet and OSI suite
protocols. If the TLI interface is designed as a generic interface, changes in the
communication media or protocols beneath the session layer should not have any
effect on other components in the embedded middleware.

 The independence from the operating systems can be provided by using a bridge
design pattern which, through ExOSInterface class, decouples the abstract
operating system class (i.e. MidOSInterface) from the operating system and its
interface (Figure 12). The method assures that the middleware services (described
here as RPCInterface, EventInterface and MessagingInterface), and the operating
system services, can vary independently (Figure 12). The same technique can be
applied in order to increase the reuse of software in developing interfaces (i.e.
COMInterface, CORBAInterface, and JavaInterface) for TLI and application

95

 components. However, only one interface specification, i.e. the generic MidAPI
component, is required to describe the services offered for applications. Similarly,
the services required from the transport protocol layer can be described by one
single interface specification, the MidTLI component.

 The wrapping technique can also be utilised, but it requires two layers: one for
middleware clients, and another for operating services. With respect to memory
size and performance, the bridge pattern would appear to be more suitable for
embedded systems.

M i d O S
Inter face

E x O S
Inter face

R P C
Inter face

Messag ing
Inter face

Even t
Inter face

W i n N T W I n C E Q N X

 Figure 12. Isolating the impact of the execution environment.

 5.2 Basic services

 The basic services of embedded middleware support software flexibility.
However, applications set certain requirements for the quality of the services
(QoS), and these requirements must also be fulfilled. The following QoS
requirements are used in applications that are time critical or real-time:

• Performance. The number of transactions or messages per a second, i.e. ability
to respond in real-time.

• Reliability. Mean time to failure and mean time to repair (MTTR) which
should be defined for the users of the embedded middleware services.

• Scalability. Number of systems, objects or processes that can be manipulated
by the system before its performance specifications become impossible to
fulfil.

• Resource consumption. The amount of memory and disk space required to
support a service.

5.2.1 Communication services

Remote Procedure Call

The remote procedure calls are the basic communication methods used by
application components in the client/server architecture. CORBA is based on
ONC and DCOM uses its own RPC which is based on the DCE RPC. Since

96

CORBA producers seem to be moving from ONC to OSF DCE RPC (which
includes also the security services), it is a suitable basis for embedded middleware

Event Service

Several embedded systems act as sensors or observers which notify a server or
servers by sending events. Therefore, the event service is actually required as a
basic service in the embedded middleware. It also decouples the producer and
consumer applications. Furthermore, it provides the opportunity to develop
loosely connected applications which can be used in different product variants or
with add-ons of the product family.

The minimum requirement is the push mode. However, when events are triggered
at known timing intervals, the pull mode is also useful.

The event service must be guaranteed to deliver the events to receivers. Consumer
and event service protection means that if a consumer drops off-line, on-line
events will be put on queues and delivered when the consumer returns. If the event
service fails, event producers will still be able to queue events. In this case, the
events are stored until the event service returns and delivered after the return. The
last part of the QoS requirement is optional.

Message Passing

The message passing service is required in embedded systems which have to send
large amounts of data without blocking: the service can either log off the receiver
or handle the messages when it is unoccupied. The message passing mechanism is
always useful for loosening connections between applications; in addition, it
controls the requirements concerning the quality of the services.

Clients and servers can jointly determine the QoS which both sides demand in
their requests and replies.

5.2.2 Naming and trader service

Networked embedded systems require basic services for finding servers and their
services from the network. The naming service is required as a basic middleware
component. Commercial implementations appear to consume excessive amounts
of memory and do not provide a suitable match for embedded systems. Therefore,
some other implementation technique has to be found; one solution would be to
combine it with an interface repository and a trader service, thereby providing one
optimised component to meet all maintenance or configuration requirements.

97

5.2.3 Security service

If embedded middleware is used in Web applications, the security services must
be supported. This requirement would be adequately fulfilled by using commercial
software such as SSL, S-HTTP, or the security service included in the DCE RPC.

5.3 Optional services

Relationship service

The relationship service is required when the event service is used in
implementing the publisher and subscriber mechanism. It is a necessity for
configuration and maintenance services which provide support for managing
large, networked systems or systems which are updated frequently.

This service is needed in systems which are designed to be adaptive.

Concurrency service

Most of the embedded systems have also real-time requirements, for which the
responses are delivered as concurrent processes. Embedded systems at real-time
level do not therefore necessarily require the concurrency service.

Transaction service

The transaction service is required as an optional service if the embedded systems
act as servers. The transaction service is normally used by a database. Therefore,
since the service is an optional feature, the most convenient way to provide it is
via embedded database vendors.

98

6. Summary

CORBA provides a standardised way for developing interoperable distributed
objects with transparent communications. When embedded systems are used to
compose Internet networked systems, DCOM will similarly be a competitive
technique However, the commercial products based on CORBA are still quite
immature, and some services are completely absent. DCOM based OPC would
appear to be a suitable solution for control systems that are based on data
acquisition, monitoring and presentation, but this entails support from equipment
vendors. Among industrial developers of embedded systems, these technologies
do not satisfy the increasing demand for reliable embedded middleware.

Enterprises have a demand for an embedded middleware framework. Since
embedded networked systems benefit from incremental building, embedded
middleware has to support software integration and adaptation. Customisation
should be allowed if the demands of the application domain or product families so
require. If middleware software is based on components which can be added into
the systems as optional features, without side-effects on the old applications, then
the interoperability between distributed embedded applications, and the
extendibility of the systems could be assured. As a generic (component-based
software) platform, embedded middleware enables enterprises to use new
operation models such as remote testing, updating and marketing.

CORBA and DCOM are based on remote procedure calls, and only a few products
offer the required software packages that are needed for example in event and
messaging services. These services, in addition to security and concurrency
control, are essential in developing networked systems that are either Internet-
based or real-time.

Software portability should be supported for applications and the embedded
middleware itself. The interface technique which supports all the commonly
existing component models (i.e. JavaBeans, ActiveX and CORBA), provides the
support for adaptive systems. Isolation between middleware and execution
environment (i.e. distinctness between operating systems and communication
protocols) is a practicable approach for increasing the reuse of software. However,
this would require developing a generic interface for operating systems, transport
communication layers, as well as for Wireless Internet. A generic interface such as
this could be used in embedded applications that set critical restrictions for
reliability, memory time and response times. The first step is defining a solution
which provides an optimised and balanced method for fulfilling these
requirements.

99

References

Agranat. 1998. in http://www.agranat.com. April 1998.

Alcaltel, Hewlett-Packard Co, Lucent Technologies, Inc., Object-Oriented
Concepts, Inc., Sun Microsystems, Inc. & Tri-Pacific. 1998. Realtime CORBA.
Version 1.0. Initial RFP Submission. 109 p.

Allegro. 1998. in http://www.allegrosoft.com/rpproduct.html. April 1998.

Apple. 1997. in http://devworld.apple.com/mkt/informed
/appledirections/jan97/stratmosaic.html. April 1998.

BEA Systems, Borland International, Expersoft Corporation, International
Business Machines, International Computers, IONA Technologies, Northern
Telecom, Novell, Oracle, PeerLogic, TIBCO. 1998. Joint Revised Submission for
CORBA Messaging.150 p.

Blaszczak, M. 1997. Professional MFC with Visual C++5. Birmingham: Wrox
Press Ltd. ISBN 1-861000-14-6.

Box, D. 1996. Introducing Distributed COM and the New OLE Features in
Windows NT 4.0. Microsoft Systems Journal, Vol. 11, no. 5, pp. 19 - 38.

Braddock. 1998. in http://www.jagunet.com/~braddock/opendoccomp.html. April
1998.

Buckner, I.C.A. Penny, I.A. 1997. UKC Orbix Survival Guide. UKC Computing.
May 1997.

Dibble, P. 1997. Java in Embedded Systems. Proceedings of Embedded Systems
Conference. San Jose, CA, Sept. 29 - Oct.2, 1997. Pp. 55 - 65.

Digital. 1998. in http://www.digital.com/info/SP5632. April 1998.

DiLascia, P. 1998. Licence to code our man from Jakarta.
http://www.microsoft.com/mind/0596/jakarta/jakarta.html. 12 p.

Expersoft. 1998. http://www.expersoft.com.

Grimes, R. 1997. Professional DCOM Programming. Birmingham: Wrox Press
Ltd. ISBN 1-861000-60-X.

Highlander Communications, Visigenic Software. 1998. Realtime CORBA. Joint
initial submission. 44 p.

Hildebrandt Dan. 1997. Adapting PC Technology for Internet Appliances,
Embedded Systems Conference Proceedings, 416 p.

100

Holappa, M. 1998. CORBA:n soveltaminen joustavan valmistusjärjestelmän
perusohjelmistoon. VTT Tiedotteita 1911, VTT Offsetpaino: Espoo. 87 p.

Icesoft. 1998. in http://www.icesoft.no/ICEBrowser. April 1998.

IDG-Net 1998. http://www.idg.net/idg_frames/english/content.cgi?vc=docid_0-
75915.html. June 1998.

Infobus. 1998. in http://esuite.lotus.com/esuite/esuite_site.nsf
/Linking+View/The+eSuite+Infobus+Defined. March 1998.

ITU. 1998. in http://www.arts.su.edu.au/Arts/departs/itu/ats/OpenDoc.html. April
1998.

JavaAPI. 1998. JavaBeans API Specification.

JavaApp. 1998. in http://www.javasoft.com/applets/index.html, March 1998.

JavaBean. 1998. in http://www.javasoft.com/beans/. March 1998.

JavaEmb. 1997. in http://www.computer-design.com/Editorial/1997/03
/Embedded/397drbeanssb.html.

JavaFAQ. 1998. in http://chatsubo.javasoft.com/current/faq.html#CORBA. April
1998.

JavaProd. 1998. in http://www.java.sun.com/products/hotjava/1.1.2./. April 1998.

Johns, P. 1996. The ACBs of MFC ActiveX Controls. MSDN CDROM July 97.

Krieger, D. & Adler, R. M. 1998. The Emergence of Distributed Component
Platforms. IEEE Computer. March 1998. pp. 43-53.

Lockheed Martin Federal Systems, Inc. 1998. Realtime CORBA. Response to
OMG RFP for Realtime CORBA extensions. 35 p.

Magma. 1998. in http://www.magmainfo.com/. April 1998.

Microsoft. 1995. The Component Object Model Specification. 1995. Draft
Version 0.9, October 24. Microsoft Corporation and Digital Equipment
Corporation.

MOMA. 1998. Message Oriented middleware Association. http://www.moma-
inc.org. March 1998.

Morrison et al. 1997. Java Unleashed. Second Edition. Indianapolis, USA:
Sams.net Publishing. 1164 p. ISBN 1-57521-197-1.

101

Mowbray, T. & Zahavi, R. 1995. The Essential CORBA. Systems Integration
Using Distributed Objects. New York: John Wiley & Sons. 316 p.

Mowbray, T. 1997. Inside CORBA. Massachusetts: Addison-Wesley. 374 p. ISBN
0-201-89540-4.

Murphy, K. 1997. Windows CE in Embedded Applications. Proceedings of
Embedded Systems Conference. San Jose, CA, Sept. 29 - Oct.2, 1997. pp. 987-
1001.

Niemelä E. & Holappa, M. 1998. Experiences with the Use of CORBA.
Proceedings of the 24th EUROMICRO Conference, Los Alamitos, CA:IEEE
Comp. Soc.,Vol. II, p. 989-996, ISBN 0-8186-8646-4.

Northern Telecom & Iona Technologies. 1998. Realtime CORBA Extensions.
Joint initial submission. 56 p.

Nucleus. 1998. in http://www.atinucleus.com/webserv.htm. April 1998.

Objective Interface Systems, Inc. 1998. Realtime CORBA. Initial submission. 35
p.

Omnicron. 1998. http://www.omnicron.ab.ca/httpd. March 1998.

Open Group, 1997. DCE 1.1: Remote Procedure Call. Document Number: C706.
http://www.opengroup.org.

OPC Taskforce, 1996. OLE for Process Control 1.0. August 1996.

OpenDoc. 1998. in http://www.cs.umbc.edu/kqml/OpenDoc.html. April 1998.

Orfali, R, Harkey, D. & Edwards, J. 1996. The Essential Client/Server Survival
Guide. Second Edition. John Wiley & Sons: New York. 676 p. ISBN 0-471-
15325-7.

Orfali, R. Harkey, D. & Edwards, J. 1997. Instant CORBA. John Wiley & Sons:
New York. . 292 p. ISBN 0-471-18333-4

Parker, T. 1998. Mobile Wireless Internet Technology Faces Hurdles. IEEE
Computer, March 1998. pp.12-14.

Pcweek. 1998. in http://www8.zdnet.com/pcweek/
reviews/0203/03open.html./

Quiotix. 1998. in http://www.quiotix.com/wshome.html. April 1998.

Rapid. 1998. in http://www.rapidlogic.com/welcome2.html. April 1998.

102

RMI. 1998. in http://chatsubo.javasoft.com/current/doc/rmi-spec. April 1998.

Sheinin, Y. Emelianov, M. Ignatiev, M. Embedded Real Time Web Servers. Real-
Time Magazine, March 1998. pp.84-89.

Siegel, J. 1996. CORBA Fundamentals and Programming. New York: John Wiley
& Sons. 693 p. ISBN 0-471-12148-7.

SoftwareAG. 1998. http://www.softwareag.com. March 1998.

Spyglass. 1998. in http://www.spyglass.com. April 1998.

Sun 1998. http://java.sun.com. Mach 1998.

Syrodowics, S. 1997. The Remote Procedure Calls Architectures and Embedded
Systems Development. Proceedings of Embedded Systems Conference. San Jose,
CA, Sept. 29 - Oct. 2, 1997, pp. 1405-1420.

University of Paderborn. 1998. http://www.uni-
paderborn.de/software/orbix/doc/prguide/part2/chapter1/pgintro1.html. June 1998.

Visigenic. 1998. http://www.visigenic.com/prod/vbrok/vb30DS.html. March
1998.

Wingard Steve. 1997. Embedding HTTP Functionality for Web-Based
Configuration and Management of Devices, Embedded Systems Conference
Proceedings, 340 p.

Yasko, C. 1997. Embedded O/S Platforms for Wireless Systems. Proceedings of
Embedded Systems Conference, San Jose CA, Sept. 29 - Oct. 2, pp. 824-865.

Appendix A. OPERATING SYSTEMS FOR EMBEDDED SYSTEMS
FLEX Client PalmOS Windows CE 2.0 Inferno Newton OS Java OS 1.1 EPOC32 GEOS

Type HPC PIM HPC/PDA HPC/PDA HPC/PDA HPC/PDA PDA/HPC

Provider Motorola U.S. Robotics Microsoft Lucent
Technologies

Apple Computer
Inc.

JavaSoft PSion Software
PLC

Geoworks
Operating System

Communication Message-based Wireless and wired LAN,
socket services, TCP/IP,
PPP, SLIP, IrDA

Styx, a set of API SLTP, PPP,
SSL, TCP/IP,
UDP/IP,
SNMP, DNS,
NIS, ICMP

full network
capabilities

TCP/IP,
SLIP/PPP, IrDA

OS/other
support

Virtual
machine/32 bit
kernel

pre-emptive,
multitasking,

32 bit Windows CE,
multithreaded,
multitasking, pocket
Internet, explorer

DIS virtual
machine, GUI
support, security,
file systems, a
common network
interface

Newton OS, pre-
emptive, multi-
tasking, OO,
persistent object
strore and appl.
framework in
ROM

Virtual
machine,
HotJava,
JavaAPI

pre-emptive 32
bit multitasking,
pen based UI

multitasking, UI:
imaging,
geometry. Input:
keypad, pen,
digital ink,
handwriting
recognition.

Memory 512K ROM,
256K RÀM

512K ROM,
32K RAM

1.2MB ROM, 400K RAM
for CE-OS

1 MB 4MB ROM, ¤
MB RAM

4 MB ROM

A
1

FLEX Client PalmOS Windows CE 2.0 Inferno Newton OS Java OS 1.1 EPOC32 GEOS

CPU 68000 688328 RISC CPUs, Hitachi SH-3,
MIPS (NEC, Philips), Future:
PowerPC, ARM, x86

x86, MIPS, ARM Digital
StrongARM,
Cirrus logic ARM

SPARC, x86,
StrongARM

Cirrus 7100,
Digital Strong
ARM

Language Script Language
like C++

C++, additionals:
ActiveX/COM/OLE, Java for
Windows CE

C-based Limbo,
multithreaded,
garbage collection

Newton Script
language

Java C++, OPL C++

Development Windows/IDE Windows,
Mac/SDK

Visual Studio IDE, Visual C++,
a subset of MFC and Win32
API, Embedded Toolkit for
VisualC++

UNIX, WIN95,
NT

JDK 1.1.4 PC/Windows,
VisualC++

Windows
NT/Borland C++

Applications Motorola
PageWriter 2000

PalmPilot with
2500 addresses,
handwriting

Several HPCs from Casio,
Compaq, NEC, Philips, Hewlett-
Packard, Hitachi

Apple’s
MessagePad 2000
(LCD, 8MB
ROM 5 MB
RAM)

Products
from
Mitsubishi,
Telxon,
Blazie

Sharp Zaurus HP’s OmniGo
200

HPC = Handheld Personal Computer (web browser, spreadsheet, word processor)
PDA = Personal Digital Assistant (email, messaging)
PIM = Personal Information Manager (calendar, contacts, to-do lists)
(Yasko, 1997; Murphy 1997).

A
2

Appendix B. Third Party Java Virtual Machines / JDKs

Operating
System

CPU Description Company /
Organization

AIX PowerPC JVM Kaffe.Org
AmigaOS M68K JVM Kaffe.Org
BeOS JDK
BSDI i386 JVM Kaffe.Org
DG/UX i386 JVM Kaffe.Org
DIGITAL
OpenVMS

Alpha JDK Digital Equipment
Corporation

DIGITAL Unix Alpha JDK Digital Equipment
Corporation

DIGITAL Unix Alpha JVM Vienna University of
Technology

EPOC 16 Psion Series 3 JVM
FreeBSD i386 JDK Bluegum Software

Specialists Inc., The
FreeBSD Project

FreeBSD i386 JVM Kaffe.Org, The Hungry
Programmers

HP-UX JDK Hewlett-Packard
HP-UX JVM Hewlett-Packard
IRIX MIPS JVM Kaffe.Org
Linux MkLinux, PowerMac,

PowerPC
JDK

Linux PowerPC, Alpha, i386, Sparc JVM Kaffe.Org

B
1

Operating
System

CPU Description Company /
Organization

Linux Alpha JVM Vienna University of
Technology

Linux i386 JVM The Hungry
Programmers

MachTen PowerPC JVM Kaffe.Org
MacOS Macintosh JDK Apple
NetBSD i386, Sparc, M68K, MIPS JVM Kaffe.Org
NetBSD i386 JDK Quick.com.au
NetWare JVM Novell
NeXTStep i386, Sparc, M68K JVM Kaffe.Org
OpenBSD i386 JVM Kaffe.Org
OS/2 i386 JDK IBM
OSF/1 Alpha JVM Kaffe.Org
Reliant Unix MIPS JDK Siemens Nixdorf

)Informationssysteme
AG

RiscOS JVM
SCO i386 JVM Kaffe.Org
Solaris Sparc, i386 JDK Sun Microsystems
Solaris Sparc, i386 JVM Kaffe.Org
SunOS Sparc JDK
SunOS Sparc, M68K JVM Kaffe.Org
UnixWare i386 JVM Kaffe.Org
UXP/DS Sparc JVM Kaffe.Org
VxWorks JVM Wind River Systems
Windows 95/NT i386 JVM Kaffe.Org, Mach J Col
Windows CE H/PC SDK for Java Microsoft

B
2

Appendix C. HPC PRODUCTS WITH WINDOWS CE 2.0

Feature Casio Computer
Co.

Compaq
Computer Co.

Hitachi Ltd. Ericsson
Mobile
Computing

Hewlett-
Packard Co.

LG Electronics NEC Computer
Systems
Division

Philips Electronics

Model Cassiopeia E-10 2010C HPW-200EC MC 12 HP 360LX Phenom Mobile Pro

750C

VELO 500 (16/24

MB)

Processor

Speed

NEC VR4111 MIPS

RISC processor

75 MHz, RISC

processor

100 MHz, SH3

32-bit RISC

chip

Hitachi 100 MHz Hitachi

SH3 RISC chip

80MHz NEC

VR4111

processor

75 MHz 32-bit

MIPS-based Philips

PR31700 RISC

processor

Display 240x320 LCD

screen , backlight

Resolution:

640x240

Type: STN LCD

640x240 LCD,

256 colours

640x240 touch

screen with

backlight

640x240, 16-

grayscale

(colours in

620LX; 1998))

256 colours,

640x240 backlight

screen, 1/2 VGA

display

256 colours grayscale LDC,

640x240, backlight

Memory

(RAM/ROM)

4 MB/ 20 MB/ 16 MB 16 or 32 MB/12

MB

4 MB/5 MB,

2MB Compact

Flash

8 MB/10 MB 16 MB

(expandable)/12

MB

16 MB/16 MB 16 MB

(expandable)/16

MB , 8MB DRAM

miniature card in 24

MB Velo 500

C
1

Feature Casio Computer
Co.

Compaq

Computer Co.

Hitachi Ltd. Ericsson
Mobile
Computing

Hewlett-
Packard Co.

LG Electronics NEC Computer

Systems Division

Philips

 Electronics

Interfaces Compact flash card

slot, serial port,

IrDA port, built-in

microphone and

speaker, automatic

data synchronisation

with a desktop PC

(up-to-date).,

Options: modem

adapter, compact

flash card, AC

adapter

33.6 Kbps

integrated

modem,

integrated RJ11,

serial port

115KB/s, PC

card slot, Infrared

port 115Kb/s,

speaker

33.6 Kbps

modem, Type II

PCMCIA slot,

serial port,

Compact flash

card slot, built-in

microphone,

speaker, and voice

recorder

IrDA port, PC-

card slot type

II, drag&drop

between PC

&MC 12

Compact flash

card slot, PC

card slot for

modem

33.6 Kbps

modem, built-in

VGA port,

PCMCIA type II

slot, compact

flash slot

Compact flash

and PC type II

card slots, VGA

port, built-in

modem,

microphone,

speaker, infrared

support

61 keys, 10 quick

start-keys., built-

in microphone,

speaker, 28.8

Kbps V.34

data/fax modem.

IrDA (115 Kbps),

RS-232 (230

Kbps)

Power Supply 2 AAA-size alkaline

batteries, back-up

battery CR2016

NiMH

rechargeable

batteries, Lithium

backup battery,

A/C adapter

rechargeable Li-

ions Battery Pack

rechargeable Li-

ions /10 hours

NiMH

rechargeable

battery pack

C
2

Feature Casio Computer
Co.

Compaq
Computer Co.

Hitachi Ltd. Ericsson
Mobile
Computing

Hewlett-
Packard Co.

LG Electronics NEC Computer
Systems Division

Philips
Electronics

Windows CE

Applications

Microsoft Outlook

with ActiveSync,

Note taker, voice

recorder, e-mail,

inbox, Internet

explorer 4.0

Windows CE

services with

ActiveSync,

Pocket Outlook,

Pocket Internet

Explorer, Pocket

Word 2.0, Pocket

PowerPoint 2.0,

Visual Basic 5.o

Runtime, Visual

C++ runtimes,

Pocket Street 2.0

Pocket Outlook,

Pocket Word,

Pocket Excel,

Pocket

PowerPoint,

Pocket Internet

Explorer

Internet

Explorer,

Inbox, Pocket

Word, Excel;

Calendar,

Contacts and

Tasks

(autosync.

with M.

Schedule &

Outlook 97)

PowerPoint HPC: Pocket

Word, PowerPoint

Viewer, Excel,

Internet Explorer,

Outlook, PC: CE

services

Sync. Schedule+

7.0/Exchange,

Lotus Organizer,

ACT! (Calendar,

contacts, tasks,

inbox, calculator,

world clock),

Pocket Word,

Excel, Power

Point, Internet

Explorer

Pocket Word,

Excel, PowerPoint

Viewer, Internet

Explorer,

Microsoft Pocket

Outlook , e-mail,

sync. CE service

with ActiveSync.

C
3

	Abstract
	Preface
	Contents
	List of abbreviations
	1. Introduction
	2. Background of heterogeneous networked systems
	2.1 Client/server architecture
	2.1.1 2-tier and 3-tier client/server architectures
	2.1.2 Middleware

	2.2 Distribution media
	2.2.1 LAN and WAN
	2.2.2 Cellular data communication

	2.3 Operating systems
	2.3.1 Requirements for the client-side
	2.3.2 Requirements for the server-side
	2.3.3 Operating systems for clients
	2.3.3.1 Windows 95 (Microsoft)
	2.3.3.2 Windows NT workstations (Microsoft)
	2.3.3.3 Java OS (Sun)
	2.3.3.4 Windows CE (Microsoft)

	2.3.4 Operating system products for servers
	2.3.4.1 NetWare 4.1 (Novell)
	2.3.4.2 NT server (Microsoft)
	2.3.4.3 OS/2 Warp server (IBM)
	2.3.4.4 Unix

	2.3.5 Summary

	2.4 Frameworks and components
	2.4.1 CORBA (Common Object Request Broker)
	2.4.2 COM and DCOM (Distributed Component Object Model)
	2.4.3 CORBA with DCOM
	2.4.4 Real-time CORBA
	2.4.5 Desktop Management Interface
	2.4.6 Distributed Management Framework
	2.4.7 OCX and ActiveX
	2.4.8 Java Beans and Java applets
	2.4.9 OPC

	2.5 Web client/server
	2.5.1 Security
	2.5.2 Electronic payments
	2.5.3 Java objects in Web
	2.5.3.1 Protection mechanisms

	2.5.4 Embedded WebBrowsers
	2.5.5 Embedded WebServers

	2.6 Communication mechanisms
	2.6.1 Synchronous communication
	2.6.2 Asynchronous communication
	2.6.2.1 Events
	2.6.2.2 Messaging

	2.6.3 Communication mechanisms
	2.6.3.1 Remote procedure call
	2.6.3.2 Remote method invocation
	2.6.3.3 InfoBus
	2.6.3.4 Message Oriented Middleware

	2.7 Standard interfaces
	2.7.1 IDL
	2.7.1.1 Structure
	2.7.1.2 Compilers

	2.7.2 MIDL
	2.7.3 Common Gateway Interface
	2.7.4 Database interfaces
	2.7.4.1 ODBC
	2.7.4.2 JDBC

	2.7.5 Application interface library
	2.7.5.1 JAPI

	2.8 Java clients with CORBA orbs
	2.9 Compound documents and Object Webs
	2.9.1 OpenDoc
	2.9.1.1 OpenDoc terminology
	2.9.1.2 OpenDoc and JavaBeans

	2.9.2 DCOM Object Web
	2.9.3 CORBA Object Web
	2.9.4 Trends in Web technology

	2.10 Integrating legacy systems

	3. Commercial implementations for distributed objects
	3.1 Iona’s Orbix
	3.2 Visigenic’s Visibroker
	3.3 Expersoft’s CORBAplus
	3.4 Software AG’s EntireX
	3.5 Comparison between commercial middleware products

	4. Experiences concerning the use of commercial middleware
	4.1 Orbix AND VisiBroker
	4.3 CORBAplus
	4.3.1 Problems Encountered
	4.3.1.1 C++
	4.3.1.2 Java

	4.3.2 Merits

	5. Embedded middleware services
	5.1 Interfaces
	5.2 Basic services
	5.2.1 Communication services
	5.2.2 Naming and trader service
	5.2.3 Security service

	5.3 Optional services

	6. Summary
	References
	Appendix A. OPERATING SYSTEMS FOR EMBEDDED SYSTEMS
	Appendix B. Third Party Java Virtual Machines / JDKs
	Appendix C. HPC PRODUCTS WITH WINDOWS CE 2.0

