
V T T P U B L I C A T I O N S

TECHNICAL RESEARCH CENTRE OF FINLAND ESPOO 1999

Veikko Seppänen, Kimmo Alajoutsijärvi &
Päivi Eriksson

Projects or products:
seeking for the business logic
of contract R&D

3 9 2

V T T P u b l i c a t i o n s

V T T P u b l i c a t i o n s

V T T P u b l i c a t i o n s

V T T P u b l i c a t i o n s

V T T P u b l i c a t i o n s

V T T P u b l i c a t i o n s

V T T P u b l i c a t i o n s

V T T P u b l i c a t i o n s

V T T P u b l i c a t i o n s

P

VTT PUBLICATIONS 392

Projects or products:
seekin g for the business lo gic

of contract R&D

Veikko Seppänen
VTT Electronics

Kimmo Alajoutsijärvi
University of Oulu

Päivi Eriksson
University of Tampere

TECHNICAL RESEARCH CENTRE OF FINLAND
ESPOO 1999

ISBN 951–38–5391–8 (URL: http://www.inf.vtt.fi/pdf)
ISSN 1455–0849 (URL: http://www.inf.vtt.fi/pdf)

Copyright © Valtion teknillinen tutkimuskeskus (VTT) 1999

JULKAISIJA – UTGIVARE – PUBLISHER

Valtion teknillinen tutkimuskeskus (VTT), Vuorimiehentie 5, PL 2000, 02044 VTT

puh. vaihde (09) 4561, faksi (09) 456 4374

Statens tekniska forskningscentral (VTT), Bergsmansvägen 5, PB 2000, 02044 VTT

tel. växel (09) 4561, fax (09) 456 4374

Technical Research Centre of Finland (VTT), Vuorimiehentie 5, P.O.Box 2000, FIN–02044 VTT, Finland

phone internat. + 358 9 4561, fax + 358 9 456 4374

VTT Elektroniikka, Sulautetut ohjelmistot, Kaitoväylä 1, PL 1100, 90571 OULU

puh. vaihde (08) 551 2111, faksi (08) 551 2320

VTT Elektronik, Inbyggd programvara, Kaitoväylä 1, PB 1100, 90571 ULEÅBORG

tel. växel (08) 551 2111, fax (08) 551 2320

VTT Electronics, Embedded Software, Kaitoväylä 1, P.O.Box 1100, FIN–90571 OULU, Finland

phone internat. + 358 8 551 2111, fax + 358 8 551 2320

Technical editing Leena Ukskoski

3

Seppänen, Veikko, Alajoutsijärvi, Kimmo & Eriksson, Päivi. Projects or products:
seeking for the business logic of contract R&D. Espoo 1999. Technical Research Centre
of Finland, VTT Publications 392. 110 p. + app. 104 p.

Keywords core competence, industrial relationships, logic of action, embedded
software, research and development

ABSTRACT

This research addresses the question of building and exploiting competence
in connection with contract research and development (R&D), by means of
a longitudinal case study. The research involves VTT as a supplier and
internal research customer, Tekes as a funding body and several firms as
external industrial customers. We are looking into their mutual relationships
to gain a better understanding about the evolution and exploitation of
competence on the so-called code generation techniques used in the
development of software embedded in electronic products.

The analysis of the code generation case is based both on written material
and on interviews of persons involved in code generation related activities
at VTT, Tekes and industry from the mid-eighties to the present date. The
building of the code generation competence of VTT is analysed and
explained within the R&D process based on project relationships. The
marketing and purchasing of the competence is also addressed. Differing
logic of action of the interacting parties have been found to affect the
evolution of competence, within networks established for creating and
making use of the competence.

In the code generation case, the managers of VTT aimed at creating a
growing portfolio of fully contractual project relationships, involving
machine automation firms, in particular. The researchers favoured
marketing the competence as a commercial style tool, with a minimum of
tailoring done in projects. The customers of VTT had difficulties in coping
with these two logic of action, in a rapidly and radically changing business
environment. It may have been for this reason that the competence was,
after all, utilised mainly by VTT itself in joint research projects.

This did neither benefit its developers nor did it advance the evolution of
the competence. The differing logic of action of the two key parties, which
resulted in the lack of any considerable portfolio of external customer
relationships, lead to a rather rapid withering of the competence at VTT.
However, the developed code generation technology has recently been sold
to the former researchers, who have established a company based on their
own business logic. This kind of competence survival through many years
and despite conflicting viewpoints is, after all, one of the key factors in
making business out of research.

4

PREFACE

The main purpose of this research was to study the evolution and
exploitation of competence in the context of inter-organisational
relationships. We used a longitudinal case study to analyse the change of
competence in project-based relationships, as well as its utilisation for the
needs of both VTT itself and its industrial customers.

We are grateful to Dr. Kari Leppälä and Mr. Harri Perunka for their
comments on an early draft of this report. The persons who were actually
involved in code generation related activities at VTT are also gratefully
acknowledged. The people outside VTT, who informed us about their views
to, participation in and use of the results of these activities deserve even
more grateful thanks.

Mrs. Jaana Määttä, who carried out some of the interviews, did a very good
job as a marketing trainee. Professor Kristian Möller, one of the key figures
in the research of industrial networks, has reviewed this report for
publication. We are indebted to him for his time to read the manuscript and
the comments that helped us to improve it.

Veikko Seppänen, the first author, has translated pieces of the code
generation case data included in appendices 2 and 3 for the needs of this
report. Although the translations have been reviewed by the key informants,
he is solely responsible for any possible mistakes remaining in the
translations.

The Foundation for Economic Education provided a personal grant for
Veikko Seppänen to carry out the research published in this report, which is
most gratefully acknowledged.

Oulu, August 13, 1999

Veikko Seppänen, VTT Electronics

Kimmo Alajoutsijärvi, University of Oulu

Päivi Eriksson, University of Tampere

5

CONTENTS

ABSTRACT 3

PREFACE 4

CONTENTS 5

SYMBOLS AND ABBREVIATIONS 7

1 INTRODUCTION 8

2 RESEARCH DESIGN 13

3 COMPETENCE EVOLUTION FRAMEWORK 19
3.1 Elements of the substance layer 19
3.2 Process-based viewpoint to contract R&D 22
3.3 Structuring of process nets 26
3.4 Management of competence changes 27
3.5 Explaining the logic of action 32

4 ANALYSIS OF THE CASE DATA 37
4.1 Outer context - software engineering 39

4.1.1 Evolution of the electronics industry 1985 - 1998 41
4.1.2 Technological developments 46

4.2 Analysis of the process nets 49
4.2.1 Alignment of the logic of action 49
4.2.2 Planned and realised process nets 55

4.2.2.1 Forms of interaction 61
4.2.3 Analysis of the change of process nets 64

4.3 Analysis of the code generation processes 67
4.3.1 Assuring of capability 71
4.3.2 Balancing of particularity 74

4.4 Evolution and valuation of the competence 77
4.4.1 Competence during the Speco period 77
4.4.2 Competence during the Sokrates period 79
4.4.3 Competence during the Reagenix period 85

6

5 DISCUSSION 89
5.1 Analysis of the competence evolution 89
5.2 Cross-case analysis 93
5.3 Lessons learned 99

5.3.1 Empirical implications 99
5.3.2 Research implications 101
5.3.3 Managerial implications 103

REFERENCES 107

APPENDICES

Appendix 1. List of the case data

Appendix 2. Code generation case data

Appendix 3. Code generation stories

7

SYMBOLS AND ABBREVIATIONS

AI Artificial intelligence

ARA Activity-resource-actor model

ASIC Application-specific integrated circuit

AUT VTT Automation

CASE Computer-aided software engineering

CMM Capability maturity model

COTS Commercial off-the-shelf (software)

CUTE C software unit testing tool

DSP Digital signal processing

EDA Electronic design automation

ELE VTT Electronics (1994 -)

ELI VTT Food technology laboratory (- 1993)

FIM Finnish mark

IT Information technology

IPR Intellectual property rights

KE Knowledge engineering

KTM Ministry for Trade and Industry

OO Object-oriented

PLC Programmable logic controller

PC Personal computer

QFD Quality Function Deployment

R&D Research and development

SA/SD Structured analysis and design

SE Software engineering

SDL Structured design language

STUK Finnish Centre for Nuclear Safety

TKO VTT Computer technology laboratory (1983 - 93)

TTCN Tree and tabular combined notation

VHDL Very High-Level Design Language

VLSI Very large scale integration of electronic circuits

VTT Technical Research Centre of Finland

8

1 INTRODUCTION

This research addresses the evolution of competence of a contract research
institute within the context of its project relationships. From the viewpoint
of institute management, competence should contribute to the strategic
business goal of ensuring an adequate volume of fully contractual activities.
The exploitation of competence should also advance the business goals of
the customers of the institute, either directly for the benefit of the
customer’s own customers or indirectly via the customer’s product or
process development activities. We are studying how the objectives, goals
and viewpoints of interacting parties are managed throughout the initiation
and carrying out of joint activities as part of their relationships. Since the
goals may not be aligned with each other, a successful evolution of
competence can not be guaranteed. The parties may disagree over what
should be considered as an element of competence, in the first place.

VTT Electronics (ELE), our case organisation, carries out contractual R&D
activities in the field of electronics. We refer to [Seppänen et al. 1998a] and
to the Internet home page www.ele.vtt.fi for a brief description of the
institute. Code generation addressed in the research involves embedded
computer systems, built-in controlling computers incorporated in electronic
products. Embedded systems software engineering was one of the focal
areas important topic of TKO (Computer technology laboratory of VTT),
one of the predecessors of ELE that was merged with three other
laboratories to form ELE in 1994. When established in 1983, the embedded
software engineering section of TKO included some fifteen researchers. At
present, there are about a hundred software engineering experts at ELE.

Industrial software development emerged in the sixties. The phrase software
engineering was taken in use in the seventies to denote a systematic
approach to organising, managing and performing software design as part of
product development. The need for embedded systems software
development originated in the seventies, when microprocessors became
commercially available. At first, embedded software was mostly developed
by hardware designers. In the early eighties, TKO was one of the main
contributors In Finland to bringing embedded software engineering
principles, methods and tools to the attention of industry. It even proposed
and made popular the Finnish translation of the term embedded software,
“sulautettu ohjelmisto”. TKO researchers took part in the development of a
number of very successful electronic products as embedded software
engineering experts. Moreover, the roots of some of the very first Finnish
embedded systems software development tools are to be found at TKO.

In more general terms, embedded systems software engineering research
started to flourish in Finland in the mid-eighties. One of the main reasons
was that Tekes, the national technology development funding body,
organised two quite extensive software-related research programs.
Companies that had started to utilise microprocessors realised that the size
of software incorporated in their products was rapidly growing and that they
needed better means for managing the software development.

9

They also found out that the features used for arousing the customers'
interest in products were often based on software. Industry was, for these
reasons, quite eager to join the steering groups of public research projects
dealing with embedded software engineering. Only modest fees, compared
to the total budgets of the projects, needed to be paid for joining the groups.
The research was in most cases performed by university or by VTT
researchers. At the same time, industry started to hire experts so as to
facilitate the use and development of new software engineering methods
and tools. Quite many of them had previously been working at universities
and at VTT, which would contribute to industrial interest in public research
projects. While product development engineers were playing a major role,
other people from industry, such as marketing and customer support
professionals, were seldom involved. Most of the representatives in funding
bodies, such as Tekes, were technology experts as well.

Tekes established the first national software-related research program called
Finprit in the mid-eighties. TKO carried out several Finprit projects and
produced prototypes of embedded software development tools. The second
software engineering research program, called Finsoft, was launched by
Tekes in the late eighties [Karjalainen 1991]. TKO prepared and carried out
the biggest project within the Finsoft program, called Sokrates. The aim of
this project was to produce a design method and to build a code generator
prototype, which would provide for a systematic, seamless and automated
embedded software development approach. The general goal of the project
was characterised as creating design automation for embedded systems. The
intention was to turn embedded software development from art to an
engineering discipline relying on rigorous methods and automated tools.

Despite the efforts allocated to the project, neither a breakthrough in code
generation succeeded, nor did any vendor commercialise the code generator
prototype developed in the project. The rights to the code generator have
recently been sold by VTT to a small company owned by some of the
original researchers. Therefore, there's still a possibility for the venture to
succeed. Yet, in this research we are mainly interested in investigating why
the code generation competence could not be more extensively exploited
earlier, to allow VTT to make use of its research results.

Conflicting viewpoints arose around code generation at VTT as early as the
early nineties. One of the very basic controversies involved line managers
and focal researchers. The conflict was related to the basic business logic of
VTT based on a portfolio of three kinds of projects, shown in Figure 1.
About twenty percent of projects involve innovative self-funded “green”
research, usually followed by a few companies. The degree of industrial
income in green projects, if any, may be only half to one percent of the total
budget of the project. Technical risks are often high in such projects, but
business risks are low both for VTT and the possible industrial followers of
the research. These projects aim at "capability development" from the
viewpoint of inter-organisational networks [Håkansson and Snehota 1995].

10

Some forty percent of the portfolio includes “blue” applied research
projects carried out and financed jointly by public funding bodies, VTT and
industry. In these projects, which involve "strategy development" from the
network perspective [Håkansson and Snehota 1995], the typical industrial
contribution amounts to twenty percent, the input from public sources fifty
percent and VTT’s own funding thirty percent. This financing scheme
covers all the expenses of the projects, but does not produce any profit for
VTT. The rest of the portfolio, about forty percent, consists of "red”
development projects purchased by industrial customers. The income from
red projects should not only cover all the expenses of VTT, but also result in
some, yet small, profit for VTT, in addition to the benefits for the
customers. Contrary to the networking framework of Håkansson and
Snehota, multi-party networks for strategy development thus usually
precede dyadic customer relationships.

From the managerial point of view, internal investments made in capability
development in green projects should be paid back by subsequent blue
strategy development projects and red projects marketed successfully to
industry. From researchers’ viewpoint, the need to create contractual
business from self-funded research, based on an expanding flow of external
income, may not be obvious at all.

Techn ica l risk
Green pro jects (20%)

B lue pro jects (40%)

Red pro jects (40%)

In
du

st
ria

l f
ol

lo
w

-u
p

fir
m

(s
)

In
du

st
ria

l p
ar

ne
rs

(T im e)

V T T

V T T
F und ing
body

Indus tria l cus tom er(s)
per p ro jec t

1-
2

2-
10

1 -3

Inn ova tion C o llabora tive research C ontrac t R & D Business risk

Figure 1. The intended project portfolio of VTT.

Code generation research started "backwards”, as a small red project paid
by a company, whose R&D manager was the former section head at TKO.
The subsequent Sokrates project was a very large blue project, in which
VTT's own financing of was quite limited, due to the as high as 70%
funding by Tekes and the fees paid by the over ten companies taking part in
the project. Although the expectations for a number of subsequent red
projects were high, after Sokrates both public and industrial investment on
code generation related activities decreased. Two mid-size red projects were
carried out for one of the industrial members of the Sokrates steering group,
and two small projects for other companies.

11

Although some licenses of the code generator were sold to firms that had
not been involved in the Sokrates project, the generator was mostly used in
blue projects at VTT. On one hand, the code generation researchers felt that
managers were preventing them from making a practical tool out of the
research results. They were not allowed to continue their work by any
considerable internal funding, while the managers were hoping to establish
red projects paid by industrial customers. On the other hand, the managers’
tolerance to wait for expanding industrial income from red projects
gradually disappeared:

Code generation researcher: “The management of TKO said that this
[the code generator] is not good, this is a prototype, a hack-hack, and
we cannot seriously offer this to industry. Now, having been in
industry for four years, I have seen what kind of tools are being used,
for example in the telecommunication area: tools developed by
ourselves and by universities, public domain tools, and our
competitors’ tools. I must say that Reagenix was, after all, a very
reasonable tool. The impression that was given by the management of
TKO was that industry uses only top-quality, well-packaged tools
offered by reliable parties. This is the point, VTT did not see itself as a
reliable tool developer.”

Manager: “Well, it might be that there was a belief that something
would come out, but that belief gradually vanished. In closing, [of the
Sokrates project] ... [the focal researchers] took it for granted that
about six companies would take the results in use right away. They
already wrote down ready-made contracts, but the fact was that there
were no real deals at all. They told ... that everything would have
been agreed, but the reality was completely different. We lost
confidence in their judgement.”

Contrary to the conclusions of many studies of industrial relationships, the
basic business strategy of a contract research organisation like VTT is not
always the length of individual customer relationships, but the width of the
portfolio of such relationships. The reason is that the width is, in practice, a
better means of maintaining and advancing competencies.

This has been shown, for example, in [Ford et al. 1998], relying on a study
carried out among 123 Swedish companies on technological relationships.
Relationships with horizontal units, e.g. such external partners as research
institutes, were the shortest, compared e.g. with the relationships with
customers and vertical suppliers. Their duration was less than four years in
55% of the surveyed cases. The weighted average of technological
relationships with horizontal units was eight years. In the code generation
case, the longest relationships lasted for six years, and typically much
shorter. Well over twenty relationships existed during a period of thirteen
years despite the case being rather unsuccessful from the perspective of
creating customer relationships.

12

Ford and others concluded that the most common type of firms with respect
to technological relationships was “broad co-operators”, 48 of the 123
companies had a versatile portfolio of relationships with customers,
suppliers and horizontal units. Only thirteen of the 28 “focused companies”
interested in certain types of partners were dealing with horizontal units.
VTT had also quite many broad collaborators interested in code generation
during the Sokrates project. Only few of its customers chose to focus on
code generation later in the form of red projects or to use VTT as a
technology supplier of the code generator tool.

Code generation has not yet become a notable approach to embedded
systems software development in more general terms either. However, one
third of the industrial respondents of a global survey concerning the
strategic needs and future trends of embedded software technologies carried
out in 1996 [Seppänen et al. 1996] indicated that code generation techniques
will be needed in the future. Only 5% of the respondents fully disagreed
with the proposition of using such techniques.

We are addressing the code generation case by employing the framework
presented in [Seppänen et al. 1998a], where it was used for explaining the
evolution of fault diagnosis competence within the customer relationships of
VTT. In the code generation case, VTT managers wanted the competence to
be built for a portfolio of such relationships, whereas the focal researchers
focused on license selling in much shorter term business transactions.

This report is organised as follows. First, the research design of the case
study that was performed is described in Chapter 2. Then, an overview of
the framework used for explaining the development of the code generation
competence is given in Chapter 3. Intertwined stories of the focal
researchers and one of the VTT managers is presented in Appendix 3, to
provide an overview of the developments that took place from the
viewpoint of the two most influential groups of actors at VTT.

The case data is analysed and discussed by using the competence evolution
framework in Chapter 5. Finally, Chapter 6 presents the conclusions drawn
from the code generation case and a cross-case analysis with the fault
diagnosis case reported in [Seppänen et al. 1998a]. Appendix 1 provides a
comprehensive list of the written material and interviews used as data
sources. Appendix 2 comprises an extensive summary of the case data, to
supplement the code generation stories presented in Appendix 3.

13

2 RESEARCH DESIGN

This research on the evolution of code generation was carried out as a
longitudinal case study. According to [Yin 1988], a case study strategy is
relevant, when the research question is of the explanatory form “how” or
“why”, and the research does not require control over the behavioural
events that are being studied and the focus is on contemporary events. Yin
defines case study as “an empirical inquiry that: investigates contemporary
phenomenon within its real-life context; when the boundaries between the
phenomenon and context are not clearly evident; and in which multiple
sources of evidence are used.”

We are interested in explaining how competence emerges - or withers – and
is being exploited within the context of the relationships of a contract
research organisation. The boundary between this phenomenon and its
context is all but clear cut. As an example, from a managerial viewpoint we
would also like to control the context, i.e. to know how and why some
individual competencies can or cannot be utilised in a business strategy
based on the creation and maintenance of project relationships, or how other
kinds of relationships - be they social, economic or spatial - could be
created and utilised to advance project relationships.

Our focus is on events that have taken place during the past several years,
but which are not past history. In other words, we are addressing
contemporary events. In this research we do not need to have any control
over the events, but we are not complete outsiders either. For example, the
first author of this report, who is a line manager at VTT, sold the rights of
the code generator technology, the object of the activities that we have
studied, to a small company during the research project. The owners of the
company are the former code generation researchers. Since the conditions
for carrying out a case study given by Yin fit with our research, and
participant observation involving one of us is not excluded from the method
but seen to provide “unusual opportunities for collecting case study data”
[Yin 1988], we have selected the case study approach.

A longitudinal perspective is necessary for understanding and explaining
changes in real-life phenomena. The period of over ten years that we are
focusing on starts from the first code generation related project carried out
by VTT in the mid-eighties and ends at the present date. The contemporary
events related to the code generation are thus well covered, from the
viewpoint of VTT and the other parties involved in the case.

Although our study is substantive, aiming at understanding and explaining
complex events in their real-life context, it is not strictly qualitative, because
we have used the competence evolution framework presented in [Seppänen
et al. 1998a] as a theoretical basis for explaining our case data. The case
data has not been the sole source of information used for creating the
framework - the modifications of the framework that we suggest in this
report should be viewed as an attempt to improve the existing theory.

14

Yin points out, however, that the role of theory building prior to any case
data collection has often been overlooked. Taking heed of this point we
extended the framework before using it in structuring and analysing the
code generation case data.

A case study research design includes at least the following elements:
research questions, propositions (if any), units of analysis, the logic of
associating case data to the propositions, and the criteria used for
interpreting the results. Since our study is of explanatory nature, we also
need to use some patterns to structure the explanations. The research
question that we address comprises two parts: how competence evolves
within the project relationships of a contract research institute, and why the
competence can or cannot be exploited for the contractual business needs of
the institute.

A research proposition is a means of focusing the study on a relevant topic.
The main proposition of our research is that the skills and capabilities of a
contract research organisation should evolve towards core competence
[Hamel and Prahalad 1994], so as to make the organisation efficient enough
with regard to its capabilities and flexible enough in its relationships. An
important associated proposition is that core competence does not emerge
only for customer needs within the supplier’s internal activities, but within
contractual activities. Concerning this proposition, we are analysing how the
non-alignment of different logic of action of the involved parties will slow
down or even prevent the evolution and exploitation of competence.

A unit of analysis specifies the elements of the case to be studied, usually
relying on the formulation of research questions. The units of analysis of
this research are the resources and activities involved in the R&D and
business processes of a technology supplier and its customers. The main
patterns of explanation are the actors and relationships associated with the
processes, called focal nets in [Seppänen et al. 1998a] and process nets in
this report. In terms of the actors of these nets, we focus on small groups of
people, such as the code generation researchers, the managers of the focal
organisation and the key representatives of customers. Their logic of action
and interaction are made explicit and analysed. The project cycle is used for
structuring the R&D process of both the case organisation and its
customers. This cycle involves the planning, conducting and controlling of
individual projects. The competence marketing cycle is used for structuring
the marketing process of the focal organisation and the purchasing process
of its customers. It includes not only initiating and contracting of projects,
but also general planning and management activities.

The quality of the research design of a case study can be evaluated by using
four tests related to the basic elements of the research design: construct
validity, for which multiple sources of evidence, chains of evidence and
informant review of the case study report can be used; internal validity by
pattern matching, explanation building or time-series analysis; external
validity by replication in multiple case studies; and reliability based on a
documented case study protocol and case data base. One of the strengths of
case studies is that it allows employing a full range of evidence from
physical artefacts and documents to interviews and direct observation.

15

We have used all these sources, to pass the construct validity test. Chains of
evidence will be presented in connection with the analysis of the case data,
including both chronological chains and relations based on such elements of
the competence evolution framework as actor bonds, resource ties and
activity links in relationships between VTT and its external collaborators
and customers. Moreover, a draft case data summary (Appendix 3) has been
reviewed by the key informants interviewed for the study. [Yin 1988]
claims that “for case studies, the most important use of documents is to
corroborate and augment evidence from other sources”. We do not fully
agree with this, because it seems, according to [Seppänen et al. 1998a] and
this research, that it is the other way round, at least in the case of a contract
research organisation operating on a project basis.

Within this context, managerial and technical documents are the basic
means for professional people to communicate and agree over technical and
managerial issues. Most research results are documented either as internal
papers or as public reports, and many of them are also evaluated in written
form. In addition, problems in contractual projects are often noted in
managerial documents. Individuals often keep personal diaries where they
write down, for example, other people’s opinions on joint plans, activities
and results. To try to structure this kind of data around interviews, which are
“most commonly, ... of an open-ended nature” in case studies [Yin 1988],
would be very difficult. Therefore, we first produced an initial case data
base from a chronological set of organisational and project documents and
corroborated this documentary data with the results of interviews.

We interviewed over forty people altogether, including six out of the total
of seven code generation researchers; five line managers of VTT directly
involved in code generation related activities; seven VTT researchers
associated indirectly with the code generation projects; ten VTT and
industrial people as end users of the code generator, a subcontractor
involved in the further development of the code generator; the two persons
from Tekes involved in code generation related projects; three industrial
customers who contracted code generation projects from VTT, including
one line manager and two application engineers; and altogether eleven
members of the steering group of Sokrates, the main code generation
research project.

The interviews were conducted as face-to-face discussions, by phone, as a
group rehearsal of the code generation researchers, and by using electronic
mail. The group rehearsal was carried out in an unstructured manner. Direct
observation was carried out in the rehearsal, but not as part of any ongoing
project. Most of the other parties were interviewed by using a semi-
structured approach, asking them to answer questions organised around the
specific projects in which they had been involved. Some interviews were
carried out by a marketing student as a training assignment. Frame 1
illustrates, as an example, the questions asked from the members of the
Sokrates steering group. The inquiries concerned the resources expected and
resulting from the project, as well as the events related to the project.

16

Frame 1. An example of semi-structured interview questions.

1. What skills and results did you seek from the Sokrates project?

2. How was the contact with the project established?

3. What information and experience did you get from the project?

4. Did you utilise any of the results and if you did, what results?
SA/SD based design method
Coding rules for the C programming language
Prototype of the code generator
Operating system nucleus
Communication software package

5. What was unnecessary in Sokrates from your viewpoint?

6. Would you have needed generation of code for other programming languages
than C or from other source languages than SA/SD design models?

7. Did you consider the use of code generation after the project, did you buy any
commercial code generators, such as Prosac?

8. What do you think of code generation at the moment?

9. Do you still use the SA/SD method in design?

A tentative summary (cf. [Seppänen et al. 1998a]) of the code generation
case was written by the first author of this report (Appendix 3) and sent to
the code generation researchers and to two other VTT researchers for
reading before their interviews. Its purpose was twofold, to facilitate the
writing of a more elaborated case history and to make explicit the
managerial perspective of the first author as a participating actor, the focal
manager and “key decision maker in an organisational setting” [Yin 1988].

The benefits of the case summary that was written in the form of a story,
especially in the latter sense, were considerable. The informants could see
on paper what a representative of the management thought about code
generation and had the opportunity of telling their own stories. Several
extensive augmentations of the initial summary, two comprehensive yet
different written outlines of the same subject, an 18-page report of a group
rehearsal that lasted for three hours, and a 90-minute interview of a co-
researcher resulted from the triggering effect of the initial story. As a result,
the initial case summary could be accompanied by the story of the code
generation researchers, the “multiple actor-informants own constructions of
their situation in the context studied” [Tikkanen 1998].

According to [Yin 1988] “the most desirable option is to disclose the
identities of both the case and the individuals”. However, since the study is
carried out on a controversial topic, as is the case with the code generation
R&D, in which the viewpoints of the key participants clearly conflict,
anonymity helps to protect the real case or at least its participants. Yin
points out that “the anonymity of the individuals alone may be sufficient,
thereby leaving the case itself to be identified accurately”. We have
followed this suggestion.

17

Several thousand pages of documentary data were retrieved, mainly from
the archives of the focal organisation. The most extensive set of personal
notes studied included eight 200-page R&D diaries from the mid-eighties to
the late nineties. Artefacts other than documents were also available for
investigation, e.g. the code generator and its commercial counterpart, a
small-scale model of an elevator for which the software had been generated
and a marketing video tape, to mention just a few. The data collection
process took as long as ten months, resulting in a data base comprising
approximately 170 pages of case data. This data base included classified
extracts from the analysed documents in a temporal order, the original grand
story, the results of the group rehearsal, as well as the free-formatted data
gathered from the interviews, which “may be considered as the formal part
of the data base and not part of the final case study report” [Yin 1988].

The analysis of this case study evidence relied on the theoretical
propositions based on the competence evolution framework, as discussed
above. The process net part of the framework was used as the basic means
for explanation building, denoting a special form of pattern matching based
on causal links. Since these links were highly complex and difficult to
measure precisely, we based the explanations on the theoretical propositions
of the study rather than on the case description only. We did not use the
formal time-series analysis, other than organising causal activity links
involving different actors and relationships over time, mostly in tabular
form. However, since the period of time that we studied is only about ten
years and the archived project material included plenty of details, it was
quite easy to unfold the chronological relations of events from the case data
(cf. Appendix 2).

Explanation building is always an iterative process in multiple case studies,
as shown in Figure 2. We have followed an iteration cycle not only with
regard to the case described in this report, but also in our research as a
whole.

D evelop
theory

S elect
cases

D esign
data
collection
pro tocol

F irst case
study

O ther case
stud ies

 W rite case
 report

W rite case
reports

C ross-case
analysis

- re la tions to
p revious theo ry
- a im for
exp lanation

- ope ra tiona l
resea rch proc ess
and outc om e
de fin itions
- fo rm al data c o llec tion

- in terv iew s ,
obse rvations ,
docum ents

- pa tte rn-m a tch ing ,
po lic y im plic a tions ,
rep lic a tion

- cros s-cas e
conc lus ions
- m od ifica tion
of theo ry
- po lic y
im plica tions
- cros s-cas e
reporting

Figure 2. Case study method for multiple cases [Yin 1988].

18

The basic iteration loop consists of making the initial proposition based on
relations with former theories, comparing the findings of the initial case
study with the proposition, revising the proposition, comparing the details
of the case with the proposition, revising the proposition again, and
repeating this cycle for the other cases. Both in associating the case data
with the research propositions and in interpreting the results, we rely on the
competence evolution framework, which is being improved and validated in
two different case studies.

[Seppänen et al. 1998a] presents the original framework through relating
together existing theories on competence-based competition and industrial
networks. The case of fault diagnosis systems is then analysed by means of
the framework. This report describes the modifications made to the
framework to help us to better explain goals and processes related to
competence evolution. The code generation case is analysed, at the level of
projects, by using the modified framework.

The “lesser mode of analysis” [Yin 1988] includes means for analysing
embedded units, especially in multiple case studies. According to Yin, it is
appropriate to conduct the analysis of embedded units first within each case,
in order to consider the results as factors in pattern matching or explanation-
building at the level of the individual case. Patterns of explanations should
be compared between cases, rather than the results of the analysis of
embedded units. We will follow this advice by analysing individual code
generation projects, the most important embedded units, to explain the
evolution of code generation competence. The patterns of explanations of
the two cases will be compared at the end of this report. In this way, we aim
at generalising the explanations analytically to research propositions.

According to Yin, a chronological structure of a case study report usually
follows the early, middle and late phases of the case history, whereas a
comparative case study report “repeats the same case study two or more
times, comparing alternative descriptions or explanations of the same case”
[Yin 1988]. We chose the first approach, structuring this report
chronologically according to the development of the code generation case
from the mid-eighties to the present date. However, in Appendix 3 we also
present plots of an alternative story told by the code generation researchers.

19

3 COMPETENCE EVOLUTION FRAMEWORK

The framework presented in [Seppänen et al. 1998a,b] is introduced in this
chapter, with a few extensions needed for explaining both the R&D process
which was used for building code generation competence, and the business
processes related to its marketing, leverage and exploitation.

3.1 ELEMENTS OF THE SUBSTANCE LAYER

The competence evolution framework, as presented in [Seppänen et al.
1998a], consists of two layers: the substance layer is used for outlining the
basic elements of competence and relationships, whereas the management
layer describes the evolution of these elements over time. The substance
layer is based on the well-known activity-resource-actor (ARA) model of
industrial networks [Håkansson and Snehota 1995], Table 1. It describes
activities carried out in creating and utilising resources.

We consider competence as the ability of conducting purposeful activities
on certain types of resources, much along the lines of the so-called resource-
based perspective to strategic management of firms (e.g., [Foss 1997, Foss
and Knudsen 1996, Lowendahl 1997, Rosenbröijer 1998]). The substance
layer includes a typology of competence elements, developed by extending
and reformulating the resource typology given in [Rosenbröijer 1998], and
by associating it with a typology of R&D activities. The main characteristics
(cf. attributes in [Easton and Araujo 1996]) of the elements are also
addressed. The firm, relationship and network levels form the focal net
dimension of the substance layer [Håkansson and Snehota 1995].

Typologies were used in [Seppänen et al. 1998a] to define classes and types
of competence and relationship elements, and values to define their
attributes. The existence of certain types of elements and the values of their
attributes depend on time, which was thus also made explicit. [Rosenbröijer
1998] uses a resource typology based on financial, physical, organisational,
human, technological, and reputation resources. This resource typology was
modified and associated it with activities, actors, and relationships.

The research and development service is the main technological resource
utilised in projects; the possession of some expert skills is required to carry
out such services at the level of individuals. Physical resources can simply
be considered as products, documents, or development tools. Temporal
resources are missing from the typology used in [Rosenbröijer 1998],
although they are crucial in project-based research and development. The
basic types of temporal resources planned for, and controlled in projects,
such as schedules, efforts, and calendar time, were therefore included in the
typology. In addition to professional reputation, project management is one
of the most important organisational resources in use, e.g. in marketing.
Financial resources are almost always exchanged in contractual research
and development, be it internal or involve external parties.

20

Research and development activities are required for acquiring resources, as
well as planning for, carrying out, evaluating, and utilising R&D results.
Additional activities include supporting individuals in developing and
extending their expertise, taking care of project management, planning and
controlling financial matters, following general technical developments, and
acting as a member of the professional community.

Resource and activity attributes facilitate the study of the main
characteristics of competence. In [Seppänen et al. 1998a] and in this
research the focus was on the characteristics of technical competence, i.e.
content of R&D services. It will be characterised by using the following
four dimensions derived from the well-known market model of Abell
[1980]:

• the application domain and particular products involved,

• the functions accomplished by products,

• the techniques on which the functions are based, and

• the implementation technologies used to realise products.

Although the typology was by no means comprehensive, but they were still
used to explain the main concepts of the fault diagnosis case. However,
during the analysis of the code generation case it became obvious that the
typology was, after all, too complex. Therefore, we simplified it by
considering human, technological and physical resources as product
resources, temporal and financial resources as process resources and
reputation as the most important organisational resource.

In terms of the ARA model, activities, resources and actors form the
substance of contractual research and development. The firm, relationship
and network levels form the functional dimension of the framework, called
the focal net. Competencies are managed by the actors of the focal net, by
carrying out activities on resources. Interrelationships between competence
elements can be described as resource collections, ties, constellations and
activity structures, links, and patterns. We will use focal nets organised
around projects as a key means of tracing and explaining the evolution of
competence. A project is “a complex transaction covering a discrete
package of products, services and other actions designed to create (capital)
assets for the buyer over a certain period of time” [Tikkanen 1998]. We
address competence development as a function of project nets.

However, contractual R&D does not involve only project personnel and
activities, but also people involved in marketing and controlling projects
and in results exploitation. We will address this by business nets organised
around project marketing and purchasing. Their aim, from the supplier point
of view, is to create and maintain portfolios of customer relationships that
may be based on projects, but also on other kinds of competence leverage
interactions. The activities of the process involve marketing, selling and
general management by the supplier. On the customer side, business nets
usually involve subcontracting, purchasing and general management, and
sometimes also marketing to the customer’s own customers.

21

Table 1. The substance layer of the framework.

Focal net
Substance

Firm Relationship Network

ACTORS Organisational
structures:
e.g. project and
research
groups

Actor bonds:
e.g. steering
group of a joint
blue project

Actor webs:
e.g. joint project
team of ELE, its
customer and the
customer’s other
subcontractor

COMPETENCE
Activities

Activity
structures:
e.g. green
project

Activity links:
e.g. red project

Activity patterns:
e.g. blue project

Resources Resource
collections:
e.g. embedded
systems
modelling
skills and tools

Resource ties:
e.g. coding rules
tailored to
customer’s
needs

Resource
constellations:
e.g. integration of
a CASE tool and a
code generator

As already pointed out above, one of the most essential aspects of the
substance layer is the content of product-related competence. It is modelled
by using four dimensions extended from [Abell 1980]: the applications for
which products are being developed, the functions that respond to the needs
of the customers of these applications, the technologies enabling and used to
implement the functions and the scientific or engineering techniques on
which implementation is based. These dimensions can be illustrated by
using the code generation case, taking into account both design (methods
and tools) and solution (embedded software) related competence:

• Solution/applications: machine automation, electronic instruments,

• functions: real-time operating system functions,

• techniques: real-time software execution techniques,

• technologies: operating system, program library, protocol software.

• Design/applications: design of integrated circuits,

• functions: embedded system modelling, code generation,

• techniques: SA/SD design technique,

• technologies: code generator, graphical animator, software tester.

22

 3.2 PROCESS-BASED VIEWPOINT TO CONTRACT R&D

 The substance layer of the framework presented in [Seppänen et al. 1998a]
makes the governance structure of relationships explicit through the actors
and relationships of the focal net. In addition to this organisational
viewpoint, the product-based viewpoint is included through certain types of
resources. Although activity types are associated with resource types, the
process-based viewpoint is not emphasised. The ARA model ties the
elements of the substance layer together in a static way, whereas processes
would link activity and resource elements together dynamically.

 Processes would also facilitate the structuring of focal nets according to the
roles played by different parties in carrying out activities on resources. For
example, a steering group of a project typically controls the use of the
financial and temporal resources of the project. It also accepts the results of
the project. Since the competence of a contract research organisation that
emerges trough the R&D process should be exploited in new customer
relationships, it is important to make explicit also the business process
related to competence marketing. The focal nets related to the two processes
can thus be seen as special kinds of process nets, which is a concept used by
Tikkanen [1997].

 We will use Tikkanen as a starting point in introducing processes at the
substance layer of the competence evolution framework, Figure 3.
Tikkanen’s work is one of the most recent and comprehensive studies
involving a process-based viewpoint to industrial relationships: “the main
idea explored in this book is whether it would be fruitful to study business
processes through the increasingly rich conceptual arsenal offered by the
industrial networks research tradition”. According to Tikkanen, core
processes are “central to actual business operations. Business network
processes transcend organisational boundaries and connect organisations
with their co-operative partners.”

 Tikkanen proposes process nets based on the ARA model as a means of
making explicit and analysing business processes. In one of his two
industrial case studies, Tikkanen uses the concepts of a focal business
process and a focal project interchangeably, because “project supplies can
also be regarded as meaningful business processes for certain
organisations”. Focal R&D process nets can thus be called project nets
[Tikkanen 1998], because most R&D activities are carried out as projects.
Business nets, called “the project marketing horizon” in [Tikkanen 1998],
are used for marketing projects and other types of R&D services. From the
customers’ viewpoint, they represent the “project purchasing horizon”.

 The structure of project and business nets can be described by the
governance structure concepts of the ARA model. These include internal
and external actors, where the focal actor can be considered as the process
owner, as well as their direct and indirect relationships. The resources and
activities performed, controlled and co-ordinated by the actors form the
production system of the nets, i.e. the functional process. In this way the
process becomes an integrative concept for competence created and
maintained by the actors of process nets.

23

Foca l O rgan izationa l U n it
(P rocess O w ner)

S upplie r

C onsu ltan t

In te rna l
U n it

In te rna l
U n it

M anu-
fac turing

M arketing

C ustom er

D irect re la tionsh ip
Ind irec t re la tionsh ip
A ctiv ity link /resource tie

Form al
 O rgan izationa l
 B oundary

Ac tiv ities /R esources

A c tiv ities /
R esources

Form al
 O rgan izationa l
 B oundary

C ontro l C oord ination

A c tiv ities /
R esources

A ctiv it ies/
R eso urc es A ctiv it ies/

R eso urc es

A ctiv it ies /
R eso urc es

A ctiv it ies /
R eso urc es

A ctiv ities/
R es ources

1. Governance structure

2. Production system (Business Process)

 Figure 3. A hypothetical focal process net [Tikkanen 1997].

 In the project-based business process of one of his case organisations,
Tikkanen identifies four phases: bidding or negotiation, planning, design
and implementation. He studies actor involvement and activities performed
on resources in each of these phases, and actually also in a fifth phase,
transition. These phases represent the seller’s point of view, i.e. the project
marketing cycle [Tikkanen 1998].

 In the context of VTT, the portfolio of green, blue and red projects provides
a better basis for the life cycle of the R&D process, because it corresponds
to the organisation's basic operational logic. We will consider green projects
as competence innovation, blue projects as competence development and
red projects as competence leverage according to this logic. The project
marketing cycle concerns individual projects within the R&D process.
There may also be a competence formalisation phase, such as writing of a
doctoral thesis (cf. [Kurki 1995]) after carrying out several projects on the
same topic.

24

 Although the exploitation and evolution of competence are often tightly
intertwined in project-driven organisations, we separate them conceptually.
Since most customers of an engineering contract research organisation are
product developers, a typical competence exploitation process of a customer
involves using the competence for its own product or process development
needs. In other words, the project net of the supplier is closely tied with the
project net of the customer. Another, usually less tightly coupled, form of
exploitation is the commercialisation of competence as intellectual property
rights (IPR) purchased by customers.

 We view the exploitation of competence through the marketing (supplier)
and purchasing (customer) processes. At the supplier side, competence
marketing aims at initiating or continuing research and development
projects. For example, during the main code generation project Sokrates
many activities were carried out to market customer projects, and a few
such projects were contracted by industrial firms aiming at exploiting the
developed competence. At the customer side, the competence purchasing
process usually serves the development of new products or production
processes. These four processes must be linked together by a fifth process,
co-ordination and control of co-operation, Figure 4.

 Figure 4. Interplay of the supplier and customer processes.

Com petence
purchasing

Com petence
m arketing

Follow
green
pro jects

P lan fo r
green
projects

SUPPLIER (VTT)CUSTOMER

Take part
in b lue
pro jects

P repare
for b lue
projects

B uy
IPR s

M arke t
red
pro jec ts

Contract
red
pro jects

Se ll
IP R s

Com petence
exploitation

Research and
developm ent

Innova tion

D evelopm ent

Leverage

(Com m er-
cia liza tion)

Technology
screen ing

P roduct/
process
deve lopm ent

Product
m arketing

Technology
eva lua tion

CUSTOMER'S CUSTOMER

C
on

tr
ol

 a
nd

 c
oo

rd
in

at
io

n
of

 c
o-

op
er

at
io

n

25

 The code generation case analysed in this research shows that even within a
single organisation the same processes can be seen from very different
perspectives, depending on the goals and interests of the various actors
involved. For example, managers usually consider the financial value of red
projects as an important factor in maintaining the project marketing horizon,
whereas researchers may see it as much less important:

 Veikko Seppänen: “My point was the conflict that I as a section head,
or ... [other line managers] was looking for hundreds of thousands or
millions of marks [from red code generation projects]?”

 Code generation researcher: “Our point was that we were offering
solutions to customers, which would allow them to produce things
cheaply and fast. If the customer could get something at fifty thousand
marks, for which they had spent half a million marks earlier, that was
good. This was our way.”

 Tikkanen claims that “individual project deliveries could be characterised as
more or less unique” and that “it is practically impossible in most cases to
identify clear beginnings and ends of business processes when these are
viewed from the perspective of a core competence area”. These claims do
not hold for contract research organisations, in which projects are based on
continuous and systematic evolution of certain competencies. For example,
It would have been quite easy to identify not only activities related to
individual code generation projects but also those related to the marketing
and purchasing of the emerging competence.

 One reason for Tikkanen’s opinion may be that his analysis of focal process
nets was based only on interviews, in which “it proved to be impossible to
track any more specific sequential activity chains [in one of the case
organisations] than the rather general ones”. Furthermore, in “neither of the
cases described and analysed in the focal net study was it possible to relate
the resource dimension exactly to the specific activity structure of the focal
process net”, concerning especially “the more abstract intangible resources,
such as technical know-how and personnel capabilities.”

 In the code generation case discussed in this report we found it very
difficult to acquire facts related to individual activities and their results from
managers. They simply appeared not to remember too much factual
information, perhaps because they had had so many things to take care of.
In Tikkanen’s study, three of the five interviewed persons in the project
delivery case were managers. Even the two interviewed project-level
experts were some kinds of managers: a project foreman and a chief
engineer of planning.

 However, first by analysing documentary data and then by interviewing not
only the supplier’s and the customers’ managers, but also the code
generation researchers and their industrial counterparts, we found it
relatively easy to identify the starting point of code generation research, the
emergence of individual skills towards team-based competence, and the
fading of the competence in the sense of a remarkably decreased volume of
activities. Other important facts, such as times, persons, projects, technical
results and financial figures could also be traced.

26

 3.3 STRUCTURING OF PROCESS NETS

 In a recent textbook Lowendahl proposes two dimensions, strategic focus
and resource base, for classifying such professional service firms as contract
research organisations, Table 2 [Lowendahl 1997]. The diagonal of this
positioning consists of A, B and C types of firms. On one hand, the resource
base can be controlled by the organisation as a whole (B), independently by
the professionals themselves (A), or as a mixture of the two approaches (C).
Along the other dimension, strategic focus on customers or customer groups
aims at continuing interaction, whereas problem-solving based strategies
involve a high degree of innovation and solution or output-based strategies
seek to extend markets for uniform services. In practice, the three strategies
are not mutually exclusive, but may co-exist in a single firm.

 Table 2. Positioning of professional service firms [Lowendahl 1997].

 Strategic focus/
 Resource base

 Client relations Creative
problem
 Solving

 Adaptation
of ready
solutions

 Organisationally
controlled resources

 (D) Insufficient
adaptability

 * →
 ↓

 (B) Efficient

 Team-based,
individual and
collective resources

 * →
 ↓

 (C) Both

 ↑
 ← *

 Individually
controlled resources

 (A) Flexible
 (Effective)

 ↑
 ← *

 (E) Lack of
co-ordination,
 discipline

 According to the logic of VTT, problem-solving dominates green and blue
projects, whereas red projects are either customer driven or output based.
During the competence innovation and development phases, resources are
largely controlled by individual researchers. Competence leverage in red
projects and commercialisation by selling intellectual property rights are, on
the other hand, most often controlled by the organisation through
managerial planning and co-ordination. The competence marketing process
follows a similar pattern: green and blue projects are predominantly
initiated and prepared by researchers aiming at creating research project
nets, whereas the line management, focusing on maintaining the marketing
horizon, is often quite extensively involved in the marketing of red projects
and other customer-paid activities.

 Pressures for the change of a position include, according to Lowendahl,
moving away from the “stuck-in-the-middle” position for C types of firms,
and moving towards the upper left (D) and lower right corners (E) for B and
A types of firms. Contrary to Lowendahl, we believe that it would be
beneficial for a contract research organisation to be “stuck-in-the-middle”
with such core platforms as the fault diagnosis platform analysed in
[Seppänen et al. 1998a], in order to be both efficient with regard to its
competence and effective in its portfolio of customer relationships.

27

 In order to emphasise the strategic aim at core platforms, at first we were
planning to structure project nets according to the four dimensions
determined by the content of technical competence. The governance
structures of the processes shown in Figure 4 were associated with the
applications, functions, techniques or technologies of the competence dealt
with in projects. This was supposed to help us to explain the evolution of
competence. For example, fault diagnosis functions were the dominating
elements of the competence of VTT in the fault diagnosis case discussed in
[Seppänen et al. 1998a], whereas the customers were focusing on their
application skills. This combination seemed to be beneficial for both parties.

 In the code generation case VTT was emphasising a specific design
technique and certain implementation technologies, which resulted in
conflicts with a commercial technology provider and with those technical
experts who promoted different techniques. The evolution and exploitation
of the competence was successful, when the specific technique was
favoured by both parties and the technologies were accepted by the
purchaser. Still, our attempt to structure the code generation project nets
according to all of the four dimensions of competence failed, as there was
simply not enough variation in the dimensions. Therefore, we structured the
project nets according to the phases of the research and development
process. Correspondingly, business nets were formed on the basis of the
phases of the competence marketing and purchasing processes.

3.4 MANAGEMENT OF COMPETENCE CHANGES

The management layer of the framework makes explicit how and why the
elements of the substance layer change over time. The substance layer is
based on two dimensions: substance elements consisting of resources,
activities, and actors, and the process net expressed at the internal firm, and
the external relationship and networks levels. In the management layer, we
try to answer the question of how purposeful activities carried out by actors
to develop and use resources, i.e. the evolution of competence, affects the
external relationships of the focal organisation.

We will address changes in project relationships rather than other types of
supplier-customer transactions. The very basic types of changes in project
relationships are rather simple: beginning and end of an internal or external
project; change of an internal project to an external project and vice versa,
which involves a change of the colour of the project; and change of a dyadic
project to a multi-party project and vice versa. In principle, a project may
change into any other type of a project. However, the strategic goal of VTT
is first to extend its internal green projects into joint blue research projects,
and then to several distinct customer projects, or if possible, to multi-party
consortia. Shortcuts to contractual projects from internal activities are
possible, although risky, whereas reverse changes are more seldom. The
completion of internal projects without any continuing external projects is
usually considered to be a failure, whereas the possible negative effects of
the ending of an external project depend on the resources involved. A single
project relationship may on the other hand, continue for several years.

28

Although their basic changes are simple, project relationships will evolve in
a complex manner over time. We will use the four relationship attributes
based on [Ford et al. 1986], capability, mutuality, particularity, and
inconsistency, to identify and analysed changes of relationships that affect
competence. Based on the interrelationship of the attributes, Ford and others
propose four functions to manage changes of relationships. We will,
however, use them only to analyse changes of process networks and thereby
changes in resources and activities, i.e. competence:

• Balancing the particularity of resources (capability vs. particularity)

• Assuring the capability of resources (capability vs. inconsistency)

• Balancing the mutuality of activities (mutuality vs. particularity)

• Assuring the mutuality of activities (mutuality vs. inconsistency).

These functions involve distinct aspects of competence: balancing of
particularity deals with the codification and contextuality of resources,
assuring of capability is related to the life cycle of the content of resources,
and balancing and assuring of mutuality address institutionalisation of
activities. Since the relationship change management functions are
interrelated as shown above, functions to manage changes in codification,
content and institutionalisation of competence become also interrelated.
Both the relationship and competence change management functions will
now be discussed, providing examples from the code generation case.

Balancing particularity - codification/contextuality of competence

Balancing of the particularity of resources concerns the question about the
extent to which resources should be tailored to relationships with particular
actors. This involves codification and contextuality of resources.

Development of manual coding rules in a red spin-off project of Sokrates is
an example of balancing of the particularity of resources (cf. [Toivanen
1992]). The change of the blue Sokrates network to the red project
relationship required VTT to increase the particularity of certain product-
related resources. This resulted into a more customer-specific and tacit
piece of code generation knowledge, possessed by the researchers involved
in the project. Development of the Sokrates code generator was based on
the results of a former project, whose customer took part also in Sokrates.
This is an example of a reversed change, decreasing of the particularity of
product-related resources from the viewpoint of the customer company.

Particularity of process-related and organisational resources is also closely
related to the project portfolio. Red projects may involve many different
types of customer-specific arrangements, whereas blue projects usually
follow uniform organisation principles set by the funding body.

 We consider the codification and contextuality of resources at three levels:
tacit alias context-specific, portfolio-specific and generic. Contextuality
involves especially process-related and organisational resources and
codification product-related resources.

29

 Two types of competence change management functions are associated with
codification/contextuality managed by balancing of the particularity of
resources. Problem-solving refers to the process of codifying and giving a
structure to tacit product-related knowledge possessed by certain actors,
which may lead first to customer portfolio-specific and ultimately to fully
generic solutions. Contextuality of process and organisational resources
decreases as a result of this change, i.e. organisational and process-related
resources become less dependent on a certain context.

 Absorption is a reversed competence change management function. It
means the application of codified knowledge to different situations or the
transfer of context-independent process and organisational resources for
some specific use. The Sokrates project focused extensively on problem
solving regarding product resources, because its main goal was to produce
fully generic design methods and tools. Its subsequent red projects are good
examples of how the developed methods and tools were aimed to be
absorbed by different industrial customer companies. In terms of process
and organisational resources, this meant that the code generation researchers
needed to make use of specific industrial funding and projects instead of a
joint national information technology research program.

 Problem solving and absorption are critical for the integration of interacting
elements of competencies. [Rosenbröijer 1998] uses the concepts of
"directed capability" and "connection function" to describe resource
integration in relationships. We will take a more simple approach, by
analysing if competence elements strengthen, complement or compete
against each other when integrated, or if they are neutral in this regard.

Balancing and assuring mutuality - institutionalisation of competence

Because of the risks involved in the lack or excess of particularity, a firm
must carefully consider the extent to which the mutuality of its activities is
related to the particularity of its resources. The Sokrates project suffered
from the lack of mutuality in documentation activities. Documents were
expected by the steering group, to be used for controlling the project and
making use of its results. Some of them were either not properly delivered
or not written. On the other hand, most red code generation projects showed
a very high degree of mutuality. The former Sokrates project members
diffused the skills needed in these projects to each other, often informally
and without any active involvement by the management.

Assuring the desired level of mutuality involves inconsistency. It is
concerned with the learning of persons involved in a relationship. For
example, inexperienced persons may be allocated to projects in which
certain knowledge plays a central role. Four of the seven key members of
the Sokrates project were research trainees. Their inexperience as
professional researchers may have affected the mutuality of their activities.
The industrial members of the steering group of the Sokrates project
claimed, on the other hand, that it was especially the senior researchers who
were not listening attentively enough to industrial feedback.

30

 We consider the institutionalisation of activities to include the levels of
individuals, project and organisational teams, the whole organisation, and
inter-organisational relationships. Balancing of mutuality at these levels
involves the diffusion and scanning. The former denotes sharing insights,
knowledge or skills within a larger community of actors, the latter refers to
the identification of opportunities hidden in some data. Scanning is often
performed by individual researchers when planning for projects. Diffusion
involves, for example, organisational control in managing the allocation of
human resources to distinct projects.

 From the viewpoint of knowledge creation, which is important in the code
generation case due to its innovation-related characteristics, competence
changes can be easily associated with the socialisation, externalisation,
internalisation and combination functions proposed in [Nonaka and
Takeuchi 1995]. Tacitness and explicitness of knowledge, i.e. codification,
constitutes the epistemological dimension of the knowledge creation model
of Nonaka and Takeuchi. Externalisation that transforms tacit to explicit
knowledge can be likened to problem solving and the reversed
internalisation function to absorption. The ontological dimension of the
knowledge creation model involves social interaction between the people
that create and share knowledge. Conversion from tacit to explicit
knowledge is called socialisation. Explicit knowledge can be turned into
other explicit knowledge through combination.

 Problem solving, absorption, scanning and diffusion, as they are presented
above, do not make any clear difference between tacitness and explicitness
of knowledge with regard to its institutionalisation. The code generation
case data indicates, however, that this is important. Much of the tacit
knowledge was not externalised into organisational competence, as opposed
to the fault diagnosis case discussed in [Seppänen et al. 1998a] where an
explicit core platform emerged. To study this phenomenon, we will redefine
diffusion and scanning as diffusion by socialisation or combination and
scanning by socialisation or combination.

Assuring capability - coping with the evolving content of competence

Also assuring of the capability of resources involves inconsistency. The
code generation researches were extremely capable in the SA/SD design
method that was used as one starting point of the Sokrates project [Ward
and Mellor 1985 - 86]. The skills are illustrated by the numerous
professional, in-house and academic courses that the code generation
researchers gave on the method in the eighties and nineties.

On the other hand, the researchers were later criticised of having neglected
discontinuity in the life-cycle of embedded systems design techniques. By
the end of the nineties the formerly dominating SA/SD method had been
mostly substituted by the so-called object-oriented methods. Assuring of
capability involves thus management of the life cycle of the content of
resources. The life-cycle phases of incremental changes, discontinuity,
substitution, competition and dominance are defined for each of the four
dimensions of the content of product-related resources.

31

Life-cycle management means coping with these phases, concerning a
certain dimension of the content. The life cycle of process and
organisational resources is closely related to the project portfolio. For
example, the life cycle of a financial resource may change from self
financing to partial and full external funding thanks to green, blue and red
projects. Figure 5 summarises the results of the above discussion, by
showing the three directions of change, the four relationship management
functions and the five competence change management functions.

C
od

ifi
ca

tio
n/

C
on

te
xt

ua
lit

y

Institu tionalization

L ife-cy c le

P ersona l

Tac it/
con text-
specific

G eneric

O rgan iza tiona lTeam -based

Increm enta l changes,

D iscon tinu ity , S
ubstitu

tion ,

Com petitio
n , D

om inance

ASSURE CAPABILITY

Problem solv ing

S canning D iffus ion

Life-cyc le m anagem ent

BALANCE
PARTICULARITY

BALANCE/ASSURE M UTUALITY

In te r-o rgan iza tiona l

P ortfo lio -
specific

A bsorp tion

 Figure 5. Management of competence changes.

The change of project nets as a whole could be characterised as the
evolution of innovation nets [Miettinen 1998] to competence exploitation
nets, by shifting the focus from knowledge creation for relationships to
competence leverage within relationships. The characteristics of the
innovation nets of VTT are discussed in [Miettinen 1998], mainly from a
social perspective. Miettinen does not, however, address the evolution of
innovations to commercial products and services.

This could be done, for example, by comparing the intended business nets
and the actual project nets from the viewpoints of both suppliers and
customers. Especially jointly funded blue projects can be considered a kind
of no-man’s land in this regard, because the parties involved may strongly
disagree on who has the right to use the results and how.

32

3.5 EXPLAINING THE LOGIC OF ACTION

The attributes proposed in [Seppänen et al. 1998a] for characterising the
actors involved in project nets are very simple, such as the role of an
individual either as a manager or a researcher, and the role of an
organisation as a research institute or an industrial company. The code
generation case data indicates various differences in the interests and
several conflicts in the viewpoints of actors involved in project and business
nets. This kind of social embeddedness [Holmlund and Törnroos 1997] can
be used to explain the evolution of competence and the change of process
nets. Miettinen [1993] discusses a similar phenomenon in innovation-
related networks, stating that “voices of actors” reflect:

1. different interests of the institutions involved in innovation networks,
such as the researchers, producers and users; because the actors have
different roles in their organisations and in the network, they usually see
the interests of the institutions from different viewpoints,

2. the educational background, job history and personal interaction network
of each of the actors, which depend on the actor’s view to the roles and
positions of the other actors of the innovation network, and historically,
illustrate how the actor's views have been formed from his or her
consideration, opinions and experience from items that originate from
many different sources and have been affected by other actors' views, and

3. the position of the actor in his or her organisation, and the division of
labour in the organisation; depending on the position of the actor,
contradictory concepts may be pointed out from the same network,
depending in part also on the relations of power, competition and career
ambitions of the actors.

In [Eriksson and Räsänen 1998], the concept logic of action is used for
integrating and reasoning about the goals, means and justifications of
groups of people dealing with changes of product mixes.

The content of a certain logic of action was constructed by Eriksson and
Räsänen from their case data, based on the projects and actions that each
group of actors actually proposed, championed or objected concerning
product mix changes. The case data was also used to make explicit three
types of interactions by which groups responded to the actions of the other
groups over time, called dominance, compromise and integration.

We are using logic of action to make explicit the multivoicedness in process
nets, including both project and business nets. Within the focal organisation
we address the logic of action of certain types of people, such as line
managers, code generation researchers and other VTT researchers. The
logic of external actors is described only at the level of certain types of
organisations, such as funding bodies, other research institutes and
industrial customers. Our approach is compared with that of Eriksson and
Räsänen in Table 3.

33

Table 3. Making logic of action explicit in process nets.

[Eriksson and Räsänen 1998] Process nets

Manager groups Groups of actors
Relationships between managers Relationships of groups of actors
Form of interaction (dominance,
compromise, integration)

Form of interaction
(dominance/submission,
co-operation, competition)

Objectives and goals Objectives and goals
Means Means based on resource creation,

possession and mobilisation
Justification of the logic of action Justification based on background,

interest and position of actors
Source of influence Control over and importance

(value) of competence
Confectionery products Competence
Product mix changes Evolution of competence
Management of product mix
changes

Management of competence

Groups of actors with various objectives and goals to pursue are interacting
within the context of process nets. The logic of action of a group can be
identified by analysing how its goals are associated with some means. The
objectives, goals and interaction of actors illustrate the social embeddedness
of relationships. The forms of interaction in industrial relationships have
been extensively studied (cf. [Alajoutsijärvi 1996]). We will use the basic
notions of dominance or submission, co-operation and competition.

As indicated in the table, the means of an actor group to pursue some goals
and to affect other actors depend on the resources that the group creates,
possesses and is capable of mobilising. This view emphasises the
technological embeddedness of relationships. The main source of influence
is based on the ownership and control over the resources which have a
certain importance alias value. For example, VTT group managers usually
possess all the financial resources needed for managing their groups,
whereas individual researchers can control only the financial resources of
their projects as project managers.

The actual content of some logic of action consists of the projects and other
activities carried out by a certain group of actors. In [Eriksson and Räsänen
1998] these involve the management of changes of confectionery product
mixes, in our case the management of competence. Within the context of
inter-organisational relationships the backgrounds of certain types of actors
justify in part their logic of action The background of actors in terms of the
history of their relationships can be made explicit by the means of process
nets. We will provide such a history for the code generation relationships.

34

However, backgrounds of actors include also histories of many other
relationships, as well as other developments that do not involve any
relationship. For example, the company for which the very first code
generation pre-study was carried out, had a long co-operation history with
VTT. The R&D manager of that company, who was responsible for a joint
strategic alliance, used to work as a line manager at VTT. Several members
of the steering group of the Sokrates project were former VTT researchers,
and so on. We will make explicit these kinds of background to the extent
that is beneficial to understanding the code generation case.

Miettinen [1998] suggests three types of artefacts alias resources to
characterise the interests of actors, which also justify their logic of action.
The “What” type of primary artefacts denotes tools that are used for
carrying out activities by some actors. The Sokrates code generator studied
in this research is an example of such an artefact. The interests of VTT and
the tool vendor that participated in the steering group of the Sokrates project
were competitive with regard to the commercialisation of the generator.
Yet, the two organisations did co-operate during the project. The interests of
the VTT managers and code generation researchers conflicted over the same
issue, because the managers did not consider commercialisation to be
aligned with the objectives of the research institute, as opposed to the use of
the generator in red projects.

Secondary “how” type artefacts describe the use tools as part of textbooks,
journals and papers. The Sokrates design method, a version of the SA/SD
method developed in the Sokrates project, is a good example of this kind of
resource. The code generation researchers showed a lot of interest in
developing and transferring the method to industrial embedded systems
designers. This was not regarded as significant by the VTT managers, in
terms of their logic of action that aimed at creating industrial income from
research investments.

“Why” type of secondary artefacts explain reasons for certain phenomena.
Solving of concurrence problems, by which the focal researchers motivated
their topic of interest, is an example of this kind of a resource. The
researchers wished to see themselves as solution providers to concurrence
problems, but their customers saw them more as tool developers that should
take responsibilities similar to commercial tool vendors.

Tertiary “where to” artefacts describe the future developments of primary
and secondary artefacts, typically as a vision that characterises the goals to
be achieved. A design automation vision for embedded systems was
presented at the beginning of the Sokrates project, Figure 6. Some of the
industrial partners of the project had a very vivid picture of this vision even
after ten years of its presentation.

35

m odels,
m ethods,
code genera tion experim ent

E ach phase w ill
p roduce resu lts tha t
can be u tilized
in separa te
deve lopm ent
pro jects.

SPIN-OFF porting to a w orksta tion
pub lica tions
p ilo t usage

too ls
design support

Figure 6. The Sokrates vision, shown as a “guiding star”.

Another aspect justifying the logic of action of certain actors is their
position in process nets. Johanson and Mattson [1997] define the position of
an actor in a network of relationships as follows: “Thus, according to the
extended definition, the position of an actor includes also the productive
process - in a broad sense - in which it is involved and its direct and indirect
network interdependencies. The production role has two dimensions ... The
qualitative dimension describes which function the actor has in the
production system. ... The quantitative dimension characterises the relative
importance that the resources of the actor have in relation to the resources
of the other actors, i.e. how much of the total quantity of sustainable
resources are controlled by the actor”. The position of an actor within a
process net can thus be characterised by its activities on certain resources
that have some relative importance.

36

We will address the importance, or value, of competence from the supplier
and purchaser viewpoints, based on the longitudinal expected (before),
perceived (during) and historical (afterwards) values. This kind of view fits
with our research approach. The expected value of a competence element is
usually documented in various kinds of plans describing how some
resources will be developed or utilised, e.g. in contracts, project plans and
minutes of the first project management group meeting. The expected value
may also be evaluated by some external party.

The perceived value of a competence element evolves during its
development and is documented e.g. in the minutes of project management
meetings and in the feedback of the parties or some external evaluators
given during or immediately after the work.

The historical value of a competence element can be evaluated after some
time. In this research the opinions of the interviewed parties illustrate the
historical value of code generation competence, after a few or as many as
ten years.

One of the best examples of the change of the importance of competence
from expected via perceived to historical value is provided by a project, in
which a code generator was developed and used for the needs of a customer
company. The customer's view to the value of the planned and realised
results of the project were as follows (cf. Appendix 2):

Expected value (1993, before the project): “The purpose of the
contracted work is to build a real-time software development
environment for the MCS project of the customer. The starting point of
the project includes the Finsoft/Sokrates technology taken in use and
developed further in the RHU project [of the firm Nm]."

Perceived value (1994, end of the project):“The specification of the
project succeeded well and its implementation corresponds to the
specification. VTT’s attitude has been positive during the whole
project, and problems have been solved fast."

Historical value (1998, interview):“Thank you for the questions. I
have waited for a possibility to give some feedback. ... Technically, the
contribution of VTT was good. From the viewpoint of the business [of
the firm Nm] it was fatal."

37

4 ANALYSIS OF THE CASE DATA

The case data included in Appendix 2 and the code generation stories
presented in Appendix 3 will be analysed in this chapter by using the
revised competence evolution framework. The analysis is carried out
chronologically, based on three main periods that we call Speco (1985 -
1987), Sokrates (1988 - 1991) and Reagenix (1992 - 1998). They involve
the competence innovation, development and exploitation phases of the
R&D process carried out by VTT during the past thirteen years.

The case data in Appendix 2 has been organised around two closely related
processes of VTT as an R&D supplier: competence marketing, with a focus
on the project marketing horizon, and competence building based on
research and development. Competence purchasing and exploitation
processes are addressed at the customer side. The four processes are
associated together by a fifth process, the control and co-ordination of co-
operation. Tekes, the public funding body, was closely involved in this
process in 1988 - 1991. The resources and activities that resulted in and
shaped the code generation competence took place, in practice, within the
five processes carried out within the corresponding process nets. We have
simplified the nets to two types of governance structures in Chapter 3,
called the project and business nets.

As indicated in Figure 7, we will first analyse the outer context of the case
and then proceed to the inner context. The six types of key actors involved
in the case are then addressed: the managers of the focal organisation, the
code generation researchers, their colleagues, industrial customers, research
customers and Tekes. The goals and logic of action of these actors, which
affected the code generation process nets and processes and thereby the
code generation competence, are also analysed.

The actual code generation project nets are compared with the planned
business nets, i.e. the intended project marketing horizon of the focal
organisation. The project nets are also compared with the project purchasing
horizon, to the extent that the intended purchasing of the code generation
competence can be made explicit from the case data. The nets are structured
based according to the phases of the R&D process.

The forms and means of interaction of the parties within the process nets are
first addressed by evaluating the balancing and assuring of the mutuality of
VTT activities, based on the diffusion and scanning functions. Then, the
content of the logic of action is discussed by evaluating the balancing of
particularity and assuring of capability of code generation resources, based
on the life-cycle management, problem solving and absorption functions.
Finally, the evolution and valuation of competence are analysed, concerning
product-related, process-related and organisational competence elements. In
closing, the results of the analysis are summarised from the viewpoint of
building and exploiting core competencies.

38

The outer context (Section 4.1) affects

Actors ⇐ Objectives/goals: backgrounds, interests and positions

 ⇑⇓

Logic of action

 ⇑⇓ … the process nets (Section 4.2)

Relationships ⇐ Project marketing and purchasing horizons
⇐ Assuring and balancing of mutuality
 * forms of interaction
 * scanning/diffusion by socialisation or combination

 ⇑⇓ … that enact the processes (Section 4.3)

Processes
Customer: purchasing, exploitation
Supplier: marketing, research and development
Co-operation: control and co-ordination

 ⇑⇓

Content of the
logic of action

 ⇑⇓
Activities on ⇐ Assuring of capability by life-cycle management
Resources ⇐ Balancing of particularity
 * absorption and problem solving

 ⇑⇓ … which shape the competence (Section 4.4).

Competence ⇒ Evolution of resource creation and usage
 * evolution and valuation of the (core) competence

Figure 7. Analysis of the evolution of competence.

The bold-faced items on the left-hand side of the figure represent the
elements of the substance layer of the competence evolution framework.
The activities, which we view from a process-based perspective, realise the
logic of action of the actors involved in focal nets. The analysis of the
evolution of the code generation competence thus proceeds from causes to
effects. The items on the right-hand side of the figure involve the
management layer of the framework, i.e. management of changes in focal
nets and processes. The relationship change management functions of
assuring and balancing of mutuality affect focal nets, whereas the functions
of assuring of capability and balancing of particularity affect processes.
Scanning and diffusion support the former, life-cycle management,
absorption and problem solving the latter.

39

4.1 OUTER CONTEXT – SOFTWARE ENGINEERING

[Tikkanen and Alajoutsijärvi 1998] define the outer context of industrial
relationships as “an extension of the connected network directly relevant to
a customer-supplier relationship and its inner context”, where the connected
network focuses on “whole organizations as collective actors”. The
phenomena that have directly affected the code generation relationships and
internal activities of VTT and its customers as collective actors can be
characterised as industrial embedded software engineering.

As indicated in the case data, the development started in the seventies, when
microprocessors became incorporated in other kinds of products than
general-purpose computers. Software development was at first done much
as a side-job of hardware design, emerging as a new profession by the mid-
eighties. As part of this development, Tekes started to actively support
national research and development of embedded software engineering in
Finland. Firm I started the Finnish business on embedded software
engineering methods and CASE tools in 1985.

We will first outline the changes in the industries developing and applying
embedded software in Finland, focusing on the electronics industry. The
case data is used for discussing the position of the focal organisation in this
context. The technological changes which have shaped embedded software
engineering approaches are then summarised. The role of the focal
organisation in regard to these changes is briefly evaluated.

Frame 2 lists the data sources that we have used in tracing the industrial
changes related to embedded software engineering from 1985 to 1998. A
considerable difficulty in this analysis arose from the fact that embedded
software can be incorporated in almost any kind of electronic products. No
studies have yet been carried out on the role of embedded software in even
the best-known Finnish electronic products. The nineteen data sources listed
in the frame provide thus only for a broad overview of the subject.

One of the most thorough analyses of the evolution of the Finnish
electronics industry is given in [Lovio 1993], ending, however, with the
year 1989. We have also used [Kivisaari and Lovio 1993, Mårtensen et al.
1985] and a few reports of the local activities in the Oulu region to provide
some insights in the industrial context at the time when code generation
related activities were initiated at TKO. Hannu Hakalahti, the director of
TKO, was involved in carrying out some of the local studies. Several
national information technology studies and strategic plans are available
from the early nineties. We selected the ones that were acquired by the
managers of the focal organisation and used by them to support the strategic
organisational planning. Later in the nineties, both Tekes and the
Association of the Finnish Electronics and Electrical Engineering Industries
have published several surveys and forecasts, as indicated in Frame 2.
Embedded software was, however, included as a distinct section in the
forecasts only as late as in 1995 by Jukka Karjalainen, the former vice
laboratory director of TKO. The corresponding section in [Hienonen 1997]
which we have used in this research was authored by Veikko Seppänen.

40

Frame 2. Sources of data on the outer context from 1998 to 1985.

Anon. 1998. Huippuosaajat maailmalla. Sähkö- ja elektroniikkateollisuusliitto. 21 p. (in Finnish)

Hienonen, R. 1997. Elektroniikka- ja sähköalan kehitysnäkymät 1997...2002. VTT Automation.
229 p. (in Finnish)

Anon. 1996. Teknologia 2000. Osaamisella tulevaisuuteen. Tekes. 120 p. (in Finnish)

Anon. 1994a. Suomi tietoyhteiskunnaksi – kansalliset linjaukset. Ministry of Financing. 73 p. (in

Finnish)

Anon. 1994b. Osaamisstrategia. Sähkö- ja elektroniikkateollisuuden menestystekijät,

avainteknologiat ja osaamisen kehitystarpeet. Seteli. 29 p. (in Finnish)

Lovio, R. 1993. Evolution of firm communities in new industries. Acta Academiae Oeconomicae

Helsingiensis. Sries A:92. The Helsinki School of Economics and Business Administration. 304 p.

Anon. 1993a. Teknologiakatsaus 1993. Tekes. 77 p. (in Finnish)

Anon. 1993b. Kansallinen teollisuusstrategia. Kauppa- ja teollisuusministeriön julkaisuja 1/1993.

Ministry of Trade and Industry. 124 p. + app. (in Finnish)

Kivisaari, S., Lovio, R. 1993. Suomen elektroniikkateollisuuden merkittävien innovatiivisten

liiketoimintojen menestyminen 1986 - 1992. VTT Technology Research Group. 51 p. (in Finnish)

Anon. 1992a. Teollisuuspoliittinen linjaus. Seteli. 16 p. (in Finnish)

Anon. 1992b. Sähkö- ja elekteroniikkateollisuus. Seteli. 7 p. (in Finnish)

Anon. 1990a. Valtion tiede- ja teknologianeuvosto: katsaus 1990. Tiede- ja teknologiapolitiikan

suuntaviivat 1990-luvulla. 76 p. (in Finnish)

Anon. 1990b. Teknologiaohjelmatoiminnan linjat 1990-luvulle. Komiteamietintö 1990:2. 112 p. +

app. (in Finnish)

Anon. 1989. Oulun läänin teknologiapoliittinen ohjelma. Oulun lääninhallitus. 54 p. (in Finnish)

Anon. 1987a. Uuden teknologian tuotekehitys- ja tutkimuskeskus, perustamisselvitys. Teknologian

diffuusio, TEDI-87. Projektiraportti n:o 1. City of Oulu. (in Finnish)

Anon. 1987b. Uusia keinoja teknologiayhteistyön tehostamiseksi Oulun seudulla. Teknologian

diffuusio, TEDI-87. Projektiraportti n:o 2. City of Oulu. (in Finnish)

Anon. 1987c. Pohjois-Pohjanmaan elinkeinoelämän tietotekniset toimintaedellytykset. Pohjois-

Pohjanmaan Seutukaavaliitto. Publications Series A:84. 61 p. (in Finnish)

Klus, J.P., Markkula, M., Venho, J., Järvenpää, A., Sirkeinen, U., Ahlroos, R. 1985. Effective

technology transfer. 128 p.

Mårtenson, G., Otala, M., Wiio, O.A. 1985. Tietotekniikka 1990-luvulla. Sitra. Series B, No. 78.

112 p. (in Finnish)

41

4.1.1 Evolution of the electronics industry 1985 - 1998

Matti Otala wrote the chapter “Information technology in products” in the
forecast [Mårtenson et al. 1985]. He was using microprocessors used in cars
as an example of embedded systems, but pointed out also other automation
applications, such as elevators, cranes, heavy-duty machines, public and
industrial transportation equipment, as well as robots and buildings. The
section “Software production” (pp. 60 - 61) indicates that embedded
software was applied especially in machines and equipment and would be
developed “semi-automatically” by using special software engineering
environments based in part on “artificial intelligence techniques”. Otala was
expecting the automation in the development of embedded software to
increase “slower than [in] the design of other electronics [technologies]”,
three to four times by 1990. This was much the view of firm K, when it
contracted the Speco project in 1985. In reality, embedded software became
crucial in telecommunication, but only ten years later. The size of software
incorporated in such products increased by the factor of four in 1994 - 1998,
but the productivity in software development only by the factor of two.

[Lovio 1993] analyses the growth of the Finnish electronics industry from
1961 to 1989. After a deep decrease of growth in 1981, the level of a 15%
annual increase was reached in 1985. Then, the growth ceased again and
was well under ten percent in 1989. Lovio considers the period between
1975 and 1989 a competence enhancing phase of the Finnish electronics
industry, comprising the era of ferment based on microelectronics from
1975 to 1984 and the era of incremental change between 1985 and 1989,
with “new products in all old product groups” being introduced, and both
exports and internationalisation increasing. Considering the firms that were
involved in the code generation case, N, Nm, Nr and Nt as parts of a larger
corporation and the firm V were among the top five, when ranked by their
number of employees in 1985. Firm K was among the top ten and the firm
W among the top twenty. In 1989, the top five firms had remained the same,
but firm K had dropped down as many as nineteen positions. The firm W
had risen among the top fifteen and the firm Th among the top twenty.

[Kivisaari and Lovio 1993] analyse “innovative businesses” of the Finnish
electronics industry between 1986 and 1992 - during the innovative phase of
code generation R&D. The firms K and V are included as large innovative
firms in the product group “Industrial automation and measurement
devices”, the firms N and Nt as large in “Telecommunication equipment”,
the firm S as large in “Consumer electronics” and the firm W as medium-
size in “Medical electronics”. Firm Nm had grown by 25% between 1986
and 1992, firm Nt 21% and even firm K 17%. The turnover of the firm S
had increased by 9% and that of the firm W 5%. The turnover of the firm V
had decreased by 4% and it had laid off 900 employees. The biggest product
group in terms of the annual turnover was in 1992 the telecommunication
sector with its 7.2 billion marks (43% of the total production, increase of
6% from 1986). The turnover of the automation sector was 4.8 billion marks
(14%, decrease of 4%) and of consumer electronics 3.2 billion marks (6%,
decrease of 14%). In contrast, the annual turnover of medical electronics
was only 1.2 billion marks (2%, decrease of 2%).

42

TKO had at the time of the preparation of the Sokrates project three key
customers. They included the firms K and N, but the former was seen as a
“lowering customer” in terms of the volume of the co-operation. It had first
increased greatly from half a million marks in 1984 to 2.3 million in 1985,
but then decreased to 1.9 million marks in 1987. Income from the co-
operation with firm N had increased rapidly from a half million in 1983 to
1.5 million in 1984, but then settled at the level of a million marks by 1987.
The biggest increase and volume of income involved Tekes - from 0.8
million marks in 1984 to 1.5 million in 1985 and to 3.2 million in 1987. The
total volume of the industrial income had increased from 4.9 million in 1984
to 6.8 million in 1985 and to 7.4 million in 1987. It was thus more than
twice bigger than the income that TKO received from Tekes.

Two years later in 1989 TKO had about 25 industrial customers. The
industrial income was about 6 million marks, i.e. it had started to decrease
due to the extensive involvement of the institute in Tekes-funded research
programs. The estimated total of annual R&D driven subcontracting volume
in the electronics industry was 120 man-years. In the machine and
equipment manufacturing industry the estimated annual embedded systems
development volume was about 500 man-years, but increasing by 25%
annually, especially in software development. Yet, R&D driven
subcontracting was estimated at only 25 man-years annually. The share of
TKO of the total annual R&D subcontracting market of the two sectors, 145
man-years, was thus approx. 14% in 1989.

Two years later, in 1991, when the Sokrates project was finished, 37% of
the financing of TKO came from public funding bodies, mostly from Tekes.
Another 37% came from industry. The situation had thus changed
considerably from what it was in 1987 before Finsoft started. The number
of the industrial customers of the laboratory had remained the same, but in
addition to some fifteen electronics firms TKO had as many as ten machine
and equipment manufacturing firms as customers. In 1987 it had had only
three contractual customers from the machine automation industry.

Comparing the customer related data of TKO from the mid-eighties to the
early nineties with the data on the evolution of the electronics industry, it is
obvious that the rapid increase of the telecommunication sector was not
foreseen – even though it was certainly missed by many others, too. The
increase of the co-operation with firm N was not comparable to the 25%
annual increase of its turnover. As an example, the co-operation concerning
the further development of the firm’s in-house code generator was never
realised. The fall of the consumer electronics segment had been rather
dramatic as early as between 1986 and 1992, as much as 14%. Yet, the firm
S, for example, was still considered an important industrial customer for
code generation related projects by TKO.

One of the strategic visions followed by TKO at the turn of the nineties was
that computers were rapidly becoming embedded in various kinds of
machines and industrial production systems. The vision had been presented
already in the eighties by Matti Otala, among others. Yet, according to
[Klus et al. 1985] the change of the importance of electronics and real-time
production control technologies in the metal industry, as seen by executives,
had been estimated to remain less than 3 on the scale 1 - 4.

43

On the contrary, the importance of software technologies in the electronics
industry had been estimated to increase from 3 to 3,5 by both executives and
engineers. This kind of an evolution had indeed started already by 1989. In
contrast, the annual R&D subcontracting value of the machine and
equipment industry was estimated to be only one fifth of the corresponding
value of the electronics industry in 1989. Still, TKO had increased the
volume of its machine and equipment manufacturing customers to as high
as 40% of its industrial customer base by 1992.

There was also a clear difference in public funding for electronics and
information technology research, compared with machine automation
[Anon. 1990b]. Tekes had spent 70 million marks and other organisations
45 million on the Finprit program during the period 1984 - 1988. For
Finsoft the corresponding figures were 40 and 15 million marks between
1988 and 1990, when the program was in its busiest phase. The total sum of
the two programs was well over 150 million marks. The funding of Tekes
for the mechatronics research program between 1987 and 1989 was only 20
million marks, and an additional 10 million marks was received from other
sources. This was altogether less than one fifth of the two software-related
research programs.

At the end of the eighties VTT had established a Machine automation
Laboratory in Tampere, which started to research and develop machine
control solutions based in part on electronics and embedded systems. The
laboratory had the advantages of being located at the heart of the Finnish
machine industry and employing a considerable number of automation and
control system experts. The VTT Electronics laboratory had also been
carrying out R&D on mechatronics for several years. [Anon. 1987a]
includes a piece of news (Insinööriuutiset, 13.4.1987) titled “VTT
[Electronics laboratory in] Oulu leads research. Electronics to machine parts
according to the conditions of mechatronics”. Mechatronics is mentioned as
one of the foci in the Oulu region in [Anon. 1987c], which states that “the
Electronics laboratory of VTT located in Oulu carries out research that falls
in part in the area of information technology”.

The overall situation in the outer context of the code generation research
and development during the birth of Reagenix in 1991 and 1992 was thus
that TKO was extensively involved in an industrial segment that was small,
had increased quite slowly and was not keen on using external R&D
services. Moreover, there were competing offerings for this segment even
inside VTT. In comparison, the electronics industry had increased very
rapidly (in the Oulu region even faster than elsewhere in Finland [Anon.
1989]), was using external R&D services more extensively and had started
to consider embedded software as a core product technology.

In addition, TKO had become largely dependent on external income, not
only from the machine industry, but also from Tekes, when a very deep
economic recession hit Finland at the turn of the nineties. Reagenix was not
only competing against the commercial code generator launched by firm I
during the deepest recession, but it was also marketed especially to the
machine and equipment industry and to consumer electronics and
instrumentation firms which suffered considerably from the recession.

44

[Anon. 1993b] points out that “many indicators show that the technological
development of industry [in Finland] seems to have become slower.
Investments in research have increased less than earlier. The increase of
exports rested almost entirely on a few large companies. The role of new
innovative small enterprises has been too small”. The telecommunication
sector was estimated to “consists of a functional whole which has yet only
weak cluster structures”, but the sector was “strongly oriented towards
exports and has increased rapidly also during the recession”. In the middle
of the recession in 1991 the value of the production of the electronics
industry was 12 billion marks, of which 24% came from
telecommunication, 11% from industrial automation and instrumentation
and 6% from consumer electronics. In 1992, the corresponding shares of the
sectors were 29%, 9% and 4%. By 1997, the value of the production had
increased to 65 billion marks, of which almost one half came from the
telecommunication sector.

The technology review 1993 of Tekes estimates that the foci of
development in the automation sector include “hardware and software
engineering”, but that a weakness is “the lack of companies that develop
production automation systems” [Anon. 1993a], such as firm Nm.
Concerning telecommunications, it is estimated that “the great importance
and hard competition in the field mean that Finland cannot be a forerunner
in critical issues. Big competitors can take in use standards that differ from
the ones used by the Finnish companies.” This was a completely wrong
vision, of course. According to the competence strategy of the electronics
and electrical engineering industries written only one year later in 1994, the
telecommunication sector had “reached the World Class level … and
become involved in the creation of new standards” [Anon 1994b]. The same
strategy indicates that the development of automation systems “is based
strongly on the familiarity with the sector[s] using the systems”. Moreover,
the strategy claims that “system design tools have become a central part of
product design, because the efficiency and competitiveness of products
depend critically on … the tools”.

The Tekes technology review written three years later states that
“companies must be involved in affecting and specifying new standards for
the field” [Anon. 1996]. Moreover, the “most important technical
competence areas” of the telecommunication sector are explained to be
“embedded real-time software, signal processing, ASIC design, radio
engineering, telecommunication systems and system-level software”. The
review includes for the first time a special section on embedded software
(pp. 31 - 32). Between 1994 and 1997, 24 000 new jobs were created in the
electronics and electrical engineering industries, in 1997 44% percent of all
new employees held a Master’s degree in engineering and 33% an
engineering college degree. During 1989 - 1993 the labour of the electronics
and electrical engineering industries decreased to 34 400 persons, but
already in 1996 it had risen again to the level of 51 000 persons [Hienonen
1997]. That year the value of the production of the electronics and electrical
engineering industries was 54 billion marks, of which the share of the
electronics industry was 41 billion marks. The share of the
telecommunication sector was 46%, the automation sector 7%, and the
consumer electronics only 2%.

45

The increase of production in the telecommunication sector had been over
30% in 1996, in industrial automation and instrumentation it was about
15%. In consumer electronics the production had decreased by 20%. About
31% of the personnel of the electronics industry was involved in R&D in
1996, but in the telecommunication sector as much as 47%. In 1987 the
corresponding values were 19% and 28%. In industrial automation and
instrumentation, the volume of R&D personnel was 15% in 1987 and 16%
in 1996, in consumer electronics the volumes were 7% and 14%.

[Hienonen 1997] includes an estimate of the volume of personnel in
electronics industry involved in software development. It shows that the
telecommunication sector employed over 30 times more software engineers
in 1996 than the second biggest sector, industrial automation and
instrumentation. In 1997 the value of the R&D spending in the electronics
industry was almost 17 billion marks, 61% of the total national R&D
spending [Anon. 1998]. “Software plays[ed] a key role” in the electronics
industry, and almost one fifth of the personnel of electronics and electrical
engineering firms was carrying out software development – in
telecommunication firms as much as one fourth.

VTT was restructured in 1992, at least in part due to the recession. The
former small independent laboratories were integrated into nine large units.
The mechatronics section of the Electronics laboratory was incorporated
with the Machine automation laboratory and some other laboratories with
VTT Automation. The Computer technology laboratory became a part of
VTT Electronics, together with the rest of the former Electronics laboratory
and two other laboratories. The hardware engineering related research
groups of the new unit ELE started to specialise in telecommunication
electronics. The software engineering groups had a wider technology
portfolio and customer base, but were also deeply involved in the R&D of
embedded telecommunication software and the methods and tools used in
software development. By 1998, the annual volume of embedded software
R&D at ELE had risen to over 70 man-years, of which almost 40% involved
confidential customer projects. 50 to 70% of these projects were carried out
for telecommunication firms. The annual size of the biggest project
portfolio contracted by a single customer was about 15 man-years. It
included several activities concerning software method and tool
development as well as technology transfer.

The machine and equipment industry had become one of the key sectors for
fault diagnosis and intelligent systems R&D at ELE [Seppänen et al.
1998a], but not for R&D on embedded software engineering. Only
occasional customers had been gained from the consumer electronics sector.
Comparing the dramatic increase of the telecommunication sector between
1993 and 1997, also in terms of the number of software engineers, with the
evolution of the other sectors, it is very likely that the strategic market of
Reagenix would have been there. The right window for stepping into the
rapidly moving telecommunication sector might have been offered as early
as in 1991, or during 1992 - 1993 at latest. However, at that time TKO was
busily developing the code generation technologies further for the needs of
machine and equipment manufacturers (e.g. firm Nm), as well as for the
consumer electronics sector (e.g. the firm S).

46

4.1.2 Technological developments

Tables 4 and 5 taken from [Seppänen et al. 1996] present the technological
developments in embedded software engineering in the nineties, from the
viewpoints of system solutions and design methods and tools. The road
maps shown in the tables are based on interviews with approx. 150
professionals around the world, the initial purpose being to support the
planning of embedded software related research and development activities
in an electronics research program launched by Tekes in the late nineties.

Table 4. Overview of an embedded software solutions road map.

Area of the
road map

1991 1996 2001

System
characteristics

Device
control

Mass customisation,
portable products

Networked
systems

User interfaces Alpha-numeric Graphical and
Customisable

Virtual,
COTS

System software
and hardware

In-house
software and
COTS
hardware

PC-compatible
software and
hardware vs. ASIC-
based co-designs

Open system
platforms vs.
COTS co-
designs

Data access,
management

Dedicated local
data storage

Data management
Systems

Real-time
networked
multimedia

Associated IT
systems

Local
information
processing

Client-server system
interconnections

Embedded
and IT system
networks

Communication
infrastructure

Closed, local
area

Open local area and
Global networks

Hetero-
geneous,
Wireless

Table 4 indicates that embedded software solutions have evolved in the
nineties from small, dedicated device control programs to large,
heterogeneous and networked software systems. At the same time, many
special in-house solutions have been replaced by commercial or at least
standardised solutions. Interfaces that did not exist or were “closed” for
internal use only, have become publicly defined and “open”. Embedded
software solutions have been integrated with new hardware solutions, such
as ASICs, to form deeply embedded systems.

From the business perspective, these developments means that the earlier
focus on special-purpose technological solutions has been directed to
applications of electronic products and services provided by these. Many
companies use standard software-hardware platforms and concentrate on
delivering customer value for certain applications. Others still compete by
using special technological solutions, if the markets are large enough or if
there is either a need for protecting company-specific technological
innovations or developing one-of-a-kind systems, such as space devices.

47

Considering the system solutions developed in the Sokrates project, such as
a communication protocol package and an operating system kernel, the
developments would have required focusing either on special solutions or
accommodating to some standards. The use of the operating system kernel
solution by firm N (cf. Appendix 2) and the communication protocol
package in a space instrument represent the former. No serious attempts
were made regarding the latter. An example could have been provided by
developing a software bus concept starting from the protocol package, but
aiming at a solution that would be compatible with an object-oriented
communication standard.

Table 5. Overview of an embedded software process road map.

Area of the
road map

1991 1996 2001

Development
methods

Structured
development,
CMM/1

Early object-
oriented
development,
CMM/2

Component-based
development,
CMM/3 - 4

Development
tools

Structured
CASE tools

Object-oriented
CASE tools

Application-specific
and simulation CASE
tools

Environments Isolated
environments

Site-specific
environments

Interoperable local &
global environments

The evolution of embedded software development methods and tools has
led from structured techniques, such as SA/SD, first to object-oriented and
then to component-based techniques (Table 5). One of the main reasons for
this is the increase in the use of standard software and hardware platforms
and open system interfaces. Software engineering environments have
changed from isolated and site-specific to heterogeneous and inter-operating
support systems that sustain a process-based viewpoint to software
production. A good example of this is provided by the Capability Maturity
Model (CMM), which is an incremental process improvement framework,
as opposed to the “quantum leap” envisioned in the Sokrates project.
Moreover, the process perspective has not resulted in such an integration of
methods and tools as was forecasted in Sokrates. Instead, the model was
built mostly by software quality professionals, who were more interested in
the management of software development than in specific methods and
CASE tools.

The evolution of embedded software engineering technologies shown in the
two tables has been extended and reformulated in Table 6, by using the
elements of software engineering competence. The periods of art, craft,
standstill and engineering shown in the table illustrate changes in embedded
software development practices in Finland. In the mid-eighties, this field
involved few hundred hardware-oriented system engineers. In the late
nineties, thousands of industrial professionals are work with embedded
software systems, which may involve millions of lines of program code.

48

Table 6. Elements of embedded software engineering during 1985 - 1998.

Period Applications Techniques Technologies Functions

Art
(-
1985)

++ Control Program
design
(SA/SD)

Compilers
Debuggers

Coding,
Testing

Craft
(1986
 -
1991)

+ Control
+ Automation
+ Telecom
+/- Instruments
+/- EDA

SA/SD
Program
design
(Co-design)
(OO design)
(Testing)

Programming
environments
(CASE tools)

System
design,
System
testing,
Docu-
mentation

Stand-
still
(1992
 -
1993)

+/- Control
+ Automation
+ Telecom
+/- Instruments
+/- EDA

 -"-
CASE tools
Visual
programming
environments

 -"-
(Quality
engineering)

Engi-
neering
(1994
 -
1998)

- Control
+ Automation
++ Telecom
+/- Instruments
+/- EDA
+/- Multimedia

OO design
SA design?
Co-design
(Simulation)
(SDL)
(TTCN)

Visual CASE
OO CASE
(System
design tools)
(ASIC tools)
(Web tools)

(Simulation)
Multi-
paradigm
design,
Concurrent
engineering

The dominating elements of each period, if any, are shown in italics in the
table, the competing elements as ordinary text and the emerging substitutive
elements in parentheses. The basic device control applications that were
prevailing (“++”) in the eighties, have given way (“-") to
telecommunication applications with regard to importance. Automation
applications have grown (“+”), but considerably much less than what was
expected in the eighties. The role of embedded software in electronic
instruments has remained about the same (“+/-") or decreased as in the case
of consumer electronics, which almost collapsed as an industrial sector.
There has been no considerable growth in the Finnish CASE tool business
either, although firm I, for example, has played a key role in providing
embedded system design methods and tools for industry. Many companies
have given up the building of in-house methods and tools, with an exception
of some large telecommunication firms.

In the view of the table, and as pointed out by many of the interviewees of
this research, Sokrates was carried out at the right time. The goal was to
transform the craft of program design to a software engineering discipline.
However, the economic recession resulted in a technological standstill from
which automation industry, the main intended market of Reagenix, was
slow to recover. The rapidly increasing telecommunication sector became
interested in systematic software design methods and automated tools, but
the opportunity window seems to have been open only for a short while.

49

4.2 ANALYSIS OF THE PROCESS NETS

Six groups of actors were directly involved in the code generation case. The
objectives, goals and logic of these actors determined the shape of the code
generation process nets. We will, therefore, start the analysis of the nets by
analysing how much the logic of action were aligned or differentiated and
for which reasons. The code generation project nets are then compared with
the project marketing and purchasing horizons, based on data about the
planned and actual exploitation of the code generation competence.

4.2.1 Alignment of the logic of action

Table 7 summarises the objectives and goals of the actors involved in the
code generation case during the period 1985 - 1998. Four of the six groups
of actors are classified further, as follows:

• VTT managers into directors and sections heads (i.e. high-
level general managers and low-level technical managers),

• Code generation researchers into the Sokrates project team
and the people involved in the development of Reagenix,

• Industrial customers into the Sokrates participants, broad
co-operators, focused buyers and tool vendors, and

• Research customers into the focal organisation itself and
other research organisations.

One of the main objectives of the VTT managers was to increase the
volume of contract R&D, while minimising financial risks and earning only
small profits as a national government-owned research organisation. The
focal researchers wished to make a paradigm shift in the development of
embedded software, by building and transferring in use innovative design
methods and tools. In principle, the goals of the two groups should have
been well-aligned, actually the same, but they appeared to be quite different.

The strategy of Tekes involved starting and co-ordinating national research
initiatives as a funding body, to "investigate the limits of new technologies",
as it was described by one of the interviewed Tekes representatives.

Industrial customers were keen on following up and evaluating new
technologies, but mainly by making rather moderate investments and taking
only limited technical risks. The sooner this kind of technology screening
would result in direct business benefits, the better.

Research customers were aiming at certain project goals that were usually
not related to code generation. They were looking for free or inexpensive
use of effective technologies, which tended to irritate the focal researchers.
The research customers and VTT managers did not recognise this, though.
The other VTT colleagues, who were mostly informally related to the focal
researchers, also had their own professional and personal objectives.

50

The goals of the actors involved in the code generation case were not static,
but changed rather considerably as indicated in Table 7. The table shows the
alignment of the goals of actor groups with other groups by "+" and
differentiation by "-". A situation where the alignment or differentiation of
goals clearly changed is shown by "+/-".

Table 7. Alignment of the goals of actor groups between 1985 and 1998.

Groups Actors Alignment of the goals of actor groups
Speco Sokrates Reagenix

A: VTT
Managers

Directors
Section heads

Serve firm K
Nurture R&D
projects
+/- B
+ D

Follow research
Market new red
projects
+ B, D, E

Don't care
Control human
resources
- B
+/- D, E

B: Focal
Resear-
chers

Sokrates team
Reagenix team

Implement
technological
innovations
+ A, C, F
+/- D

Carry out world-
class research in
a different way
+/- A, F
+ C, D, E

Create new type
of product
business at VTT
- A
+/- C, D, E, (B)

C: Funding
Bodies

(KTM)
Tekes

Finance the
screening of
technological
limits
+ A, B, D, E

Finance generic
research and aid
in the transfer of
technologies
+ A, B, D, E

Finance applied
research based
on explicit
industrial needs
+/- A, B, D

D:
Industrial
Customers

Sokrates parties

Broad co-ops
Tool vendors

Focused buyers

-

-
-

Try new
technologies
+ A, C
+/- B

Follow ongoing
novel research
Gain new ideas
Consider using
the technology
Try new
technologies
+ A, B, C, E

-

Buy solutions
Be alerted

Buy certain new
technologies
+/- A, B

E:
Research
Customers

TKO/ELE
Other institutes

-
-

Make use of
research results
+ A
+ B, C, D

Solve design-
related problems
cheaper or faster
+/- A
+ B, C, (D)

F:
Colleagues

VTT research
scientists

Discuss about
technologies
+ A, B, C, E

Argue about
goals and results
+/- A, B, (E)

Use in projects,
if not too risky
+ A, B, C, (D)

The background of VTT managers can be characterised as collective R&D,
as opposed to focused individual specialists. One of their main interests was
to increase the volume of R&D in the network position of organisational
decision makers. They focused on launching and nurturing projects. As an
example, they took much the side of the key customer, firm K, in the dispute
over the Speco project. Yet, only after project-based exploitation of the
Sokrates results had in their view failed, their goals started to differentiate
considerably from the goals of the focal researchers. They were not any
more actively marketing red code generation projects in the late nineties,
although they did not oppose the use of Reagenix in blue projects either.

51

The focal researchers, whose professional background involved rather
small-scale R&D, were interested in making innovations in the position of
high-level technology experts, not as project or organisational managers.
Technological innovations, as understood by the focal researchers, were in
the Sokrates project produced by conducting world-class research in a
different way from all the other projects of TKO. This different approach
caused problems with the VTT managers and colleagues. During the
Reagenix period, a related novel aim was to create product-based business
at VTT. The goals of the VTT managers started to differentiate quite
remarkably from the goals of the focal researchers by the mid-nineties. The
group rehearsal and interviews revealed differences also in the goals of the
focal researchers themselves in this regard.

Tekes, the funding body, was acting as a kind of patron. Its interest was to
ensure national success in developing and exploiting new technologies.
However, it redirected its funding in the nineties from generic research,
such as the Finsoft program, to projects with much more direct links to
certain industrial needs. It did not provide any direct funding for code
generation related work after 1994.

The background of many of the industrial customers involved in the code
generation case revealed expertise in certain industrial applications rather
than in embedded software engineering. They were interested, like firm K
already in the late eighties, in early screening and evaluation of new
technologies, mostly in the position of product development managers and
engineers. After the Sokrates project, focused buyers acquired certain
technologies from VTT, whereas broad co-operators were looking for
comprehensive system design solutions. On the basis of our interviews,
these goals were not, after all, considered properly either by the VTT
managers or the focal researchers. Firm Nm is a good example of this, but
also the lack of co-operation with firm N, which would have been one of the
most obvious customers for code generation related R&D. No co-operation
emerged with tool vendor companies either - the business goals of firm I
clashed with the goals of the focal researchers during the Reagenix period.

Research customers were interested in achieving certain project goals, often
in the position of project managers. They wanted to make use of Sokrates
and Reagenix results to solve various kinds of problems, for the benefit of
the industrial partners of their projects. Some of them criticised the VTT
managers for not attending to Reagenix well enough, but all of them were
quite satisfied with the support received from the focal researchers. They
did not recognise any problem regarding the free support. The VTT
colleagues, who did not utilise the results, were acting as observers rather
than active participants even during Sokrates and especially later.

The logic of action of a group of actors is a combination of not only the
goals and means of the group. It includes also the justifications and
arguments supporting the viewpoints of the group, based on the
backgrounds, interests and positions of the actors. Table 8 summarises the
logic of code generation actions based on the goals, means and justifications
of the actors.

52

Table 8. Logic of code generation actions during 1985 - 1998.

Groups
of actors

Objectives and goals Means Justifications Logic
of action

A: VTT managers
− research directors
− section heads

Increase of the volume of
contract R&D: minimise
risks, earn small profit

Control of human and
organisational resources

Collective R&D:
Increase volume as
decision makers

Contractual R&D
− project business
− resource control

B: Focal researchers
− Sokrates project team
− Reagenix team

Make a paradigm shift:
transfer in use new design
methods and tools

Control of project
resources, personal
technical skills, team-
based problem solving

Small-scale R&D:
Innovation as technology
experts

Small entrepreneurship
− pioneering research
− product business

C: Tekes Guide national research
initiatives: investigate
limits of technologies

Control of financial
resources, program-level
co-ordination

National success:
Act as a "patron"

Investments
in the future

D: Industrial customers
− Sokrates parties
− broad co-operators
− focused buyers
− tool vendors

Follow-up and evaluate
new technologies: make
moderate investments with
small risks for the benefit
of the business

Freedom to accept or
reject the developed
technology, business and
application skills

Application focus:
Early technology
screening/adoption as
development managers or
experts

Technology testing
− smooth audience
− paradigm buying
− solution buying
− technology watch

E: Research customers
− within TKO/ELE
− other organisations

Aim at certain project
goals: utilise effective
technologies for free

Control of project
resources, use of project
relationships

Project-based R&D:
Project goals as project
managers

Problem solving
− cheaper solutions
− faster solutions

F: Colleagues Ensure professional and
personal careers: carry out
applied engineering R&D

Personal skills, project
relationships, (money,
time)

Applied research:
Personal goals as
"observers"

Professional interest

53

The logic of action of the VTT managers has been described in Table 8 as
"Contractual R&D". It meant project business based on the control of
human and organisational resources. The focal researchers emphasised
"Small entrepreneurship", in the form of pioneering research during the
Speco and Sokrates periods and product-based R&D business during
Reagenix. Tekes wished to make "Investments in the future", whereas the
logic of action of the industrial customers can be characterised as
"Technology testing". The Sokrates steering group was a rather smooth
audience for innovative research. Broad industrial co-operators were
looking for opportunities for exploiting comprehensive system development
paradigms, whereas focused buyers were interested in specific technological
solutions. Tool vendors were conducting technology watching by following
the work during and immediately after Sokrates, while not actually
participating in the work. The logic of action of the research customers was
geared towards "Problem solving", by the use of inexpensive or faster
solutions. VTT colleagues expressed "professional interest" in the work, but
were not directly involved in it.

The driving force behind the logic of action of the VTT managers was the
goal to increase the volume of R&D. As an example, TKO grew from about
twenty to almost a hundred people in ten years, during the period 1983 -
1993. The close to non-profit nature of the services provided by VTT
meant, according to the logic of the managers, that green and blue research
topics should move to the red portion of the project portfolio after quite a
short while. In other words, industrial customers should have covered the
costs of the further refinement of capabilities built in green and blue
projects. Profits from red projects have been allowed at VTT only since the
mid-nineties. For example, the main red code generation project MCS-REA
was offered to firm Nm at a prime cost, with no profit margin. Later during
the nineties, the profits gained from Reagenix licenses appeared to be very
small, no considerable red code generation projects were carried out and the
tool was used for free in joint blue projects. The project business logic of
the VTT managers was therefore actually most effective during the Sokrates
period, when TKO was earning the highest external income from code
generation R&D. The focal researchers should have, in principle, followed
the same logic of action as project managers and researchers did. However,
this was not the case. The early dispute with firm K during the Speco
project had a lot in common with the disagreement with the VTT managers
later in the nineties. The case data shows how the views of the two parties
differentiated. The manager of firm K wanted to have well-established
schedules and plans, while the innovators were solving problems at a hectic
pace in the basement.

In the interviews, the focal researchers and some of their colleagues were
criticising the unwillingness of the VTT managers to take risks, be they
financial or technical. The managers of firm Nm described the
consequences of serious risks that had been realised. The focal researchers
still had the original belief that taking the risks of technology testing had
paid off for firm Nm. The managers of firm Nm were, on the other hand,
characterised as smart people in this regard. The VTT managers said that
they rather soon lost confidence in the judgement of the focal researchers to
realise code generation related business plans.

54

In Table 8, the logic of action of the focal researchers, resulting from their
vision of changing the craft state of embedded software development to an
engineering discipline, is characterised as small entrepreneurship. The
background information of some of the focal researchers included in
Appendix 2 shows the roots of this logic. The researchers were stressing in
the interviews that some of them had "run real companies" before joining
VTT. However, even the complaints of the Sokrates steering group
regarding the preparation and delivery of plans, status reports and
documents point towards the logic of small-scale business: paperwork was
done after the more interesting technical questions had been answered.

Still, this logic of action was quite appropriate during Sokrates. According
to Tekes, the Finsoft evaluators and also the steering group, the project
succeeded in reaching its goals. The disagreements between the focal
researchers and some of their colleagues regarding the appropriate way of
carrying out innovative research were not considered any serious problem
by the interviewed VTT managers. The logic run into difficulties only
afterwards, during the Reagenix period. The focal researchers were then left
with practically no project resources at all at their disposal, while the
managers who controlled the human and organisational resources continued
to follow their own logic. Yet, the managers did not sell out Reagenix
either, until 1998. It can be questioned, why this was not done much earlier.
One possible answer is that Reagenix was used in quite a number of blue
projects during the whole of the nineties. A more likely reason is, however,
the project-based business logic of the managers. They were neither keen on
selling licenses, nor of making money by selling the IPRs of VTT for good.

The goals and logic of action of Tekes, industrial customers and research
customers were quite well aligned with each other during the Sokrates
period, when the logic of the focal researchers was prevailing. The logic of
Tekes, VTT managers and the focal researchers did not conflict even after
Sokrates until about 1994, because they were all wishing to make use of the
results of Sokrates. However, due to the industrial logic of testing new
technologies, as well as due to the recession, only a few and rather small
exploitation projects arose. After firm I had introduced its commercial code
generator, many of the companies that were interested in code generation
bought the tool from firm I.

This can be understood as part of the emerging engineering period in the
development of embedded software, as shown in Table 6. During the earlier
Craft and Art periods industry was more willing to follow and test research
results. The whole Finsoft program is a good example of this willingness.
Industry, Tekes and the VTT managers were looking for more needs-driven
software engineering research after the Standstill period 1992 - 1993. Such
new topics as animation and unit testing used to renew the several years old
code generation vision could not compete against the new visions of object-
oriented and component-based software engineering. Code generation
became an in-house means for VTT of solving other research problems in
blue projects. The interest of these projects was not to carry out or pay for
any code generation research. Yet, the logic of action of the focal
researchers seems to have become captured with such an idea.

55

4.2.2 Planned and realised process nets

The first step towards analysing the content of the logic of action is to
compare the project marketing and purchasing horizons with the realised
project nets, Table 9. The project nets are then presented in more detail and
the form of interaction between the different groups of actors is analysed.
During the Scope period, embedded software engineering was still
considered art, but it started to emerge as a distinct profession, in which
more effective tools and methods were needed. Tekes had been established
in 1983 and TKO was in many respects in a pivotal position for launching,
carrying out and co-ordinating national research on embedded software
engineering. For this reason, the focus of the code generation project
marketing horizon of TKO involved joint blue projects. This was also the
main project purchasing horizon for industry and Tekes. Yet, the ongoing
phase of the code generation R&D process was innovation rather than
technology development. Correspondingly, the ongoing phase of the
competence exploitation process was technology screening.

The actual colour of the Draco project net was green, although KTM was
involved as an external funding body. However, the Speco project net was
red, involving both technology evaluation and early technology
development. There was thus a mismatch not only between the project
marketing and purchasing horizons and the realised process nets, but also
between the phases of the R&D and competence exploitation processes. The
problems encountered in the Speco project can be seen as one result of these
mismatches: the researchers aimed at innovations, the managers expected to
get value for the money they had spent (firm K) or earned (TKO). VTT had
not yet expressed any considerable interest in internal purchasing of
embedded software engineering technologies. No code generation project
nets had been established within VTT.

During the Sokrates period embedded software engineering evolved from
art to craft, but the period ended with a standstill caused by the economic
recession. Industry was eager to take new methods and tools in use in
product development, but the recession would decrease its interest towards
the end of the period. The survival, or rather the miraculous growth, of the
telecommunication sector was not yet foreseen. The ongoing phase of the
R&D process was technology development. The project marketing horizon
of the VTT managers included both red spin-off projects of Sokrates and
blue projects, in which code generation could have been applied. The focal
researchers were also looking for opportunities for selling tool licenses.

The competence exploitation phase related to the project purchasing horizon
was technology evaluation: Tekes was expecting to see industrial spin-off
projects, industry was also interested in the base techniques of Sokrates,
such as SA/SD. The VTT Electronics laboratory was ready to exploit the
early Sokrates results first in blue and then in red projects. The actual
project nets fitted well with the marketing and purchasing horizons,
although they involved not only technology evaluation but also some
technology screening. For example, the choice of an Ada style programming
language for Sokrates-SA was a result of such screening.

56

Table 9. Planned and realised process nets during 1985 - 1998.

Code generation vs. industrial
software engineering periods

Project marketing horizon
(vs. phase)

Project purchasing horizon
(vs. phase)

Realised project nets

Speco/Art…craft:
Embedded software engineering started to
emerge as a distinct profession, tools and
methods were needed

Innovation
Blue embedded systems
projects: joint software
engineering research

Screening
Tekes: blue projects
Industry: blue projects
VTT: --

Evaluation
Speco: red research
Draco: pseudo-blue (green)
research

Sokrates/Craft…standstill:
New software engineering methods and
tools had been developed and taken in use,
but the recession decreased industrial
interests

Development
Managers: red spin-off or blue
research projects
Researchers: red spin- off
projects, red licenses (blue and
green projects)

Evaluation
Tekes: spin-off projects
Industry: tool piloting and
system design projects,
SA/SD courses
VTT: blue/red projects

Screening and evaluation
Sokrates: blue research
Kaapeli: red spin-off
Synchro, Sasic, Sixa:
blue research

Reagenix/Standstill…engineering:
Industry was recovering from the
recession led by the telecommunication
sector, but its interest in in-house general-
purpose methods and tools had decreased;
new methods and tools were sought for
managing large systems; the software
process emerged as an integrative view on
software development

Leverage
Managers: red projects (incl.
VTT) especially in machine
automation, blue projects (incl.
joint European projects)

"Commercialisation"
Researchers: internal and
external licenses, green tool
development projects, red
generator-based software
projects

Process and product
development
Industry: well-packaged
effective methods/tools
Tool vendors: buying of IPRs,
elimination of likely
competitors
VTT: well-packaged and
supported in-house
(cheap/effective) tools
Research institutes: problem
solving means

Process and product
development
Reagenix, Aniprosa: green
research
(Table 10): generator-based
red projects, license selling
(Table 10): usage in blue
research

57

Sokrates, Synchro, Sasic and Sixa created together a considerable portfolio
of blue projects including two VTT laboratories, Tekes and a large number
of companies. Kaapeli was the kind of a red spin-off project that VTT and
Tekes wished to launch already when Sokrates was ongoing. After the
Sokrates project had been finished and the Reagenix period started, the
standstill hit in 1992 - 1993 and changed only gradually to a true embedded
software engineering era. The Finnish industry was recovering from the
recession led by the telecommunication sector. The traditional consumer
electronics sector had almost disappeared and the importance of the
automation industry had decreased in comparison with the electronics
industry. Industrial interest in developing in-house methods and tools had
faded, because international tool vendors were well represented in Finland,
not to speak of firm I and some other national EDA companies. The
telecommunication sector needed new methods and tools for managing
large software systems, but were also looking mostly for commercial
solutions. The software process had emerged as an organisational rather
than a tool-based view on software development.

The phase of the code generation R&D process expected by the VTT
managers and Tekes was leverage. The focal researchers accompanied this
with a "commercialisation" phase to be carried out by VTT itself, after the
attempted co-operation with firm I had failed. The project marketing
horizon of the VTT managers included red projects, targeted especially at
machine automation. VTT was considered an internal customer. The
managers were also aiming at establishing blue projects, so as to apply and
develop further code generation techniques, including joint European
research projects. The focal researchers focused on selling Reagenix
licenses, to conduct the further development of the generator.

The code generation competence was in the phase where it could be
exploited in process and product development. Industry was looking for
well-packaged and effective embedded software engineering methods and
tools, as did also internal research customers at VTT. Commercial tool
vendors were interested in preserving and extending their markets,
including buying of IPRs and elimination of competitors. The realised code
generation project nets, as shown in Table 10, included small-scale green
development, i.e. the use of the Reagenix account and the Aniprosa project.
A few red code generation projects were launched. The main project, called
MCS-REA, was carried out for firm Nm. Some licenses were also sold.

Table 10 summarises the realised project nets, from the viewpoint of
different actors and colours of their relationships. Blue project nets
dominate, green nets are almost missing and rather few red nets were
created from the many blue nets. VTT Electronics laboratory established the
kinds of red machine automation related projects nets at which TKO aimed
in the early nineties, but Reagenix did not became any strategic technology
for them. The recession finished the broad co-operation between TKO and
firm Nm. The relationship with firm K that had expanded from the red
Speco project to the joint blue Sokrates project broke, too. There was hardly
any continuation in project relationships with focused buyers either.

58

Table 10. Code generation project nets during 1985 - 1998.

RelationshipsActors

Green Blue Red

Remarks

TKO + KTM Draco: 1987 Pseudo-blue
TKO + firm K Sokrates:

1988 - 91
Speco, Speco-2:
1985 - 87

Red-to-blue
(expansion)

TKO + firm N -"- Osdyn: 1992,
(Mots-2: 1997)

Blue-to-red
(specialisation,
focused buyer)

TKO + firm E,
W, So, P, Nt,
Pa, Ta, Th, T, V

 -"- Finished, except
with the firms T
and V

TKO + firm I -"- Relationship as
a tool vendor
1992-1998

TKO + firms Reagenix:
1992 - 1997

Reagenix:
1992 - 1997

License selling
and internal tool
development

TKO + firm El Aniprosa,
Aniprosa-2:
1993 - 1994

Subcontracting
from firm El by
VTT

TKO + firm Nm -"- Kaapeli:
1990 -91,
MCS-REA: 1993

Blue-to-red
(specialisation,
broad co-op)

TKO/ELE +
VTT Electr.
laboratory
+ firms + Oulu
university

Synchro,
Sasic:
1989 - 90,
Tulko:
1989 - 93

(several: 1991 -) VTT
Electronics
laboratory:
broad internal
co-operator

TKO + firm R Raski: 1992 Broad co-
operator

TKO + firm S Sokrates:
1988 - 91

Sympa:
1992 - 93
Cute: 1993

Blue-to-red
(specialisation,
focused buyer)

TKO +
VTT/ ELI

Kaasu: 1992 Focused internal
buyer

ELE + firm Kc Nosto, Nosto-2:
1993-96

Focused buyer

TKO + Työ-
suojelurahasto +
firm T

Turva: 1991
- 92, Diag:
1992 - 93

Sokrates used as
a design method
(blue/no colour)

TKO + Työ-
suojelurahasto +
firm H

Rulla,
Rulla-2:
1993 - 1996

Reagenix used
as a CASE tool
(blue)

ELE + Oulu
university

Rekki:
1995 - 96

 -"-
(blue/no colour)

ELE + STUK +
VTT/AUT

AVV:
1995 - 1997

 -"-
(blue/no colour)

TKO + Tekes Sokrates:
1988 - 91,
Sixa: 1990

Funding also
Kaapeli and
MCS-REA

59

Table 10 shows that during the period 1985 - 1998 there were altogether
three green project nets, one blue project, in which code generation
competence was developed, and nine others, in which it was exploited, and
nine red project nets managed by the focal organisation. In three cases, the
blue Sokrates project net that consisted of more than ten firms was
specialised in red customer project nets. Firms N and S in these nets were
focused buyers and firm Nm a broad co-operator. Not only code generation
related co-operation but also other co-operation with most of the other
Sokrates parties finished entirely. Firm I remained one of the commercial
tool vendors of VTT. None of the blue projects in which code generation
competence was exploited resulted in red code generation projects of the
focal organisation. However, Reagenix licenses were sold to firms that
participated in the blue projects.

Firms R and Nc and VTT Food technology laboratory represent customers
with whom red project nets were established without any previous
participation by them in blue code generation projects. The relationships
with them involved single projects, none of them have contracted any other
projects afterwards. Firm El did not become any strategic partner of VTT in
the further development of Reagenix either. From the viewpoint of
customer relationships this meant the following:

• one red relationship with a key customer (firm K, machine
automation) was expanded to a blue network,

• one blue network with a key customer (firm N,
telecommunication) was specialised in a red relationship,

• two blue networks with new customers (firm S, consumer
electronics; firm Nm, machine automation) were specialised
in red relationships,

• eight out of the eleven other customer relationships of the
blue Sokrates network finished (firms Nt, V and T were
former customers, the rest were new customers),

• the blue network with firm I changed to a series of tool
purchasing transactions (from firm I to VTT),

• three new red customer relationships were created (firm R,
consumer electronics; firm Kc, machine automation;
VTT/ELI; research institute/scientific instruments),

• nine blue (in part colourless from the viewpoint of the focal
researchers) code generation exploitation projects were
created, involving three different funding bodies, several
research partners and a large number of industrial firms,

• one green relationship was created (firm El), and

• a number of red license selling transactions took place.

The longest lasting customer relationships, six years, involved the original
industrial research partner firm K and the key industrial exploiter firm Nm.
The former lasted from 1985 to 1991, the latter from 1988 to 1993. Figure 8
shows how the number of green, blue and red project nets changed during
1985 - 1998, without considering the volume and parties of the nets.

60

1985-86 1987-88 1989-90 1991-92 1993-94 1995-96 1997-98

Year

N um ber of pro jec t nets

5

4

3

2

1

0

g

b

r

g

g g g
g gb

rr

r

r

r

r

b b

b b

b

g: green
b: b lue
r: red

Figure 8. Change of the number of project nets during 1985 - 1998.

The four years from 1991 to 1994, after the Sokrates project, were the time
of the most extensive networking. The figure shows that at that time the
relative number of green, blue and red projects nets followed the ideal
project portfolio. However, most of the blue projects were exploiting
already existing results, not solving new code generation problems. As the
focal researchers told in the interviews, this did not bring too much external
income for them to carry out further research and development on code
generation. Quite the opposite, it often meant extra work with no income.

If the blue exploitation projects were removed from the figure, actually only
the Sokrates project would remain. In other words, there was no
continuation at all in the joint code generation research, which was a rather
typical situation in more general terms: public funding for a specific applied
research topic may last for two to three years, but after that the topic should
be considerably revised or integrated into other topics to ensure continuing
funding. This did not succeed for Sokrates. It was attempted, but only once,
after a few weeks of the massive Sokrates project had been finished, as a
very small part of another research topic, and in the middle of the recession.

The number of red code generation project nets increased rapidly at the end
of the Sokrates project, despite the standstill caused by the recession.
However, their number also decreased rapidly. In about five years it was
back to the level of one project from which it started in 1985. The number
of green project nets was very low, when compared with the blue and red
project nets. Yet, the figure provides a clear illustration of the fact that
before Sokrates started in 1988, the number of green projects increased
according to the ideal project portfolio principle.

The development of Reagenix after Sokrates was, on the other hand, carried
out mostly in red projects. The number of green projects increased again in
1992 - 1994, when the number of red and blue projects had started to fall,
but this could not stop the falling. The blue project nets decreased more
slowly than the number of red project nets, but they also ended up at the
level of one project in 1997 - 1998.

61

4.2.2.1 Forms of interaction

The forms of interaction between the focal researchers and the other groups
of actors are illustrated in Table 11. The processes owned and the resources
controlled by the actors are also shown, so as to associate the discussion
with the contents of logic of action addressed in the next section. The most
influential groups are shown in italics in the table, rather influential as
ordinary text and less influential in (parentheses). Non-influential groups of
actors are also listed and reasons for the lack of their influence outlined.

Table 11. Interaction of code generation parties in 1985 - 1998.

Period Influence of
actor groups

Forms of
interaction

Core
processes

Key resources

Speco
(1985 -
1987)

Researchers

VTT managers

Firm K

Co-operation

Co-operation

Organisational
dominance

R&D
(innovation)

Project
marketing

Control, co-
ordination,
R&D

Individual and
team-based
problem-solving
skills, vision
Contacts with
Tekes/industry,
project planning
skills
Money, decision
making power,
technical skills,
company vision

Non-influential : KTM Reasons: KTM did not want to control technology
evaluation in Draco, but just finance the project.

Sokrates
(1988 -
1991)

Researchers

(Tekes)

(Industrial
customers)

Dominance

Submission

Co-operation

R&D (dev.)
Evaluation,
Co-
ordination
Project
purchasing,
Exploitation

Sokrates project
resources, vision
Money, program-
level resources
Money, system
design and
application skills

Non-influential : VTT
managers, Research customers,
Sokrates parties, Colleagues

Reasons: VTT managers, research customers and
Sokrates parties did not control the R&D process,
only co-ordinated it. Colleagues could not even co-
ordinate the process, only comment its results.

Reagenix
(1992 -
1998)

Research
customers

VTT managers

(Researchers)

(Tool vendors)

Co-operation

Organisation
al dominance
Technical
dominance
Competition/
Don't care

R&D, inter-
action with
industry
Project
marketing
R&D
(leverage)
Commer-
cialisation

Project resources,
problem-solving
skills
Organisational
resources
Individual skills,
Reagenix account
Knowledge of
EDA markets,
business skills

Non-influential : Funding
bodies, Industrial customers

Reasons: Funding bodies had no control over
Reagenix, they just financed projects where it was
applied. Industrial customers had, in practice, no
control over Reagenix either.

62

During the Speco period the most influential group of actors was the focal
researchers, because they had the individual and team-based problem-
solving skills for carrying out the innovative research needed for realising
the code generation vision. Firm K put forward the original vision and had
both technical skills and organisational resources for making it true, but
more as a vision of the future of one company than as an innovators' dream
of changing the whole paradigm of embedded software engineering. By the
time of the Sokrates project proposal, the latter had won. The organisational
dominance of firm K, based on its position as a purchaser and decision
maker in a red project relationship, had also ended.

The VTT managers and focal researchers co-operated with each other and
third parties to launch activities that would make the researchers' vision
true. The managers used their contacts with Tekes and industry, as well as
their project planning skills, to market the Sokrates project. They showed
little interest in taking part in forming the technical code generation vision.
As an example, Veikko Seppänen prepared a separate Finsoft project
proposal on software reuse with some other researchers, based on his own
software engineering vision and experiences from his former activities. This
proposal along with the Sokrates proposal were sent to Tekes, and only the
latter was accepted. KTM did not influence the other parties during the
Speco period similarly to Tekes, although it did finance the Draco project.
The reason was that it did not use any organisational means of controlling
the work, such as project management groups. The Draco project was co-
ordinated by an interest group of one manager and a few researchers.

During the Sokrates period, the focal researchers remained the most
influential group of actors, but their form of interaction changed from co-
operation to dominance. The reason was that they now had all the project
resources needed for carrying out the work that would realise the code
generation vision. They controlled tightly all the human, technical and
physical resources of the project. As a small but illustrative example, the
workstation computer that was purchased by TKO for the project was not
connected to the computing network used by the rest of the laboratory.
Other persons than the project members could not access the computer.

Tekes submitted to the dominance of the researchers. It carried out co-
ordination and evaluation work at the Finsoft program level. As described in
Appendix 2, industrial interest was enough for Tekes to be assured of the
usefulness of the project. Such industrial firms as Nm co-operated with the
focal researchers, because they needed support for exploiting the project
results. The needs of firm Nm were taken well care of by TKO, due to the
fact that it was necessary for it to show the industrial applicability of the
research results. The VTT managers, research customers and the Sokrates
steering group parties did not control the R&D process, they only co-
ordinated it. Colleagues did not co-ordinate the process, but only
commented its results. Therefore, these groups of actors were actually non-
influential during the Sokrates period. The main reasons for the perhaps
surprising lack of influence of the VTT managers was that they could not
control the content of the research and that the researchers were now
financially almost independent.

63

The Reagenix period shows a radical change in the forms of interaction of
the groups of actors. The VTT managers dominated during the beginning of
the period, thanks to their ability of controlling the project marketing
process and organisational resources. The reason for the rapid change of the
focal researchers from the most influential group of actors to an almost
powerless group was the lack of financially considerable red or blue code
generation projects after Sokrates. Although the focal researchers
dominated technically due to their R&D skills, the income from the code
generation projects after Sokrates did not cover the cost of their salaries.
The Reagenix account would have ensured the continuation of some kind of
financial independence, but the license income appeared to be very modest.
As shown in Appendix 2, the annual expenses of the salaries of the Sokrates
project team were close to one and a half million marks during the two last
fiscal years of the project. By comparison, the income from the biggest red
code generation exploitation project MCS-REA was less than one tenth, a
hundred thousand marks.

Because of the dramatic decrease in financial resources, research customers
later become the most important group of actors for the further leverage and
exploitation of the code generation competence. They were both the biggest
and most faithful group of actors during the middle and late nineties with
regard to interest in utilising Reagenix. Moreover, industry was involved in
their projects as research partners. Since Tekes had changed its funding
policy more towards industrial needs, it was common that companies took
part in blue research projects as active research partners with concrete
problems to solve. Six out of the seven projects listed in Table 10, all but
the Turva project, included such industrial partners.

The interaction with tool vendors became competitive after the introduction
of Reagenix. However, since the tool failed to become a truly commercial
alternative, e.g. for the code generator of firm I, the interaction changed to a
'don't care' situation. The EDA business grew in Finland during the nineties
to a recognised sector, where knowledge of the domestic market and
software business skills played a central role. The selling of Reagenix
licenses did not became any comparable business at all. Although there are
no exact figures available, the few licenses that were sold by VTT were
most likely only a tiny fraction of the domestic CASE tool market.

During the Reagenix period, funding bodies and industrial customers
remained non-influential groups of actors, although they participated both in
the red and blue code generation related projects. These actors could not
control the work that was carried out to apply and develop Reagenix further.
The results of the interview of firm Nm show that even the most important
industrial customers were led by the technology experts, i.e. the focal
researchers. The firms that bought Reagenix licenses had even less
influence, if there was no project involved in connection with which the
license was purchased. Although funding bodies financed blue research
projects in which Reagenix was applied, they did not have the means of
affecting the technology either. Not even the technical experts of these
projects had such means, because they were end-users rather than
developers of the code generation technology.

64

4.2.3 Analysis of the change of process nets

The change of the process nets outlined in the previous sections will now be
analysed at the level of relationships between groups of actors, using the
functions of assuring and balancing of mutuality based on scanning and
diffusion by socialisation or combination. The changes of the process nets
are viewed from the perspective of the relationships of the focal code
generation researchers in Table 12. The key elements of the relationships
affected by the changes, be they resource, activity or actor related, are also
identified. Increasing of the management effort is marked with "+",
decreasing with "-" and the 'don't care' situation with "x".

During the Sokrates period, the managers co-operated with the focal
researchers by assuring of mutuality based on diffusion by combination. The
purpose was to produce proposals and plans together for launching code
generation related projects, by referring to and integrating explicit pieces of
knowledge. During the Sokrates period mutuality clearly decreased. The
two groups of actors still handled project plans and non-technical reports
together, but now the managers occasionally raised concerns together with
the steering group about the way that information was made explicit and
delivered. During the Reagenix period mutuality decreased further, although
some planning and co-ordination of the exploitation of Reagenix was
carried out jointly. During this period resource collections became more
important than activity structures between the two groups of actors.
Especially during Sokrates, joint project planning and management had
been the key elements in their relationship. Later, when the number of
common activity structures decreased, the groups were related to each other
mostly via the collection of technical code generation resources.

Resource constellations and ties were the dominating elements of the
relationships between the focal researchers and industrial customers, except
perhaps for such red projects as MCS-REA, where the R&D activities of the
customer and the researchers were linked tightly together. During the Speco
period the researchers were scanning explicit knowledge to understand the
product application of firm K, but the balancing of mutuality of the project
activities failed and a dispute resulted. During the Sokrates and Reagenix
periods mutuality between the two groups increased. It was then based on
diffusing explicit code generation research results to industrial use. Yet, for
example, the designers of firm K resisted the pilot use of the code generator
vigorously.

Relationships with tool vendors as special kinds of industrial customers
followed a similar path, except that mutuality of the activities of the vendors
did not increase but decreased during the Reagenix period. The relationship
between firm I and the researchers became competitive, which was why it
was no longer more possible to carry out any joint activities. In more
general terms, tool vendors were interested in the results of the research, i.e.
in resource ties and constellations. Activity links and webs remained weak:
firm I took part in the steering group of Sokrates, and some experimental
studies were carried out at TKO based on discussions with another vendor.
Yet, the two groups never linked their activities together as tightly as, for
example, firm Nm as an industrial customer and the focal researchers in the
Kaapeli and MCS-REA projects.

65

Table 12. Change of relationships with the focal researchers.

Management of changesActor
groups Speco Sokrates Reagenix

Affected
Elements

VTT
managers

Assuring of
mutuality (+):
Diffusion by
combination
(project
proposals)

Balancing of
mutuality (+/x):
Diffusion by
combination
(Sokrates plans
and results)

Balancing of
mutuality (x/-):
Diffusion by
combination
(Reagenix tools
and methods)

Resource
collections
(Sokrates and
Reagenix tools
and methods),
Activity
structures:
(project tasks)

Industrial
customers

Balancing of
mutuality (x):
Scanning by
combination
(application
understanding)

Balancing of
mutuality (x/+):
Diffusion by
combination
(Sokrates plans
and results)

Assuring of
mutuality (+):
Diffusion by
combination
(Reagenix tools
and methods)

Resource ties,
constellations
(Sokrates and
Reagenix tools
and methods),
Activity links,
patterns:
(project tasks)

Tool
vendors

Assuring of
mutuality (+):
Scanning by
combination
(related work)

 -"-
Balancing of
mutuality (x/-):
Diffusion by
combination
(Reagenix tools)

Resource
constellations
(Sokrates and
Reagenix tools
and methods)

Research
customers

- Assuring of
mutuality (+):
Diffusion by
combination
(help to use
Sokrates)

Assuring of
mutuality (+/x):
Diffusion by
combination
(help to use
Reagenix)

Resource
constellations
(Sokrates and
Reagenix tools
and methods)

Funding
bodies

Balancing of
mutuality (x):
Diffusion by
combination
(Draco
proposal)

Assuring of
mutuality (+):
Diffusion by
combination
(Sokrates
proposal, plans
and results)

Balancing of
mutuality (x):
Diffusion by
combination
(Kaapeli and
MCS-REA
proposals)

Activity patterns
(project
management
tasks), Resource
constellations
(project
resources)

Colleagues Assuring of
mutuality (+):
scanning by
combination
(Draco and
Sokrates
proposals)

Balancing of
mutuality (+/x):
diffusion by
socialisation
(failure to
establish the
R Group)

Assuring of
mutuality (+):
diffusion by
combination
(usage of
Reagenix in
blue projects)

Speco/Sokrates:
organisational
structures (co-
ordination)
Reagenix:
resource
collections
(code generator)

Focal
researchers

Assuring of
mutuality (+):
scanning by
combination
(Speco and
Draco results)

Assuring of
mutuality (+):
diffusion by
socialisation
(joint work in
the Sokrates
project)

Assuring of
mutuality (+/x):
diffusion by
socialisation/
combination
(share of
Reagenix)

Activity
structures
(informal and
project related)
and resource
collections
(R&D results)

66

The relationships between the focal researchers and their research
customers were also based on resources ties and constellations, because the
latter group carried out research activities on other subjects than code
generation. The activity links and patterns that were created involved
assistance in the use of code generation techniques and tools. The mutuality
of such activities was high until the late nineties, when most of the original
researchers had left VTT and those who remained had plenty of other things
to do. As told by the researchers, they also became tired of the fact that
hardly any financial or even other types of rewards were given to them by
the assistance. Moreover, their help was not always asked for when they
would have been interested in giving it. Earlier, when some of the research
customers were the former Sokrates project team members, e.g. in the Tulko
and Diag projects, such help was asked for and provided regularly.

During the Speco project the mutuality of activities between KTM as a
funding body and the focal researchers was very low. During the Sokrates
period it increased considerably, Tekes funded not only Sokrates but also
the early exploitation projects. Since activity patterns based on project plans
and reports dominated and resource collections involved only project
resources, mutuality decreased very rapidly after the Sokrates project. The
preparation of the MCS-REA project proposal, which included the
acquisition of funding from Tekes to firm Nm, was the last considerable
code generation related activity pattern in which both groups were involved.

During the Speco period mutuality was high between the focal researchers
and their colleagues. They carried out joint planning and co-ordination
activities to scan information on existing approaches and to plan for the
Sokrates project. During the Sokrates period there was an attempt to
continue increasing mutuality, in the form of an interest group that would
have helped diffusion by socialisation. It failed, however, and the interest
group was dissolved as an organisational structure. Mutuality increased
again during the Reagenix period, but this time related to resource
constellations based on the use of the generator in blue projects. The
internal organisational structures and activity patterns related to the projects
within ELE were weak. The focal researchers were not much involved in
the external patterns of activities and webs of actors of these projects either.

The researchers kept their internal mutuality high trough all three periods.
During the Sokrates project implicit knowledge was effectively diffused
within the project group, which looked like a very homogenous team to the
outsiders. Earlier, the explicit results of the Speco and Draco projects had
been shared to prepare and launch Sokrates. Formal organisational
structures did not play any considerable role, compared with activity
structures and resource collections. Most of the shared resources were
technical results and certain kinds of problem solving skills. Later, when the
Sokrates project team had been dissolved, the diffusion based on explicit
resources became important, due to the fact that joint project activities were
decreasing considerably. Many of the researchers left VTT and certain
differences in viewpoints seem to have emerged: "From my point of view, it
was a mistake that it [Reagenix] was taken as the continuation of Sokrates
and therefore no one was interested".

67

4.3 ANALYSIS OF THE CODE GENERATION PROCESSES

Table 13 provides an overview of code generation related processes carried
out within the process nets discussed in the previous sections. Activities
performed in these processes constitute the implementation of the logic of
action of the groups of actors involved in the nets.

Table 13. Overview of code generation related processes.

Main types of activitiesProcesses
Owners Speco Sokrates Reagenix

Process nets
(cf. Table 10)

Marketing:
VTT
managers

Purchasing:
industrial
customers

Initiating of
the Speco and
Draco projects
Planning of
the Sokrates
project

Marketing and
initiating of
spin-offs and
use of Sokrates
Planning of
exploitation
projects

Marketing
and initiating
of the use of
Reagenix
Purchasing
of Reagenix
licenses and
IPRs

Speco: Tekes,
KTM, industry
Sokrates: VTT,
Tekes, industry,
tool vendors
Reagenix: VTT,
educational
institutes, industry,
IPR buyer company

R&D:
focal
researchers

Evaluation of
Draco, Refine
Development/
evaluation of a
prototype of a
PL/M code
generator

Development of
the Sokrates
method, tools,
Lego elevator,
system solutions
Screening of the
results

Development
/evaluation
of Reagenix,
Aniprosa,
Cute and
ReagOS

Speco, Speco-2,
Draco, Sokrates,
Reagenix account,
Aniprosa,
Aniprosa-2

Exploi-
tation:
research
(and
industrial)
customers

Demonstration
of the results
of Speco
Joining of the
Sokrates
steering group

Use of the
Sokrates results
in joint blue
research
projects and in
the red Kaapeli
project
Use of technical
documents
Taking part in
SA/SD courses

Conducting
of red spin-
off projects
Exchange of
licenses
Acquisition
of a patent
Use in blue
research
projects
Taking part
in courses

Synchro, Sasic,
Tulko, Kaapeli
Turva, Diagnostics
MCS-REA, VTT
Electr. laboratory
Osdyn, Raski,
Kaasu, Sympa,
Cute, Nosto,
Nosto-2, Rulla,
Rulla-2, Rekki,
AVV, Mots-2

Commer-
cialisation:
focal
researchers

-- Writing of
Courseware and
manuals

Writing of
Courseware
and manuals

License selling
and training
relationships

Control and
co-ordinat-
ion: VTT
managers
(Tekes)

Control of the
Speco and
Draco projects

Control of the
Sokrates project
and the Finsoft
program
Planning for
spin-offs

(Planning for
continuing
projects)
Control of
spin-off
projects

Project steering and
management
groups, TKO
research council,
schaffners, TKO
management group,
R Group

Other:
--

Commenting
the work

Evaluation of
Finsoft and the
Sokrates project

Use of
Reagenix in
education

Temporary
issue-based
relationships

68

In the following, we are discussing the evolution of each of the processes
shown in Table 13 during the three periods. We will also outline the
combined process portfolio of each period, as an introduction to the
subsequent analysis of the processes that created and shaped the code
generation competence by the functions of assuring of capability and
balancing of particularity of resources.

The focus of the marketing and purchasing processes was on blue and red
projects during the Speco and Sokrates periods. The corresponding
activities involved the kinds of project marketing meetings and preparation
of project proposals and plans illustrated in Appendix 2. To put it simply,
the focal researchers and managers were the marketers of the projects and
Tekes and industrial parties of the Finsoft research program the purchasers.

The marketing process was owned by the VTT managers, though, because
they were controlling the organisational resources needed for planning,
carrying out and co-ordinating the process as a whole. For example, a frame
of hours was fixed for marketing in the annual plans of the line organisation
groups. The hours that were actually spent on marketing were recorded to a
certain activity code that was controlled by group managers. As the code
generation stories in Appendix 3 and extracts from the case data in
Appendix 2 indicate, the focal researchers felt that they had not enough
control over marketing activities: “An ordinary researcher is not allowed to
talk to industrial managers. The section head on his own makes the
decisions on the use of the section’s resources". The managers felt, on the
other hand, that what the researchers were doing was talking rather than
acting to launch new projects.

During the Reagenix period, the focal researchers themselves carried out
most of the activities related to Reagenix license selling, without much co-
ordination with the managers who prepared the operational and marketing
plans. Reagenix was actively marketed by the VTT managers from about
1992 to 1994, especially when one of the focal researchers deputised
Veikko Seppänen as a section head. Later in the nineties, almost the only
considerable code generation marketing activity of the managers was to sell
the Reagenix IPR rights to the company established by some of the former
researchers. Some inquiries had been made earlier by other parties
concerning the rights, but the researchers had turned them down.

Marketing to research customers was mentioned in organisational plans, but
using the case data, it was impossible to recognise any planned marketing
activities that would have been directed to research customers. Moreover,
some customerships were created through former Sokrates project team
members working in new projects. Although research customers, after all,
became the most influential group of actors in the nineties, the true owners
of the competence purchasing process in the business sense were the
industrial customers. Since research customers did not provide too much
income for the focal organisation, the VTT managers who owned the
marketing process did not actively promote the use of Reagenix in blue
research projects. The same holds for Reagenix licenses given to
educational institutes in connection with courses that the researchers gave
on the design method. This was not viewed as business by the managers.

69

The focal researchers were the owners of the R&D process throughout the
three periods, because the skills to carry out research on code generation
were neither diffused to customers nor to VTT colleagues. Rather than a
linear sequence of activities from innovation to commercialisation, this
process involved several intertwined research and development cycles. As
exploiters of the results produced by the focal researchers, customers
performed technology screening, evaluation and utilisation, but did not
build much code generation competence of their own. Some customers,
such as firm N that exploited one of the Sokrates system solutions, could
have done that. Many others, such as firm Nm, did not have the necessary
capabilities, although that was expected by the researchers.

The rather loose integration of the R&D process with the customers'
competence exploitation process can be seen as part of the relationship
strategy of the focal researchers: make it fast and cheap and deliver value,
not work to customers. One of the results of this strategy was that there
were only few, if any, relationships in which external parties would have
been competent enough to develop code generation skills themselves. The
focal researchers themselves stated that their purpose was to transfer the
skills "of using technology" (Appendix 2) to customers, not the skills of
developing the technology. This is a considerable difference between the
code generation case and the fault diagnosis case analysed in [Seppänen et
al. 1998a].

Research customers can be considered having owned the exploitation
process, taking into account the role of the Sokrates steering group members
in the early phases of exploitation and the number of blue projects in which
Reagenix was used in the nineties. Although the results of the Speco project
remained just a demonstration system, they were paving the way for the
Sokrates project. Another demonstration system was also built in connection
with Sokrates, but for most members of the steering group, technical
documents remained the only tangible results of Sokrates. Yet, the research
and industrial customers of the projects listed in Table 13 exploited the code
generation competence elements in a rather versatile manner. The Aniprosa
graphical debugger was perhaps the only element the usefulness of which
was suspected even by the focal researchers themselves. The researchers
emphasised also the usefulness of the courses that they gave to students and
industrial professionals, although such courses did not belong to the core
R&D activities of VTT.

Selling of licenses was a new type of exploitation activity in the focal
organisation, as was actually also the writing of professional-style technical
users manuals and course material on Sokrates and Reagenix. These
activities were central to the "commercialisation" process that was managed
by the focal researchers. Yet, the process of controlling other processes as a
whole was owned by the VTT managers. Tekes controlled, in principle, the
research process during Sokrates, but only indirectly through funding and
the Finnsoft program level activities. It is difficult to identify any owners for
the other processes, such as the participation of colleagues in the planning
of Sokrates and the evaluation of its results. Most activities carried out
within these processes were of temporary nature, and had rather little effect
on the developments that took place.

70

During the Speco period, the focus of the process portfolio was twofold,
project marketing and purchasing on one hand, and early innovative
research and development of code generation solutions on the other hand.
These processes progressed in parallel and in a reversed mode compared
with the ideal project portfolio from green to red projects. One of the
reasons for this was that a few key people both at VTT and at firm K shared
a vision of automatic software production and could therefore give a jump
start to the work. Both parties aimed at producing the first tangible results
soon and using them for launching more comprehensive development
activities. Much less emphasis was put on the other processes than the
actual R&D process. For example, the control and co-ordination of the
Draco project was carried out mostly on an informal basis. From the
viewpoint of the process portfolio, the period could be characterised as
"Testing of an industrial vision".

During the Sokrates period, the focus was also twofold, but now on the
R&D and exploitation processes. Project marketing and purchasing were
carried out on the side of the Sokrates project, involving mostly the firms
who participated in its steering group. The Electronics laboratory of VTT
that became interested in the results was located on the same premises as
TKO and even had its people in the steering group of Sokrates at some
point. No great marketing and purchasing efforts were thus needed for
initiating the early exploitation activities. Writing manuals on the use of the
code generation technology and giving of courses on the Sokrates-SA
design method may have been more oriented towards marketing, in addition
to discussions with firm I, which ultimately failed. Although the whole
Finsoft program was co-ordinated in a very structured manner, the focal
researchers kept a tight control over research and exploitation, due to their
technical expertise. The period could be characterised as "Demonstration of
a research vision". The limits of technology that Tekes wished to be
explored were not in sight yet, because the major case example of the
Sokrates project was only a toy system.

During the Reagenix period, everything changed in the process portfolio.
The large-scale R&D activities carried out in Sokrates finished almost
entirely. Reagenix was more of a garage product compared with the
Sokrates results engineered during three years and using millions of marks.
The competence marketing and purchasing processes became critical for the
continuation of the R&D process. The exploitation of Reagenix was quite
sporadic, only rather small activities were carried out for individual
industrial and research customers. The exploitation of Reagenix in research
projects was controlled by research customers, while the code generation
researchers did not play any central role. In industrial projects, the situation
was slightly different, but it was more important to conduct R&D than to
plan for and control competence marketing. Also the organisational control
of the R&D process corrupted rather rapidly due to the managers losing
interest in Reagenix as a business. The informal co-ordination process
between the focal researchers faded away slowly, as a result of people
leaving VTT. From the viewpoint of the process portfolio, the Reagenix
period could be characterised as "Fighting for the vision".

71

4.3.1 Assuring of capability

Table 14 summarises changes in code generation capability during the three
periods concerning product, process and organisation-related resources.
Assuring capability involves the management of the life-cycle of resources,
on which competence is based. The life cycle of product-related resources
consists of the phases of incremental changes, discontinuity, substitution,
competition and dominance. They include design and solution elements of
human, technical and physical resources. We view their content from the
four dimensions of applications, functions, techniques and technologies.
The process-related resources include temporal and financial resources, and
reputation is one of the most important organisation-related resources.

The main purpose of capability assurance is to manage inconsistencies in
relationships. In practice, this can be performed not only as part of the
competence marketing and purchasing processes, but also in connection
with the control and co-ordination of ongoing R&D and competence
exploitation processes. In Table 14, the management of inconsistency with
high (+), low (-) or moderate (+/-) capability is evaluated for each type of
code generation related resources from 1985 to 1998.

Speco was a period of discontinuity in terms of the life cycle of code
generation related product recourses: code generation would mean radical
changes in software development as industrial work and code generators
were new as a tool technology. Contrary to the scientific and early
commercial approaches to code generation, the focal researchers chose to
use the SA/SD system design technique as their starting point. This
technique dominated industrial embedded systems design in the late
eighties, and some of the focal researches had "fallen in love" with it
(Appendix 2). It was not a bad choice, as regards helping the researchers
and industrial embedded software engineers to understand each other.

During the Sokrates period, code generation design and solution elements
were developed to substitute existing elements, except for the Sokrates-SA
design technique, which was an incremental extension of the SA/SD
technique. The solution elements were generic technological implemen-
tations. It was not necessary to have an detailed knowledge of the functions
they implemented and the techniques upon which they were based, to be
able to exploit them. This was also the goal of using the Sokrates code
generator, but its achievement could not yet be shown: VTT researchers
were the main group of users.

The life cycle of product-related resource elements changed again during
the Reagenix period. Code generation functions had already been developed
and only incremental changes were required to improve their efficiency.
The dominance of the SA/SD design technique was rapidly weakening due
to object-oriented techniques (cf. Table 6), competition emerged regarding
commercial code generators, and in most applications where code
generation was used, changes remained incremental rather than radical. This
was the case also in firm Nm, which was the key customer of Reagenix.
Technological solution elements remained in their substitutive phase.

72

Table 14. Assuring of code generation capability by VTT.

Speco Sokrates Reagenix
Product: human, technical and physical resources

Design elements:
- functions: discontinuity
(innovation of code
generation)
- techniques: dominance
(SA/SD widely used)
- technologies:
discontinuity (use of
generators)
- applications:
discontinuity (change the
way to develop software)
Solution elements:
--

Design elements:
- functions: substitution
(use of code generation
instead of manual coding)
- techniques: incremental
changes (Sokrates-SA)
- technologies: substitution
(wide use of generators)
- applications: discontinuity
(change the way to develop
embedded software)
Solution elements:
- technologies: substitution
(replace existing solutions)

Design elements:
- functions: incremental
changes (improvement of
code generation)
- techniques: substitution
(SA/SD dominance is over)
- technologies: competition
(commercial tools exist)
- applications: incremental
changes (many different
applications addressed),
Solution elements:
- technologies: substitution
(replace existing solutions)

Management of inconsistency of product resources between 1985 - 1998
Design elements:
- applications (+/-): trying to cause a radical change in the development of industrial
software, ending up to deal with many kinds of applications
- functions (+): research, development and gradual improvement of code generation
- techniques (-): improvement of SA/SD, while competing methods emerged rapidly
- technologies (-): trying to commercialise the code generator in a competing situation
Solution elements:
- technologies (+/-): attempting to replace existing solutions, partially succeeding

Process: temporal and financial resources

Draco: resources gained
and managed as planned
Speco: disagreement over
temporal resources caused
problems with firm K,
financial resources
available to make the
initial innovation

Sokrates: success in
gaining financial
resources was better than
planned, problems with
temporal resources
Other projects: financial
resources moderate,
temporal resources good

Green projects: very modest
financial resources
Blue projects: no income
from temporal resources
Red projects and licenses:
disagreement over financial
resources with managers,
minimal temporal resources

Management of inconsistency of process resources between 1985 - 1998
- temporal resources (-): management of resources by focusing on the analysis of
problems and then trying to solve them very fast caused problems in Speco, resulted in
unfinished work in Sokrates and was criticised by the VTT managers during Reagenix
- financial resources (+/-): financial resources were good during Speco and excellent
during Sokrates, but collapsed then rapidly due to the lack of considerable projects

Organisation: reputation and other organisational resources
Reputation: leading
embedded software
engineering research unit
Other: strong role in
national R&D initiatives

Reputation: few problems
with the steering group
and with some colleagues
Other: investments in
equipment, co-ordination

Reputation: conflict with
firm I caused some problems,
dispute with the managers
Other: almost no resources
provided by the organisation

Management of inconsistency of organisational resources between 1985 - 1998
- reputation (+/-): deterioration of the good reputation among the managers; rather
good reputation sustained among the early and late internal and external exploiters
- other resources (+/-): full organisational support during Speco and Sokrates changed
to a doubtful situation during Reagenix, resulting in the loss of organisational visibility

73

The capability of code generation related product resources is decreasing
during the three periods, except code generation functions that were
gradually improved from their early innovative stage. Enhancing the
capability of the technological design resource elements, most notably the
Sokrates and Reagenix code generators, did not succeed. The kind of
commercialisation at which the researchers aimed also failed. Furthermore,
there were problems in the capability of the SA/SD system design
technique, which lost its dominating position by the mid-nineties.

The code generation capability concerning automation applications was
high in the early nineties, not only among the focal researchers but at TKO
as a whole. Yet, the automation sector recovered very slowly from the
recession and the consumer electronics sector for which some code
generation projects were also carried out almost disappeared from Finland.
No special capabilities were built for the rapidly increasing
telecommunication sector. Assuring of capability in terms of the life-cycle
of applications was apparently not successful as a whole, the result was a
mixed bag of research applications with no special attention paid to the
enormously growing telecommunication sector. The developed
technological solution elements were intended for replacing existing
solutions; they succeeded at least partially, as indicated by the Osdyn
project, for example. However, there was no capability of creating any
considerable business based on these elements, such as a continuous flow of
license fees or IPR sales income.

The life-cycle of the process-related temporal and financial resources
depended much on the phases of the R&D and competence exploitation
processes. Capability in terms of financial resources was sufficient during
Speco and even better than expected during Sokrates, but it collapsed by
1994. There were problems in capability regarding calendar time and
manpower in the Sokrates project, because some of the central tasks could
not be finished. In the Speco project, this had caused a dispute with the
customer. During Reagenix, the temporal resources for carrying out further
research and development were very limited indeed. The managers, who
controlled the time and money spend on marketing, did not want them to be
invested in Reagenix. In terms of the management of inconsistency
concerning process-related resources, the focal organisation thus succeeded
mainly in assuring of financial capability during the Sokrates period, which
was the competence development and early exploitation phase. It could not
assure the continuation of financial capability after the Sokrates project.

Capability of organisation-related resources was good during Speco and
Sokrates, when TKO was centrally involved in code generation related
national research and development activities. Later, when the logic of action
of the managers and researchers diverged, only few organisational resources
were available to the researchers. Disagreements with firm I did not
seriously affect the reputation of VTT, although they were noticed by some
customer companies. The decrease of organisational resources resulted in a
rapid loss of the visibility of code generation related activities. What used to
be a promising idea during Speco and flagship research during Sokrates,
became an almost invisible hobby of those of the focal researchers who
stayed at VTT.

74

4.3.2 Balancing of particularity

Balancing of the particularity of resources for certain relationships is done
by the absorption and problem solving functions that affect the codification
of product-related resources and the contextuality of process and
organisation-related resources. Table 15 provides and overview of the
balancing of particularity of code generation resources from 1985 to 1998,
by means of problem solving (+) for generic and context-independent
resources and absorption (-) for tacit and context-specific resources.

The product-related code generation design elements were quite tacit during
the Speco period, although the innovative skills of the focal researchers
were used for producing the first explicit technical and physical resources.
The code generation functions, the prototype of the PLM generator that was
built, and knowledge of the applications of firm K were all particular to the
Speco project. However, the idea of using the generic SA/SD technique that
was explicitly described in textbooks and taught in courses was already
emerging. As an alternative, it would have been possible to use application-
specific design techniques and languages, as in the Draco and Refine tools
that were evaluated in the Draco project. This would have meant high
particularity of the developed design elements also with regard to the
technique dimension.

During the Sokrates period, the code generation functions became portfolio-
specific, because they were tailored to a few application areas. Also the
Sokrates-SA design technique can be considered somewhat portfolio-
specific, as the focal researchers emphasised its use in solving hard real-
time and concurrent systems problems. Even the Sokrates generator was not
fully generic, but designed to support code generation from structured
system models, especially from the so-called state transition and functional
models. Finally, when also the focus of the application dimension was
directed to machine automation, it can be said that the particularity of the
product-related design elements as a whole turned into portfolio-specific.

The solution elements that were developed in Sokrates were generic, and
remained such also during the Reagenix period. The Reagenix code
generation functions and generator were also generic, i.e. the particularity of
the code generation functions and their implementation technology
decreased. The Sokrates-SA based design technique was replaced by a
generic component-based approach that could be tailored for specific needs.
A generic visual modelling tool was used for defining and modifying the
notation. This relieved the researchers of the need to use the CASE tool of
firm I as a part of their tool environment. Earlier, the Sokrates-SA models
needed to be drawn by using this tool. Since there was no focus on specific
applications any more during the Reagenix period, the overall particularity
of product-related resources decreased, all of the resources were quite
generic. The continuous decreasing of the particularity of the resources fits
with the logic of the focal researchers in creating a generic, well-packaged
code generation solution. It can also be seen as a direct result from the
change of process nets from one dyadic relationship via a large multi-party
network to a number of small dyadic relationships and transactions.

75

Table 15. Balancing of particularity of code generation resources by VTT.

Speco Sokrates Reagenix
Product: human, technological and physical resources

Design elements:
- functions: tacit (specific
code generation rules
invented for firm K)
- techniques: generic
(Ward-Mellor SA/SD)
- technologies: tacit (code
generator prototype)
- applications: tacit
(individual skills in the
application of firm K)
Solution elements:
--

Design elements:
- functions: portfolio-
specific (code generation
applied in several projects)
- techniques: portfolio-
specific (Sokrates-SA)
- technologies: portfolio-
specific (SA/SD generator),
- applications: portfolio-
specific (focus on machine
automation applications)
Solution elements:
- technologies: generic
(widely usable solutions)

Design elements:
- functions: generic (code
generation applicable to
many different problems)
- techniques: generic
(Reagenix models)
- technologies: generic
(Reagenix code generator),
- applications: generic (no
specific focus on certain
applications or problems),
Solution elements:
- technologies: generic
(widely usable solutions)

Absorption (-) and problem solving (+) of product resources in 1985 - 1998
Design elements:
- applications (-/+/+): starting from a specific product application, trying to focus on
machine automation and ending up with dealing with many different types of
applications
- functions (-/+/+): from specific via SA/SD based to generic code generation rules
- techniques (-/+/+): changing of SD/SD to Sokrates-SA and then to Reagenix models
- technologies (-/+/+): development of a commercial generic code generator
Solution elements:
- technologies (x/+/+): development and utilisation of generic solution elements

 Process: temporal and financial resources

Draco: generic (loosely
controlled evaluation of
new technologies)
Speco: portfolio-specific
(resources provided as
part of strategic co-
operation between TKO
and firm K)

Sokrates: portfolio-
specific (resources
provided as a part of the
Finsoft research program)
Other projects: context-
specific (participation as
experts on an individual
basis and occasionally)

Green projects: context-
specific (occasional)
Blue projects: context-
specific (occasional)
Red projects/licenses:
portfolio-specific/generic
(resources provided within
projects and from licenses)

Absorption (-) and problem solving (+) of process resources in 1985 - 1998
- temporal/financial resources (+/+/-): most of the resources were portfolio-specific
during Speco and Sokrates, during Reagenix most resources were context-specific

Organisation: reputation and other organisational resources

Reputation and other
resources: portfolio-
specific (contractual
project-based embedded
systems R&D in Finland)

Reputation and other
resources: portfolio-
specific (no change to the
earlier situation)

Reputation: context-specific
(organisational restructuring
resulted in a greater and
more heterogeneous unit)
 Other: context-specific
(project-based resources)

Absorption (-) and problem solving (+) of organisational resources in 1985 - 1998
- reputation (+/+/-): TKO created a portfolio-specific reputation based on embedded
systems research and development, ELE needed to renew the reputation in the nineties
- other resources (+/+/-): project-based planning and management of R&D activities
increased uniformity of the institute; this caused problems in license selling and small-
scale code generation problem solving tasks

76

Particularity of process-related resources does not directly correspond to
particularity of product-related resources, except during Sokrates when also
most temporal and financial code generation resources were portfolio-
specific. They had been portfolio-specific even in the Speco project, which
was a part of the strategic alliance between firm K and TKO. The
particularity of process-related resources became high at the end of the
Sokrates period and especially afterwards. The resources depended largely
on the occasional projects and license selling transactions that could be
established or in which the focal researchers happened to participate.

Therefore, while the particularity of product-related code generation
resources gradually decreased and they became very generic, the
particularity of process-related resources increased rather rapidly, also due
to changes in process nets. The consequence was that highly generic
technical and physical resources were offered in connection with highly
specific financial and temporal resources. The comparison of the Kaapeli
(1990 - 1991) and the AVV (1995 - 1997) projects illustrates the change
that took place.

The Kaapeli project was carried out for firm Nm, which wished code
generation functions to be tailored for a specific programming language,
with an intention to use them manually. The project was one of the first
spin-offs of the Sokrates project, done as a Master's thesis work by a
research trainee. The code generation rules and their use were highly
particular to the needs of the customer, whereas the work was carried out as
a part of Sokrates and its early exploitation projects. Special code
generation functions were thus developed in connection with a portfolio of
code generation related activities.

None of the focal researchers took part in the AVV project, where Reagenix
was used as an off-the-shelf tool by three software safety researchers of
VTT, to produce a certain simulation program. The schedule, volume,
budget, tasks and human resources of the AVV project determined fully
why and how the generator was used. The focal researchers offered to help
in the use of the generator, but "no help was needed" (Appendix 2). They
did not receive any income from the project either. A fully generic code
generation solution was thus used in a one-of-a-kind project.

Particularity of the organisation-related resources follows a pattern that is
similar to process-related resources. In the late eighties and early nineties
TKO aimed at creating a reputation of an embedded systems expert
organisation, whose main products were demanding research and
development projects (cf. the characterisation given by the laboratory
director Hannu Hakalahti in Appendix 2). In other words, it wanted to make
use of portfolio-specific project-based organisational resources for the
needs of industrial customers interested in developing or applying
embedded systems in their products. The organisational uniformity of
project-based R&D activities have become even more important since 1994,
when ELE was formed as a much larger and more heterogeneous unit than
TKO. The particularity of the idea of selling licenses and the focus on
internal use of self-developed design techniques and tools were rather high,
compared with the aim of increased organisational uniformity at ELE.

77

4.4 EVOLUTION AND VALUATION OF THE COMPETENCE

We will now discuss the evolution the code generation competence at VTT
during the period 1985 - 1998. The integration of competence elements
through activity and resource functions will also be addressed, as well as
views on the valuation of competence elements by different parties.
Competence has been classified into product, process and organisation-
related elements. The integration of competence elements may involve
resource collections and activity structures (in the focal organisation),
resource ties and activity links (in relationships), or resource constellations
and activity patterns (in networks). Competence elements may be
strengthening, competing, complementary or neutral with regard to
integration with other elements.

The longitudinal value of competence is viewed from the perspectives of
one supplier and several purchasers, concerning the expected, perceived and
historical values to the extent that they could be identified from the case
data. Expected value refers to the valuation of competence before its
development or exploitation, i.e. it is a kind of market value of the
competence. The perceived or delivered value of competence is evaluated
during and at the end of its development or exploitation. Expected and
perceived values of competence were analysed in this research mostly on
the basis of documentary data. Historical or use value refers to the valuation
of competence after its development or leverage, analysed in this research
on the basis of interviews.

4.4.1 Competence during the Speco period

Tables 16 summarises the competence elements possessed or created by
VTT during the Speco period, as well as their planned and realised
integration and their valuation. Product-related competence elements
involve skills of developing embedded computer system technologies,
knowledge of their design techniques, skills of evaluating and developing
new technologies and capabilities in machine automation applications. The
latter were in part absorbed from firm K, which possessed also the other
competence elements. It wished to lead the Speco project also in technical
terms, which created competition on how innovative research should be
carried out. Yet, most of the elements strengthened both internal activity
structures and resource collections of TKO and the activity links and
resources ties with firm K. The capability of TKO of understanding
machine automation applications complemented its actor bonds with firm
K. The focal researchers considered the historical value of all of the
product-related competence elements as very high (++) or high (+), whereas
the VTT managers were somewhat more critical in their valuation. They
considered the historical value of tool development skills as low (-), but the
value of knowledge of system design techniques was considered high also
by them. Tekes valued product-related code generation competence during
the Speco period as high, but it was not yet directly involved in code
generation related activities. Firm K considered the historical value of the
elements as moderate (+/-) or low, especially the skills of TKO in
developing new design tools.

78

Table 16. Code generation competence during 1985 - 1987.

Supplier
valuation

Purchaser
valuation

Competence
elements/
Owners

Planned/Realised
integration of
elements (E)xpected, (P)erceived, (H)istorical

Product-related competence elements
Skills to develop
embedded computer
system technologies:
TKO (possessed also
by firm K)

Strengthening of
internal resource
collections/ok
Strengthening of
resource ties with firm
K/ok

Researchers:
H ++
Managers:
E ++, P +, H +/-

Firm K:
E ++, P +, H +/-
Tekes: H ++

Capabilities in
machine automation
applications: TKO
(absorbed in part e.g.
from firm K)

Complementing of
actor bonds with firm
K/ok

Researchers:
H +
Managers:
E ++, P +, H +/-

Firm K: H +/-

Knowledge of
embedded system
design techniques
(especially SA/D):
TKO (possessed also
e.g. by firm K)

Strengthening of
internal resource
collections/ok
Strengthening of
resource ties with firm
K/ok

Researchers:
H ++
Managers:
E ++, P +, H +

Firm K:
E ++, P +, H +/-
Tekes: H +

Skills to forecast,
evaluate and develop
new embedded
system design tools:
TKO (possessed also
e.g. by firm K)

Strengthening of
internal activity
structures/ok
Strengthening of
activity links with firm
K/in part competing

Researchers:
H ++
Managers:
E ++, P -, H -
Colleagues: H +

Firm K:
E +, P +/-, H -
Tekes: H +

Process-related competence elements
Skills in (team-
based) solving of
complex computer-
related problems:
focal researchers

Strengthening of
internal activity
structures/ok
Strengthening of
activity links with firm
K/competing

Researchers:
H ++
Managers: H +
Colleagues:
H +/-

Firm K:
E ++, P -, H -

Capability to initiate
and conduct
embedded software
engineering R&D:
TKO (especially
managers and senior
researchers)

Strengthening of
internal activity
structures/ok
Strengthening of
activity links with
industry/ok
Strengthening of actor
bonds (and activity
links) with Tekes/ok

Researchers:
H ++
Managers: H +
Colleagues:
H +/-

Tekes: P ++, H ++
Industrial parties:
H +

Organisational competence elements
Skills to establish
and use contacts
with Tekes and
industry: TKO

Strengthening of actor
bonds and webs with
external parties/ok

Researchers and
managers:
P: ++, H ++

Tekes: H ++
Industry: H ++

Parties isolated from the competence elements:
KTM: provided funding for the Draco project, but was not otherwise involved

79

The two most important elements of process-related competence were team-
based problem solving skills of the focal researchers and the organisational
capability of launching R&D activities. They strengthened internal activity
structures, external activity links with industry and external actor bonds
especially with Tekes. An exception in this regard was the dispute with firm
K on how to carry out the innovative research process. Yet, this did not
break the mutual actor bond or even the activity link, although firm K
perceived it as an indication of low competence.

Some interviewed colleagues criticised the organisational processes which
were used for controlling the embedded software engineering research at
TKO, but all the other parties evaluated the capability of TKO in this regard
as high or very high. The fact that TKO was a key player in Finsoft, thanks
to its remarkable involvement in conducting and co-ordinating applied
engineering research, indicates the same. This capability was provided
together with knowledge of embedded systems design techniques, which
was clearly valued as the best element of product-related code generation
competence of TKO during the Speco period. Together with the main
organisational competence element, the skills of establishing and making
use of contacts with both Tekes and industry, they were paving a way for a
pragmatic, yet innovative approach to code generation. The organisational
skills of networking strengthened actor bonds and webs. Considerable
activity links existed only with firm K, but the skills of establishing contacts
helped to create new activity patterns as a part of and related to the Sokrates
project.

KTM was isolated from the competence of VTT, because it provided
funding for the Draco project but was not involved in any other way in code
generation related activities.

4.4.2 Competence during the Sokrates period

During the Sokrates period, the versatility of competence elements
increased remarkably, as indicated in Tables 17, 18 and 19. Many product-
related competence elements became portfolio-specific. Functional skills
were made explicit via code generation rules. These skills were intended for
complementing resource ties with industry, in which knowledge of how to
generate computer programs from design models was still rare. In reality,
most of the members of the Sokrates steering group did not need their
competence to be complemented with these skills, and firm I came up with
such skills without VTT. The skills in system design techniques turned into
portfolio-specific kind in developing modelling languages and CASE tool
technologies. This provided better means of strengthening resource
collections and ties than the knowledge of the generic SA/SD method. The
skills of developing embedded systems implementation technologies
specialised in skills in system solutions that were widely exploitable.
Application knowledge became also portfolio-specific, because there was
no stricter focus on any single application. New application knowledge
needed to be absorbed from customers and the Electronics laboratory of
VTT, to complement the skills of the focal researchers. However,
application knowledge did not play any central role during Sokrates.

80

Table 17. Product-related code generation competence during 1988 - 1991.

Supplier
valuation

Purchaser
valuation

Competence
elements/
Owners

Planned/realised
integration of
elements (E)xpected, (P)erceived, (H)istorical

Skills of developing
embedded computer
system technologies
(system solutions):
focal researchers (in
part absorbed from
the Electronics
laboratory)

Strengthening of
resource ties (and
constellations) with
the steering group of
Sokrates and with
industrial and
research
customers/ok

Researchers:
H ++
Managers:
P +, H +/-

Steering group:
P +, H +/-
Tekes: H ++
Evaluators: P +/-
Research customers:
P ++, H +
Industrial customers:
P ++, H ++

Knowledge of
embedded systems
applications: TKO
(in part absorbed
from customers)

Complementing of
actor bonds with
industrial (and
research)
customers/mostly
neutral

Researchers:
H ++
Managers:
P +, H +/-
Colleagues:
H+

Steering group:
P +/-, H +/-
Tekes: H +
Evaluators: P +
Industrial customers:
P ++, H +

Skills of developing
and transferring in
use design
languages, methods
and CASE tools:
TKO (possessed also
by some customers
and the Electronics
laboratory)

Strengthening of
internal resource
collections/ok
Strengthening of
resource ties with
research (and
industrial)
customers/ok

Researchers:
H ++
Managers:
E ++,
P +/-, H +/-
Colleagues:
P+/-, H -

Steering group:
E ++, P +, H +/-
Tekes: H +
Evaluators: P +/-
Industrial and
research customers:
P +, H +/-

Skills of developing
manual coding rules
and automated code
generation functions:
focal researchers
(also possessed by
the firms K, S, N and
I)

Complementing of
resource ties with
the steering group
/mostly neutral, in
part ok, in part
competing
Strengthening of
resource ties with
customers/mostly
neutral, in part ok
and competing

Researchers:
H ++
Managers:
E ++, P +, H +
Colleagues:
P +/-, H -

Steering group:
E ++, P +, H +/-
Tool vendors:
P +, H -
Tekes: H +
Evaluators: P +/-
Industrial and
research customers:
P +, H +/-

Parties isolated from the competence elements:
Colleagues (especially the ones not involved in the activities of the R Group)
(Members of the steering group: mostly did not directly exploit the results)
(VTT managers, Tekes: only co-ordinated the R&D process)

Technological skills mastered by the focal researchers were valued as high
by most of the parties. The VTT managers considered their historical value
as rather modest, and some evaluators criticised their inclusion in the
project. One of the main competence elements of the focal researchers was
seen in their functional code generation skills. The expected and perceived
value of these skills was high, except for the opinions of some colleagues
and the evaluators of the Finnish Academy (cf. Appendix 2). However, their
historical purchaser value was quite moderate among the Sokrates steering
group and the early exploiters. Firm I did not value the skills high enough to
exploit them in its own code generator.

81

Skills of developing system design languages, CASE tools and methods can
be considered part of the competence of TKO, not only of the focal
researchers. They were valued higher by the researchers than the managers.
Some of the colleagues considered the skills even as a kind of alchemy, or
at least not good enough scientifically: "finding the highest point of a fence
and going under it". Their historical value was rather low also among many
of the steering group members. According to Tekes, it paid off creating and
exploiting the skills, and the turn of the nineties was the right time for doing
it. Customers had somewhat varying opinions regarding the historical value
of the Sokrates results in this regard, while only few of them seized the
opportunity of making use of the results in any spin-off projects.
Knowledge of embedded systems applications was also part of the
competence of TKO, but the managers valued its use in code generation
research as rather moderate in interviews. The applications in which the
Sokrates results were exploited were quite diversified. The toy elevator built
for demonstrating the results was seen as a good choice by the focal
researchers and their colleagues, but some of the steering group members
and the VTT managers considered it as too trivial.

In summary, one of the main elements of product-related code generation
competence during the Speco period, knowledge of embedded systems
design techniques and SA/SD in particular, was reshaped to portfolio-
specific skills in languages, methods and tools, while its dependence on
certain kinds of applications weakened. The skills could be associated with
knowledge of functions for the purpose of generating code from system
models. The Sokrates-SA design method, which was described in technical
documents, tied the elements together. Code generation functions were the
most largely exploited part of the competence, as they were used in the
Kaapeli, Synchro and Sasic projects. The tool technologies were still
immature, as indicated in Appendix 2. In the Kaapeli project, they were not
used at all. The Sokrates-SA design technique included elements, such as
the Ada-like design language, the value of which was rated equally low by
most of the parties involved.

Solution elements were also created, e.g. an operating system kernel and a
communication protocol software package. They were more generic than
the design elements to which they could be integrated. Their role can be
seen as either replacements of other similar solutions independently from
the design elements, or as filling of technological gaps in the design method
so that it would became self-sufficient. The Osdyn project of the Reagenix
period is an example of the former, while the development of the toy
elevator as the Sokrates demonstration system of the latter.

Product-related competencies of colleagues were isolated from the code
generation competence. Also the competencies of the other members of the
steering group than firm Nm, who exploited the results, were rather isolated.
Code generation competencies of the firms I and N are good examples of
this isolation. Moreover, since Sokrates had all the necessary project
resources, there was no urgent need for associating the competencies of the
VTT managers, colleagues, Tekes and the focal researchers with each other.
The researchers were running the show and the other parties were acting as
the audience.

82

Table 18. Process-related code generation competence during 1988 - 1991.

Supplier
valuation

Purchaser
valuation

Competence
elements/
Owners

Planned/realised
integration of
elements (E)xpected, (P)erceived, (H)istorical

Capability of
planning, carrying
out and managing
contractual code
generation R&D
projects: focal
researchers, (TKO)

Strengthening of
internal activity
structures/ok
Strengthening of actor
bonds with Tekes and
industry/mostly
neutral

Researchers:
E+, P +, H +/-
Managers:
E ++, P+/-,
H +/-
Colleagues:
H -

Steering group:
P +/-, H +/-
Tekes: H +
Evaluators: P +/-
Industrial and
research customers:
P +, H +

Skills of
popularising,
documenting and
publishing R&D
results: focal
researchers

Strengthening of actor
bonds (and activity
links) with Tekes,
industry and the R&D
community /in part
competing

Researchers:
P +, H +/-
Managers:
P +/-, H +/-
Colleagues: H -

Steering group:
P +, H +
Tekes: H +
Evaluators: P +
Customers: H -

Skills of training
practitioners and
educating students:
focal researchers

Strengthening of actor
bonds (and activity
links) with educational
institutes and industry
/ok

Researchers:
P ++, H ++
Managers:
P +, H +/-
Colleagues: H +

Industrial and
research customers:
P +
Educational
institutes: P ++

Skills of
conducting
(international)
scientific research:
focal researchers,
TKO

Strengthening of actor
bonds (and activity
links) with the
scientific research
community/neutral

Researchers:
P +, H +/-
Managers:
P -, H +/-
Colleagues: H --

Evaluators:
P +
Scientific research
community:
P +/-

Parties isolated from the competence elements:
Evaluators (Finsoft, Finnish Academy), because of the post-mortem analysis
Some members of the steering group
Colleagues (except members of the research council)

The main process-related competence element during the Sokrates period
involved conduction of the actual research process. It clearly strengthened
both the external actor bonds of TKO and the internal activity structures
among the Sokrates project group. However, it did not offer too much
strengthening for internal resource collections and activity structures or
external resource ties and activity links, because the project was almost
totally self-sufficed. In comparison, the Speco project can be characterised
as a close relationship of the focal researchers and firm K for the purpose of
performing activities for creating and making use of code generation
resources. This relationship was co-ordinated and controlled by the VTT
managers, who were interested in the strategic alliance with the customer
company. Although the Sokrates project involved a number of actor bonds,
it only showed rather few activity links and resource ties. The training on
the Sokrates-SA method given by the researchers to industrial professionals
and students resulted in bonds with a large number of actors, but not in any
considerable activity links or resource ties.

83

The focal researchers thus became quite distant from external parties with
regard to the exploitation of code generation resources, with the exception
of firm Nm. In particular, no activity links were established with firm N, the
code generator expert of which joined TKO, but not the Sokrates project.

The Sokrates project team did not succeed perfectly in making use of
technical and managerial documentation to link its activities and their
results with the activities and resources of the steering group. The group
complained regularly on delayed or missing pieces of information. There
was an even more obvious lack of activity links and actor bonds concerning
scientific and professional publications and interaction with recognised
members of the software engineering research community. Many other
Tekes-funded projects carried out by TKO at the turn of the nineties had
many such bonds and some had also rather extensive activity links with
foreign research institutions. Yet, this lack was not seen as problematic by
the managers, although a few colleagues were criticising it.

The evaluation of the process-related competence elements shows some
interesting differences. The managers and even the researchers themselves
considered the historical value of the actual research results as somewhat
mixed. As the hand-written comments of the final Sokrates report by
Veikko Seppänen from 1991 (Appendix 2) and the remarks on the
disappointing small number of spin-off projects of Sokrates indicate, the
managers started to suspect the usability of the results even before the end
of the project. The researchers explained in the interview that the Sokrates
code generator from April 1991 was technically rather immature and could
not yet be used in any serious software development work. This was also
pointed out by one of the interviewed colleagues as a possible reason for the
rather modest industrial interest in using the Sokrates results.

However, both Tekes and the early customers were quite satisfied with the
both results and the way that things had been developed and exploited.
Some members of the Sokrates steering group viewed the focal researchers
as too self-satisfied, but rather many of them turned out to be just passive
bystanders who did not associate with the researchers by any other way than
by attending steering group meetings. The training given by the researchers
helped to disseminate information on the results, which was, after all, what
most of the steering group members were obviously expecting. Although
the lack of interaction with recognised international software engineering
researchers was criticised internally at TKO, the steering group and
customers did not consider it any remarkable problem either. The foreign
Finsoft evaluators indicated that the results were a match for the best
international research. The evaluators performed, however, only a post-
mortem analysis based on technical documents and a short interview.

The evaluation organised by the Finnish Academy illustrates, how such an
isolated activity can lead to misleading remarks. Many of the Sokrates
steering group members were actually also isolated, because they did not
master the technology and their needs were not directly addressed in the
project. Many of them did not mention code generation as their primary
interest (cf. Appendix 2).

84

Yet another notable party isolated from the emerging code generation
competence was the TKO researchers, who were not involved in other
Finsoft projects and therefore did not participate in the research council,
which held regular meetings to exchange information on the projects. These
colleagues included researchers who had been involved in the initial
planning of the Sokrates project, as well as others who used to work as
members of the R Group, established as an internal interest group.

Table 19. Organisational code generation competence during 1988 - 1991.

Supplier
valuation

Purchaser
valuation

Competence
elements/
Owners

Planned/realised
integration of
elements (E)xpected, (P)erceived, (H)istorical

Skills of making use
of contacts with
Tekes, other VTT
laboratories and
industry: TKO

Strengthening of actor
bonds and webs/ok

Researchers:
P +, H +
Managers:
P +, H +/-

Tekes: H ++
Research customers:
H +
Industrial customers:
H +

Capability of
marketing R&D
results and making
use of the good
reputation of the
institute: TKO

Strengthening of
internal activity
structures/neutral
Strengthening of
activity links with
industry/partially ok,
involving also VTT
Electronics laboratory

Researchers:
P ++, H +/-
Managers:
P +, H -

Steering group:
P +, H +/-
Tekes: H +
Evaluators: P +
Industrial and
research customers:
P +, H +

Capability of
organisational
planning and project
quality management:
TKO

Strengthening of
internal activity
structures/competing
Strengthening of
activity links with
industry/competing

Researchers:
P -, H --
Managers:
P +/-, H -

Steering group:
P +/-, H +
Tekes: H +
Industrial and
research customers:
P +, H +

Parties isolated from the competence elements:
Management group of the Finsoft program (except J. Karjalainen, H. Hakalahti)

One of the most important organisational competence elements during the
Sokrates period was the skills of TKO in maintaining and making use of its
contacts with Tekes and industry. This resulted in quite strong external actor
bond and webs, although activity links and resource ties were much less
common, and internally the Sokrates project team was rather isolated from
the other researchers. Moreover, since Jukka Karjalainen and Hannu
Hakalahti were almost the only contacts of Sokrates with the management
group of the Finsoft program, the program level remained quite isolated
from the project and its steering group.

Some mixed opinions were given in interviews regarding the capability of
TKO to market the Sokrates results. As indicated in Appendix 2 and at the
beginning of this report, the managers started to suspect the marketing plans
of the researchers even before the end of the project, regarding them as
wishful thinking. The two parties disagreed also regarding the appropriate
management of R&D projects. Although the steering group seemed to take
the side of the managers in this matter, it did not give remarkably negative
feedback in this regard, after all.

85

The group was invited to launch Tekes-supported spin-off projects early,
but only firm Nm used the opportunity. Historically, the managers
themselves missed the opportunity of turning firm N to a key exploiter of
the results. They helped the researchers in trying to establish an activity link
with firm I, but it did not succeed. On the other hand, the VTT Electronics
laboratory was an unexpected exploiter of the results, which seemed to
provide a good case for internal marketing of the results among VTT.

4.4.3 Competence during the Reagenix period

The product-related competence elements became quite versatile during the
Reagenix period, as shown in Table 20. Although the Sokrates generator
was not taken in industrial use, the Sokrates-SA method and the system
solutions were utilised by industrial and research customers. The value of
the former was perceived as high by all parties, but the historical value was
seen as remarkable only by the researchers and firm N which were making
successful use of the operating system principle developed in Sokrates.

Although the applications in which Reagenix was utilised were more
diversified than earlier, when the focus had been on machine automation, it
was mainly the managers only that suspected the researchers' skills in this
regard. Some of the representatives of the Electronics laboratory were also
critical, while, on the other hand, claiming that the TKO and ELE managers
were responsible for the lack of adequate support to the use of Reagenix in
certain applications. Yet, it is fair to say that the focal researchers provided
a great deal of help especially for research customers, considering that they
were usually not paid for it.

Such broad co-operators as firm Nm sought for comprehensive embedded
software development approaches. This aim did not create particularly
strong resource ties with the customers - the projects listed in Table 10 were
rather small and did not result in continuing projects. They were still
perceived as good, except maybe for the Raski project carried out for the
firm R, which was disappointed with the results. The VTT managers were
not fully satisfied with the way some projects were implemented. The
managers were, in their opinion, not extensively enough involved in the co-
ordination and control of the projects. The focal researchers thought that the
managers did not understand how Reagenix should be transferred in
industrial use in such an efficient manner that would benefit the customers.
Firm I viewed the selling of Reagenix licenses as a competitive attack
against its own generator, but did not raise any public dispute over it.

Internal competition emerged at ELE, concerning Reagenix as "the best
approach to embedded systems software development". One of the focal
researchers characterised its marketing as "American style marketing that
irritated everyone". The historical evaluation of Reagenix by firm Nm was
quite devastating indeed. However, the representatives of the firm blamed in
part themselves as incompetent buyers, who were trying to make too
ambitious a leap in the middle of a recession. The perceived value of
Reagenix during and immediately after the MCS-REA project by both firm
Nm and the focal researchers had been high.

86

Table 20. Product-related code generation competence during 1992 - 1998.

Supplier
valuation

Purchaser
valuation

Competence
elements/
Owners

Planned/realised
integration of
elements (E)xpected, (P)erceived, (H)istorical

Skills of applying
embedded
computer system
technologies
(system solutions):
focal researchers

Strengthening of
resource ties with
industrial and
research customers/in
part ok, mostly
neutral

Researchers:
H ++
Managers:
P +/-, H -

Research customers:
P +, H +/-
Industrial customers:
P +, H +/-

Knowledge of
embedded systems
applications: focal
researchers
(in part absorbed
from customers)

Complementing of
actor bonds with
industrial (and
research)
customers/ok

Researchers:
H ++
Managers:
P +/-, H +/-

Industrial customers:
P +, H +
Research customers:
P +, H +/-

Skills of
developing and
transferring in use
code generation
driven embedded
systems design
approaches: focal
researchers

Strengthening of
internal resource
collections/
competing
Strengthening of
resource ties with
broad co-operators/
in part ok

Researchers:
H ++
Managers:
E +, P +/-, H -

Industrial and research
customers (broad co-
operators):
P +/-, H +/--
Tool vendors:
P +/--

Skills of
developing and
transferring in use
code generation
based design and
testing tools: focal
researchers

Strengthening of
internal resource
collections/neutral
Strengthening of
resource ties with
focused buyers/ok

Researchers:
H ++
Managers:
E +, P +/-, H +/-

Industrial and research
customers (focused
buyers):
P +, H +
Tool vendors:
P +/-

Capability of
extending code
generation
functions further:
focal researchers

Strengthening of
resource ties with
customers/mostly
neutral, in part
competing

Researchers:
H ++
Managers:
E +, P +/-, H +/-

Industrial and research
customers:
P +, H +/--
Tool vendors:
P +/--

Parties isolated from the competence elements:
VTT managers: did not control the development and application of Reagenix
Research customers: only used Reagenix, did not control its development

Focused buyers were more satisfied also in a historical sense, be they
research or industrial customers. The VTT managers did not regard the
exploitation of individual tools and system solutions as any great business
success. According to the focal researchers, this kind of viewpoint was
totally wrong, the purpose of VTT should have been to help customers as
effectively and efficiently as possible, not to make big profits at their cost.
Although the individual tools and system solutions were utilised also
internally in several research projects, they did not became integrated into
any considerable larger resource collections, but remained rather isolated
from the other competence elements of the focal organisation.

87

One of the main reasons for this might have been that the other researchers
were users of the Reagenix design and solution elements, not their active
developers. The code generation functions that were made explicit as
transformation rules during Sokrates became incorporated inside the code
generator tool. There were plans to design code generation functions for
other languages than C, but they did not materialise until in the Nosto
project, which was carried out for firm Kc. Therefore, the functional
dimension the competence became less distinct than, for example, in the
Kaapeli project where it was explicitly used for the needs of firm Nm.

Table 21. Process-related code generation competence during 1992 - 1998.

Supplier
valuation

Purchaser
valuation

Competence
elements/
Owners

Planned/realised
integration of
elements (E)xpected, (P)erceived, (H)istorical

Skills of planning,
carrying out and
managing self-
funded code
generation research
projects: TKO

Strengthening of
internal activity
structures and
resource
collections/competing

Researchers:
P +/-, H +/-
Managers:
P -, H -

-

Skills of planning,
carrying out and
managing
contractual code
generation R&D
projects: TKO

Strengthening of
internal activity
structures/in part ok
Strengthening of
activity links and
patterns with Tekes,
industry/in part ok

Researchers:
P +/-, H +/-
Managers:
E +, P -, H -

Tekes: P -
Industrial customers:
P +, H -

Skills of packaging
R&D results into
commercial products
and IPRs/
focal researchers

Complementing (and
strengthening) of
resource ties (and
activity links) with
industry/competing

Researchers:
P +, H +
Managers:
P +/-, H -

Industrial customers:
P +, H +/-
Research customers:
P +, H +/-
Tool vendors: P +/-

Skills of training
practitioners and
educating students:
focal researchers

Strengthening of actor
bonds (and activity
links) with educational
institutes and industry/
ok

Researchers:
P ++, H ++
Managers:
P +, H +/-

Industrial and
research customers:
P +
Educational
institutes: P ++

Parties isolated from the competence elements:
Research customers: only used Reagenix, did not carry out code generation R&D

Evolution of the process-related code generation competence elements
became stalled after Sokrates (Table 21), because of the rapid collapse of
the project portfolio in the financial sense. The autonomous position of the
researchers in terms of process-related and organisational resources
disappeared.

The VTT managers and Tekes expected the exploitation of the results to
materialise as red projects – far too soon, as claimed by the focal
researchers. The managers became quite disappointed with the actually
realised volume of red activities. They did not prevent the researchers from
following their product-based logic of action, but did not consider the
results of license selling any great success either.

88

The use of Reagenix in quite a number of blue projects strengthened
internal resource collections, but not activity structures, because the focal
researchers were seldom involved in the projects as active participants. The
self-funded green research related to code generation partially resulted in
competition, not only because firm I was developing its own tool
environment simultaneously, but also since ELE researchers were
investigating alternative software development techniques, methods and
tools in other blue projects.

One of the best process-related competence elements was, again, the
researchers' skills of training students and customers. However, many of the
research customers learned the use of Reagenix much by themselves.

Table 22. Organisational code generation competence during 1992 - 1998.

Supplier
valuation

Purchaser
valuation

Competence
elements/
Owners

Planned/realised
integration of
elements (E)xpected, (P)erceived, (H)istorical

Contacts with
Tekes, other VTT
institutes and
industry:
TKO/ELE

Strengthening of actor
bonds and activity
links/in part ok

Researchers:
P +, H +
Managers:
P +, H +/-

Tekes: H ++
Research customers:
H +
Industrial customers:
H +

Capability of
marketing R&D
skills and making
use of the
reputation:
TKO/ELE

Strengthening of
internal activity
structures/competing
Strengthening of
activity links with
industry/partially ok

Researchers:
P ++, H +
Managers:
P +/-, H -

Research customers:
H +
Industrial customers:
H +

Capability of
organisational
planning and
project quality
management:
TKO/ELE

Strengthening of
internal activity
structures/ok
Strengthening of
activity links with
industry/ok

Researchers:
P -, H --
Managers:
P +, H +

Research customers:
H +/-
Industrial customers:
H ++

Parties isolated from the competence elements:
Code generation researchers: were not involved in organisational planning and
management regarding code generation R&D

The main elements of the organisational competence (Table 22) during
Reagenix involved making use of the extensive contacts and good
reputation of VTT among potential customers, marketing of research and
development skills, and planning for and carrying out R&D activities. From
the viewpoint of Tekes and customers, the organisational competence of
VTT was high. However, the VTT managers and the focal researchers both
perceived and indicated in the interviews that they did not value each other's
competence very highly in this regard. The use of Reagenix in blue projects
was perhaps an exception, but otherwise the two groups of actors had
completely different viewpoints. This is clearly visible in the two
intertwined stories included in Appendix 3, but also in the extracts of the
other case data shown in Appendix 2.

89

5 DISCUSSION

In the following we are discussing how well the modified competence
evolution framework manages to explain the development of the code
generation competence. We will also compare the code generation case with
an earlier case study on industrial fault diagnosis systems [Seppänen et al.
1998a,b], by evaluating the competencies and relationships involved in the
two cases. We will close the report by summarising the main empirical,
research and managerial implications of this study.

5.1 ANALYSIS OF THE COMPETENCE EVOLUTION

The purpose of the competence evolution framework is to show and explain
the development of competence, i.e. the changes of activities in creating and
making use of resources, in terms of the development focal nets. The
activities pursued by certain actors are means of implementing their logic of
action, when aiming at reaching goals that fulfil specific objectives.

Various kinds of competence charts have been proposed for illustrating the
integration of firm capabilities. [Klein et al. 1998] is a recent example of
such charts, involving "clusters of R&D skills". Klein, Gee and Jones are
proposing skills consisting of technical, processual and human aspects,
which correspond to the product, process and organisation-related
competence elements of this research. Their "company skill maps" are used
for matching process-related competence elements to product-related
elements in different organisations. An evaluation of skill levels is also
included. Mutually supportive skills can be associated with each other, so as
to form "skill cluster diagrams" representing, according to the authors, the
core competence of the organisation. Although we have borrowed the idea
of competence charts from Klein and the others, we have modified the
charts to serve our needs of indicating the evolution of competence and its
integration with the competencies of the most influential groups of external
actors. The charts will also show the logic of the actors and characterise the
process nets within which the logic have been carried out. The code
generation competence evolution chart is presented in Table 23, with the
elements that have strengthened each other shown in italics.

During the Speco period, a vision of code generation was developed and
tested. The vision was, however, mostly created by firm K. VTT
implemented the vision as part of its project business logic, and the
customer company bought a technical solution to implement the vision, a
prototype of a code generator tool. The generator was implemented by using
the programming language Prolog that was familiar to both VTT and firm
K. However, the opinions on technical matters of the customer and the focal
researchers started to differ, not to speak of the process of innovative
research. The functional skills of the researchers were related to compilation
of program languages, to managing concurrence, as they explained in the
interview, whereas the customer was familiar with the AI reasoning
functions. The kinds of automation systems that firm K developed were
considered key embedded systems applications by both parties.

90

Table 23. Code generation competence chart 1985 - 1998.

Actors/
Logic

Product-related
elements

Process-related
elements

Organisational
elements

Speco - Testing of an industrial vision
VTT:
project
business

Design elements
Applications: (automation)
Functions: compilation
Techniques: programming
Technologies: Prolog

Innovative research
Project marketing and
implementation

Strategic alliance
R&D groups
Domestic reputation
Utilisation of Tekes
Technological skills

Firm K:
solution
buying

Design elements
Applications: automation
Functions: AI reasoning
Techniques: programming
Technologies: Prolog

Development of an
innovative integrated
embedded software
engineering
environment

Company vision
R&D groups
Corporate research
Utilisation of Tekes
Automation business

Sokrates - Demonstration of a research vision
VTT:
pio-
neering
research

Design elements
Applications: automation
Functions: code generation
Techniques: Sokrates-SA
Technologies: generator
Solution elements
Technologies: SIC, ReagOS

Technology
development
Applied research in
blue (red) projects
Training of
Sokrates-SA
Technology popularising

Managerial role in
the Finsoft program
Utilisation of Tekes

Firm Nm:
solution
buying

Design elements
Applications: automation

Product development Machine automation
business

VTT/Ele:
faster
solutions

Design elements
Applications: automation,
VLSI design

Applied research and
development in blue
and red projects

Utilisation of Tekes
and industry
R&D groups

Reagenix - Fighting for the vision
VTT:
product
business

Design elements
Techniques: (Sokrates-SA)
Technologies: generator,
testing tool, animator
Solution elements
(cf. above)

Applied research and
development in blue
and red projects

Utilisation of Tekes,
industry and other
VTT institutes
R&D groups

Blue
projects:
cheaper
solutions

(Project-specific
competencies)

Use of project
resources

Utilisation of Tekes
and industrial
contacts

Firm Nm:
paradigm
buying

(Cf. above) (Cf. above) (Cf. above)

Firm R:
-"-

Design elements
Applications: electronics

Product development Consumer
electronics business

Firm S:
solution
buying

Design elements
Applications: electronics
Functions: software design

Product development
In-house design of
software tools

Consumer
electronics business
(R&D groups)

Firm N:
-"-

Solution elements
Technologies: embedded
software and hardware

Product development
In-house design of
software tools

Telecommunication
business
R&D groups

Firm Kc:
-"-

Design elements
Applications: automation

Product development
In-house tool design

Machine automation
business

91

The state of the outer context, with increasing industrial interest and active
planning of joint national software engineering research, favoured the
utilisation of the organisational and project planning skills of TKO for
making use of the technical results of Speco and Draco in marketing
Sokrates. The role of firm K cannot be neglected either, as its corporate
research unit, for which the Speco project was carried out, was a forerunner
in embedded software engineering and had close contacts with Tekes.
Although the funding organisation was in a critical position regarding
financial resources available to applied engineering research, its role in
technology development and management was rather insignificant. This was
paving a way for the autocracy of the focal researchers in Sokrates, where
they could follow their own logic of action and had all the necessary
technical, human and financial resources to make their own vision true.

The core concepts and implementations of code generation design elements
were indeed produced during Sokrates, in addition to a few unforeseen
solution elements. A remarkable difference with regard to the results of
Speco was that these elements were more generic. Although the Kaapeli and
Synchro projects in which the results were applied for the first time
involved automation applications, the Sokrates-SA system design technique,
the code generation functions and the implementations of the code generator
and solution elements were application-independent. The understanding of
the focal researchers on automation applications helped them to co-operate
with firm Nm and the Electronics laboratory. VLSI design was new to them
as an application, and after the Sasic project the Electronics laboratory
carried the idea of code generation further with the University of Oulu,
without any involvement of the focal researchers. They claimed in that VTT
advertised the results of this co-operation more than the Sokrates results.

The Sokrates-SA method was the dominant product-related competence
element of Sokrates, but the functional code generation skills also appeared
as a useful purchase for firm Nm in the Kaapeli project. The generator itself
was still immature. The opportunity window for producing an industrially
usable generator had been closed already. Firm N had such a generator, a
very simple one. Firm I had apparently already started developing its own
generator, although it did not tell this to any external parties. The focal
researchers and VTT managers could not launch any red projects involving
generator development, although the possibility of Tekes-supported spin-off
projects was actively marketed to the Sokrates steering group. This was a
rather fatal failure, since such a work still needed to be done after Sokrates,
but in a much more complex and financially limited setting. According to
the researchers, some firms had "learnt too much" and did not need VTT
any longer for developing their own generator solutions.

The process-related competence was considered good by the focal
researchers during Sokrates, due to their emphasis on innovative, result-
driven and pragmatic research rather than project management and
organisational planning. Some other parties were complaining about the
lack of managerial competence. Yet, the competence was good enough for
carrying out the Sokrates project, and it was supported both by the key
managerial role of TKO in the Finsoft program and the excellent training
and technology popularising skills of the focal researchers.

92

While Sokrates was kind of golden time for developing code generation
competence, Reagenix brought the secure focal net harshly down. The
promise of extensive exploitation was, from the viewpoint of the VTT
managers, rapidly fading away. The self-controlled huge project resource
pool and the central position in the large Finsoft program were no longer
available to the researchers. The large Sokrates steering group had dissolved
and regular interaction with parties which had been interested in code
generation for the past three years, was finished. Most importantly, it was
now much more difficult for the VTT managers and the researchers to unite
their forces to market the Sokrates results than it had been to launch the
Sokrates project. The managers pursued the goal of initiating large enough
red projects, whereas the researchers started to realise that the code
generator needed to be improved, if not developed anew, without too much
resources or external support, and facing competition from firm I.

It seems that the increasing non-alignment of the logic of action of the
researchers and managers had evolved little by little. The managerial
problems of the Speco project and the dissolution of the R Group may have
left some tension between the parties, but as the managers pointed out in the
interviews, they actually believed in Sokrates more than some of the
colleagues of the focal researchers did. The idea of starting product business
at VTT was tolerated by the managers, who even defended VTT's interests
towards firm I on a few occasions. However, after the financial outcome of
the business turned out to be just modest, their interest in the matter
collapsed. The focal researchers thought that the managers were utilising
customers rather than supporting efficient technology transfer. At the group
rehearsal, they were strongly criticising the managers' distrust on the
capability of VTT to develop useful software engineering tools for industry.
The managers were claiming that the researchers themselves had missed the
tool development opportunity during the Sokrates project already.

The diversity and small size of red projects during the Reagenix period is
apparent also in Table 23. Some customers were interested only in certain
solutions, others in more comprehensive offerings. Firms S and N, which
had developed software design tools for internal use, did not, after all, make
use of the design elements related to code generation. The role of SA/SD
was decreasing, which according to the interviewed Sokrates steering group
members affected their interest in using the results. The functional code
generation skills remained hidden inside the generator, which made their
exploitation difficult without the tool technology. Blue research projects
seemed to offer alternative networks for exploitation, and the corresponding
experiences from Sokrates were encouraging. However, the projects became
a sort of extra front of colourless relationships, where the researchers spent
their time without any considerable rewards. Although this kept Reagenix
alive, it did not help either in the project sense or product business sense to
improve the organisational status and visibility of code generation. The
same holds for licenses that were sold or given for free to external parties.
After many of the focal researchers had left VTT, the effective informal
network that had helped to make use of Reagenix in blue projects
weakened. Selling the code generation technology rights to the researchers
was obviously an appropriate move, carried out at the last minute.

93

5.2 CROSS-CASE ANALYSIS

An earlier case study reported in [Seppänen et al. 1998a,b] involved the
same focal organisation, but mostly a different group of actors and another
area of competence, which was industrial fault diagnosis systems. The
framework that was used to make explicit the evolution of fault diagnosis
competence and relationships did not yet include the concepts of logic of
action and processes applied in this research. We will therefore discuss
them briefly in the context of the fault diagnosis case, as depicted in Table
24. The two cases are then compared from the viewpoint of competence
evolution, based on the alignment of the logic of action of different parties
and the management of the relationships of the focal organisation. The
evolution of code generation competence has been summarised from the
viewpoint of relationship management in Table 25.

Table 24. Evolution of fault diagnosis competence and relationships.

Period Competence
elements

Dominant
processes

Actors/Logic
of action

Process nets

1986 - 88
Dawn of
intelligence

Product:
AI and KE
techniques

Green research VTT/Establish
a new research
area at TKO

Mostly informal
actor bonds

1989 - 91
Demon-
stration of
knowledge-
based
systems

Product: KE
techniques, tool
technologies
Process: system
design skills
Organisational:
knowledge
engineers

Marketing of the
promises of KE
applications
Blue and red
projects: design
of system
prototypes for
industrial trial

Process and
machine
automation
firms and
VTT/Improve
the skills of
knowledge
engineers

Innovative
project nets
Informal
interaction of
knowledge
engineering
experts

1992 - 94
Develop-
ment of
reliable
automated
products
and
processes

Product:
fault diagnosis
functions,
automation
applications,
KE techniques
Process: system
design skills
Organisational:
R&D projects

Marketing of
fault diagnosis
solutions
Red and blue
projects:
development of
diagnosis
functions for
automation
applications

Machine
automation
firms/Improve
reliability of
products and
processes
VTT/develop
intelligent fault
diagnosis
systems

Product and
process
development
project nets
Informal actor
bonds between
diagnosis and
automation
experts

1995 - 97
Extending
of the
bridgehead

Product: fault
diagnosis
platform, KE
techniques
Process: fault
diagnosis
related problem
solving
Organisational:
references,
R&D projects

Marketing of a
core platform
Analysis and
capture of new
R&D markets
Green, blue and
red projects:
development
and use of the
core platform

Automation and
telecom firms/
Manage
complex
systems better
Funding bodies/
Support R&D of
intelligent
systems
VTT/open up
new application
areas

Industrially-
driven R&D
project nets
Informal actor
bonds between
diagnosis and
application
experts (and
end-users)

94

Table 25. Management of code generation relationships.

Competence evolution Management of relationships

Speco 1985 - 1987

Testing of an industrial vision

Innovative research results based on a
shared vision with a key customer were
successfully used for marketing and
planning joint technology development
as part of a strategic national initiative.
A popular embedded system design
method and a domestic CASE tool were
used as a framework for the proposed
approach. A core team was created. The
Speco code generator was not utilised,
but SA/SD was "found".

The aligned logic of action of the VTT
managers and focal researchers created
pivotal managerial and research positions in
Finsoft. The Draco project had confirmed the
need of an alternative pragmatic approach,
which could be based on the SA/SD. Tekes
let the researchers take the lead in Finsoft,
because the focus was on generic techniques
and not on industrial applications. The
dispute with firm K was considered mostly a
managerial problem.

Sokrates 1988 - 1991

Demonstration of a research vision

Code generation principles from
Sokrates-SA to C were formalised and
tested with firm Nm. Training of the
improved method was arranged and
associated system solutions produced.
In-house exploitation of the generator
was arranged to demonstrate the
promises of the vision, no links to the
code generation solutions of firms N
and I realised. The core team was
extended. Although the Sokrates code
generator was not industrially utilised,
Sokrates-SA emerged as a recognised
design method.

The logic of action of the focal researchers
guided the technology development work,
because they had the technical skills and all
the project resources at their disposal. Tekes,
VTT managers and industry waited for the
vision to realise, which was considered likely
because of the early starting of the results
exploitation. The managerial and scientific
problems were not considered serious by the
VTT managers, Tekes and steering group
members. The final evaluation results were
excellent, and the dispute with firm I was not
made public. The Sokrates project manager
became a line manager, which helped the
researchers. The effects of the recession were
largely neglected, though.

Reagenix 1992 - 1998

Fighting for the vision

Revised implementation of the design
technology were made available with
low costs and free exploitation support
in a professional manner, despite the
collapse of financial resources and
organisational interest. Associated
system solutions could be utilised rather
successfully. The former Sokrates team
members could help each others despite
the intervention of the managers.

The financial foundation of the Sokrates
network collapsed, before a well-engineered
implementation of the code generator was
available. Such an implementation could yet
be produced in a very short time by the focal
researchers. The logic of action of the
managers and researchers were at first
aligned well enough to boost the exploitation
of Reagenix both in blue and red projects.
Yet, this did not provide enough income
from the managerial viewpoint, and green
research did not improve the situation.

95

The idea of code generation as a practical means of helping professional
embedded software engineers emerged during the Speco period. VTT,
which had formed a strategic alliance concerning the development of an
advanced software engineering environment with firm K, could use the
technical results of the Speco and Draco projects and its organisational
skills for creating a pivotal position in Finsoft. Tekes and industry bought
the promise of code generation marketed by the VTT managers and
researchers. The other parties let the researchers take the lead, because
Finsoft addressed generic techniques rather than industrial applications.

The researchers had already formed a core problem solving team and were
applying their radically new technical ideas to a well-known domestic
CASE tool and the popular SA/SD method. This facilitated the acceptance
of the idea, as did also the experiences reported on the Speco (it is possible
to develop practical code generation technologies) and Draco (existing
solutions are not practical enough or even working in embedded systems
applications) projects. The code generator designed in Speco was thrown
away to start the development again, this time based on the researchers' own
vision and solutions. Even firm K had trust on the researchers, although it
had been complaining about managerial problems in the Speco project.

The starting of fault diagnosis related R&D activities at TKO, characterised
as the "Dawn of intelligence" in Table 24, bears some resemblance with the
Speco period. In both cases, a new research area was opened by scanning
existing approaches and solutions. However, the vision of the role of fault
diagnosis systems in industry was very weak, if explicit at all, compared
with the Speco and Sokrates visions. The vision was gradually created
during 1989 - 1991, together with a few industrial knowledge engineers. A
small team of VTT and industrial researchers started focusing on the so-
called embedded expert systems at that time, which closely corresponds to
the co-operation between firm K and TKO during Speco.

The industrial people involved in the early phase of fault diagnosis R&D
were knowledge engineers, who wished to strengthen their own position
and to improve their skills in applying knowledge engineering techniques.
This resembles the relationships between the focal researchers and the
representatives of firm K in Speco. The early fault diagnosis R&D results
were considered demonstrations, rather than meant for daily industrial use.
This was the status of the Speco results, too, and it had apparently also been
the aim of the project. In both cases, generic techniques and quite novel
technologies were developed and applied to solving problems in particular
applications. This kind of marketing and demonstration of the promises of
new technologies for specific customers in the context of some emerging or
already established engineering techniques is one of the core activities in
contractual engineering R&D.

In both cases, the logic of the two key actor groups of the focal organisation,
the managers and the researchers, were well aligned. They were marketing
and exploiting the initial customer projects together, so as to pave the way
for subsequent competence elaboration and extension. In code generation,
one big blue project was established, while in fault diagnosis several smaller
red projects emerged.

96

During the Sokrates period, the focal researchers were enjoying a great deal
of autonomy from the other parties thanks to their technical skills and the
huge project resources. They were controlling the extension of the core
problem solving team by themselves, hiring mostly newcomers, who from
the viewpoint of VTT colleagues started to think and behave "the Sokrates
way". This kind of human code generation skills management left a lot in
the hands of the researchers. For example, the managers did not use their
organisational authority for allocating the former code generation expert of
firm N to the Sokrates team. From the managerial viewpoint, this could
have greatly helped to exploit the firm as one of the key customers of TKO,
who had developed similar solutions. The coming rapid growth of the firm's
business sector, telecommunications, was also not foreseen. Since the
exploitation of the Sokrates results at firm Nm and the VTT Electronics
laboratory had started, the promise of industrially useful results seemed to
realise anyhow.

Compared with the code generation case, in fault diagnosis the technology
research and demonstration phase was much shorter and more fragmented.
One of the critical differences can be found in the fact that fault diagnosis,
as opposed to code generation, soon drew away from the generic AI
techniques and special tool technologies upon which it had originally
focused. By addressing fault diagnosis as a system design problem rather
than an AI application, the VTT researchers could make use of a broader set
of embedded systems design techniques and tools, which made the basic
principles of fault diagnosis understandable to customers. This was
necessary, as fault diagnosis functions were incorporated into industrial
systems and processes designed and maintained by other people than
knowledge engineers. The portfolio of automation applications helped the
researchers to increase their application skills and understand the technical
experts on the customer side. This focus was kept for a rather long time, by
directing project marketing activities to the automation sector and using past
projects as references. Despite, or perhaps due to, the recession, automation
firms were investing in reliable products and processes, which created room
for fault diagnosis systems. Although the former relationships of VTT with
industrial knowledge engineers were allowed to break up, new relationships
with industrial automation engineers and end users could be created.

The VTT managers and knowledge engineering researchers shared the goal
of increasing red fault diagnosis projects, while the reliability requirements
of the users of automated machines and processes were increasing the
pressure on product manufacturers. The vision of knowledge-based fault
diagnosis and its implementation could thus be carried further without any
considerable disagreements within VTT and in its customer relationships.
Firm K, which was disappointed with the results of a red fault diagnosis
project for which it had contracted with VTT, was an unusual exception. In
other projects, the reuse of fault diagnosis functions, the use of known
techniques for modelling automation applications along with a variety of
implementation technologies of the customers helped VTT to create
sustainable portfolio-specific competence and allowed it to remain quite
flexible at the same time.

97

This resulted in the evolution of a core platform, around the functional
product-related competence dimension. It opened up both opportunities for
capturing new markets and applying new generic techniques. A problem
solving process also emerged, which tied product-related competence
elements together.

Sokrates also resulted in portfolio-specific design competence. The
Sokrates-SA method was well received by industrial professionals, and the
generic system solutions provided with unexpectedly good spin-offs.
Although the system solutions and the Sokrates-SA method could be
exploited very much as such during Sokrates, they provided only little and
sporadic income for the focal organisation. The generator that had been
developed was, again, thrown away, and a new one was produced in a few
months. Yet, the use of the Reagenix account that was thought to give the
researchers financial freedom to carry out their business logic based on the
new generator product, did not succeed as planned. The relationship with
firm I broke up, and no alternative tool vendor partners could be found. The
managers lost their interest in ensuring financial resources for further
applications and development of Reagenix, while they were extensively
involved in expanding the markets of fault diagnosis systems. The core fault
diagnosis platform made it possible to direct competence marketing to the
telecommunication sector, as soon as its enormous increase became
apparent. No research customers were sought for, although they would have
been available.

A national research program of Tekes was utilised to help to create the first
telecommunication fault diagnosis project, but so that Tekes funded a few
customer companies which contracted a red project from VTT. This helped
Tekes to indicate the usefulness of its funding with regard to transferring
new technologies to industry. The fault diagnosis skills were solely owned
by VTT, but the companies took care of project management. Problems
similar to Sokrates arise, the case application was complex and difficult to
model, the first results remained a demonstration system and difficulties
were encountered with some techniques chosen to be used. Yet, the first
large red project was followed by two new projects. One of them was
carried out for one of the initial customers, the other for a new customer. An
extension of this bridgehead was supported by a rather large green project
funded by VTT. In 1998, a new marketing manoeuvre was performed
among instrument manufacturers, one of them getting involved in a green
project, and the first red fault diagnosis project for this customer was
initiated. The management of competence evolution through reuse and
renewal of the core platform, associated with the creation of customer
relationships in new application areas thus seemed to work, if the
application knowledge could be modelled and no major mistakes were made
in developing or taking in use the new generic engineering techniques and
implementation technologies.

There were some product-based business opportunities involved also in the
fault diagnosis case. For example, a distinct tool was developed for
explaining faults detected by diagnosis systems. These opportunities have
not yet been used, and some of them seem to have been lost due to their use
in red projects.

98

At least one customer has sold the rights of a distinct fault diagnosis
competence element to a third party without any consultation with VTT.
Although this is completely correct in legal terms, it indicates that VTT has
not been able to manage all the aspects involved in its competence. If
competence elements are packaged well enough, the purchasers will re-sell
them to other parties. This is possible, when a customer becomes the owner
of project results based on reuse of explicitly codified competence elements.
From the R&D supplier's viewpoint this involves the problem of
"satisficing" codification and protection of its core competence.

Interestingly enough, as mentioned in passing above, the developments in
the outer context during the period 1990 - 1995 apparently affected the two
cases in opposite ways. The recession that considerably decreased the role
of the automation sector as a potential application field for embedded
software engineering techniques, seems to have boosted the need for
developing more reliable products. This helped VTT to create portfolio-
specific fault diagnosis competence with automation firms. The buyers and
end users of expensive automated machines and processes wished to make
use of their investments efficiently, and the hard times forced machine
manufacturers to listen carefully to their customers.

Since many manufacturers did not have the capability of building advanced
computerised fault diagnosis systems themselves, they were willing to use
external experts. VTT researchers had developed an approach to fault
diagnosis, in which engineering models familiar to manufacturers could be
used. Intelligent techniques were applied in developing effective fault
diagnosis functions and any technologies favoured by the customers.
Relationships could be established where the interests and competencies of
different parties matched. Firm K, which was itself competent in fault
diagnosis, had needs for which the competence of VTT was unable to
provide any solution - which was apparently the case also in the Speco and
Sokrates projects.

If the code generation competence had been matched with the developments
of the outer context, it would have been possible to make explicit the
functional competence elements and to associate these with the kinds of
new system design techniques that were emerging especially in the
telecommunication sector. Code generation research started from a rather
technological origin, which is understandable when considering the
background of the key researchers. Most of the early embedded systems
applications involved "low-level" device control software, but in the
nineties the focus was directed to "higher-level" applications and software
architectures providing some added value to the basic device control.
System design techniques and tools should therefore help to develop and
reuse software architectures, not only the kind of low-level device control
software embedded, for example, in the toy elevator built in Sokrates.

Figure 9 illustrates, how code generation competence could have been
packaged into a core platform. Since the target software had evolved
towards technical, functional and application platforms built one on top of
another, the functional code generation competence could have been
associated with different design techniques and implementation
technologies used at different platform levels.

99

For example, the device control platform of a digital telecommunication
product involves digital signal processing software, the functional platform
communication protocol software, and the application platform user
interface software. The researchers concluded in the group rehearsal that
software architecture concepts created during Sokrates were not utilised
well enough. Focusing on a software platform architecture might have led to
the creation of relationships with different customers or different experts of
the same customer would have been required, similarly to the development
of fault diagnosis systems at ELE.

Technica l p la tfo rm
(e.g . D S P softwa re)

App lica tion p la tfo rm
(e .g . U I so ftwa re)

Functiona l p la tfo rm
(e .g . p ro toco l so ftw are)

Fu
nc

tio
na

l c
od

e
ge

ne
ra

tio
n

co
m

pe
te

nc
e

(e
xp

lic
it

pr
ob

le
m

-s
ol

vin
g

pr
oc

es
s)

Em bedded softw are

S olu tion
e lem ents

D esign e lem ents

Code generation core p latform

O pe ra ting
sys te m s
e tc.

P ro toco l
packa ges

A pp lica tio n
m o d u le s

A pp lica tion de s ig n
te chn iqu es/too ls

P ro toco l design
techn iques/too ls

Device contro l
techn iques/too ls

P la tfo rm leve ls

Figure 9. Embedded software platforms vs. code generation platform.

5.3 LESSONS LEARNED

The empirical, research and managerial implications of our research are
discussed in the following, focusing on lessons learned for subsequent
investigations of competence in the context of industrial networks.

5.3.1 Empirical implications

We found the role of secondary data quite crucial in our study. Although
secondary data may be overwhelming in longitudinal studies, digging
deeply into it seems to pay off. In this research, the data played a central
role in making explicit both the process nets and processes involved in the
code generation case. We used the competence evolution framework to
structure the data into meaningful chunks during three successive periods of
time between 1985 and 1998. Yet, it was rather difficult to prevent the
secondary data from becoming too fragmented, because of all the details
included in the documents from which the data was acquired. For this
reason, the data was organised around the five key processes of
competence: marketing, purchasing, development, exploitation and mutual
co-ordination. This helped much to follow the evolution of competence.

100

During the research, it became obvious than an important piece of
secondary data was missing - information related to the outer context of the
case phenomenon, not only from such a limited perspective as the
documents describing the Finsoft research program that we had included in
the data sources, but from the viewpoint of environmental macro forces
affecting industries and markets as a whole. We decided to acquire the
required data on the outer context, which was actually used by the managers
for the purpose of positioning VTT in the changing environment.

This proved a rather good approach, because we managed to identify certain
pieces of industry-level information that had remained unnoticed and,
therefore, could not be considered in guiding the activities of the focal
organisation. One of the best examples was the strong bias shown by TKO
towards automation applications in embedded software engineering at the
turn of the nineties, when the existing R&D potential of the sector was quite
modest and rapidly decreasing, and the telecommunication sector was about
to start its immense growth. The true potential of internal research
customers was apparently similarly misjudged.

The secondary data does not include too much information on why certain
actors took part in certain nets and were involved in certain activities.
Although some of the key expectations and perceived values of the
activities and their results were summarised in managerial documents, no
data on the longitudinal or historical effects of the code generation
competence was available. The evaluation of resources used in or produced
by R&D activities is a topic constantly under debate, while almost
invariably only the situational values are addressed. Various kinds of
frameworks and criteria have been proposed for measuring the R&D
process and its outcome, for example [Cooper and Kleinschmidt 1996,
Roberts 1995, Schumann et al. 1995, and Tipping et al. 1995]. Schumann
and others have specified a set of “total quality measurements” for R&D,
Tipping and others a comprehensive “technology value pyramid”. [Werner
and Shouder 1997] provide an exhaustive survey of the R&D measurement
literature from 1956 to 1995.

From another perspective, [Holmlund 1997] proposes technical, social and
economic dimensions for relationship quality. The content of the technical
dimension of relationship quality proposed by Holmlund includes generic
process types and characteristics, as well as technical outcome. The social
dimension of quality includes the individual level and the company level
and the economic dimension the benefits and costs of the relationship.

No distinction is made between the expected, perceived and historical
values of relationships by Holmlund. The secondary code generation case
data included information on the expected and perceived values of the
competence, but we captured the historical value of the competence from
the primary data. The primary and secondary data included a number of
interesting and even dramatic differences in this regard.

101

Parts of the primary data were compiled into intertwined stories of the two
main groups of actors of VTT. The stories provided both a summary of the
case abstract enough for readers not familiar with the subject matter and an
exciting history of the developments affecting the participants, which has
never been put together earlier. Compared with focused interviews with the
individuals involved in specific activities, such as customers of certain
projects, the grand stories open up a considerably more comprehensive
perspective to the case as a whole. The conflicting viewpoints of the
managers and focal researchers became very obvious. Several parts of the
original story written by Veikko Seppänen were pointed out as "wrong",
misleading or incomplete by the researchers.

The help of information technology, especially electronic mail, was
surprisingly beneficial in the process of gathering primary data. The
interviewees were very open and willing to clarify their opinions. Some of
them had been waiting for this opportunity in vain, which shows how little
attention is paid to the past even in expert organisations aiming at
transferring in use knowledge providing long-term value for their
customers. We deliberately targeted the bulk of interviews on purpose at
persons who had carried out other than only managerial tasks.

Although this focus certainly depends in part on the technical nature of the
case, we wish to emphasise that business is not only what managers vaguely
remember to have happened, but what their subordinates have personally
done and experienced. This was important also because of the fact that very
few informants used the opportunity of commenting or correcting the data
that acquired and documented by us.

As opposed to using general managerial data, it is much easier to triangulate
detailed data given by people who have carried out certain activities
themselves. The size of the interview data of the code generation
researchers was about ten times larger than the data provided by the two
focal VTT managers. The data that individual Sokrates steering group
members provided was typically less than one page.

5.3.2 Research implications

This research addressed the development of competence in one focal
organisation as a result of its external relationships (and, to a lesser degree,
due to its internal activities). Therefore, we wanted to use the existing
research results of industrial networks as a means of explanation rather than
as the subject of the research. Accordingly, we focused on testing and
applying the relationship-based competence evolution framework proposed
in [Seppänen et al. 1998a]. Yet, the framework needed to be extended by
the concept logic of action, and to be associated with the network concepts
of actors, resources and activities. Although investigations of industrial
networks have utilised research methods familiar from subjective social
science and organisational studies, such as unstructured personal interviews,
they seem to have taken quite an objective and rational viewpoint to
collective actors.

102

We chose the logic of action as a means of making a difference between
groups of actors when associating them with relationships, not least because
one of us, Päivi Eriksson, had used it successfully in her earlier research. It
appeared to be a useful way to describe and explain the activities that were
pursued by certain groups of actors within the context of certain process
nets. For example, the basic dilemma between product-based and project-
based exploitation of code generation competence could be made explicit
and analysed by using the logic of action of two actor groups. Yet, further
research is inevitably needed to gain a better understanding of the behaviour
of organisational groups of actors in complex network settings. The
interaction of "sustaining" and "radical" logic of action would make a
particularly interesting to research topic. As an example, in the group
rehearsal one of the focal researchers compared the aim of using code
generators in software development to the idea of taking photographs
instead of painting portraits at the end of the last century.

One of the great challenges in behavioural studies of network actors is that
the focus may span from individual influential persons, such as the manager
of a specific project, to whole organisations, industries and even nations.
For example, the "logic of Finland" caused the recession, which had a
strong influence on the developments visible in the code generation case.
Tiittula [1994] uses the concept of "managerial logic" when analysing
organisational changes at VTT as a whole. Consequently, this kind of
extensive intertwining of inner and outer contexts can be regarded as an
essential issue in real-life industrial networks.

Yet, a more demanding task than the use of the logic of action was the use
of the competence evolution framework as a whole. Although the network-
based approach to industrial marketing is deeply rooted in the resource-
based perspective to firms, there are only a few in-depth studies on the role
of resources in networks. As an example, the need to define the change of
the value of a resource over time became obvious during this research,
while there was little guidance available on how to treat this issue. Yet, we
did not concentrate as much on the change of the value of resources than on
the processes that caused such changes. We used [Tikkanen 1997] as a
starting point in the process perspective on networks, while we still had to
elaborate his approach considerably.

In our case the well-archived secondary data, fortunately, made it rather
easy to follow the processes during the past years. As indicated by
Tikkanen, this may be much more difficult in cases in which such data does
not exist, e.g. due to the fact that the relationships are more informal and
sporadic in their nature, in contrast to projects lasting for months or years.
Despite possible difficulties, we would like to urge network researchers to
keep a closer look on processes, because otherwise long-term phenomena
may become trivially classified into activities, without the longitudinal
"process flow" becoming explicit. Studying this flow is essential when
analysing the true evolution of relationships against marketing plans and
strategies. For example, the success of the strategic management of
competence evolution at VTT through the portfolio of green, blue and red
projects can only be evaluated if competence related processes can be
identified from projects.

103

While strategic marketing used to be a popular school of thought in the
seventies, it seems that later network researchers have been focusing more
on individual firms than on markets as macroeconomic entities. It is
therefore noteworthy that our view on product-related competence has been
derived from the strategic marketing concept of [Abell 1980]. In other
words, we are viewing the competence of a firm against a strategic market
structure. The "techniques" dimension that we have added to Abell's market
model is justified by the engineering and scientific foundation of the
services that research organisations are offering to the market. We have also
used another key concept of strategic marketing, the life cycle, and
associated it with competence elements. The usefulness of the life cycle
concept is illustrated, for example, by the need of making explicit the
simultaneous rise of telecommunication applications and the fall of
structured system design techniques in the nineties, which greatly affected
the code generation case.

5.3.3 Managerial implications

The use of the market as a mirror of the content of product-related
competence leads to one of the main managerial implications of this
research: Strategic management of competence must be carried out within
the context of external relationships, not for the relationships. Therefore, the
strategic management of the relationship portfolio of a firm is actually its
main competence management tool. Although self-funded green projects are
an important asset for VTT, the true field test of competence evolution are
red projects. The code generation case shows that market mechanisms
greatly affect the passing of such a test. To put it simply, the focal
researchers considered the market that of domestic CASE tools, but failed to
carry out strategic competence management at VTT after the Sokrates
project had been finished. The VTT managers considered the market as
consisting of professional R&D services, and basically gave up the
competence after the promise of red projects was not fulfilled.

Yet, both the managers and researchers seemed to have misinterpreted or
neglected the coming industrial changes. Automation and electronic
instruments were rapidly losing their customer potential, whereas
telecommunication started to emerge as a killer application. Regarding this
strategic market change, the decision to allocate the code generation expert
of firm N who joined VTT to a completely different network of
relationships in the middle of the opportunity window was a failure.

In more general terms, the versatility of code generation competence
elements may have resulted in losing sight of functional skills, which was
identified as a fundamental competence dimension in [Seppänen et al.
1998a]. In the code generation case, such skills involved knowledge of how
to systematically produce computer programs from higher-level design
models. These skills were hidden within the code generator technology,
which was constantly changing and difficult to understand by the likely
customers. Although this kind of mechanising of skills was apparently one
of the key ideas of the focal researchers, the customers were not ready for it.

104

The researchers claimed that the initial grand story written by Veikko
Seppänen was missing the point of functional skills of managing
concurrence in embedded systems, describing the work "just as the
development of yet another CASE tool". This was, however, exactly the
opinion of at least one of the key customers interviewed; he regarded the
focal researchers' claim of focusing on concurrence management as harshly
as "bullshit".

The Kaapeli project, in which the functional skills were made explicit
through manual coding rules without any tool technology, was quite
successful also in historical evaluation. The MCS-REA project, where the
skills were implemented in connection with the Reagenix code generator,
was afterwards considered a business catastrophe by the customer, although
the perceived value of the technology was seen as excellent.

Although the SA/SD skills helped to create and to extend the code
generation network during the Sokrates period, they did not offer any
foundation for strategic long-term management of code generation
competence. Instead, the skills were lent core rigidity [Leonard-Barton
1992] that prevented a timely response to the change in design techniques.

Many people were trying to point out this to the focal researchers, but their
first love was too strong to be replaced until the late nineties. In the group
rehearsal, most of the researchers were still of the opinion that SA/SD was
the right choice, and the same was indicated by various other interviewed
parties. However, interestingly enough, one of the focal researchers told us,
as his present opinion, that SA/SD was not the right choice.

The relationships between a research institute developing engineering
methods and tools and a commercial tool vendor making business out of
them appeared rather problematic in this research. The whole idea of the
Finsoft research program was to study and transfer into industrial use new
software development methods and tools. However, the co-operation
between researchers and industry wishing not only to apply them as end
users but also to make business out of the results was obviously not
addressed well enough. TKO and firm I tried to clear up their relationship
by themselves without the help of any common procedures, but did not
succeed. The matter was still sensitive when the study was carried out, as
the representatives of firm I told us that they did not want to think back to
the past events related to the case. For this reason, they turned down the
inquiry to interview them as a part of this research. All the other parties
were willing to participate and were quite open in the interviews, even the
VTT managers and focal researchers that had clearly conflicting viewpoints
regarding each others' goals, activities and work-products.

The focal researchers were quite united in their view that the VTT managers
were preventing them from following their logic of action and making
business by selling tool licenses. This was obviously true in the sense that
the whole portfolio of R&D activities at TKO and ELE was based on the
logic of creating red projects from green research via blue projects, instead
of focusing on collecting license fees. The researchers were not prevented
from following their logic, but not much supported either.

105

Since all the organisational resources were controlled by the managers, the
researchers were doomed to fail in their attempt. The researchers did not see
the project portfolio as the basic organisational means of developing the
competence further. One of the best examples of this is that Veikko
Seppänen, as a lower-level manager who was most closely involved in the
code generation activities, thought honestly in his original story that
Reagenix was redesigned on the basis of the Sokrates code generator,
following the project portfolio principle. The focal researchers reacted
strongly against this view: "What was worst in this story was the indication
that the Reagenix code generator was the same as Sokrates. My opinion is
that Reagenix has been developing slowly here and there, and there is no
clear link between Sokrates and Reagenix".

It is also interesting that the whole idea of project marketing seemed to be
rather distant, if not terrifying, to the focal researchers: "I did not yet have
any appropriate contacts and I had not received any positive feedback on my
work [on Reagenix], so I was not interested in marketing". Many of their
colleagues were continuously co-operating with the managers to create
contacts, market projects and to share successes and failures in managing
evolving competence. The opinion of the focal researchers that the VTT
managers only wanted to milk customers - by selling work as projects with
no unified frame, some projects addressing "parts of Lada" and others "parts
of Porsche" - is radically different from this kind of collaboration.

Despite the frustration and disappointments involved in the code generation
case, as in many real-life phenomena, it is relieving to see that the code
generation competence survived the difficulties. This must be honestly
credited to the true inventors and owners of the competence, the focal
researchers. Therefore, one of the managerial lessons that can be learnt from
the case is that the commitment of people should be taken better care of for
the benefit of competence, whether it is managed according to any logic of
action or not. In this regard, the key problem of a contract research
organisation is that it continuously has to balance between commitment and
a sufficient level of income.

An appropriate closing to this report will be provided by a small software
extract taken from Appendix 2, a piece of code generated with Reagenix
shown in Figure 10. The program has, of course, been generated for a small
demonstration application - this time it a simulation of a traffic light control
system. After all, the light is now green also for the generator itself, which
means "go" for the business, as well!

106

/* xtlight1.c - control_traffic_lights () - 1997-06-17 13:07:10 */
/*---
 Diagram Information
 Title : control_traffic_lights

 ReaGeniX Programmer Version Version 2.Beta-01
 Licensed to: …
 ReaGeniX is a trademark of
 VTT Electronics, Finland
---*/

/* reactime compatibility check */
#define reactime_style 1
#include "reactime.h"
#if reactime_level < 1
 #error Old reactime version included
#endif

/* subprocess compatibility check */
#ifndef no_flowcheck
 #include "xtlight1.v"
#endif

/* data definitions */
#include "xtlight1.h"

process_body(control_traffic_lights)
 #ifdef flag_init
 initial_value_reservation(initial_value(flag),flag) =
 {flag_init};
 #else
 #ifndef flag_uninitialized
 #error Uninitialized state variable of type flag
 #endif
 #endif

 initialization
 init_process(sequence_lights,C2);
 init_process(register_pedestrian_request,C1);

 init_phase_2
 link_own_flow_from(C2.ped_grant, R__30ped_grant);
 link_own_flow_to(R__30ped_grant, C1.ped_grant);
 link_out_flow(C2.b_red, b_red);
 link_out_flow(C2.b_amber, b_amber);
 link_out_flow(C2.b_green, b_green);
 link_out_flow(C1.ped_wait, ped_wait);
 link_own_flow_from(C1.ped_request, R__56ped_request);
 link_own_flow_to(R__56ped_request, C2.ped_request);
 link_out_flow(C2.ped_green, ped_green);
 link_out_flow(C2.ped_red, ped_red);
 link_out_flow(C2.a_green, a_green);
 link_out_flow(C2.a_amber, a_amber);
 link_out_flow(C2.a_red, a_red);
 init_2_process(sequence_lights,C2);
 init_2_process(register_pedestrian_request,C1);
 end_initialization

…

/* xtlight1.c - control_traffic_lights () - 1997-06-17 13:07:10 */

Figure 10. Piece of code generated by Reagenix.

107

REFERENCES

Abell, D.A. 1980. Defining the Business. Prentice-Hall, Englewood Cliffs,
New Jersey. 257 p.

Alajoutsijärvi, K. 1996. Rautainen pari. Kymmenen ja Valmetin suhde,
lähiverkosto ja makrovoimat 1948 - 90. Jyväskylä Studies in Computer
science, Economics and Statistics 31. University of Jyväskylä. 279 p. (in
Finnish)

Anon. 1987a. Uuden teknologian tuotekehitys- ja tutkimuskeskus,
perustamisselvitys. Teknologian diffuusio, TEDI-87. Projektiraportti n:o 1.
City of Oulu. (in Finnish)

Anon. 1987b. Uusia keinoja teknologiayhteistyön tehostamiseksi Oulun
seudulla. Teknologian diffuusio, TEDI-87. Projektiraportti n:o 2. City of
Oulu. (in Finnish)

Anon. 1987c. Pohjois-Pohjanmaan elinkeinoelämän tietotekniset toiminta-
edellytykset. Pohjois-Pohjanmaan Seutukaavaliitto. Publications Series
A:84. 61 p. (in Finnish)

Anon. 1989. Oulun läänin teknologiapoliittinen ohjelma. Oulun läänin-
hallitus. 54 p. (in Finnish)

Anon. 1990a. Valtion tiede- ja teknologianeuvosto: katsaus 1990. Tiede- ja
teknologiapolitiikan suuntaviivat 1990-luvulla. 76 p. (in Finnish)

Anon. 1990b. Teknologiaohjelmatoiminnan linjat 1990-luvulle. Komitea-
mietintö 1990:2. 112 p. + app. (in Finnish)

Anon. 1992a. Teollisuuspoliittinen linjaus. Seteli. 16 p. (in Finnish)

Anon. 1992b. Sähkö- ja elektroniikkateollisuus. Seteli. 7 p. (in Finnish)

Anon. 1993a. Teknologiakatsaus 1993. Tekes. 77 p. (in Finnish)

Anon. 1993b. Kansallinen teollisuusstrategia. Kauppa- ja teollisuus-
ministeriön julkaisuja 1/1993. Ministry of Trade and Industry. 124 p. + app.
(in Finnish)

Anon. 1994a. Suomi tietoyhteiskunnaksi – kansalliset linjaukset. Ministry
of Financing. 73 p. (in Finnish)

Anon. 1994b. Osaamisstrategia. Sähkö- ja elektroniikkateollisuuden
menestystekijät, avainteknologiat ja osaamisen kehitystarpeet. Seteli. 29 p.
(in Finnish)

Anon. 1996. Teknologia 2000. Osaamisella tulevaisuuteen. Tekes. 120 p.
(in Finnish)

Anon. 1998. Huippuosaajat maailmalla. Sähkö- ja elektroniikka-
teollisuusliitto. 21 p. (in Finnish)

108

Cooper, R.G., Kleinschmidt, E.J. 1996. Winning businesses in product
development: the critical success factors. Research & Technology
Management, Vol. 39, No. 4, pp. 18 - 29.

Eriksson, P., Räsänen, K. 1998. The bitter and the sweet: evolving
constellations of product mix management in a confectionary company.
European Journal of Marketing, Vol. 32, No. 3/4, pp. 279 - 304.

Ford, D., Håkansson, H., Johansson, J. 1986. How do companies interact?
Industrial Marketing and Purchasing, Vol. 1, No. 1, pp. 26 - 41.

Ford, D., Gadde, L.-E., Håkansson, H., Lundgren, A., Snehota, I., Turnbull,
P., Wilson D. 1998. Managing business relationships. John Wiley & Sons,
Chichester. 292 p.

Foss, N. (ed.) 1997. Resources, firms and strategies. Oxford University
Press.

Foss, N., Knudsen, C. 1996. Towards a competence theory of the firm.
Routledge, London.

Hamel, G., Prahalad, C.K. 1994. Competing for the future. Harvard
Business School Press, London. 327 p.

Hienonen, R. 1997. Elektroniikka- ja sähköalan kehitysnäkymät
1997...2002. VTT Automation. 229 p. (in Finnish)

Holmlund, M. 1997. Perceived quality in business relationships.
Publications of the Swedish School of Economics and Business
Administration No. 66, Helsinki. 336 p.

Holmlund, M., Törnroos, J.-Å. 1997. What are relationships in business
networks? Management Decision, Vol. 35, No. 4, pp. 304 - 309.

Håkansson, H., Snehota, I. 1995. Developing relationships in business
networks. Routledge, London. 418 p.

Johanson, J., Mattson, L.-G. 1997. Network positions and strategic action -
an analytical framework. In: Ford, D. (ed.), Understanding business
markets: interaction, relationships and networks. Second edition. The
Dryden Press, London. Pp. 176 - 193.

Karjalainen, J., (ed.) 1991. Finsoft. Ohjelmistoteknologian ohjelma.
Sulautetut järjetelmät 1988 - 1991. Tekes, Helsinki. 167 p. (in Finnish)

Kivisaari, S., Lovio, R. 1993. Suomen elektroniikkateollisuuden
merkittävien innovatiivisten liiketoimintojen menestyminen 1986 - 1992.
VTT Technology Research Group. 51 p. (in Finnish)

Klein, J., Gee, D., Jones, H. 1998. Analysing clusters of skills in R&D -
core competencies, metaphors, visualization, and the role of IT. R&D
Management, Vol. 28, No. 1, pp. 37 - 42.

109

Klus, J.P., Markkula, M., Venho, J., Järvenpää, A., Sirkeinen, U., Ahlroos,
R. 1985. Effective technology transfer. 128 p.

Kurki, M. 1995. Model-based fault diagnosis for mechatronic systems.
Technical Research Centre of Finland, Espoo. VTT Publications 223. 116 p.

Leonard-Barton, D. 1992. Core capabilities and core rigidities: A paradox in
managing new product development. Strategic Management Journal, Vol.
13, pp. 111 - 125.

Lovio, R. 1993. Evolution of firm communities in new industries. Acta
Academiae Oeconomicae Helsingiensis. Series A:92. The Helsinki School
of Economics and Business Administration. 304 p.

Lowendahl, B. 1997. Strategic Management of professional service firms,
Handelshojskolens Forlag, Copenhagen.

Miettinen, R. 1993. Methodological issues of studying innovation-related
networks. VTT Group for Technology Studies, Espoo. Working Papers No.
4. 61 p.

Miettinen, R. 1998. Object construction and networks in research work: the
case of research on cellulose degrading enzymes. Social Studies of Science,
Vol. 28.

Mårtenson, G., Otala, M., Wiio, O.A. 1985. Tietotekniikka 1990-luvulla.
Sitra. Series B, No. 78. 112 p. (in Finnish)

Nokaka, I., Takeuchi, H. 1995. The knowledge-creating company: how
Japanese companies create the dynamics of innovation. Oxford University
Press, New York. 284 p.

Roberts, E.B. 1995. Benchmarking the strategic management of technology.
Research & Technology Management, Vol. 38, No. 2, pp. 18 - 26.

Rosenbröijer, C.-J. 1998. Capability development in business networks. A
study of distribution in the fine paper sector in the United Kingdom.
Doctoral thesis, Publications of the Swedish School of Economics and
Business Administration No. 69, Helsinki. 255 p.

Schumann, P.A. Jr., Ransley, D.L., Prestfood, C.L. 1995. Measuring R&D
performance R&D. Research & Technology Management, Vol. 38, No. 3,
pp. 45 - 54.

Seppänen, V., Isomursu, P., Kähkönen, A.-M., Oivo, M., Perunka, H., Pulli,
P. 1996. Strategic needs and future trends of embedded software. Tekes
Technology Review 48/96. 103 p.

Seppänen, V., Alajoutsijärvi, K., Kurki, M. 1998a. Competence-based
evolution of contractual R&D relationships. Technical Research Centre of
Finland, Espoo. VTT Publications 346. 70 p.

110

Seppänen, V., Kurki, M., Alajoutsijärvi, K. 1998b. Competence-based
evolution of contractual R&D relationships. Proc. of Information Systems:
Current Issues & Future Changes, Joint Working Conference of IFIP8.2 and
IFIP8.6, Helsinki, December 10 - 13, 1998. IFIP, Laxenburg, Austria. Pp.
197 - 214.

Tiittula, P. 1994. Farewell to bureaucracy: Technical Research Centre of
Finland as a pathfinder in management change. Acta Academiae
Oeconomicae Helsingiensis. Series A:95. The Helsinki School of
Economics and Business Administration. 247 p. + app.

Tikkanen, H. 1997. A network approach to industrial business processes. A
theoretical and empirical analysis. Publications of the Turku School of
Economics and Business Administration. Series A-7:1997. 227 p.

Tikkanen, H. 1998. Research on international project marketing. A review
and implications. In: Tikkanen, H. (ed.), Marketing and International
Business - Essays in Honours of Professor Karin Holstius on her 65th
Birthday. Publications of the Turku School of Economics and Business
Administration. Series A-2:1998. Pp. 262 - 285.

Tikkanen, H., Alajoutsijärvi, K. 1998. Customer satisfaction in industrial
markets: contextual understanding as a key for effective management. Proc.
of the Annual CBIM/ISBM Meeting, Penn. State University, Atlanta,
Georgia, January 17 - 20. 19 p.

Tipping, J.W., Zeffren, E., Fusfeld, A.R. 1995. Assessing the value of your
technology. Research & Technology Management, Vol. 38, No. 5, pp. 22 -
39.

Toivanen, J. 1992. Ohjelmoitavien logiikoiden reaaliaikaisten ohjelmistojen
määrittely ja toteutus Sokrates-SA-menetelmällä. Technical Research
Centre of Finland, Espoo. VTT Julkaisuja 757. 74 p. + app. 78 p. (in
Finnish)

Ward, T., Mellor, S.J. 1985 - 1986. Structured development for real-time
systems. Yourdon Press, New York. Vols. 1, 2 and 3.

Werner, B.M., Souder, W.E. 1997. Measuring R&D performance - state of
the art. Research & Technology Management, Vol. 40, No. 2, pp. 34 - 42.

Yin, R.K. 1988. Case study research. Design and methods. Revised edition.
Applied Social Research Methods Series, Vol. 5. Sage Publications,
Newbury Park, CA. 165 p.

1/1

APPENDIX 1: LIST OF THE CASE DATA

Documentary data

1987

Seppänen, V. 1987. R&D diary notes.

Hakalahti, H., Karjalainen, J., Ihme, T., Okkonen, A., Pulli, P., Taramaa, J.,
Valmari, A., Viinikka, J. 1987. Luonnos kansallisesta tietokonetekniikan
tutkimushankkeesta. Memorandum, VTT Computer Technology Labo-
ratory, 2.2.1987.

Karjalainen, J. 1987. R&D diary notes. 135 p.

Anonym. 1987. The state of automatic code generation. Part 2: Embedded
Systems, CASE Outlook, Vol. 1, No. 6, pp. 11 - 22.

Seppänen, V. 1987. Memorandum on Software engineering section, annual
plan, 8.10.1987.

Annual Review of VTT Computer Technology Laboratory, 1987.

Kalaoja, J. 1987. Draco-ohjelmiston soveltuvuus minispeksin transfor-
mointiin. VTT Computer Technology Laboratory, 10.8.1987.

Kalaoja J. 1987. Working meeting on Draco. Memorandum, VTT Computer
Technology Laboratory 12.10.1987

Okkonen, A., Pulli, P., Taramaa, J. and Hakalahti, H. 1987. TEKES
application Dno 16/32/87/TKO. Application for the Sokrates project
15.12.1987, including project proposal 23.12.1987.

1988

Seppänen V. 1988. R&D diary notes.

Memorandum on the Schaffner of VTT Computer Technology Laboratory
21. - 22.3.1988.

Seppänen, V., Research and development in software engineering at the
Computer Technology Laboratory: a short history. 4.2.1988. 4 p.

Memorandum on the Schaffner of VTT Computer Technology Laboratory
19.9.1988.

Annual Review of VTT Computer Technology Laboratory, 1988.

Hakalahti, H., Karjalainen, J. 1988. Marketing plan 1988 - 1989 of VTT
Computer Technology Laboratory, 11.8.1988.

1/2

Archived correspondence of the Sokrates project: A handwritten note of Ari
Okkonen on a telephone conversation between him and M. Tervonen,
6.7.1988; “Embedded systems design automation”, 3.7.1988: an overview
and a vision (“johtotähti”) of the Sokrates project.

Pelkonen, J. 1988. A prototype tool for embedded systems programming
automation from Oulu. Tekniikka & Talous, 2.11.1988, p. 13.

Memorandum on the Sokrates seminar 17.11.1988 at Hotel Vihiluoto.

Seppänen, V. 1988. Software engineering section, strategic plan 1988 -
1993, 13.4.1988.

Karjalainen, J. 1988. R&D diary notes. 112 p.

Tolonen, P. 1988. Interview of Lauri Gröhn, Insinööriuutiset, 23.3.1988.

Brantberg, R. 1988. interview of Ari Okkonen and Antti Auer, Insinööri-
uutiset, 23.3.1988.

Contract on the participation in Finsoft research, Dno 15/52/88/TKO, 1988.

Hakalahti, H. 1988. Tekes application Dno 25/32/88/TKO for the Sokrates
project, 28.12.1988.

Memorandum on the press conference of the Sokrates project, 28.6.1988,
VTT Computer Technology Laboratory.

Minutes, meeting of the joint steering group of the Oppi, SW/HW and
Sokrates projects, 12.10.1988.

Sokrates project summary, 2.11.1988.

Minutes, meeting of the joint steering group of the Oppi, SW/HW and
Sokrates projects 22.11.1988.

1989

Karjalainen, J. 1989. Finsoft-teknologiaohjelma, yleisesittely, 17.1.1989.

Contractual project reference list, VTT Computer Technology Laboratory,
22.5.1989.

Karjalainen, J. 1989. Update of the marketing plan of VTT Computer
Technology Laboratory, 31.5.1989.

Hakalahti, H. 1989. Long-term plan 1989 - 1994 of VTT Computer
Technology Laboratory, 19.4.1989.

Memorandum on the Schaffner of VTT Computer Technology Laboratory
22. - 23.3.1989.

Oikarinen, M. 1989. Analysis of selected machine industry companies.

1/3

Heikkilä, E. 1989. Review of the 1989 results of VTT Computer
Technology Laboratory (draft), 30.11.1989.

Hakalahti, H. 1989. Annual plan of VTT Computer Technology Laboratory
for 1990, 15.11.1989.

Annual Review of VTT Computer Technology Laboratory, 1989.

Auer, A., Levanto., M. 1989. Automaattinen ohjelman tuottaminen.
Proceedings of Blanko-89, Oulu. 8 p.

Reinikka, A., Auer, A., Okkonen, A. 1989. Automatic synthesis of
structural HDL descriptions from graphic specification of embedded ASICs.
Microprocessing and Microprogramming, Vol. 27, No. 1 - 5, pp. 473 - 478.

Okkonen, A., Auer, A., Levanto, M., Okkonen, J., Kalaoja, J. 1989.
SOKRATES-SA - A formal method for specifying real-time systems.
Microprocessing and Microprogramming, Vol. 27, No. 1 - 5, pp. 513 - 520.

Karjalainen, J. 1989. R&D diary notes. 173 p.

Minutes, meeting of the joint steering group of the Oppi, SW/HW and
Sokrates projects, 1.3.1989.

Savilampi, J. 1989. Toimilaitejärjestelmän ohjauksen mallinnus Sokrates-
SA-menetelmällä. Diploma thesis, University of Oulu, Department of
Electrical Engineering. 31 p. + app.

Hakalahti, H. 1989. Tekes application Dno 15/32/89/TKO for the Sokrates
project, 21.12.1989.

Sokrates status report 2/1989.

Sokrates status report 30.8.1989.

Proposal for investment, 21.9.1989 (the proposal was accepted by the
management board of the embedded systems subprogram 26.9.1989).

Memorandum on the Sokrates seminar 5.10.1989 at VTT Computer
Technology Laboratory.

Leppänen, T. 1989. SASIC3 project: SA/SD-VHDL transformation,
University of Oulu, 9.11.1989.

Seppänen, V. 1989. R&D diary notes.

1990

Seppänen, V. 1990. Memorandum for the meeting of VTT Computer
Technology Laboratory and Kone Elevators, 11.1.1990.

Marketing plan of VTT Computer Technology Laboratory for 1990 - 1991,
2.4.1990.

Seppänen, V. 1990. Marketing memorandum 1/90, 16.4.1990.

1/4

Karjalainen, J. 1990. Business plan of VTT Computer Technology
Laboratory, 1.8.1990.

Hakalahti, H. 1990. Long-term plan of VTT Computer Technology
Laboratory for 1991...1995, 22.3.1990.

Aho, A.V., Bjorn-Andersen, N., Haberman, N., Neuhold, E.J., Rissanen, J.,
Simon, J.-C., Swanson, E.B. 1990. Research and teaching in computer
science, computer engineering, and information systems. A critical
evaluation. Publications of the Academy of Finland 3/90. VAPK-
Publishing, Helsinki. 101 p.

Oikarinen, M. 1990. R&D needs of machine manufacturers, 30.3.1990.

Seppänen, V. 1990. Software engineering section, strategic plan 1990 -
1995, 4.6.1990.

Memorandum on the Schaffner of VTT Computer Technology Laboratory,
1990.

Hakalahti, H. 1990. Evaluation of the results of VTT Computer Technology
Laboratory from 1990.

Annual Review of VTT Computer Technology Laboratory, 1990.

Auer, A., Levanto, M., Okkonen, A., Okkonen, J. 1990. Solution in
software crisis. Microprocessing and Microprogramming, Vol. 30, No. 1 -
 5, pp. 273 - 280.

Kemppainen, J. 1990. Prosessorien välisten liitäntöjen suunnittelu
SOKRATES-menetelmällä. Diploma thesis, University of Oulu. 75 p.

Okkonen, A., Auer, A., Kalaoja, J., Levanto, M., Okkonen, J. 1990. AI
approach to automatic programming. Proc. of STEP-90, pp. 376 - 387.

Seppänen, V. 1990. R&D diary notes.

Karjalainen, J. 1990. R&D diary notes. 164 p.

Minutes, meeting of the joint steering group of the Oppi, SW/HW and
Sokrates projects, 18.1.1990.

Minutes, meeting of the joint steering group of the Oppi, SW/HW and
Sokrates projects, 23.3.1990.

Minutes, meeting of the steering group of the Sokrates project, 21.6.1990.

Sokrates video tape, Sokrates - oikotie speksistä koodiin, 23.5.1990.

Minutes, meeting of the steering group of the Sokrates project, 1.11.1990.

Seppänen, V. 1990. Brochure of the software engineering section,
17.7.1990.

1/5

Seppänen, V. 1990. Annual plan of the software engineering section for
1991, 22.10.1990.

Hakalahti, H. 1990. Annual plan of VTT Computer Technology Laboratory
for 1991, 4.10.1990.

Karjalainen, J. 1990. Status information of the embedded systems
subprogram, 29.5.1990.

Holopainen, V. 1990. Japanese quality thinking becoming part of Finnish
information systems, Kaleva, 11.10.1990.

Karjalainen, J. 1990. Status information of the embedded systems
subprogram, 29.11.1990.

Minutes, meeting of the embedded systems subprogram management board,
18.10.1990.

Project plan for the Kaapeli project, 19.10.1990.

Minutes, meeting of the management group of the Kaapeli project,
13.6.1990.

1991

Heikkilä, E. 1991. Evaluation of the results of VTT Computer Technology
Laboratory from 1990, 19.2.1991.

Memorandum on the Schaffner of VTT Computer Technology Laboratory
17. - 19.2.1991.

Update of the marketing plan of VTT Computer Technology Laboratory,
9.5.1991.

Hakalahti, H. 1991. Half-year report of VTT Computer Technology
Laboratory (long version), 1.7.1991.

Hakalahti, H. 1992. Annual report of VTT Computer Technology
Laboratory 1991, 29.1.1992.

Seppänen, V. 1991. Status of the annual plan of the software engineering
section, 31.5.1991.

Hakalahti, H. 1991. Strategic plan 1992...1996 of VTT Computer
Technology Laboratory, 25.4.1991.

Seppänen, V. 1991. Long-term plan of the software engineering section,
9.3.1991

Hakalahti, H. 1991. Long-term plan of VTT Computer Technology
Laboratory, 4.3.1991.

Seppänen, V., Alanko, J., Taramaa, J. 1991. Memorandum on the marketing
situation of the software engineering, real-time systems and knowledge
engineering sections, 18.4.1991.

1/6

Seppänen, V. 1991. Memorandum on software engineering research topics,
1.8.1991.

Auer, A., 1991. User identification/market segmentation in 1991.

Auer, A., 1991. Software engineering section, annual plan 1992 (draft),
28.10.1991.

Hakalahti, H., 1991. Annual plan of VTT Computer Technology
Laboratory, 8.10.1991.

Minutes, meeting of the steering group of the Sokrates project, 11.1.1991.

Minutes, meeting of the steering group of the Sokrates project, 17.4.1991

Sokrates project, admistrative final report, 18.6.1991, Dno 7/53/91TKO
(with handwritten comments by Veikko Seppänen).

Guy, K., Quintas, P., Hobday, M. 1991. Evaluation of the scientific and
technological status of Finsoft: The Finnish software technology
programme. Tekes, Helsinki. 58 p. Appendix III: project notes
(confidential). 24 p.

Saukkonen, S. 1991. Finsoft-ohjelman tulosten teollisen hyödyn ja hyö-
dynnettävyyden arviointi. Tekes, Helsinki. 75 p. Appendix: projectwise
evaluations (confidential). 92 p.

Karjalainen, J., (ed.), 1991. Finsoft ohjelmistoteknologian ohjelma.
Sulautetut järjetelmät 1988 - 1991. Tekes, Helsinki. 167 p.

Hakalahti, H. 1991. Finsoft software technology program: Embedded
systems. VTT Computer Technology Laboratory, 13.3.1991. 5 p.

Peltola, E. 1991. Telefax to Hannu Hakalahti on the role of VTT in the
Finsoft program, 19.8.1991. 8 p.

Peltola, E., Hakalahti, H. 1991. On the participation of VTT in the software
technology program (FINSOFT) and its evaluation, memorandum delivered
to M. Mannerkoski, J. Forsten, E. Heikkilä, 20.8.1991.

Minutes, meeting of the Kaapeli management group, 29.11.1991.

Seppänen, V. 1991. R&D diary notes.

Karjalainen, J. 1991. R&D diary notes. 187 p.

Seppänen, V. 1991. Marketing letter, 14.8.1991.

Seppänen, V. 1991. TEKES project proposal: Reuse of embedded software,
7.6.1991.

Seppänen, V. 1991. Project planning memorandum, 1.8.1991.

Marketing brochure, (MCS-REA project), 2.11.1991

1/7

Press release, Reagenix generator makes real-time programming faster,
VTT Computer Technology laboratory, 18.12.1991.

Seppänen, V. 1991. Memorandum on the marketing and continuing projects
of Sokrates, 27.3.1991

Auer, A. 1991. RT-SA/SD training offer for Kemira Engineering.

Contract draft for the Kaapeli project, 27.5.1991. Appendix 1. Project plan:
Application of the Sokrates technology, 15.4.1991.

Dno 24/52/91/TKO, contract on the Kaapeli project, 11.6.1991.

Contract Dno 40/52/91/TKO for the Raski project, 13.12.1991.

1992

Heikkilä, E. 1992. Evaluation of the results of VTT Computer Technology
Laboratory from 1991, 19.2.1992.

Hakalahti, H. 1992. Strategic plan of VTT Computer Technology
Laboratory, 5.5.1992.

Hakalahti, H. 1992. Half-year report of VTT Computer Technology
Laboratory, 21.7.1992.

Strategic plan of VTT Electronics Laboratory for 1993 - 1996, 15.6.1992.

Auer, A. 1992. Long-term plan of the software engineering section,
15.4.1992.

Auer, A. 1992. Memorandum: analysis of the current customers, 13.3.1992.

Hakalahti, H. 1992. Notes on the Schaffner of VTT Computer Technology
Laboratory.

Karjalainen, J. 1992. Marketing plan of VTT Computer Technology
Laboratory for 1992 - 1993, 20.5.1992.

Heikkilä, E. 1992. Strategic plan of the Information Technology
Department, 18.8.1992.

Hakalahti, H. 1992. Annual plan of VTT Computer Technology Laboratory
for 1993, 21.10.1992.

Minutes of the meeting 2/92 of the industrial steering group of VTT
Computer Technology Laboratory, 19.10.1992.

Marketing plan for machine industry, 21.12.1992.

VTT Computer Technology Laboratory, Annual Review 1992.

Karjalainen, J. 1992. R&D diary notes. 185 p.

1/8

Mälkki, Y. 1992. Order for the Kaasu project, VTT Food Technology
Laboratory.

Okkonen, A. 1992. Project plan for the Raski project, 27.3.1992.

Minutes, meeting of the Raski management group, 11.03.1992.

Minutes, meeting of the management group of the Raski project, 5.5.1992.

Minutes, meeting of the management group of the Raski project, 9.6.1992.

Minutes, meeting of the management group of the Raski project, 6.11.1992.

Okkonen, A. 1992. Final report of the Raski project, 29.11.1992.

Auer, A. 1992. Memorandum on the marketing activities of the software
engineering section.

Auer, A. 1992. Poster on the specification technologies of real-time
programs, 17.9.1992.

Auer, A. 1992. Software technology reference sheet: efficiency and quality
for software development.

Auer, A. 1992. Co-operation offer for Dassault.

Presentation slides on code generation, 27.8.1992.

Draft of the 1992 Annual review of VTT Computer Technology Laboratory.

Contract Dno 1/52/93/TKO for the Osdyn project.

Päivike, H. 1992. Project plan for the Osdyn project, 13.11.1992.

Minutes, meeting of the Osdyn management group, 8.10.1992.

Minutes, meeting of the Osdyn management group, 28.10.1992.

Minutes, meeting of the Osdyn management group, 13.11.1992.

Minutes, meeting of the Osdyn management group, 17.12.1992.

Contract Dno: 24/52/92/TKO, for the Cute project, 27.08.1992.

Summary of the Turva project, 12.2.1992.

Korhonen, J., Kalaoja, J. 1992. Turvallisten sulautettujen ohjelmistojen
kehittäminen. Technical Research Centre of Finland, Espoo. VTT Research
Notes 1430. 72 p. (in Finnish)

1/9

1993

Hakalahti, H. 1993. Annual report of VTT Computer Technology
Laboratory, 2.1.1993.

Minutes, meeting of the Osdyn management group, 25.1.1993.

Minutes, meeting of the Osdyn management group, 5.2.1993.

Minutes, meeting of the Osdyn management group, 27.4.1993.

Okkonen, J. 1993. Project plan for the Cute project, 29.03.1993.

Minutes, meeting of the management group of the Cute project, 24.9.1992.

Minutes, meeting of the management group of the Cute project, 14.1.1993.

Minutes, meeting of the management group of the Cute project, 5.5.1993.

Minutes, final review of the Cute project, 11.8.1993.

Final report of the Cute project, 5.5.1993.

Ihalainen, J. 1993. Reaaliaikaohjelmistojen yksikkötestaus. University of
Oulu, Department of Electrical Engineering, Diploma thesis. 59 p. + app.

Kurki, M., Hirvinen, J., Malm, T. 1993. Diagnosis of mechatronic systems.
Final report. VTT Computer Technology Laboratory, VTT Safety
Engineering Laboratory. Dno 6/53/93/TKO. 13 p. + app.

Minutes, meeting of the industrial steering group of VTT Computer
Technology Laboratory, 4.5.1993.

OTE/RAI strategic planning: SWOT analysis, P. Pulli, A. Auer, 30.3.1993.

Strategic plan for software engineering 1993, V. Seppänen, 5.2.1993.

Auer, A. 1993. Rotu project plan, 1.3.1993.

Hakalahti, H. 1993. SWOT analysis of VTT Computer Technology
Laboratory, 1.4.1993.

Hakalahti, H. 1993. Strategic plan of VTT Computer Technology
Laboratory, 4.5.1993.

Material prepared for the Schaffner of VTT Computer Technology
Laboratory, 10. - 11.5.1993.

Further specification of the marketing plan of VTT Computer Technology
Laboratory for 1993, 8.6.1993.

Hakalahti, H. 1993. Half-year report of VTT Computer Technology
Laboratory, 3.8.1993.

Competitor analysis of VTT Computer Technology Laboratory, 15.4.1993.

1/10

VTT Electronics, Embedded systems annual review 1993.

Seppänen, V. 1993. R&D diary notes.

Seppänen, V. 1993. Segmentation of the customers of the Embedded
Software research area in 1993 - 1994.

Saari, H. 1993. Koneautomaatio-ohjelmistojen komponentointi. University
of Oulu, Department of Electrical Engineering, Diploma thesis. 67 p. + app.

Offer, Development of an SA-level graphic debugger, 16.7.1993.

Lintulampi, R. 1993. Prosac-koodigeneraattorin soveltuvuusselvitys Lokki-
projektin tarpeisiin. VTT Tietokonetekniikan laboratorio. 9 p. (in Finnish)

Rotu/Aniprosa-2 project report 4.10.1993: Graphical debugger
Reagenix/Aniprosa.

Contract Dno 18/52/93/TKO, 26.3.1993 (MCS-REA), Appendix: Plan for
R&D work.

Minutes, meeting of the MCS-REA management group, 5.4.1993.

Minutes, meeting of the MCS-REA management group, 30.6.1993.

Minutes, meeting of the MCS-REA management group, 9.9.1993.

Minutes, meeting of the MCS-REA management group, 12.11.1993.

Auer, A. 1993. MCS-REA continuation work option.

1994

Memorandum on the animation of Prosa diagrams, 3.2.1994.

Order, Dno 8/51/94/ELE3, 4.8.1994.

Offer, 26.6.1994: Finishing of the debugger developed for Reagenix
models, including Aniprosa-2 project plan, 20.6.1994.

Minutes, meeting of the management group of the MCS-REA project,
22.4.1994. Appendix. Auer, A. 1994. Final report, 27.4.1994, version 1.0.

Minutes, final project review, MCS-REA, 30.5.1994.

Seppänen, V. 1994. R&D diary notes.

Häkli, R. 1994. Sulautettujen oliokeskeisten ohjelmien testaaminen.
University of Oulu, Department of Electrical Engineering, Diploma thesis.
53 p. + app. (in Finnish)

Häkli, R., Seppänen, V., Ihme, T. 1994. State-based unit testing of object-
oriented software. VTT Electronics. 20 p. + app.

Perunka, H. 1994. R&D diary notes.

1/11

1995

Hirvinen, J., Määttä, T. 1995. Final report, Improvement of the safety of a
wood carving machine based on control system and mechanics
implementation, 15.5.1995.

Virtanen, A., Mäkeläinen, T. 1995. Sulautetun ohjelmiston tuottaminen
mallinnusohjelmalla. VTT Automation. Working report. 31 p. (in Finnish)

Auer, A., Korhonen, J. 1995. State testing of embedded software.
Proceedings of EuroStar’95, 27 - 30 November 1995, London.

Seppänen, V., Kurki, M., Perunka, H., Päivike H. 1995. Marketing goals for
embedded software 1994 - 1995.

Seppänen, V. 1995. R&D diary notes.

Perunka, H. 1995. R&D diary notes.

Röning, J., Kauniskangas, H., Kalaoja, J., Okkonen, A. 1995. From
craftwork towards industrial production in the development of real-time
machine vision software Proceedings SPIE, Intelligent Robots and
Computer Vision XIV: Algorithms, Techniques, Active Vision, and
Materials Handling. Philadelphia, PA, 23 - 26 October 1995. Vol. 2588.

1996

Röning, J., Kalaoja, J., Okkonen, A., Kauniskangas, H. 1996. Reaali-
aikaisten konenäkösovellusten kehittäminen. Technical Research Centre of
Finland, Espoo. VTT Tiedotteita 1777. 72 p. + app. 40 p. (in Finnish)

Oivo, M. 1996. R&D diary notes.

1997

Offer, 12.6.1997, Tunturipyörä Oy, Jouko Paavilainen.

Huuskonen, P. 1997. Final report of the Rulla-2 project, Dno 5/53/97/ELE3,
16.6.1997.

Haapanen, P., Heikkinen, J., Korhonen, J., Maskuniitty, M., Pulkkinen, U.,
Tuulari, E. 1997. Feasibility studies of safety assessment methods for
programmable systems. Final report of the AVV project. STUK-YTO-TR
93. Finnish Centre for Radiation and Nuclear Safety, Helsinki. 54 p. + app.

Haapanen, P., Pulkkinen, U., Korhonen, J. 1997. Usage models in reliability
assessment of software-based systems. STUK-YTO-TR 128. Finnish Centre
for Radiation and Nuclear Safety, Helsinki. 48 p.

1/12

Interview data

1. Veikko Seppänen, case summary, 30 July 1997 (version 0.2 draft),
commented by Ari Okkonen, Jarmo Kalaoja and Kari Leppälä.

2. Ari Okkonen, electronic mail, 5 May 1998.

3. Group rehearsal, 6 March 1998, from 15.10 to 18.10: Ari Okkonen,
Mikko Levanto, Jyrki Okkonen, Jarmo Kalaoja, Jukka Kemppainen.

4. Antti Auer, electronic mail, 17 May 1998.

5. Pekka Pesonen, electronic mail, 18 March 1998.

6. Hannu Hakalahti, interview, 18 February 1998, from 18.15 to 19.45.

7. Jukka Karjalainen, interview, 25 February 1998, from 15.40 to 16.55.

8. Lauri Gröhn, electronic mail, 2 March 1998.

9. Matti Sihto, electronic mail, 24 March 1998.

10. Urpo Tuomela, electronic mail, 19 March 1998.

11. Timo Mukari, electronic mail, 17 March 1998.

12. Pekka Isomursu, electronic mail, 9 March 1998.

13. Antti Valmari, interview, 4 May 1998, from 14.20 to 15.35.

14. Tapio Halkola, interview (by Jaana Määttä), April 1998.

15. Mika Vanne, interview (by Jaana Määttä), April 1998.

16. Petri Pulli, electronic mail, 16 March 1998.

17. Tapio Hekkilä, interview, 10 March 1998, from 13 to 13.35.

18. Pekka Kemppainen, electronic mail, 10 March 1998.

19. Hannu Marjakangas, electronic mail, 19 March 1998.

20. Kari Hakkarainen, electronic mail, 10 March 1998.

21. Kari Tiensyrjä, electronic mail, 10 March 1998.

22. Eila Niemelä, electronic mail, 10 March 1998.

23. Markku Heikka, electronic mail, 9 April 1998.

24. Ilkka Kuuluvainen, electronic mail, 16 March 1998.

25. Jorma Taramaa, electronic mail, 9 March 1998.

26. Discussion with Jorma Taramaa, 9 March 1998.

1/13

27. Aija Vostrakov, electronic mail, 9 March 1998.

28. Juha Alanko, electronic mail, 11 March 1998.

29. Heikki Päivike, electronic mail, 9 Mar 1998.

30. Timo Mukari, electronic mail, 17 March 1998.

31. Andres Kull, electronic mail, 20 March 1998.

32. Gösta Silfver, electronic mail, 24 March 1998.

33. Markku Heino, electronic mail, 27 March 1998.

34. Juha Röning, electronic mail, 2 April 1998.

35. Discussion with Jukka Korhonen, 10 March 1998

36. Jouni Heikkinen, electronic mail, 12 March 1998.

37. Esa Tuulari, electronic mail, March 16, 1998.

38. Pentti Haapanen, electronic mail, 11 March 1998.

39. Marko Salmela, electronic mail, 16 March 1998.

40. Discussion with Pauli Räsänen, 7 April 1998.

2/1

APPENDIX 2: CODE GENERATION CASE DATA

The case data is summarised in this appendix chronologically. The primary
data gathered through interviews is structured around the secondary
documentary data. Examples of both types of data are given. The former
were acquired through several interviews and one group rehearsal and the
latter gathered from the archives of VTT, personal R&D diaries, and several
technical and managerial documents. Parts of the data have been translated
from Finnish to English by the first author of this report. The content of one
of the most important pieces of the primary data, an English-written
transcript of a group rehearsal of the code generation researchers, was sent
to the informants for review. A considerable amount of the primary data
was, however, collected through electronic mail and did not require any
transcription and review by the informants.

All code generation related activities and their results are described in this
appendix by using the concepts of the case data, rather than those of the
competence evolution framework. The activities are structured around the
code generation projects, because not only code generation research and
development was carried out in projects, but also competence marketing,
purchasing and exploitation were closely associated to projects.

A2.1 SETTING UP THE SCENE FOR INNOVATION

Table A1 shows the three projects in which code generation research started
at VTT. The first two projects were carried out in the mid-eighties for a key
customer with which TKO had established a strategic co-operation alliance
in the early eighties. A pre-study was also carried out to evaluate related
work on the so called transformational software development approaches.
Although the study was in part financed from a public source, the actual
investigation was planned and conducted solely by TKO. Therefore, the
initial phase included pseudo-green and red projects.

Table A1. Code generation related projects at TKO in 1985 - 1987.

Project Type of
project

Activities Financing
(1000 FIM)

Year

Speco Red project
for the firm
K

Research of code
generation techniques
for the PLM language

<100?
(firm K)

1985

Speco-2 Continuing
of the Speco
project

Development of a
prototype of a code
generator

<100?
(firm K)

1987

Draco Pseudo-
green TKO
project

Evaluation of existing
program transformation
approaches and tools

<100? (KTM) 1987

2/2

A2.1.1 Marketing of the idea of code generation

The management of TKO analysed project marketing data from 1983 to
1988 in two planning meetings in 1988. As indicated in Frame A1, TKO
had rather few regular key customers and plenty of occasional customers,
many of which took part in blue projects. One of the main aspects of the
emerging code generation marketing strategy was thus to make industry first
involved in blue research projects and then in subsequent red projects,
where the research results would be made feasible for exploitation.

In the annual report of TKO from 1987 the results of the two Speco projects
are described as a compiler that had been “successfully tested ... in a real
system example” and “will be further developed for production use”. This
business goal held for the next ten years, but its meaning and achievement
became heavily debated issues.

Table A2 illustrates marketing events related to the continuation of the
initial code generation research. The table is by no means complete, because
little information has remained from these events in the archives of VTT.
However, even the few examples indicate that both the managers and the
researchers were actively marketing code generation as a joint research
topic to industry and Tekes. A tool vendor was contacted in this early phase,
in order to promote the expected commercialisation of the research results.

Frame A1. Extracts from the market analyses of TKO in 1998.

Seppänen, V. 1988. Personal R&D diary notes.

TKO schaffner 21. - 22.3.1988

Customer base analysis: 3 current key customers, 1 raising customer, 2 lowering customers, 9 one-

shot customers, 5 previous customers, 23 potential new electronics customers; 12 customers of

research projects (6 of which are not contractual customers), 9 new customers of planned new

research projects. Machine industry’s customers: 3 contractual customers; 5 research project

customers; 13 potential customers. Altogether 21 customers in 1987.

TKO schaffner 19.9.1988

Analysis of the reasons for the starting of new projects in 1986, 1987 and 1988. 1986: 14 projects

analysed: 4 “old contacts”, 4 “TKO’s own ideas”, 6 “originated by the company”; 1 VTT project, 4

TEKES projects, 9 customer projects (5 different customers). Speco: company-originated, a part of

the co-operation agreement. Did not start: 4 projects analysed, all “TKO’s own ideas” (and

targeted to funding bodies or VTT). 1987: 12 projects analysed: 5 TKO’s own ideas, 5 company-

originated, 1 scientific co-operation, 1 started by an industrial organisation; 1 VTT project, 4

TEKES projects, 1 NI project, 1 Sitra project, 5 customer projects (4 different customers). Did not

start: 5 projects analysed, 1 VTT, 1 Ministry of environment, 2 TEKES, 1 customer project. 1988:

19 projects analysed: 10 TKO’s own ideas, 4 company-originated, 2 old contacts, 1 foreign

contacts, 1 VTT/ELE’s pre-study; 4 VTT projects, 5 TEKES projects, 1 KTM project, 7 customer

projects. Sokrates: Tekes/Finsoft, TKO’s ideas, earlier industrial projects.

2/3

Table A2. Examples of code generation related marketing events in 1987.

Event Issue VTT’s
persons

Target audience Date

Meeting
with the
Firm N

Co-operation on
code-generation
proposed

Line
managers

Customer’s
managers and
technology
experts

22.4.
1987

Marketing
meeting
With the
firm V

Discussion on
code generation
and CASE tools

Line
manager

R&D manager of
an automation
firm

9.10.
1987

Meeting
with the
firm I

Discussion of
the terms of the
Tekes
contract

Line
manager

Managing
director of a
CASE tool
vendor

24.11.
1987

Project
marketing

Presentation of
the Sokrates
project proposal

Line
managers,
Researchers

Industrial experts,
Representatives
of Tekes

16.12.
1987

A2.1.2 Conducting of code generation pre-studies

A prototype of a code generator for the PL/M programming language was
developed for the firm K in the two Speco projects. The work was a part of
a large project portfolio established to build an application-specific
industrial embedded systems software development environment for the
firm K. The manager of the firm, who suggested the study of the code
generator, was a former head of the software engineering section of TKO.
The archives of VTT do not include much material of the two projects, but
they were apparently rather small. The results of the projects were not taken
in industrial use, but the firm K joined instead the subsequent joint code
generation research project Sokrates.

The Draco project was a pseudo-green pre-study to evaluate existing
program transformation methods and tools, funded by the Ministry of Trade
and Industry (KTM). It was initiated by the line managers of TKO, with a
help of senior researchers interested and personally involved in international
co-operation. The results were reported in a diploma thesis [Kalaoja 1988],
whose author became later a member of the Sokrates project group. One of
the basic conclusions of the study was that the lack of automation would
make the use of the existing code generation tools difficult in industrial
embedded systems software development. Moreover, the code that the
existing tools produced was not appropriate for embedded systems and the
methods on which they based were not familiar to embedded systems
practitioners. There was clearly a need to carry out further work.

2/4

A2.1.2.1 Individual background – putting novel ideas to work

The idea of code generation was put forward by the R&D manager of the
firm K, and it fell into a fertile soil at TKO. The coming Sokrates project
manager had carried out pioneering embedded software development work
in the late seventies as an entrepreneur, before joining TKO in the mid-
eighties. He was excited about the possibility to develop new innovative
technologies that would solve some of the problems that he had faced in his
practical software engineering career. He describes the background and
motivation for the code generation research as follows.

“In 1973, I carried out modifications of the H1642 operating system at the
computer center of the university … I gained hands-on experience from
concurrent systems … and gave exercises at the information processing
laboratory on computer system programming. In 1974 I programmed as a
hobby a small real-time operating system kernel for the H316 process
computer. It remained there to wait for the future needs. I tested it later in
one night, between March 31 and April 1 in 1976. In about 1980 I designed
together with [two other future Sokrates project members] software objects
for a telecommunication software package ... The objects followed three key
principles … [that ensured the independence of the software from the
computer hardware on which the software was executed]. My task was to
design state machines for the software. In 1976 I developed a taxation meter
based on state machines.

In about 1977 I found out that … the so called traditional structured
programming techniques [which were not based on state machines] were of
almost no use for the design of telecommunication software systems. In
about 1980 I designed together with [one of the future members of the
Sokrates project] a descriptive macro language … based on a specification
that was only a few pages long. In the textbook of Per Brinch-Hansen
“Operating System Principles” that I and [the other member] had read
already in 1973, some of the principles [used in the design of the language]
had been presented thoroughly. I believed, after reading the book, that I
managed everything on real-time systems ... but I was wrong.

In about 1981 I took part in the development of the Kajaani 400 bleaching
process computer software. In this work I learned the Jackson Structured
Programming (JSP) method. I also learned how to not design software
components. In about 1982 I carried out another project for Kajaani … in
which I did first a comprehensive system analysis. The analysis that was
based on my own method took about three months, but the design and
implementation of the software lasted then only for two weeks. In this work
I learned the importance of a thorough system analysis. In 1983 I developed
a programming language for the Kajaani 4 process controller together with
[the above mentioned future Sokrates project member]. We got first familiar
with the other similar systems available on the market … but designed [a
new] programming language, for which it would be easy to build a pre-
compiler. We designed in detail and tested the compiler and an interpreter. I
got also familiar with the basics of digital signal processing.

2/5

I had read textbooks and taken university courses on information systems
specification methods. They seemed to work in the given examples … [but]
problems arose when they were attempted to be used for some real problem,
whose solution was not yet known. Moreover, the methods did not give any
support at all to [solving] real-time problems and using state machines. In
1985 I took part in the Yourdon RT/SA course. It was love from the first
sight. The approach had almost everything that I wanted for designing real-
time systems. There were [some minor negative] aspects that I thought
could be improved by a few own extensions [to the method].”

This small story illustrates, on one hand, the practical problems of the early
days of embedded software engineering, but on the other hand also the fact
that there were some new methodological foundations on which innovators
could build solutions from which practitioners could immediately benefit.

A2.1.2.2 Organisational background – software engineering

From the organisational viewpoint code generation research can be seen as
a part the development of industrial embedded software engineering
approaches. In the short “history” of software engineering research at TKO,
written two months before the main code generation project Sokrates
started, Veikko Seppänen describes how TKO had moved from earlier work
on small-scale embedded software development towards more
comprehensive activities involving larger applications and integrated
embedded software production environments.

“In general the evolution of the SE [software engineering] related work has
lead us from developing systems software for small portable embedded
devices into the construction of larger embedded software systems, along
with the research and development for the production environments of such
systems. A shift from developing the basic tools to automate SE
methodologies, to applying the currently existing CASE tools and
enhancing them with more advanced features has taken place. Yet, we are
still researching the basic SE automation matters, but in the context of more
sophisticated software engineering paradigms (transformation systems,
executable specifications, prototyping). Several proposals have been made
for the Finsoft programme, to start in April, 1988. The proposals deal with
reuse-centred, transformational and domain-based embedded systems
production techniques, and also with a contracting management directed
software production paradigm, especially the role of specification in such a
scheme. Started in 1982, the series of projects [with the firm K] has evolved
… to the new generation systems synthesis techniques based on
transformational, domain-based production approaches”.

In addition to the view of TKO moving towards more comprehensive
problems in embedded software engineering, the story of the section head
Veikko Seppänen illustrates his own experiences from the past few years on
the so called domain-based and transformational software development
approaches, considered as “more sophisticated” than the “basic” software
engineering methods and tools. The Speco projects referred to in the
historical overview are also seen from this methodological perspective.

2/6

A2.1.3 Planning and control of innovation

According to the customer of the two Speco projects, the firm K, the main
reason for its interest in code generation was the view that software would
become a key technology in its business and that plenty of new software
would need to be developed in the nineties. More emphasis was attempted
to be put on specification of the software, whereas the implementation of
the specifications would benefit from automated program generation.
“Considering it in retrospect, there was obviously no solid ground for this
view. The plans were mostly rather rough ideas.”

Apparently for the sake of the strategic intent, the customer wanted the code
generation idea to be studied in a “rather strictly planned way, to find
solutions to research problems and to test hypotheses”. However, the
researchers of TKO seemed to think that “this kind of an investigation
cannot be planned according to any schedule at all.” Although both parties
aimed at solving practical problems with innovations, the views of
entrepreneurs who spent years to tackle small aspects of big issues at a time
– day or night – and a manager seeking systematically for strategic solutions
to corporate-level issues collided with each other.

One of the researchers “spent a year to model the behaviour of the product
[of the firm K] using the RT/SA method”, but the analysis was stopped
when the customer’s manager required another researcher to address the
problem instead, using the customer’s own approach to produce results
faster. This model was reformulated by using the customer’s approach.
Although it took twenty minutes to execute the model by a computer, the
result “was a … breakthrough”. The concepts of the SA/SD modelling
language had been formalised to a degree that made it possible to execute
them on a computer, and also to compile them to other computer languages.

The customer had already planned for the next step: “we were commanded
to develop an RT-SA to PL/M-86 compiler”. The two researchers, the
coming two project managers of Sokrates, presented this work to be done in
the Speco projects to the personnel of TKO “by sketching the classical
unidentified flying object to a drawing board and telling them that we will
build an UFO”. The customer had also prepared some solution elements and
a set of material on research related to code generation, which were handed
over to the researchers. They carried out by themselves “a rather
comprehensive information search … whose results remained quite poor”.
Therefore, they developed their own approach in which “concurrency in the
specification and in the software implementation were made completely
separate from each other” - the basic principles of code generation from
SA/SD models had been invented!

In parallel, Draco and another program transformation system were being
evaluated and found out not to be suitable for real-time embedded software
applications. The road was thus open for extending the self-made
innovation and making it available also to other exploiters than the firm K.
Therefore, the subsequent planning activities carried out jointly by the
researchers and the managers of TKO served the preparation of a continuing
joint research project.

2/7

This project was intended to become a part of a more comprehensive
research program whose planning the management of TKO had activated
already in 1986. The so called research council consisting of the managers
and a few senior researchers was established to help to prepare the plan. The
Speco researchers were responsible for the preparation of a part of the plan
dealing with automated production of embedded systems software.

The research council met several times in 1987. The first two authors of the
plan ([Hakalahti et al. 1987] in Appendix 1) were the director and deputy
director of TKO. Altogether five researchers authored parts of the plan
intended to be a seed for future Tekes project proposals. Code generation
tools were described in the plan as “embedded systems application
generators”. In other words, embedded systems code generation was
associated to program generators used in data processing applications
already for several years, not to the results of such academic program
transformation research as Draco. Based on this plan, the Sokrates project
was proposed to Tekes by TKO in December 1987 ([Okkonen et al. 1987]
in Appendix 1).

The authors of the Sokrates project proposal were the laboratory director
and three senior researchers of TKO, one of whom became the first
manager of the project. In 1987, the idea of code generation for embedded
systems was already being actively discussed in practically oriented
professional journals (cf. [Anon. 1987] in Appendix 1), and such technically
advanced firms as K had carried out small-scale studies of the subject. Yet,
no practical code generators were commercially available for embedded
systems software engineers.

The results of the project were described in the proposal as “methods and
tools” for “the mechanisation of the software construction process” that
would lead to “a quantum leap” in embedded systems software
development. They were expected to be available for trial use as soon as in
1988 and for industrial use in 1989. They would be packaged into a “design
support system” by 1992, if the industry was willing to finance the
continuing work. The planned volume of the project was 15 man-years and
the budget over six million Finnish marks, of which Tekes would pay
almost 80%, VTT about 20% and industry less than 5%. Four firms were
mentioned in the plan as interested in the project - K, N, E and S.

A2.2 BUILDING OF THE CODE GENERATION COMPETENCE

The Sokrates project carried out by TKO from April 1988 to May 1991 was
a part of the Finsoft research program launched and funded by Tekes. The
code generation capabilities of VTT were largely built in Sokrates, which
was the biggest project in Finsoft. It remained also as the biggest project in
terms of efforts and financial volume in the history of the code generation
related activities of VTT. TKO had four projects in the Finsoft program.

2/8

Sokrates was as a project managed by the software engineering section led
by Veikko Seppänen since September 1987. The size of the section was
only about ten people in the late eighties, and Sokrates was thus one of the
core projects of the section. The director of TKO since 1986 when he left
the computer engineering research group of the local university, Dr. Hannu
Hakalahti, was heavily involved in the planning and co-ordination of the
Finsoft program. The deputy director Jukka Karjalainen, a diploma engineer
in electronics and a manager at VTT since the early eighties, became the
head of the subprogram devoted to embedded systems.

A2.2.1 Sokrates - the core code generation project

Altogether as many as fifteen firms, K, N, E, S, Nm, W, I, So, T, P, Nt, V,
Pa, Ta and Th were members of the steering group of the Sokrates project
during 1988 - 1991. The group is still the biggest in all embedded software
related blue projects at VTT. The representative of the firm K, for which the
Speco projects had been carried, was not the R&D manager but a
knowledge engineering expert and a former researcher of TKO. He
managed the software engineering department of the firm.

Most of the other firms of the steering group were not closely related to
TKO either in terms of projects or personal contacts. However, N that was
one of the key customers of TKO. Its representative in the steering group
was a former VTT researcher, who used to work in projects carried out for
the firm K. He was interested in joining the steering group, based on “what
he saw and knew of the plans of the firm K”. The representative of the firm
Th used to be a software engineer at the firm K and a research trainee at
TKO. The firm I was a tool vendor, whose main business was to develop
and sell a commercial CASE tool to support the structured SA/SD design
method applied in the Sokrates project. The founders of this firm had left
VTT in the mid-eighties. The firm aimed at including code generation
features in its tool in the late eighties. The managing director was not
satisfied with the intended role of the steering group of the Sokrates project:

Jukka Karjalainen’s R&D diary notes 1987. 135 p. 24.11.1987,
meeting with the managing director of firm I: “The item of the Tekes
project contract stating that the utilisation of the results is decided by
the steering group cannot be accepted [by firm I]”.

Five of the firms can be characterised as large with regard to the volume of
their embedded software development activities. Their annual project
participation fee was 25 000 Finnish marks. Others, who paid much less for
their participation, were small or not primarily dealing with embedded
systems software. As an example, the firm P was a government authority.
Four of the firms were dealing with machine and process automation
applications, two with electronic instruments and four with tele-
communications. One of the firms was a software house and another an
embedded systems subcontractor.

2/9

The industrial segments in which the potential customers for the code
generation research results might be found in the nineties were thus well
represented in the steering group, in addition to the tool vendor representing
the so called electronic design automation (EDA) business in Finland.

The project involved seven key persons as researchers, four of whom joined
TKO for preparing their Master’s theses as research trainees. One of the
researchers was affiliated with the knowledge engineering section and
another with the real-time systems section of TKO, the rest with the
software engineering section. In 1988, the first period of Sokrates was
ongoing since April. The first results and the future goals of the project
were summarised at the end of 1988 as shown in Frame A2.

Frame A2. Summary of the Sokrates project in November 1988.

Sokrates project summary 2.11.1988.

“VTT’s Computer technology laboratory has investigated and successfully applied real-time

systems’ development and analysis methods for several years. Methods and tools will be developed

in the research for the modelling, analysis, design and implementation of embedded systems. The

project aims at a demonstration of the seamless computer-supported development of embedded

systems from requirements to implementation”.

The original project manager of Sokrates left – rather surprisingly to the
management and colleagues – TKO to join firm Nt in 1989, and another
person from the project group, the one with whom he had carried out the
Speco projects, took his place. His stay at Nt lasted, however, only for a few
months. He returned back to TKO and joined the project group again, but
now as a chief researcher focusing on technical matters.

The Sokrates method on which the code generation solution was based was
described as “formal” by the researchers, who justified the development of
“completely new approaches” by the need to reduce the method’s
dependencies on specific implementation technologies, such as certain types
of computer hardware and operating systems. The goal was thus to produce
a generic solution for the code generation problem.

The general strategy to achieve this goal was to proceed bottom up, starting
from the embedded software to be generated, Frame A3. This was opposed
to many other research strategies at that time, which took a top-down
approach by addressing first higher-level conceptual problems and then
implementing technical solutions to those problems. The reversed approach
was justified by the practical background of the researchers and by their aim
at innovative but industrially applicable results.

2/10

Frame A3. Sokrates strategy for ensuring industrially applicable results.

Tekes application Dno 15/32/89/TKO, 21.12.1989, H. Hakalahti. Appendix:
Research plan 1.4.1990 - 31.3.1991, Antti Auer, 20.12.1989 (revised
28.3.1990).

“The results of the second phase by 31.10.1989: The development of the design automation

solutions started from the last design phases, implementation of the software, in order to ensure

that industrially usable solutions to produce embedded software is developed. The methods and the

compiler have been applied in a real-life example, a hydraulic controller (Synchro) developed by

the Electronics Laboratory of VTT”.

1990 was the busiest year of the Sokrates project in terms of the number of
people involved and the volume of the research being carried out. Perhaps
for this reason only three documents were produced as publicly available
results: a conference paper, a diploma thesis and a presentation for a
national engineering workshop. However, several technical reports and draft
versions of users manuals were written for the use of the steering group.

In one of the publications, the developed results were seen as a “solution in
software crisis” by the researchers, and they were explained to represent an
“AI [artificial intelligence] approach to automatic programming”. A reason
for the latter may be the fact that one of the researchers was a member of
the knowledge engineering section that focused on AI applications. Tekes,
industry and research organisations were investing heavily in artificial
intelligence in another national research program. The background of some
of the existing program generator tools, such as Draco, was in artificial
intelligence. Even the Sokrates code generator prototype was implemented
in Prolog, one of the most common AI programming languages at that time.

A new research topic was addressed in the project in 1990, design of a
communication protocol that would support the use of automatically
generated code in distributed systems. This research was carried out by a
research trainee, who later joined another blue project dealing with formal
analysis techniques. An exchange visit of the chief researcher of that project
to abroad was supported financially by Sokrates, based on a suggestion
made by the management of TKO.

The two projects had something in common in principle, because the
analysis techniques developed by the above mentioned researcher were
intended to be included in Sokrates. However, this was later removed from
the task list of the project. The arrangement of the visit was thus made
mainly for gaining additional funding for the visiting researcher. The results
of the visit were reported as a part of Sokrates, but never actually integrated
into its results.

A piece of data from 1990 shows the first sign of a change in the
methodological foundations adopted in the Sokrates project, at TKO and in
industry in more general terms. SA/SD type structured design methods were
expected to be challenged by the so called object-oriented methods.

2/11

Software engineering section’s strategic plan 1990 - 1995, V.
Seppänen, 4.6.1990: “Object-oriented techniques will emerge in
specification”.

Much of the effort of the last operational year of the Sokrates project was
spent on documentation, whereas the evaluation of the results by an
industrial case study was planned to be done only in four man-months:

Tekes application Dno 15/32/89/TKO, 21.12.1989, H. Hakalahti.
Appendix: Research plan 1.4.1990 - 31.3.1991, Antti Auer, 20.12.1989
(revised 28.3.1990): “Tasks for the third phase: further development
of the methods (24 man-months); experimentation with the method in
real-life embedded systems design case (4 man-months), reporting and
documentation (10 man-months)”.

The aim at developing a working prototype of the code generator was not
achieved. However, this was not considered as any major failure either at
TKO or among the members of the steering group, because it was believed
that the work can be completed in subsequent red projects funded by Tekes
and industry on a fifty-fifty basis. One of the main targets for such projects
would be to transfer the code generation tools entirely to a PC environment.

By the summer of 1991, the Finsoft program and the Sokrates project had
been finished. The results of the project included a variety of methods, tools
and pieces of software (“system solutions”). Licenses of the system
solutions, which were initially not planned to be developed at all, were
expected to be sold as intellectual property rights (IPR) to companies
together with consultation and training services. These solutions included a
program library, a parser generator, an operating system nucleus, an
interface library and a communication protocol software package.
Moreover, a patent application on a scheduling method based on the
developed operating system had been made and was later accepted.

The high-level system requirements definition method QFD (Quality
Function Deployment) had been integrated into the Sokrates design method
in co-operation with a self-funded green research program of VTT in which
members of the Sokrates project group participated. The two methods
covered together the whole embedded systems development process. The
developed Sokrates design method and modelling language were reported to
be “taken in use, with some modifications, in one company of the support
[alias steering] group” and the programming principles and solutions in two
other companies.

The code generator had been used by VTT Electronics Laboratory in two
blue projects. The firm Nm had used the operating system interface
developed in the project and the firm N had produced, based on the Sokrates
scheduling approach, an operating system for its telecommunication
products sold world-wide in large numbers. A space instrument project
carried out by TKO had utilised the communication protocol software
package. A step towards the goal “to develop the code generator further for
industrial use in a separate continuation project” was taken in a red project
being carried out for the firm Nm.

2/12

In financial terms the Sokrates project went almost as planned, except that
over two man-years more work was carried out, because of the large
number of research trainees, whose salaries were rather low (Table A3).
The total expenses of the project were about a million Finnish marks less
than in the first project proposal in 1987. The realised industrial income was
much higher than in the first proposal, although not as high as planned later.
Investments in commercial computing resources (“bought items”) were
rather modest, well under half a million Finnish marks in three years. This
can be contrasted with the joint knowledge engineering research projects
being carried out at the same time, where very expensive special computers
and software products were bought by TKO [Seppänen et al. 1998a].

Table A3. Planned vs. realised figures of the Sokrates project.

Item Planned Realised Difference

Efforts (man-months) 35+39+39=113 40+50+47=137 24

Expenses (1000 FIM,
during three years)

1371+1681+
1999=5051

1389+1722+
1787=4898

153

 Salaries 1257+1329+
1841=4427

1109+1348+
1460=3917

-510

 Travels 235 302 67

 Materials 29 56 29

 Services 159 98 -61

Bought items 195 375 180

Income (1000 FIM) 4510 4340 -170

 Tekes 880+1357+
14631=3700

1100+1300+
1300=3700

0

 Industry 270+270+
270=810

150+245+
245=640

-170

VTT’s financing 220+55+
266=541

139+177+
242=556

15

A2.2.2 Planning and control of the Sokrates project

The planning, co-ordination and control of the Sokrates project involved
VTT Information Technology Department in which TKO belonged, the
focal organisation – especially its three research sections, the internal
supervisory group called the research council, the steering group of the
project and the management group of the whole Finsoft program, in which
both the laboratory director and the vice director participated.

The steering group of the Sokrates project did not control heavily the work
performed by the researchers, but was instead looking for the coming
industrial application of the results. This is described in the external
evaluation report of the Finsoft program as follows [Guy et al. 1991].

2/13

“Each project had a support group that included, among others, a
number of industrial representatives who paid a relatively modest sum
in order to sit on the Support Groups. The support groups were, in
effect, a technology development and diffusion mechanism’.

In the strategic plan of the software engineering section of TKO it was
emphasised that the aim was to apply and carry further the results of basic
research, such as the Draco system evaluated in [Kalaoja 1988]:

Seppänen, V. 1988. Software engineering section’s strategic plan 1988
- 1993. “As a part of research on automating software reuse
processes, the section aims at applying the results of basic research on
transformational systems.”

The expectations of the members of the Sokrates steering group were
somewhat different, but the goal of a more systematic, automated and
manageable approach to embedded software development was shared:

Karjalainen, J. 1988. Personal R&D diary notes. 112 p. The first
steering group meeting of Sokrates, 14.6.1988.

“[Firm T]’s expectations: use of the SA method, support ‘close to the
code level’.

[Firm V]’s expectations: faster projects, faster software development,
trial use of SA/SD, software configuration.

The expectations of [firm S]: costs and elimination of errors
important; automated code generation might be useful in simulation,
software factory concepts; own operating system in the future (small).

[Firm W]’s expectations: documentation support, semi-automatic
code generation; software factory thinking.

[Firm Nm]’s expectations: the use of SA, solving of maintenance
problems, easiness of configuration.”

Tekes, as the main funding source, considered it important to bring
researchers and practitioners together, and to help to initiate early enough
development projects based on prototypes developed in Finsoft.

The market of this kind of projects were seen as large as fifty companies, a
considerable number of the total number of firms developing software-
intensive products in Finland in the turn of the nineties:

Insinööriuutiset 23.3.1988: “Although Tekes will not aim at
developing products but prototypes, the purpose of the industrial pilot
projects to be carried out in the middle of the program is to get
researchers closer the real world, in order to evaluate the prototypes.
About 50 companies will be involved in the program.”

2/14

The aim of the code generation researchers was to develop original methods
and tools to address industrial embedded systems development as a whole:

Insinööriuutiset 23.3.1988: “The development of embedded systems by
using traditional methods and tools is expensive, slow and difficult.
One of the basic ideas in VTT’s [Sokrates] project is to integrate
different design and implementation phases to each other, to analysis
tools and to commercial implementation tools. Methods and tools will
be developed [by VTT] in the research for all these tasks.”

The following piece of the case data from 1989 indicates that the steering
group was already looking towards the industrial application of the results:

Minutes of the Sokrates steering group meeting, 1.3.1989: “Regarding
the continuation of the development of the code generator [in 1989],
the goal [set by the steering group] is to be able to apply the
generator in limited industrial usage”.

The planned industrial use of the results of Sokrates included pilot studies
carried out both within the project and as distinct activities, Frame A4.

Frame A4. Early planning and control of the Sokrates project.

Minutes of the Sokrates steering group meeting, 12.10.1988.

“Discussions were conducted mainly on the evaluation of the developed methods by the pilot

study. It was decided that the pilot system can be developed by the project group, but the industrial

viewpoint must be taken into account in its design.”

Tekes application Dno 25/32/88/TKO, 28.12.1988, Hannu Hakalahti.
Appendix: Project plan for the period 1.4.1989 - 31.3.1990, Ari Okkonen,
7.12.1988.

“Utilisation of the results will be done in separate projects where tools are developed for industrial

embedded systems developers, based on the pilot system produced as a part of the Sokrates

project. This pilot system can be used for demonstration and small-scale utilisation”.

The management of TKO saw code generation as a central research and
development topic. Expectations of the usability of the results were high,
the laboratory director and the department manager were looking forward to
use the research results to carry out fully contractual projects:

TKO’s annual plan 1990, H. Hakalahti, 15.11.1989. “In 1990, ...
design automation [Sokrates] ... will remain as a central software
engineering research area”.

TKO’s long-term plan 1989 - 1994, 19.4.1989 by Hannu Hakalahti:
“Embedded systems code generators for certain constrained
application areas will become available at the end of the planning
period (1994). [Contractual] product development projects serve as
the application laboratory for the methodological research being
carried out at TKO”.

2/15

TKO’s 1989 results review (draft), department manager Esko
Heikkilä, 30.11.1989. Research focus (d) [stands for “good”]: “Focus
on embedded systems and research on new technologies that will be
used in them meets the national challenges and creates a good basis
for versatile application development”.

This technology diffusion strategy was justified in the strategic plan of TKO
from the viewpoint of the expected purchasing policies of the different
types of its customers as follows:

TKO’s long-term plan 1991...1995, H. Hakalahti, 22.3.1990: “[TKO
participates in industrial R&D when]: a company wishes to have an
external viewpoint to the development of its products, a company lacks
expertise possessed by TKO, a company wants to have the latest
technological knowledge, or a company wishes to manage market
dynamics through R&D subcontracting”.

The first outburst of disagreement between the management of TKO and the
code generator researchers took place already in 1989. One of the code
generation researchers, assigned to an internal parallel systems interest
group, saw himself as a “clown” with regard to his responsibilities versus
his formal authority to market research results and manage the resources
needed to carry out projects:

Memorandum on TKO’s Schaffner 22. - 23.3.1989. [Code generator
researcher]: “An ordinary researcher is not allowed to talk to
industrial managers. The section head decides by himself about the
use of the section’s resources. The [concurrent systems interest]
group should not study the theoretical foundations of concurrent
systems. I am not satisfied with the role of a clown. I’ll quit now.”

The remark that the group should not focus on the theoretical foundations of
concurrent systems indicates some disagreements within the group. The
code generation researcher describes the activities of the interest group from
his viewpoint as follows: “The parallel and real-time systems interest group,
the so called R Group, was established at TKO and I started to manage the
group. One of the activities of the group was to help to organise continuing
studies. We arranged, together with the great theorist [one of the members
of the interest group] examinations on textbooks … I also performed a
licentiate course titled to Theory of Automata (Gosh!).”

The steering group of Sokrates was not satisfied with the management of
the project - concerning not the theoretical foundations of the research, but
the question of how the plans, state and results of the project were made
available to the steering group in technical and managerial documents.

2/16

Jukka Karjalainen’s R&D diary notes 1988. 112 p. Minutes of the
steering group meeting 22.11.1998: “Limited number of
documentation criticised.”

Minutes of the steering group meeting 18.1.1990: “By the next
meeting, a list of the documents to be written during the next period
must be provided. An updated list of documents must be presented
starting from the next meeting.”

Minutes of the steering group meeting 23.3.1990: “The plan of the
next period must show in details the concrete tasks and reports that
will be done before the next meeting.”

Minutes of the steering group meeting 21.6.1990: “The agenda of the
next meeting should include a specific item in which the
documentation plan will be discussed.”

Minutes of the steering group meeting 1.11.1990:“It was noted that
the status report must in the future absolutely be sent to the steering
group before the meetings.”

A2.2.3 Evaluation of the Sokrates project and its results

Finishing of the Finsoft program involved several formal evaluations of the
research results and process. One evaluation of the Finnish information
systems and computer science research, initiated by the Finnish Academy
and carried out by famous foreign scientists, had already been completed in
1990. The management of TKO included Sokrates in this evaluation:

Veikko Seppänen’s R&D diary notes 1990. 5.5.1990: “[It was] Agreed
that [the Sokrates project manager] will give a fifteen to twenty
minute presentation on design automation (including slides and the
Sokrates video), Sokrates demonstration possible.”

The evaluation was very negative for TKO as a whole, and for the Sokrates
project in particular. The project was deemed to deal with known problems
and scientifically uninteresting solutions [Aho et al. 1990]:

“The Computer Technology Laboratory is clearly not oriented
towards research. … Consequently, the best opportunities for the
transfer of advanced technology and methodology from the laboratory
(TKO) to industry could be missed. An example can be found in the
software engineering section, where SA/RT was chosen because it is
frequently used in industry. The project SOKRATES is even built
around this technique, without the concern that more advanced
approaches (VDM, Z, SOLE, or others) would lead to a technology
jump in industry”.

2/17

This view was neither accepted by the Sokrates researchers nor the
managers of TKO, but was seen as untrue and unfair, based on a
misunderstanding of the evaluators concerning the role of VTT. The results
of Sokrates were considered as very promising and useful by TKO itself:

Evaluation of TKO’s results from 1990, H. Hakalahti. “A pre-
competitive version of the Sokrates-SA method is in the documentation
phase. Industrial Sokrates-SA piloting carried out [in 5 companies
that are listed, the firm Nm has] acquired for funding [from TEKES]
to apply Sokrates-SA together with TKO”.

A group of British technology management and transfer experts evaluated
Finsoft later in 1990. Sokrates did very well in the evaluation, this time the
pragmatic aspects of the project were seen as a reason for success – also at
TKO. The evaluators judged that the results were largely based on existing
industrial practice, but also comparable to the best European results of
academic research on automatic programming [Guy et al. 1991]:

“SOKRATES was an ambitious project in terms of scope, though it
came to adopt a more pragmatic approach. The work in this area is on
a par with world level of achievement. The SOKRATES works stands
comparison with some of the best automatic programming work in
Europe. … Apart from developing its own real-time operating system,
it built on existing industrial practice. This enabled good results to be
achieved.

The evaluators were particularly impressed with the ... SOKRATES ...
projects, all of which demonstrated an admirable understanding of
current scientific knowledge and methodological approaches in use
within the international community”.

As a whole the evaluators saw the output of VTT in the Finsoft program
poorer than what was anticipated [Guy et al. 1991], which further
emphasised the weight of the positive evaluation of Sokrates:

“Work performed by the various units of the Technical Research
Centre of Finland scored consistently less than projects performed
either in industry or in the academic sector”.

The laboratory directors of VTT responsible for several Finsoft projects
were not satisfied with these remarks. They emphasised the aim of
industrially applicable results, i.e. the technology transfer goals:

Peltola, E., Hakalahti, H., On the participation of VTT in the software
technology program (FINSOFT) and its evaluation, memorandum
delivered to M. Mannerkoski, J. Forsten, E. Heikkilä, 20.8.1991.“...
the critic [of VTT’s achievements in the program] by the British group
involves especially the external impact of the projects ... the questions
are such that basic research oriented projects in new areas do well, by
definition. The industrial usability of the results especially in Finland
is not enough emphasised in the questions.”

2/18

An industrial evaluation was also performed for the program. Sokrates
earned very high scores indeed in this evaluation, as shown in Table A4.

Table A4. Industrial evaluation of the Sokrates project.

Characteristic of the project Score
(A best, E worst)

Goal setting A

Timeliness with regard to needs A

Timeliness wrt. technological readiness A

Usefulness A

Time-effectiveness A

Interest of the support group A

Validation of the applicability A

Cost-effectiveness B

Industrial impact C

Goal achievement C

Effects on competitiveness C

In addition, the project was commented verbally by nine of the members
and six of the managers of the steering group firms. The comments are
summarised as follows in [Saukkonen 1991]:

Evaluation of the usefulness of the project (the steering group’s view):
“The goal was ok, but special method development was too much
emphasised, because a particular version of the SA method was
developed. The project group could concretise the results further and
make the developed tools simpler. The project group should develop
its activities based on the comments given by the support group and
ensure that agreed tasks will be implemented.”

The results of the formal evaluations of the competence development phase
can be contrasted with the case data acquired several years later, in this
research, by interviewing the different parties involved directly in the
Sokrates project. They include representatives of Tekes, members of the
steering group, the code generation researchers, their colleagues at VTT and
the former line managers of TKO.

A2.2.3.1 Tekes – the limits of technologies must be tried

The representative of Tekes in the steering group of the Sokrates project
from 1988 to 1989 emphasises that “ideas are developed in research
programs, not products … I do not consider immediate application of the
results [of joint applied research] as important”. However, in projects that
aim at combining different ideas it may in his opinion be possible to find
technological limits, which is very useful information for industry.

2/19

The experiences of Tekes from the Finprit program that preceded Finsoft
were, according to the interviewee, rather negative concerning industrial
help and feedback for guiding and evaluating research programs. Therefore,
the opinions of researchers played a central role in creating the Finsoft
program. The sole number of industrial representatives in the steering group
of Sokrates was considered as a guarantee for the kind of industrial
guidance that could be reasonably expected.

The diffusion of new ideas and possibilities during the project was more
useful than immediate application of results – “it is no use to speculate on
great the grandchildren [of applied research projects]”. Therefore, the
“somewhat mixed goals of the [Sokrates] project that can be seen from the
final report” could be tolerated by Tekes. The evaluations of Finsoft were
heavily criticised by the interviewee: according to him they focused too
much on the comparison of the initial goals and the final results, in a
context where “the best that can happen is the changing of the goals during
the project as a result of learning”.

After almost ten years, the promises of fully generic code generation
technologies are still rather poor. The other representative of Tekes in the
Sokrates steering group from 1989 to 1991 pointed out, however, that the
promises were considered as good in the late eighties. Some of the ideas had
already been tested in industrial pre-studies, such as the Speco projects
conducted for the firm K. Therefore, the low number of the spin-off and
continuing pilot projects of Sokrates in the early nineties was a pity also
from the viewpoint of Tekes. One of the reasons might have been the weak
role of the steering group. On the other hand, the researchers were in the
opinion of Tekes “enthusiastic”, and only “in the final phase the pace
slowed down a little”.

Because “Sokrates was loaded with expectations”, which were realised only
partially, it was obvious that the formal evaluation of the results included
also some negative remarks. Yet, Tekes did not know anything for example
of the ultimately conflicting viewpoints of TKO and the tool vendor firm I.
It was only “wondering why the firm was not that keen on applying the
results”. Tekes considered the commercialisation of the results from a very
pragmatic perspective: although the role of VTT “is not to go too much
towards commercialisation, there are sometimes no alternatives”.

However, to be able to commercialise the results, a larger number of spin-
off projects would have been needed. Later on in the nineties, “when the
object-oriented approaches to component-based software development
emerged, it became more difficult to continue investing in commercial code
generation technologies”, but at the end of the eighties it was “a card that
needed unquestionably to be played.”

2/20

A2.2.3.2 Industry – interested in learning the limits

Although the steering group criticised some managerial aspects of the
Sokrates projects, it was interested in the topic and keen on seeing the
results. Yet, many of the members of the steering group that we interviewed
told that they did not consider to use the results immediately or at all.

Moreover, their interest in code generation from SA/SD specifications fell
rather rapidly in the mid-nineties, in part due to the new object-oriented
design methods that were becoming popular. In the late eighties
“experiences from the comprehensive use of the SA/SD method” were still
sought, in addition to new ideas on code generation. “A specific approach to
the use of SA/SD [the Sokrates method], … information on the possibilities
and tools that were available for code generation” and “knowledge of
software development processes” were achieved according to the industrial
participants of the Sokrates project.

Some steering group members suspected that the change of the “mind set of
ordinary programmers” towards the use of automated programming tools
was, after all, too difficult. Code generation was seen as a multi-
dimensional problem where not only different types of programs but also
different design styles and methods would have needed to be mastered.
Some firms, such as N that actually took code generation as a part of its
software development process, considered it “easier to control” their own
code generation methods than such generic approaches as Sokrates.

Industrial code generation methods were often much more limited, but
Sokrates was on the other hand suspected to “take a too big bite”, instead of
preceding in smaller and more concrete steps and acquiring feedback after
each step. Interestingly, this is much the same difference of viewpoints as in
the Speco projects, but in a reversed way – the industrial people would have
liked to see smaller endeavours at the expense of a comprehensive vision.

The code generation researchers were claimed to be too self-satisfied, they
“had their own firm views that were difficult to affect by a single party of a
large joint project ”. Yet, the opinion of Tekes on the high motivation of the
researchers was shared by many industrial parties of the project: “I still
remember the guiding star drawn by [the project manager of Sokrates] at
which they were aiming”.

The software designer of the firm N, who had built a simple code generator
for producing C programs from SA/SD state machine models in the Winter
1988 - 1989 joined the knowledge engineering section of VTT in 1989.
However, he did not work for the Sokrates project, but started to carry out
knowledge engineering research instead. He points out that “thinking
afterwards, I had surprisingly little to do with VTT, if the Sokrates project
was already going on then [Winter 1988 - 1989]”. It is even more surprising
that TKO did not take any advantage of a person, who had just built an
industrial code generator for a firm that took part in the Sokrates project.

2/21

Veikko Seppänen, the head of the software engineering section, initialised
the recruiting of this person. However, he was actually affiliated with the
knowledge engineering section that did not yet provide any human
resources to the Sokrates project in early 1989.

The designer was himself “very interested indeed to continue towards a full
code generator [instead of a simpler state-machine based generator]. No one
apparently even asked me to join the Sokrates team. They seemed to have
all scientific aspects [of code generation] already sorted out. I was interested
in doctoral research, but ended up in choosing another topic.” The code
generator implemented originally by this person is still in use at the firm N.
Its power lies in that “it does not try to be more than it really is. It does not
have any fancy theories behind and its is tailored to produce code from
certain kinds of state machines for the software of a certain company …
[but this leads to] benefits in efficiency”.

Two other firms of the steering group built similar kinds of application-
specific program generators in the nineties. At least yet another two firms
purchased and utilised the commercial code generator sold later by the firm
I. Following of the Sokrates project was considered as “experimental” by
these firms that wanted to use commercial tools in their actual software
development process. The “extensive documentation” of the project was
pointed out as one of the main results from the experiment. The SA/SD
method was used for several years in the nineties by the firms which
became familiar with it during the Sokrates project, until “the time ran over
the method”. One reason for this might have been that “the top-down
approach to design [starting from a high-level specification and omitting
implementation details] is not possible, because a certain context for reusing
existing software components is always available.”

The object-oriented methods that challenged structured methods as an
alternative paradigm in the nineties provided explicit means to make use of
existing software components. This situation can be contrasted to the design
of completely new embedded software for industrial applications in the late
seventies and early eighties, such as the work done by some of the key
members of the Sokrates project. Legacy software was one of the reasons
mentioned also by the firm K for not utilising the results of the Speco and
Sokrates projects – the design of a main revision of the software embedded
in the company’s products had “proceeded rather far, until even close to
appropriate tools were available”. The timing of the development of the
code generation technologies did not thus match with the planned schedule
of the new products for which new software needed to be produced.

Another barriers for taking the results in use mentioned by the steering
group members were the not-invented-here problem, the lack of measures
for the possible benefits and the generator being “too much a black box that
magically produces code”. Some programmers of the participating
companies had complained that “the basic principles and functionality of
the generator were not visible enough”, and that “the method required too
detailed modelling”. The members of the steering group claimed that they
“did not have enough power to remove these doubts”, especially if the
programmers were professionals interested in “playing with the code”.

2/22

A2.2.3.3 Researchers – the limits and possibilities were shown

The researchers commented the results of the Sokrates in 1998 by stating
that “the main initial goals were achieved; it was possible to generate the
full code of an embedded system from a specification”. Co-operation with
the firms participating in the project was considered as “at least reasonable”.
The four diploma theses, nine international publications and the first
software-related patent ever gained by TKO were also mentioned as the
main achievements of the project. The use of the Ada language as a part of
the Sokrates method after “a hectic argumentation” of this decision was
seen as a failure. Although some members of the steering group had spoken
for the use of the C language instead, they “did not oppose the use of Ada”.

The project group thought that they learned new skills in compilation
techniques and in understanding the behaviour of real-time systems. The
arrangement initiated by the management of TKO, by which the exchange
visit of another researcher was supported, was considered as “a big
mistake”, because it consumed financial resources by which some of the
Sokrates tasks that were not finished could have been completed. In the
final report of the Sokrates project the researchers describe the results and
the needs of further work in Spring 1991 as follows:

“The embedded systems design automation project (SOKRATES) has
produced practical methods, languages and tools, by which the design
of embedded systems can be made more efficient and the quality of its
results can be improved. The quality of the code produced by the code
generator [developed in the project] is fully suitable for production
use, with respect of its size and speed.”

“The most remarkable need with respect to the practical utilisation of
the results is to make the code generator available for industrial
usage, in a PC environment. This is planned to be carried out in a
distinct applied research project”.

The hand-written comments of Veikko Seppänen in the manuscript of the
final report (Frame A5) indicate that he saw some of the conclusions as a
twisted reality used to explain the results in the best possible way. For
example, five of the eleven conference papers listed in the final report were
actually produced by the exchange visitor, who only got financing for his
trip from the Sokrates project and did not actually took part in the research.
As another example, the close co-operation with the green research program
of VTT emphasised in the report meant, according to the hand-written
comments, that the same people worked in both projects.

The demonstration system built by the project, a toy elevator constructed
from Lego pieces, was not considered as very convincing by Veikko
Seppänen in 1991 – the demonstration of a change made for the control
software of this toy elevator, by using the generator, was seen as too simple
for reasons that were not explained. Making of this change was one of the
highlights of the Sokrates video used to illustrate the results of the project.

2/23

Frame A5. Extracts from the summary of Sokrates results.

Sokrates project, administrative final report, 18.6.1991, Dno 7/53/91TKO.

“2.4 Results. Languages: The CML (Component Modelling Language) language developed for

describing real-time phenomena has been created based on the Ward-Mellor and Ada languages.”

Veikko Seppänen’s hand-written comment: “Yet another impractical theoretical language.”
“Rea-C-Time extends, by the use of macros, the C language to include state machines and non-

interruptable (non pre-emptive) scheduling. Other results: Dr. […] developed ... new methods for

making reachability analysis more efficient. The results produced by the financing provided by the

Sokrates project are shown in the section 2.6. Publications and reports.” Veikko Seppänen’s
hand-written comment: “Bullshit connection”.

“4. Publication of the results. The results of the project has always been presented to the support

group in its meetings, which have been held every three months. INSKO’s courses and company-

specific training has been given on the methods and languages. The results of the project have been

presented in the Finsoft seminars (3 times), in the STeP workshop in Fall 1990, in Blanko

workshops in Fall 1989 and 1990, in a presentation given as a part of the Oulusoft training

program, and in articles published in Tekniikka&Talous and Kaleva. The toy elevator was

presented in Heureka’s exhibition “Do machines think?”, for three months in Fall 1990. The

elevator was also presented in TV’s children’s program in the Uusi Suomi newspaper".

"5 International co-operation and its utilisation: 4 course travels [1 in OSTU]: CASE Symposium

and company visit in Boston 1990, SD course and a company visit in London 1988, ESPRIT

summer school in Nice 1989, software quality course in Methuen, USA, 1990. 3 conference travels

[all to Euromicro: Zurich 1988, Köln 1989, Amsterdam 1990]. The project supported […]’s stay at

Telecom Australia 9/88 - 6/89".

"Conclusions. In order to test the [developed] technology, an own pilot system (a toy elevator) was

built. The development of the whole control software for the system too 6 man-days. By using this

system, it could be demonstrated how a certain functional change of the requirements could be

implemented as a visible system characteristic in 20 minutes.” Veikko Seppänen’s hand-written
comment: “If [the designer] knows elevators.”

A2.2.3.4 Colleagues – but was it done in a decent way?

Although the Sokrates project group was commented to be rather self-
sufficient, it did have many discussions with the colleagues working at TKO
and some other VTT laboratories. Several other researchers were involved
in the preparation of the project as a part of a larger proposal of an
embedded systems research program. Later, both the research council and
the parallel and real-time systems interest group of TKO were available for
changing thoughts with colleagues. Even the management group of the
Sokrates project was at some point combined with the management groups
of a few other Finsoft projects. Yet, the general feeling of the colleagues
was that the code generation researchers were united against other people, a
homogenous group that even dressed similarly – in special outdoor trousers
and coats called the “Sokrates uniform” according to an inside joke.

2/24

In principle, some of the topics being pursued by the colleagues could have
been associated with code generation. The above mentioned formal analysis
is an example of this kind of a possibility, another example is the so called
executable specifications. However, integration was not easy managerially
because of the strong role of individual projects.

Moreover, some of the colleagues claimed that it would have been difficult
also technically, in part because the code generation principles were “at the
alchemist level”, i.e. seen defined in an ad hoc manner and not explicitly
documented. One colleague suspected that the exact documentation of the
approach “would have required too much work” and was therefore of no
interest to the code generation researchers, who not only aimed at rapid
exploitation of the results but also did not have much experience from
scientific research. Another claimed that the documentation of the “SA
theory” was impossible:

“It is worth noticing that SA/SD lacks some very essential aspects: the
so called thread alias the execution semantics. Therefore, it was an
orthogonal approach to the others. It is not wrong, but it lacks a
mechanism …In my opinion, the group had clear interest in
theoretical and scientific questions. At the beginning, the group
reacted positively to critic. There were many things … that the group
treated well … later the opinions [of the group] become somehow
distorted and tangled. My interpretation is that they were attempted to
be forced into the “SA theory” – actually there is no such theory. SA is
just a graphical notation and some fundamental but simple things”.

These colleagues preferred the systematic, “decent” research approach
based on analysis and application of related research, use of known theories
and research methods and scientific publication of the results. Some of them
saw the question as an educational problem: “One thing is that I and [a
colleague] had a more theoretical education gained at the Helsinki
University of Technology. This was then, and still is, an inflammable topic
in Oulu”. The code generation researchers themselves thought that they
followed the decent approach, but that their main goal was to produce
industrially applicable results and not only research papers. The colleagues
thought that both the papers and true industrial references would have been
necessary, to “be credible” both scientifically and industrially.

One of them, however, shared the opinion of the code generator researchers
that the management of TKO was not willing to support the
commercialisation of the results, because it had a negative attitude towards
taking of risks. The idea of generating C programs from SA/SD models was
good also according to the colleagues, except that the power of the method
was seen in its informal nature – the method was characterised as a system
“sketching technique” by one of the colleagues. Code generation required
very strict system models to be built, which was against the principle of
informality. While the code generation researchers told that they performed
thorough studies of traditional compilation techniques, one colleague
claimed that they did not learn much from the studies: “if one does not
ascertain anything, it is easy to believe having invented everything”.

2/25

The use of the Ada programming language as a part of the Sokrates system
modelling method was seen “clearly harmful”. The use of C instead would
have been much better. This was the case both in the commercial code
generator of the firm I and the Reagenix generator of TKO developed later
in the nineties.

The choice of the toy elevator as the main demonstration system of the
project was considered as “excellent”, but one of the colleagues claimed
that “it does not serve as an example of the generation of real-time software,
although this was claimed. The software was modest in terms of
computation and it was executed by using the primitive semantics that are
completely inappropriate for real-time systems”. Scientifically, a colleague
viewed the work as inexperienced: “Articles in the Step seminar do not have
much of any value … no scientific results were produced in the project”.
Comparison of the approach to Draco and another transformation system
was seen as a wrong choice, and the use of a research trainee for this
strategically important work as a mistake: “Another, better approach would
have been to write an article for example for the IEEE Transactions on
Software Engineering journal, to gain feedback from real top researchers”.

The management of TKO was criticised for tolerating the lack any scientific
approach in the Sokrates project. One of the colleagues suspected that the
reason for the limited interest in using the generator was that it was
technically poor as a tool, i.e. it did not function well and was badly
documented. While the evaluators of the Finsoft program characterised
Sokrates as “an ambitious project in scope” in 1991, a colleague
characterised is as too ambitious: “The fact that [the firm N] built a simple
but widely used code generator was an important matter that should have
taken into consideration”. The aim of usefulness was actually seen as one of
the pitfalls of the project:

“The project maybe also illustrates the dangers of the so called useful
research – in other words, the kind of research that we carry out [at
VTT]. There is no shortcut to the truth. The goal to be practical did
not solve any on the problems of the [Sokrates] project, but some
theoretical investigations would have solved. In my opinion the project
clearly drifted to the thinking of Lysenko, which is the danger of
publicly funded contract research in more general terms … The
theories of Lysenko were absolute nonsense, he collapsed the good
reputation of the Soviet genetics and finally destroyed the farming”.

A2.2.3.5 Managers – VTT cannot commercialise the results

The interviewed managers of TKO pointed also out the firm K, especially
its R&D manager, as the father of the code generation research. At some
point in the early eighties he “draw a picture of an automated machine that
produced software”. The managers considered that code generation was
“well marketed from the financial point of view” to the Finsoft program.

2/26

The managers opinion was that “the pragmatic approach taken by the
Sokrates group was all right” and that the difference of viewpoints
regarding the “missing theoretical foundations” between the project group
and some other researchers of TKO was not a big problem: “The Sokrates
project was based on industrial work [the Speco project], the timing was
correct, and the project was not too scientific”. In other words, the
management viewed the project more as engineering than science.

The relations to the firm I worried the management: “[The firm] saw VTT
as a competitor, so that Sokrates would have spoiled their markets … There
were some hard discussions …. [The firm] joined most likely the support
groups of the Sokrates and Iptes projects in order to know what we were
doing, not for really wishing to utilise the results or co-operate”. The
management hoped that some other tool vendor would become interested in
the Sokrates results, but “we did not manage to create a strategic alliance
with any CASE tool vendor … [and] the idea of VTT selling the tool was
not good.” When the work after all drifted towards the development of a
packaged software tool, a failure could be expected, because at VTT “the
traditional approach has been to take rather small risks by narrow
financing”. A good touch to the end market would have been needed, as
well as some business decisions: what are the constraints of this kind of
work at VTT, how big a risk will be taken, for how long the results will be
waited, what are the practical constraints of the tool?

Answering to these questions would have been difficult, because VTT as a
service organisation has typically relations “only to the R&D departments of
its clients, not to all decision makers”. An additional issue in this regard was
that the “Sokrates way for doing was the one of a prima donna - not to look
around, because the others do no not exist”. Although the researchers “had
the artistic freedom for doing the research, … [the managers] controlled the
direct marketing of the code generator. Our viewpoint was pragmatic,
selling was not the business of VTT”. The managers tried to convince the
researchers to establish their own company to commercialise the results, but
without a success. They concluded that the researchers were not real
entrepreneurs, after all.

According to the managers of TKO the Finsoft program was heavily
researcher-driven, “industrial opinions were not taken that seriously, the
steering group had little controlling effect”. The program-level steering
group “criticised that Tekes had already made decisions concerning the
projects to be launched”. Afterwards, one could speculate if indeed the
plans were realistic at all. However, such industrial examples as the Speco
project indicated that something could come out. Code generation was seen
by the managers as relevant even today, but “it was after all unrealistic to
believe that VTT would develop a tool that affects considerably the whole
industrial software development process”. The managers did not recall in
the interview the reasons for financing the exchange visit from the budget
of the Sokrates project, but suspected that “maybe it was difficult to find
money for [the] trip - arrangement of such trips was very bureaucratic at
that time, and perhaps this was the easiest way. There was, of course, no
real link between [the visitor’s] work and Sokrates”.

2/27

A2.2.4 Marketing of code generation during the Sokrates project

The situation of TKO in the domestic market of the research and
development of embedded computer systems was rather good in the late
eighties and early nineties, in the sense that it had a good share of the
market and many existing and potential customers. Moreover, it was quite
proactive in establishing and maintaining its customer relations. The
definition of the strategic business areas of TKO was done in 1990 based on
the blue and red portions of the project portfolio, Frame A6.

Frame A6. The SBA definition of TKO in 1990.

TKO’s long-term plan 1991...1995, H. Hakalahti, 22.3.1990. TKO had 1989

about 25 industrial customers. The volume of industrial income was about 6 MFIM. 65 persons

worked for TKO. The annual volume of embedded systems development in the national electronics

companies is about 300 man-years, which is equal to about 1000...2000 MFIM/year. TKO’s

portion of the subcontracting market of 120 man-years is about 20 man-years or 16 %.

TKO’s business plan, J. Karjalainen, 1.8.1990.

“SBA1. Applied research projects. “Customers include Tekes, (KTM) and companies. The needs

of companies involve following of top-level research, identification of new ideas based on the

follow-up, and development of thereby possibly produced prototypes into commercial products.

The ‘technologies’ of SBA1 include embedded systems skills, contacts to outstanding international

research and development of a framework for national co-operation. Development of business

opportunities: TKO is a market leader in SBA1. Strategic goals: CASE and AI tools are best in

Finland".

"SBA2. Development projects. Customers’ needs involve rapid development of mass-products or

processes, adjust the load of their own development resources, gain special knowledge of product

development and external insights in addition to their own design expertise. The ‘technologies’

used by TKO include embedded systems computer technologies, project management principles,

usage of the results of research projects and good contacts with funding bodies. The laboratory is a

market leader in SBA2. Strategic goals: A special goal is to increase the number of development

projects carried out for machine and equipment manufacturers. The central technological expertise

that will be offered include artificial intelligence and software engineering”.

Marketing of the Sokrates project had succeeded excellently, in terms of the
number of parties involved and the amount of external funding gained. The
manager of the project made an overview of his principles to market
research and development services in a planning meeting of TKO in 1988:

Veikko Seppänen’s R&D diary notes 1988. TKO’s Schaffner
19.9.1988: A [code generator] researcher’s view on marketing: “How
to make the customer understand that his needs can be satisfied by
using a technology developed in a research project: by a concrete
demonstration system developed as a part of the research; by
successful goal setting (concrete, technologically demanding, e.g. a
piano playing robot). How research can help a customer to
understand his needs: by showing of a concrete vision, mutual
“analysis” discussions.

2/28

How research can help a customer the believe in our skills: by a
successful project, writing of articles, giving professional training
(INSKO etc.), application of a demonstration system. How research
can make a customer to give us an assignment: by good personal
relationships (established in the steering group of the project),
marketing of the use of technology, not resources.”

TKO started to market code generation related red projects to its regular
customers and the firms participating in Sokrates very early, with a goal to
gain industrial references on the applicability of the approach. The
expectations concerning the use of the generator were mostly positive:

Veikko Seppänen, Memorandum of a regular key customer meeting
(the firm K), 11.1.1990: “Potential co-operation topics: pilot use of
Sokrates. The goal would be to gain experimental information on the
usability of the generator, the quality of the resulting code, the size of
the code (vs. hand-written code), and the effects of differences of the
Sokrates-SA method and the basic-SA method”.

Jukka Karjalainen’s R&D diary notes 1990, 164 p. 12.1.1990, Internal
Finsoft meeting: what after Finsoft: “Customer-specific versions of
Sokrates, Sokrates courses, textbooks. 30.3.1990, Internal Finsoft
meeting: Next: code generator for the 8051 processor?” 30.3.1990,
Marketing meeting (the firm S): “Own approach to code generation in
use (produces code skeletons), does not believe in automatic code
generation for several years, Sokrates produces too much code”.
18.12.1990, discussion with an electronics firm: “Sokrates and code
generation are interesting”.

Veikko Seppänen’s R&D diary notes 1990. 4.5.1990, marketing
meeting (the firm S): “Sokrates trial use interests, Ada-type mini
specifications are being used”. 9.8.1990, marketing meeting with a
telecom company: “Conclusions: use of Sokrates? Production of test
cases from specifications.”

The annual review of TKO from 1990 includes the first public references to
red projects based on Sokrates results:

[R&D manager of the firm Nm]: “When developing our new [...
product] we have adopted the design, implementation, and testing
methods of the Sokrates project. In my opinion we have got clear and
efficient improvement in our design”.

Within the software engineering section, the outlook for subsequent
technology transfer projects, after the “transferring of the understanding of
technology” in Sokrates, were considered as very good in 1991:

Software engineering section’s long-term plan, V. Seppänen 9.3.1991:
“The possibilities for the application of the [Sokrates] results and
starting of continuing projects based on them are good, discussions
have been carried out with several companies and VTT’s laboratories.

2/29

A plan on the application of the results and the preparation of
continuing projects is being done. The goal is a 3 - 6 man-months’
volume in 1991 - 4. The total technology transfer goal is 3 - 5 pilot
projects in 1991 - 4. The main target is machine automation systems.”

The marketing plan of TKO for 1988 - 1989 aims at “the diversification of
the customer base to include at least four big regular customers and several
smaller customers”.

One direction of diversification was machine automation, intended to be
one of the main customer segments for red code generation related projects.
Market analysis of selected machine and equipment manufacturing
companies had been carried out for TKO as a part of a VTT level marketing
project in 1989:

Market analysis of selected machine industry companies, M.
Oikarinen, 31.3.1989. “It is difficult to evaluate the most interesting
products of the industry from the viewpoint of [the VTT Computer
Technology] laboratory. The volume of research in the industry has
increased more rapidly than in all industries on the average... R&D
expenditure was 1,4 billion FIM in 1986.”

Forty firms had been put into a marketing mailing list and sixteen analysed
in more details. Two years later from this, in 1991, TKO planned that “the
Sokrates code generator will be modified for the needs of machine
automation firms”. It co-operated at that time with ten machine and
equipment manufacturing firms and with fifteen electronics firms. Several
marketing planning meetings were conducted by the line managers and code
generator researchers, to support the transfer of the results of the project
into industry on a fifty-fifty basis required by Tekes.

Alternatives to commercial tools that could be integrated with the code
generator were sought, due to the growing disagreement between TKO and
the firm I. The firms N and S were developing their own code generators,
but were not applying the results of the Sokrates project directly. The
managers of TKO urged the researchers to plan for continuing red projects,
which were seen as the products of the laboratory:

TKO’s marketing plan 1990 - 1991, 2.4.1990. “It is very important
from the viewpoint of the operating principles of the laboratory that
the results of Finsoft will be applied in industrial projects dealing with
the development of new products. From the viewpoint of marketing
communications especially the Sokrates project is important.”

TKO’s annual plan 1991, H. Hakalahti, 4.10.1990: “TKO is a service
unit and its product type is project-based research and development
done in its R&D area”.

Veikko Seppänen’s R&D diary notes, 1991. 27.3.1991, internal
Sokrates marketing meeting: “The present status: SA consultation for
five firms including E and Nm. SPS exists as a product, the reference
of [the firm N] is available indirectly, patent application?”

2/30

"SIC package exists, the SIXA reference is available. Generator and
meta tools: PC version could be developed on a 50:50 funding basis,
could be given in use for universities, would require 6 man-months
and two persons, about 600 kFIM: it was agreed that a project plan
will be produced on this. Teamwork interface: [a telecommunication
firm] could provide funding for about one man-month. Further
research project proposals will be frozen. Reference sheets will be
produced, market analysis will be carried out [by one of the
researchers]”.

Jukka Karjalainen’s R&D diary notes 1991, 187 p. 8.4.1991, Sokrates
marketing meeting: “Brochures will be produced, the prices of the
Sokrates products will be defined, a market analysis will be carried
out [by a code generation researcher], research projects will be
prepared for the Fall season [of new Tekes project proposals]”.

TKO considered VTT Electronics laboratory and VTT Machine automation
laboratory as the most potential internal customers for the code generation
research results. When evaluating the results of TKO from 1991, the
department manager Esko Heikkilä requested that the “offering of own
[TKO] expertise to other [VTT] laboratories should be improved”. Yet, the
laboratory director’s report to the department manager only a few months
after the finishing of the Sokrates project was cautious with regard to the
future, realisation of continuing projects had not proceeded as expected:

TKO’s half-year report 1991 (long version, H. Hakalahti, 1.7.1991):
“In the software engineering area, the industrial application of the
results of the Sokrates project is, despite of the good research results,
not yet fully satisfying”.

In the internal Finsoft meeting as early as in October 1990 it had been
reported that a six-month spin-off project will most likely start with the firm
Nm, but that “the firms K and N are not interested” in such projects. The
failure of the expectations concerning red projects as a whole was explicitly
noted in the final internal project review of Sokrates in October 1991:

Jukka Karjalainen’s R&D diary notes 1991, 187 p. 28.10.1991, Final
internal Finsoft meeting. “... 50/50 continuing projects did not
succeed”.

A2.3 EXPLOITATION OF THE COMPETENCE

Exploitation of the Sokrates design method and the first prototypes of the
code generator started as early as in 1989, while the Sokrates project was
ongoing. However, the exploiters were not industrial customers as planned
in the initial project proposal, but researchers of two blue projects carried
out by VTT Electronics laboratory, a sister institute from which TKO what
extracted in 1983, located at the same premises. The applications involved
machine automation and design of application-specific integrated circuits.

2/31

A2.3.1 Early exploiter – VTT Electronics laboratory

One of the very first versions of the Sokrates code generator was used in the
joint research project Synchro that was being carried out by VTT
Electronics laboratory as a part the machine automation research program of
Tekes in the late eighties. A diploma thesis worker and a programmer used
the Sokrates approach to design and implement a computer-controlled
hydraulic control system [Savilampi 1989]. From the viewpoint of TKO this
exploitation created a white relationship to the Electronics laboratory.

The technological level of the code generator was still modest in 1989,
depending on the type of the computer used, it took about an hour or even
three hours to compile a rather small system model to a C program. There
were also some problems in integrating manually implemented and
automatically generated pieces of code together. The program generated in
the Synchro project was, however, comparable to a manually implemented
program in terms of its size and operational efficiency. Compared to an
earlier design, the same functionality could be developed in less than one
half of the time by using the Sokrates method. The programmer describes
her motivation for using Sokrates as follows:

“I had used RT/SA already for some time in system design. The need
[to use the generator] resulted from the problem of not being possible
to utilise the results of earlier projects (I was the only software
engineer and always over employed). Moreover, there were no
[automated] links from specifications to code”.

Another joint research funded by Tekes and carried out in part by VTT
Electronics laboratory test used Sokrates in the late eighties and early
nineties. This series of projects called Sasic involved the design of
application-specific integrated circuits. The Sokrates project team saw this
engineering domain as a possible application area for their approach. The
circuit researchers were at that time missing both high-level system
modelling methods and automated tools to produce lower-level hardware
description “programs” from system models. Their first attempts to
understand the Sokrates method were rather frustrating:

Timo Leppänen, SASIC3 project, 9.11.1989: “I got a feeling that it
was very difficult to use the Sokrates-SA syntax, because of the lack of
any decent manual. It would be important in the use of Sokrates-SA to
know not only the syntax, but also the semantic thinking.”

The firms K, N and Nt took part both in the Sokrates and Sasic projects, but
their representatives in the steering groups were different and specialised in
different technologies. Technically, the Sokrates approach appeared to be
“infeasible for the design of the application-specific integrated circuits”. In
part this was due to the rapid evolution of circuit design methods and tools,
which made it difficult to develop any integrated design environment.

2/32

Another problem was that although some circuit designs could be generated
by Sokrates, their “quality (the number of gates in the circuit design) was a
decade worse than the quality of manual designs”. The reason for the poor
efficiency was, according to the circuit researchers, that “a good result
would have required more intermediate design steps to be taken … Then we
tried it [to produce designs] directly [from high-level specifications]”.

In about 1990 the circuit designers started to investigate a new and rapidly
emerging design language, VHDL (Very High-Level Design Language). A
Sokrates style SA/SD-based system design method and modelling language
were used in connection with VHDL. However, instead of continuing to
develop the Sokrates code generator further for their needs, the circuit
researchers developed their own design tool called Velvet – the first version
was implemented only in three man-months.

In 1992 the strategic plan of the Electronics Laboratory for 1993 - 1996
stated that “in control system techniques, the goal is to investigate in a
laboratory environment and transfer into industry functional specification
and code generation techniques”. However, the rights to Velvet were after
all licensed to a small company established by a university researcher
involved in the Sasic projects, but it “did not become any killer
application”. It was used in a few research projects and by some engineering
schools in the nineties – much as the Sokrates code generator.

In 1998, the experiences from the early Sokrates exploitation were
summarised by a former VTT circuit researcher as follows:

“If the present commercial tools are compared to the SA/VHDL
approach, … they are not particularly smarter, although they include
some new features. [The only difference is that] the support
organisations have been able to market them [better]. Speaking of the
Sokrates/Reagenix technique, I just point out that both the method and
the tool were built based on an assumption that the target computing
platform of the code is given.

Viewing this from the point of application-specific integrated circuits,
the biggest constraints are the modelling of true concurrency and
differences in hardware architectures.

One of the essential problems in SA/VHDL tools, Sokrates/Reagenix
and many other “productised tools” is that they do not support the
reuse of already existing solutions. The threshold to start [system
development] from scratch is too big”.

2/33

A2.3.2 Struggling with the focus of exploitation

After the Sokrates project had been finished, the main goal of TKO was to
transfer the results into industry. Although technology transfer was planned
to be done, it was not clear which kinds of activities would be favoured:

• red and blue projects for the further development of code
generation either with tool vendors or industrial customers,

• red projects based on the existing code generation competence,

• selling of the rights of the code generator solutions to a tool
vendor for commercial exploitation, or

• selling of usage licenses and training packages to industrial
customers.

In the last two cases the license fees could have been used for continuing
distinct code generator related research, in the last two cases this should
have been done as a part of the projects – TKO did not make much of any
profits from red projects, customers were charged on a cost basis.
Expectations for the immediate spin-off projects of Sokrates were high at
the beginning of the nineties, as shown in Frame A7. Tekes was prepared to
fund continuing industrial projects on a fifty-fifty basis. A considerable set-
back was that these expectations were not met after the Sokrates project had
been finished in Spring 1991. This meant great difficulties in continuing the
work to implement an industrially applicable version of the code generator.

Frame A7. Expectations on the exploitation of the Sokrates results.

[Guy et al. 1991] Appendix III: project notes (confidential), 24 p. “The researchers took a

pragmatic approach, basing the notations for the models on RT-SA/SD, which is well established

within Finnish industry. The project goals were mainly attained, and the project represents a good,

solid contribution which has the potential for wide applicability. The results offer ... a realistic

development from existing industrial practice”.

Saukkonen, S. 1991. Finsoft-ohjelman tulosten teollisen hyödyn ja
hyödynnettävyyden arviointi. Tekes, Helsinki. 75 p. Appendix: projectwise

evaluations (confidential), 92 p. Evaluation of usefulness (project’s own view): “[Firm Nm] has

carried out the development of its new product using, almost entirely, the Sokrates technology. An

operating system derived from SPS has been used as a part of a mass product [by firm N]. A

demonstration system has been developed, where an industrial PC controls a toy elevator. With the

help of this system it has been shown how a full elevator control system ... has been developed in 6

days. It has also been shown that a functional software change can be done in 20 minutes.

 One of the two demonstration systems was in a heavy use in an exhibition at Heureka, without any

functional problems. The SYNCRO project of VTT/ELE [that has used the Sokrates technology]

has observed that the effectiveness of programming increased remarkably and the resulting code

was more efficient than in manual coding. One of VTT/TKO’s contractual project [that has used

Sokrates] has reported that hundreds of PLM code lines have been produced daily. As a result of

consultation and training, different parts of the technology have been taken in use in 5 - 10

companies. Demand for consultation and training has increased remarkably during the last year.”

2/34

Veikko Seppänen wrote a memorandum “What Sokrates is 1.4.1991?” for
an internal meeting of the managers and the code generation researchers,
where the exploitation of the results of Sokrates during the coming few
years were discussed – maybe it was just a coincidence that the date was the
All Fools’ Day. The memorandum is a rather extensive summary of the
managers’ view to the possibilities to exploit the Sokrates results. It
specifies the following exploitable items: the Sokrates-SA design language,
the Sokrates-SA design method, the ReaCtime language, the SIC, SPS and
SPI system solutions, the Sokrates generator and the meta tools used to
define the languages. Several kinds of activities that could be taken to
utilise and develop further these items were discussed in the memorandum.
The following activities were listed in the memorandum:

• existing items that could be “easily sold and tailored for companies”;

• the use of the Sokrates method and tools in industrial product
development projects by a customer company itself or by TKO on behalf
of the customer – the volume of one to six man-months was expected for
each such project;

• new kinds of tools “based mostly on Sokrates” and developed for
industrial customers, such as new operating system interface solutions
based on SIC, productisation of the SPS operating system “together with
an appropriate partner” and replacement of Ada as the mini specification
language of the Sokrates-SA method by the C language;

• porting of Sokrates to a PC or a portable workstation environment,

• integration of Sokrates with new SA/SD tools or with object-oriented
CASE tools;

• generation of other languages than C from system specifications –
including languages used in non-embedded software applications;

• the use of Sokrates in new research projects – about ten possible topics
involving three other VTT laboratories are listed;

• the further development of Sokrates in new research projects: “idea
papers or proposals related to this have not been written, but would be
needed as a starting point” – a few ideas are discussed;

• small-scale consultation for companies and VTT laboratories: “a more
detailed marketing plan should be written … and the consultation
packages specified, possibilities [to incorporate consultation] to the own
customer projects of TKO should be evaluated”;

• training that “should not be done on a cost basis and should support
other activities, such as R&D projects and long-term marketing”; and

• textbooks that “could be best written as a private hobby”.

2/35

The memorandum ends with a brief analysis of the possibilities to co-
operate with domestic or international CASE tool vendors. Veikko
Seppänen notes that “discussions on co-operation with [the firm I] were
miscarried in 1990, new possibilities are unlikely”, and that “there are little
contacts with other parties (with an exception of the importer of [an
American CASE tool]”.

Discussions with the firm I that was involved in the Sokrates project had not
resulted in any continuing co-operation, because the two parties apparently
started to see each other as competitors. The representatives of the firm did
not want to be interviewed as a part of this research - they considered that it
is no use to dig up the old events. Yet, at the beginning of the Sokrates
project the relations seemed to be rather warm. VTT researchers expected
that the firm I would apply the results in close co-operation with them:

Archived correspondence of the Sokrates project. A hand-written note
of the manager of the project on a telephone conversation between
him and the managing director of the firm I, 6.7.1988: “The view [of
firm I] to the development of justified new features for [its CASE
tool], based on our research, is positive”.

The main conclusion drawn from the situation by Veikko Seppänen was that
“a good analysis should be done (in Finland, the Nordic countries, Europe
and the USA) and contacts should be taken; the use of an external
consultant could be beneficial or at least some kind of marketing support
would be needed”. However, TKO did not have well-established means in
the early nineties to market and sell distinct result items of its research.

The content of the Sokrates license agreement was, for example, designed
from scratch by the code generation researchers themselves. The
management’s viewpoint to commercial exploitation of research results was
expressed in the long-term plan of TKO in 1991 as follows:

“Researchers are encouraged, based on VTT’s principles, to establish
companies based on their innovations. Selling of licenses is
considered on a case-by-case basis”.

The managers, who wished to see red code generation projects paid by
customers, ensured together with the researchers that the interests of VTT
were appropriately taken into account in project contracts: “the rights of the
[results of the] Sokrates project will remain at VTT, which can utilise them
without any restrictions”. They did themselves some marketing of the
Sokrates results, as part of general marketing activities, Frame A8.

2/36

Frame A8. Example of a marketing letter, Veikko Seppänen 1991.

Antti S…, B-o S-t Oy, T…katu 28, 33300 Tampere

 14.8.1991

Dear Antti:

Referring to our telephone conversation, I am enclosing some material on VTT Computer

Technology Laboratory for your information. ... We are interested in transferring in use, among

others, the results of the newly finished research projects on design automation and software

subcontracting. …

A2.3.3 Reagenix – birth of a new code generator

One of the technological trends in the early nineties was the use of personal
computers rather than more expensive workstation computers in the design
of embedded systems. Therefore, TKO aimed at developing a PC-based
version of the Sokrates code generator. The plan was first attempted as a
part of a Tekes project proposal on software reuse research, Frame A9. The
PC-based generator was planned to be developed in only one man-month.

Frame A9. Tekes proposal including a PC-based version of Sokrates.

Project proposal, 7.6.1991, V. Seppänen: Reuse of embedded software
…
3. Simplified code generator from state machine and data flow models to C
- Automation in the back end of the software development process is

inevitable. Automation proceeds, if there are seamless links from one
abstraction level to another (for example, from the state machine and
data flow models of RTSA to the structures of the C language). This
topic has a connection to the Sokrates project.

…
I/3. Development and experimentation of a simplified code generator from
state machine and data flow models to C (1 man-month).
- Goal: A simplified PC-based version of the Sokrates code generator will

be implemented that produces C code from physical RTSA models (data
flow diagrams, state machines, ReaCTime macro language. The
generator is experimented with a simple example.

- Tasks: The existing Sokrates code generator is fitted with a PC
environment, by removing some features and by replacing the Ada-
based mini-specification language with the ReaCTime language.

- Results: A PC-based code generator that has been validated by a simple
example and can be used in the design of Sokrates-based projects and in
the marketing of the Sokrates results.

The proposal was not accepted, due to the lack of industrial interest. The
likely reasons for the lack of interest were the increasing signs of a major
recession and the tiredness of industry in joint software engineering
research after the recent finishing of the Finsoft program:

2/37

TKO’s strategic plan 1992...1996, H. Hakalahti, 25.4.1991. “The
volume of generic research will decrease, at least temporarily [due to
the recession].”

Two alternative plans existed: co-operation with some other commercial
CASE tool vendor than the firm I and the development of the simpler code
generator by the own funding of TKO. As described in the next section, the
managers were not investing much in the latter, although they knew that the
researchers were aiming at that direction: (Project planning memorandum,
Veikko Seppänen, 1.8.1991) “Productisation of code generation and further
research: [a code generation researcher] has carried out market analysis and
is developing the first prototype of a PC version of Sokrates”.

A2.3.3.1 Development of Reagenix

A PC-based code generator called Reagenix was after all developed by one
of the code generation researchers, in a very short time in 1991 and without
much of any financial support from TKO. The managers, colleagues and
apparently also the customers thought that Reagenix was a PC-based
version of Sokrates. This was, however, not the understanding of the
researchers themselves. They told in the interview that the generator was
developed anew, based on experiences not only from Sokrates but also from
the related systems analysed in the late eighties:

Code generation researcher: “ This was not the case. Reagenix is not
any redesigned Sokrates. It is designed completely anew based on my
experience from the pitfalls of Draco, Refine and Sokrates. It was
developed in a pre-study, and made ready with surprisingly little
effort. From my point of view it was a mistake that it was taken as the
continuation of Sokrates and therefore no one was interested. On the
other hand, no one knew which skills were needed to develop it”.

The other alternative plan, co-operation with commercial CASE tool
vendors, was also pursued. The idea was to replace the CASE tool of the
firm I used as the user interface of Sokrates by another tool. A small pre-
study on building a link between an American CASE tool and the Reagenix
code generator was carried out. This study caused problems with the firm I,
which burst out in a software engineering seminar, where one of the section
heads of TKO was giving a presentation. He describes the situation and his
conclusions from it as follows.

“Two things made me to be involved in this matter. I gave a
presentation in the … seminar, because Hannu Hakalahti had asked
me to that. [The managing director of the firm I] had been there, too.
[The organiser of the seminar] was keen on taking modern software
engineering methods and tools in use. A cousin of Hannu took care of
the matter [on the behalf of the seminar organiser]. She had been told
[by the firm I] that VTT has a tool that is competing against [their
tool]. I am remembering that [the American tool vendor] was
somehow involved, but not exactly how".

2/38

"[The code generation researchers] had at that point already made
some marketing material on Reagenix, which had been delivered to
industry, and [the firm I] had also seen them somewhere. [The firm I]
considered VTT as its competitor. … I told them that they would have
had the opportunity to utilise the work done in the Sokrates project,
but they did not want to do it. My opinion is that if VTT begins to sell
software products, it must have everything related to product
maintenance, delivery etc. arranged. Therefore, I did not see Reagenix
as a commercial product of VTT. The basic problem of the marketing
of Sokrates/Reagenix … was that it did not start from the customer’s
problems, but aimed at pushing the technology on the take-or-leave
principle. If one chooses the latter, he does not understand what is
best for him. Therefore, I marketed myself Sokrates and Reagenix only
at a general level. However, I always mentioned them in my marketing
meetings at companies”.

Although the managers did not like the idea of VTT making a product out
of the code generator, they let the researchers to sell licenses, open a special
account to collect the license fees, 25 000 FIM each - and use the income to
develop the generator further. In addition to the use of this account, only
one green project devoted solely to the development of the generator was
carried out after the Sokrates project, Table A5.

Table A5. Green R&D of code generation in 1992 - 1997.

Project Parties Results Financing
(1000 FIM)

Year

Reagenix
(account)

TKO Reagenix code
generator, methods

< 150? 1992 -
1997

Aniprosa,
Aniprosa-2

TKO,
firm El

Animator 150+45
(by VTT)

1993 -
1994

The total funding of TKO for the continuing work was very modest, when
compared to the volume of the Sokrates project. Taking into account that
some routine work was needed to sell the licenses and that an external
subcontractor was hired for the Aniprosa project, the researchers had at
most a few man-weeks available for the further development of the code
generator that they could control by themselves in 1992 - 1997. The average
volume of Sokrates had been as much as 180 man-weeks a year during 1988
- 1991. The change of the financial resources was dramatic indeed.

The self-funded research that was carried out in the Aniprosa projects aimed
at the development of an additional tool related to the code generator, the so
called animator. The need for it had arisen in a red industrial code
generation project contracted by the firm Nm. Similar animation features
were also being offered as part of commercial CASE tools. A prototype of
the animator was implemented by using a small software house as a
subcontractor. The owner of the firm had worked as a visiting researcher at
TKO in the turn of the nineties and was familiar with Reagenix.

2/39

The firm could implement the animator at a very reasonable price and it had
hands-on experience from the technologies on which the animator was
based. The work continued until 1994, despite of some financing problems.
The special Reagenix account was used, in addition to small funds obtained
from two blue research projects: “The work [for the debugger] was not
finished in the ROTU project due to project changes in the turn of the year,
but the work was continued as a part of the Reagenix account”. The firm
Nm did not, however, take the animator in use. The results were presented
to a few other companies, including the firm N, but industrial interest could
not be awakened. Instead, the animator was used in some joint research
projects carried out by VTT. Thy were characterised by the researchers as
follows:

“After all, the result is better than we could believe. The ReAnimator
concept is according to our best knowledge both technically and
functionally at a top level, also in international terms. Corresponding
animators are usually available in workstations, but do not operate at
the same speed”.

The managing director of the co-operating firm commented the work as
follows in an interview in 1998:

“The idea and the results were excellent. I have always liked Reagenix
and Aniprosa was like a cream on the top. I believe that the biggest
mistake was that SA/SD was already out of fashion at that time …
[Moreover] software designers do not trust generated code, because it
is difficult to read the code and locate errors from it”.

A2.3.3.2 Marketing and planning related to Reagenix

The former manager of the Sokrates project deputised Veikko Seppänen as
the head of the software engineering section of TKO from November 1991
to March 1993. The long-term plan of the section for 1992 - 1997 authored
by him in April 1992 describes the state of the code generation and the
plans for the exploitation of Reagenix as follows:

“Code generation features are available in commercial CASE tools,
but not comprehensively (the same tools do not support both
prototyping and implementation) and not for such special target
environments as micro-controller software … A goal is also to acquire
commercial code generators … and evaluate them.

Six years later, he commented the situation as follows:

“I am still wondering, how it should have been marketed … There was
only one direct exploiter, [the firm I], with which we had negotiations
that failed, because they wanted to develop it solely by themselves”.

Already earlier – actually only one month after Veikko Seppänen had
started his leave, the new section head and the code generation researchers
organised a press conference to make Reagenix public:

2/40

Press release, VTT/TKO, 18.12.1991, Reagenix generator makes real-
time programming more efficient. “The use of the generator in all
phases from specification to programming decreases the number of
specification, design and implementation errors, and makes the final
testing shorter. … The use of the generator increases the productivity
of software development as much as ten times. The generator makes it
possible to test a modification of a design document within a few
seconds in an ordinary PC environment. The generator can solve
automatically problems of concurrent system functions and program
structures. Reagenix is a general-purpose tool … several extensions
have been added to the original SA/SD method to improve the
expression power and implementability of designs. We provide
compiler guarantee … [and] user support. You are welcome to
contact our help person, who can estimate for free the applicability of
the ReaGenix generator for your needs. … Hotline service. Registered
users are eligible for free telephone, telefax and e-mail help for one
year after the delivery … Other support services are available
according to the enclosed price-list.”

The marketing plan of TKO for 1992 - 1993 written by the deputy director
Jukka Karjalainen in May 1992 states that “the most considerable change
when referred to the earlier plans is the difficult economic situation in
industry, which also affects its possibilities for using external R&D
services”. Also the code generation researcher deputising Veikko Seppänen
as the section head in 1991 - 1993 pointed out this in the interview:

“Maybe we were after all doing correct things, but the timing was
wrong. The recession took place, unfortunately, at the same time. This
kind of a topic [code generation] was simply not the most important
issue in companies [at that time]”.

The marketing plan of TKO for 1992 - 1993 is a good example of how the
managers considered Reagenix as a new version of Sokrates: “the code
generator developed in the Sokrates project will be used in at least three
industrial development projects. An additional goal is that the immediate
results of Sokrates would be used widely in at least one, but hopefully in
more, industrial software development environment and tool projects. In
1993, integration of the Iptes and ReaGenix approaches are sought in a
Tekes-funded project”.

The integration with Iptes refers to the possibility of utilising Sokrates as a
part of a large international research project on executable specifications.
This plan was never realised, because of the fundamental differences in the
approaches adopted by the projects. It illustrates, however, the managers’
hope to associate the results of Sokrates with the research topics being
investigated at TKO in joint European projects in the early nineties.

The annual plan of TKO for 1993 includes another goal related to this
strategy: “in the area of code generation an attempt is made to join a
Brite/Euram project” – this attempt never resulted in any project. No goals
for the productisation of Reagenix or for its use in customer projects are
detailed in this annual plan.

2/41

However, own funding is planned to be used for the “integration of the
ReaGenix code generator with the SPS and SIC programs (2 man-months)”
and for the “development of PC-animation techniques”. The latter goal
resulted to the Aniprosa project. An internal meeting on software tools was
held a few months earlier. Jukka Karjalainen wrote in the meeting to his
R&D diary that “no investments in marketing [of Reagenix is done], further
development [of the tool will be done] in connection with some application
projects (diagnostics, Tulko, Lokki), the same kind of an approach will
continue”. In other words, the vice director of TKO who co-ordinated the
marketing activities was not prepared to spend any money for the general
marketing of Reagenix. Instead, he looked for its use and further
development in projects. The Tulko and Lokki projects mentioned were
joint blue research projects. Reagenix was indeed successfully applied in
Tulko, in addition to several fault diagnosis projects and in a small
consultation work done for an industrial participant of the Lokki project.

 The newly appointed section head’s plan for the marketing of the services
of the software engineering section in 1992 included a “product” called the
“automation of the software process: pre-studies for and development of …
code generation … in customers’ environments”, based on the strategy of
comprehensive R&D services not provided by any other organisation. A
marketing brochure was prepared to illustrate the methods and tools “used
and developed” by TKO, including Reagenix, Table A6.

Table A6. Methods and tools used and developed (*) by TKO.

Development
phase

Methods Tools

Project planning
and control

 ISO 9001, 9000-3 VTT Project Management
System (*)

Requirement
analysis

QFD (Quality Function
Deployment)

ReQueX (*), QFDesigner

Specification
and design

RT SA/SD
Statecharts
OOA, OOD
Lotos

Prosa, Teamwork, StP
Statemate
OOATool
ARA(*)

Implementation Automatic code
generation
Program compilation

ReaGeniX(*), ProsaC
C, C++, PLM, Ada, ASM

Testing Functional testing

Static analysis

Unit Tester (CUTE)(*),
Integration Tester
(MOSIM)(*)
Teamwork/Ensemble,
PC-Lint

Maintenance Version control
Configuration
management

PVCS, SCCS, RCS
Polymake

2/42

A software technology reference sheet also prepared for marketing needs in
1992 states that TKO has “developed embedded software and their
production environments for over ten years and transferred new
technologies to industry”. Concerning software specification and design the
reference sheet indicates that TKO “designs appropriate functionality and
implementation architecture and develops the customer’s design
automation” by using, for example, the real-time SA/SD method (Prosa,
TeamWork, Reagenix and Iptes design tools).

To implement embedded software systems, “automatic code generation (the
Reagenix tool)” is told to be available. The reference sheet was criticised by
some of the researchers and line managers of TKO, because it mixed self-
made tools – even such research-prototypes as the specification execution
environment Iptes – with fully commercial tools. The reference sheets ends
with a remark on “comprehensive services” being offered, including “expert
help for design and implementation, training of methods, tools and
counselling”.

A co-operation offer on embedded software engineering was sent to a
potential foreign customer in 1992, but did not result in co-operation. It
includes a proposal for the “evaluation of some of VTT/CTL tools
(ReQueX, ReaGeniX, Mosim, operating system or protocol)”, using
examples of and criteria set by the customer. This work was estimated to
take two to three man-months and demonstrate that “new tools increase the
reliability of code and efficiency of work”. Reagenix was suggested to be
integrated into the customer’s embedded software production environment,
in two to six man-months. The use of Reagenix was illustrated as shown in
Figure A1, including the benefits of:

• reduced number of implementation errors (less re-design,
shorter time-to-market),

• reduced volume of design work (improved productivity),

• increased reuse in design and implementation (improved
productivity), and

• increased quality of documentation (improved
communication).

2/43

IMPLEMENTATIONINTERACTIVE

PROGRAMMER

C-MODULES

FORMAL SPECIFICATION

RT-SA/SD

AUTOMATIC GENERATION

LINKAGE LIBRARY TO RTOS

AND HWMODIFICATIONS

Figure A1. The use of Reagenix, as illustrated in a marketing brochure.

A SWOT analysis of the software engineering R&D services of TKO was
done in March 1993. It involved both a researcher not dealt with the code
generation research and the former manager of the Sokrates project. The
researcher lists the strengths “SA/RT, process models”, the weaknesses
“formal methods/synthesis, graphics”, the opportunity “process improve-
ment” and the threat “object-oriented techniques replace SA/RT”.

The Sokrates project manager describes, on the other hand, code generation
as the main strength of TKO, including Reagenix and the ReagOS operating
system that involve “outstanding competence, relatively large user
community, rather many references”. The weaknesses related to code
generation include “poor marketing material, limited documentation”, the
opportunities “independent from other tool vendors and method developers”
and the threats “software development automation is a distant topic for
some companies to even understand, the things are related to highly
personal and strategic issues, lack of competition”.

The “life-cycle position” of code generation is estimated by the researcher
to be 3/5, where 3 stands for “apply” and 4 for “sell”. The strategic plan for
software engineering 1993, put together by Veikko Seppänen, who had
returned back to his post as a section head, describes the strategic outlook
related to code generation as follows:

“Embedded systems specification projects have been carried out in
many application areas, involving developing, follower and well
developed companies. In these projects, especially the SA/RT method
has been used, with its commercial support tools (such as Prosa and
in some cases Teamwork) and self-made support tool prototypes (such
as Reagenix) … The threats [include] rapid ageing of the basic skills,
for example due to the decreasing use of structured techniques”.

The role of the SA/SD method is thus seen as decreasing and Reagenix as a
“self-made support tool prototype”, as opposed to a “commercial support
tool”. The customers were segmented to “developing, follower” and “well-
developed” companies instead of industrial segments.

2/44

A competitor analysis was also done as a part of the strategic planning. It
did not address competition concerning such individual R&D topics as code
generation, but evaluated competition at a more general level. The
competitors included universities, other VTT laboratories and corporate
R&D departments:

“University groups. Strengths: deep technological knowledge,
international contacts, long-term activities, better possibilities to cope
with research evaluations; Weaknesses: professor-centred, often weak
contact to industry, usually small groups, personnel changes
frequently, few full-time researchers.

Other VTT laboratories: no remarkable differences wrt. TKO.

Industrial, independent R&D units. Strengths: application and needs
expertise, knowledge of the customer’s key persons, opportunity to
affect R&D decisions, public funding favours industrial R&D, access
to early R&D planning activities; Weaknesses: corporate staff,
difficult to sell services outside the own corporation, actual needs
knowledge may be weak, target area often very wide, the overhead of
a big corporation, often less focused on embedded systems; Goals:
technology expertise wrt. business units, generation of new businesses
in 3 - 5 years, technology mediator and buffer, collaboration with
universities, international R&D projects”.

The laboratory director Hannu Hakalahti does not mention in the 1993
strategic plan of TKO any strengths or weaknesses related to Reagenix and
structured methods. The industrial development contracts, i.e. red projects,
are told to involve 50% of electronics companies, of which 20% were
telecommunication firms, 25% of machine automation companies, 15% of
process automation companies and 10% of other firms. Machine automation
that was expected to be the main customer segment for code generation, was
one fourth of the customer base of TKO. Yet, the marketing plan for
machine and equipment industries prepared in 1992 by Jukka Karjalainen
does not include anything of code generation.

However, one of the “most remarkable R&D results” listed in the half-year
report of TKO in August 1993 is that the “application of code generation
developed in the Finsoft program continued in one company [the firm
Nm]”. The rapid lose of organisational visibility of code generation as a
strategic R&D topic and a marketable piece of competence is rather
striking, but it may result simply from the fact that the plans and result
reports were heavily related to projects. There was only one major project
related directly to code generation going on in 1993, and that project was
mentioned in the half-year report of the institute.

In 1994, the whole organisation of VTT was restructured. The former
independent but rather small laboratories were integrated into much larger
research units. TKO was merged with three other laboratories, including
VTT Electronics Laboratory, to form ELE. The researchers of TKO were
allocated to two different research departments.

2/45

Most of the former Sokrates researchers were allocated to the “Control
systems” research group managed by Harri Perunka, a former researcher of
TKO who had spent a few years in industry and returned back to VTT in
1993. Hannu Hakalahti left VTT, whereas Jukka Karjalainen became the
marketing manager of ELE, with a focus on embedded systems. Veikko
Seppänen started as the head of the embedded software department.

One of the very first tasks of the new organisation was to analyse the
existing customer base and the key technologies offered to different
industrial segments in a strategic planning meeting in April 1994. The
segments included telecommunication, electronic instruments, “other”
electronics firms, machine and equipment manufacturers and “other”
customers. The average size of projects carried out for each segment was
also estimated, using the scale of “very big” (over a million marks), “big”
(over 500 000 marks), “intermediate” (over 100 000 marks) and “small”
(less than 100 000 marks).

Three intermediate projects, two of which were red ones and carried out for
the former Sokrates participants – the firms Nm and S, were analysed. In
addition, one blue intermediate research project on fault diagnosis carried
out together with VTT Automation (a research department based on the
former VTT Machine automation laboratory) was included. The key
technologies listed to be used in these projects were Reagenix and the Cute
unit testing tool associated with Reagenix.

The marketing plan of ELE for 1994 - 1995 includes “the marketing of the
Cute unit testing tool”, with an intention to “demonstrate its integration with
a commercial tool”. Moreover, “marketing of Reagenix type solutions to
firms, whose core competence does not include distributed real-time
systems” was planned, with “a special target” of machine vision firms. The
marketing vision for Cute was thus the same as for Sokrates and Reagenix
earlier – integration with an appropriate commercial tool. However,
Reagenix itself was planned to be marketed to firms that were not interested
in solving real-time problems – along the lines of the view to the needs of
machine automation firms. Machine vision was mentioned as a potential
customer segment most likely because the developer of Reagenix was at
that time involved in a joint research project dealing with the design and
implementation of embedded software for machine vision products.

From 1994 to 1997 the line management of ELE marketed Reagenix much
as it used to do after the Sokrates project, mainly for potential new
customers and as a part of the general marketing of the embedded software
engineering R&D services of ELE. As an example, Veikko Seppänen and
Jukka Karjalainen visited the company Np in 1995, to market participation
in a joint research project on embedded software process improvement
services. Reagenix and Cute were also discussed and it was agreed that
“demonstrations will be given in Oulu later”. The firm Np became later,
according to the code generation researchers, as one of the most satisfied
Reagenix customers.

2/46

In a strategic co-operation meeting with the firm N in 1995 the possibilities
to integrate Reagenix and the company’s “simple” code generator that was
still being heavily used after five years from its development, were
discussed. Veikko Seppänen wrote the following note to his R&D diary:
“No needs for designing new state models, therefore possible continuing
development of Genera may involve configuration issues. State-model level
graphical debugging “not the most serious problem … Could test cases be
generated using Reagenix/second generation Genera?”

The graphical debugging developed as one of the new features for Reagenix
did not thus interest the firm N. The idea of generating automatically test
cases from high-level specifications became one of the main features of
new, commercial telecommunication-oriented CASE tools in the late
nineties. Reagenix was used for this kind of a purpose only in a small piece
of work done at ELE for the firm N in 1997. At the same time, the code
generation researchers continued to market Reagenix licenses and training
courses. Several licenses were given for free to educational institutes, in
connection with Sokrates-SA courses. In addition to these white
relationships, a few licenses and courses were also sold – mainly to new
customers developing software for electronic instruments and small,
portable devices. This is also the customer segment from which the small
company that bought the rights to Reagenix and ReagOS in 1998 started.

The original manager of the Sokrates project is the managing director of the
company, and the rest of the owners include several of his former project
staff members. In October 1998, he told that he had been “busily working
for a customer project until two a.m. in the previous night” – the innovator
seemed to have returned back to his roots after twenty years, but with the
code generator at his and his customers’ disposal.

A2.3.4 External exploitation in red projects

Table A7 summarises the red projects in which the code generation
competence was exploited by the industrial – or in one case an internal –
customers of VTT in the nineties. Mots-2 was a pseudo-red project from the
viewpoint of Reagenix, the use of the generator was only a minor task.
Several pseudo-red projects were carried out by the Electronics Laboratory
(later VTT Automation). The total sum of the income to VTT from the other
projects is 1900 000 Finnish marks, i.e. slightly less than one half of the
total expenses of Sokrates, but almost four times of the expenses of TKO.

2/47

Table A7. Exploitation of the code generation competence in red projects.

Project Customer Results Income
(1000 FIM)

Year

Kaapeli Firm Nm,
(Firm Ac)

Sokrates-based
coding rules

200
(firm Nm)

1990 -
1991

MCS-
REA

Firm Nm
(Firm Ac)

Development of a
code generator

100
(firm Nm)

1993

(Several) (Several) Generation of
embedded machine
control software

(pseudo-red:
Electronics
Laboratory)

1991 -

Raski Firm R Consultation of
software design
Methods and tools

250
(firm R)

1992

Osdyn Firm N Development of an
Operating system

150
(firm N)

1992

Sympa Firm S Software design
handbook

100
(firm S)

1992 -
1993

Cute Firm S Development of a
software test tool

300
(firm S)

1993

Kaasu VTT Food
technology
laboratory

Generation of
embedded control
software

80
(VTT/ELI)

1992

Nosto,
Nosto-2

Firm Kc Development of a
software assembly
system

120 + 600
(Firm Kc)

1993 -
1996

Mots-2 Firms N,
Nt

Generation of test
case software

(pseudo-red) 1997

A2.3.4.1 Broad co-operators – seeking for a paradigm shift

The Kaapeli and MCS-REA projects shown in the table were carried out for
the firm Nm that became the key partner of TKO not only in the
exploitation but also in the further development of code generation. The
firm’s applications involved different kinds of factory automation systems,
ranging from individual machines to complete production lines, part centres,
and so on. The co-operation started as early as in 1990, when the Sokrates
programming principles were encapsulated into a set of manual coding rules
for software to be executed by a certain type of computer hardware.

The purpose of this project, Kaapeli, was to “develop methods and tools for
the client’s environment, by which software can be produced for
programmable logic controllers (PLCs) according to the Sokrates modelling
method”. Moreover, “the goals of the project involve especially the creation
of a common design culture at [the firm Nm]”. A small subcontracting
company of Nm was also involved both in the Kaapeli and MCS-REA
projects, mainly in the development and testing of the software for the pilot
products. The contract of the Kaapeli project was written about six months
after the work had already started: “the work has been started at 1.12.1990
and will be finished by 31.8.1991”.

2/48

The estimated size of the work was fifteen man-months, of which eight
man-months would be carried out by TKO and about four months by the
small subcontracting company. TKO charged only its prime costs, based on
a certain overhead coefficient. Sokrates was described as a foundation of
the planned work:

“The Sokrates project of the Finsoft technology program of TEKES
has produced technology that can now be transferred in to industry. In
this case the benefits of the technology project will be seen at [the firm
Nm] already in products launched during the coming Spring and
Summer [1991]. More powerful tools are needed in the design and
documentation of PLCs, and the application of the Sokrates method
and tools also to PLCs seems as a natural solution. The designers can
then use the same tools and methods in design and testing. [The firm
Nm] has taken part in the management group of the Sokrates project
from the beginning. [It] has used the results of the Sokrates project for
about a year in the design, implementation and testing of a new
generation of device controls. The experiences are encouraging: the
time used for testing and implementation has decreased considerably.
The level of abstraction in design has been raised, as well as
productivity. Based on these experiences, the results of the Sokrates
project will be used in a wider scale. In the development of the
methods and tools the Sokrates project of VTT Computer Technology
Laboratory has paid special attention to industrial usability”.

The work was planned as the customer company’s project, not as a
subcontracting project of TKO for the firm Nm. The project manager was
the R&D manager of the customer, the representatives of the project
management group included, in addition to him and his colleague, two code
generation researchers of TKO. The research trainee of TKO, who was one
of the main resources of the project, acted as the secretary of the
management group. The project plan states that “Veikko Seppänen of
VTT/TKO will also take part in the management group, as the
representative of VTT/TKO, as well as a representative of TEKES that will
be named later.”

This arrangement was against the project management principles of TKO,
being described at that time in an ISO9001 quality management system.
According to these principles, the section head of TKO and the R&D
manager of the customer would have been the only representatives of the
management group, and TKO would have named its own project manager
for the work that it was carrying out as a part of the larger project of the
customer. The project manager would have been the secretary of the project
management group, not its member, because he did not sign the contract but
the managers of the two organisations. In practice, Veikko Seppänen had
difficulties in taking part in the management group meetings, because they
were usually integrated into technical project meetings organised when
needed. In the group rehearsal the code generation researchers told that this
was, however, not done on purpose, but it was just their style of working.

2/49

The MCS-REA project carried out in 1993 - 1994 was in many ways the
continuation of the Kaapeli project, but based on Reagenix. In the contract
the researchers describe Reagenix as a result of the Sokrates project, which
they strongly denied in the group rehearsal (see Appendix 3): “The starting
points for the contracted R&D work are … the Reagenix code generator
developed by the supplier in the earlier Sokrates project”. The same was
indicated in the project plan “… the Reagenix code generator developed by
VTT/TKO that is based on the same Sokrates technology.”

The contract states that “the customer has usage rights for the Reagenix
code generator and the additional features of the generator developed in this
project (the features implemented in phase 3 of task 1), to develop its own
products within the limits of the [Reagenix] license. VTT has the owner’s
rights for these additional features of Reagenix, and can apply them without
any restrictions … A separate license agreement and order will be prepared
on the usage and content of ReaGenix.” This text was included in the
contract, because Reagenix was extended considerably as a part of the
project. Yet, the project was rather small, only two man-months with an
option of two additional months, which was not contracted by the customer.
This time the organisation of the management group of the project followed
the quality management principles of TKO.

The project group proceeded in a very rapid pace in its problem solving
work. As an example, one project management meeting preceded the
specification, implementation and delivery of new features of the generator
to the customer: “It was noted that the changes required by the program
generator were implemented in the morning, and PgmGen version 4 was
delivered to the customer. This version was accepted [by the management
group], its functional testing will be carried out later”.

In the final project management group meeting the “technical results of the
project” are described as “successful and correspond to the goals except
documentation, the level of which is not quite what was expected.” The
representative of the small subcontracting company that was involved also
in the MCS-REA project considered that “the generators which have been
developed are usable in the real-life environment and product delivery
projects.” The customer characterised the project as follows:

“The specification of the project succeeded well and its
implementation corresponds to the specification. VTT’s attitude has
been positive during the whole project, and problems have been solved
fast. Co-operation [with VTT] has been excellent, when compared for
example to other suppliers [of the firm Nm]”.

VTT Information Technology institute was used as a consultant in the
project, and its work was also considered as useful:

“The results are working well and no ‘ghost errors’ have been found,
so that the results are reliable. The work done by Antoni Wolski of
VTT Information Technology for the data base definitions have also
been found useful in the MCS project.”

2/50

The code generation researchers were satisfied with the results, too:

Co-operation has functioned well, as well as the different roles of the
participants (application – software engineering – generation
technology), which has made the use of resources efficient … Co-
operation between experts has resulted in mutual benefits and has
been particularly efficient … I was involved in the project only for a
short time, but the given tasks were well specified and therefore easy
to carry out.”

Harri Perunka commented the work as a section head as follows: “The
project was successful and unbiased pioneering work has been done in the
area of code generation. I was involved in the project only for a short time,
and my earlier belief was that the project is one that never finishes.” About
a month earlier he had written into his personal R&D diary the following
remark on the project:

“Project has lengthened and contracting of the continuing work has
become difficult; small project but full (project) bureaucracy;
problems to solve larger than expected; license fees do not cover the
extra expenses needed (for additional work to solve the problems);
continuing efforts: maintenance (invoicing based on hours of actual
work done”.

In the internal final project review in May 1994 the results of the project are
summarised as follows: “methods: message coding/decoding based on C
macros (CUTE technique), code generation techniques based on Prolog
macros; programs: PgmGen, Reagenix v 1.2; and documents: ReaGeniX
Quick References, User Manual. The quality of the results is characterised
as follows: “only small errors have been found that could be corrected in
less than one day”. However, “the users documentation could not be
finished, due to the size of the project (100 kFIM)”. The industrial usability
of the results is described as follows: “PgmGen and Reagenix have been
over six months in a real use at the customer site. [The customer’s] MCS
software has been produced completely by using the PgmGen and
ReaGeniX technologies. The code produced by the generators will be used
in June, as a part of … [a] product delivery to Saudi Arabia (about 100 000
lines of C code). The customer is also porting its earlier … software to the
generator (about 200 000 lines of C code).”

The formal feedback acquired from the customer by using the customer
feedback form and evaluated in the final internal project review was very
good. It included the following rates (out of 5 as the maximum): contacting
5, offer/contracting 4 - 5, project management 4, customer service 4, quality
of reports 4, usefulness 4, customer’s own support 3 - 4, quality of research
4, quality of software development 4, overall satisfaction 5. These rates can
be contrasted with the results of the interviews of the two key persons of the
customer company in 1998. Their story illustrates the experiences from the
use of the results of the MCS-REA project by the firm Nm.

2/51

Product manager: “Thank you for the questions. I have waited for a
possibility to give some feedback. My point of view is more that of a
business and a customer than a technology. Sokrates interested us, because
we had a need to raise the productivity of programming and application
development. We had the MCS project ongoing, targeting to the control of a
material flow in a … factory. VTT persons visited us [to market code
generation], which was critical [for our decision to co-operate]. We had
earlier contacts related to the … manipulator [the Kaapeli project]. [Yet, the
use of the generator] was not discussed at length internally or with VTT.
Little by little, code generation and Reagenix became a part of the picture,
and we were in a situation that was certainly not planned initially. Namely,
we used the … CASE tool [of the firm I], to which these [code generation
techniques] were integrated.

Yet, Reagenix remained as a wild package, because it was not a commercial
product of any vendor, which would have had maintenance support and had
been developed along with the other software. Our aim was and still is to
develop applications – not to develop software tools. This does not exclude
participation in tool development, but responsibility [of the development]
must be elsewhere. We had a positive view from the RHU [Kaapeli] project,
and the technique interested us. We had much money and time, and the
feeling was that we could do whatever we wished. The purpose was good,
but it appeared later that the cake was too big and the means were wrong.
We have used the code generator and the SA method, too. Productivity has
been poor. It takes too much time and is difficult to learn to use them. The
SA method has been too widely used instead of much better methods. In
addition, the QNX operating system [interfaced to Reagenix in the MCS-
REA project] has been a problem, because there are extremely few persons
around who would be familiar with it. The result has been that awfully
many hours were spent on playing with the tools. The functionality of the
application and its user interface suffered. Our product [to be developed by
using the code generator] did not meet the customer’s needs for
functionality. There was no added value for the customer in the product, and
the recession hit us before we could correct the situation. Our business
[related to this product] was decided to be finished.

Technically, the contribution of VTT was good. From the viewpoint of the
business its was fatal. Reagenix should have been developed together with a
tool vendor ([the firm I]?), or not at all. In principle, code generation is
good, one tool among many others. I am not any more a programmer, but I
believe that there is still something to do until the programmer can control
the behaviour of the code without knowing the principles of the code
generation and the content of the generated code. I have also started to
suspect the wide applicability and effectiveness of the SA/SD method.
Everyone should think of his own role and where he is and can be really
good. It should be thought over in every project what is needed as a whole,
and the real experts and responsible persons should be collected around that
whole. If one succeeds in this, the project may also succeed. We learned a
lot in the MCS-REA project, and our own ignorance has been revealed. Yet,
it was a good project in which many good things were produced, and I wish
to thank all VTT participants”.

2/52

R&D manager: “Our goals were the increase of the manageability of
software-intensive projects and products, as well as the understandability
and maintainability of the software. We made the first contacts [with the
code generation researchers] in the events of the continuing engineering
education organisation Insko and the Finnish Quality Association. These
involved presentations of the use of the SA method. Later, there were other
discussions. [We wished to be] more systematic in software development,
[and to gain] insights and experiences.

The manual coding rules developed [in the Kaapeli project] for the RHU
project [of the firm Nm] were seen as positive. Based on these experiences,
we believed that it was possible to transfer the coding rules to the generator.
The generator was taken in use and all necessary modifications were done
in the next big development project of the involved [product] area. The
generator has been used in product deliveries based on the development
projects. Some designers involved in the projects have used SA modelling
also in other projects. [Yet], the learning curve for effective modelling and
use of the generator is very high, [they are] the tools of gurus.

The technical contribution of VTT was alright. Our product business had
obviously at the beginning enough critical mass to start [using the SA
method and the code generator], but we did not have any real conditions to
keep the product, the tool and the [design] culture alive and developing,
while the turnover [of the product business] was decreasing. This would
have required a much bigger investment in terms of efforts, people and
money. The choice [of the method and the tool] was wrong, considering the
longer-term situation of the company. It would have required a larger-scale
software development environment [to be successful].

Code generation is alright, I mean coding done by using some kind of
higher-level tools. Typically, mainstream tools have survived in our use.
Both our personnel and customers shun exotic solutions (longer-term
responsibility). Of course, we do not have any crystal balls for making the
right choices. The quality of the choices becomes visible along time.

I wish to thank everyone, both at VTT and in the MMS group [of the
customer]. RHU with the manual coding rules and MCS with the Reagenix
generator were good projects”.

A manager of TKO described his experiences from the Kaapeli and MCS-
REA projects as follows: “My viewpoint is that if researchers use other
researchers’ tools, it is not a convincing case for industrial usefulness.
Certainly the case [of the firm Nm] is the best in this regard. They used the
results in my opinion at least the some extend. I was not involved in the
case, though. [The code generation researchers] took care of it. They were
perhaps a little bit jealous, too. It was [their] way for managing things. The
guys just did something, and if there were some meetings, they never told
anyone about them. I don’t know, if that was on purpose, or if it was just
their way for doing things. We tried several times to get some visibility to
their work. … I believe that we lost our faith in their work, and they must
have been taken that negatively”.

2/53

VTT Electronics laboratory used first Sokrates and then Reagenix not only
in joint research projects, but also in several red customer projects. The
former researcher and later group manager of VTT Electronics laboratory
involved in customer projects where Reagenix was applied told in an
interview that “originally, the purpose [of the use of the generator] was to
get the overall software process in control, which is a kind of permanent
problem to us, who are end users of software technologies. It started at the
end of the eighties, when you [at TKO] had the [code generation] projects.
We had used the SA method, which was good for documentation etc. and
the generator was a natural extension of that. We had noticed the gap
between SA models and code, which could be closed by the generator”.

When asked, if he saw the generator as a tool for sort of getting rid of
software development, as automation engineers who did not want to be
software engineers, he answered: “No, but software development and
maintenance is painful, and we just aimed at to easing that pain by tools. …
I am remembering that we made the initiative [to use the generator]. [A
software designer] used Sokrates first, in customer projects. Then she used
Reagenix, in customer projects also. … The reason for using it was that it
had been marketed as a tool that saves time, and that was not a lie - because
[the designer] had been using so that she already knew everything”.

He considered the need of the customers to pay license fees from the use of
the code generator as inappropriate: “In customer projects the generator was
used to implement application software. The customer needed to pay the
license fee, too. This was not good at all. It helped us, but the customer did
not have any possibilities to use it later at all. We had that possibility only
because we had an experienced software designer … we must have some
common sense at VTT, too, about maturing technologies for use. We should
start collecting money from the developed technologies only after a certain
level of maturity has been achieved. Usually, we are too impatient in
collecting the money. …The real status of the developed technology must
be evaluated to see what needs to be done to proceed. Otherwise we are just
swindling”.

The biggest problems in Reagenix were related to its usability: “You [at
TKO] should have lowered the threshold of using Reagenix, that would
have requested just a modest sum of money. But that money should not
have given to [the code generation researchers], by saying that here you
have three hundred thousands more to spend, please – you can say good-bye
to that money at the same time. … It has been a management problem [at
ELE], money has been spent to many nice features, instead of making it
more user-friendly, producing good examples, and so on”. The software
designer, who used Reagenix in 1991 - 1993, described her experiences in
an interview as follows: “I used the generator in perhaps five projects. It
suited well for the design of machine control systems, but the customers did
not like it. The reason was that state machines [on which the SA/SD models
were much based] were too difficult to understand, they were not the
ordinary modelling means. … [SA/SD based] code generation is good in
small projects and in research use, but not in the development of larger
systems, because it is difficult to maintain the top-down system models”.

2/54

Another broad co-operator was the firm R, which was developing large
volumes of different types of computer-controlled devices used by the
general public. The firm was not involved in the Sokrates project, but it had
been the customer of TKO in the early eighties. The Raski project that was
established in 1992 addressed embedded systems software development
methods and tools from a rather broad perspective. The planned volume of
the work was six man-months, and the budget about 250 000 Finnish marks.
The manager of the project was a former Sokrates project manager.

The project plan describes the goals of the work as follows: “the goal is to
develop the methods, tools and guidelines of the software process [of the
customer]. The developed methods aim at improving the documentability,
generality, predictability and productivity of the software process, in
addition to such quality aspects of the software as testability and reliability”.
Evaluation of the applicability of the SA method and tools was planned to
be done, based on which the software process would be described and
recommendations for tools made. According to the final report of the
project, the following tasks had been accomplished and the corresponding
results produced: SA training, needs analysis, development of the software
for one of the customer’s products, evaluation of design methods and tools,
and modelling of the software process. Veikko Seppänen, to whom the
situation of the Raski project was described after his return back to the post
of a section head, wrote the following into his R&D diary in March 1993:

“Raski project meeting [the firm R]: done late 1992, Sokrates trial
usage, SA training, did not proceed in all aspects, software
development handbook skeleton will be delivered, [the customer] was
not very satisfied with the results, [the deputised section head]
contacted them in January 1993: development of a unit testing
environment; will call again and ask the solutions, tools situation”.

Another section head took also part in the preparation and management
group of the project, and commented it in an interview as follows: “I was
myself involved in the preparation and management of the project of [the
firm R], in which Sokrates/Reagenix techniques were used. The project did
not succeed very well, and the customer gave certain negative feedback”.
No new project have been carried out for the firm R by ELE after the Raski
project this far.

A2.3.4.2 Focused buyers – looking for specific items

There were a few customers that wished to utilise rather specific parts of the
code generation competence. One of the earliest exploiters was the firm N,
who applied the operating system principle developed in the Sokrates
project in its products. However, the code generation researchers were not
themselves involved in the Osdyn project, in which a new operating system
version based on this principle was designed. The project was carried out by
a researcher, who had been working in several earlier red projects
contracted by the firm N, including a few related to operating systems. The
planned volume of the Osdyn project was about five man-months.

2/55

The original goals set in the contract were: “implementation of OS dynamic
timer feature for … in … target [processor], adding of task load monitor
feature, design and implementation of dynamic reconfigurability. In
addition the client has requested a set of maintenance tasks to be done for
OS. These maintenance tasks are divided into two categories: bug fixing
and nice to have features”.

The former Osdyn project manager commented the work in an interview as
follows: “I am remembering that the idea of the scheduling [used in the
development of the operating system] was told by [the manager of the
Sokrates project] to [the representative of the firm N in the steering group of
Sokrates] in some seminar. He wrote the first version of the operating
system based on that idea. Finishing of the work was left to VTT
apparently, because he had no time to do it. [The firm N] needed an
operating system for [a certain product] that would not require much Ram
and ROM memory”.

According to the manager of the Osdyn project the customer’s
representative, the same person who took part in the steering group of
Sokrates, took care of the subcontracting arrangement. He did know, why
the Sokrates researchers were not used in the Osdyn project. Yet, he
discussed several times during the project with the code generation
researchers, “who certainly knew what was done, and helped as much as
was needed”. Over ten million individual pieces of the product, in which the
operating system is incorporated, had been sold in 1998. The operating
system is likely to be “among the fifty most widely used in the world”.

The customer’s representative confirmed the basic need for developing the
operating system, saving of the memory. Yet, he also told that one of his
colleagues at the firm N had already developed a “somewhat similar”
operating system, although “little simpler”, and therefore “the idea did not
came solely from VTT”. He saw the development of the operating system as
very specific to the client’s needs, and therefore it was carried out as a
confidential red project. According to him the code generation researchers
“consulted a little bit, and changed some ideas”.

The Sympa project carried out for the firm S resembled the Raski project in
the sense that one of the main goals was to produce a software design
handbook. However, the focus of the work was on testing, rather than on
the whole software development process. A special test tool, to be later
called Cute, was proposed: “After consulting sales material on several
vendors, it seems that there are very few applicable test aids for parts of
real-time systems. So, we propose development of a test environment
consisting mainly of tailored software”. The work was related to Reagenix
in the sense that it included an optional task: “Test bed interface generator
for data flow diagram is to be built on the basis of similar part of ReaGeniX
test bed generator”. The first representative of the customer in the
management group was the same as in the steering group of the Sokrates
project, but he left the project soon after its beginning because of the change
of his duties at the firm S. The manager of the project was the original
Sokrates project manager.

2/56

The management group commented “the short development times [of the
results] estimated in the [status reports of the project]. The VTT researchers
explained that “VTT/TKO has much experience from this kinds of tasks and
readily available partial solutions than can be used”. The Cute project was
established to continue to work on unit testing started in Sympa, the purpose
was to “design and implement the unit test environment” and to write a
“testing methodology handbook”.

A research trainee was hired to carry out the work and document the public
parts of it as a diploma thesis ([Ihalainen 1993] in Appendix 1). The project
manager was one of the former Sokrates researchers, the software quality
manager of TKO was also involved to help in writing the handbook. In the
internal final review in August 1993 the project and its results were
evaluated as follows: “Results: CUTE software tester, Users Manual 3.0,
Implementor Guide 3.0, Technical Reference 3.0 (Jari Ihalainen’s diploma
thesis: Unit testing of real-time software, University of Oulu, 1993); Quality
of the results: the CUTE software itself has not been tested, the language of
the manuals has not been proof-read, the test material for the CUTE
implementation was only 5+2 modules; Further application of the results:
customer letter will be produced (VSE), discussions have been conducted
with [the firm Nm], unit testing guidelines for TKO’s quality handbook?,
presented to 10 persons at TKO, [the customer] does not have money for
subcontracting? (JUK will keep contact)”.

The customer’s feedback in the scale from 1 to 5 was the following:
contacting 5, offer/contracting 4, project management 5, customer service 4,
quality of reports 4, usefulness 4, customer’s own support 3, quality of
software development 4 (integration testing was not done?), overall
satisfaction 5.

In addition to the diploma thesis, a scientific paper based on Cute was
published in an international conference in 1995, where it was chosen as the
best paper. Moreover, Veikko Seppänen wrote a summary of the diploma
thesis that was used in customer letters sent to Sweden as a part of the
marketing campaign of TKO. Although the Cute tool was introduced not
only to the firm N but also to some other companies, it was not bought by
any customer – its use would have required company-specific tailoring, but
this was also considered as a reason for its effectiveness when compared to
general-purpose testing tools. Marketing of continuing work based on Cute
to the firm S did not succeed either, apparently in part because the firm was
restructured as a consequence of the merging with its competitor, and the
product development department was reorganised.

The former product development manager of the firm S, who took part in
the management group of the project, commented the use of Cute in an
interview in 1998 as follows: “the use has been small, but our experiences
are still positive. The use requires work and time (heavy), which is the
biggest obstacle for utilisation”. The reorganised firm S has taken part in
several joint blue research projects of ELE after the Sympa project.

2/57

The Kaasu project is an example of internal “red” business between the
different units of VTT. A control system implementation for a two-phase
gas chromatograph was contracted from TKO by VTT Food technology
laboratory. The estimate of the work to be carried out done by a code
generation researcher in 1992 included the following tasks: “logical nucleus
5 days, device controllers 3 days, user interface 3 days, integration and
testing 4 days, relays and their cases 2 days, Reagenix training 3 days,
training of the implemented software 1 day, installation of the software 1
day: altogether 1 man-month”. A Reagenix license worth of 20 000 Finnish
marks was also offered, including “the VTT discount of 20% –
5000 marks”. It was not bought the customer laboratory, though, most likely
because they did not consider themselves as regular software developers.
The software development work was carried out and succeeded well.

The Nosto projects addressed automatic configuration of PLC programs for
the firm Kc, a manufacturer of large automated mechanical devices
formerly owned by the same corporation as the firm K. The roots of the idea
of automatic software assembly at the firm Kc are therefore most likely in
the similar system developed by TKO for the firm K in the eighties: the pre-
study that was first done was indeed carried out a knowledge engineering
researcher of TKO who was a project manager in the earlier project of the
firm K. However, since the target of the assembly was PLC software and
there did not seem to be many knowledge-based features in the assembly
problem, the code generation researcher who developed coding rules for the
firm Nm in Sokrates, was allocated as the manager of the continuing
project. The assembly system was built in that project, including a code
generator based at least indirectly on Sokrates and Reagenix.

The customer described the nature of the project as “experimental” and was
very pleased that despite of this the schedule and budget were kept well.
“The commitment of VTT personnel to the project” and the co-operation
between the firm Kc and VTT were considered as “excellent” by the
customer. The feedback of VTT was much along the same lines, and it was
noted that the subject of the project was related to “the core competence of
VTT Electronics, component-based control software, reuse and automatic
software assembly.” Nosto and Nosto-2 were the first projects carried out by
TKO and ELE for the firm Kc. No further projects have been carried out for
Kc later in the nineties, despite that several topics for continuing work were
proposed at the end of the Nosto-2 project.

Reagenix was used in 1997 in the Mots-2 project, to generate parts of the
code of the Mosim test environment developed and applied for the needs of
the firms N and Nc (and earlier also for the firm K) since the late eighties.
The approach taken by VTT to Mosim, building of a customer-specific tool
environment and conducting several big project for its use and further
development, was heavily criticised by the code generation researchers in
the group rehearsal. They claimed that VTT is “stealing money” from
industry by tying it into this kind of an expensive and long-term
relationship. The code generator produced “efficient code”, although “it was
impossible to produce an implementation-free design model as the method
would have required”. Support for designing and implementing message
buffering was also “missing from the generator”.

2/58

A2.3.5 Selling of Reagenix licenses

Although Reagenix was used in several red – and also blue – projects, the
goal of selling Reagenix licenses independently from the projects did not
succeed too well. The total number of the sold licenses, worth 25000
Finnish marks each, was closer to five than ten. In many cases the work
needed to deliver, install and take the generator in use consumed a
considerable part of the license income. Several licenses were given out for
free, to universities and engineering schools – Reagenix was used perhaps
by hundreds of engineering students, but this resulted in no income to ELE.

In Summer 1998, the rights of Reagenix were sold to a small company run
by the original Sokrates project manager and owned also by some of the
other code generation researchers. A modest royalty fee for ELE was agreed
on any Reagenix licenses sold by the company during the coming few years,
but no such income has realised yet. The firm is, however, busily using
Reagenix to generate embedded software for a few customers that bought a
Reagenix license from ELE earlier in the nineties.

One of the basic differences with regard to the present Reagenix licenses,
when compared to the situation in the early nineties, is that there is no more
any need to use the CASE tool of the firm I as the user interface of the
generator. A replacement was designed in a blue research project on
software reuse in the late nineties, by the former code generation researcher
involved in the project. The notation supported by the user interface is no
more strictly based on SA/SD, but on a more general software component
modelling approach. An example of the notation on the control of a traffic
light is shown in Figure A2. The generator produces C programs from
software component models, Figure A3.

The user interface is based on a general-purpose commercial graphical
software package, the cost of which is only a few thousand Finnish marks.
The package can be tailored to support almost any graphical modelling
language. This solution seems to have put an end to the deadlock between
the code generation researchers and the firm I. Moreover, the two firms can
from now on compete or co-operate as equal organisations that make
business on the same grounds.

In 1998, the firm carried out generator-based software development for at
least one industrial customer, and sold one Reagenix license to an
educational institute.

2/59

control_traffic_li ghts

register_pedestrian_request

signal ped_button

flag ped_grant

flag ped_request

flag ped_wait

sequence_lights

fla
g

 a
_r

ed

fla
g

 a
_a

m
be

r

fla
g

 a
_g

re
en

fla
g

 b
_r

ed

fla
g

 b
_a

m
be

r

fla
g

 b
_g

re
en

f lag ped_red

flag ped_green

flag ped_request

C2: sequence_lights

 a
_r

ed

 a
_a

m
be

r

 a
_g

re
en

 b
_r

ed

 b
_a

m
be

r

 b
_g

re
en

 ped_red

 ped_green

 ped_request

C1:
reg ister_pedestrian_request

 ped_button

 ped_grant

 ped_request

 ped_wait

flag ped_grant

 ped_grant

 ped_red

 ped_green

 b
_g

re
en

 b
_a

m
be

r

 b
_r

ed

 ped_wait

 ped_button

 a
_g

re
en

 a
_a

m
be

r

 a
_r

ed

control_traffic_lights

f lag ped_red

flag ped_green

fla
g

 b
_g

re
en

fla
g

 b
_a

m
be

r

fla
g

 b
_r

ed

f lag ped_wait

signal ped_button

fla
g

 a
_g

re
en

fla
g

 a
_a

m
be

r

fla
g

 a
_r

ed

include xtlight3.h
include xtlight2.h

Figure A2. Reagenix-based model of traffic light control.

2/60

/* xtlight1.c - control_traffic_lights () - 1997-06-17 13:07:10 */
/*---
 Diagram Information
 Title : control_traffic_lights

 ReaGeniX Programmer Version Version 2.Beta-01
 Licensed to: …
 ReaGeniX is a trademark of
 VTT Electronics, Finland
---*/

/* reactime compatibility check */
#define reactime_style 1
#include "reactime.h"
#if reactime_level < 1
 #error Old reactime version included
#endif

/* subprocess compatibility check */
#ifndef no_flowcheck
 #include "xtlight1.v"
#endif

/* data definitions */
#include "xtlight1.h"

process_body(control_traffic_lights)
 #ifdef flag_init
 initial_value_reservation(initial_value(flag),flag) =
 {flag_init};
 #else
 #ifndef flag_uninitialized
 #error Uninitialized state variable of type flag
 #endif
 #endif

 initialization
 init_process(sequence_lights,C2);
 init_process(register_pedestrian_request,C1);

 init_phase_2
 link_own_flow_from(C2.ped_grant, R__30ped_grant);
 link_own_flow_to(R__30ped_grant, C1.ped_grant);
 link_out_flow(C2.b_red, b_red);
 link_out_flow(C2.b_amber, b_amber);
 link_out_flow(C2.b_green, b_green);
 link_out_flow(C1.ped_wait, ped_wait);
 link_own_flow_from(C1.ped_request, R__56ped_request);
 link_own_flow_to(R__56ped_request, C2.ped_request);
 link_out_flow(C2.ped_green, ped_green);
 link_out_flow(C2.ped_red, ped_red);
 link_out_flow(C2.a_green, a_green);
 link_out_flow(C2.a_amber, a_amber);
 link_out_flow(C2.a_red, a_red);
 init_2_process(sequence_lights,C2);
 init_2_process(register_pedestrian_request,C1);
 end_initialization

…

/* xtlight1.c - control_traffic_lights () - 1997-06-17 13:07:10 */

Figure A3. Piece of program code generated by Reagenix.

2/61

A2.3.6 Exploitation in joint research projects

As shown in Table A8, several different blue research projects were used as
internal code generation “customers” – similar to the first exploitation
activities performed already during the Sokrates project. None of the
projects focused on code generation per se, which meant that rather small
design assignments were given to the code generation researchers. In most
cases these were supporting tasks, because the generation techniques were
applied by the other researchers.

The projects did not pay any license fees or other kinds of compensations
for the use of the code generation methods and tools, only the work
expenses on a non-profit basis. For this reason, Table A8 does not show any
distinct financing for the use of the code generation techniques. The volume
of the tasks in which the techniques were applied varied from a few days to
several man-months, the corresponding external financing thereby from a
few thousand to hundreds of thousand of Finnish marks. For example, the
external income from the work done by TKO for the last phase of Tulko
that was heavily based on Reagenix, was about a million marks.

The lack of any internal usage fee was criticised by the code generation
researchers. The management of TKO did not want to charge anything from
the use of its own tool in projects that were carried out by itself or in close
co-operation with its key research partners, such as VTT Electronics
laboratory and the University of Oulu.

Table A8. Exploitation of the code generation competence in blue projects.

Project Customer Results Year

Tulko (VTT
Electronics
laboratory)

Generation of machine control
software

1989 - 1993

Turva (Työsuojelu-
rahasto)

Design and analysis of safe
embedded software

1991 - 1992

Lokki (Machine
automation
firms)

Incl. evaluation of Reagenix 1991 - 1994

Diagnosis (Firm T,
Työsuojelu-
rahasto)

Generation of diagnostic
software

1992 - 1993

Rulla,
Rulla-2

(Firm H) Generation of diagnostic and
machine control software

1993 - 1996

Rekki (Machine
vision firms,
University
of Oulu)

Design environment for real-
time machine vision software

1995 - 1996

AVV (VTT
Automation,
STUK)

Software safety analysis 1995 - 1997

2/62

Tulko was a large series of joint Tekes-funded projects on “intelligent
machines of the future”, of the scale of Sokrates – well over five million
Finnish marks. It was carried out by VTT Electronics laboratory, TKO,
VTT Machine automation laboratory, University of Oulu and almost ten
companies. It was mainly funded by Tekes.

Reagenix was used in the last phase of the project, to design and implement
a demonstration system of an intelligent machine for the firm St, which was
one of the customers of VTT Electronics laboratory. In the final
management meeting of the project the feedback of the industrial
participants was much similar to Sokrates – new “experiences” had been
gained, and it might be possible to utilise the results “in the future”.

One of the key persons in the Tulko project at VTT Electronics laboratory
summarised his experiences from the use of Reagenix in an interview as
follows:

“In Tulko, [one of the code generation researchers] demonstrated
Reagenix and built a working whole by it, … [but] a completely wrong
direction was taken. The great software experts did it the wrong way.
It went just the wrong way. Usually, the specifications are made in this
kind of projects, but the implementation must go bottom-up, to ensure
that it succeeds. We could implement the system anyway. The case
system was the manipulator [of the firm Sc]. We actually had a
continuing project with them afterwards, which I joined because [the
software designer left us and] no one knew Reagenix. I produced the
basic software by Reagenix, which was rather efficient after I learnt
the cryptic Reagenix representational formalism. [The former
Sokrates project manager] and the others helped me willingly, they
were not watching the work over or asking for any money of that kind
of use of Reagenix”.

According to the interviewee Reagenix did not help to understand
concurrence, because that should have been addressed as part of the analysis
of the application, not as a software engineering problem:

“No, it is the other way round. We though that we already have a
model that includes concurrent phenomena, and we just prototyped
that model by using Reagenix. It was a fast way for implementing
concurrence, which was described at the SA level, basically just by
pushing a button. … If someone says so [that Reagenix provided a
language to understand concurrence], I just say bullshit. We can see it
in the field even nowadays. Tool providers tell about languages, but
they do not understand that what matters is the analysis of the
application”.

Reagenix was used by TKO at the beginning of the nineties in the Turva
project dealing with the design and analysis of safe embedded software. The
person in charge of the use of Reagenix was the code generation researcher,
who actually implemented Reagenix. The project was funded by a private
foundation focusing on the improvement of safety and health in work.

2/63

The results of the project were described in the final report as follows:
“Methods and tools were developed to be applied in the analysis of software
safety, when the software development is based on Real Time Structured
Analysis method. … A tool was developed to design fault trees, and a
generator built to produce code from the fault trees. The generator produces
code from the fault trees by which the software is augmented".

The elevator in case was not an industrial product, but the demonstration
system of Sokrates, a toy built from Lego blocks. No industrial partner was
involved in the project. The results of the project were published in several
papers and reports, and as a part of a continuing engineering education
course. However, no customer projects on the safety of embedded software
could be established in the nineties, due to the lack of industrial interest.

Reagenix was used at least in two fault diagnosis related research projects in
the early nineties. The Diag and Rulla projects were financed by the same
foundation as the Turva project, but industrial companies were also
involved. The code generation researchers were involved in both projects, in
part without the knowledge of the line managers, who had actually allocated
them to work in other projects. The decision to use the code generator in the
Diag project was motivated as follows:

“The control software contains information on the operation of the
machine. If it is implemented in a traditional way, it is difficult to get
hands on the needed information. Therefore, we decided to use the
SOCRATES technology [Okkonen&89, Okkonen&90] to implement
the control system. This method is a refinement of RT-SA/SD
introduced by Ward-Mellor [Ward&86]. It includes a code generator,
which compiles the graphical diagrams to C. The code generator takes
care of traditional real-time programming”.

The Rulla project was a fault diagnosis research project in which the design
of a safe wood carving machine for a small company was used as case
example. The machine was a one-of-a-kind solution, but taken in production
use. In the final report of the project the role of code generation was
described as follows:

“The control system was implemented by using the Sokrates-SA
method and the code generator, which compiles the program code
directly from SA models. By using this method, the development of the
control system remained clear and manageable. The use of the code
generator prevents differences between SA models and the program
code. In this way, program documentation remains up to date in an
understandable form, which helps re-development and maintenance.
In addition, the use of the code generator decreases the coding phase
remarkably.”

2/64

The Rulla-2 project carried the development of the machine further:

“The Rulla-2 project … based on the earlier work, focused on the
improvement of control system design methods so that problems
caused by design could be reduced in the future. As a result of the
project, improved management of disturbances in the wood carving
machine was expected. The project aimed at reaching its goal by the
means of modelling. Visualisation and integration of the simulation
control system models were seen as the most important target of
modelling.

The control system implemented in Reagenix carries out the necessary
controlling actions based on this [model] information. During the
specification phase of the [modelling] subtask it was found out that
when the control software is described by the Reagenix method in a
formal enough manner, it can be used as a distinct model. The result is
remarkable in knowledge engineering in more general terms: if the
same computer software can be used both in control and in analyses,
modelling work can be considerably decreased”.

The results were thus encouraging, but Reagenix did not yet become
routinely used in fault diagnosis projects. The reason was apparently
because the researchers involved in the projects could use also fully
commercial visual programming environments, such as Visual Basic and
Visual C++ that were supported by manuals, textbooks and courses and
widely used by software engineering practitioners and researchers.

The Lokki project was one of the activities of TKO directed towards
machine and equipment manufacturers. The original goal of the project was,
very broadly, help machine automation experts in solving embedded
software engineering problems. Veikko Seppänen asked one of the code
generation researchers to prepare the first draft of the project proposal and
supported this choice in the management group of TKO, where the other
managers suspected that the proposal would turn out just as reborn Sokrates.

The proposal was in the opinion of Veikko Seppänen poor, not seriously
prepared. The industrial needs had not been clarified at all. The code
generation researcher claimed that the proposal was based on the
understanding of the real technological requirements of machine automation
applications, as opposed to some impractical research questions. A fight
followed, after which Veikko Seppänen prepared the proposal together with
Jukka Karjalainen. The industrial participants wanted the project to be
planned based on several case studies and focus on software reuse. The two-
year project was followed by another two-year project addressing
application-specific multi-method software design approaches.

2/65

Reagenix was, however, test used as part of the Lokki project and compared
against the code generator of the firm I. The results of the evaluation were
commented as follows: “The executable code of the manually coded
program would be at least in this case (a part of a drilling jumbo’s boom
control software) about five and a half times smaller [than the code
generated by Reagenix]. In addition, the manually coded software would be
much easier to understand than the software produced by the generator,
because the latter includes many macros defined by the generator. On the
other hand, it should be remembered that the code produced by the
generator is not meant to be manually maintained, but all changes should be
made to the model from which the code was produced. … Finding of errors
is more difficult from the generated code, because at least for the moment
no debugger is available for the generator that would allow to execute the
SA description”.

The code generator of the firm I was evaluated for the needs of machine
automation applications as follows: support to SA execution rules: poor (1),
need to understand C programming: inevitable (1), easiness of functional
modelling: satisfactory (3), validation of the developed models: fair (2),
usefulness of the error messages: poor (1), easiness of debugging: poor (1),
overall usability: satisfactory (3), modifiability for the users’ needs: good
(4), support to reusable software components: satisfactory (3), and easiness
of interconnecting software components: fair (2). The generator was
described as not being “strictly speaking any generator for SA models …
[because its] use requires to think of the implemented code all the time”. On
the other hand, the generator “can be easily integrated into the present
industrial software development environments”.

In the continuing project two different code generators incorporated in
computer-aided control system design environments were evaluated. The
main experiences were the following: “A rapid prototyping tool
(MATRIXx) was evaluated in the [Kiuru] project to produce embedded
software. A model was designed in the project of a garden tractor, whose
control was implemented as a distributed system. The software of one node
of the control system was modelled by MATRIXx, after which the real-time
C code was generated. ... programs were manually added to the code. The
real problems appeared when the [generated] code was ported to the
embedded target environment. Technical problems prevented the testing of
the code in the real target environment. The size of the generated code was
much bigger than the corresponding manually coded software. ... The use of
MATRIXx appeared to be easy, but for this kind of [rapid prototyping and
code generation] use it would require some additional features.”

The Rekki project was carried out as a part of the Machine vision research
program of Tekes. The topic of the project, integration of algorithm and
real-time software development methods and tools for machine vision
applications, was proposed by Veikko Seppänen to the University of Oulu,
which was one of the key players of the research program.

2/66

Veikko Seppänen wrote the project proposal for Tekes together with his
former student mate, a researcher at the university. One of the code
generation researchers was asked to carry out the work allocated to VTT,
another researcher was also involved mostly for providing SA/SD training
to the industrial partners of the project. Most of the participating firms were
small ones and dealing with machine vision based electronic measurement
instruments. The applicability of Reagenix is described in the technical
report of the project as follows: “Transfer of the [machine vision] algorithm
into the target system can be made considerably easier by the ReaGenix too.
The use of the ReaGenix and ReaGOS methods in as early a phase as
possible provides for a fast (automatic) code transformation from the
development environment to the target equipment”.

In the appendix of the report several CASE tools are listed and briefly
evaluated. Reagenix and Reanimator are listed without any remarks that
they are the only non-commercial tools in the table. ELE is given as the
“manufacturer” of the two tools, all the other manufacturers are commercial
firms. The CASE tool of the firm I and Reagenix are further evaluated,
without making any remarks on this matter there either. When analysing
testing tools, CUTE is also indicated to be manufactured by ELE. A listing
of real-time operating systems is also given, with an indication that ELE is
the “provider” of ReagOS. All the other real-time operating system
providers in the list are commercial firms. On the other hand, the evaluation
of the machine vision algorithm tools shown in another appendix written a
university researcher points out that Khoros, the algorithm design tool used
in the project by the university, is a public domain software package.

The volume of the work done by ELE in the Rekki project was six man-
months. The results were considered as good. Some of the participating
firms, as well as foreign machine vision experts, indicated that digital signal
processing techniques “were missing from the [SA and Reagenix based]
approach” to the development of real-time machine vision software. The
main research party, University of Oulu, that subcontracted parts of the
work from ELE, criticised that the work was only one of several ongoing
projects of the VTT researcher. This resource distribution problem was
pointed out also by the researcher in the group rehearsal.

In an interview in 1998 the manager of the project at the university told that
“Reagenix does not give any particular support to solve machine vision
problems” and that “during Rekki, Reagenix was by no means a mature. It
had serious problems in documentation but also in part in the code, for
example in the interoperation of different parts”. The integration of the
machine vision algorithm design tool and Reagenix did not succeed very
well either, according to the project manager. The university has not used
the approach in any further machine vision projects. The firm Ha which
provided a case example for the approach was, however, “quite satisfied,
but the ultimate application of the results was unfinished”. In the final
project management group meeting VTT pointed out as its opinion that the
industrial partners “would have benefited from the development of a real
[software design] environment” for their needs, but “they did not have
readiness for this ... [because] they do not yet have the necessary volume to
invest in the development of design methods and environments.”

2/67

Reagenix was used in the AVV project, where ELE was a subcontractor of
VTT Automation and the customer was the Finnish Center for Radiation
and Nuclear Safety (STUK). The researcher of TKO responsible for the
AVV project was the former manager of the Turva project. Therefore, the
idea of using Reagenix in software safety related R&D was carried further.
According to the researcher, Reagenix models were used two industrial
safety analysis cases, involving the foreign automation firms Ab and Si. The
firms “saw the use of the code generator as useful, perhaps because some
previously unknown faults had been identified by using the models
developed with the help of Reagenix. The firms were interested in
Reagenix, but never actually conducted any further discussions”. According
to the researcher at least the firm Si, a very large multinational corporation,
had already comprehensive methods and tools at its disposal.

Two other researchers of TKO were involved in the project. One of them
“did not know, where the idea to use the generator came, I was not involved
in the decision making”. The other explained that the project manager had
made the decision. The researchers did not have any earlier experiences
from Reagenix. One of the researchers considered Reagenix as “very good
in executing and testing … logical [system] models, easy to use” and
Reanimator as “good in unit testing”, whereas their documentation was not
good. The other researcher was “not enthusiastic over” the tools. The code
generation researchers “consulted the project for a few hours”.

The manager of the AVV project, a researcher of VTT Automation,
confirmed that the decision to use Reagenix was made solely by TKO. He
thought that the models developed by Reagenix “could apparently be
produced rather easily and with relatively small efforts”, although the
systems to be modelled were also “relatively simple”. According to the
project manager, the firms Ab and Si that were involved in the project, “did
not commented the use of Reagenix”, and “STUK did not provide any
comments either”. The technical reports published by the project include
several comments on Reagenix, which was compared to the well-known
Statecharts modelling approach supported by many different commercial
CASE tools:

“Two most potential of the considered methods, ReaGeniX and
Statecharts, were compared to each other with respect to the defined
criteria. ... while ReaGeniX has a stronger methodological
background and is thus easier to apply, Statecharts has the better tool
support. ... ReaGenix probably results to a better model because it has
a clearly defined development process. The size of the executable
software shows a noticeable difference: the Statecharts model has a
size of 240 kB, while the ReaGeniX model uses only 25 kB. …
ReaGeniX is clearly better regarding the costs of the environment and
the tools themselves. … To conclude ... the ReaGeniX method is a
better choice. … During the two years of the project no such novelties
in the area of formal methods have been noticed that for instance
would clearly exceed the reliability of the ReaGeniX models or cut
down the amount of work of the modelling. Therefore it seems that the
method is a useful choice also in the future.”

2/68

REFERENCES OF APPENDIX 2

Aho, A.V., Bjorn-Andersen, N., Haberman, N., Neuhold, E.J., Rissanen, J.,
Simon, J.-C., Swanson, E.B. 1990. Research and teaching in computer
science, computer engineering, and information systems. A critical
evaluation. Publications of the Academy of Finland 3/90. VAPK-
Publishing, Helsinki. 101 p.

Guy, K., Quintas, P., Hobday, M. 1991. Evaluation of the scientific and
technological status of Finsoft: The Finnish software technology
programme. Tekes, Helsinki. 58 p.

Kalaoja, J. 1988. Reaaliaikaohjelmiston kuvaus ja toteutus eräissä
muunnosjärjestelmissä. Diploma thesis, University of Oulu. 68 p. (in
Finnish)

Saukkonen, S. 1991. Finsoft-ohjelman tulosten teollisen hyödyn ja
hyödynnettävyyden arviointi. Tekes, Helsinki. 75 p. (in Finnish)

Savilampi, J. 1989. Toimilaitejärjestelmän ohjauksen mallinnus Sokrates-
SA-menetelmällä. Diploma thesis, University of Oulu, Department of
Electrical Engineering. 31 p. (in Finnish)

Seppänen, V., Alajoutsijärvi, K., Kurki, M. 1998a. Competence-based
evolution of contractual R&D relationships. Technical Research Centre of
Finland, Espoo. VTT Publications 346. 70 p.

3/1

APPENDIX 3: CODE GENERATION STORIES

In the following, the original case summary written by Veikko Seppänen is
accompanied with the story of the code generation researchers, created on
the basis of interviews and a group rehearsal.

Code generation research and development started at TKO in the mid-
eighties. There was a strong, global belief among software engineering
researchers that the so-called automatic programming techniques would
become practical within a few years. At TKO it was thought that this would
be the case also for the development of embedded software. The problem of
producing computer software automatically from higher-level system
models is known from the very early days of computing. The so-called high-
level programming languages had been developed in the sixties and
seventies to help programmers to develop software by using higher-level
concepts than those directly related to computer hardware. Many kinds of
compilers, software tools for generating executable machine code from
programming languages, had been available since the sixties.

The input language of compilers, understood and produced by
programmers, is called source code. The output language of compilers is
executed by computer hardware and called object code. The tools needed in
writing source code are, typically, called editors. Different kinds of source
code manipulation tools can be packaged into programming environments.
Tools needed for managing object code are debuggers, whereas testing tools
are used to facilitate executing the code and analysing the execution results.
A typical programming task would thus involve the cycle of creating a
source code, compiling it into an object code, and debugging the execution
results. Many compilers and debuggers are dependent on hardware, the
physical computer system that executes the object code. Therefore, software
tool vendors sell families of tools tailored to certain computer hardware.

In the seventies and early eighties researchers were trying to “extend”
compilation techniques to even higher abstraction levels, to support code
generation from even more abstract software modelling concepts. Some
researchers and commercial tool vendors were wishing to integrate high-
level code generation techniques into more comprehensive Computer-Aided
Software Engineering (CASE) tool environments, which emerged in the
eighties. Another approach to code generation was to build pre-compilers,
tools producing source programs which can then be compiled to object code
by means of existing compilers. High-level languages, especially the C
programming language, started to become popular in the embedded
software development community in the eighties. The first CASE tools had
also been taken into use by embedded software developers. These tools
usually supported certain graphical modelling languages and methods used
for software development. One of the most popular methods was SA/SD.

3/2

A version of the SA/SD method suitable for modelling real-time embedded
systems was proposed in the early eighties, soon becoming soon highly
popular. A Finnish tool vendor developed and sold a commercial tool
supporting this method. Textbooks and courses on the method became
available, sometimes organised around the use of certain tools. A typical
software development task would include, firstly drawing graphical models
of the behaviour of the system according to the method and perhaps using a
CASE tool, and then editing, compiling and debugging the corresponding
executable program by means of a C programming environment, for
example. A code generator associated with a CASE tool would have
automated this task by producing either the source code or the object code
from the graphical system models.

At TKO, people had also become interested in SA/SD. In the mid-eighties,
in a very short period of time, almost all software engineering researchers
took courses on the use of the method, and were applying it in several
industrial embedded software development projects. Industrial practitioners
took the same course of action, and the Finnish CASE tool vendor
succeeded in selling its tool to many of the actual and potential client
companies of TKO. Thus, SA/SD based embedded software development
emerged rapidly. As researchers, TKO persons became interested in the
problem of extending the method and automating the CASE tools that
supporting it. One of the ideas for extension was code generation from high-
level system models into source code. System modelling notations would be
used as a kind of high-level graphical programming language, and the code
generator would serve as a pre-compiler for producing embedded software.
A pre-study project called Speco on code generation was carried out for an
industrial client (firm K) in the mid-eighties, but the input language was not
SA/SD and the generated code was not the C programming language. The
customer was also not fully satisfied.

This is interesting. I newer fully realised it, but perhaps there was some
kind of conceptual fathering away between [the R&D manager of the firm
K] and us … First of all, the problem was very complex. [The R&D
manager] was wondering why I was proceeding that slowly ... the plan
might have been 18 man-months for Speco as a whole. [He] would have
needed some kind of journal of what we were doing, and he always had
proposals for all problems. I could not write down any kind of journal … At
the beginning, I remember that we were having meetings with the walls of
the room filled with papers on the semantics of the design elements …We
were in the basement of the TKO building then. We were solving the
problems at a hectic pace. Minute after minute we were trying to solve some
new problem with [yet another researcher]. [The R&D manager] would
have needed a detailed journal on how the problem solving process was
proceeding … to see, if he was getting some value for his money … Yes, and
the preparation of a journal would have required a video recorder, to
prevent disturbing the problem solving process … Returning back to my
problems with [the R&D manager]. We were both software guys. He could
just come tome and say that a particular problem could be solved in that
way, and I, after having thought about it for a month, said no, it was not
possible … [He] wanted to be right.

3/3

A decision was made to propose a code generation research project to the
Finsoft software engineering research program established by Tekes, the
engineering research funding body, in the late eighties. The researchers
closely involved in the Speco project supported this proposal. The proposal
was written on the basis of the original ideas of these persons rather than,
for example, on the analysis and extension of existing results of automatic
programming research. Another possible approach would have been to
make a literature survey and to propose how the existing techniques could
have been modified for the embedded systems domain.

We performed an extensive literature survey on automatic programming
and code generation in the Speco project and collected one big folder full of
references. We had become familiar with formal methods for modelling
parallel systems in a licentiate course. [The R&D manager of the firm K]
presented us the refinement and transformation concepts for Draco. The
problem with the traditional approach was its tree structure, it would be
better to describe parallel systems as networks.

Now, the idea was more practical in the sense that the proposal addressed
the problem of how to transform SA/SD models into C source programs.
Both the input and output languages of a tool that would support this
transformation were well known to the embedded systems software design
community. The proposed code generator would obtain the SA/SD system
models from a CASE tool and produce a C source program for a compiler,
which in turn would produce the corresponding object code.

I had evaluated related systems, though in a limited way, but using the
‘hands-on’ style. I surveyed the Draco and Refine transformation tools. I
was very interested in Draco, for example, until I realised its problems. On
the other hand, I found out its benefits, too. Draco’s refinements are
actually code components, which the system has been built of. The main
obstacle of Draco was addressed by Reino Kurki-Suonio [one of the best
known Finnish software engineering professors] at some meeting. With
Draco, it is extremely hard to define domain-specific languages. Moreover,
the principle of defining the semantics of languages was not good in Draco.
The definition of semantics was done by making refinements. In practice,
the definition should be based on a more formal model. Refine was based on
a so-called wide-spectrum language. This was a strength and a weakness at
the same time. The maintenance and management of the language concepts
was rather problematic. Yet, I obtained ideas from Refine that were later
implemented in ReaGeniX 1.0.

A number of automatic programming researchers had proposed special
input languages for code generators so as to generate a full program code.
One could say that no practical, industrially usable code generators existed
for this reason. Practitioners were not using the kinds of abstract language
notations by means of which automatic programming researchers had
produced programs. Moreover, many of the languages for which small-scale
research prototypes of code generators had been developed, were not
suitable for programming embedded systems.

3/4

We used Prolog instead, which has actually turned out to be very good for
the purpose. Refine, for example, includes a number of features similar to
those in Prolog. In Draco, the same features have been implemented by
using the Lisp language.

In this regard, the starting point of the code generation research at TKO was
quite practical and promising. It was believed that the problem to solve was
how to define and implement a mechanism – a code generator tool – that
could transform SA/SD models into C source programs. The input and
output languages and the technologies supporting the manipulation of these
languages existed and could be used in the development of the code
generator. It was thus believed, based on the experiences gained from the
Speco project, that the project would succeed in producing an industrially
usable code generator. Such a tool would have been a remarkable
breakthrough indeed.

The persons behind the proposal pointed this out, their aim was to introduce
the world’s first embedded systems code generator. It could really change
the way practitioners were working. This belief was shared by quite a
number of industrial embedded systems practitioners. More than ten firms
became interested in the proposal, joining the venture as follow-up
participants paying a small fee to be able to use the results. A Finnish CASE
tool vendor was one of these firms. The Sokrates project was launched in
1988 and it lasted for three years, as part of the Finsoft research program.

A3.1 FIRST PHASE – MAKING OF THE INNOVATION

The Sokrates project, although financed by Tekes, by TKO and to some
extent also by the participating companies, was carried out by the
researchers who initially proposed the project and then became its key
resources. The researchers designed the technical specifications of the code
generator based on their own original ideas, and established a research
environment where the generator would be developed. This environment, a
workstation computer, was physically separated from the internal computer
network of TKO, so that no one else could disturb the ongoing work. This
decision was made by the project group and accepted by the managers of
TKO. The development of the code generator did not require any
modifications to the CASE tool which was chosen for the task of producing
SA/SD-based system models. There was thus no need to establish any
particular co-operation relationships with the Finnish or other tool vendors.

[This Finnish CASE tool vendor, which] took part in the steering group [of
Sokrates], did not, however, want to be involved in any real co-operation
within the project.

However, the SA/SD method needed to be extended, as it was described in
the literature. New development tasks and new kinds of models were
defined, according to which the input of the code generator would be
produced. The main reason for this was that the original method was meant
to be read and understood by software engineers, not by a computer.

3/5

The original method was, therefore, not rigorous enough for generating
program code. In other words, the rather informal and abstract graphical
modelling language was redefined and extended to a rigorous programming
language. The method and the language were defined through the project
and named as Sokrates-SA. A part of Sokrates-SA was a subset of the Ada
programming language, popular in American embedded systems military
applications, but not used in practice in Finland. The manager of the project
gave courses on the redefined method not only to the industrial participants
of the project, but to a great number of other embedded systems
practitioners and software engineering students as well. The courses were
generally considered useful.

The code generator, as a tool, affected both the development process of
embedded software and the kinds of software solutions produced in the
process. It was not directed to any particular application domain, such as
telecommunication or automation, but was rather meant to serve the needs
of generic embedded software engineering. However, the input and output
languages were fixed, and therefore also the computer hardware, for which
source code was be produced.

New input and output languages would have required developing new code
generation rules, as well as adding links to new CASE tools and compilers.
The rules were, however, not entirely hard coded into the generator.
Although the code generator was designed as a generic software
engineering tool, the developers did not establish many relationships to
other researchers, while using the results produced by these in developing
generic automatic programming tools. Most of the existing tools were based
on different input languages, or were rather useless in generating full
embedded source code. This situation led to the fact that there was no
rigorous theory of the generic code generation technique that was
implemented, which could have been scientifically evaluated by other
researchers dealing with similar problems.

Well, there was no such theory anywhere in the world. [Two code
generation researchers] had made an attempt at publishing the principles
of the coding rules, but I have to admit that the paper was not too well
written (due to the lack of training and experience), which is why it was not
published … Our approach was commented by [a colleague] saying that
“we raised the bar so high that it was easy to go under it”… [Another
researcher claimed that] No, his comment was that “you will find the
highest position of a fence to go under it”.

Our approach was all the time that if there was some theoretically
interesting problem, we would try to figure out how to do things without
solving this theoretical problem. Moreover, we all have been developing
these things further afterwards. For example, we all knew what objects
were, although they were not included in the approach. The reason was
that, in our opinion, objects would not bring anything new to solving
concurrence problems. We were reading up-to-date object-oriented
literature, but its message was that the operating system would solve all the
problems.

3/6

Attempts were made at publishing some of the code generation principles in
the early phase, but the papers were rejected by reviewers.

The code generation technology was published in the STEP-90 conference.

This consolidated the view of the code generation researchers that they were
producing something that was unique, a comprehensive approach that was
different from all the other approaches. Later, however, a few papers were
published on parts of the work. There was a vivid discussion within the
Sokrates project on which case application the code generator would be
applied to. Various proposals were made, the project, however, decided to
build its own test application, a toy elevator constructed from Lego blocks.

Later, during Sokrates, when I went to [visit firm K] it came to a conflict.
They had started a new generation [product] development, new chief
designers had come with a new software architecture. [The representative
of firm K in the steering groups of Sokrates] and I were talking to the chief
designers trying to offer a Sokrates case, but they reacted very strongly,
saying that if the Sokrates case were implemented, they would leave [the
firm], or something like that… The case would have involved a small
processor, on which they had already spent dozens of man-years.

The elevator controlling case had been used as a classical embedded
systems text book problem. The project group decided to show how it could
be solved by means of the Sokrates-SA method and the code generator. A
summer trainee implemented the elevator, which was controlled by an
industrial PC computer executing C programs.

Since, despite many requests, we did not manage to get any pilot case from
the members of the steering group, the Lego elevator was chosen as a
demonstration. We had made an alternative plan [to develop the Lego
elevator] for this situation. We activated the alternative plan, because the
deadline for starting to work for the case study was coming closer. The
Lego elevator was chosen as the alternative for the following reasons: its
control was not a trivial matter, including some real problems on
concurrence and real-time issues; the problem domain was close to the
businesses of the steering group members; I was familiar with the elevator
control problem; the elevator would provide good demonstration
equipment; the elevator could be developed and tested in a laboratory
without any extra travel; damages resulting from errors would be small,
and, finally, it would be available as a test environment after the project.

The demonstration succeeded, although rather many of the industrial
participants of the project and other researchers were suspicious of using
Ada as a part of the Sokrates-SA modelling language.

The reason for choosing Ada was to provide ways of generating different
kinds of code using a single input language, and the purpose was also to do
research on system analysis – and Ada provided better means of satisfying
these needs than C. Yet, I overestimated the increase of the use of Ada. I did
the Ada parts and noticed that it was completely senseless to do all the
features with Ada. I was never able to get them [the other code generation
researchers] to believe that.

3/7

A researcher not involved in the code generator project had developed a
simpler code generator for one of the key customers of TKO, who took part
in the steering group of the Sokrates project. This approach was based on
transforming certain parts of the SA/SD models directly into C. It was
proposed by the Sokrates steering group and the line managers of TKO that
the developers of the code generator would follow a similar path, but the
proposal was rejected. This, in practice, prevented the use of the developed
generator by the mentioned customer company.

I had taken a look at [the other generator], too. It produced [C] code only
from state machines and did not have much for handling data flow
diagrams – although the problem in generating code for real-time systems
is the management of concurrence [designed by using data flow diagrams
in the SA/SD method]. At that time Sokrates was not suitable for letting C
code go from specifications to the implementation [as in the other
generator].

After demonstrating the generator in the toy elevator example, the
researchers talked to the Finnish CASE tool vendor for joining forces to
commercialise the generator. The discussions failed to produce any co-
operation, the tool vendor had already started its own code generator
development and did not wish TKO to become involved.

But the vendor did not admit it. It was clear that [the managing director of
the firm] did not want that.

Discussions with other, American vendors, did not result in co-operation
either. Yet another line of co-operation was pursued, namely the generation
of a hardware description language from SA/SD models instead of C. Also
these discussions failed, as the hardware engineering researchers considered
the Sokrates-SA modelling language too complex for their needs and were
not satisfied with the results of an experiment that had been made. Instead,
they started to co-operate with the local university and developed a simpler
SA-based notation, upon which hardware description programs could be
generated. A university researcher later established a small company to
commercialise a tool supporting this approach.

Did the company ever sell the generator? Were there any continuing
projects? By the way, VTT advertised the generator in its brochures even
before the company was established.

The explicit code generation rules aroused interest in a number of the
industrial participants of the Sokrates project. One of them was using so-
called programmable logic controllers instead of microprocessors, for
implementing distributed automated production lines. In addition, a set of
code generation rules was developed for the programming language of the
controllers by a student, and the rules were taken in use by the same
company. As opposed to the key customer mentioned above, this company
was dealing with automation applications instead of telecommunication, the
role of software being a supporting technology for the applications.

3/8

The emphasis of product development in the company was on other
engineering design domains, such as mechanical, process and automation
engineering. Most of the company’s software designers were lower-level
engineering graduates, while subcontracting services were used for
implementing automation systems and machine control programs.

Yet another side-track of the code generator development was taken in use
by this company, a communication protocol software package developed by
the code generation researchers. This software was originally built to
demonstrate that a ready-made, generic communication software package
for distributed systems could be produced using Sokrates-SA. The protocol
software was, most likely, used by the company as a replacement for
commercial communication software packages, because it was modelled by
using the same Sokrates-SA method as some other parts of the software.

Actually, this is an incorrect statement. Code generation itself is a side-
track of a system design philosophy. Another side-track of the philosophy is
the communication protocol package. The Sokrates group was trying to
emphasise the management of concurrence. The story does dot address this
at all. Concurrence was a topic which also interested me and [a colleague].
I've already said that it was not made explicit enough in the story that
Sokrates really was a way of solving concurrence problems. This topic was
always present in the discussions: how to help designers to manage
concurrence. This is not obvious at all in the story, the topic has been
treated more as the development of yet another CASE tool.

A3.2 SECOND PHASE – PACKAGING OF THE RESULTS

The Sokrates project ended without any commercialisation or large-scale
use of the code generator – rather typically of many research projects during
the late eighties. It was more disturbing for the managers of TKO, however,
that the only subsequent project based on the results was the development of
special code generation rules for the machine automation firm, mentioned
above. This project was small, only about two man-months. No further
research projects were established, perhaps due to the fact that the original
manager of the code generator project had decided to join an industrial
company at a late phase of the project, and the new manager did not have
enough time to plan any continuing projects.

The generator was a mammoth, it would not have been used by anyone
then. It was just a prototype, a demonstration that code generation was
possible. Nothing else. It was not even a prototype, just a demonstration.
[The firm W] used an 8051 processor, they wanted to be a leading edge
firm, they were just looking around. Many others did not have the
applications for which the results could be used.

Moreover, Sokrates was really terrible at that time. Someone made their
own generators, [the firms S and N] … They took the results from Sokrates,
but not from VTT … They could do things based on the Sokrates results,
because they had learnt something “too well”, and they did not need VTT.
The same was actually true with regard to [the CASE tool vendor firm I].

3/9

I still believe that the companies who were involved [in Sokrates] managed
to make good use of the results. At VTT, we were always told that this was
no tool development project … This was another reason for what happened:
they told that it was just a prototype … The generator itself was not a
ready-made tool. I can't help wondering why there has not been any active
attempt at selling the coding architecture. There aren’t any brochures on it
available either, for example, indicating that we have software architecture
knowledge for sale. I would imagine that it has not been sold in any other
way than in projects in which it has for some reason been used. Software
architecture knowledge has merely been taken in use in projects by chance,
and it has not been viewed as a marketable thing.

Towards the end of the Sokrates project, we had extensive discussions with
the companies involved on how to utilise the results. Something had,
however, happened in the companies. In many cases, the persons had
changed. The structure of their products had changed to such an extent that
these things were not topical any more.

On the other hand, since there were no scientific references on the
developed code generation techniques, the hopes were only faint for
proposing any new European code generation research based on the results.
This kind of thinking, from Tekes-funded national projects to EU-funded
European projects, was followed at VTT during the early nineties.

No one ever mentioned anything of this.

The original manager of the Sokrates project returned to TKO after his
leave of a few months. He helped the project group to prepare for the
external evaluation of the project at the end of the Finsoft research program,
carried out by national and international experts on behalf of Tekes. The
evaluation results, both industrial and scientific, of the project were very
good indeed.

There were also some foreigners involved. Their conclusion was that “the
research group is on a par with top code generation research in the world”.
In other words, we were right at the top of code generation research.

However, another evaluation performed by foreign scientific experts on
behalf of the Finnish Academy produced results of completely different
nature. The evaluators were very unhappy with the lack of any scientific
evidence of the principles and novelty of the code generation techniques.

I believe that they did not have anything against code generation, but the
design philosophy, because it was based on SA/SD. They did not say
anything negative about code generation (you should check this out, if you
wish to hold on to your claim).

The researchers wanted TKO to invest money in the commercialisation of
the code generator. In connection with this proposal, discussions were
conducted if it was right for a national research institute to invest taxpayers’
money on developing software tools that would compete against truly
commercial CASE tool vendor companies. A decision was, however, made
to invest some money on the further development of the generator.

3/10

In particular, the Ada language was now replaced by C, as was proposed to
the project group already some time earlier. Some brochures and usage
manuals were also written, and a licensing policy established. The generator
was renamed as Reagenix.

This was not the case. Reagenix is no redesigned Sokrates. It was designed
completely anew based on my experience from the pitfalls of Draco, Refine
and Sokrates. It was developed in a pre-study, and made ready with
surprisingly little effort. From my point of view it was a mistake that it was
taken as the continuation of Sokrates and therefore no one was interested in
it. On the other hand, no one knew which skills were needed for developing
it.

What was worst in this story was the indication that the Reagenix code
generator would be the same as Sokrates. My opinion is that Reagenix has
been developing slowly here and there, and that there is no clear link
between Sokrates and Reagenix.

It is interesting that Reagenix was referred to as some external tool [in the
projects carried out by TKO], but nothing was paid for its use. It should
have been told that we had this kind of tool available, and some money
should have been allocated from the projects to its development.

We had already made our own generator, before the generator of [firm I]
was introduced, and we had set its price as we thought was appropriate.
[Firm I] launched its product some six months later, and they had a much
higher price. In other words, we did not know their price, otherwise we
would have used the same price. By the way, Reagenix was introduced in
the Technopolis Oulu, before [firm I] introduced its own generator. You
[Veikko Seppänen] were not there were you? You were in Japan and
therefore we could do what we wanted. [The former manager of the
Sokrates project] was the section head.

When Reagenix was introduced, [firm I] needed to reduce the price of its …
code generator to half of the original, which was more than 60 thousand
marks, but they had to start to sell it at the price at which we were offering
Reagenix, 30 thousand marks. I believe that we really caused business
problems for [firm I], due to the fact that Finland is such a small country.
[The firm] had its own marketing organisation which had to face the
problem of everyone asking them about Reagenix, especially since the front
end was the same, …, and we had claimed that Reagenix can do everything.
Yet, [their generator] was good for generating sequential code only.

Another important extension of the code generator was developed, an
operating system model and its prototype implementation. The operating
system could be used instead of commercial operating systems as a part of
programs produced by the code generator. The idea behind the operating
system was patented by the code generation researchers, and it was thus
truly original. Some parts of the idea were used in an industrial project
carried out for the above-mentioned key customer of TKO. The code
generator developers were, however, not involved in this project. The work
was performed by another person who was an expert in the customer
applications and had conducted several contractual projects for them.

3/11

Except that we told [the colleague] how to do it! … It was [his] project. We
sold the idea of the single stack operating system. [A person from firm N]
was familiar with the idea and supported us – he took part in the steering
group of Sokrates.

Investments in the further development of the code generator became a
difficult matter after some time, from the viewpoint of the VTT managers,
because no considerable contractual or research projects had resulted from
the investments.

Yes, the point is that it is not reasonable to think that as early as one year
after finishing a [research] project the customers would be there. It may
take three years.

The developers of the generator focused, instead of large-scale projects, on
small-scale consultation and teaching of the Sokrates-SA method. A new
side track of testing was, however, established. The idea was to use parts of
the input models used by the code generator for testing embedded programs.
This work was a small project done for a private company, and it resulted in
yet another tool prototype. The tool was marketed to other companies, but
without much success. There were, again, some Finnish and foreign
competitors, and the particular testing problem tackled with the tool was
perhaps not considered the most serious one by industry.

We first carried out the Sympa project, an analysis of the improvement of
their software development practices. Unit testing evolved through that
analysis. Once again, it is all the better that small expenses yield the great
benefits … as happened in this case, but the organisation [TKO] did not
support us in the further development of CUTE. Yet, it was transferred for
example to [the firm A], although they had a horrible situation there. Their
subcontractor had developed a massive software architecture that needed to
be tested before it was taken in use. However, it was not just testing, we also
had to deal with the architecture. As the well-known subcontractor and was
using a new object-oriented technology, we had to tell them how to test the
architecture. Therefore, we just took the consulting role, by commenting
what [the firm A] itself was doing. I still believe they got what they wanted,
although they could not invest in CUTE as such.

The original developer of the Sokrates code generator aimed at writing his
doctoral thesis on the results of the Sokrates project, which would have
resulted in a comprehensive scientific evaluation of the basic principles
behind the method and the tool. The plan has, however, not yet materialised.

The dissertation would actually not have resulted in this, had it been
finished.

We did not have the university background. It [scientific documentation of
the code generation principles] should have been done as a part of the
Sokrates project. … In my opinion, it was the university attitude [that was
missing]. … There was no one to guide us in doing it … [a colleague] had
high criteria for publishing, for us they were clearly too high, we should
have studied how to describe these things formally.

3/12

Another problem was that as we always had two to three customer projects
going on at the same time, there was quite simply not enough time for
writing any documentation. At the end of the Sokrates project we made a
mistake in trying to develop Sokrates [further] without publishing anything
at that point. We should have stopped the development during the last year,
to write publications. … Later, SA/SD was not any more successful with
regard to publishing.

Increasing interest in object-oriented methods also made further investments
in an SA/SD code generator more difficult. The focus of research on generic
software engineering methods was moving towards these methods instead
of the SA/SD method.

At that time, I was following the evolution of object-oriented techniques
quite closely. I had already become familiar with these techniques during
my diploma thesis work. I was listening to the praising of the techniques by
Risto Suitiala [a researcher at VTT Information technology laboratory] and
I realised that there was a lot of potential in these techniques. Refine
supported some object-oriented features and transformations from these to
code. I had discussions with [a colleague at TKO] on how object-
orientation and real-time systems would fit together. I was using Object
Pascal in my spare time to design a Windows-based user interface program.
I even wrote tentative transformation rules from object life-cycle state
diagrams to an object-oriented programming language and presented them
[to another researcher], who applied them in [a customer project].

The original Sokrates project group had been dissolved, but kept together,
in practice, and worked even during their spare time trying to advance code
generation techniques. The biggest problem, from their viewpoint, was that
the line managers were not willing to invest much money, but were rather
looking for larger contractual application projects based on the existing
generator, or for an extension of the generator’s input language to an object-
oriented formalism.

Actually I did not work that much in my spare time, except correcting some
errors [in the generator]. As the [research] customers at VTT using the
generator did not pay any license fees, these small tasks needed to be done
[in my spare time].

The few application projects involving the code generator, lasting a few
man-months at most, resulted in a very small return of investment from the
viewpoint of the VTT managers.

Who tried to initiate these projects? I was never given any information,
although I would have had some ideas and the skills for the job.

The relationships between the line managers and the code generation
researchers started, therefore, to cool down. The managers had already been
somewhat suspicious, as they had been expecting interaction with other
researchers, scientific validation of the results, and a considerable number
of continuing projects. The researchers, on the other hand, had been
expecting support from the managers for the further development and
marketing of the generator.

3/13

The relations had cooled down before Reagenix already. [Another code
generation researcher] had at that point already lost his interest in project
marketing. It had happened several times that he had sold an idea to a
company, and then either the representative of [firm I] or [the manager of]
VTT had come to criticise Reagenix. I did not yet have any appropriate
contacts and I had not received any positive feedback on my work [on
Reagenix], so I was not interested in marketing. I have to say that for this
reason I was not fond of project marketing even later.

It is difficult to find any motivation for marketing, if your ideas are first
heavily criticised within VTT. If you succeed in marketing a project, there is
always a fear that if something goes wrong, somebody will come and tell
you that the failure could have been expected at the very beginning …The
[MCS-REA] project was carried out when [the former Sokrates project
manager] was working as the section head. Indeed, the … project was the
only one that succeeded, from the viewpoint of TKO, and [the former
project manager] happened to be the head of the software engineering
section then.

The managers of TKO said that this was not good, this was a prototype, a
hack-hack, and we could not seriously consider offering it to industry. Now,
after being in industry for four years, I have seen what kinds of tools are
being used for example in the telecommunication area: the tools developed
by ourselves and by universities, public domain tools, and our competitors’
tools. I must say that Reagenix was, after all, a very reasonable tool.

The impression that was given by the managers of TKO was that industry
was using only top-quality, well-packaged tools, offered by reliable parties.
This was the point, VTT did not see itself as a reliable tool developer.

During the Sokrates project, the big generator did not arouse interest in
anyone, because it was run on a workstation and was slow, expensive and
difficult [to use]. But afterwards, the light-weight [code generator] version
Reagenix was produced, which was running on a PC. However, TKO did
not want to sell it any more, because [firm I] was seen as a strong
competitor. We should have gone abroad, or establish a company. … But
the problem with such a company would have been the fact that we had the
front end [CASE tool from firm I]. … That was a clear problem. In other
words, the developer of the graphical front end of our generator had its own
competitive product.

During Sokrates, which was a research project, the participating companies
got what they wanted. Afterwards, the generator should have been
commercialised and taken abroad. In Finland, the big customers had
already taken part in the Sokrates project. Otherwise there were only small
companies who still could have bought the generator and used it.

By the way, I established several contacts with companies abroad, and in
some cases I had quite lengthy interactions with the contacting parties. At
the phase, at which an offer was requested and I sent them the information,
including the fact that the graphical front end which was needed could be
acquired from [firm I], the contact would always end.

3/14

I guess that they contacted [firm I] and asked about Reagenix, and
[they]would certainly give their opinion of the matter!

The story does not describe clearly enough that whenever we were trying to
take the Reagenix results to the market, the organisation [VTT] would
always say no, in one way or another. For example, I was having
discussions with [an American CASE tool vendor] concerning the
integration of their CASE tool as the front end of Reagenix, and I had also
ensured a case example from the Sodankylä observatory, but then [the
section head] came to argue with me about me dealing with foreign
competitors [of firm I], which was not suitable. The co-operation failed,
because the managers said that we would not compete against [firm I] in
this matter. I don’t know, [they] perhaps felt that I must be hauled over the
coals.

However, what was good about the development of the code generator was
that we did implement it, after all. What went wrong was that the generator
failed to get sold. I believe that we simply did not know how to sell it, then.
There were no previous experiences of this kind of a matter [at VTT]. I
would say that we did not have the culture of selling. We were improvising.
We, or at least I, did not know what would be the ordinary way for selling
such things at VTT. We were just doing our best to invent something, but
that was much harder than finding out how to implement the generator.

I implemented the first “big generator” as my diploma thesis. One of the
first feelings that came over me when reading the story was a feeling of
sorrow, considering the amount of effort that was spent and how bright the
people involved were, and how someone else [at VTT] would then be
looking for some formal aspects to make this group of people look
incompetent, and to create a public opinion of the group not knowing
anything about any real problems. Another thing that went wrong was that
the SA/SD method was not a very good choice. [The CASE tool of firm I]
was a nice SA/SD drawing tool, but the choice of the SA/SD method was a
failure.

We were [also] thinking about establishing a company. But we had, for
example [another code generation researcher] and I, already been running
a firm for several years. I had been the managing director of my own firm
for seven years, [the other researcher] for three years. The firm, as such,
was not an interesting idea. We knew what that would have meant. To start
a company, we should already have had some customers for the product as
well as an established market.

3/15

A3.3 THIRD PHASE - EXTENDING THE TOOLS

VTT was reorganised in 1994 to include nine big research units. TKO
became a part of VTT Electronics (ELE) and the former section of VTT
Electronics laboratory dealing with automation systems a part of VTT
Automation (AUT). The researchers of AUT were still interested in the
code generator. The basic need of the generator was in rapidly
implementing and testing new machine automation algorithms. The
generator appeared to be a very effective tool for this purpose, if its users
were willing to design the algorithms by using SA/SD. For AUT researchers
this was no problem, they had been using the method for several years.

For them, the code generator offered a higher-level, graphical programming
language and environment for systematic and rapid production of
implementations involving machine control algorithms. Also the line
managers of AUT considered the code generator as a very good tool and
could not understand, why such an excellent tool had not been utilised in a
larger scale at ELE.

But they did not pay anything for it.

The viewpoint of ELE had, however, been to develop and market the tool to
professional embedded software developers working in organisations where
software design dominated embedded systems development, software
design was carried out on a daily basis, and the software needed to be
maintained for a long time. This kind of use was different from the needs
of, for example, small-scale implementation of new machine control
algorithms by researchers focusing on other technologies than embedded
software as a means of implementing computerised systems.

I carried out the Kaasu project, of which the customer was very satisfied
indeed … We had an article in Tekniikka & Talous, the technical
newspaper, about the code generator, and they called us – to me, if I
remember it correctly – right away, saying that they would need a control
system [to be developed for a gas cromatographer]. My name was
mentioned in the article. That must have been why we got the project.

The user gave a profile on how to implement the valve in the equipment, the
control system followed the process. They produced a commercial system of
the equipment … In that phase, it was a prototype though. They did not have
software designers of their own. We did not sell Reagenix, but the control
software for the equipment. It was done with Reagenix. An easy job. The
schedule held. Nice equipment.

Similar small-scale success stories of the use of the code generator emerged
also within ELE, e.g. in connection with the research on fault diagnosis
systems. In a few projects, especially in one research project where a
computer controlled wood carving machine and its diagnosis system were
developed, the code generator was successfully used for implementing both
the wood carving algorithm and pieces of the diagnosis software. The needs
of this project with regard to the development of embedded software were
much similar to the needs of the researchers of AUT.

3/16

Tulko is an important reference that is missing in the story. The Tulko
demonstration system was built by using Reagenix and the SIC
communication protocol. The final demonstration system was a full-scale
real-time robot, with a perception system and distributed robotics tasks.

I never got any positive feedback from the small-scale success stories. Yet,
at that point the whole [Reagenix] generator consisting of about 5000 lines
of Prolog code had been implemented by myself.

Despite the success of these projects, no larger-scale use of the code
generator would emerge. One of the main reasons was that there were still
no large projects in which the generator could have been applied.

All the time there was the problem that I should have been selling projects,
but the only thing that I could do was to go and ask if they had any projects
which I could carry out using Reagenix … There was no reason to sell
Reagenix to any project. I would not have earned any extra value for
developing Reagenix. The projects did not pay anything for the use of
Reagenix … We were lacking internal charging on the use of Reagenix …
Instead, I have been blamed for having produced hell of a system. I have,
however, developed a system that is being used by at least a hundred people
… I have also been blamed of always doing everything with Reagenix.

I also see that Reagenix, the technology itself, is not all that beneficial to
VTT. We could sell design projects instead, and use it for analysis and
simulation. I am just saying that the project portfolio has not been good: the
benefits go to the users of the tool, not to the developers.

I will now tell you a typical story. We were at a Hi-tech conference to
demonstrate Reagenix. People from [a possible customer company] came to
talk to us. We were talking about design methods, generator, etc. and
agreed on a visit. I went there with [a former Sokrates member] then,
carried out some requirements analysis and summarised what TKO could
do for them. They needed, for example, DSP in their system. The real
problem for them was the management of the entire product. We proposed
Reagenix for this. We had analysed the situation. The problem was to
manage the entire product. They were very interested in Reagenix, as it
could be used as integrating technology for DSP, communications, etc. We
returned to Oulu, told what the customer had said, and Jukka Karjalainen
heard the word “DSP” and sent some DSP project offer there, and that was
the end of it. In conclusion, all the things we were managing by ourselves
went well, but if the organisation got involved, difficulties would arise.

I have never met a dissatisfied [Reagenix] customer, if the customer
sincerely wished to learn how the things were. I have also carried out
projects in which Reagenix could not have been used, the Monitori project,
for example, in which the system architecture had already been fixed,
including DSP and other parts.

The developers of the generator had perhaps also made the other researchers
of VTT tired. At a personal level, some people seemed to discriminate
anything related to the code generator.

3/17

No one ever told me about the success stories. I could never take part in the
reporting of the results of the projects [where Reagenix was applied]. I just
gave consultation and corrected small errors, if I had some extra time
available. It is possible ascribe the fact to the industrial projects related to
code generation being small in two ways. The first is that it was small
business for VTT, and therefore an unfruitful line of research. The second is
that the techniques and skills which were developed were highly efficient.
The problems of the customers were solved with little effort and very fast. A
good example is the development of the two-phased gas chromatograph [for
one of the institutes of VTT]. The work took only little over one man-month.

Our idea was to solve problems and not to begin to profit from the
customers. Now we come to the fact that I and [another code generation
researcher] had been involved in business for a very long time ... and there
were some differing viewpoints. We learnt how to solve the customers’
problems and when they learnt that by associating with those guys their
problems would be solved fast, they would come again to us in some other
matters … In other words, we took a customer-oriented approach … We
thought always about the value-for-customer. We have in my opinion taken
care of this aspect much better than VTT projects on the average.

A3.4 FOURTH PHASE - STRUGGLING WITH LOW INTEREST

Yet another attempt was made to extend the code generator, by investing
money in the development of a graphical debugger integrated with the
generator. This debugger would have been a novel mechanism, making the
generator look even more like a graphical programming environment. Such
tools were available only for ordinary programming languages, such as C.
The CASE tool sold by the Finnish vendor did not include any debugger.
Again, no contacts could be established with this vendor, but instead a small
software house was hired to implement the debugger.

It was proposed by [the managing director of the software house] … It
looked interesting. Moreover, some people had been complaining about
Reagenix not including any graphic debugger. Aniprosa seemed to offer a
possibility of carrying out research on graphic debugging.

No internal contacts were made to the group of ELE which had been doing
research on the animation of graphical system models for almost ten years.

This is not completely true. We had knowledge of how the other animator
was designed. It appeared to be too much tied with a specific
SmallTalk/Petri net based implementation. The small software house was
used, because it had already implemented an animator for SA/SD diagrams.
Politically, this was apparently unwise, because the animator turned out to
be a in [firm I’s] side.

The debugger was implemented, but it did not result in any new contractual
or research projects where the generator could have been applied.

It was used in one project, though … It was a mistake to allocate the
Reanimator work to the [Reagenix] account. I have been developing

3/18

Reagenix with the money I have earned. A hundred thousand marks was
spent on debugging, which was not of any use after all.

On the other hand, no serious attempts were made to extend and modify the
code generation techniques for the needs of the rapidly emerging object-
oriented software development methods. An example would have been a
means of generating C++ programs (the most typical object-oriented
programming language) from an object-oriented system modelling
language, using the generator and some object-oriented CASE tools.

I would have had ideas, and I was trying to present them occasionally. Yet,
no one of the managers of VTT was interested. I even designed a prototype
of a generator in a few hours for the object life-cycle method after I had
taken a C++ course. This principle was later applied [in a customer
project].

Several attempts had been made by the line managers to make the code
generation researchers interested in other subjects, so as to ease the situation
resulting from the fact that internal investments in the generator could not
be continued and that there were no considerable projects in which the
generator could have been applied and extended.

I was irritated by the ordinary research results of TKO that did not form
any synergetic entity, but were useless when put together – as we would
have developed the rear shaft of a Porsche, the gearbox of a Lada, the
engine of a Cessna, the body of a Zetor, and so on. Yet, I am satisfied with
having expressed honestly what I was going to do. The customary way was
to write a proposal using normal research liturgy on how the research
would result in new challenges and produce immediately applicable results,
and then continue the old line of research. I did not like this kind of
humbug. Still, I was able to make the management’s idea on my thinking
crystal clear.

In one of these “new” projects methods for the implementation of machine
vision software was studied, another focused of software component reuse
techniques. In both cases, however, the code generation researchers used the
projects, in part, to extend the code generation techniques.

If you are referring to the Rekki project, I must say once again that for the
most part I did all kinds of tool evaluations and tried to find a reasonable
approach to carrying out the work together with the university. Yet, the
university was interested only in continuing its own Khoros-related
research, which was completely non real-time oriented. We did not do any
code generation related research at all in the project. If this [component
reuse techniques] refers to the Komppi project, you are presenting just
another one-sided viewpoint. I was not able to participate in the literature
survey part of the Komppi project. Code generation was not developed
further at all in Komppi. I made it very clear, because I was aware of the
attitude [of the managers]. I find it very unpleasant, if you use Komppi as
an example.

3/19

This somewhat irritated the managers, and also some of the other
researchers involved in the projects. The results of the projects were
accepted by the funding bodies and the industrial partners who were
involved, but did not result in any larger-scale use of the code generation
techniques.

The American style marketing irritated everyone. They perhaps thought that
we would produce some equipment that would free the designer from
thinking of anything any more. Instead, we were aiming at defining a
language that could be used for solving difficult problems. This was in
contrast with what everyone thought. They did not understand … It caused
trouble inside TKO, though not outside.

Some code generator licenses, each worth of two man-weeks’ contractual
development work, had been sold to companies and given for free to some
educational institutes. Often this was done as a side job of some
development project.

Educational institutes paid modest license fees, VTT institutes used the
generator for free ... I still remember how difficult it was for me when I first
joined VTT thinking that I could not produce anything. The contribution of
investing five thousand in something which would allow industry to make
millions was not realised … Our point was that we were offering solutions
to customers by which they could produce things cheaply and fast. If the
customer could get something at fifty thousand marks, for which they had
spent half a million marks earlier, that was only good. This was our way. …
And that [kind of projects] could have been sold … One thing is that we
were not allowed to sell other than our own work. It was only at the time
when I was already leaving VTT when it was told that money could be
earned from projects.

Was the line organisation thinking that after investing five millions and it
resulting in such small income, it was not sensible to use the developed
technique? It could have been developing slowly, after all. A related
example is an article published in the Harvard Business Review on the
investing and harvesting phases of technologies, as well as the decline.
When people read these papers and thought that the whole cycle was five
years, General Electric gave up computers, before the decline phase would
start. Xerox also gave up computers, although they had object methods and
windowing systems [already then].

By the mid-nineties, the original group of code generator researchers had
dissolved totally, because the persons were working in several projects not
involving code generation techniques. Two of the original developers left
VTT in 1996 and 1997, and it seems that this line of research has finished at
ELE.

You mean the Sokrates group. I am still here, with all the knowledge. I have
sold three licenses during the past six moths, and two other firms have
shown interest in it.

3/20

I have also organised three courses, each two or three days. I answered to
the most recent customer request last week. The total income from industry
was about 100 000 marks last year, and the expenses about 30 000 marks.
How right were you, after all [when stating that the story was finished]?

Afterwards, the same license plus training was sold to another company, for
about 30 thousand marks. Another license was sold separately. They paid
my travel expenses, too. In summary, three licenses have been sold after
Summer 1997. According to your story, this line of research would be dead!
It isn’t. The front end is different, it is not [from firm I] any more. They
wondered [the buyers of the license], why we had not been marketing the
tool. I told them that I did not have the time at that point.

From the viewpoint of my short industrial experiences, I would say that VTT
has no intrinsic value by itself. It should support the Finnish industry. If the
guys have made themselves unnecessary, VTT can be closed and the
persons can go and find jobs in industry. Then, a new research organisation
can grow if it is noticed that industry does not know enough of some new
topic, and the organisation can look five to ten years forward on behalf of
industry. VTT is needed for such a purpose, to hold a position at the border
of industry, to do what industry itself is not doing. And to help small
companies. VTT should not have any intrinsic value by itself.

But for some reason we did not dare to sell this idea of using Reagenix
inside TKO. We did everything with traditional methods even inside TKO.
In the projects where I was involved, the initial setting was already such
that Reagenix could not be used. I always joined the projects in a phase
when it was not reasonable to use Reagenix any more … It was not seen at
the level where the projects were prepared. It was just the few guys who
were involved in Reagenix. For this reason, I should have spotted the
customer first, and I should have realised that I needed to sell a certain kind
of project to the customer, and then it [the use of Reagenix] may have
emerged. Inside TKO, they did not believe in it, they preferred
programming from scratch in all projects.

Moreover, if you charge on the basis of working hours, it would not be
reasonable to use Reagenix. If the charge had been by the hour and the use
of Reagenix had resulted in less hours, the use of Reagenix would not have
been reasonable. We made a mistake in the sense that Reagenix was used in
many places, in fault diagnosis projects and in the Electronics laboratory,
and so on, but we could not get any benefit from the use of Reagenix. The
license fee should have been included in the expenses of the projects.

The effort that was saved by using Reagenix could have been used for the
further development of Reagenix … Not even licenses were sold, because
that was considered an extra. VTT got it for free … Is there even any
information of how extensive the use of Reagenix in the projects was, if it is
not explicitly mentioned. There were rather many people who became
interested in Reagenix.

3/21

Reagenix should have been used as part of research projects. And it was
used, wasn’t it. Another thing is that we should have had Reagenix-based
projects. However, if a firm comes to VTT asking about the development of
some product, the firm will contact a person who can be found on the list
[VTT’s service directory, other lists of contact information] and that person
actually decides which methods and tools will be used. No one contacts me.
I do not have any contacts myself.

A3.5 SUMMARY OF THE CODE GENERATION STORY

There are certain key technical and human reasons for the developments of
code generation activities that took place at VTT, which are closely related
to each other. From the technical viewpoint, the developed code generation
solutions seem to have stuck with the SA/SD method, when industry was
already gradually taking object-oriented methods in use.

Did it really took object-oriented methods in use? After all, the SDL method
with code generation features has become increasingly popular, and it
resembles SA/SD … One can also think that the five million that were
invested were for the need of industry. What if the investment had not been
made? The good point that was not told in the story is that the SA/SD
method was brought to industry. [One of the code generation researchers]
has a remarkable role in that. SA/SD is perhaps the first real design method
in the area of embedded systems. [The researcher] is among the first
persons who giving training on this method in Finland. Earlier, there had
only been foreigners ... At present, when I talk to anyone out there, they do
not know me and they are saying that they use SA/SD. When I ask why they
are using it, they will tell me that VTT has brought SA/SD further … Yes,
indeed … Some of those persons had taken my course.

Object-oriented methods emerged rapidly, but no serious attempts were
made to link the code generation expertise to them.

There is a clear difference between Reagenix and the object-oriented world.
Reagenix takes care of real time, concurrent control and supervision
sequences and asynchronous communication between them. Object-oriented
methods, in contrast, can be used to take care of traditional computing and
management of stored data … The group [of code generation researchers]
did not omit object-oriented methods due to ignorance or arrogance. The
concepts were familiar [to the group] already from the computer science
journals of the beginning of the eighties … The possibilities and problems
were known.

Yet, the developed solutions were very flexible with regard to applications,
target hardware and even CASE tools. Although the code generation
functions that were developed were hard coded inside the code generator,
their principles were made explicit by coding rules.

Why were there no serious attempts? I was never even dropped a hint of this
kind of possibility. Usually anything related to code generation was flatly
knocked out as Reagenix bullshit.

3/22

My experience was hardly ever used. On one occasion, I may have made a
one week evaluation on the generation of code from Statecharts models.

From the viewpoint of networking, the isolation of the code generator
researchers both internally at VTT and externally from the key customers
proved to be a problem.

Yes, indeed, from outside it looked outside like a homogenous group that
did exactly the same things. By the way, [a colleague] always said that
whatever he asked from anyone of us, he always got the same answer. We
had thus the same understanding, although we did not write it down,
perhaps could not write it down … It was a well functioning unofficial
organisation! … In the MCS-REA project, for example, we had very difficult
problems that were solved by means of brainstorming.

Moreover, disagreements arose with some technology experts, such as
hardware designers, who may have benefited from co-operation. Yet,
several successful usage cases of the code generator can also be identified.
Most notably, the tool proved promising for the prototyping needs of other
than industrial software professionals, for the needs of researchers, actually!
Networking with these people, and perhaps with commercial tools vendors
that they used, might have resulted in some kind of commercialisation of the
code generator technology. Internally, a number of persons adopted a
negative or at least suspicious attitude to the code generation research.

The message that the idea of the code generator with all its supporting
systems being capable of solving “all problems” was particularly irritating.
One could speculate whether a similar development had taken place in
industry, if the developers of the generator had succeeded in marketing it to
a greater number of customers.

Why wasn’t any bigger business created around code generation? VTT did
never come to an agreement with itself upon what it wanted from code
generation. The lines of continuing work that were brought down include:

• Co-operation with the American tool vendor – could have resulted in a
market worth of millions; and

• Development of code architecture for the 8051 processor – would have
resulted in a market of hundreds of thousands of marks, because Finland
was full of machine firms that were not interested in programming
operating systems calls.

There were a lot of people showing interest at [automation] fairs. The idea
was to investigate the design phases that preceded coding. The core
competence is there, but it can not be seen, in other words, the knowledge of
how to solve concurrence problems … and the development method,
analysis and so on.

It seems that those industrial practitioners who actually used the generator
or the code generation rules sought for solving the software development
problem by focusing on, for example, automation design and trying to make
programming a rather mechanical task that could be carried out with a tool.

3/23

For them, the message mentioned above was promising. For people who
where developing software as their profession, the message did not go
through.

Why real software professionals not interested, but just machine automation
people? Did portrait painters become enthusiastic about cameras in the late
eighteen hundreds?

The developed code generation technique seems at the first sight to make
some central software engineering skills obsolete … I do not know, if
software professionals became interested in the first Fortran compilers,
because it made obsolete a great deal of central skills [in the fifties], but at
the same time it made it easy for mathematicians to program algorithms by
themselves.

I myself took even greater interest in code generation than many others,
because for seven years I had been risking my own money in tasks
contracted at a fixed price. It always paid to think thoroughly how to do the
job at the smallest effort. One very satisfied customer was [the firm Se].
How long do you believe that the development of the software package for
their product took?

It took only 17 hours! I did a demonstration system during two nights in a
hotel, then I showed it to [them] and asked, if it would be embedded in the
target hardware. We spent five hours on a Friday evening doing that, then
… Software developers still have many problems these [Sokrates/Reagenix]
things have not become obsolete at all.

During one course, a technician said to me that when he had told his
colleagues about this method [Sokrates-SA] and the generator, they had
really become frightened and thought that if these kinds of tools were used,
they would lose their jobs … They could not see that they would then be
able to focus on higher-level issues, new designs and so on.

I would say that this is a rather non-democratic issue. There were smart
guys [in firm Nm]. Things can be non-democratic … It was an
appropriately sized group. The chief designers were programming
themselves. In industry, some people just work from eight to four and do not
want to learn new things. They use what they already have learnt. Other
groups may realise that they can utilise some new things … The people at
[firm Nm] were very smart indeed … And they were very busy, too … They
were not interested in coding, but in getting their equipment ready. They did
not get any kick out of programming, but of the fact that the equipment was
completed … They saw their job not as coding, but as implementing the
equipment.

Published by

Vuorimiehentie 5, P.O.Box 2000, FIN-02044 VTT, Finland
Phone internat. +358 9 4561
Fax +358 9 456 4374

Series title, number and
report code of publication

VTT Publications 392
VTT–PUBS–392

Author(s)
Seppänen, Veikko, Alajoutsijärvi, Kimmo & Eriksson, Päivi

Title

Projects or products: seeking for the business logic
of contract R&D

Abstract
This research addresses the question of building and exploiting competence in connection
with contract research and development (R&D), by means of a longitudinal case study. The
research involves VTT as a supplier and internal research customer, Tekes as a funding body
and several firms as external industrial customers. We are looking into their mutual
relationships to gain a better understanding about the evolution and exploitation of
competence on the so-called code generation techniques used in the development of software
embedded in electronic products.
The analysis of the code generation case is based both on written material and on interviews
of persons involved in code generation related activities at VTT, Tekes and industry from the
mid-eighties to the present date. The building of the code generation competence of VTT is
analysed and explained within the R&D process based on project relationships. The
marketing and purchasing of the competence is also addressed. Differing logic of action of
the interacting parties have been found to affect the evolution of competence, within
networks established for creating and making use of the competence.
In the code generation case, the managers of VTT aimed at creating a growing portfolio of
fully contractual project relationships, involving machine automation firms, in particular.
The researchers favoured marketing the competence as a commercial style tool, with a
minimum of tailoring done in projects. The customers of VTT had difficulties in coping
with these two logic of action, in a rapidly and radically changing business environment. It
may have been for this reason that the competence was, after all, utilised mainly by VTT
itself in joint research projects.
This did neither benefit its developers nor did it advance the evolution of the competence.
The differing logic of action of the two key parties, which resulted in the lack of any
considerable portfolio of external customer relationships, lead to a rather rapid withering of
the competence at VTT. However, the developed code generation technology has recently
been sold to the former researchers, who have established a company based on their own
business logic. This kind of competence survival through many years and despite conflicting
viewpoints is, after all, one of the key factors in making business out of research.

Keywords
core competence, industrial relationships, logic of action, embedded software, research and development

Activity unit
VTT Electronics, Embedded Software, Kaitoväylä 1, P.O.Box 1100, FIN–90571 OULU, Finland

Project numberISBN
951–38–5391–8 (URL: http://www.inf.vtt.fi/pdf)

Date Language Pages Price
September 1999 English 110 p. + app. 104 p.

Name of project Commissioned by
SOH.JULKA VTT Electronics,

The Foundation for Economic Education
Series title and ISSN Sold by

VTT Publications
1455–0849 (URL: http://www.inf.vtt.fi/pdf)

VTT Information Service
P.O.Box 2000, FIN–02044 VTT, Finland
Phone internat. +358 9 456 4404
Fax +358 9 456 4374

VTT PUBLICATIONS

370 Laitinen, Jyrki. Evaluation of imaging in automated visual web inspection. 1998. 93 p. +
app. 86 p.

371 Luonteri, Elina. Fungal α-arabinofuranosidases and α-galactosidases acting on -
polysaccharides. 1998. 113 p. + app. 59 p.

372 Harjunpää, Vesa. Enzymes hydrolysing wood polysaccharides. A progress curve study of
oligosaccharide hydrolysis by two cellobiohydrolases and three β-mannanases. 1998. 76
p. + app. 11 p.

373 Rantala, Juha. Sol-gel materials for photonic applications. 1998. 50 p. + app. 48 p.

374 Lehtilä, Antti & Tuhkanen, Sami. Integrated cost-effectiveness analysis of greenhouse gas
emission abatement. The case of Finland. 1999. 145 p. + app. 15 p.

375 Niemelä, Eila, Korpipää, Tomi & Tuominen, Arno. Embedded middleware: State of the
art. 1999. 102 p. + app. 7 p.

376 Puska, Eija Karita. Nuclear reactor core modelling in multifunctional simulators. 1999. 67
p. + app. 73 p.

377 Parmanen, Juhani, Sipari, Pekka & Uosukainen, Seppo. Sound insulation of multi-storey
houses. Summary of impact sound insulation. 1999. 22 p.

378 Lind, Terttaliisa. Ash formation in circulating fluidised bed combustion of coal and solid
biomass. 1999. 79 p. + app. 88 p.

379 Simola, Kaisa. Reliability methods in nuclear power plant ageing management. Espoo
1999. 38 p. + app. 96 p.

380 Fan, Youchen, Kokko, Erkki, Pajakkala, Pekka, Virtanen, Markku, Saarimaa, Juho, Tu,
Fengxiang, Lang, Siwei, Hu, Shide, Qin, Huahu & Wang, Meijun. Study of possible usage
of Finnish building technology in Chinese building development. 1999. 100 p.

381 Pingoud, Kim, Mälkki, Helena, Wihersaari, Margareta, Hongisto, Mikko, Siitonen, Sari,
Lehtilä, Antti, Johansson, Matti, Pirilä Pekka & Otterström, Tomas. ExternE National
Implementation Finland. 1999. 119 p. + app. 131 p.

382 Rauma, Tapio. Fuzzy modeling for industrial systems. 1999. 97 p. + app. 40 p.

383 Ranta-Maunus, Alpo. Round small-diameter timber for construction. Final report of
project FAIR CT 95-0091. 191 p. + app. 19 p.

384 Heikkilä, Anna-Mari. Inherent safety in process plant design. An index-based approach.
1999. 129 p.

385 Mäkelä, Kimmo K. Characterization and performance of electrorheological fluids based
on pine oils. 1999. 71 p.

386 Uosukainen, Seppo. JMC method applied to active control of sound. Theoretical
extensions and new source configurations. 1999. 69 p. + app. 145 p.

387 Keski-Rahkonen, Olavi, Mangs, Johan & Turtola, Antti. Ignition of and fire spread on
cables and electronic components. 1999. 102 p. + app. 10 p.

388 Nissinen, Marja & Niskanen, Pirjo. COST – Scientific Cooperation on Researchers'
Terms. A Study of Finnish Participation. 1999. 70 p.

389 Toikkanen, Jaana. Functional studies on components of the secretory pathway of
Saccharomyces cerevisiae. 1999. 92 p. + app. 61 p.

390 Vilpas, Martti. Prediction of microsegregation and pitting corrosion resistance of
austenitic stainless steel welds by modelling. 1999. 139 p. + app. 27 p.

391 Albers, Willem M. Immobilisation of biomolecules onto organised molecular assemblies.
1999. 124 p. + app. 39 p.

392 Seppänen, Veikko, Alajoutsijärvi, Kimmo & Eriksson, Päivi. Projects or products: seeking
for the business logic of contract R&D. 1999. 110 p. + app. 104 p.

	ABSTRACT
	PREFACE
	CONTENTS
	SYMBOLS AND ABBREVIATIONS
	1 INTRODUCTION
	2 RESEARCH DESIGN
	3 COMPETENCE EVOLUTION FRAMEWORK
	3.1 ELEMENTS OF THE SUBSTANCE LAYER
	3.2 PROCESS-BASED VIEWPOINT TO CONTRACT R&D
	3.3 STRUCTURING OF PROCESS NETS
	3.4 MANAGEMENT OF COMPETENCE CHANGES
	3.5 EXPLAINING THE LOGIC OF ACTION

	4 ANALYSIS OF THE CASE DATA
	4.1 OUTER CONTEXT – SOFTWARE ENGINEERING
	4.1.1 Evolution of the electronics industry 1985 - 1998
	4.1.2 Technological developments

	4.2 ANALYSIS OF THE PROCESS NETS
	4.2.1 Alignment of the logic of action
	4.2.2 Planned and realised process nets
	4.2.2.1 Forms of interaction

	4.2.3 Analysis of the change of process nets

	4.3 ANALYSIS OF THE CODE GENERATION PROCESSES
	4.3.1 Assuring of capability
	4.3.2 Balancing of particularity

	4.4 EVOLUTION AND VALUATION OF THE COMPETENCE
	4.4.1 Competence during the Speco period
	4.4.2 Competence during the Sokrates period
	4.4.3 Competence during the Reagenix period

	5 DISCUSSION
	5.1 ANALYSIS OF THE COMPETENCE EVOLUTION
	5.2 CROSS-CASE ANALYSIS
	5.3 LESSONS LEARNED
	5.3.1 Empirical implications
	5.3.2 Research implications
	5.3.3 Managerial implications

	REFERENCES
	APPENDIX 1: LIST OF THE CASE DATA
	APPENDIX 2: CODE GENERATION CASE DATA
	APPENDIX 3: CODE GENERATION STORIES

