
V T T P U B L I C A T I O N S

TECHNICAL RESEARCH CENTRE OF FINLAND ESPOO 1999

Perttu Heino

Fluid property reasoning
in knowledge-based hazard
identification

3 9 3

V T T P u b l i c a t i o n s

V T T P u b l i c a t i o n s

V T T P u b l i c a t i o n s

V T T P u b l i c a t i o n s

V T T P u b l i c a t i o n s

V T T P u b l i c a t i o n s

V T T P u b l i c a t i o n s

V T T P u b l i c a t i o n s

V T T P u b l i c a t i o n s

P

VTT PUBLICATIONS 393

TECHNICAL RESEARCH CENTRE OF FINLAND
ESPOO 1999

Fluid property reasoning in
knowledge-based hazard

identification

Perttu Heino

VTT Automation

A Doctoral Thesis

Submitted in partial fulfilment of the requirements
for the award of PhD

of Loughborough University
September 30, 1998

ISBN 951–38–5395–0–6 (soft back ed.)
ISSN 1235–0621 (soft back ed.)

ISBN 951–38–5396–9 (URL: http://www.inf.vtt.fi/pdf/)
ISSN 1455–0849 (URL: http://www.inf.vtt.fi/pdf/)

Copyright © Valtion teknillinen tutkimuskeskus (VTT) 1999

JULKAISIJA – UTGIVARE – PUBLISHER

Valtion teknillinen tutkimuskeskus (VTT), Vuorimiehentie 5, PL 2000, 02044 VTT
puh. vaihde (09) 4561, faksi (09) 456 4374

Statens tekniska forskningscentral (VTT), Bergsmansvägen 5, PB 2000, 02044 VTT
tel. växel (09) 4561, fax (09) 456 4374

Technical Research Centre of Finland (VTT), Vuorimiehentie 5, P.O.Box 2000, FIN–02044 VTT, Finland
phone internat. + 358 9 4561, fax + 358 9 456 4374

VTT Automaatio, Riskienhallinta, Tekniikankatu 1, PL 1306, 33101 TAMPERE
puh. vaihde (03) 316 3111, faksi (03) 316 3282

VTT Automation, Riskhantering, Tekniikankatu 1, PB 1306, 33101 TAMMERFORS
tel. växel (03) 316 3111, fax (03) 316 3282

VTT Automation, Risk Management, Tekniikankatu 1, P.O.Box 1306, FIN–33101 TAMPERE, Finland
phone internat. + 358 3 316 3111, fax + 358 3 316 3282

Technical editing Kerttu Tirronen

Libella Painopalvelu Oy, Espoo 1999

3

Heino, Perttu. Fluid property reasoning in knowledge-based hazard identification. Espoo 1999.
Technical Research Centre of Finland, VTT Publications 393. 167 p. + app. 53 p.

Keywords safety, hazard identification, HAZOP, computer-assisted hazard identification,
physical and chemical properties, knowledge-based systems, process industry

Abstract

The study of serious accidents, which have occurred in the chemical process
industry in recent times, highlights the need to understand fluid property related
phenomena and the interactions between chemicals under abnormal process
conditions or with abnormal fluid compositions. Consideration of these issues
should be common practice in professional safety analysis work, and computer
programs designed to support this work have to be able to deal with them.

The purpose of Hazard and Operability (HAZOP) study is to identify all possible
deviations from the way a plant design is intended to be operated and all hazards
associated with these deviations. Due to its systematic nature, the method is a
good candidate for automation. Several research groups have developed
embryonic knowledge-based HAZOP systems. However, no automated hazard
identification features are included in current commercial software packages
supporting HAZOP. The main problem of knowledge-based HAZOP systems is
their poor performance in relation to the correctness and completeness of the
resulting HAZOP study.

This thesis describes a novel methodology for fluid property reasoning in
connection to knowledge-based HAZOP. Building on the earlier achievements
of Loughborough University (LU) and Technical Research Centre of Finland
(VTT) researchers, the methodology enables knowledge-based hazard
identification programs to make a more intelligent assessment of the potential
hazards and their causes.

In the first phase of the study, a rule-based fluid property and reaction property
reasoning system was created for use in the HAZOPTOOL program. In the
second phase, the LU fault propagation reasoning methodology implemented in

4

the AutoHAZID HAZOP emulation program was extended with fluid property
reasoning capabilities.

AutoHAZID was subjected to extensive evaluation which consisted of an
evaluation workshop, a fluid model oriented study of the workshop results, and
comparative testing based on a set of test cases. It was shown that it is possible
and beneficial to extend knowledge-based HAZOP with a capability to reason
about fluid properties and interactions. A framework for such a system is
presented in this thesis together with some ideas for future work. Based on the
results of the work reported here, it is recommended that fluid property
reasoning is taken into use in any application of knowledge-based hazard
identification.

5

Preface

This work was done at VTT Manufacturing Technology, Safety Engineering in
Tampere, Finland. This thesis suggests a knowledge-based method for fluid
property considerations during the computerised identification of process
hazards.

I wish to express my gratitude to my thesis supervisors, Professor Frank P. Lees
and Dr. Andrew G. Rushton, and to my superior, Professor Jouko Suokas, whose
encouragement, support and advice made this work possible.

I am grateful to all my colleagues in the Industrial Risk Management group for
their collaborative and supportive attitude towards me and my research projects.
In particular, I wish to express my warmest thanks to Mr. Erkki Kotikunnas and
Dr. Raija Koivisto who were heavily involved in the projects which this work is
based on. I also wish to thank Dr. Felim Larkin, Mr. Steve McCoy and Mr.
Steve Wakeman for the fruitful discussions during their involvement in the
STOPHAZ project as part of the Loughborough University project group. In
addition, all the other partners of the STOPHAZ project gave their valuable
contribution to making the circumstances favourable for my work.

The project funding provided by the Technology Development Centre of Finland
(TEKES) and CTCI Corporation, Taipei, Taiwan, R.O.C. is gratefully
acknowledged, as well as the complementary project funding provided by VTT
and the financial support provided by The Finnish Work Environmental Fund for
the preparation of this thesis.

Finally, I wish to express my loving thanks to my wife Päivi and my children
Helinä, Ilmari and Emilia. They have always done their best to show me that I
do not have to worry about them when my work forces me to be away from
them.

Tampere, September 1998

Perttu Heino

6

Contents

ABSTRACT..3

PREFACE ...5

1. INTRODUCTION...9
1.1 Computer software in the safety analysis of chemical processes9
1.2 Need for the study..11
1.3 Scope and objective of the study ...13
1.4 Structure of the thesis ..14

2. KNOWLEDGE-BASED IDENTIFICATION OF PROCESS HAZARDS..15

3. THE ROLE OF FLUID PROPERTY REASONING18

4. THEORETICAL FRAMEWORK ..23
4.1 Introduction..23
4.2 Definition of concepts..23
4.3 Overview of hazard identification ...24
4.4 Knowledge-based computerised methods..29
4.5 Approaches to fluid property reasoning...37
4.6 Summary of the state-of-the-art ...42

5. METHODOLOGY DEVELOPMENT, PHASE 1...43
5.1 Introduction..43
5.2 Overview of HAZOPTOOL development...43

5.2.1 Background...43
5.2.2 Unit level HAZOP models ...47
5.2.3 Representation of hazardous event chains with rules...............49
5.2.4 Reasoning ...51
5.2.5 Use of unit data in reasoning and presentation of results52

5.3 Method for reasoning on fluid and reaction properties..............................53
5.3.1 Use of fluid and reaction knowledge from separate knowledge

bases ...53
5.3.2 Properties of chemicals...55
5.3.3 Properties of reactions ..58
5.3.4 Compatibility of chemicals...60

5.4 Evaluation of methodology development phase 1 results....................61

7

6. METHODOLOGY DEVELOPMENT, PHASE 2..63
6.1 Introduction..63
6.2 Overview of AutoHAZID development ..63

6.2.1 Background...63
6.2.2 Unit model library ..65
6.2.3 Fault propagation models ...67
6.2.4 HAZOP algorithm ..68
6.2.5 Filtering of results...70

6.3 Reasoning with chemical knowledge...70
6.3.1 The fluid model approach...70
6.3.2 Properties of fluids ...77
6.3.3 Fluid compatibility ...87
6.3.4 Linkage to AutoHAZID..92
6.3.5 Summary of implemented features...96
6.3.6 Limitations and ideas for further development.........................98

6.4 Implementation of the fluid model system ..111
6.4.1 Overview ..111
6.4.2 Function checkFluidProperty ...112
6.4.3 Function findFluid..113
6.4.4 Function get_ruleObjects..114
6.4.5 Function backwardChain..115
6.4.6 Function findRules ...116
6.4.7 Function substituteVariables ..117
6.4.8 Function preparePropertyCall ..120
6.4.9 Function shz_calc_prp..121
6.4.10 Function evaluateNodes ...121

6.5 Evaluation of methodology development phase 2 results..................123
6.5.1 Evaluation approach ...123
6.5.2 First stage: comparative evaluation ..124
6.5.3 Second stage: study of industrial example cases135

7. DISCUSSION ...148
7.1 Methodological problems ..148
7.2 Summary of the results ..151
7.3 Utility and limitations of the results ..153

8

8. CONCLUSIONS...157

9. RECOMMENDATIONS AND FUTURE RESEARCH160

REFERENCES..163

APPENDICES
Appendix 1: Grammar for HAZOP expert rules
Appendix 2: Example problems to be solved by the fluid model
Appendix 3: Fluid model functionalities for solving the example problems
Appendix 4: Combatibility matrix
Appendix 5: Program listings of the autohazid fluid model functions
Appendix 6: AutoHAZID comparative evaluation test cases
Appendix 7: Autohazid reports for test case 1
Appendix 8: Autohazid reports for test case 2
Appendix 9: Trichloroethane storage system

9

1. Introduction

1.1 Computer software in the safety analysis of chemical
processes

Safety analysis is the systematic examination of the structure and functions of a
system. Its aim is to identify all factors having the potential to contribute to
accidents, to evaluate the risk induced by them and to find ways to minimise
these risks (Rouhiainen 1990). Both qualitative and quantitative studies are
included in a typical safety analysis of a chemical process system.

Computerised tools have been available from the 1970’s for the quantitative
estimation of reliability, availability, and accident frequency based on a model of
the accident in the form of fault trees. At the same time, calculation programs
based on physical models have become available for the estimation of accident
consequences in relation to gas releases and dispersions. In their modernised
versions, these programs are widely used today. Well-known examples are
CARA (SINTEF 1995) and STARS (Poucet 1990) for fault tree quantification,
and SAFETI (Technica 1994).and RISKWIT (Kakko 1991) for gas dispersion
calculations.

Following the evolution of user interaction methods for text and graphics
processing in the personal computer (PC) environment, programs became
available for the efficient preparation and management of safety analysis
documentation. The qualitative study of the system during the identification of
potential hazards can benefit from the use of such tools which sometimes also
offer support for the steering of the analysis process. Naturally, also the
documentation of fault tree based quantitative studies, as well as the
documentation of risk reduction recommendations, can be made more efficient
by the use of appropriate tools of this kind. Widely used software packages for
the documentation of identification phase Hazard and Operability (HAZOP)
studies are PHAWORKS (Primatech 1996), HAZOPtimizer (ADL 1997), PHA-
Pro (DYADEM 1996) and HAZSEC (Technica 1991).

The first attempts to develop more advanced software for safety analysts dealt
with the automated construction of fault trees. It had been recognised that the

10

modelling of fault propagation event chains is strongly based on a systematic
analysis of system structure in terms of equipment and their characteristics and
the connectivity between equipment. One problem of the early systems of this
type was the insufficient quality and coverage of the model library for the
description and analysis of real processes (Suokas and Karvonen 1985). The
large system description effort and the need to examine the end results very
closely in order to interpret them correctly were other main obstacles for the
widespread use of these advanced techniques. Although there has been a lot of
progress since the early days of automated fault tree construction, such software
is still not used widely. An example of a modern fault tree workstation software
package with good automated fault tree construction capabilities is STARS
(Poucet 1990).

The importance of hazard identification techniques, HAZOP in particular, has
increased during the recent years due to new legislative requirements in Europe
(EEC 1982) and USA (OSHA 1992). This has turned the researchers’ attention
to automating the HAZOP method. Several research groups work actively on
this topic (Rushton 1997). The algorithms for automated HAZOP correspond
closely to the ones developed earlier for automated fault tree construction. The
problems are also similar. The characteristics and problems of automated
HAZOP form the starting point of this work and a detailed discussion of the
topic will follow.

There is a variety of software commercially available for safety analyses and
related tasks. In a recent catalogue (CEP 1997), 77 packages were listed under
the category ”Reliability, Failure analysis, Risk analysis”. This includes HAZOP
software from seven software provider companies. The most advanced features
of these packages include knowledge libraries, intelligent checklists and analysis
process guidance. No automated HAZOP features, such as discussed above, are
included in any of these packages. This is a clear indication of the fact that
automated HAZOP still has such problems which make it commercially
uninteresting.

11

1.2 Need for the study

Significant benefits could potentially be gained by the use of automated
HAZOP. Benefits are expected in the following areas:

Less human effort is required to perform a HAZOP study

• Generating a HAZOP study using a knowledge-based program before the
groupwork HAZOP sessions would take care of listing the most self-evident
event chains which can potentially lead to hazards. The HAZOP group could
then quickly check the computer-generated results and concentrate on more
complicated considerations which deal with issues specific to the studied
process. The total amount of required manpower could be decreased in this
way at the same time as the quality of the results is improved.

• The use of automated HAZOP earlier than HAZOP is conventionally
performed would lead to the identification and elimination of part of the
problems before the groupwork HAZOP. During the group sessions, fewer
problems would need to be identified which would make it possible for the
group to complete the HAZOP in less time.

The HAZOP process becomes standardised

• HAZOP studies produced using a knowledge-based computer program are
similar in quality and style regardless of who is using the program. If the use
of such a program were to become the normal industrial practice, HAZOP
studies produced by different companies and different people would in
practice follow a standard imposed by this program. A standard minimum
level of quality would be guaranteed in case the HAZOP study is carried out
by people with insufficient expertise. Experienced HAZOP analysts would
normally exceed this minimum level of quality but the style of their reports
could still follow the same standard.

Alternative solutions can be assessed quickly with respect to hazards

• Design alternatives or proposed modifications can be examined by
comparing the HAZOP studies of the alternatives. It is a minor task to

12

modify the plant description which is given to the HAZOP program as an
input to correspond to alternative designs or proposed modifications.

HAZOP-type quick studies can be carried out earlier during design

• The designer can use the knowledge-based HAZOP program to check the
impact of the latest progress of the design on safety. This can be repeated as
often as appropriate. For such use, a direct link from the design drawing
system to the HAZOP program is required.

HAZOP results are stored in a data base and are easier to update

• The knowledge-based HAZOP program stores the resulting HAZOP
information in a data base. When updating the HAZOP study becomes
necessary, the old HAZOP study of the system can be reviewed with the
support of the program, and new computer-generated results can be used as
the starting point of a revised HAZOP report together with the old results
which incorporate the contribution of the HAZOP group.

Corporate memory on process hazards is created

• In order to maintain the best possible quality of the knowledge-based
HAZOP, its generic models of process equipment behaviour should be kept
up-to-date by the user organisation. The model library will then serve as the
corporate memory of equipment failures and the associated hazards.

In spite of their evident potential benefits, knowledge-based HAZOP systems
have not been taken into industrial use. Although the laborious nature of the data
input stage is one deficiency of these systems, the main problem is their poor
performance in relation to the correctness and completeness of the resulting
HAZOP study. This is due to the fact that the current systems are based on
highly generalised knowledge of the behaviour of process equipment and can not
perform advanced reasoning on the special characteristics of the chemical
process.

An obvious example of special characteristics beyond the scope of most current
knowledge-based HAZOP systems is the impact of the properties of the

13

processed chemicals on the identified hazards. Work needs to be done in this
area in order to improve the performance of automated HAZOP up to an
industrially acceptable level.

1.3 Scope and objective of the study

The performance of automated HAZOP has to be improved before industrial
acceptance of the methodology can be expected. Current systems have major
deficiencies in the area of fluid property reasoning. It has already been suggested
by recent limited developments that significant performance improvement could
be achieved by adding fluid property reasoning capabilities to knowledge-based
HAZOP. The full-scale development of these techniques in connection to a
state-of-the-art HAZOP system is needed.

It is hypothesised as the basis of this work that an appropriate fluid property
reasoning methodology leads to a significant improvement when applied in a
knowledge-based HAZOP framework.

The work involves theoretical study, methodology development, testing and
evaluation in relation to the intelligent use of the following types of data:

• properties of chemicals
• compatibility (chemical/chemical, chemical/contaminant, chemical/material)
• properties of chemical reactions.

The objective of this work is to improve the performance of knowledge-based
hazard identification methods. The intention is to enable the HAZOP program to
make a more intelligent judgment of the potential hazards and their causes based
on the properties of the processed fluid. This should not only be done based on
the intended composition of the fluid, but also taking abnormal fluid
compositions into consideration. Possible reactions between the normal fluid
components and potential contaminants should also be considered.

The scope is limited to the domain of knowledge-based hazard identification
methods. Discussion of other improvements to automated HAZOP than those
related to fluid property reasoning has been excluded.

14

1.4 Structure of the thesis

After the introductory discussions and the definition of scope in chapters 1-3, the
theoretical framework of the work is described in chapter 4. Then, the first
development stage of the fluid property reasoning methodology is discussed in
chapter 5. This part of the work is based on the results of the HAZOPTOOL
project which was carried out in 1992-1994.

Chapter 6 includes the discussion of the second development stage in 1994-1997
in connection to the STOPHAZ project. The final part of the work, chapters 7-9,
contain a discussion of the study outcomes, the final conclusions and
recommendations for further work.

15

2. Knowledge-based identification of
process hazards

Knowledge-based programs for process hazard identification take as input the
description of the process to be studied. As a result of the knowledge-based
processing, a report of causal chains of events associated with potential hazards
is generated.

In his recent survey of knowledge-based HAZOP systems, Rushton (1997)
illustrates the architecture of a stereotype knowledge-based HAZOP system as
shown in Fig. 1.

Separation of process-specific knowledge from process-independent knowledge
is a key feature of these knowledge-based systems. The process-specific part of
the knowledge consists of a definition of process equipment and their properties,
the connectivity between process equipment, and a description of the process
streams in terms of fluid composition and process conditions. This part of the
knowledge is often called the plant description.

The process-independent part of the knowledge contains generic models of the
behaviour of process equipment in abnormal conditions. Because various
equipment types have been considered in the models in isolation from any
process environment, the models are universally applicable. Naturally, the model
library needs to contain models of such a range of equipment types that the
actual process to be studied can be correctly described.

The inference engine of the knowledge-based program applies the process-
specific information to the appropriate generic models from the library. In other
words, the plant description is used for guiding the selection of information from
the generic causal knowledge. The selected information is then reported in a
process-specific way.

16

DESIGN SYSTEM
Piping and Instrumentation Diagram
Stream Specification
Component Specification
Layout
Operating Procedures

PLANT DATA
Representation of the Specific Plant
Components
Interconnections

PHENOMENON MODELS
Pre-Defined Classification of
Physical Phenomena

COMPONENT MODELS
Pre-Defined Classification of
Plant Components

PROCESS MATERIALS DATA

MATERIALS OF
CONSTRUCTION DATA

NON-PRESCRIBED DATA
e.g. Bespoke Models

USERMATCHING

QUALITATIVE MODEL
OF PLANT TO BE

STUDIED

DRIVING PROGRAM + RULE BASE
(INFERENCE ENGINE)

Hazop Algorithm
Rules for Linking Data
(Causes to Consequences)
Pre-conditions for Reporting Links
Pre-conditions for Exploring Links
Miscellaneous Rules

QUANTITATIVE
PLANT MODEL

Steady State or
Dynamic

CAUSE CONSEQUENCE DATA

POST PROCESSING

REPORTING USER

USER
INTERACTION

Fig. 1. A stereotype knowledge-based HAZOP system (Rushton 1997).

17

It is very difficult to reach a sufficient level of detail with this type of systems
because the models would have to be made highly conditional on process-
specific issues to achieve that. Adding a lot of conditions related to process-
specific issues would significantly complicate the modelling task, and it would
also lead to an increase of required data input effort from the user. However, it is
necessary to add this kind of filtering capabilities to the programs. Otherwise,
the results will remain on a too general level to be industrially acceptable.

18

3. The role of fluid property reasoning

Chemicals as accident contributors in reported accident histories

Knowledge-based HAZOP should emulate the information processing of
conventional group work HAZOP as closely as possible. Since the objective of
HAZOP is to identify all potential event chains which could lead to a major
accident it is important to know what the role of chemical phenomena and
interactions between chemicals is in the occurrence of incidents at chemical
process plants.

In the following, examples of severe chemical accidents will be discussed. The
intention is to show that, in order to identify the existence of fluid related
hazards and prevent accidents such as the ones discussed below, the properties
of the processed fluids and their intended and unintended interactions have to be
taken into account.

By examining reports on major chemical accidents one can see that almost all of
them have been related to the hazardous characteristics of the processed
chemical in a way or another. Lees (1996) provides extensive descriptions of the
well-known chemical accidents of Flixborough, Seveso, Mexico City, Bhopal
and Pasadena. The Bhopal and Seveso accidents are discussed here in order to
illustrate the role of the processed chemicals in the evolution of a major
accident.

Lees (1996) also gives a series of chemical accident case histories chosen
according to one or more of the following criteria:

1. the accident is well-known, generally by name,
2. it involved major loss of life and/or property, and
3. the physical events and the escalation are of interest.

Selected examples of accidents belonging to this series of 139 accident histories
are discussed below, together with the Seveso and Bhopal accidents. This set of
accident examples will be revisited in Chapter 7 when the utility and limitations
of the proposed methodology is discussed. In addition to a brief description of
the role of chemicals in the evolution of the accident, comments are made below

19

on what would be required from a hazard identification methodology for it to
identify the potential for this type of accident.

Ashton, Manchester, England, UK, 1917: A nitrator in an explosives
works went out of control and hot acid was released onto the wooden
staging. This started a fire which resulted in a large TNT explosion. This
kind of a major hazard could have been identified by a comprehensive
study of fire sources and the impact of various types of fire incidents to
the chemicals and equipment present at the plant.

Texas City, Texas, USA, 1969: The butadiene flow to a distillation column
was lost due to a leak from the inlet pipeline, and a build-up of vinyl
acetylene occurred. On some trays of the column vinyl acetylene reached
the molar concentration of 50-60%, and thermal decomposition of vinyl
acetylene and ethyl acetylenes occurred resulting in a violent explosion of
the column. This potential hazard could have been identified by a
comprehensive study of how the process conditions and concentrations
change inside the column in the case where the incoming flow of
butadiene is lost.

Baton Rouge, Louisiana, USA, 1976: Natural gas used for excluding air
from the hydrogen in hydrogen compressors entered a half full chlorine
tank through a common nitrogen system. The resulting internal explosion
at the other end of the horizontal bullet-type chlorine vessel caused the
vessel to fall off its supports so that it was pierced by a metal upstand on
the ground. This led to a massive release of chlorine to the environment.
A thorough study of unintended interactions of the chemicals present at
the plant could have drawn attention to the potential for this kind of a
severe accident.

Breahead, Renfrew, Scotland, UK, 1977: A chemicals warehouse caught
fire and, as a result, 1774 steel vessels containing sodium chlorate
overheated and exploded. This example illustrates the need to consider the
behaviour of the involved chemicals in case of heating by external fire.

Bhopal, India, 1984: Water entered a methyl isocyanate (MIC) tank in an
unknown manner. The exothermic reaction between MIC and water led to

20

an increase of temperature and pressure. Highly toxic MIC was released to
the environment through the relief valve. A thorough study of the hazards
associated with potential runaway reactions in the storage of toxic
materials at the Bhopal site could have relieved the severity of such an
accident in relation to MIC storage and led to the use of appropriate
preventive measures. In fact, awareness of the potential major hazard
should have led to the decision not to have a MIC storage facility at the
site at all.

Seveso, Italy, 1986: Due to unintended reactor temperature increase, a
remarkable quantity of very toxic 2,3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD) was formed and released to the environment subsequent to
pressure increase and bursting disc rupture. Significant amounts of TCDD
are not formed under the normal process conditions. Originally, the
process was operated in atmospheric conditions and the formation of
TCDD was not possible. However, when the process was modified to be
operated under pressurised conditions, the major hazard associated with
the potential formation and release of TCDD could have been identified.

Jonova, Lithuania, 1989: Warm ammonia at 10ºC entered a tank
containing ammonia at -33ºC. It first formed a layer on the bottom of the
tank but then rose suddenly to the surface. The higher vapour pressure of
the warmer liquid caused a sudden rise in pressure in the tank, and a tank
rupture and a release of ammonia followed. This kind of a hazard could be
identified by a study of vapour pressure changes in case of temperature
increase.

Stanlow, Cheshire, England, UK, 1990: Water ingress through a leaking
valve in a late batch distillation stage of a batch production of 2,4-
difluoronitrobenzene (DFNB) led to the formation of acetic acid during
water removal by prolonged azeotropic distillation. After this, the
subsequent use of recycled N,N-dimethylacetamide (DMAC) for a new
batch led to reaction runaway and explosion due to the presence of acetic
acid. Although the potential for this kind of an incident involving complex
chemistry is not easy to identify in advance, maximal attention should be
paid to potential hazards associated with abnormal fluid compositions and
process conditions.

21

The presented examples highlight the need to understand fluid property related
phenomena and the interactions between chemicals under abnormal process
conditions and fluid compositions. Typically, an unwanted chain of events is
triggered by an unintended increase of temperature, often coupled with an
abnormal composition of the fluid either as a cause or a consequence.
Consideration of these issues should be common practice in professional safety
analysis work, and computer programs designed to support this work have to be
able to deal with them, preferably in an intelligent manner.

Fluid property reasoning in knowledge-based hazard identification

Modern approaches to automated hazard identification are based on composing a
process specific qualitative model out of a library of generic unit models. These
generic models deal with the potential disturbances of process conditions: how
the disturbance is initiated, how it propagates through the unit, and what
potentially hazardous consequences can be triggered. The basic methodology
excludes the consideration of phenomena which are dependent on the chemical
composition of the processed fluid and its properties

The most advanced knowledge based HAZOP systems include simple features
for taking into account the characteristics of the processed chemicals during
HAZOP reasoning. An early attempt to deal with fluid considerations was made
in the STARS project (Christensen et al. 1991). Recently, Vaidhyanathan and
Venkatasubramanian (1996) have proposed a semi-quantitative approach which
deals with a number of fluid dependent issues. In connection to the STOPHAZ
project and the development of a fully automated HAZOP tool as part of the
project (Preston 1995), the generic methodology for fluid considerations
discussed in this work was developed. The recent achievements of six research
groups on this topic are discussed in Chapter 4.

Fluid properties like toxicity can be checked easily and used for consequence
identification. If a reliable estimate of the fluid composition and process
conditions to be considered can be made, then state of matter and other actual
fluid properties can be calculated, and the relevance of the identified event
chains can be evaluated. However, reasoning about the order of magnitude

22

associated with a process deviation caused by a given fault is a complicated
issue.

Extending knowledge-based HAZOP to handle the considerations related to
chemical phenomena and interactions between chemicals on the level of a
human expert would have a significant impact on its performance. The
achievements of the various research groups who have studied this topic indicate
that it should be possible to reach a completeness and coverage of the results
which is close to the output of conventional group work HAZOP carried out by a
group of human experts.

23

4. Theoretical framework

4.1 Introduction

In this chapter, the theoretical framework for this work is discussed. Key
concepts are defined in the beginning. Next, an overview of hazard identification
is presented. In particular, the Hazard and Operability Study (HAZOP) method
and its strengths and weaknesses concerning the computerisation of the method
are discussed. After that, the results of six research groups in the area of
knowledge-based hazard identification are reviewed. This review of the state-of-
the-art aims to define the starting point for this work. The final part of this
chapter adds detail to the review by taking a closer look at the methods
developed by the six groups. The focus is on issues related to the processing of
fluid property information.

4.2 Definition of concepts

Fluid The processed chemical substance or mixture of
chemical substances, including gases, liquids and
relevant types of solids (e.g. powders).

Fluid composition Information on what chemical substances the fluid
contains and what are their concentrations.

Fluid property A numeric or symbolic value which characterises
the fluid in terms of a distinct aspect of behaviour.

Hazard A condition that is prerequisite to a mishap.
Prevention of accidents is done by eliminating or
minimising hazards.

Hazard identification An activity which aims to detect aspects in the
behaviour of a technical system which can lead to
a hazard.

24

Knowledge Declarative statements which describe factual
information.

Reasoning Information processing based on the use of
knowledge.

Knowledge-based hazard identification

Computerised hazard identification by computer
programs which are capable of reasoning with
knowledge about process hazards.

Process parameter A variable used for describing a distinct aspect of
the behaviour of a chemical process.

Process conditions The values of process parameters at a specific
moment of time.

4.3 Overview of hazard identification

The importance of systematic studies in assuring the safety of a system has been
widely recognised. Safety analysis techniques serve as tools for finding the
possible links between causes and consequences, in order to devise ways in
which the activation of these links can be avoided (Hollnagel and Cacciabue
1992). The purpose of Hazard and Operability (HAZOP) study is to identify all
possible deviations from the way the design is expected to operate and all
hazards associated with these deviations (Anon. 1977). HAZOP has established
itself as the common practice in chemical process safety. Discussion on HAZOP
and other hazard identification methods can be found in Anon. (1985),
Rouhiainen (1990) and Lees (1996).

HAZOP is based on the assumption that a system is safe when all the process
parameters are in their normal or another accepted state. Component failures,
human errors and threats from the operating environment are reflected as
changes of these parameters. A description of the system, typically in the form
of flowsheets, line diagrams, and pipe and instrumentation diagrams (P&ID), is

25

used as the basis for the HAZOP study. HAZOP key words corresponding to all
conceivable process parameter deviations are applied to process units such as
pipelines, tanks and reactors. The aim is to identify hazardous scenarios where
conceivable causes of the deviation and potentially hazardous consequences
exist. More complete descriptions of HAZOP can be found in CIA (1997), Kletz
(1983), CCPS (1985) and Lees (1996). An extract from the results of a typical
HAZOP study is presented in Fig. 2 (Suokas 1985).

Due to its systematic nature, the HAZOP method is a good candidate for
automation. Venkatasubramanian and Vaidhyanathan (1994) note that HAZOP
is a systematic and logical procedure and, therefore, lends itself to the possibility
of automation through the use of the knowledge-based systems approach. As a
justification for emulating the HAZOP method in their system, Parmar and Lees
(1987) state that completeness in the identification of hazards is the crucial
characteristic of an efficient method. HAZOP generates an open set of causes
and consequences based on a closed set of deviation events and, therefore, is
preferred over top-down and bottom-up methods which always start with a fixed
list of causes or consequences.

It is characteristic of the original HAZOP technique, due to its purely qualitative
nature, that it does not provide the quantitative ranking of the identified
problems. The result of a HAZOP study is a set of identified hazards with their
potential causes. The most severe problems are well identified but, at the same
time, a number of less relevant event chains are suggested. Some of these
findings may even prove to be incorrect or clearly irrelevant when they are
examined more closely in a quantitative manner.

It is not possible to completely overcome this problem of the HAZOP method
because its roots are in the inherent characteristics of qualitative methods such as
HAZOP. However, the human experts who lead HAZOP teams can normally
avoid producing uninteresting results. An experienced HAZOP chairman can
steer the group to consider relevant issues, and the members of the group can
rely on their experience and common sense.

26

OCCUPATIONAL SAFETY ENGINEERING LABORATORY 6<67(0� %/$&. /,4825 5(&29(5< %2,/(5 3/$17 PAGE: 8

HAZARD AND OPERABILITY STUDY 68%6<67(0� (9$325$7,21 3/$17 � DATE: 18.2.1983

81,7� (9$325$7,21 81,7 � ± 67521* /,4825

7$1.

DRAFTED BY: HAZOP TEAM

DEVIATION POTENTIAL CAUSES CONSEQUENCES ACTION REQUIRED

NO FLOW LINE BLOCKAGE, VALVE ERRONEOUSLY CLOSED,
PUMP FAILURE, FAILURE IN ELECTRICITY SUPPLY

15 OVERFILLING OF THE
EVAPORATION UNIT 1

HIGH FLOW LEAKAGE OF THE PUMP WASH WATER LINE
VALVE OR THE VALVE IS ERRONEOUSLY OPEN

16 DILUTION OF THE STRONG LIQUOR
– ENTRY OF WATER INTO THE
STRONG LIQUOR LINE

USING AS NEEDED
MOUNTED HOSES INSTEAD
OF FIXED WATER PIPE
LINES

VALVE V1 ERRONEOUSLY OPEN 17 DILUTION OF THE STRONG LIQUOR
– ENTRY OF WEAK LIQUOR INTO
THE STRONG LIQUOR LINE

REMOVING THE VALVE V1
AND INSERTING BLANKS

LEAKAGE OF THE VALVES HV1 AND HV3 18 DILUTION OF THE STRONG LIQUOR
– ENTRY OF INTERMEDIATE OR
STRONG INTERMEDIATE LIQUOR
INTO THE STRONG LIQUOR LINE

CHANGING THE VALVE
TYPE OF HV1, HV3 AND
HV4 INTO BALL VALVES

LEAKAGE OF THE VALVE HV4 WHEN WASHING
THE STRONG LIQUOR LINE

FALSE OPERATION OF THE INTERDEPENDENT
AUTOMATIC VALVES HV1/HV4 AND HV3/HV4
WHEN WASHING THE STRONG LIQUOR LINE

ALARM ON THE FALSE
OPERATION OF THE
VALVES

Fig. 2. An extract from the results of a typical HAZOP study (Suokas 1985).

26

27

Computerised HAZOP systems have more difficulty in dealing with this
problem. There are two ways to make progress:

• Human interaction for the evaluation and acceptance of computer generated
findings

• Intelligent operations within the computer program to check the relevance of
candidate event chains.

In connection to the development of the HAZOPEX system (Karvonen et al.
1990), the roles of the computer and the human analyst in a computer-aided
HAZOP study were considered. The diagram in Fig. 3 shows the flow of the
HAZOP analysis process and suggests a division of responsibility between the
computer and the user.

There are variations from the course of HAZOP analysis presented in Fig. 3. For
instance, some groups may prefer to consider consequences before causes.
However, a HAZOP study is always a systematic ’walkthrough‘ of the system
line by line or unit by unit.

In computerised HAZOP, the aim is to automate the identification of causes and
consequences. As was shown in Fig.1 in Chapter 2, the plant is modelled in
qualitative terms and rule-type knowledge is processed in order to generate the
HAZOP study report. Different knowledge-based HAZOP systems have
different objectives and, therefore, human-computer interaction plays different
roles in these systems. Of the systems discussed in the methodology
development part of this work, HAZOPTOOL is a browsing tool which
considers only one deviation in a single process unit at one time and offers its
user the possibility to evaluate the generated candidate event chains after each
step of this kind. Therefore, the user has a major influence on which deviations
and process units are studied more thoroughly and which of the considered event
chains are stored as part of the final HAZOP report.

28

Selec t a dev iation

Selec t a proc es s unit (pipeline,
tank, reac tor)

Plan prev entiv e or min imis ing
ac tions

Store haz ardous c on-
s equenc es and their c aus es

Ex amine w hic h c ons equenc es
are haz ardous

Ex amine the c ons equenc es of
the dev iation and the c aus es

Try the c aus e to the proc es s

Selec t a pos s ible c aus e

BEGIN

A ll pos s ible c aus es
c hec ked?

A ny meaningf ul
c aus es ?

A ll dev iations
ex amined?

A ll proc es s un its
analy s ed?

Lis t or graph haz ardous
dev ia tions and c aus es ,

c ons equenc es and meas ures

Computer Us er

From unit lis t

Fix ed
s equenc e

From a menu

From a s et o f
pos s ible
c aus es

A dditional
c aus es

Sugges tions
f rom
know ledge bas e

Ex perienc e,
c ommon s ens e

Ex perienc e,
c ommon
s ens e

A utomatic ally

Sugges tions
f rom
know ledge bas e

Ex perienc e,
c ommon
s ens e

A lternativ e
f orms
of output

or

Fig. 3. The course of HAZOP analysis and the tasks of computer and the user
(Karvonen et al. 1990).

29

On the other hand, AutoHAZID aims to fully automate the generation of a
HAZOP study report. User interaction can only take place before starting the
HAZOP reasoning procedure and after it has been completed. This means that
the user can not contribute to the selection of interesting and relevant problems
during the ’walkthrough‘ of the process. Therefore, intelligent computerised
methods to evaluate the validity and relevance of candidate event chains are
needed in order to reach the desired quality of results. Fluid property reasoning
has been proposed as one method of that kind.

Even if the user is given the responsibility to evaluate the relevance of the
candidate findings, the quality of these computer generated results must be high
enough to keep the user interested in them and to keep the required effort
acceptable. Therefore, any knowledge-based HAZOP system needs to
incorporate some features for screening out irrelevant findings automatically.
Because such operations must be based on knowledge of the properties of the
process and the fluids, the user is required to input process specific information
in addition to describing the process equipment and their connections. In an
interactive system, input can be given either in advance or during the HAZOP
reasoning. If the HAZOP reasoning stage is implemented as a non-interactive
procedure, the information has to be provided in advance, possibly with the
support of a set of forms to fill in. Some possibilities also exist for the post-
processing of the computer generated results to screen out irrelevant items.

In principle, the quality of the computer generated results gets better when more
process specific information is given. At first, the improvement can be very
significant but at some point, when the most important characteristics of the
process and fluids have already been taken into account, the improvement from
providing more information will become too small compared to the effort
needed to acquire and to input the information.

4.4 Knowledge-based computerised methods

General structure

The methods developed by different research groups have many similarities. Fig.
1 in Chapter 2 (Rushton 1997) presents the components of a stereotype

30

knowledge-based HAZOP system. To support the following study and
comparison of different methods, the simplified description of knowledge-based
HAZOP presented in Fig. 4 will be used.

Plant Specific Data
(Plant Description)

Plant Independent
Data (Model Library)

HAZOP Reasoning
Procedure

HAZOP Result Data

Fig. 4. General structure of knowledge-based HAZOP.

Qualitative models of equipment faults and their propagation form the basis of
knowledge-based HAZOP. These plant independent models are stored in a
model library which is completely separated from the HAZOP reasoning
procedure and the plant dependent data.

The HAZOP reasoning procedure is a computer program which automates the
HAZOP study method and uses the model library to get information about
potential faults and potential hazards associated with different types of
equipment.

In order to apply the generic models to the HAZOP study of a particular plant, a
description of the plant has to be given. This plant dependent data states what

31

equipment exists in the plant and how these equipment are connected together.
Based on this information, the relevant models can be picked from the model
library and processed by the HAZOP reasoning procedure. The generated
HAZOP result data can take various forms but conventional HAZOP tables and
fault trees are the most common.

In the following, the achievements of six research groups in the area of
knowledge-based HAZOP are discussed. The research groups’ work follows the
general structure of knowledge-based HAZOP presented above.

Loughborough University of Technology (LUT),
now Loughborough University

Researchers led by Prof. F. P. Lees in Loughborough University of Technology
are well-known for their comprehensive research work on the computer-aided
analysis of fault propagation in chemical process plants. Their early work was
published in 1986 in a series of four papers (Kelly and Lees 1986a, b, c and d)
dealing with the modelling of fault propagation, fault tree synthesis, the
computer program FAULTFINDER, and an example of a pump changeover
system. Development of a methodology for modelling fault propagation in a
process-independent manner formed a central part of this work.

This fault propagation modelling methodology was the starting point of the
subsequent research work on the automation of HAZOP. Parmar and Lees
(1987) describe this work which resulted in the Prolog-based hazard
identification program IDENTIFIER and a number of supporting FORTRAN
programs. The emphasis was still on fault propagation modelling. Propagation
equations were used for describing the propagation of faults through a healthy
unit, and event statements were introduced in order to model the initiation of a
fault in an unhealthy unit or the termination of a fault in a unit which is thereby
rendered unhealthy. Rules were chosen as the representation methodology.

The further development of the ideas on knowledge-based computerised
HAZOP led to their new implementation in the HAZID program (Zerkani and
Rushton 1992). The STOPHAZ project took HAZID as the starting point for the
development of industrial quality computerised HAZOP.

32

The early Prolog-based version of HAZID already contained a system
knowledge base defined as a hierarchy of frames, although this model library
was still rather incomplete. P.W.H. Chung (1993) took the signed directed graph
(SDG) formalism into use in his QUEEN (Qualitative Effects Engine) system
which provided a set of common procedures for knowledge-based programs
such as HAZID which operate on qualitative models. The HAZOP reasoning
procedure and filtering of results in HAZID were also already present in
embryonic form and were then developed further in the STOPHAZ project. The
features of HAZID as the result of this further development are discussed in
Chapter 6.

Technical Research Centre of Finland (VTT)

VTT started research work on knowledge-based methods for computerised
HAZOP in 1986 when the HAZOPEX project was launched (Karvonen et al.
1990). The interest in computerised HAZOP was based on VTT’s role as a
recognised developer of process safety analysis methodologies.

HAZOPEX was a highly interactive expert system-type program which was able
to suggest potential causes for process variable deviations. The suggested causes
were presented on a HAZOP form which could then be completed by the user.
The reasoning was based on rules on the occurrence of process deviations under
different circumstances and different process configurations. The topology of
process equipment was used for the evaluation of the rules but the structure of
the rule base was based on process variables, not on a taxonomy of equipment
types as in most other systems. HAZOPEX was implemented using the KEE
expert system shell.

As a result of joint preparative work, the STARS project was launched in 1989
by the EC Joint Research Centre (JRC), The Danish Risoe National Laboratory,
and VTT. The aim was to develop a new generation fault tree synthesis tool
based on the earlier work of JRC (Poucet 1983) and Risoe (Taylor 1982), and a
knowledge-based HAZOP tool as part of the same integrated toolkit. This work
was completed in 1992 (Heino et al. 1992), resulting in an advanced
environment for fault tree studies, a simple chemical hazard expert system, and a
prototype tool for knowledge-based HAZOP-type qualitative studies (QUAL).

33

QUAL was based on the representation of generic knowledge in a frame-based
equipment type hierarchy. It was implemented in a Unix workstation
environment using C and Xwindows.

The work done in the STARS project on the development of QUAL formed the
basis for the development of the HAZOPTOOL program (Heino et al. 1995).
The process-independent unit model library with a specific rule syntax and the
related inference engine of HAZOPTOOL were the results of the further
development of the QUAL ideas. The user interface was quite different, aiming
to meet the requirements of the user company which was a Taiwanese
engineering company. HAZOPTOOL was implemented using C and Microsoft
Windows. It formed the framework for the first phase of the fluid property
reasoning methodology development discussed in this thesis. HAZOPTOOL and
this development work are discussed in more detail in Chapter 5.

Purdue University

In the early 1990’s, researchers in Purdue University, West Lafayette, Indiana,
USA, led by Prof. Venkat Venkatasubramanian, started the development of
model-based software for the automation of HAZOP studies. This can be seen as
a continuation of the earlier Purdue research on integrating compiled and deep-
level knowledge for process diagnosis described in Venkatasubramanian and
Rich (1988). The Purdue HAZOP system development work has been based on a
modelling technique which they call digraphs. It equals to the Signed Directed
Graph (SDG) technique used by the LUT researchers. The Purdue researchers
have used the G2 software package as the development environment.

The HAZOPExpert system (Venkatasubramanian and Vaidhyanathan 1994,
Vaidhyanathan and Venkatasubramanian 1995) is, according to the developers’
own statement, the first intelligent (HAZOP) system, and to date the only
system, in the published literature that has been successfully evaluated on
various industrial-scale case studies (Vaidhyanathan and Venkatasubramanian
1996a). It is beyond the scope of this work to compare the results of the different
research groups in that respect.

34

As in the LUT and VTT systems described earlier, a key feature of
HAZOPExpert is the separation of process-independent and process-specific
knowledge and the use of these two types of knowledge during reasoning in an
integrated manner. Qualitative causal propagation techniques are applied
through the use of digraph models with specific nodes for representing abnormal
causes and adverse consequences.

The presence of ambiguities in qualitative reasoning on the behaviour of a
chemical process has been recognised. In principle, the Purdue researchers have
taken a conservative worst-case approach towards ambiguities and order-of-
magnitude issues. However, they have successfully extended their system with a
semi-quantitative reasoning methodology which integrates the additional
quantitative information with the qualitative HAZOP digraph models. This
methodology is used for filtering and ranking the adverse consequences found
by HAZOPExpert. They also note that the alternative approach of studying
exhaustively all possible process behaviours in a qualitative simulation
manner would result in combinatorial explosion (Vaidhyanathan and
Venkatasubramanian 1996b).

The filtering of adverse consequences in HAZOPExpert is partly based on the
use of process material property information and partly on the definition of
thresholds for the variables representing process conditions. The approach taken
concerning process material property information will be discussed later. The
process variable thresholds are adjustable and default as follows:

• design pressure threshold: design pressure > 1.1 * operating pressure (psig)
• design temperature threshold: design temperature > 50 + operating

temperature (F).

When the threshold mechanism is applied, the adverse consequences which are
directly related to high pressure or high temperature are only reported if the
given design pressure or temperature is high enough to violate the corresponding
threshold.

Other advanced features of the HAZOPExpert system are:

35

• four level severity ranking of identified hazardous consequences
• control-loop-cause generic procedure which is triggered whenever a

controlled variable is encountered during reasoning
• adequacy of protective devices is checked against the unit design pressures
• ambiguities related to deviations at the inlets of units with multiple inlets are

solved by an order-of-magnitude comparison of the inlet flows.

Recently, Srinivasan and Venkatasubramanian (1996) have proposed an
extension to HAZOPExpert which combines Petri net representation with the
digraph based method. Their aim is to model the recipes and operating
sequences of batch processes and thereby to study maloperation related hazards
in addition to process variable deviations. In this extended version, process
variable deviation reasoning is done inside subtask digraphs, and propagation is
carried out by propagating mass-in and heat-in (or mass-out and heat-out) values
between the subtask digraphs.

Okayama University

Recent work by Dr. Suzuki and his co-workers in Okayama University, Japan
(Shimada, Yang, Song, Suzuki and Sayama 1995; Shimada, Suzuki and Sayama
1996), has also been based on similar qualitative causal propagation techniques.
Fault propagation types are classified by considering the input-output
relationships among main plant units. This process-independent knowledge,
represented in the form of decision tables, covers the propagation of process
variable deviations, the impacts of process equipment failures, related potential
hazards, and proposed mitigation actions.

Suzuki and co-workers pay a lot of attention to batch processes and chemical
reactions. They look at the charge, reaction and discharge stages of a batch
process separately. The impacts of abnormal behaviour of reactor support
systems, such as ‘less cooling’ and ‘cooling started late’, are considered. The
Okayama chemical reasoning approach will be discussed in more detail later.

36

Seoul National University

In Seoul National Unversity, Republic of Korea, automated hazard analysis of
chemical plants has also recently been a topic of extensive studies. Suh, Lee and
Yoon (1997a and 1997b) have developed a system which automatically
identifies hazardous event chains based on the representation of process
knowledge according to a model of the accident mechanism.

In their system, the reasoning is based on three complementary models of
process equipment:

Unit function model: Malfunctions and their causes in relation to variable
deviations at the inlets or outlets or inside the unit.

Unit behaviour model: Causal relationships between inlet, internal and outlet
variables.

Organisational knowledge base: Process streams, side streams and control
streams, including process materials and the connectivity between units.

The unit function and behaviour model seem to correspond to the process-
independent knowledge base of the earlier described approaches, whereas the
organisational knowledge base contains the process-specific structural
description.

In the Seoul system, the hazard identification reasoning involves three
algorithms:

• Deviation analysis algorithm
• Malfunction analysis algorithm
• Accident analysis algorithm.

The deviation analysis algorithm starts from a process variable deviation and
carries out fault propagation to find the causes and consequences. The
malfunction analysis algorithm does the same starting from a unit malfunction.
The accident analysis algorithm discovers the potential accidents from the

37

results of the other two algorithms. The three algorithms form a reasoning
method which is very similar to the other approaches presented in this work.

As an example, the following accident analysis inference is presented in Suh,
Lee and Yoon (1997b):

Level High (deviation) + Open Tank (process unit characteristic)
Î Overflow + Toxic Material (Nh> 2)
Î Toxic Material Release + Human
Î Personnel Injury due to Toxic Material.

Santa Fe, Argentina

Leone (1996) and Vecchetti and Leone (1996) present another qualitative
modelling approach based on object-oriented methods. The unit class model is
the central entity in their approach. In addition, the hazard knowledge
concerning the chemicals used or produced is encapsulated within the class
Compound. For automated HAZOP, object message sequences covering the
following tasks have been defined:

• Causes identification
• Looking for deviation safeguards
• Fault propagation - Consequences identification.

The reasoning in Leone’s SERO system results in object diagrams which present
the identified hazardous event chains in relation to the process equipment.

4.5 Approaches to fluid property reasoning

Loughborough University of Technology (LUT),
now Loughborough University

In their numerous publications on fault tree synthesis (e.g. Kelly and Lees
1986a, b, c and d), the LUT researchers do not mention the need to consider
fluid properties. However, when the same fault propagation methodology was

38

applied to hazard identification in a parallel development (Parmar and Lees
1987), this issue was taken under consideration. They state that some aspects of
modelling are more conveniently handled in terms of the materials used. As
examples of this, leak and blockage are mentioned. These generic faults can
occur in virtually any unit, but it is only credible specific realisations of these
which are of interest.

The concept of a process material model was taken into use. In the modelling
related to the development of the Prolog-based IDENTIFIER program, a process
material model was created for each process material. This model defined the
characteristics of the material in terms of its properties and susceptibilities.

A property is defined by Parmar and Lees (1987) as a characteristic which may
lead unconditionally to a consequence without having to be activated by a
process variable deviation. For example, a fluid may contain gunk, which results
in the unconditional consequence blockage.

A susceptibility is defined as a characteristic which may lead to a consequence,
but only if it is activated by a process variable deviation. For example, a fluid
may be susceptible if the temperature is high to polymerisation, which thus
results in the conditional consequence blockage.

Parmar and Lees (1987) also specify two other types of process material
property. One of these is a property which, in combination with a materials of
construction susceptibility, results in a specific realisation of a leak. For
example, mild steel may be susceptible to an acid impurity. The other type of
property is a noxious property relevant to escapes. For example, the fluid may be
flammable.

The ideas presented above were not developed further in connection to the early
versions of HAZID (Zerkani and Rushton 1992). The reported ideas of Parmar
and Lees (1987) mainly concentrated on the consideration of leak, blockage,
materials of construction susceptibility, and hazards related to a chemical release
to atmosphere. Together with the VTT approach described next they formed the
basis for the fluid property reasoning methodology research reported in this
thesis. The second phase of the fluid property reasoning methodology research
done as part of the STOPHAZ project is discussed in Chapter 6.

39

Technical Research Centre of Finland (VTT)

The need for reasoning on fluid properties was recognised in the HAZOPEX
project (Karvonen et al. 1990). As an example, high temperature suppressing the
correct function of an ammonia condenser was mentioned. No implementation
of fluid property reasoning was done in connection to HAZOPEX.

In the STARS project (Heino et al. 1992), reasoning methods related to the
properties of chemical substances and reactions were considered as a separate
activity (Christensen et al. 1991). Three knowledge bases and associated
interactive tools were developed:

• Chemical substance knowledge base
• Chemical reaction knowledge base
• Unwanted chemical reactions knowledge base.

The foundations for handling these three types of knowledge were defined in the
STARS project but the development of methods for using this knowledge in
knowledge-based hazard identification and fault tree synthesis remained at idea
stage.

A set of properties which are of interest in the consideration of hazards was
defined. In addition, examples of rules connecting the physical, chemical and
toxicological properties of chemical substances with a generic list of end
consequence-type hazards were developed. The hazard characteristics of
different types of reactions and their susceptibility to process variable deviations
were also considered. This covered the consideration of intended reactions.
Unintended reactions and the associated consequences were to be handled with a
general purpose reaction matrix, similar to the one reported by Hatayama (1980).

The above described methodologies of the STARS project were developed
further in the HAZOPTOOL project (Heino et al. 1995). This first phase of the
fluid property reasoning methodology development work is discussed in Chapter
5 of this thesis.

40

Purdue University

The HAZOPExpert system of Purdue University uses information on the
properties of process materials for consequence filtering purposes. An extensive
discussion of this aspect of HAZOPExpert can be found in Vaidhyanathan and
Venkatasubramanian (1996b).

In HAZOPExpert, process materials and their properties form a part of the
process-specific knowledge. The process-independent knowledge on adverse
consequences makes use of this information when required. Generic procedures
process-material-cause and process-material-consequence have been defined for
the practical implementation of this feature. These generic procedures can be
attached to the abnormal cause and adverse consequence nodes of the digraph
models.

For instance, one node of the digraph model for a vessel may represent the
pressure inside the vessel. The cause-high attribute of the attached abnormal
cause node may then list one direct cause ”temperature increases due to
insufficient cooling”. In addition, the process-material-cause procedure is
automatically attached to it which is expected to capture process material
dependent causes, such as ”vessel outlet blocked due to frozen fluid”.

Process material properties are also used for semi-quantitative filtering in
HAZOPExpert. An adjustable fire hazard threshold has been defined as follows:

• fire hazard threshold: auto-ignition temperature of process material < 1.5 *
operating temperature (F).

Fire or explosion hazard due to flammable material at high temperature is only
reported when this threshold has been violated. Additionally, fire or explosion
hazard due to the release of process material above its flash point is only
reported when operating temperature is greater than the flash point of the
process material.

In the case of loss of containment, the health hazards of the process materials
and the occupational safety violations due to their release are determined from
the process material properties.

41

In the version of HAZOPExpert extended with Petri nets, Batch HAZOPExpert
(Srinivasan and Venkatasubramanian 1996), the study of process maloperation
also intends to cover chemical related issues such as the addition of wrong
process material and the occurrence of a wrong reaction. To consider the hazards
related to the addition of wrong material, the Petri net description of the recipe
has to be modified accordingly. Currently, Batch HAZOPExpert cannot conduct
analysis of the occurrence of wrong reaction maloperation.

Okayama University

The process-specific knowledge representation of the Okayama University
system (Shimada, Suzuki and Sayama 1996) includes a description of the
intended reactions. For example, the plant information related to an
ammoniation column can be expressed as follows:

column(ammoniation,[‘R1’],[‘NH3’],[‘NaCl_sol’,’NH4OH_sol’,’H2O’]).
reaction(‘R1’,[‘NaCl_sol’,’H2O’,’NH3’],[‘NaCl_sol’,’NH4OH_sol’], exo, con).

The first statement names the reaction which takes place and the gases and
liquids present in the column. The second statement lists the reactants and
products of the reaction, and defines the reaction as exothermic and
condensative.

In their reported work, Suzuki and co-workers have not concentrated on the
development of fluid property reasoning techniques which would make use of
this process-specific knowledge. The reported usage of this knowledge does not
seem to fully exploit the potential of their knowledge representation
methodology.

Seoul National University

The Seoul National University researchers recognise the importance of fluid
property reasoning in automated hazard analysis (Suh, Lee and Yoon 1997a).
They have adopted the NFPA (US National Fire Protection Association) code in
their work. Their material knowledge base consists of hazard indices and

42

reaction matrix data. The hazard indices represent flammability (Nf), health
hazard (Nh) and reactivity (Nr) according to the NFPA code. The reaction matrix
describes the possible unwanted reactions and their effects.

The reported work on the Seoul system does not discuss the usage of the hazard
index and reaction matrix data in detail. It seems that the data is used by the
accident analysis algorithm to select the accident scenarios which are relevant
under the studied circumstances.

Santa Fe, Argentina

Leone (1996) presents, in association with his object oriented system for hazard
identification, an object class definition for representing chemical knowledge for
automated hazard identification. In this class, called Compound, attributes
related to toxicity, flammability and corrosion are included. No detailed
description is given on the use of this knowledge in Leone’s object-oriented
framework.

4.6 Summary of the state-of-the-art

The main emphasis in all the published research on knowledge-based hazard
identification appears to have been on the successuful implementation of the
HAZOP procedure with intelligent features for the walkthrough of the process
topology and on the identification of the potential faults and their propagation.
This is quite natural because the first step in the development of such
knowledge.based programs has to be the proper implementation of the basic
features such as a library of causal fault propagation models and the reasoning
mechanism for its application.

Although a number of research groups have identified the need for fluid property
reasoning and other additional features which would improve the quality of the
resulting HAZOP study, little effort has been put in the realisation of the
recorded ideas. It is concluded that the reported early developments discussed in
the previous section are useful primarily as background information for this
work and other new developments.

43

5. Methodology development, phase 1

5.1 Introduction

In this chapter, the first development phase of the proposed fluid property
reasoning methodology is discussed. This part of the research was done in a
contract research project funded by an engineering company. First, an overview
of the project and the HAZOPTOOL program is presented. Next, a method for
reasoning on fluid and reaction properties in that framework is described.
Separate knowledge bases for chemical substances, chemical reactions and
unwanted chemical reactions form the basis for the proposed reasoning
techniques. Finally, issues related to the evaluation of the results obtained in this
phase of development are discussed.

5.2 Overview of HAZOPTOOL development

5.2.1 Background

HAZOPTOOL was developed at VTT in a contract research project funded by
the Taiwanese engineering company China Technical Consultants Inc. (CTCI)
Corporation and the local Industrial Development Bureau (IDB). The objective
was to develop an intelligent program which gives support to safety analysts for
the HAZOP studies of chemical and petrochemical plants.

The expert system functions of HAZOPTOOL were designed to use process
information (process structure, chemicals, reactions, etc.) to generate high
quality information about the causes and consequences of process deviations,
including instructive information about suitable recommendations. If process
information is not supplied to the program, then the program was supposed to
give efficient support for the documentation of manual HAZOP studies. The
HAZOP analyses were to be stored in a structured form to encourage their
further utilisation.

The structure of HAZOPTOOL is presented in Fig. 5. The functional modules
and their interaction is illustrated in the diagram.

44

HAZOP
REASONING
INTERFACE

HAZOP
DOCUMENTATION

MODEL EDITOR
MODULE

OBJECT
SYSTEM
INTERFACE

LOGIC GUIDE
TREE MODULE

REPORTING
MODULE

HAZOP
REASONING
FUNCTIONS

OBJECT
FUNCTIONS

DATA
STORAGE
FUNCTIONS

SIMPLE
FILE SYSTEM

ATTRIBUTE DATA

UNIT RULES

TREE
DATA
STRUCTURE

UNIT
AND
TOP
EVENT

HAZOP DATA

HAZOP
LINE

OBJECT
DATAOBJECT DATA

MODIFICATIONS

PLANT DATA
MODIFICATIONS

PLANT
DATA

HAZOP
RESULTS
AND
BOOKKEEPING

STORED
HAZOP
RESULTS

BOOKKEEPING
INFORMATION

NOTES

GUIDE
TREE
DATA AND
NOTES

ASCII
REPORT

REPORT
DATA

OBJECT
FILES

HAZOP
FILES

LOGIC
GUIDE
TREE
FILE

REPORT
FILES

CTCI

VTT

Fig. 5. The structure of HAZOPTOOL.

44

45

The model editor module is able to read in the graphics of a process diagram
from a CAD system. When the graphics have been loaded, it is possible to
define on top of the drawing the corresponding unit instances. The unit instances
themselves should be defined using the object system functions, unless a
connection exists for reading them in automatically from CAD files. After the
unit instances have been defined on top of the drawing, it is possible to divide
the process into multiple unit HAZOP lines for the analysis.

The HAZOP reasoning is based on a rule-based process hazard identification
method. It is able to identify potentially hazardous event chains based on the
plant description. It starts with a process deviation and finds out what are the
possible causes and consequences within the same process unit. Some causes
will be identified as process variable deviations at the boundary of the unit.
Upon request, the causes can be propagated to the neighbouring unit in order to
find out the initial causes. That is, the causes in the neighbouring unit which lead
to the relevant process variable deviation at the boundary can be retreived. This
process can be repeated as necessary.

The potential causes of the studied deviation are presented in tree form, and the
potential end consequences of the deviation are listed in a separate consequence
pane together with the additional end consequences which could potentially
follow from any of the identified causes. The reasoning is done unit by unit so
that propagation to the neighbouring unit must be started separately by selecting
one of the input events at the bottom level of the tree. Any of the listed
consequences can also be selected as the top event of a fault tree, called the
consequence tree, which combines all the event chains which could potentially
lead to the end consequence within the studied unit. Fig. 6 shows the HAZOP
reasoning user interface in an example case.

In the example case, fluid properties were not provided to the program and,
therefore, it lists a number of clearly incorrect consequences among the correct
ones in the ”Consequence Pane” window. The HAZOP reasoning results
including the results of one propagation step (high temperature from 101-R to
102-T) are presented in tree form. The complete text of the selected tree node
(highlighted by a dashed surround) is shown in the information window in the
upper right corner of the screen.

46

Fig. 6. The HAZOP reasoning interface of HAZOPTOOL.

When a deviation has been studied using the reasoning module, selected parts of
the resulting information can be copied to the HAZOP documentation module.
The analysis can be documented in two forms: HAZOP trees and HAZOP forms.
The module includes a user friendly interface for modifying and extending the
information copied from the reasoning module, or for typing in the complete
HAZOP without using the reasoning functionality at all. The information
recorded using the HAZOP documentation module can be stored in files. These
files are then used as the source of information for printing out HAZOP reports.

An alternative view to the analysis process is provided by the logic guide tree
module. It contains a predefined tree-formed checklist of the different aspects
which should be considered during a safety study. When hazards are studied
using the reasoning module and the analysis documentation module, any of the
identified events can be linked to a node of the checklist tree. If that is done for
the whole analysis, the logic guide tree can in the end be used for producing

47

summaries of the analysis concerning specific aspects of safety. The user
interface of the logic guide tree module in an example case is shown in Fig. 7.

Fig. 7. The logic guide tree interface of HAZOPTOOL.

In this example case, a maintenance related event has been identified as part of
the HAZOP reasoning results. This so called tree event has been linked to the
appropriate node of the logic guide tree, in this case to the node ”PREVENTIVE
MAINTENANCE INADEQUATE”. A note describing the problem has been
written by the user in the ”Write Note” pane of the ”Logic Guide Tree
Information” window.

5.2.2 Unit level HAZOP models

The heart of a knowledge based hazard identification system is the process-
independent knowledge base. Its purpose is to allow the description of the

48

characteristics of process units in a generic way. Usually this is achieved by
constructing a type hierarchy of process units and using it as a framework for
describing the actual plant. The plant is described in terms of instances of the
class hierarchy which correspond to the actual units of the plant. To describe an
actual unit of the process to be studied, an appropriate parent class is selected
and the necessary attribute values for the particular unit are filled in.

A class describes a process unit type using attributes and rules. An example of a
class in the HAZOPTOOL unit knowledge base is "CONTROL_VALVES".
Attributes are used for describing the properties of a unit, for example
"normal_flow_rate".

Rules are used to specify the behaviour. Their role will be explained in the next
section. The classes can be connected together by assigning a superclass to each
new class. As a result, a class hierarchy is generated.

In order to define a class attribute, an attribute definition is added to the class.
After this the class and all its subclasses have that attribute. This means that a
subclass of a class has all the attributes of its superclass. In addition, the subclass
can have attributes of its own. All classes having a certain attribute can be given
a default value for it.

The value of an attribute depends on the locally assigned attribute value, default
values and inheritance mode. Two inheritance modes are available in
HAZOPTOOL. In override mode, the instance is first examined to find a locally
assigned value. If no value is found, the search goes on upwards in the class
hierarchy until a default value for the attribute is met. The other inheritance
mode is union. When union mode is used, all the attribute default values
appearing at any level in the hierarchy from the attribute definition class to the
parent class of the instance are collected together. In addition to these defaults,
the locally assigned attribute value is added to accomplish the final list of values.
Rules are defined in a special multi valued attribute for which union inheritance
is used.

49

5.2.3 Representation of hazardous event chains with rules

Knowledge acquisition has crucial importance in the construction of a
knowledge based hazard identification system. Knowledge based reasoning can
only produce as good results as the quality of the knowledge base permits. To
construct a high quality knowledge base of generic knowledge describing the
behaviour of process units in abnormal process conditions, a systematic unit
HAZOP method was used. The process units were considered separately from
any process installation. Fig. 8 shows the unit HAZOP view of a process unit.

DD

E

C

E

e

u
i o

Fig. 8. The unit HAZOP view of a process unit.

Do is the process deviation at the output of the unit. This can be for example
"HIGH FLOW" or "LOW TEMPERATURE". The output deviations can be
caused by internal events Eu of the unit, or they can be caused by input
deviations Di or external events Ee. Input deviations and external events can
lead to output deviations either directly or through a chain of internal events.
Similarly, end consequences C can be caused by internal events, input deviations
or external events.

As a result of the unit HAZOP sessions, a set of rules was defined for each unit
type. Some of the rules apply to all or many unit classes and can, therefore, be
located at a higher level of the unit class hierarchy. The upper level rules are
then inherited to the lower levels and can be used together with the locally
defined more specific rules.

50

As an example, some of the rules of the class "CONTROL_VALVES" are listed
in Table 1.

Table 1. Example rules from the class "CONTROL_VALVES".

("Control_valve_fails_close") -> (OUTPUT process_flow NO FLOW)

("Inst7rument_air_failure")(type = "Fail_close") ->

("Control_valve_fails_close")

("Control_valve_damage") -> ("Control_valve_fails_close")

("Control_valve_damage") -> ("Leak")

("Leak")("Toxic" process_flow.subst) -> ("Toxic_release")

(INPUT process_flow NO FLOW) -> (OUTPUT process_flow NO FLOW)

("Control_valve_close") -> (OUTPUT process_flow NO FLOW)

(primary_instrument = "Level")(primary_instrument_position =

"Upstream")(INPUT primary_instrument LOW SIGNAL) ->

("Control_valve_close")

("Cold_outside_temperature")("Freezing" process.flow.subst) -> (OUTPUT

process_flow NO FLOW)

One rule can contain multiple premises, separated from each other with
parentheses, but only one conclusion. When multiple premises exist, all of them
need to be checked and found to be true before the conclusion will be regarded
as true. Physical events such as (”Control_valve_close”), (”Leak”) and
(”Cold_outside_temperature”) as well as acceptance conditions such as (type =
”Fail_close”) and (”Freezing” process_flow.subst) can be represented in the
form of rule premises. The acceptance conditions tie the generic rules to the
actual process information by the use of variables. Above, the variable ‘type’ is
used for considering the behaviour of the control valve in detail. The variable
‘process_flow.subst’ is used for triggering fluid related considerations, in this

51

case in order to access the freezing conditions of the processed fluid and
evaluate the need to consider freezing.

5.2.4 Reasoning

The reasoning mechanism of HAZOPTOOL is based on the following
operations:

• Backward chaining for causes
• Forward chaining for consequences
• Propagation procedure.

In the backward chaining stage, the deviation expression serves as the starting
point. The backward chaining procedure tries to match the deviation expression
to the right sides of applicable rules. When there is a match, the process is
continued in a depth-first manner, i.e. the backward chaining procedure follows
the chain of rules until a statement which does not chain to any other rule is
found. Then, it moves to the next unresolved branch until all branches have been
studied. The backward chaining procedure has been implemented in a recursive
manner. Loop prevention has been incorporated in the procedure.

The backward chaining procedure makes numerous calls to the forward chaining
procedure. Consequences are identified in this way for each event of the causal
tree generated by the backward chaining procedure. The event expression is
matched to the conclusion statements on the right hand side of applicable rules.
When there is a match, the process is also in this case continued in a depth-first
manner. The events at the end of identified event chains are then collected to the
consequence list. Also this procedure has been implemented in a recursive
manner, with loop prevention incorporated.

The propagation procedure extends the unit specific backward chaining
procedure with the possibility to cross unit boundaries by the further study of
input and output events. An input event is propagated to the previous unit and an
output event to the next unit. The rules appropriate for the study of this unit are
loaded from the process-independent part of the unit knowledge base. Backward
chaining is then continued as usual, except that different rule variable names

52

may be in use in different unit models. Therefore, variables present in the
original input or output event may have to be associated with changed variable
names. For instance, the flow through the valve may be called ‘process_flow’ in
the process-independent rules which describe the valve. If the valve is attached
to a line coming out of the hot side of a heat exchanger, the flow out may be
called ‘hot_flow’. When the propagation procedure turns its attention from the
valve to the heat exchanger, it has to start to apply the rules describing the
behaviour of ‘hot_flow’ instead of ‘process_flow’.

5.2.5 Use of unit data in reasoning and presentation of results

The object oriented plant description method makes it possible to describe the
characteristics of process units with object attributes. These attributes have a
special relation to the rules. Whenever a rule includes a variable, the variable
name is compared to the names of the attributes of the currently studied unit. If a
matching attribute is found, the variable is replaced with the value of the
attribute. If the attribute has many values, a separate event is created for each of
them. Because of this variable substitution mechanism, rules can be written
which include conditions which depend on the attribute values used for
describing the characteristics of the actual process under study. These conditions
are then evaluated during the reasoning and invalid event chains can be
eliminated from the final results.

Connections between the units are described using the attributes "inputs" and
"outputs". Their values combine the names of the neighbouring units and the
flowing chemicals. This information is used during reasoning for propagating
events correctly between units.

The analysis of deviations in control and support systems is also possible by
defining the appropriate control or support inputs and outputs and specifying the
flowing entity as "Signal" or "Steam" etc. It is very important to give values to
all those attributes which are used within the unit rules to identify the flowing
chemical or the chemical reaction taking place. Firstly, this makes the actual
chemical and reaction names visible in the final results instead of the variable
name. Secondly, the use of chemical and reaction knowledge depends on the
availability of this information.

53

5.3 Method for reasoning on fluid and reaction properties

5.3.1 Use of fluid and reaction knowledge from separate knowledge
bases

How events occur and follow each other in a chemical process does not only
depend on the properties of process equipment. The properties of chemicals and
reactions play a very significant role in the identification of hazardous event
chains. The reasoning method described here uses separate knowledge bases for
storing this information:

• chemical substance knowledge base (SKB)
• chemical reaction knowledge base (RKB)
• unwanted chemical reaction knowledge base (UWKB).

The chemical substance and chemical reaction knowledge base are used through
a predefined set of keywords. For example, in the rule

("Leak")(SKB "Toxic" process_subst) -> ("Toxic_release")

the chemical substance knowledge base (SKB) is called with the keyword
"Toxic" and the name of the processed chemical found from the unit attribute
"process_subst". The substance knowledge base returns information about the
toxicity of the chemical, including any special conditions which might turn a
normally non-toxic chemical into a toxic state. The information is returned in
tree form incorporating and-relations to represent the special conditions.

The unwanted reactions knowledge base takes two chemical names as input and
returns a list of possible reactions between these chemicals. It is implemented
using a reactivity group approach.

The grammar for HAZOP rules (Appendix 1) defines how the HAZOP
reasoning procedure can interact with fluid and reaction knowledge. Fig. 9
presents the fluid and reaction reasoning procedure in the form of a flow chart.
The information generated by the procedure is normally returned in tree form.
However, it is also possible to request the value of an individual property
attribute. In that case, this value is returned instead of a tree.

54

Interpret
Call (SKB, RKB or

UWKB)

UWKB?

Set Correct Kb
(SKB or RKB) and

Object

Value
Request?

Call Object
Functions

Return Value and
Tree Node

Call Reasoning
Functions

Return Tree

Retrieve
Reactivity Groups

Return Tree

Set UWKB Object
(Pair of React-
ivity Classes)

More Comb-
inations?

Call Object
Functions

Yes

No

Yes

No

Yes

No

Fig. 9. The fluid and reaction property reasoning procedure of HAZOPTOOL.

55

The SKB, RKB and UWKB rules can include a number of variables which
describe the chemical substances which are present in the unit and certain
characteristics of the unit, such as maximum temperature etc. These variables
can refer either to local attributes found in the called knowledge base (SKB,
RKB or UWKB) or to the attributes of the unit under consideration. If a variable
refers to a unit attribute, it is left unevaluated in the returned chemical cause tree
and the variable substitution is completed by the reasoning machine after return.
The variable substitution mechanism works in such a way that any attributes
used as variables in the rules should be called exactly the same in the attribute
list and in the rule, and they should be given a value before the reasoning is
started. If this is not done, the rules referring to the corresponding variables will
be left unevaluated and the generated event chains will be incomplete.

5.3.2 Properties of chemicals

Data and rules about chemical substances are stored in a separate chemical
substance knowledge base (SKB). This knowledge base includes a simple
reasoning system which is able to respond to certain enquiries by backward
chaining the rules. Calls to the SKB can be included in the HAZOP rules by
using the keyword ”SKB”, giving the substance name as a constant or variable,
and including one of the hazard keywords or the name of an substance attribute.

If there is a need to consider the potential impacts of all substances present in the
system, the special variable ‘all_substances’ can be used which has a list of these
substances as its value. This can be useful, for example when the plant is
screened for potential sources of leaks leading to external fire. This is necessary
if the intention is to identify the complete event chain from the causes of the leak
to the possibly plant-wide consequences of an external fire. In order to list
relevant leak possibilities, the HAZOP reasoning procedure checks the
flammability of each substance from the SKB.

Another typical way of using chemical property information in HAZOPTOOL is
the use of keywords ”gas”, ”liquid” and ”solid” to identify the appearance of an
abnormal phase. The conditions for phase change are formed by processing
selected ruled from the SKB. They are then returned for further consideration of
actual process conditions by the HAZOP reasoning procedure, and finally by the

56

user. Table 2 lists typical examples of calls from the unit rules to the chemical
substance knowledge base (SKB).

Table 2. Typical examples of calls from the unit rules to chemical substance
knowledge.

unit_no = unit number.

These rules should only be taken as examples of the use of SKB in reasoning.
The keywords to be used for reasoning with the support of the SKB have to be
predefined. Therefore, the list of keywords should be re-considered when new
rules and attribute lists are designed. New rules and attributes should be added in
such a way that SKB is able to give an answer to the request by backward
chaining appropriate rules and referring to related attributes.

Although a fixed list of keywords is presented here, the system allows the use of
any string of characters as a keyword, and new keywords can be introduced just
by adding the corresponding rules.

(input_flow.subst "leak_to_atmosphere")(SKB "Toxic" input_flow.subst) ->

("Toxic" input_flow.subst "leak_to_atmosphere")

(unit_no. "internal_high_temperature")(SKB "gas" input_flow.subst)(unit_no.

"gas_outlet_blocked") -> (unit_no. "internal_high_pressure")

(INPUT tube_side LOW_TEMPERATURE)(SKB "solid" tube_side.subst)

(tube_phase = liquid) -> (OUTPUT tube_side EXTRA_PHASE SOLID)

(SKB "Fire" all_substances)("Substance_leaks_close_to_unit") -> ("External_heat")

(OUTPUT output_flow LOW_FLOW)(SKB "viscous" output_flow.subst) ->

("Pump_overload")

(SKB "Corrosive" shell_side.subst) -> (unit_no. "shell_damage")

57

In the basic version of HAZOPTOOL, the predefined chemical substance
keywords are:

• Flammable
• Fire
• Explosion
• Unstable
• Toxic
• Toxic_gas_release
• Toxic_fire
• Vapor
• Gas
• Solid
• Liquid
• Corrosive
• Viscous
• Plugging
• Polymerizing
• Polluting.

In addition, the direct retrieval attribute ”Reactivity_groups” has been defined
for representing reactivity group information.

Table 3 presents an extract from the existing set of general level chemical
substance rules. The rules presented here should be taken as examples which can
later be refined and extended to achieve better reasoning capability. Also
substance specific or substance class specific rules can be added. It is possible to
include alternative ways of evaluating the property in the rule set. For instance,
in the category ”Flammable” rules exist for determining flammability either
based on flammability range (flamm_range_%), predefined health hazard
category (health_hazard) or a special type of thermal instability
(thermal_stability = ”Releases_GF”).

58

Table 3. Example set of general level chemical substance rules in the SKB.

”GF” = ’flammable gas’, ”GT” = ’toxic gas’.

5.3.3 Properties of reactions

Knowledge on typical chemical reactions is stored as a separate chemical
reactions knowledge base. This knowledge base uses the same simple backward
chaining reasoning mechanism as SKB. Calls to RKB can be included in the
HAZOP rules by using the keyword ”RKB”, giving the reaction name as a

Flammable

("Gas")(amount = flamm_range_%) -> ("Flammable")

("Liquid")(temp > flash_point_C)(amount = flamm_range_%) -> ("Flammable")

(health_hazard = "Flammable") -> ("Flammable")

(health_hazard = "Highly_flammable") -> ("Flammable")

(thermal_stability = "Releases_GF")("Internal_high_temperature") -> ("Flammable")

Fire

("Flammable")("Unconfined") -> ("Fire")

(health_hazard = "Oxidizing")("Contact_with_combustible_material") -> ("Fire")

("Flammable")(thermal_stability = "Polymerizing")("Internal_high_temperature") -> ("Fire")

Explosion

("Flammable")("Confined") -> ("Explosion")

(thermal_stability = "Explosive")("Internal_high_temperature") -> ("Explosion")

(health_hazard = "Explosive") -> ("Explosion")

Toxic

(health_hazard = "Highly_toxic") -> ("Toxic")

(health_hazard = "Toxic") -> ("Toxic")

(health_hazard = "Corrosive") -> ("Toxic")

(health_hazard = "Noxious") -> ("Toxic")

(health_hazard = "Irritative") -> ("Toxic")

("Toxic_gas_release") -> ("Toxic")

(thermal_stability = "Releases_GT")("Internal_high_temperature") -> ("Toxic")

(thermal_stability = "Decomposes_>_GT")("Internal_high_temperature") -> ("Toxic")

59

constant or variable, and including one of the hazard keywords or the name of an
reaction attribute.

Example:

(RKB "Heat_generation" Reaction) -> ("Internal_high_temperature")

As in the SKB, a predefined set of keywords for the RKB has been defined.
These keywords are listed below:

• Violent_reaction
• Explosion
• Fire
• Chemical_fire
• Toxic_gas_generation
• Toxic_fire
• Excessive_heat_generation
• Heat_consumption
• Unwanted_by_product
• Wrong_product
• Polymerization.

Examples of general level rules for chemical reactions are presented in Table 4.

Table 4. Examples of general level rules for reactions in the RKB.

(Temperature < Lower_temp_limit) -> (”Accumulation_of_reactants”)

(INPUT catalyst_flow LOW_FLOW) -> (”Accumulation_of_reactants”)

(”Accumulation_of_reactants”)(Heat_of_reaction = ”Exothermic”) ->
(”Excessive_heat_generation”)

(Gas_evolution = ”GT”) -> (”Toxic_gas_generation”)

(”Wrong_conditions”)(Reaction_class = ”Nitration”) -> (”Toxic_gas_generation”)

(”Excessive_heat_generation”)(Reaction_phase = ”Liquid”) -> (”Vapour”)

(”Wrong_conditions”)(Decomposition = ”Possible”) -> (”Violent_reaction”)

(Reaction_class = ”Diazotation”)(”Wrong_pH”) -> (”Unwanted_by_product”)

60

5.3.4 Compatibility of chemicals

A reaction matrix is stored in the system as a separate unwanted chemical
reactions knowledge base (UWKB). It is based on a publicly available general
purpose reaction matrix (Hatayama 1980) which gives the possible unwanted
reactions between members of a collection of reactivity groups. Individual
chemical substances can belong to one or more reactivity groups.

HAZOPTOOL will automatically retrieve reactivity group information for the
given substances from SKB. UWKB can be called using the keyword ”UWKB”.
Table 5 lists typical examples of calls from the unit rules to retrieve
compatibility knowledge from the UWKB.

Table 5. Typical examples of calls from the unit rules to retrieve compatibility
knowledge from the UWKB.

The UWKB keywords listed below correspond to the hazard information of this
type contained in a reaction matrix:

• Reaction
• Violent_reaction
• Heat_generation

("Internal_extra_substance" "water")(UWKB "reaction" process_flow.subst "water")

-> ("Internal_extra_substance" new_subst)

(INPUT input_flow EXTRA_SUBSTANCE extra_subst)(UWKB "heat_generation"

input_flow.subst extra_subst) -> ("Internal_high_temperature")

(INPUT input_flow EXTRA_SUBSTANCE extra_subst)(UWKB "polymerization"

input_flow.subst extra_subst) -> (unit_no. "blocked")

(INPUT input_flow EXTRA_FLOW extra_subst)(UWKB "polymerization"

input_flow.subst extra_subst) -> ("Internal_high_pressure")

(INPUT input_flow EXTRA_SUBSTANCE extra_subst)(UWKB "violent_reaction"

input_flow.subst extra_substance) -> ("Explosion")

61

• Fire
• Gas_generation
• Toxic_gas_generation
• Flammable_gas_generation
• Explosion
• Polymerization
• Toxic_solubilization.

These keywords should be considered when new HAZOP rules and attribute lists
are designed.

5.4 Evaluation of methodology development phase 1
results

No evaluation of the resulting software was carried out during the
HAZOPTOOL project. The choice was made to use all the available resources in
the development of more program features.

The only part of HAZOPTOOL which was used extensively during the
HAZOPTOOL development project was the knowledge representation
methodology and tools. CTCI Corporation generated, for their own use,
experience-based rules for about forty process equipment types. However, this
was an attempt to cover many equipment types quickly and, therefore, the
quality of the knowledge remained far from sufficient.

CTCI Corporation carried out an internal follow-up project of one year which
included a case study and subsequent evaluation of HAZOPTOOL. They have
kept the results of this follow-up project confidential.

A small case study was carried out at VTT in connection to a European Space
Agency (ESA) project. In this case study, unit rules were produced for the main
equipment types used in a rocket propulsion system. The purpose of the case
study was to demonstrate the application of the techniques of knowledge-based
hazard analysis to the space systems engineering community in ESA and to
evaluate the usefulness of these techniques for the hazard analysis of space
systems.

62

A vulcain rocket engine developed as an ESA programme was selected as the
target system for the case study. The motivation was that the vulcain engine is
based on a chemical combustion process and is therefore suitable as the first
application of the chemical process oriented knowledge-based methodology. The
vulcain engine is described in an article by H. De Boisheraud and S. Eury
(1991).

Most of the resources spent in this case study went to the development of the
rule based models of the unit types ”Gas Tank”, ”Turbine Pump” and
”Combustion Chamber”. Only the first analysis experiments limited to the
combustion chamber could be carried out. To demonstrate the methodology, the
top event ”Decreased combustion” was considered. The event chains leading to
this event were followed step by step. Fluid issues did not play a significant role
in those considerations.

63

6. Methodology development, phase 2

6.1 Introduction

In this chapter, the second development phase of the proposed fluid property
reasoning methodology is discussed. This part of the research was done in a
collabortive research project partly funded by the European Commission. First,
an overview of the project and the AutoHAZID program is presented. A
complete technical description of AutoHAZID can be found in the Final
Technical Report of the STOPHAZ project (STOPHAZ 1997). After the
overview, a method for reasoning with chemical knowledge in that framework is
described. The method is based on presenting the considerations related to fluid
properties and interactions as a separate activity with well-defined links to the
automated hazard identification process. Finally, the results of a two-stage
exercise aimed at the evaluation of the proposed method are presented.

6.2 Overview of AutoHAZID development

6.2.1 Background

The objective of the STOPHAZ project was to promote the safer and more
efficient design of process plants through the use of a new generation of quality
assured tools. The cost of HAZOP studies and the subsequent redesign activities
would decrease significantly if safety is better incorporated into designs at an
early stage.

STOPHAZ was project number 8228 of the EU ESPRIT research programme.
The tools developed by the project include an intelligent safe design hyperbook,
an automated HAZOP tool, and an operating instructions helper. The automated
HAZOP tool (AutoHAZID) formed the framework for the phase 2 of the
methodology development part of this work.

AutoHAZID is the latest outcome of the research work done in Loughborough
University by Prof. F. P. Lees, Dr. A. G. Rushton, Dr. P. W. H. Chung and their
co-workers. Their earlier work has briefly been discussed in Chapter 4. The
emulation of the HAZOP algorithm in AutoHAZID is based on a signed directed
graph (SDG) representation of process equipment faults and their propagation.

64

A typical user of a tool like AutoHAZID is a design engineer who wishes to
evaluate the plant design before commencing with a HAZOP study.
Alternatively, it could be used at earlier stages of the design process, before
detailed process and instrumentation diagrams (P&ID) are available, to screen
for possible problems when the cost of design changes is not too high.

AutoHAZID uses process-independent unit models to create a signed directed
graph (SDG) model of fault propagation based on the given process-specific
plant description. This SDG model is then examined by applying the HAZOP
algorithm. Special fluid model features are used to take into account the impacts of
chemical properties. A simplified diagram of AutoHAZID is shown in Fig. 10.

Fault propagation model
preparation

HAZOP Algorithm

HAZOP report generation

Plant description

Unit model library

Fluid properties
knowledge

SDG

Identified
event chains

Fig. 10. Simplified diagram of AutoHAZID structure.

65

The unit modelling methodology, the fault propagation models, the HAZOP
algorithm, its application and the subsequent filtering of results will be discussed
next. Afterwards, the fluid model system which extends AutoHAZID with a
capability for fluid property reasoning will be discussed.

6.2.2 Unit model library

The unit model library file contains qualitative models of each type of process
unit which can be represented within AutoHAZID. The models exist within a
hierarchy which supports inheritance of information between models.

The fault propagation inference mechanism of AutoHAZID is based on the use
of the signed directed graph formalism. The concept of an ”arc” is used for
representing a causal relationship. The equipment models of the AutoHAZID
unit model library group together the arcs relevant to an equipment type in general.

The object-oriented nature of the frames used to write models for AutoHAZID
provides an inheritance mechanism for deriving models in terms of other models.
This means that lists of SDG arcs for a child model can be partly inherited from the
parent model, and partly derived by differences stated in the child.

Another level of support is the facility available to the equipment modeller to
specify that certain blocks of arcs are relevant to a particular equipment model.
This is implemented by the use of templates and scripts.

In addition, it is possible to use conditional arcs in the equipment models. They
can be used to make the application of a generic equipment model to an actual
equipment instance vary depending on the value of an attribute.

The purpose of a unit model is primarily to define the qualitative relationships
between deviations, faults and consequences within the unit. The models also
fulfil a number of other functions, including:

• definition of the ports present on a unit
• definition of which ports must be connected for correct operation of the unit
• definition of default attribute values.

66

Table 6. Example of a unit model: reciprocating pump.

frame(reciprocatingPump isa pdPump,[
propLinks include [
 % LOSS OF DRIVE ARCS:
 arc([fault,'loss of drive'],1,[out,noFlow]), % (5)
 % CHECK VALVE ARCS:
 arc([fault,'check valve fails shut'],1,[out,noFlow]), % (6)
 arc([fault,'inlet check valve damaged or worn'],-1, [in,pressure]), % (7)
 arc([fault,'outlet check valve damaged or worn'],-1, [out,pressure]), % (8)
 arc([fault,'inlet check valve fails open'],1,[in,revFlow]), % (9)
 arc([fault,'outlet check valve fails open'],1,[out,revFlow]), % (10)
 arc([fault,'outlet check valve fitted in wrong direction'],1,
 [consequence,'pump failure']), % (11)
 % SPILL-BACK ARCS:
 arc([fault,'spill-back occurring'],-1,[in,flow]), % (16)
 arc([fault,'spill-back occurring'],-1,[out,flow]), % (24)
 arc([fault,'spill-back occurring'],1,[in,temp]), % (17)
 % MISCELLANEOUS
 arc([fault,'internals damaged'],-1,[out,pressure]), % (18)
 arc([fault,'internals damaged'],1,[out,solids]), % (23)
 arc([fault,'internals damaged'],1,
 [consequence,'particulates to downstream units']), % (20)
 arc([deviation,[morePressure,out]],1,[consequence,
 'casing or pipework overpressure if relief system fails']), % (21)
 arc([deviation,[noFlow,out]],1,[consequence,
 'casing or pipework overpressure if relief system fails']) % (22)
],
 % Conditional section.
 conditionLinks info [
 [driver_type is variable, [
 propLinks include [
 arc([fault,'high stroke speed'],1,[out,pressure]), % (12)
 arc([fault,'high stroke speed'],-1,[in,pressure]), % (13)
 arc([fault,'low stroke speed'],-1,[out,pressure]) % (14)
]]],
 [status is spare, [
 script info [leak_out(in,out),
 leak_vacuum(in,out)],

 propLinks info [
 arc([fault,'spare unit turned on'],1,[out,flow]), % (30)
 arc([fault,'spare unit turned on'],1,[out,pressure]), % (31)
 arc([fault,'spare unit turned on'],-1,[in,pressure]) % (32)
]]]
]
]
).

67

The version of the unit model library which was released in connection to the
final prototype of STOPHAZ includes the models of over 50 detailed types of
equipment. Examples of equipment types at this detailed level are distillation
column, three phase gas-liquid-liquid separator, reciprocating pump, and signal
splitter. These detailed models are grouped in a hierarchy under nine top level
equipment types, such as vessel, pressure raiser and instrument. The
reciprocating pump model is presented as an example in Table 6.

6.2.3 Fault propagation models

The qualitative propagation information recorded in the unit models is the core
of AutoHAZID’s analysis technique. Unit models define qualitatively:

• how deviations in process variables propagate through a unit
• the faults which can occur within a unit and their effect on process variables
• the adverse consequences of deviations and faults within a unit.

There are four types of process arcs within the unit model library. These
represent different types of propagation links as illustrated in Table 7. In an arc,
one cause and one effect are linked together by a positive or negative influence.
This is represented using a simple syntax. For example, arc(X, 1, Y) means that
the occurrence or increase of X leads to the increase of Y, and arc(A, -1, B)
means that the occurrence or increase of A leads to the decrease of B.

68

Table 7. AutoHAZID propagation link types.

1. variable Î variable
Example:

arc([out, resistance],-1,[out,flow])
• Increased (decreased) resistance at outlet leads to decreased (increased) flow

2. fault Î variable
Example:

arc([fault,’high pressure upstream’],1,[out,flow])
• High pressure upstream leads to increased flow at outlet

3. deviation Î consequence

Example:
arc([deviation,[moreTemp,out]],1,[consequence,’pump casing
overtemperature’,[haz_op,2,[ed,lc]]])
• High temperature leads to pump casing overtemperature (hazard and

operability problem with default severity 2 which may lead to equipment
damage and loss of containment)

4. fault Î consequence.

arc([fault,’leak to environment’],1,[consequence,[‘fire/explosion
risk’,flammable(out)],[haz,2,[lc]]]).
• Leak to environment, in case the fluid is flammable, leads to fire/explosion

risk (hazard problem with default severity 2 which may lead to loss of
containment).

6.2.4 HAZOP algorithm

When a HAZOP study is carried out in a conventional manner, a systematic
procedure is followed. The process is examined unit by unit or line by line, and
all possible process variable deviations are considered. The intention is to
identify:

• possible faults which could cause the process variable deviation

• potentially hazardous consequences of the deviation and its causes.

69

In principle, AutoHAZID intends to emulate the conventional HAZOP
procedure, in a similar manner as has been illustrated in Fig. 3 in Chapter 4.
However, it is computationally unnecessarily expensive to search for the desired
information in exactly that way.

During an exhaustive HAZOP style graph search, all the paths which can cause a
change are found first, and those which do not have the appropriate influence are
then discarded. Effort is wasted in repeated graph search when the opposite
deviations of the same process variable in the same unit or line are considered.
Additionally, process variable deviations sometimes chain to each other which
also causes similar unnecessary repetition of the graph search.

The AutoHAZID HAZOP algorithm tries to reduce the amount of wasted search
effort by considering all deviations at once, instead of one at a time in isolation.
This is done by operating with the whole list of deviations during graph search
and partitioning the results for individual deviations afterwards. The algorithm is
illustrated in Fig. 11.

C o m p ile a lis t o f d e via tio n s to b e e x a m in e d

C o m p o s e a lis t o f S D G n o d e s w h ic h
c o rre s p o n d to th e d e via tio n s

Id e n tify a s e t o f fa u lt p ro p a g a tio n p a th s
w h ic h s ta rt fro m a fa u lt o r a n o th e r n o d e
a n d h a ve a n e ffe c t o n a n o d e in th e lis t

C o m p le te th e fa u lt p ro p a g a tio n p a th s
w h ic h s ta rt fro m a n o d e w ith p a th s

id e n tifie d fo r th a t n o d e

P a rtitio n th e re s u lts a c c o rd in g to th e lis t o f
d e via tio n s

Id e n tify c o n s e q u e n c e s o f th e d e via tio n s
a n d fin d th e ir c a u s e s b y p ic k in g th e fa u lts

fro m th e id e n tfie d p a th s

Fig. 11. AutoHAZID HAZOP algorithm.

70

6.2.5 Filtering of results

It is possible to consider the validity or relevance of a specific fault propagation
path either during the execution of the HAZOP algorithm or afterwards.
Considerations related to removing some entries from the initial results produced
by the HAZOP algorithm are called filtering.

AutoHAZID contains three filtering procedures:

• Combine multiple similar failures in a particular line section into a single
fault

• Remove repeat scenarios found under different deviations
• By stopping fault propagation chains at predefined stopping points, mimic

references to deviations as used in traditional HAZOP reports.

The current implementation of filtering in AutoHAZID is relatively limited.
Many context-related knowledge based considerations could be implemented as
filters. These filters could take as input the initial set of results produced by the
HAZOP algorithm and carry out sophisticated reasoning to screen out irrelevant
entries. This would simplify the operations done by the HAZOP algorithm by
postponing the consideration of more complicated issues.

For instance, some tasks related to fluid property reasoning could conveniently
be performed as filtering tasks. This makes filtering particularly interesting in
the context of this work.

6.3 Reasoning with chemical knowledge

6.3.1 The fluid model approach

Objectives

The main objective of the fluid model system is to extend AutoHAZID with
chemical and material knowledge and with the necessary techniques to utilise
this knowledge in such a way that the quality of the HAZOP results generated by
AutoHAZID is improved:

71

• more relevant hazards (feasible, likely and important) are identified
• fewer irrelevant hazards (infeasible, unlikely or unimportant) are suggested.

The aim is also to improve the efficiency of AutoHAZID. This can be done by
preventing the inference machine from exploring irrelevant branches of the
causal chains. Another way is to speed up the output filtering process.

It should be noted that the main objective should be achieved without causing
too severe problems for the efficiency of AutoHAZID and thus weakening the
improvements related to the second objective.

Earlier work by various research groups (see section 4.4) has indicated that fluid
property reasoning has the potential to improve knowledge-based hazard
identification in the desired way. In practice, a system such as AutoHAZID
based on qualitative models of process equipment behaviour needs to be
extended with new methods. These include a method for resolving fluid property
related queries and a method for performing fluid compatibility checks.

Functional requirements

The approach used in the definition of requirements for the fluid model was
twofold. It was important to build on previous work and the lessons learnt. The
earlier work by VTT and LUT has been discussed in section 4.4.

In chapter 5, the first phase of this work on fluid property reasoning
methodology development was discussed. The rule-based approach applied in
the first phase was considered appropriate also for the purposes of the second
stage, but only if completely re-implemented. In addition, the experience gained
in the first phase from the use of a reaction matrix with reactivity groups
indicates that fluid compatibility problems could be efficiently studied by a
similar approach.

On the other hand, it was necessary to make sure that such issues are taken under
consideration which appear in industrial hazard identification work. In order to
do this, a number of HAZOP studies produced in a traditional way by a group of
human experts were examined.

72

Typical sequences of fluid property related questions made during a HAZOP
study are:

• How high a temperature is needed to turn liquid into gas at the given
pressure? Is such a temperature increase possible?

• What is the flammability range of a gas? Is it possible that the air
concentration in a vessel becomes such that the mixture is inside that range?
Is it possible that the outside process concentration of the gas goes within
the range at an indoors located part of the process?

• What is the decomposition temperature of a fluid? Is such a temperature
increase possible? What are the properties, compatibility and hazards of the
decomposition products?

• What is the compatibility of the reaction with extra components? Do other
reactions take place in that situation? What are the reaction products and
their properties, compatibility and hazards?

Appendix 2 contains a list of fluid model related problems extracted from the
studied HAZOP reports. The associated list of questions to be answered by the
fluid model is presented in Appendix 3.

A key requirement for the fluid model system is that it should be able to respond
to fluid property related queries. If a cause-consequence link holds (or the event
is relevant) only under certain conditions, these conditions should be considered
by the fluid model. In case the conditions can not be evaluated based on
available information, the unevaluated conditions should be returned as part of
the reply. This allows the scenario to be reported as conditional on stated facts
that could not be evaluated.

As follows from the requirements, the fluid model system is expected to add
intelligence to AutoHAZID by providing the following features:

73

• rule based evaluation of fluid properties
• access to the properties of fluids in the specified deviated state of the process
• access to the properties of mixtures
• identification of fluid incompatibility problems.

The full use of the above features in connection to AutoHAZID unit models has
the potential to improve its performance considerably.

The fluid property queries which were considered necessary in order to support
the first version of the AutoHAZID model library were listed as the minimal
requirement. The first version of the unit models was not fluid-oriented, and
some interesting topics, such as reactions and fluid composition changes have
been left out from the list. Although the list does not cover all the aspects of
fluid property reasoning, it still gives a good overview of what can immediately
be taken into use in connection to qualitative fault propagation models. The list
of queries to be supported by the fluid model system is presented in Table 8. The
proposed methods for resolving the queries have also been listed. How the
internal library of fluid properties and external fluid properties packages are used
in AutoHAZID to support these methods will be described in more detail in the
next part of this section.

The implementation of some of these queries in AutoHAZID remains partial for
a variety of reasons. The state of implementation is illustrated in the
”Implementation” column of Table 8 as follows:

A. The query is related to a fluid property which should be determined
for the actual fluid composition (mixture) and the specified process
conditions. Both the composition and process conditions may
depend on the fault under consideration.

B. The query is related to the compatibility of the fluid components.
The reaction matrix which supports these considerations needs to be
linked to fluid model queries.

C. The method for resolving the query and the representation of the
associated fluid properties need more detailed specification.

74

Table 8. Supported queries.

Query Method Implementation

boiling temp > boiling pt A

brittle material property look-up

corrosive fluid property look-up C

decomp fluid property look-up

dissolvedGas fluid composition A, C

explosion reaction matrix B

flammable fluid properties and rules A

flashRelease fluid properties and rules

freezing temp < freezing pt A

gasGeneration reaction matrix B

heatGeneration reaction matrix B

liquid temp > freezing pt A

liquidHammer liquid or condensate present C

nearBoilingPt temp close to boiling pt A

plugging viscous or polymerizing

polluting fluid property look-up

polymerizing temp & fluid property

pressurised unit press > atm press

solid temp < freezing pt A

solidsPresent fluid composition A

toxic fluid property look-up

unstable fluid property look-up

vacuum unit press < atm press

vapour temp > boiling pt A

viscous fluid property look-up

Architecture of AutoHAZID fluid model system

The queries to be resolved by the fluid model system require a variety of
methods to be supported. The considerations involve the processing of both
qualitative and quantitative information on fluid properties. A rule-based

75

architecture was selected because it provides sufficient flexibility to be used for
relatively ill-defined problem solving such as fluid property reasoning. The
architecture of the fluid model system is shown in Fig. 12.

The blocks with a shadow in Fig. 12 represent the modules belonging to the fluid
model system. The roles of these modules are described below.

Query Handler

The queries to be resolved are initiated by the AutoHAZID fault propagation
engine. This engine uses models of process unit fault behaviour to simulate fault
propagation through a system of process equipment. The models are signed
directed graphs which can have conditions attached to the arcs. These conditions
often refer to the properties of the process fluids. In such situations, the fluid
model system can be used for evaluating the conditions.

The first step of resolving a fluid property query is to accept a request from
AutoHAZID. Then the fluid rules stored in the fluid library are checked in order
to find rules which match with the query. If matching rules are found, the
problem is passed to the backward chaining inference engine. The inference
engine returns the result in the form of a tree which is then transformed into the
form of a string-based conditional reply and returned to AutoHAZID.

Inference Engine

The fluid model inference engine follows a backward chaining procedure based
on string comparison. It uses the given problem as the top goal and looks for
rules where the right hand side matches to the problem. For each matching rule it
then looks at the left hand side and sets each of the left hand clauses as the next
goals. The results of this backward chaining process are recorded as a logical
tree. Since the clauses can contain variables which refer to fluid properties, the
inference engine calls a rule parsing routine for each clause. When the backward
chaining procedure has been completed, the inference engine carries out an
evaluation of the tree. This evaluation process may find out that part of the tree
is not relevant because some of the clauses which refer to fluid properties
evaluate to false.

76

AutoHAZID Query Handler

Rule ParserInference Engine

Fluid Library

Query

Reply and
Conditions

Problem Solution

Rule
String

Valid Inter-
pretations
of the Rule

Fluid
Rules

Fluid Properties

Prop-
erties

Package

Fluid
Prop-
erties

Compatibility
Checker

Compatibility

Composition

Compatibility
Data Base

Reactivity
Properties

Component
Reactivity

Component
Compatibility

Fig. 12. Architecture of the fluid model system.

76

77

Rule Parser

The fluid model rule parser takes a rule string as an input and parses it in
accordance to a simple grammar. When it detects a variable, it tries to assign a
value for it either through a request to the properties package or from the internal
static fluid library data. After all possible variable substitutions have been done,
the revised rule is returned to the inference engine.

Compatibility Checker

The compatibility check feature of the fluid model system is used by
AutoHAZID separately from fault propagation. The fluid information handling
routines of AutoHAZID call the fluid compatibility check when a potential for
the interaction of two fluids has been identified.

The compatibility checker accepts two fluid descriptions as input from
AutoHAZID. Looking at each component of both fluids, it checks all the
possible combinations. For each pair of components, reactivity properties are
retrieved from the fluid library. The reactivity properties of a chemical are
described by membership in a number of reactivity groups. The possible
compatibility problems for each pair of reactivity groups are found in the
compatibility data base. When the compatibility checker has gone through all
components and the associated reactivity groups for both fluids, the resulting
compatibility problem data is returned to AutoHAZID.

6.3.2 Properties of fluids

Internal library of fluid properties

Fluid property information is used for the evaluation of fluid rules. The fluid
model system obtains fluid property data from two sources: the internal fluid
library and the external properties package. The static fluid property data stored
in the fluid library is used when it is not possible to get a property value from a
properties package.

78

Only a limited set of queries can be supported with static chemical properties
data. These queries relate to such fluid properties which do not change when
process conditions or the concentrations of fluid components change.

Toxicity is a good example of a property of this kind. It does not normally
change unless new components are introduced to the fluid either by the addition
of extra components or as a result of a chemical reaction. Properties such as
flammability and potential for decomposition or polymerisation can also quite
reliably be examined using static property data on the fluid components.

The AutoHAZID fluid model system uses a library file to store the fluid rules
and fluid property data. Table 9 lists the fluid properties stored in this static
library file.

Table 9. Fluid properties stored in the internal library.

1 CAS number
2 molecular weight
3 freezing point (Celsius)
4 decomposition temperature (Celsius)
5 flash point (Celsius)
6 auto-ignition temperature (Celsius)
7 lower flammability limit (%v/v)
8 toxicity classification
9 latent heat (at normal boiling point in J/mol)
10 normal boiling point (ie. at ambient pressure in Celsius)
11 Antoine Const A (for vapour pressure calculation)
12 Antoine Const B (for vapour pressure calculation)
13 Antoine Const C (for vapour pressure calculation)
14 Liquid density (kg/m3) (temperature dependence is not represented)
15 Vapour heat capacity constant, A (J/mol)
16 Vapour heat capacity constant, B (J/mol)
17 Vapour heat capacity constant, C (J/mol)
18 Vapour heat capacity constant, D (J/mol)
19 ERPG 3 values (measure of toxicity for Dow Exposure Index, mg/m3)
20 Liquid heat capacity (J/(kg.K))
21 Reactivity group 1
22 Reactivity group 2
23 Reactivity group 3
24 Reactivity group 4

79

The fluid property library is structured as a frame based system. The hierarchy
has two levels. The top level can be used for specifying general information
which holds for any chemical. The actual values of fluid properties are always
specified at lower levels. Therefore, the default value for them at the top level is
‘None’. However, all the existing fluid rules are general purpose rules and they
are specified at the top level. This means that the same set of fluid rules will be
inherited to every lower level frame representing an actual fluid. Table 10
presents the top level frame with part of the general level rules shown, and an
example of a lower level frame.

In the version of AutoHAZID released in connection to the final prototype of
STOPHAZ, the fluid library contains property data for the pure chemicals listed
in Table 11: This prototype implementation does not attempt to fully cover the
property data requirements of different applications. Instead, it is expected that
the users of this version of AutoHAZID are prepared to check the correctness of
the available data and extend the data when necessary. In particular, the handling
of issues such as chemicals with multiple isomers are left to the responsibility of
the user.

80

Table 10. Part of the top level frame from the fluid property library and an
example of a lower level frame.

frame(fluiid isa substance,

 [property info [],

 physicalData info [],

 fluidData info

 ['None','None','None','None','None','None','None',

'None','None','None','None','None','None','None',

'None','None','None','None','None','None','None','None','None','None'],

 /* Rules for resolving queries based on internal fluid property data */

 ruleData info ['(temperature > boilPt)("vapFlammable") -> ("flammable")',

 '(temperature < boilPt)("liqFlammable") -> ("flammable")',

 '(flashPt > "-300.0")(temperature > flashPt) -> ("liqFlammable")',

 '(tox > "1") -> ("toxic")',

 ... {more here}

 /* Rules for interpreting the replies of the property package to the physical state

 query */

 /* If the property package can not resolve the query (reply is "0"), look at the

 the default boilPt value given for this fluid */

 '(phystate = "0")(temperature > boilPt) -> ("vapour")',

 /* The replies "1", "3", "5" and "7" indicate the presence of vapour phase,

 with or without the simultaneous existence of other phases */

 '(phystate = "1") -> ("vapour")',

 '(phystate = "3") -> ("vapour")',

 '(phystate = "5") -> ("vapour")',

 '(phystate = "7") -> ("vapour")'

]

]).

frame(hexane isa fluiid,

 [

 fluidData info

 ['110-54-3','86.177','-95.3','None','-22','260','1.1','1','28872',

 '68.7','15.8089','2654.81','-47.3','673','-1.746','58.089E-2',

 '-2.903E-4','60.541E-9','None','2227','29','35','None','None']

]).

81

Table 11. The pure chemicals covered by the fluid property library.

Component ID Formula IUPAC Name

ammonia NH3 ammonia

ammonium sulphate (NH4)2SO4 ammonium sulfate

benzene C6H6 benzene

butane C4H10 butane

butene C4H8 butene

carbon dioxide CO2 carbon dioxide

carbon monoxide CO carbon monoxide

chlorine Cl2 chlorine

ethane C2H6 ethane

ethene, ethylene C2H4 ethylene

ethylene dichloride C2H4Cl2 1,2-dichloroethane

Freon-11, trichlorofluoromethane CCl3F trichlorofluoromethane

Freon-12, dichlorodifluoromethane CF2Cl2 dichlorodifluoromethane

hexane C6H14 hexane

hydrogen H2 dihydrogen

hydrogen chloride HCl hydrogen chloride

hydrogen cyanide HCN hydrogen cyanide

hydrogen sulphide H2S dihydrogen sulfide

methane CH4 methane

nitrogen N2 dinitrogen

oxygen O2 dioxygen

propane C3H8 propane

propene C3H6 propene

sodium hydroxide NaOH sodium hydroxide

sulphur dioxide SO2 sulfur dioxide

sulphuric acid H2SO4 sulfuric acid

toluene C6H5CH3 toluene

water H2O water

82

External chemical properties packages

Properties packages provide an alternative source of fluid property information
to be used for the evaluation of the fluid rules. The properties packages available
in AutoHAZID cover the same selection of pure chemicals as the static fluid
library (see Table 11). In addition, they provide access to the properties of
mixtures.

Properties packages have two major advantages over a static data base of fluid
property data. Firstly, the fluid properties are calculated for the actual process
temperature and pressure instead of giving information which refers to some
standard conditions. Secondly, the properties packages can handle mixtures
which is impractical for a static database because the mixture ratio can vary.

In analysing an actual chemical process plant, these capabilities are of particular
interest. What is required from a proper fluid model system, is not the capability
to consider pure chemicals under standard conditions. On the contrary, the
capability to consider mixtures of chemicals under various process conditions is
absolutely necessary.

State of matter is a very interesting issue. It is a property which tells us whether
the fluid is gas, liquid or solid. Vapour is handled as gas in this context. Even in
the case of pure chemicals, the actual process conditions have to be examined
and the behaviour of the fluid has to be known in order to find out what the state
of matter is. In the case of mixtures, several phases are often present at the same
time. Moreover, the behaviour of the mixture may differ from the combined
behaviour of its components.

In the version of AutoHAZID released in connection to the final prototype of
STOPHAZ, links to two properties packages were included:

• PROPERTIES PLUS by AspenTech Inc, and
• HYSYS Property System by Hyprotech S. L.

The two properties packages provide equal services to AutoHAZID. The
property requests handled by the properties packages are listed in Table 12.
Some of the requests can only be made for pure chemicals and not for mixtures.

83

These requests are marked with ”Pure” in the right hand side column of the
table.

Table 12. Property requests handled by the properties packages.

Physical State

Molecular Weight

Boiling Temperature

Freezing Temperature

Vapour Pressure

Viscosity

Density

Specific Entalphy

Specific Heat

Latent Heat of Fusion

Latent Heat of Evaporation

Temperature Limit of Phase Change

Pressure Limit of Phase Change

Flash Point (closed cup) Pure

Auto-Ignition Temperature Pure

Lower Flammability Limit Pure

Upper Flammability Limit Pure

CAS Number Pure

The properties packages accept as input a description of the fluid composition as
a combination of three parameters:

• Component List
• Component Mole Fractions
• Number of Components.

In addition, the process conditions in the form of pressure and temperature are
given. One or both of them can be omitted when appropriate.

84

Chemical reasoning rules

Fluid property queries are made in order to assess the relevance of a fault or a
consequence for the currently studied fluid. The fluid rules for resolving the
queries are all general purpose rules which refer to the properties of the fluid.

As an example, general purpose rules for evaluating whether a vapour is
flammable are presented in Table 13. If valid values of autoignition point and
lower flammability limit are available, the rules check whether the vapour
concentration and unit temperature are high enough to lead to a flammability
hazard.

Table 13. Fluid rules for checking vapour flammability.

autoIgnitionPt <= -300.0 means undefined, lowFlamLim <= -1.0 means undefined.

The rule grammar is a simplified version of the HAZOPTOOL rule grammar
presented in Appendix 1. This is a rather primitive grammar, for instance, or-
relations are not allowed in this simple grammar. They have to be represented as
separate rules which have the same conclusion as the right side of the rule.
However, even simple rules are a much more convenient representation
formalism than conventional programming languages. Table 14 presents the
equivalent reasoning in the form of c-language code.

(unitTemp > boilPt)("vapFlammable") -> ("flammable")

(unitTemp = boilPt)("vapFlammable") -> ("flammable")

(autoIgnitionPt > -300.0)(unitTemp > autoIgnitionPt) ->
("vapFlammable")

(lowFlamLim > -1.0)(vaporConcentration > lowFlamLim) ->
("vapFlammable")

85

The rule-based approach makes it possible to make the definitions in a clearer
and more declarative way. In addition, the rules can be modified without
recompiling the program code.

Table 14. Equivalent reasoning in c-code form for the rules given in Table 13.

if(prop==gst.symbol("flammable"))

{

 int returnVal=1; // default = flammable possible.

 if(unitTemp>boilPt)

 returnVal = isVapFlammable(vapConc,unitTemp,flu);

 else … // routine for liquid flammability

}

int isVapFlammable(double vapConc,double temperature,Fluid*flu1)

{

 double LFL,AIT; // AIT - Auto-Ignition Temperature

 AIT = flu1->autoIgnitionPoint();

 if (AIT != -999) // AIT == -999 means: can't auto-ignite

 if(temperature>=AIT) return 1;

 LFL = flu1->lowerFlamLim();

 if (LFL != -999) // LFL == -999 means: has no LFL, can't ignite

 if(vapConc>=LFL) return 1; // is flammable

 else return 0; // is non-flammable

 else return 0; // is non-flammable

 }

86

Reasoning mechanism

The fluid rules are used by the reasoning machine which backward chains them
for finding the conditions under which the fluid property in question may hold.
The reasoning starts with the query keyword which is matched to the right hand
sides of all relevant rules. The left hand sides of the matching rules form the set
of first level conditions and each of them is then matched to the right hand sides
of the rules to find the next level of conditions. This goes on as far as there are
more detailed conditions to be found. As the result of this recursive procedure, a
tree representation of the property evaluation logic is generated.

The rules can include a number of variables which describe the properties of the
fluid and the current process conditions. These variables can refer either to fluid
properties within the scope of the properties package, fluid properties outside its
scope, or to process conditions passed to the fluid model system as part of the
query. If a value is found, the variable is replaced with the value. Otherwise, the
condition expression remains unchanged.

Once the variables have been substituted with values, the conditions containing
one of the operators ”=”, ”!=”, ”>” and ”<” will be evaluated. Then, the truth
value of the result tree is determined taking into account the logical relations
between the conditions as defined in the fluid rules.

It should be noted that the truth value of the result tree will always be TRUE if
one or more conditions in its branches are left unresolved. In such situations, the
unresolved conditions are marked in the tree.

The result of the fluid property reasoning is a tree which represents the
conditions under which the fluid property may hold, and the logical relations
between the conditions. A truth value is associated with each node of the tree,
and unresolved conditions are marked.

The fluid property reasoning mechanism is illustrated in Fig. 13.

87

Make the property
name the top node of

the result tree

Select one of the
premises and add to

the tree

Replace variables
included in the premise

Evaluate the premise or
examine matching rules

Compose reply and
return

Compute the truth value
based on the evaluated

premise nodes

Any rules for this
property?

More premises in
this rule?

No

Yes
Yes

No

Fig. 13. Fluid property reasoning mechanism of AutoHAZID.

6.3.3 Fluid compatibility

Chemical compatibility data

Compatibility problems may lead to hazardous consequences, either directly as
in the case of explosive mixtures, or indirectly as in the case of fluid
composition changes which lead to changed fluid properties. Problems caused
by the appearance of extra components in the fluid are handled by the chemical
compatibility check feature of AutoHAZID. In those situations, unintended
reactions or problems with equipment materials may occur.

88

The compatibility check feature is expected to handle issues related to the effects
of mixing two fluids. Incompatibility of fluids with equipment materials should
also be covered to some extent.

The mixing of two fluids may result in unwanted reactions and hazardous
consequences. The compatibility check feature provides AutoHAZID with the
capability to identify such situations. It finds out whether a reaction can take
place between the fluids in question and, if so, what are the possible effects.

In case of fluid-material incompatibility, there is a need to identify hazards
related to corrosion and embrittlement in addition to the possible reactions.
However, those issues are difficult to handle with the compatibility check
methodology used.

In the version of AutoHAZID released in connection to the final prototype of
STOPHAZ, compatibility problems are investigated with the support of a
compatibility matrix which uses the reactivity group information from the fluid
property data base as the starting point. The compatibility matrix is able to
identify compatibility problems between two fluids or a fluid and a material as
presented in Table 15.

Table 15. Incompatibility problems covered by the compatibility matrix.

Heat generation

Fire

Innocuous and non-flammable gas generation

Toxic gas generation

Flammable gas generation

Explosion

Violent polymerisation

Solubilization of toxic substances

Potentially hazardous but unknown

89

In the AutoHAZID fluid property library, one or more reactivity groups are
defined for each chemical. In accordance with Table 15, the compatibility matrix
contains information of what happens if fluids belonging to different reactivity
groups are mixed together.

Some of the desired functionality was left outside the scope of the basic version
of AutoHAZID. The missing features include the description of the possible
unwanted reactions, and chemical-material issues such as erosion and corrosion.

The reactivity group definitions for the chemical substances listed in the static
fluid property library of AutoHAZID (see Table 9) are presented in Table 16.
The group numbers without brackets are based on a publication of the US
Environmental Protection Agency (Hatayama 1980) and the numbers with
brackets are additional groups based on other sources. The additions are needed
because Hatayama concentrates on reactivity properties based on the molecular
structures of the substances and reports groups based on chemical reactivities
only in few cases. The complete compatibility matrix is presented in Appendix
4. It should be noted that the matrix is a modified version of the one published
by Hatayama (1980) and inherits a limitation which concerns the reactivity
group 107 (Water Reactive Substances) in particular. When this type of a matrix
is used to support considerations related to the handling of waste chemicals, it is
sufficient to know that chemicals belonging to group 107 should never get
mixed with other chemicals. However, when a chemical process is considered in
which chemicals belonging to group 107 are processed, more detailed
information about the compatibility problem would be required.

90

Table 16. The chemical list with reactivity group definitions.

Component ID Formula Reactivity Groups

ammonia NH3 10, (107)

ammonium sulphate (NH4)2SO4 (104)

benzene C6H6 16, (101)

butane C4H10 29, (101)

butene C4H8 28, (101, 103)

carbon dioxide CO2

carbon monoxide CO (101)

chlorine Cl2 104, (107)

ethane C2H6 29, (101)

ethene, ethylene C2H4 28, (101, 103)

ethylene dichloride C2H4Cl2 17, (101)

Freon-11, trichlorofluoromethane CCl3F 17

Freon-12, dichlorodifluoromethane CF2Cl2 17

hexane C6H14 29, (101)

hydrogen H2 (101)

hydrogen chloride HCl 1, (107)

hydrogen cyanide HCN 1, 11, (101, 103)

hydrogen sulphide H2S 33, 105, (101)

methane CH4 29, (101)

nitrogen N2

oxygen O2 (104)

propane C3H8 29, (101)

propene C3H6 28, (101, 103)

sodium hydroxide NaOH 10

sulphur dioxide SO2 (105, 107)

sulphuric acid H2SO4 2, 107

toluene C6H5CH3 16, (101)

water H2O (106)

91

Compatibility checker

In order to fully utilise the potential of the compatibility matrix, there is a need
to integrate the compatibility considerations with the fluid property queries. For
instance, the query ”decomp” (see Table 8) which is used for determining the
possibility of fluid decomposition under the actual process conditions could fail
to identify a hazard if the occurrence of heat generation due to a change in fluid
composition was not known. Moreover, queries such as ”gasGeneration” can
only be resolved by using compatibility information.

In the version of AutoHAZID released in connection to the final prototype of
STOPHAZ, the compatibility matrix is only taken into rather limited use.
Integration to fluid property queries could not be included in the scope of the
STOPHAZ project due to timetable and resource constraints. At present, the
compatibility information is processed by a separate compatibility checker
module. A number of ideas for more powerful use of the compatibility check
feature are discussed later.

The compatibility checker accepts two fluid descriptions as input. Looking at
each component of both fluids, it checks all the possible combinations. For each
pair of components, reactivity properties are retrieved from the fluid library. The
possible compatibility problems for each pair of reactivity groups are found in
the compatibility data base. When the compatibility checker has gone through all
the component pairings and the interactions of the associated reactivity groups of
both fluids, the resulting compatibility problem data is returned.

It is up to the calling module when to initialise compatibility checks. The result
of the compatibility check is a structure composed of a truth value and a
description which contains an explanation in terms of the phenomenon sentences
listed in Table 15. This result can then be combined with the other results in the
desired way.

92

6.3.4 Linkage to AutoHAZID

Query mechanism

As already discussed in the previous sections, AutoHAZID needs to be able to
consider fault propagation correctly when the propagation depends on the
processed fluids. The fluid model provides AutoHAZID with that capability. In
order to make fluid property queries to the fluid model, the AutoHAZID fault
propagation engine needs a query mechanism to be used in connection with the
fault propagation models.

Usually, the fluid model needs to be called during the causal reasoning process
because the validity of the reasoning may depend on which process deviation
and fault we are looking at. It might be appropriate in some cases to postpone
the considerations to the results filtering stage. However, the fluid composition
always has to be known, and it is most convenient to access that information
when the faults are being considered.

AutoHAZID calls the fluid model system with the query keyword and the
location object. Next, the fluid model inference engine is triggered with the
query keyword as the top level goal. It retrieves the applicable fluid rules from
the fluid library and parses them to carry out the necessary variable substitutions.
The properties package is called when necessary to get the fluid property
information needed to resolve the rules. Table 17 illustrates how the fluid
property reasoning task is defined when a query keyword occurs in an arc during
fault propagation. The objective in the example is to determine the toxicity of
hexane in order to assess the relevance of an environmental consequence.

93

If a properties package is not available or it can not provide the required fluid
property information, the fluid model system uses the data stored in the fluid
library instead. In that case, each component of the fluid is considered
separately.

The final result of the backward chaining process is a description of the
identified realisations of the keyword in the form of a logical tree. Next, the
inference engine evaluates the tree based on the parsed conditions extracted from
the fluid rules.

In practice, the query mechanism is based on defining the required fluid model
queries inside the fault propagation models of AutoHAZID. The fault
propagation inference mechanism of AutoHAZID is based on the use of the
signed directed graph (SDG) formalism. The concept of an "arc" is used for
representing a cause-consequence relationship as shown in Table 18. In these
cause-consequences relationships, a deviation can appear as a cause or a
consequence.

Table 17. Definition of the reasoning task in an example case based on the
occurrence of a query keyword in an arc.

Arc: arc([fault,'line fracture'],1,[consequence,['serious environmental
contamination',toxic]])

Query keyword: toxic

Location: L1 (the fault propagation routine knows the location under study)

Called function: checkFluidProperty (see Appendix 5, page 1)

Fluid: hexane (the value of the attribute L1.CompName)

Reasoning task: resolve the top goal toxic using the fluid rules for hexane

94

Table 18. Examples of the representation of cause-consequence relationships in
AutoHAZID fault propagation models.

arc([in,temp],1,[out,temp])

High (low) input temperature causes high (low) output temperature (deviation ➔
deviation)

arc([fault,'power supply fails'],1,[out,noFlow])

Failure of power supply causes no flow at the output (cause ➔ deviation)

arc([fault,'line fracture'],1,[consequence,['serious environmental contamination',toxic]])

Line fracture causes serious environmental contamination if the fluid is toxic (cause

➔ consequence)

The fluid model is linked to the AutoHAZID graph formalism in the way
illustrated by the last example in Table 18 above. Keywords are defined to
represent the various features of the fluid model, and these keywords are used as
condition predicates within the arc definitions in the models. The fluid model
can be called to find out if a specific cause-consequence relationship holds for
the processing of a certain fluid.

In addition to the unit fault propagation models, the unit model library of
AutoHAZID contains a system of predicates with flags which determine whether
the fluid model can be used for resolving a query or not. This allows the
development of the predicate mechanism and the fluid model rules
independently of one another.

The keywords which appear in the unit models are handled as predicates. The
list of predicates is defined in the beginning of the unit model library file. Each
of the predicates is defined to belong to one of three categories:

• ”C” : To be evaluated using a c-language procedure,
• ”V” : To be evaluated by the rule based fluid property expert, or
• ”D” : Defined in terms of other predicates.

Testing of a predicate which belongs to the category ”V” causes a fluid model
query to be initiated. The query carries the property name and a pointer to a
location object.

95

After each predicate, a comment has been added which defines the methods
available for the evaluation of that predicate. Fluid model queries should be used
whenever possible because actual fluid properties from the properties package
are used in connection to them. An example predicate definition stating that the
flammability of the fluid should be checked using the fluid model system is
given below:

predicate(flammable(Port),"V"). % C + V

Location objects are normally used in AutoHAZID to specify the intended fluid
composition and the normal process conditions. However, a new location object
with query specific information is constructed for a fluid model query. If the
fluid composition has changed, the intended fluid composition can be replaced
with an abnormal one. If the process conditions differ from normal, the pressure
and temperature characterising the abnormal conditions can be given.

Table 19 lists the classes defined in AutoHAZID’s c++ code which are involved
in the fluid considerations carried out by the fluid model system.

Table 19. AutoHAZID program code classes involved in fluid considerations.

Fluid
• Runtime repository of the fluid property data found in FluidLib
• Fluid objects are collected in a global list called FluidList
FRule
• Runtime repository of the fluid rules found in FluidLIb
• FRule objects are collected in the ruleObjects field of Fluid objects
CondReply
• The inference engine returns the result in the form of a tree which is then

transformed into the form of a string based conditional reply and
returned as a CondReply object

StrTree
• The results of the backward chaining inference are represented as a tree

built from StrTree objects
• A field is included for the truth value of the statement.

96

Reply conventions

When the fluid model system has resolved the fluid property query, it composes
a reply in accordance to specified conventions. The reply is composed of a truth
value, a list of unresolved conditions and a description.

The truth value is only FALSE when at least one of the necessary conditions for
the queried fluid property is known to be false. Otherwise, TRUE is returned
together with the conditions under which the property may hold. Conditions may
remain unresolved due to the lack of fluid property information. They are
returned as part of the reply for further use by AutoHAZID. If there are multiple
unresolved conditions, their logical relations (AND/OR) are also included in the
returned expression.

The description may contain textual information to justify or explain the given
reply. For instance, the fluid property values used for the evaluation of
conditions could be included in it. In the case of compatibility checking,
additional information about the nature of the incompatibility problem could be
provided as description. The description feature has not yet been taken into use
in the version of AutoHAZID released in connection to the final prototype of
STOPHAZ.

6.3.5 Summary of implemented features

Due to timetable and resource constraints, the STOPHAZ project had to focus on
the implementation of features which fulfilled the most fundamental
requirements set for the AutoHAZID fluid model system. Therefore, a number
of advanced ideas for improving the capabilities of the system were left
unimplemented. To avoid confusion, a brief summary of the features which were
implemented is presented in the following. Table 20 summarises the
implemented features of the AutoHAZID fluid model system. In section 6.3.6,
limitations and ideas for further development will be discussed.

97

Table 20. Summary of implemented features of the AutoHAZID fluid model
system.

Fluid model system
feature

Implementation

Fluid property queries • Conditional cause-consequence relationships
• Evaluation of the conditions based on fluid

properties

Quantification of fluid
properties

• Use of external calculation package to determine
fluid properties for specified fluid composition in
specified process conditions

• Comparison of property values to process
conditions or predefined threshold values

Fluid compatibility
study

• List of process chemicals and likely
contaminants

• Reactivity classification of chemicals
• Use of a rectivity group based reaction matrix

The main objective was to implement an intelligent system to resolve fluid
property queries. Whenever the relevance of a cause-consequence relationship is
dependent on the properties of the processed fluid, AutoHAZID tries to solve the
problem by investigating the fluid properties. This can be done by calling the
rule-based fluid model system which is able to reason about those issues.

Generic rules have been defined for the knowledge-based processing of fluid
property data. These rules cover all the alternative situations and return the final
conclusions in the form of a truth value accompanied with explanatory
information. This information includes a list of unresolved conditions and
background information about the property values and other data used in the
reasoning.

The rules are stored in the internal library of chemical properties together with
static chemical property data. Data on 28 compounds is stored in this library.
Some of the static property values are only used if a properties package can not
be used but also some properties have been included which are not covered by
those packages. Such properties include toxicity and reactivity.

98

Properties packages are able to calculate the values of fluid properties at the
actual process pressure and temperature conditions. They can also estimate the
properties of mixtures. A link has been implemented from AutoHAZID to two
properties packages supplied by simulation software companies. Whenever a
properties package has been made available, it will be used automatically to
provide better estimates of a number of fluid properties.

In order to be able to consider fluid compatibility issues, a reaction matrix based
on a reactivity group approach was added to complement the fluid-oriented part
of AutoHAZID. It can be used to identify possible unintended reactions between
two fluids. At present, this compatibility check feature has to be called
separately from the other fluid related considerations covered by the fluid
property queries.

6.3.6 Limitations and ideas for further development

Limitations of the current implementation of AutoHAZID

A number of aspects of fluid property reasoning remain poorly covered after the
developments arising from the STOPHAZ project. However, the development
and evaluation efforts carried out in the project helped to identify which areas of
the methodology would require further development and what kind of added
features could be expected to lead to significant improvement of performance.

In the version of AutoHAZID released in connection of the final prototype of
STOPHAZ, the features of the software cover poorly the following aspects of
fluid property reasoning:

• Properties of mixtures
• Dependency on process conditions
• Downstream impacts of unintended reactions
• Order of magnitude considerations
• Filtering philosophy
• Data acquisition from the user
• Properties of materials and reactions.

99

In the following, these aspects of fluid property reasoning are discussed in detail.
Ideas are also proposed for the the further development of the AutoHAZID fluid
model system. The objective is to provide those interested in the improvement of
AutoHAZID’s reasoning capability with guidance based on the lessons learnt
durring the STOPHAZ project.

Properties of mixtures

AutoHAZID has well-organised access to fluid property information but its
capabilities to use this information are still rather primitive. The intended fluid
composition at various locations of the studied process is given to AutoHAZID
as part of the plant description effort. Mechanisms for defining and studying
abnormal fluid compositions are largely missing. By definition, intended fluid
compositions should not initiate event chains which lead to hazards. Therefore,
only very few fluid composition dependent hazards are identified.

A prerequisite for the more sophisticated use of the fluid model is that the
possibilities for arriving at an abnormal composition of the fluid are known at
the studied location in the process. One solution is to define a breakpoint
corresponding to every possible location of the process where the composition of
the fluid can change. In addition to intended changes to the fluid composition
(mixer, reactor, etc.), the breakpoint procedure could cover unintended changes.
Such changes can take place due to wrong or extra state of matter, ingress of
extra components, polymerisation, decomposition, or unintended reactions
leading to unintended reaction products.

Proper handling of fluid composition deviations would require changes in the
hazard identification procedure. If the deviation considered in the current fault
propagation implies a change in the fluid composition or in the state of matter,
the fluid description should be changed accordingly. If a specific fault is
considered and the consequences of that fault need to be identified next, the fluid
description (composition and state of matter) should be revised according to the
fault. For example, the initial fault may be a water leak into the system. In that
case, the conditions attached to the potential consequences at the other end of the
related event sequences need to be reconsidered taking into account the changed

100

composition and properties of the fluid, and the possible changes to process
conditions.

The causes of unintended changes could often be handled by recognising the
associated special circumstances and triggering the appropriate considerations.
For instance, temperature increase may in some cases cause the decomposition
of the fluid. This is an event chain which AutoHAZID should be able to identify.
Whenever decomposition is found possible, the associated change to the fluid
composition should be recognised and a study of the impacts of this change
should be carried out.

The unintended ingress of extra components to the fluid is difficult to model. In
principle, anything can be inserted in the process. For instance, a human operator
may mistakenly empty into the process a rail tank containing a completely
wrong chemical. However, it is not possible to design a process which is tolerant
to any chemical. Therefore, an educated guess might be the best way to carry out
a sufficient study of these issues. For instance, the plant description could
include optional information on ”extra fluid components that could be present”.
This would serve as an educated guess of what extra fluids could mistakenly
enter the process. Another option would be to consider the possible breakdown
of internal barriers, such as closed valves, heat exchanger interfaces and pump
seals, which are expected to separate from each other the fluids at the opposite
sides of the barrier.

Cause-consequence chains are often dependent on the composition and
properties of the associated fluid. The fluid composition and properties can in
turn depend on the initial fault which has triggered the sequence of events. For
example, the initial fault may be a water leak into the system. In that case, the
conditions attached to the potential consequences at the other end of related
event sequences need to be reconsidered taking into account the changed
composition and properties of the fluid, and the possible changes to process
conditions. To handle this kind of situation properly, the fluid model system
needs to be extended with a fault interpreter to modify the current fluid
composition and process conditions according to the impacts of the fault under
consideration.

101

Select a composition
deviation

Find out the possible
causes

Revise the fluid
composition according

to one cause

Find out the
consequences

Reset the fluid
composition

All the causes
considered?

End

No

Yes

- Plant description should provide
 "extra components that could be present"
- Reaction matrix should give extra components
 generated by an unwanted reaction

- Generic list of conseq-
 uences with reaction
 matrix based evaluation

Fig. 14. Enhanced procedure for the analysis of composition deviations.

102

Fig. 14 illustrates the procedure for the analysis of composition deviations,
covering both the presence of unintended fluid components and abnormal
concentrations of intended fluid components. If phase deviations are considered
as one type of fluid composition change, the same procedure can be applied to
the consideration of unintended phase changes. Fluid displacement problems
could be considered in terms of phase-type composition deviations in the
AutoHAZID equipment models.

Dependency on process conditions

Consequence events, such as fire and overpressure rupture, depend on the actual
process conditions. In the case of fire, the flammability of the fluid is the main
issue but temperature increase may in the case of many fluids increase the fire
hazard considerably. Overpressure rupture, on the other hand, is directly
dependent on the magnitude of unintended pressure increase.

Intended process conditions are given to AutoHAZID as part of the plant
description. However, hazards are nearly always associated with abnormal
process conditions. How to estimate the actual process conditions in an
abnormal situation is a topic for a separate discussion in the next part of this
section. Process conditions are, however, also linked to the composition of the
fluid.

Changes in fluid composition may lead to changes in process conditions. For
instance, decomposition may lead to an increase of temperature and pressure.
What makes this issue particularly complicated is that changes in process
conditions can also lead to changes in fluid composition. The same
decomposition reaction which led to a sudden increase of temperature and
pressure may initially have been trigged by a smaller unintended temperature
increase.

The equipment models of AutoHAZID could be extended to deal with these
considerations. The models should include all possible links between
composition deviations and other deviations, bearing in mind that the fluid
model should take care of screening out all those links which do not hold under
the studied circumstances.

103

The consequences of composition deviations in the unit models could be
extended to correspond to a generic list of all the possible consequences of
mixing incompatible fluids, and the fluid model should take care of screening
out the irrelevant consequences using the reaction matrix.

One way to handle the changes in process conditions due to fluid composition
changes is to evaluate the consequences using changed values of process
parameters. This is in accordance with the enhanced procedure for analysing
composition deviations (see Fig. 14). Another possibility is to build the
dependencies in the equipment models. This would mean the addition of arcs
which represent the relation between composition deviations and other
deviations in the models. An enhanced procedure is presented in Fig. 15 for the
handling of links between composition deviations and other deviations.

Downstream impacts of unintended reactions

In addition to the features related to resolving fluid property queries,
AutoHAZID has the capability to identify fluid compatibility problems.
However, fluid compatibility issues are at present considered in isolation from
the other hazard identification reasoning. Unless the compatibility check feature
is explicitly called and its results are correctly interpreted, potential hazards such
as overpressure rupture due to an unintended reaction which leads to gas
generation and increase of pressure are not identified. In order to fully utilise the
potential of the compatibility matrix, the fluid model queries should be
redesigned to include compatibility issues.

Compatibility problems may lead to hazardous consequences either directly as in
the case of explosive mixtures, or indirectly as in the case of fluid composition
changes which lead to changed fluid properties. Whenever new fluid
components are added, the compatibility of the new components with the others
should be checked using the compatibility matrix.

The compatibility check may reveal the presence of immediate hazards, such as
fire, explosion, violent polymerisation and toxic release. The other findings of
the compatibility check may reveal potential indirect downstream impacts.

104

Select a deviation other
than composition

Find out the possible
causes

Look at the path from
one cause to the

deviation

Find out the
consequences

All the causes
considered?

End

Yes

It goes through a
composition
deviation?

Composition ch-
ange can lead to

the deviation?

Skip the cause

Yes

No

No

Yes (In this case,
 the fluid model
returns a conseq-
uence similar to
the deviation)

No

Fig. 15. Enhanced procedure for handling the links between composition
deviations and other deviations.

105

For instance, a hazardous event chain might be initiated due to an unexpected
presence of vapour, and the presence of vapour could be the result of an
unwanted interaction of chemicals. To deal with this kind of situation, the fluid
property query ”vapour” could be used as a condition to a cause-consequence
relationship between a fault related to an unintended presence of a chemical and
a composition deviation dealing with the unintended presence of vapour. The
fluid model system would then examine the potential interactions between the
extra chemical and the components of the intended fluids and find out whether
vapour might appear as a result of these interactions. Gas generation is one of
the phenomena considered in the compatibility matrix.

When an unwanted reaction takes place, unintended compounds often appear in
the fluid. In addition to a reaction between two fluid components, the unwanted
reaction can also be a decomposition reaction. In both cases, the change in the
fluid composition should be taken into account in related hazard considerations.

The question of how to trigger AutoHAZID to consider the properties of
reaction products in case of unwanted reactions is an important issue in relation
to improving the performance of the fluid model system. If the change in fluid
composition can be handled as a cause of a composition deviation, the enhanced
procedure for the analysis of composition deviations can be used. Fig. 14
illustrates this procedure.

A more thorough study of how compatibility issues are covered in AutoHAZID
reveals that the unit models do not cover fluid composition deviations properly.
All possible links between composition deviations and other deviations should
be included, bearing in mind that the fluid model should take care of screening
out all those links which do not hold under the studied circumstances. In
addition, the consequences of composition deviations in the unit models should
be extended to correspond to a generic list of all the possible consequences of
mixing incompatible fluids, and the fluid model should take care of screening
out the irrelevant consequences using the reaction matrix.

106

Order of magnitude considerations

The main drawback of qualitative modelling is that quantitative information can
not be incorporated in the models. The reasoning is based on studying the
phenomena in qualitative terms. For instance, it may be stated that the fault
”pump overspeed” leads to the deviation ”high temperature”. Also, it may be
stated that the fault ”external fire” leads to the same deviation ”high
temperature”. It is impossible to judge from this kind of basic qualitative models
how big the temperature increase is in the different fault situations.

This limitation of qualitative models leads to problems in the evaluation of
candidate cause-consequence chains. The models suggest a causal relationship
whenever the fault has an influence on the process parameter which matches
with the process parameter deviation associated with the consequence. Only
some of the suggested causal relationships are relevant because the impact of the
fault is not always big enough to lead to the consequence. For instance, pump
overspeed can rarely cause such an increase of temperature that the
decomposition of the fluid would be triggered.

At present, AutoHAZID can not reason about order of magnitude issues. What
would need to be done to improve AutoHAZID in this respect is to attach
quantitative order of magnitude information to the faults in the models. The
magnitude of the impact to a process parameter could be defined in terms of a
value range, either referring to the absolute value as the result of the fault or to
the amount of increase or decrease. In some cases it might be necessary to define
the impact in terms of a multiplier value with a range. The use of such value
ranges would give AutoHAZID the possibility to reason about the expected
magnitude of the impact of a deviation and thereby to detect cases where the
cause-consequence chain is clearly unrealistic.

Temperature change due to wrong ratio of fluid components in a mixture is a
situation which could be handled with this technique rather well. If the fluid
components enter a vessel through different inlets, the temperature of the
mixture changes along with the change of composition. In most cases, this kind
of a temperature change is likely to be relatively small. Furthermore, the
absolute temperature limits can be estimated from the temperatures of the inlet
streams.

107

It is clear that the proposed value range technique is not a complete solution to
the order of magnitude problem. Firstly, some faults are not easy to quantify.
Particularly difficult are leaks. The size of a leak can only be estimated properly
if the initial fault which caused the leak is properly specified. For instance, it is
difficult to quantify the leak size if general expressions like ‘external damage’
are used to describe the fault.

Secondly, fault propagation may complicate the order of magnitude reasoning.
For instance, it is evident that high flow in the hot side of a heat exchanger leads
to high temperature of the cold flow. It may be possible to estimate the oredr of
magnitude of this high temperature deviation by investigating the temperature
constraints and possible deviations of the hot flow. However, the magnitude of
the temperature change can only be estimated properly by carrying out
quantitative calculations which take into account the flow volumes and the
efficiency of heat exchange.

Filtering philosophy

Filtering is a powerful mechanism for improving the relevance of the HAZOP
results before they are presented to the user. For instance, filtering based on
consequence severity can be carried out. This filtering option has been
implemented in the version of AutoHAZID released in connection to the final
prototype of STOPHAZ.

Consequence severity is very good as the basis of filtering. When consequences
are classified from 1 for least severe to 5 for most severe, the user of
AutoHAZID can study the identified problems level by level. When event chains
with the most severe consequences have been examined and dealt with, the user
can move on to the slightly less severe problems, and so on. Of course, the
usefulness of this kind of working procedure is completely dependent on the
validity of the consequence severity classification.

So far, only a simple classification of the existing selection of consequences to
five categories has been done in AutoHAZID. The classification could be
improved in two ways. Firstly, instead of a predefined classification, each actual
consequence of an identified event chain could be classified in a context

108

sensitive manner based on all what is known about the event chain. Fluid
property information on toxicity and flammability would have a significant role
in these considerations. Furthermore, the availability of order of magnitude
information would greatly improve the possibilities for the correct classification
of the consequences.

Secondly, the list of consequences used in the models could be reconsidered. For
instance, it would make consequence classification and the associated filtering
easier if release incidents of different types were called with unique names. The
consequence severity of a toxic release due to pipe rupture has to be estimated
differently from the consequence severity of a toxic release from the relief valve
of a vessel. This is because the quantity, duration and state of matter of the
release are different and depend on different features of the process in the two
cases.

The above discussion has suggested that more reasoning should be carried out in
connection to the hazard identification procedure. However, a key motivation for
the development of filtering operations is to move some of the reasoning effort
out of the main procedure which consumes a lot of time and computer memory.
Therefore, it may be necessary to keep the consequence severity based filtering
and other possible filtering options simple.

Simple filtering options related to fluid properties could be added quite easily.
AutoHAZID could be allowed to generate all toxicity and flammability related
consequences during the main hazard identification reasoning. Then, a filtering
option implemented for that purpose could be used to check these fluid
properties and remove irrelevant consequences and the associated event chains
from the results when needed. The main difficulty is that the properties of the
fluid may have changed as a result of the fault and the subsequent events, and
this can not be known by only looking at the data in its processed form as
included in the final HAZOP results. To make this type of simple fluid property
based filtering possible, AutoHAZID should be modified to store information on
fluid property changes in connection to the identified event chains.

109

Data acquisition from the user

AutoHAZID is designed for fully automated HAZOP study. The only stages of
user interaction are preparatory actions before starting the analysis and post-
analysis operations for examining the HAZOP results. The preparatory actions
include describing plant equipment, connectivity and fluids, and adjusting
analysis option settings.

The nature of AutoHAZID would change if user interaction were to be
introduced for the acquisition of complementary data. However, this could be
justified from the point of view of a typical AutoHAZID user. If AutoHAZID is
used as part of the standard design practice for the identification of safety
problems during design, it is quite likely that it will be used for repeated small
safety checks and the user will be present all the time ready to give
complementary data.

User interaction would be particularly useful for improving the capability of
AutoHAZID to make correct decisions on the validity and relevance of
candidate cause-consequence chains. The correctness may depend on the
properties of the processed fluids, associated unintended reactions, or order of
magnitude issues.

In the case of a computer program like AutoHAZID which is originally designed
to manage without requesting complementary data from the user, the
introduction of user interaction can be targeted to such areas where it is most
beneficial. Plain data, such as fluid property data, is better retrieved
automatically from internal or external data bases. User interaction should
concentrate on the acquisition of data which results from the human judgement
of the expert user. Order of magnitude issues are a good example of such data.

For instance, estimating the size of leak-type faults is very difficult to perform
without help from the user. In order to give a likely estimate, various scenarios
may have to be considered and compared, for example in the case of various
possible sources of external damage. This is almost impossible for the computer
but a human expert is normally able to give a reasonable estimate.

110

Another type of information which could be acquired from the user concerns the
properties of possible unintended reactions. AutoHAZID may be able to identify
that an unintended reaction may occur but it would be very difficult to make it
capable of understanding the reaction and of determining what are the resulting
unintended reaction products. A human expert could at least give a quick
assumption of what might happen and help AutoHAZID to go ahead with the
reasoning based on that assumption.

If user interaction is added to AutoHAZID in the future, the data acquisition
mechanism needs to be designed carefully. An explanation should be given to
the user about the purpose each requested piece of information, including the
situation to which the information is to be applied. If the user has given a piece
of information, the same information should never be requested again. However,
if the situation under consideration is different, the user must be given a chance
to change the data to match the situation. Finally, the whole user interaction
feature should be made optional, and AutoHAZID should remain designed to
manage without it.

Properties of equipment materials and intended chemical reactions

The ideas for further research and development in relation to AutoHAZID
presented so far have been related to improving the handling of fluid dependent
hazard scenarios. Methods for dealing with the properties of equipment materials
and intended chemical reactions would be natural extensions to the capabilities
of AutoHAZID.

Hazards related to the materials of construction are currently not taken into
account in AutoHAZID. For instance, the suspectibility of a material of
construction to corrosion is not considered. Furthermore, the compatibility
matrix can only be applied to materials of process equipment in a very rough
manner, and faults related to fluid-material interactions are not covered by the
models at all.

In principle, the properties of materials could be handled by the fluid model
system in the same way as fluid properties. A set of material property queries to
be resolved could be defined. Values for the interesting properties of materials

111

could be stored in an internal data base of material properties or retrieved from
an external source.

Hazards of intended reactions and the impacts of reaction problems on process
conditions and fluid composition are currently also neglected by AutoHAZID.
The typical behaviour of different types of reactions in abnormal situations could
be described in a way similar to the HAZOPTOOL Chemical Reaction
Knowledge Base (RKB). This aspect of HAZOPTOOL is discussed in section
5.3.3 of this thesis.

6.4 Implementation of the fluid model system

6.4.1 Overview

The fluid model system facilitates fluid property queries and compatibility
checks. Its module architecture has been illustrated in Fig. 12. Compatibility
check services are provided by the Compatibility Checker, and the other
modules, i.e. Query Handler, Inference Engine and Rule Parser, are involved in
the fluid property query operations.

In the following, the implementation of the fluid property query operations will
be described. The implementation of the compatibility check operations
concentrates on database look-up issues and, therefore, is left out from this
description as less interesting.

The functions involved in fluid property query operations and the call
relationships between them are illustrated in Fig, 16. The top level function is
called checkFluidProperty. The functions backwardChain, substituteVariables
and evaluateNodes include recursive calls and therefore appear twice in the
diagram, both as the calling function and the called function.

The rest of this section consists of the descriptions of the individual functions.
Appendix 5 contains the corresponding c++ -code listings.

112

checkFluid
Property

findFluid get_ruleObjects
substitute
Variables

backwardChain evaluateNodes

findRules

backwardChain

shz_calc_prp
prepare

PropertyCall

substitute
Variables

evaluateNodes

Fig. 16. Functions involved in the fluid property query operations.

6.4.2 Function checkFluidProperty

The purpose of the checkFluidProperty function is to manage the recursive tree
handling operations which examine the relevant fluid rules and the associated
property values in order to evaluate the requested fluid property. In order to
supply the tree handling functions with appropriate problem-specific input data,
it first has to locate the required fluid data and rules in the internal data
repository. When the tree handling operations have been completed, the
checkFluidProperty function has to compose the final reply.

The inputs and outputs of the function are listed in Table 21.

Table 21. Inputs and outputs of the checkFluidProperty function.

Name Object type Explanation

INPUTS: P1 Predicate Query keyword which defines the property
to be evaluated

L1 Location Process conditions at a given position,
including fluid compositions (components
and concentrations)

OUTPUT: crep condReply Reply (truth value and possible conditions)

113

An overview of the function program code is presented in Table 22.

Table 22. Overview of the program code of the checkFluidProperty function.

For each fluid component fp1 at location L1

{

call findFluid to retrieve fluid data stored in FluidLib;

call get_ruleObject to pre-process the fluid property rules applicable to fp1;

call backwardChain to find out from the rules how to resolve the query;

call substituteVariables to apply the available fluid property data;

call evaluateNodes to compute the truth value;

add the answer to the condReply object;

}

return the cumulated answer in the form of the condReply object.

6.4.3 Function findFluid

The purpose of the findFluid function is to provide access to the data stored in
the file FluidLib. This file has been pre-processed in connection to the
initialisation of AutoHAZID. The data for all fluids has been loaded in the
memory in the form of Fluid objects. The findFluid function tries to match the
names of the fluid components at the studied location to the chemical names
associated with the Fluid objects. When there is a match, a pointer to the
matching object in the global list of Fluids, fluidList, is returned.

The inputs and outputs of the function are listed in Table 23.

Table 23. Inputs and outputs of the findFluid function.

Name Object type Explanation

INPUT: N1 String Name of the fluid component under
consideration

OUTPUT: flu Fluid Pointer to the corresponding Fluid object

114

An overview of the function program code is presented in Table 24.

Table 24. Overview of the program code of the findFluid function.

For each fluid object in the global list of fluids

{

if the value of its name attribute equals to N1

{

return a pointer to the fluid object;

}

}

6.4.4 Function get_ruleObjects

The purpose of the get_ruleObjects function is to provide access to the rules
which are applicable to the studied fluid. The object structure of the fluid data
implies that each Fluid object knows the list of applicable rules. It is stored in
the memory as a list of Frule objects. Therefore, the function get_ruleObjects
only has to read the pointer to this list from the relevant Fluid object.

The inputs and outputs of the function are listed in Table 25.

Table 25. Inputs and outputs of the get_fluidObjects function.

Name Object type Explanation

INPUT: fp1 Fluid The fluid under consideration

OUTPUT: objList Pointer to a list
of Frule objects

The fluid property rules applicable to
the given fluid.

115

An overview of the function program code is presented in Table 26.

Table 26. Overview of the program code of the get_fluidObjects function.

Return the value of the ruleObjects attribute of the Fluid object fp1.

(Preprocessing has taken place during the initialisation of AutoHAZID and, thus,

Frule objects containing the fluid rules exist and they are organised in a ready-to-use

list)

6.4.5 Function backwardChain

The purpose of the backwardChain function is to process the fluid property rules
and thereby to construct a logical tree for evaluating the requested property. The
implementation is based on the backward chaining technique. The query
keyword is used as the top level goal, and the premises of matching rules are
used as intermediate lower level goals. This recursive procedure is continued
until no rules are found which match the lowest level intermediate goals. As part
of this recursive procedure, a tree structure is composed of the if-then statements
expressed in the rules.

The inputs and outputs of the function are listed in Table 27.

Table 27. Inputs and outputs of the backwardChain function.

Name Object type Explanation

INPUTS: topEvent String The goal to be matched to the
members of the rule set

ruleList List of ruleObjects The set of applicable rules

OUTPUT: condTree Tree Results of already completed
stages of the backward
chaining process extended
with the results of this stage

116

An overview of the function program code is presented in Table 28.

Table 28. Overview of the program code of the backwardChain function.

Create a node in condTree for topEvent (goal of this stage of the backward chaining

process);

call findRules to pick out the matching rules from ruleList;

for each rule in rule_p_vector (the matching rules)

{

for each premise (left hand side statement) of the rule

{

call backwardChain with the premise as topEvent;

}

}

6.4.6 Function findRules

The purpose of the findRules function is to pick the matching rules from the list
of applicable rules. The rule matches if the conclusion (right hand side)
statement of the rule equals to the given expression. In this context, the given
expression is the goal of the current stage of the backward chaining process. The
result is returned in the form of a vector which contains pointers to the matching
rules in ruleList.

The inputs and outputs of the function are listed in Table 29.

Table 29. Inputs and outputs of the findRules function.

Name Object type Explanation

INPUTS: topEvent String The goal to be matched
to the members of the
rule set

ruleList List of Frule objects The set of applicable
rules

OUTPUT: rule_p_vector Array of pointers to
ruleObjects

Pointers to matching
rules

117

An overview of the function program code is presented in Table 30.

Table 30. Overview of the program code of the findRules function.

Initialise the elements of the pointer array rule_p_vector to NULL;

For each Frule object in ruleList

{

Compare topEvent to the conclusion (right hand) side of the rule;

If topEvent equals to the conclusion (string comparison)

append rule_p_vector with a pointer to the Frule

object;

}

6.4.7 Function substituteVariables

The purpose of the function substituteVariables is to apply the available fluid
property data to the tree structure generated by the function backwardChain
which describes how the fluid property query can be resolved. When possible,
the values of certain fluid properties are determined using an external properties
package. Other values are retrieved from the internal library of static property
data. The substituteVaribles function goes through the tree structure in a
recursive manner. When fluid property variables occur in the nodes, it
substitutes them with values. The truth values of the nodes are not evaluated as
part of this process.

118

The inputs and outputs of the function are listed in Table 31.

Table 31. Inputs and outputs of the substituteVariables function.

Name Object type Explanation

INPUTS: condTree Tree Pointer to the current position in
the tree structure generated by
backwardChain

var_list_p List of Strings For multiple value processing; not
used in the current single value
based implementation

flu Fluid The fluid under consideration

L1 Location Process conditions at a given
position, including fluid
compositions (components and
concentrations)

OUTPUT: condTree Tree Pointer to the current position in
the tree containing the results of
already completed stages of the
variable substitution process
extended with the results of this
stage

119

An overview of the function program code is presented in Table 32.

Table 32. Overview of the program code of the substituteVariables function.

Extract the event text from the tree node under consideration;

Repeat

{

Skip special characters and expressions within double quotes;

Extract the next word from the event text;

Compare the word to predefined list of fluid property variables;

If the word is a fluid property variable

{

If the value can be obtained from the properties package

{

Call preparePropertyCall to prepare a call to the prop. package;

Call shz_calc_prp to calculate the property value;

}

else retrieve the property value from the internal library;

}

else if the word is a process variable (pressure or temperature)

{

retrieve the value from the location object L1;

}

else exit with no value;

If a value was found

{

Substitute the word with the value in the event text;

Revise accordingly the event text in the tree node under consideration;

}

}

until the end of the event text has been encountered;

Call substituteVaribles to go through the remaining nodes of this branch of condTree.

120

6.4.8 Function preparePropertyCall

In order to call the shz_calc_prp function with the required parameters, the
necessary data has to be collected and assigned to the predefined structure. The
purpose of the preparePropertyCall function is to carry out those operations. One
motivation for the implementation of the preparative operations as a separate
function is that only this function needs to be modified in case changes are made
to the property package calling mechanism.

The inputs and outputs of the function are listed in Table 33.

Table 33. Inputs and outputs of the preparePropertyCall function.

Name Object type Explanation

INPUTS: routine Symbol Fluid property request
keyword from a fixed list
defined as part of the
property package

L1 Location Process conditions at a
given position, including
fluid compositions
(components and
concentrations)

OUTPUT: pPrpSpec Call structure for
shz_calc_prp

Structure containing a
definition of the fluid and
process conditions

An overview of the function program code is presented in Table 34.

Table 34. Overview of the program code of the preparePropertyCall function.

Set the pPrpSpec process condition data based on the corresponding data in L1;

Extract from L1 the list of fluid components and their fractions;

For each fluid component

{

Add an element to the pPrpSpec fluid data array and set the data;

}

121

6.4.9 Function shz_calc_prp

The purpose of the shz_calc_prp is to make the services of the property package
available to the calling program. When called with appropriate input data, the
function returns a value for the requested property. The actual process conditions
(pressure and temperature) and the composition of the fluid are taken into
account in the calculation of property values.

The inputs and outputs of the function are listed in Table 35.

Table 35. Inputs and outputs of the shz_calc_prp function.

Name Object type Explanation

INPUT: pPrpSpec Call structure for
shz_calc_prp

Structure containing a definition
of the fluid and process
conditions

OUTPUTS: pPrpRes Return structureStructure containing the result of
the calculation (either as integer
or float)

iErr Error flag Shows whether the calculation
was successful or not

The shz_calc_prp function program code is part of the property package owned
by the developer company and has not been made available to others. As part of
the STOPHAZ project, both Aspentech and Hyprotech delivered a property
package for use in the fluid property considerations.

6.4.10 Function evaluateNodes

The purpose of the function evaluateNodes is to calculate a truth value as a reply
to the fluid property query. The evaluation of the requested fluid property
follows the mechanism defined in the fluid rules and represented, as a result of
the backwardChain and substituteVariables functions, in the form of a tree with
conditions specific to the studied case. The conservative approach followed
implies that the truth value can be ”false” only when the evaluation involves no
unknown properties and all the conditions related to known properties evaluate
to ”false”.

122

The inputs and outputs of the function are listed in Table 36.

Table 36. Inputs and outputs of the evaluateNodes function.

Name Object type Explanation

INPUT: condTree Tree Pointer to the current position in the
tree structure generated by
backwardChain and manipulated by
substituteVariables

OUTPUT: condTree Tree Pointer to the current position in the
tree containing the results of already
completed stages of evaluation
process extended with the results of
this stage

An overview of the function program code is presented in Table 37.

Table 37. Overview of the program code of the evaluateNodes function.

Set the default value of the current node to ”true”;

If the node is an intermediate one

{

Call evaluateNodes to first evaluate the branch of condTree underneath the

current node;

Evaluate the current node based on the truth values of its child nodes;

}

else if (the node is a terminal one and) the event text includes no unevaluated

variables

{

Detect the arithmetic operator (>, <, = or !=);

Interpret the left hand side of the statement;

Interpret the right hand side of the statement;

Evaluate the statement by comparing the two sides as defined by the arithmetic

operator;

}

123

6.5 Evaluation of methodology development phase 2
results

6.5.1 Evaluation approach

The objectives for fluid model development in connection to AutoHAZID were
stated in section 6.3. The main goal of the development was to achieve a
significant improvement in the hazard identification capability of AutoHAZID.
This means that more relevant hazards (feasible, likely and important) should be
identified and fewer irrelevant hazards (infeasible, unlikely or unimportant)
should be suggested. At the same time, the efficiency of AutoHAZID should
improve because less time is spent in exploring irrelevant branches of the causal
chains.

The limited implementation of the fluid model features included in AutoHAZID
as part of the release of the final prototype of the STOPHAZ software tries to
achieve the main objective without causing problems for the efficiency of
AutoHAZID and thus weakening the improvements related to the second
objective. The two-stage evaluation exercise described in this section is based on
this limited implementation of the fluid model.

The implementation was done using the C++ programming language. Only
standard features of the programming language were used in order to ensure that
the same program code can be executed in Unix workstation computer
environment and in personal computer (PC) environment with Microsoft
Windows 95. Due to the research oriented nature of the project, very little
emphasis was put on the systematic testing of the software. However, due to the
experimental nature of the developed software, each new piece of software had
to be tried out with a set of test examples in order to ensure that the desired
performance had been achieved.

The first stage of evaluation was carried out using a set of artificial test cases
extracted from the water separator example presented in a well-known article on
HAZOP by Lawley (1974). With this set of small size test cases it was possible
to compare the performance of AutoHAZID with the limited fluid model
capabilities to a version which was modified for the purposes of this exercise to
skip all fluid related considerations.

124

Because the fluid related considerations are implemented in the AutoHAZID
model library in such a way that they always aim to reject candidate cause-
consequence relationships, only the capability of AutoHAZID to reject irrelevant
hazards from its output could be evaluated by this comparative approach. An
attempt to evaluate the capability of AutoHAZID to identify relevant hazards
will be reported in connection to the second stage of evaluation.

The comparative approach also allowed the evaluation of AutoHAZID’s
efficiency. This was done by recording the execution time for each test case with
the limited fluid model and without it.

The second stage of evaluation was based on the results of an evaluation
workshop organised by the STOPHAZ project. In this workshop, the final
prototype of AutoHAZID was evaluated by comparing the HAZOP results
generated by AutoHAZID to the results of a human HAZOP team in five
industrial example cases. The fluid model features were not explicitly evaluated
in the workshop although it is clear based on the results of the first stage of
evaluation that already the limited implementation had a significant impact on
the capability of AutoHAZID to reject irrelevant hazards. A discussion is added
after the presentation of the general results of the workshop dealing with the
potential of more advanced fluid model features to support the identification of
such hazards which the evaluated version of AutoHAZID failed to identify.

6.5.2 First stage: comparative evaluation

Test cases

The LU researchers created a set of five test cases as a testbench for the
development of AutoHAZID models. The original objective was to solve these
test cases of increasing complexity one by one using AutoHAZID. The results
generated by AutoHAZID were subjected to critical evaluation by experienced
HAZOP practitioners, and a number of improvements were made to the models
each time before moving to the next test case of more complexity.

125

The test cases were extracted from an example design of a water separator
system published in Lawley (1974). Diagrams of the test cases are attached as
Appendix 6.

The first two test cases have a narrower scope than the rest. The test cases cover
the water separator system as follows:

Test case 1: Feed section.
Test case 2: Simplified separator.(no pressure control)
Test case 3: Feed plus simplified separator (no pressure control)
Test case 4: Separator with pressure control.
Test case 5: Feed plus separator with pressure control.

The test cases 1 and 2 are the most interesting from the fluid model point of
view because they cover the two parts of the water separator system which are
used as the basis of the remaining test cases. When the evaluation of the test case
1 and 2 results has been done, only the possible additional findings need to be
examined for the test cases 3 to 5.

Feed section

The feed section is a typical simple system for pumping a fluid from one
location to another. Such systems are basic elements for all fluid based
processes. Therefore, the use of the feed section as the first test case to assess
and improve the quality of AutoHAZID models was justified.

When the feed section was reused for the purposes of this evaluation study, a
proven version of AutoHAZID released in connection to the final prototype of
the STOPHAZ software was used. As has been mentioned before, this version
includes a limited fluid model which is able to carry out simple fluid property
based considerations. The feed section was analysed using this version of
AutoHAZID and another version in which all fluid property based
considerations had been turned off. The results are shown in Table 38.

126

Table 38. Identification results in the feed section test case.

Causes identified Consequences identified

No fluid model 47 26

Limited fluid model 34 20

Decrease of number, % 28 23

The limited implementation of the fluid model features included in AutoHAZID
in the final prototype of STOPHAZ only attempts to reject irrelevant causes and
consequences. Therefore, the significance of its impact can be assessed by
comparing the number of identified causes and consequences obtained using two
versions of AutoHAZID which only differ from each other in this respect. The
above presented results show a 28 % decrease in the number of identified causes
and a 23 % decrease in the number of identified consequences. The complete
HAZOP listings of this test case are presented in Appendix 7.

The results of this test case are very promising concerning the improved
capability of AutoHAZID to reject irrelevant hazards from its output. A closer
look at the rejected causes and consequences shows that AutoHAZID with the
limited fluid model had correctly decided to reject them. The rejected causes and
consequences are listed in Table 39 together with the relevant fluid property
query (see Table 8 in section 6.3.1) and a justification for the rejection. It should
be noted that causes can sometimes get rejected together with a consequence and
vice versa. For example, when only one consequence has been identified for a
certain fault propagation path and this consequence gets rejected due to fluid
considerations, the cause is also removed from the results because causes
without consequences are not reported. Such indirectly rejected causes and
consequences are not listed in Table 39.

127

Table 39. Rejected causes and consequences in the feed section test case.

Rejected Item Query Justification

CAUSES

blockage - solids solidsPresent fluid composition look-up

blockage - frozen fluid freezing process temperature

flashing across valve liquid & nearBoilingPt not close to boiling point

CONSEQUENCES

toxic release toxic hexane defined as non-toxic

non-hazardous release not (toxic) & not (flammable) hexane defined as flammable

cavitation due to

evolution of gases

dissolvedGas fluid composition look-up

brittle fracture brittle material property look-up

possible fluid

decomposition

decomp no decomposition hazard

It is also important to keep the execution time under control. A comparison of
execution times recorded for the feed section test case using the two versions of
AutoHAZID is presented in Table 40.

Table 40. Execution times in the feed section test case.

Execution time, s

No fluid model 107

Limited fluid model 93

Decrease of time, % 13

The use of the limited fluid model led to a slight decrease of execution time in
this case. This indicates that it is possible to extend AutoHAZID with simple and
useful fluid model features with no negative impact on execution time, and even
to speed it up depending on the efficiency of the implementation.

128

Simplified separator

Together with the transfer of a fluid from one location to another, storage is a
typical function of a fluid based process. The second case study dealing with a
simplified separator system represents this aspect of fluid processing.

The comparative study of AutoHAZID analysis quality was done in a manner
similar to the study of the first test case. The results are again presented in terms
of the number of identified causes and consequences in Table 41. The complete
HAZOP listings are presented in Appendix 8.

Table 41. Identification results in the simplified separator test case.

Causes identified Consequences identified

No fluid model 37 29

Limited fluid model 26 13

Decrease of number, % 30 55

The decrease was very clear both in the case of causes and in the case of
consequences. Because the models used for the analysis of this case are almost
completely separate from the models used for the analysis of the first test case,
the results appear to confirm that even a limited implementation of fluid
property based considerations can have a significant impact on the capability of
AutoHAZID to reject irrelevant hazards.

The rejected causes and consequences are presented in Table 42 together with
the relevant fluid property query (see Table 8 in section 6.3.1) and a justification
of the rejection. Indirectly rejected items are left out from the table in the same
way as in the discussion of the feed section test case. Once again the rejections
are correct.

129

Table 42. Rejected causes and consequences in the simplified separator test case.

Rejected Item Query Justification

CAUSES

blockage - solids solidsPresent fluid composition look-up

blockage - frozed fluid freezing process temperature

CONSEQUENCES

solid settling solidsPresent fluid composition look-up

potential layering and
rollover

rollover inlet fluid definitions

toxic release toxic hexane defined as non-
toxic

non-hazardous release not (toxic) & not
(flammable)

hexane defined as
flammable

potential static
fire/explosion hazard

flammable (vapour
space)

nitrogen defined as not
flammable

increased port erosion -
dissolved gas

dissolvedGas fluid composition look-up

increased port erosion solidsPresent fluid composition look-up

frothing foamer default value = false

increased vibration due
to flashing liquid

nearBoilingPt not close to boiling point

air ingress - explosion
risk

flammable (vapour
space)

nitrogen defined as not
flammable

toxic vapour release toxic (vapour space)nitrogen defined as non-
toxic

flammable vapour
release

flammable (vapour
space)

nitrogen defined as not
flammable

freezing freezing process temperature

crystallisation crystalliser default value = false

increased corrosion corrosion default value = false

toxic liquid release toxic hexane defined as non-
toxic

130

The results in terms of execution time are presented in Table 43.

Table 43. Execution times in the simplified separator test case.

Execution time, s

No fluid model 63

Limited fluid model 62

Decrease of time, % 2

In spite of the remarkable improvement in the rejection of irrelevant hazards,
there seems to be no negative impact on the execution time. However, the very
small decrease obtained in the study of this test case indicates that more benefit
can be expected from more accurate hazard identification than improved
efficiency.

Combined system without pressure control

The next test case was composed by combining the feed section to the simplified
separator. Therefore. The HAZOP results obtained are largely the same than the
results obtained from the previous test cases put together.

Linking the two systems together caused AutoHAZID to propose such causes
which relate to the feed section for the consequences identified for the separator
(and vice versa). These additional causes correspond to a detailed explanation of
the feed inlet associated causes already considered when the separator was
studied in isolation. Table 44 presents an illustrative example of a cause-
consequence relationship taken from the reports of test case 2 and test case 3.

It is easy to see that the four groups of causes from test case 3 are directly related
to the four individual causes from test case 2. Therefore, these causes are not
really new compared to test case 2. When compared to test case 1, these cause
may or may not appear in the report depending on whether they happen to
belong to one of the reported cause-consequence relationships.

131

Table 44. Example of cause-consequence relationship correspondence in the test
cases 2 and 3.

bufferTank1 is the separator
dummyHead1 is its feed inlet

Test case 2 results:

CONSEQUENCES: Solid settling
Potential layering and rollover

CAUSES: dummyHead1 blockage – solids
bufferTank1 morePressure vapour
dummyHead1 blockage – frozen fluid
dummyHead1 low pressure upstream

Test case 3 results:

CONSEQUENCES: Solid settling
Potential layering and rollover

CAUSES: valve1 blockage – solids
levelControlValve blockage – solids
halfMileLine blockage – solids
valve3 blockage – solids

bufferTank1 morePressure vapour

levelControlValve blockage – frozen fluid
halfMileLine blockage – frozen fluid
valve1 blockage – frozen fluid
valve3 blockage – frozen fluid

levelControlValve loss of control
levelControlValve leak to environment
valve1 leak to environment
pumpJ1 less pressure out
halfMileLine leak to environment
valve3 leak to environment
valve1 partly closed
valve3 partly closed

132

It was decided not to include new causes of the above presented type in the
subsequent quantitative evaluation of new findings. When they were rejected,
only a few really new findings remained. Table 45 shows the results obtained by
this approach.

Table 45. Additional identification results in the combined system test case.

Additional causes
identified

Additional consequences
identified

No fluid model 3 1

Limited fluid model 2 1

Decrease of number, % 33 0

No firm conclusions can be made from these small numbers. However, the
results indicate that the fluid model can also have an impact on the study of such
event chains which represent fault propagation from one part of a system to
another.

The additional identification results contained only one item rejected by the fluid
considerations. This item was the cause ’flashing across valve‘ which was
correctly rejected as the result of the ’nearBoilingPt‘ query because the fluid had
been defined not to be close to its boiling point. This is how flashing is modelled
in the current implementation although it is a more complicated phenomenon in
reality and should be modelled more accurately in an industrial quality version
of the fluid rules.

Comparison of the execution times show a slight decrease as could be expected.
The execution time results are presented in Table 46.

Table 46. Execution times in the combined system test case.

Execution time, s

No fluid model 163

Limited fluid model 152

Decrease of time, % 7

133

Separator with pressure control

The fourth test case was composed from the simplified separator (Test case 2) by
adding pressure control equipment. Therefore, most of the identified cause-
consequence relationships were equal to the findings of the test case 2 study. In
addition, most of the additional causes represented detailed explanations of
deviations in the internal state of the separator. For instance, 12 new causes were
identified explaining how low vapour pressure could occur in the separator due
to problems with the added pressure control equipment.

It was again decided that these less interesting new causes would be left out
from the quantitative evaluation. Table 47 shows the results obtained by this
approach. They are in accordance with the results obtained from the study of test
case 3.

Table 47. Additional causes and consequences identified when pressure control
equipment was added to the separator.

Additional causes
identified

Additional consequences
identified

No fluid model 3 3

Limited fluid model 1 3

Decrease of number, % 67 0

Again, the two additional causes rejected due to fluid considerations were
occurrences of ‘flashing across valve’ and the decision to reject them was based
on the fluid not being cose to its boiling point.

A slight reduction of execution time was again observed. Table 48 presents the
execution speed results.

134

Table 48. Execution speed results obtained when pressure control equipment
was added to the separator.

Execution time, s

No fluid model 97

Limited fluid model 94

Decrease of time, % 3

Combined system with pressure control

The last test case covered all the parts of the example system which had been
studied in various combinations in the four previous test cases. The results did
not contain any new findings compared to the studies of the test cases 1 to 4.
Therefore, no quantitative evaluation of the fluid model impact to the rejection
of irrelevant hazards will be presented.

The execution time was almost the same with the two versions of AutoHAZID.
It may be that the impact of supporting features like the fluid model becomes
less significant when the fault propagation paths becomes longer. The execution
time results are presented in Table 49.

Table 49. Execution times in the combined system test case.

Execution time, s

No fluid model 196

Limited fluid model 195

Decrease of time, % 1

Summary of results

The case studies done in the comparative evaluation were conducted using a
version of AutoHAZID released in connection to the final prototype of the

135

STOPHAZ software. This version incorporates a limited implementation of the
intended features of the fluid model system. The comparative evaluation was
restricted to the impact of this limited implementation.

The output from the system as released was compared with the output from a
special version which was modified in such a way that it skipped all fluid related
considerations. A clear improvement was observed in the capability of
AutoHAZID to reject irrelevant hazards and the associated cause-consequence
relationships. This observation is chiefly based on the results obtained in the first
two case studies. The remaining case studies mainly repeated and confirmed the
findings of those two studies and did not produce much new information. In the
case of the feed section case study which gave worse results than the simplified
separator case study, 28 % of candidate causes and 23 % of candidate
consequences were rejected as irrelevant by the limited fluid model. A closer
look at the rejected causes and consequences showed that they had been
correctly rejected. These results indicate that even a limited implementation of
fluid property considerations can lead to a significant improvement in the
performance of an automated hazard identification system.

Execution time decreased slightly in all the five case studies, the highest
reduction being of the order of 10 %. This indicates that it is possible to
implement a useful set of fluid property considerations in connection to
AutoHAZID without making the fault propagation reasoning more time
consuming.

6.5.3 Second stage: study of industrial example cases

Study set-up

In order to validate the performance of AutoHAZID, a comparative study of five
process plant examples was carried out in the final phase of the STOPHAZ
project. Although these examples provided by the industrial partners of the
project were not complete descriptions of a process plant, they were selected to
represent various challenging types of processes and their size corresponded to
the expected size of process plant sections which would be analysed at one time
in an industrial project.

136

The validation was carried out in a workshop manner. Three parallel groups
considered different process plant examples. 3-4 process safety experts from
STOPHAZ partner companies participated in each group.

The five process plant section descriptions considered in the workshop were:

• an absorption section,
• a benzene storage section,
• a separation section,
• a trichloroethane storage section, and
• a propane rectification section.

In one of the validation studies, study of the trichloroethane storage section, it
was possible to pay special attention to fluid related considerations. Evaluation
of the fluid model impact to the hazard identification capability of AutoHAZID
was based on a detailed analysis of its results.

Study procedure

A highly structured procedure was followed in order to allow the quantitative
analysis of the workshop output. The objective was to identify the extent to
which the potential problems identified by AutoHAZID corresponded with those
identified by a conventional HAZOP team.

The procedure considers each scenario in the human team’s report in turn and
determines whether or not AutoHAZID identified the scenario, then the
procedure considers the additional scenarios identified by AutoHAZID. In this
context, a scenario refers to a fault-consequence link or a fault which has no
consequence identified. The detailed steps of the procedure are presented in
Table 50.

137

Table 50. AutoHAZID validation workshop procedure.

Consider each deviation in the HAZOP team’s report in turn:

Consider each scenario in the HAZOP team’s report in turn:

Î is the scenario agreed to be a feasible one for the current deviation?

NO – categorise scenario (1) and consider next scenario.

YES – continue.

Has an equivalent scenario been considered previously?

NO – continue.

YES – consider next scenario.

Is there an equivalent scenario in the AutoHAZID output?

NO – categorise scenario (2) and consider next scenario.

YES – does the scenario appear under an acceptable deviation in AutoHAZID output?

NO – categorise scenario (3) and mark on AutoHAZID’s report sheet that it

has been considered.

YES – categorise scenario (4) and mark on AutoHAZID’s report sheet that it

has been considered.

Î consider each protection listed in the HAZOP team’s report against the

scenario:

is the protection a valid one for the current scenario?

NO – categorise protection (5) and consider the next protection.

YES – is the protection specified for the current scenario in

AutoHAZID’s output?

 NO – categorise the scenario-protection link (6) and

consider the next protection.

YES – categorise the scenario-protection link (7) and mark on

AutoHAZID’s report sheet that it has been considered.

Î consider the next protection.

Consider each deviation in AutoHAZID’s report in turn:

Consider each scenario in the AutoHAZID output:

Î has it been marked off already?

YES – consider next scenario.

NO – is the scenario agreed to be a feasible one for the current deviation?

NO – categorise scenario (8) and consider the next one.

YES – is the feasible scenario of interest?

YES – categorise scenario (9a) and consider the next one.

NO – categorise scenario (9b) and consider the next one.

Consider each protection listed in AutoHAZID’s output against the scenario:

Î has it been marked off already?

YES – consider next protection.

NO – is the protection a valid one for the current scenario?

YES – categorise scenario-protection link (10) and consider next protection.

NO – categorise scenario-protection link (11) and consider next protection.

138

The classification method used for classifying the scenarios can be represented
in terms of sets as defined in Table 51.

Table 51. Classification method in terms of set definitions.

Set Explanation

A Scenarios identified by the HAZOP team

AFeasible Feasible scenarios included in A

AIncorrect Incorrect scenarios included in A

B Scenarios identified by AutoHAZID

BFeasible Feasible scenarios included in B

BIncorrect Incorrect scenarios included in B

BMislocated Scenarios included in BFeasible which are reported under
wrong HAZOP keyword

BInteresting Interesting scenarios included in BFeasible

BUninteresting Uninteresting scenarios included in BFeasible

C Protections identified by the HAZOP team

CFeasible Feasible protections included in C

CIncorrect Incorrect protections included in C

D Protections identified by AutoHAZID

DFeasible Feasible protections included in D

DIncorrect Incorrect protections included in D

139

The following equations hold between the defined sets:

A = Afeasible + AIncorrect

B = Bfeasible + BIncorrect

BFeasible = BInteresting + BUninteresting

BMislocated ⊂ BFeasible

C = Cfeasible + CIncorrect

D = Dfeasible + DIncorrect.

The classification codes used in the workshop procedure are listed in Table 52
together with an interpretation and a set-based definition of each code.

Table 52. Classification codes used in AutoHAZID validation.

Code Interpretation Definition
1 Incorrect scenario identified in HAZOP team’s

report
AIncorrect

2 Valid scenario identified by the HAZOP team but
not by AutoHAZID

AFeasible ∩ not(BFeasible)

3 Valid scenario identified by both the HAZOP team
and AutoHAZID but under unacceptable guideword
in AutoHAZID output

AFeasible ∩ BMislocated

4 Valid scenario identified by both the HAZOP team
and AutoHAZID under acceptable guideword in
AutoHAZID output

AFeasible ∩ BFeasible ∩
not(BMislocated)

5 Protection incorrectly identified by the HAZOP team CIncorrect

6 Protection identified by the HAZOP team but not by
AutoHAZID

CFeasible ∩ not(DFeasible)

7 Protection identified by both the HAZOP team and
AutoHAZID

CFeasible ∩ DFeasible

8 Incorrect scenario identified by AutoHAZID BIncorrect

9a Feasible and interesting scenario identified by
AutoHAZID but not by the HAZOP team

BInteresting ∩ not(AFeasible)

9b Feasible but uninteresting scenario identified by
AutoHAZID but not by the HAZOP team

BUninteresting ∩
not(AFeasible)

10 Valid protection identified by AutoHAZID but not
the HAZOP team

DFeasible ∩ not(CFeasible)

11 Incorrect protection identified by AutoHAZID DIncorrect

140

It should be noted that the classification scheme was devised to be exhausting
and not all classifications were necessarily used in any particular analysis.

Summary of general results

The output of the validation workshop was analysed in quantitative terms. The
intention was to get quantitative estimates of how well AutoHAZID identifies
hazards compared to a human HAZOP team. These estimates are presented in
Table 53.

Table 53. Summary of AutoHAZID validation results.

Absorption Trichloro-
ethane
storage

Propane
rectification

Benzene
storage

Separation

100 *(BFeasible / B)

Scenarios identified by

AutoHAZID judged to be

correct, %

49 33 69 83 53

100 * (BInteresting / B)

Scenarios identified by

AutoHAZID judged to be

correct and of interest, %

10 29 24 27 NA

100 * ((BFeasible ∩
AFeasible) / AFeasible)

Scenarios identified by

HAZOP team also found

by AutoHAZID, %

36 33 60 50 53

100 * (DFeasible / D)

Protections identified by

AutoHAZID judged to be

correct, %

10 29 NA 77 NA

NA = NOT AVAILABLE. Those studies were not concluded.

In the case of the benzene storage system, it should be noted that the plant
descriptions considered by the HAZOP team and AutoHAZID were thought to
be so different that the validation exercise was rendered unreliable as a test of
AutoHAZID’s performance.

141

The main conclusion drawn from the quantified results is that AutoHAZID
appears to find a reasonable portion of the scenarios identified by a HAZOP
team. In the validation workshop cases, this percentage varied between 33 and
60 %. It has been estimated based on discussions with potential commercial
exploiters of AutoHAZID that an automated hazard identification tool would be
exploitable if it could identify 25% of the scenarios identified by a human
HAZOP team.

However, the useful output of AutoHAZID is heavily masked by a large amount
of information which is either correct but uninteresting or simply incorrect. This
could stand in the way of the industrial use of AutoHAZID unless improvements
can be made.

Incorrect information is often the result of not taking order of magnitude issues
into account during fault propagation. This is typical for a system based on
qualitative models of equipment behaviour. A discussion of this problem can be
found in section 6.3.6. In connection to the validation exercise, flow deviations
in a heat exchanger were mentioned as an example. If the cooling water to a heat
exchanger is lost the temperature of the process stream will rise and
AutoHAZID will report possible overtemperature of the exchanger. Although
identified by AutoHAZID as a potential hazard, overtemperature is normally not
a problem for the exchanger itself as it is designed to withstand the normal
process inlet temperature.

When it comes to decreasing the amount of uninteresting information in
AutoHAZID output, different users may have different opinions on what is
uninteresting. Therefore, the best approach to improving AutoHAZID in this
respect is to offer the users appropriate options for filtering the output. The
consequence severity threshold option already exists in AutoHAZID for that
purpose. One of the workshop groups considered leakage scenarios
uninteresting. Filtering out leakage scenarios could be another useful filtering
option.

The performance of AutoHAZID can also be evaluated with respect to the
number of false positives and false negatives. A false positive is an incorrect
scenario identified by AutoHAZID, and a false negative is a valid scenario not
identified by AutoHAZID. Table 54, which is actually another interpretation of

142

the figures presented in Table 53, summarises the results of the evaluation
workshop in terms of false positives and false negatives.

Table 54. Summary of the evaluation workshop results in terms of false positives
and false negatives.

Absorption Trichloro-
ethane
storage

Propane
rectification

Benzene
storage

Separation

100 * (BIncorrect / B)

False positives, % from

AutoHAZID results

51 67 31 17 47

100 * (1 – (BFeasible /

AFeasible))

False negatives, % from

HAZOP team results

64 67 40 50 47

Fluid model oriented study of the evaluation results

During the workshop-type validation studies carried out as part of the
STOPHAZ project, the developed fluid model features were not taken into full
use. A conscious decision was made to concentrate on the validation of the core
features of AutoHAZID. The full rule-based implementation of fluid property
reasoning and the compatibility check feature were considered to be outside of
the core.

This was necessary because AutoHAZID is composed of several independent
innovative methods. The fault propagation method based on signed directed
graphs (SDG) is the core of AutoHAZID. Other methods include model
construction, fluid property reasoning, compatibility check features, order-of-
magnitude processing, and filtering based on user preferences. Validation of the
SDG-based fault propagation method in isolation from the complementary
methods simplified the interpretation of the study results and helped to keep the
number and size of required test cases low enough to allow the arrangement of
the validation as an expert workshop with a limited size and duration. The study
of industrial examples provided by the industrial partners of STOPHAZ was a
challenge to AutoHAZID as such. Therefore, it was felt necessary to minimise

143

the complexity of the plant descriptions fed into the system. As a result, such
details were omitted which are only used by the fluid model and other advanced
features of AutoHAZID.

The validation results still form a good basis for an extended validation which
covers other methods which are expected to improve the performance of
AutoHAZID. The fluid model features composed of the fluid property reasoning
method and the compatibility check feature are such methods. What needs to be
done in order to validate these complementary methods is to look at the
scenarios not identified by AutoHAZID in its core version. In other words, the
extended validation should be based on examining the set of false negatives
determined as one outcome of the evaluation workshop (see Table 54). If it can
be shown that a complementary method enables AutoHAZID to identify some of
those scenarios, this can be interpreted as an indication of the validity of that
method.

In the following discussion, the fluid model features of AutoHAZID will be
evaluated based on the results of the AutoHAZID validation workshop. The
introduction of complementary fluid model features is assumed not to cause
AutoHAZID to fail to identify any of the scenarios which were successfully
identified without a full implementation of the fluid model.

It was decided to pay more attention to fluid modelling issues in one of the
workshop sessions which dealt with one of the considered process plant
examples. The process plant example considered in this session was the
trichloroethane storage system. A process diagram of the system as drawn by the
LU STOPHAZ project group using the Graphical Tool which is part of the
STOPHAZ prototype software is attached as Appendix 9. The main
characteristics of this system are summarised in the following:

• Crude BTri (Β-trichloroethane) is pumped at 4 bara and 20-50ºC through a
long line into a bunded stock tank and further through a system of two
parallel pumps to an outlet leading to a reactor system.

• The level in the stock tank is not controlled, but a high level will cause an
actuated valve in the inlet line to close. In order to guard agaist liquid
hammer, this valve closes slowly. If an extra high level were to occur, the

144

contents would overflow into the bund through a line which is sealed with a
bursting disc.

• A small flow of nitrogen flows into the tank through a bubbler. If the
pressure in the tank fails, a pressure controller opens a control valve in a
separate supply of nitrogen. The tank vents through a scrubber to
atmosphere.

• The tank is fitted with a pressure/vacuum relief valve and a fire relief hatch.

This example is suitable for this kind of complementary study because only 33%
of the scenarios identified by the human HAZOP team were identified by
AutoHAZID.

The scenarios identified by the human HAZOP team and not identified by
AutoHAZID are listed in Table 55 and a case by case discussion of them
follows.

Table 55. Scenarios not identified by AutoHAZID in the trichloroethane test case.

ID Item Deviation Causes Effect or Hazard
1 Trichloroethane in High pressure Closure of shutdown

valve
Overpressure of feed
pipeline

2 Trichloroethane in Abnormal
composition

Abnormal composition at
process inlet

Density change (leads to
problems with instrument
readings)

3 Vapour system No flow Blockage due to water
freeze in scrubber

Pressure rise in tank

4 Trichloroethane
out

High flow Failure of flow
controller

Change of outlet
composition

5 Trichloroethane
out

Low flow /
No flow

Loss of instrument air Change of outlet
composition

6 Trichloroethane
out

Low flow /
No flow

Pump failure Change of outlet
composition

7 Trichloroethane
out

Reverse flow Organics pumped in
from connecting line

Potential to recycle to the
trichloroethane feed

8 Trichloroethane
out

Testing Hydraulic proof testing Wetting of pipeline

9 Recycle system Low flow Pump seal failure Spraying of product local
to pump

10 Tank connections Contamination Water ingress Corrosion

145

Scenario 1: This is a problem of the pipeline model. Not a fluid model issue.

Scenario 2: The susceptibility of instruments to changes in fluid density can be
represented in the SDG models of instruments. If this is done, then potential
instrument problems will always be flagged when composition deviations are
considered. Fluid model issue.

Scenario 3: Freezing can be included in the equipment models as one of the
faults. When a fluid property query is attached to it which checks if the fluid has
a potential to freeze due to a relatively high freezing point, freezing will only be
suggested when appropriate. Fluid model issue.

Scenario 4: This obvious scenario was not reported by AutoHAZID because no
consequences had been found in relation to high flow out from the process
section. In the analysis settings defined for the validation workshop,
AutoHAZID had been told not to report faults with no consequences. Not a
fluid model issue.

Scenario 5: No consequences had been identified in relation to no/low flow out
from the process section either. Not a fluid model issue.

Scenario 6: This scenario was also not reported due to the lack of consequences.
In addition, the configuration with two parallel pumps and a recycle line makes
it even more difficult for AutoHAZID to consider flow deviations at the process
section outlet. Not a fluid model issue.

Scenario 7: Reverse flow leading to possible upstream contamination was
reported as one of the scenarios. However, AutoHAZID did not report the fact
that two fluids are mixed together at the downstream end of the section, and
reverse flow could cause the flow of this mixture or one of the fluids upstream
along the wrong line. The proper reporting of this type of scenarios could be
based on preparatory bookkeeping done when AutoHAZID considers the plant
description and what are the correct flow directions. Not a fluid model issue.

Scenario 8: It is unclear from the human team’s report what the hazard
associated with the wetting of the pipeline is. Assuming that there is no hazard
other than corrosion, addition of a simple description of this kind of a problem to

146

the pipeline model would be easy. This simple solution would only cover water
as the cause for corrosion, and it would cause AutoHAZID to report the scenario
in connection to every connection which is defined as a pipeline. More advanced
solutions would require fluid model type consideration of corrosion. Not a fluid
model issue.

Scenario 9: Pump leaks have been reported but not exactly in this form. Not a
fluid model issue.

Scenario 10: Similar to scenario 8, this scenario could easily be identified if
corrosion due to water ingress were added to the model of a vessel. Not a fluid
model issue.

In the case of the trichloroethane process example, the full use of the fluid model
system would have helped AutoHAZID to identify two of those scenarios which
it had failed to identify. This could have produced an increase of the
identification capability from 33% to 46% from the scenarios identified by the
human HAZOP team.

It should be noted that a comparison to the results of a human HAZOP team
could in some cases give misleading results. For instance, in the HAZOP study
of the separation example the human team has identified no fluid related
hazards. Table 56 gives the number of fluid related scenarios and the total
number of scenarios in the five example processes studied in the validation
workshop. The presented figures should be taken as rough estimates because
detailed analysis of fluid related issues was not performed in cases other than the
trichloroethane storage case.

Table 56. Number of fluid related scenarios in relation to the total number of
scenarios in the validation workshop examples.

Absorption Trichloro-
ethane
storage

Propane
rectification

Benzene
storage

Separation

Number of scenarios
related to fluid issues

11 2 4 10 0

Total number of
scenarios identified by
the HAZOP team

25 15 23 42 18

Percentage, % 44 13 17 24 0

147

It might be expected that the examples with a lower percentage of scenarios
associated with fluid issues would be easier for AutoHAZID. However, the
validation summary results presented in Table 53 do not support that
assumption. The highest percentage of identification compared to the HAZOP
team, 60%, was achieved with the propane rectification example which has a
relatively low fluid issue percentage. However, the lowest percentage of
identification, 33%, resulted from the study of the trichloroethane example
which also has a low fluid issue percentage.

The percentage of scenarios associated with fluid issues seems to correspond
more closely to the percentage of identified interesting scenarios. This
percentage was lowest, 10%, with the absorption example which has the highest
fluid issue percentage. The highest percentage of interesting scenarios was
achieved with the trichloroethane storage example which has a relatively low
fluid issue percentage. Unfortunately, the percentage of interesting scenarios was
not calculated for the separation example for which the number of scenarios
related to fluid issues was zero.

If there is a relationship between the number of scenarios associated with fluid
issues in a HAZOP study and the capability of AutoHAZID to identify correct
and interesting scenarios, the degree to which AutoHAZID understands what
goes on in the process could explain this relationship. The more important the
role that fluid issues play in a HAZOP study, the less AutoHAZID understands
about the process unless very sophisticated fluid model features are put in place.
Therefore, without such features, AutoHAZID tends to produce lot of
information which is does not properly apply to the process under the actual
circumstances. From this, a conclusion could be drawn that the fluid model will
play a very significant role when more sophisticated methods are put in place to
screen out invalid and uninteresting results from AutoHAZID’s output.

148

7. Discussion

7.1 Methodological problems

In their study of early computerised hazard identification systems, Suokas and
Karvonen (1985) reported that the insufficient quality and coverage of the model
library for the description and analysis of real processes was a major problem of
these systems. In connection to the development of HAZOPTOOL in the first
methodology development stage of the work described in this thesis, it was also
noticed that the quality of the causal fault propagation knowledge remained far
from sufficient.

The development of AutoHAZID was based on earlier fault propagation
modelling work of Loughborough University researchers (Kelly and Lees 1986a,
b, c and d; Parmar and Lees 1987; Zerkani and Rushton 1992; Chung 1993). The
model library of AutoHAZID has reached a high level of sophistication and,
thus, it formed a good basis for the development of fluid property reasoning
techniques. Although some extensions to the modelling methodology have been
proposed (see section 6.3.6), it was found possible to leave the development of
causal fault propagation models outside the scope of this work.

Deficiencies in the causal models lead to poor performance in relation to the
correctness and completeness of the resulting HAZOP study. This is due to the
fact that the current systems are based on highly generalised knowledge on the
behaviour of process equipment and can not perform advanced reasoning on the
special characteristics of the chemical process. In addition to trying to improve
the quality and coverage of the model library, this problem can also be tackled
by developing techniques which enable the knowledge-based HAZOP program
to process the models in a more intelligent manner. Fluid property reasoning in a
strong candidate for a technique of this kind.

Even when an automated hazard identification system is extended with
appropriate advanced reasoning techniques, it is very difficult to reach a
sufficient level of detail with knowledge-based HAZOP systems. This is because
the models would have to be made highly conditional on process-specific issues
to handle detailed information correctly. Adding a lot of conditions related to

149

process-specific issues would significantly complicate the modelling task, and it
would also lead to an increase of required data input effort from the user.

The laborious nature of the data input stage is one deficiency of current
knowledge-based HAZOP systems. In this work, data input techniques were not
studied. However, efficient utilisation of the supplied data in a context sensitive
manner would motivate the users to put more effort into the data input stage.
Advanced techniques such as fluid property reasoning enable knowledge-based
HAZOP programs to make better use of the plant-specific data made available to
them.

It is characteristic of the original HAZOP technique, due to its purely qualitative
nature, that it does not provide the quantitative ranking of the identified
problems. The result of a HAZOP study is a set of identified hazards with their
potential causes. The most severe problems are well identified but, at the same
time, a number of less relevant event chains are suggested. Some of these
findings may even prove to be incorrect or clearly irrelevant when they are
examined more closely in a quantitative manner.

Reasoning about the order of magnitude associated with a process deviation
caused by a given fault is a complicated issue. The presence of ambiguities in
qualitative reasoning on the behaviour of a chemical process has been widely
recognised. For instance, Vaidhyanathan and Venkatasubramanian (1996b) have
extended their HAZOPExpert system with the use of a semi-quantitative
methodology to overcome this problem. The fluid property reasoning
methodology proposed in this thesis includes the consideration of fluid
properties in quantitative form.

Basically, resolving queries related to the properties of the processed chemicals
and using the results to add conditional elements to the identification of event
chains is methodologically quite straightforward. However, a number of
questions still need to be answered before high performance of fluid property
reasoning can be reached:

• How to estimate the magnitude of change in process conditions in the
presence of a process variable deviation expressed in qualitative terms?

150

• How to estimate the properties of a mixture of chemicals when no data
source covers that mixture or when the exact component ratios are
uncertain?

• What is an appropriate way to model the behaviour of an intended reaction
in abnormal conditions?

These open questions do not complicate the use of the developed methodology
as such. However, without answers to such questions, it becomes difficult to
carry out case studies to demonstrate the benefits from its use.

Another factor which makes the empirical testing of the fluid property reasoning
methodology very problematic is its inevitable negative effect to the speed of
automated HAZOP. The use of fluid property reasoning in its complete version
within fault propagation would mean that lots of rare consequences are
considered and checked against the actual properties of the processed fluid.
Moreover, numerous similar checks should also be made in relation to the causal
propagation of events when the possible links between potential faults and
consequences are identified.

In spite of the efforts described in this thesis and other work, various aspects of
fluid property reasoning still remain poorly covered. Recommendations will be
presented in Chapter 9 for dealing with the following issues in the further
development on fluid property reasoning methodologies:

• Properties of mixtures
• Dependency on process conditions
• Downstream impacts of unintended reactions
• Order of magnitude considerations
• Filtering philosophy
• Data acquisition from the user
• Properties of materials and reactions.

151

7.2 Summary of the results

A novel methodology for fluid property reasoning in connection to knowledge-
based HAZOP has been proposed in this thesis. Building on the earlier
achievements of Loughborough University (LU) and Technical Research Centre
of Finland (VTT) researchers, the methodology enables knowledge-based hazard
identification programs to make a more intelligent assessment of the potential
hazards and their causes.

Early work on this topic at LU mainly concentrated on the consideration of leak,
blockage, materials of construction susceptibility, and hazards related to a
chemical release to atmosphere (Parmar and Lees 1987, Zerkani and Rushton
1992). VTT started to study the impacts of fluid and reaction issues on
knowledge-based HAZOP in the STARS project (Heino et al. 1992), in which
independent knowledge bases and associated interactive tools were developed
for chemical substances, intended chemical reactions and unwanted chemical
reactions (Christensen et al. 1991). The elements of the earlier achievements of
both the LU and VTT researchers were included in the scope of the methodology
development reported in this thesis.

The Purdue University researchers have recently taken similar issues into
consideration (Vaidhyanathan and Venkatasubramanian 1996b). In their
HAZOPExpert system, process materials and their properties form a part of the
process-specific knowledge. The process-independent knowledge on abnormal
causes and adverse consequences makes use of this information when required.
In the reported work of Purdue University researchers, this generic framework
has only been applied to simple fluid property checks such as freezing, fire
hazards, and health hazards related to loss of containment. The objective of the
work described in this thesis was to improve the capability of knowledge-based
HAZOP to deal with all fluid property dependent issues, including those which
require more complicated techniques than the evaluation of conditions
dependent on fluid property values.

In total, six research groups worldwide have recently worked on methods for the
computerised HAZOP study of chemical process systems. According to what
has been published in major scientific journals relevant to this area of research,

152

no other significant developments exist concerning the automation of HAZOP
studies and related methods such as fluid property reasoning.

Two implementations of the fluid property reasoning methodology have been
presented in this thesis. Each was done as part of a contract research project. The
first implementation was done in 1992–1994 for the Taiwanese engineering
company CTCI Corporation. The European collaborative project STOPHAZ co-
ordinated by the UK-based company ICI Engineering Technology served as the
framework for the second implementation.

During the two phases of development numerous hours were spent in
methodological discussions with highly qualified experts from the STOPHAZ
consortium and the Taiwanese engineering company CTCI Corporation. The
need for fluid property reasoning was recognised by these experts. In addition,
the proposed methodology was reviewed and accepted by them. This can be
interpreted as a strong indication of the validity of the proposed methodology.

The proposed fluid property reasoning methodology was successfully
implemented in two environments. It was shown that fluid property reasoning
can be linked to causal reasoning. External chemical properties packages were
also successfully linked to the same environment to support the evaluation of
fluid properties in specified conditions.

In the first methodology development phase, a rule-based fluid and reaction
property reasoning system was developed in connection to the HAZOPTOOL
program. This system was designed to be very flexible and easy to modify. The
list of query keywords was not fixed. Instead, the authors of new HAZOP rules
were allowed to use any word as a query keyword, and new fluid rules and
attributes were to be added in such a way that the system is able to give an
answer to the request by backward chaining appropriate rules and referring to
related attributes. In the case of HAZOPTOOL, the desire to maximise
flexibility led to problems in keeping the evolution of the rule-based unit and
fluid models under control. The implementation also become relatively slow due
to the extensive processing of symbolic data.

In the second methodology development phase, the LU fault propagation
reasoning methodology implemented in the AutoHAZID program was extended

153

with fluid property reasoning capabilities. The main objective was to implement
an intelligent system to resolve fluid property queries. Whenever the relevance
of a cause-consequence relationship is dependent on the properties of the
processed fluid, AutoHAZID tries to solve the problem by investigating the fluid
properties. This can be done by calling the rule-based fluid model system which
is able to reason about those issues.

Generic rules were defined for the knowledge-based processing of fluid property
data. The rules are stored in the internal library of chemical properties together
with static chemical property data. Some of the static property values are only
used if a properties package can not be used but also some properties have been
included which are not covered by those packages. Such properties include
toxicity and reactivity.

Properties packages are able to calculate the values of fluid properties at the
specified process pressure and temperature conditions. They can also estimate
the properties of mixtures. A link has been implemented from AutoHAZID to
two properties packages supplied by simulation software companies. Whenever
a properties package has been made available, it will be used automatically to
provide better estimates of a number of fluid properties.

In order to be able to consider fluid compatibility issues, a reaction matrix based
on a reactivity group approach was added to complement the fluid-oriented part
of AutoHAZID. It can be used to identify possible unintended reactions between
two fluids. At present, this compatibility check feature has to be called
separately from the other fluid related considerations covered by the fluid
property queries.

7.3 Utility and limitations of the results

The developed methodology is aimed at the performance improvement of
knowledge-based HAZOP. The scope of this study was limited to that
application domain. Other improvements to automated HAZOP than those
related to fluid property reasoning were not considered.

154

The accident examples discussed in Chapter 3 link this study to the ultimate goal
of preventing serious accidents. The developed fluid property reasoning
methodology contributes to the methodological progress towards this goal. It
makes information about the role of chemicals as potential accident contributors
available to safety analysts and process designers in their computerised
environment for safety considerations.

The results of the methodology development reported in this thesis are
associated with the accident examples in Table 57. The problems which should
have been eliminated in order to prevent the accident have been listed together
with the fluid property reasoning features required to identify such problems in
knowledge-based HAZOP. The fourth column states whether the listed fluid
property reasoning features exist in the versions of HAZOPTOOL or
AutoHAZID discussed in this thesis.

Table 57. Accident examples associated with the developed fluid property
reasoning features.

Accident
Example

Problem Feature Existence

Ashton 1917 Hot acid started the fire
of wooden staging

• Materials of construction flammability
• Explosion threshold

No

Both

Texas City
1969

Thermal decompo-
sition of fluid

• Abnormal concentrations
• Decomposition threshold

No

Both

Baton Rouge
1976

Fluid-fluid
incompatibility

• Unintended contact of two fluids
• Unwanted reaction

AutoHAZID

Both

Breahead
1977

Impact of external fire • Thermal expansion Both

Bhopal 1984 Fluid-water
incompatibility

• Unintended water ingress
• Unwanted reaction

HAZOPTOOL

Both

Seveso 1986 Change of reaction in
abnormal conditions

• Dependence of reaction on
temperature

No

Jonova 1989 Sudden increase of
tank pressure

• Dependence of vapour pressure on
temperature

Both

Stanlow
1990

Fluid-fluid
incompatibility

• Unintended contact of two fluids
• Unwanted reaction
• Impact of an unintended product

AutoHAZID
Both
No

155

The table lists eleven different features from which seven exist at least in one of
the programs. The remaining four features are known areas for the further
improvement of the fluid property reasoning methodology. This indicates that
the focus of the development work has correctly been in satisfying requirements
which are imposed by real problem areas of industrial safety.

AutoHAZID was subjected to comprehensive evaluation at the final stage of the
STOPHAZ project. It was shown that AutoHAZID is able to find a reasonable
portion of the scenarios identified by a HAZOP team. In the validation workshop
cases, this percentage varied between 33 and 60 %. This performance was
achieved despite deliberate restriction of plant description to what was
considered reasonable in terms of input effort. It has been estimated based on
discussions with potential commercial exploiters of AutoHAZID that an
automated hazard identification tool would be exploitable if it could identify
25% of the scenarios identified by a human HAZOP team.

However, the useful output of AutoHAZID is heavily masked by a large amount
of information which is either correct but uninteresting or simply incorrect. This
could stand in the way of the industrial use of AutoHAZID unless improvements
can be made. To study this issue in more detail, a fluid model oriented study of
the evaluation workshop results was made which indicated that the fluid model
will play a very significant role when more sophisticated methods are put in
place to screen out invalid and uninteresting results from AutoHAZID’s output.

In comparative testing based on a set of test cases, a clear improvement was
observed in the capability of AutoHAZID to reject irrelevant hazards and the
associated cause-consequence relationships when the fluid property reasoning
methodology was used. Even in the worst case, 28 % of candidate causes and 23
% of candidate consequences were rejected as irrelevant by the limited fluid
model features included in the tested version of AutoHAZID. Moreover, a closer
look at the rejected causes and consequences showed that AutoHAZID had
correctly decided to reject them. The results of the comparative testing indicate
that even a limited implementation of fluid property considerations can lead to a
significant improvement in the performance of an automated hazard
identification system.

156

Execution time decreased slightly in all the five case studies, the highest
reduction being of the order of 10 %. This indicates that it is possible to
implement a useful set of fluid property considerations in connection to an
automated hazard identification system without making the fault propagation
reasoning more time consuming.

In summary, the developed methodology was shown to have the potential to
improve the consideration of fluid dependent hazards significantly. However, a
vital prerequisite for gaining full benefit from the use of the methodology is that
the knowledge-based HAZOP system to be extended with fluid property
reasoning features is capable of estimating the process conditions and the fluid
composition in abnormal situations.

157

8. Conclusions

The study of serious accidents which have occurred in the chemical process
industry in recent times highlights the need to understand fluid property related
phenomena and the interactions between chemicals under abnormal process
conditions or with abnormal fluid compositions. Typically, an unwanted chain of
events is triggered by an unintended increase of temperature, often coupled with
an abnormal composition of the fluid either as a cause or a consequence.
Consideration of these issues should be common practice in professional safety
analysis work, and computer programs designed to support this work have to be
able to deal with them, preferably in an intelligent manner.

Currently, the most advanced features of commercial HAZOP software packages
include knowledge libraries, intelligent checklists and analysis process guidance.
No automated HAZOP features are included in any of these packages. This is a
clear indication of the fact that automated HAZOP still has such problems which
make it commercially uninteresting. However, the achievements of the various
research groups who have studied the knowledge-based identification of
chemical hazards indicate that it should be possible to reach a completeness and
coverage of the results which is close to the output of conventional group work
HAZOP carried out by a group of human experts.

This thesis describes a novel methodology for fluid property reasoning in
connection to knowledge-based HAZOP. Building on the earlier achievements
of Loughborough University (LU) and Technical Research Centre of Finland
(VTT) researchers, the methodology enables knowledge-based hazard
identification programs to make a more intelligent assessment of the potential
hazards and their causes.

In the first methodology development phase, a rule-based fluid and reaction
property reasoning system was developed in connection to the HAZOPTOOL
program. This system was designed to be very flexible and easy to modify.

In the second methodology development phase, the Loughborough University
fault propagation reasoning methodology implemented in the AutoHAZID
program was extended with fluid property reasoning capabilities. The main
objective was to implement an intelligent system to resolve fluid property

158

queries. Whenever the relevance of a cause-consequence relationship is
dependent on the properties of the processed fluid, AutoHAZID tries to solve the
problem by investigating the fluid properties. This can be done by calling the
rule-based fluid model system. In order to access property values in real process
conditions, a link was implemented from AutoHAZID to two properties
packages supplied by simulation software companies. In addition, a reaction
matrix based on a reactivity group approach was added to complement the fluid-
oriented part of AutoHAZID.

AutoHAZID was subjected to extensive evaluation at the final stage of the
STOPHAZ project. It was shown that AutoHAZID is able to find a reasonable
portion of the scenarios identified by a HAZOP team. The performance was
found to reach the level required from a commercially exploitable tool.

However, the useful output of AutoHAZID is heavily masked by a large amount
of information which is either correct but uninteresting or simply incorrect. This
could stand in the way of the industrial use of AutoHAZID unless improvements
can be made. To study this issue in more detail, a fluid model oriented study of
the evaluation workshop results was made which indicated that the fluid model
will play a very significant role when more sophisticated methods are put in
place to screen out invalid and uninteresting results from AutoHAZID’s output.

In comparative testing based on a set of test cases, a clear improvement was
observed in the capability of AutoHAZID to reject irrelevant hazards and the
associated cause-consequence relationships when the fluid property reasoning
methodology was used. Moreover, a closer look at the rejected causes and
consequences showed that AutoHAZID had correctly decided to reject them. In
addition, it was observed that the execution time decreased slightly in all cases.

The two implementations of the chemical reasoning methodology presented in
this work show that it is possible to extend knowledge-based HAZOP with a
capability to reason about fluid properties and interactions. The results indicate
that the potential benefits are large compared to the effort required to make
available a reasonable collection of chemical property data and to make the
qualitative causal propagation models refer to it.

159

Based on the results of this work, it is recommended that fluid property
reasoning is taken into use in any application of knowledge-based HAZOP.
Assuming that the knowledge-based HAZOP system is capable of estimating the
process conditions and the fluid composition properly in abnormal situations, the
developed methodology has the potential to improve the consideration of fluid
dependent hazards significantly.

Future research should be focused on removing the problems inherent in
qualitative models of behaviour such as the signed directed graph. An extended
method for qualitative causal propagation would be needed which is able to
reason with value intervals and uncertainties.

160

9. Recommendations and future research

Based on the results of this work, it is recommended that fluid property
reasoning is taken into use in any application of knowledge-based HAZOP. The
results indicate that the potential benefits are large compared to the effort
required to make available a reasonable collection of chemical property data and
to make the qualitative causal propagation models refer to it.

Future research should be focused on removing the problems inherent in
qualitative models of behaviour such as the signed directed graph. Because the
magnitude of phenomena is not known, it becomes very difficult to draw any
justified conclusions on the impacts of chemicals. Once the hazard under
consideration is known, the composition of the fluid and the process conditions
could be studied to estimate the required magnitude of a deviation. By
considering a fault and its impact on the normal process conditions, the initial
magnitude of the phenomenon could be estimated. An extended method for
qualitative causal propagation would then be needed which is able to reason with
value intervals and uncertainties.

More comprehensive evaluation studies than were possible within the scope of
this work should also be carried out. Only through the practical application of
the fluid property reasoning methodology it is possible to learn more about its
strengths and weaknesses. The further development of the methodology would
benefit from the existence of more comprehensive testing results.

Below, detailed recommendations for the further development of AutoHAZID
software will be summarised. AutoHAZID would serve as an excellent
framework for studies on fluid property reasoning in the short term. Significant
improvement in the performance of AutoHAZID could be expected as a result of
further work in these areas:

Properties of mixtures: When fluids are mixed together, the properties of the
resulting fluid may significantly differ from the properties of the original fluids.
To estimate the properties of a mixture, its composition needs to be known. One
option is to define a breakpoint corresponding to every possible location of the
process where the composition of the fluid can change. In addition to intended
changes to the fluid composition (mixer, reactor, etc.), the breakpoint procedure

161

could cover unintended changes. The plant description could include optional
information on ”extra fluid components that could be present”. This would serve
as an educated guess of what extra fluids could mistakenly enter the process.
Another option would be to consider the possible breakdown of internal barriers,
such as closed valves, heat exchanger interfaces and pump seals, which are
expected to separate from each other the fluids at the opposite sides of the
barrier. Additionally, if the deviation considered in the current fault propagation
implies a change in the fluid composition or in the state of matter, the fluid
description should be changed accordingly.

Dependency on process conditions: The equipment models of AutoHAZID
could be extended to include all possible links between composition deviations
and other deviations, bearing in mind that the fluid model should take care of
screening out all those links which do not hold under the studied circumstances.
One way to handle the changes in process conditions due to fluid composition
changes is to evaluate the consequences using changed values of process
parameters. Another possibility is to build the dependencies into the equipment
models. This would require the addition of arcs which represent the relation
between composition deviations and other deviations in the models.

Downstream impacts of unintended reactions: Whenever unintended fluid
components can enter the process fluid, the compatibility of the new components
with the others should be checked using the compatibility matrix. The
consequences of composition deviations in the unit models could be extended to
correspond to a generic list of all the possible consequences of mixing
incompatible fluids, and the fluid model should take care of screening out the
irrelevant consequences using the reaction matrix.

Order of magnitude considerations: What would need to be done to improve
the handling of order of magnitude issues in AutoHAZID is to attach
quantitative information to the faults in the models. The magnitude of the impact
on a process parameter could be defined in terms of a value range, either
referring to the absolute value as the result of the fault or to the amount of
increase or decrease. In some cases it might be necessary to define the impact in
terms of a multiplier value with a range. The use of this kind of value ranges
would give AutoHAZID the possibility to reason about the expected magnitude

162

of the impact and thereby to detect such cases where the cause-consequence
chain is clearly unrealistic.

Filtering philosophy: Appropriate options should be offered to the users of
AutoHAZID for filtering the output to screen out results which, whilst they may
be correct, are uninteresting to them. For instance, some users might want to
screen out leakage scenarios. The classification of consequences could be
improved in two ways. Firstly, instead of a predefined classification, each actual
consequence of an identified event chain could be classified in a context
sensitive manner based on all what is known about the event chain. Secondly,
the list of consequences used in the models could be reconsidered. For instance,
it would make consequence classification and the associated filtering easier if
release incidents of different types were given unique names.

Data acquisition from the user: Estimating the size of leak-type faults is very
difficult to perform without help from the user. It is almost impossible for the
computer to consider and compare various relevant scenarios but a human expert
is normally able to give a reasonable estimate. Another type of information
which could be acquired from the user concerns the properties of possible
unintended reactions. It would be very difficult to make AutoHAZID capable of
understanding the reaction and of determining what are the resulting unintended
reaction products. A human expert could at least give a quick assessment of
what might happen and help AutoHAZID to go ahead with the reasoning based
on that assessment.

Properties of materials and reactions: The properties of materials of
construction could be handled by the fluid model system in the same way as
fluid properties. A set of material property queries to be resolved could be
defined. Values for the interesting properties of materials could be stored in an
internal data base of materials’ properties or retrieved from an external source.
In addition, the typical behaviour of different types of reactions in abnormal
situations could be described in a way similar to the HAZOPTOOL Chemical
Reaction Knowledge Base (RKB).

163

References

ADL. 1997. HAZOPtimizer for Windows. Arthur D. Little, Inc. Cambridge,
Massachusetts, USA. 2 p.

CEP. 1997. CEP software directory. Chemical Engineering Progress. January
1997.

Catino, C. A. and Ungar, L. H. 1995. A model-based approach to automated
hazard identification of chemical plants. AIChE Journal, 41, 97–109.

CCPS. 1985. Guidelines for hazard evaluation procedures. Center for Chemical
Process Safety (CCPS). AIChE, New York.

Christensen, P., Smith-Hansen, L., Heino, P., Fassera, G. and Poucet, A. 1991.
The use of knowledge bases in advanced computer aided safety analysis.
Reliability’91, London, June 1991.

Chung, P. W. 1993. Qualitative analysis of process plant behaviour. Proc. of the
Sixth International Conference on Industrial and Engineering Applications of
Artificial Intelligence and Expert Systems. Chung, P. W. H., Lovegrove, G. and
Ali, M. (eds), Gordon and Breach Science Publishers, Edinburgh. pp 277–283.

CIA. 1977. A guide to hazard and operability studies. London. Chemical
Industry safety and Health Council of the Chemical Industries Association
Limited. 42 p.

De Boisheraud, H. and Eury, S. 1991. Ariane’s Vulcain Engine – 1991 A
Vintage Year. ESA Bulletin 68. Pp. 67–75.

DYADEM. 1996. DDM-HAZOP 2.1. Advanced process hazard analysis
software. Dyadem International Ltd., Richmond Hill, Ontario, Canada. 2 p.

EEC. 1982. Council directive on the major-accident hazards of certain industrial
activities (82/501/EEC). Official Journal of the European Communities, No.
230, 5.8.1982, pp. 1–18.

164

Hatayama, S. 1980. A method for determining the compatibility of hazardous
wastes. US Environmental Protection Agency, EPA-600/2-80-076/April 1980.

Heino, P., Kotikunnas, E., Shei, W. F., Shao, C. C. and Chen, C. H. 1995.
Computer-aided HAZOP with knowledge-based identification of hazardous
event chains. In: Loss Prevention and Safety Promotion in the Process
Industries, Volume 1. J. J. Mewis, H. J. Pasman and E. E. De Rademaeker (eds.).
Elsevier. pp. 645–656.

Heino, P., Poucet, A. and Suokas, J. 1992. Computer tools for hazard
identification, modelling and analysis. Journal of Hazardous Materials, 29. pp.
445–463.

Hollnagel, E. and Cacciabue, C. 1992. Reliability assessment of interactive
systems with the system response generator. In: Petersen, K. E. and Rasmussen,
B. (eds.). Safety and Reliability ’92. London. Elsevier Applied Science. pp. 140–
150.

Kakko, R. 1991. The quantitative risk assessment (QRA) of major toxic hazards.
Espoo. Technical Research Centre of Finland, Publications 84. 82 p. + app. 114
p.

Karvonen, I., Heino, P. and Suokas, J. 1990. Knowledge-based approach to
support Hazop-studies. Espoo. Technical Research Centre of Finland, Research
Reports 704. 52 p. + app. 12 p.

Kelly, B. E. and Lees, F. P. 1986a. The propagation of faults in process plants: 1.
Modelling of fault propagation. Reliability Engineering, 16, pp. 1–38.

Kelly, B. E. and Lees, F. P. 1986b. The propagation of faults in process plants:
2. Fault tree synthesis. Reliability Engineering, 16, pp. 39–62.

Kelly, B. E. and Lees, F. P. 1986c. The propagation of faults in process plants: 3.
An interactive, computer-based facility. Reliability Engineering, 16, pp. 63–86.

Kelly, B. E. and Lees, F. P. 1986d. The propagation of faults in process plants:
4. Fault tree synthesis of a pump system changeover sequence. Reliability
Engineering, 16, pp. 87–108.

165

Kletz, T. A. 1983. HAZOP & HAZAN. Notes on the identification and
assessment of hazards. Rugby. The Institution of Chemical Engineers. 81 p.

Lawley, H. G. 1974. Operability studies and hazard analysis. Chemical
Engineering Progress, Vol. 70, No. 4. pp. 45–56.

Lees, F. P. 1996. Loss prevention in the process industries. Second edition.
London. Butterworths.

Leone, H. 1996. A knowledge-based system for HAZOP studies. The knowledge
representation structure. Computers chem. Engng., Vol. 20, Suppl., pp. S369–
S374.

OSHA. 1992. OSHA. Process safety management of highly hazardous
chemicals; explosives and blasting agents; final rule, 29 cfr 1910.119. 6356–
6417, Federal Register, Department of Labor, United States.

Parmar, J. C. and Lees, F. P. 1987. The propagation of faults in process plants:
Hazard identification. Reliability Engineering, 17, pp. 277–302.

Poucet, A. 1983. Computer aided fault tree synthesis. Commission of the
European Communities, Nuclear Science and Technology, Report EUR 8707
EN. 44 p.

Poucet, A. 1990. STARS: Knowledge based tools for safety and reliability
analysis. Reliability Engineering and System Safety, Vol 30, pp. 379–397.

Preston, M. 1995. STOPHAZ support tools for process hazard and operability
studies. In: Mewis, J. J. et al. (eds.) Loss Prevention and Safety Promotion in the
Process Industries, Vol. II. Elsevier. pp. 655–660.

Primatech. 1996. PHAWorks 3.0 for Windows. Primatech Inc., Columbus, Ohio,
USA. 2 p.

Rouhiainen, V. 1990. The quality assessment of safety analysis. Espoo.
Technical Research Centre of Finland. Publications 61. 133 p. + app. 30 p.

166

Rushton, A. G. 1997. Knowledge-based HAZOPs’. Part 2. European Process
Safety Centre (EPSC). 18 p.

Shimada, Y., Suzuki, K. and Sayama, H. 1996. Computer-aided operability
study. Computers chem. Engng., Vol. 20, No. 6/7, pp. 905–913.

Shimada, Y., Yang, Z.-X., Song, J.-W., Suzuki, K. and Sayama, H. 1995.
Computer-aided operability study for batch plants. Proc. Loss Prevention and
Safety Promotion in the Process Industries, Antwerp, Belgium, June 6–9, 1995.
Vol. 2. Eds. Mewis, J. J., Pasman, H. J. and De Rademaeker, E. E. Elsevier.
Amsterdam. pp. 587–598.

SINTEF. 1995. CARA. Computer aided risk analysis. Version 2.1. Users
manual. SINTEF, Trondheim, Norway.

Srinivasan, R. and Venkatasubramanian, V. 1996. Petri net-digraph models for
automating HAZOP analysis of batch process plants. Computers chem. Engng,
Vol. 20, Suppl., pp. S719–S725.

STOPHAZ. 1997. Final technical report. Deliverable D 7.3, ESPRIT project
8228 STOPHAZ. 6 p. + app. 389 p.

Suh, J. C., Lee, S. and Yoon, E. S. 1997. New strategy for automated hazard
analysis of chemical plants. Part 1: Knowledge modelling. J. Loss. Prev. Process
Ind., Vol. 10, No. 2, pp. 113–126.

Suh, J. C., Lee, S. and Yoon, E. S. 1997. New strategy for automated hazard
analysis of chemical plants. Part 2: Reasoning algorithm and case study. J. Loss.
Prev. Process Ind., Vol. 10, No. 2, pp. 127–134.

Suokas, J. 1985. On the reliability and validity of safety analysis. Espoo.
Technical Research Centre of Finland, Publications 25. 69 p. + app. 8 p.

Suokas, J. and Karvonen, I. 1985. A comparison of automatic fault tree
construction with hazard and operability study. Espoo. Technical Research
Centre of Finland, Research Reports 330. 36 p. + app. 8 p.

167

Taylor, J. R. 1982. An algorithm for fault tree construction. IEEE Transactions
on Reliability, R-26, 2. Pp. 137–146.

Technica. 1991. HAZSEC. DnV Technica, London, UK. 1 p.

Technica. 1994. SAFETIProfessional 5.1. DnV Technica, London, UK. 1 p.

Vaidhyanathan, R. and Venkatasubramanian, V. 1995. Digraph-based models
for automated HAZOP analysis. Reliability Engineering and System Safety, 50,
pp. 33–49.

Vaidhyanathan, R. and Venkatasubramanian, V. 1996a. Experience with an
expert system for automated HAZOP analysis. Computers chem. Engng., Vol.
20, Suppl., pp. S1589–S1594.

Vaidhyanathan, R. and Venkatasubramanian, V. 1996b. A semi-quantitative
reasoning methodology for filtering and ranking HAZOP results in
HAZOPExpert. Reliability Engineering and System Safety, 53, pp. 185–203.

Vecchetti, A. and Leone, H. 1996. SERO: A knowledge-based system for
HAZOP studies. In: Proc. AIChE Symp. #312 Intelligent Systems in Process
Engineering. Pp. 287–290.

Venkatasubramanian, V. and Rich, S. H. 1988. An object-oriented two-tier
architecture for integrating compiled and deep-level knowledge for process
diagnosis. Comput. Chem. Engng, Vol. 12, No. 9/10, pp. 903–921.

Venkatasubramanian, V. and Vaidhyanathan, R. 1994. A knowledge-based
framework for automating HAZOP analysis. AIChE Journal, Vol. 40, No. 3, pp.
496–505.

Zerkani, H. and Rushton, A. G. 1992. Computer emulation of hazard
identification. In: Interactions between process design and process control.
International Federation of Automatic Control Workshop, J. D. Perkins (ed.),
Pergamon, Oxford. pp. 221–226.

Appendices

1. Grammar for HAZOP expert rules

2. Example problems to be solved by the fluid model

3. Fluid model functionalities for solving the example problems

4. Compatibility matrix

5. Program listings of the autohazid fluid model functions

6. AutoHAZID comparative avaluation test cases

7. Autohazid reports for test case 1

8. Autohazid reports for test case 2

9. Trichloroethane storage system

1/1

Appendix 1: Grammar for HAZOP expert rules

hazop_rule left_side '-' '>' right_side ;

left_side '(' event ')' |
'(' event ')' left_side ;

right_side '(' event ')' ;

event free_text_event |
variable_event |
input_event |
output_event |
call_event ;

free_text-event '"' string_expression '"' |
'"' string_expression '"' '"' string_expression '"' |
'"' string_expression '"' '"' string_expression '"' '"'

string_expression '"';

variable_eventvariable |
combined_variable relation_operator

combined_variable |
combined_variable '"' string_expression '"' |
'"' string_expression '"' combined_variable |
'"' string_expression '"' combined_variable '"'

string_expression '"' ;

relation_operator '>' |
'=' |
'<' ;

input_event 'INPUT' flow deviation_expression ;

output_event 'OUTPUT' flow deviation_expression ;

1/2

call_event kb_keyword goal parameters ;

deviation_expression normal_deviation |
phase_deviation |
concentration_deviation |
extra_deviation ;

normal_deviation 'NO FLOW' |
'LOW FLOW' |
'HIGH FLOW' |
'REVERSE FLOW' |
'OTHER FLOW' |
'LOW TEMPERATURE' |
'HIGH TEMPERATURE' |
'LOW PRESSURE' |
'HIGH PRESSURE' |
'LOW LEVEL' |
'HIGH LEVEL' |
'LOW VISCOSITY' |
'HIGH VISCOSITY' |
'LOW pH' |
'HIGH pH' |
'HIGH SIGNAL' |
'LOW SIGNAL' ;

phase_deviation 'EXTRA PHASE' phase_keyword |
'WRONG PHASE' phase_keyword ;

concentration_deviation 'LOW CONCENTRATION' flow_component |
'HIGH CONCENTRATION' flow_component |
'MISSING SUBSTANCE' flow_component ;

extra-deviation 'EXTRA FLOW' matter |
'EXTRA SUBSTANCE' matter ;

1/3

phase_keyword 'SOLID' |
'LIQUID' |
'GAS' ;

flow_component combined_variable |
'"' string_expression '"' ;

matter variable |
'"' string_expression '"' ;

flow variable |
'"' string_expression '"' ;

kb_keyword 'SKB' | /* substances */
'RKB' | /* planned reactions */
'UWKB' ; /* unwanted reactions */

goal '"' string_expression '"' ;
/* should follow the hazard keywords in the called kb */

parameters parameter |
parameter parameters ;

parameter combined_variable |
'"' string_expression '"' ;
/* according to what parameters are needed by the

called kb */

combined_variable variable |
point_expression;

point_expression flow '.' 'subst';

variable string ;

string_expression string ;

2/1

Appendix 2: Example problems to be solved
by the fluid model

Peat Power Plant

1. Fire of peat due to friction heat at the outlet transporter device

2. Dust explosion of peat dust

3. Fire of peat due to excess air when the manhole is opened or then extra
holes are made to clear blockages

4. Peat cyclone erodes because of wrong material selection

LPG Storage System

5. Thermal expansion of LPG

6. LPG leakage and fire/explosion

7. Gasification of LPG

8. Unintended mixing of propane and butane

Black liquor system

9. Toxicity of black liquor

10. Burning / Water removal of weak water/liquor mixture

11. Formation of "soft soap cake" on the surface of liquid black liquor

12. "Water explosion" in black liquor burner

13. Problems in mixing tank lead to thickening of the mixture

14. Blockage due to burning of black liquor inside a heated pipeline

2/2

15. Explosion in "smoke gas hall" due to flames from the burner

16. Burning of strong water/liquor mixture

Propylene storage system

17. Thermal expansion of propylene

18. Propylene contaminated with water, freezing

19. Boiling of liquid propylene

20. Gasification of propylene inside pipeline

21. Pipe rupture due to low temperature

22. Explosion of propylene/air mixture

23. Hazards of mixing propylene with compressor cooling medium

24. Liquidation of propylene gas

25. Polymerization of propylene in 300 C

26. Decomposition of propylene in 400 C

27. Freezing of propylene

Cumene system

28. Toxicity of CHP

29. Gasification of CHP

30. Flammability of CHP

31. Decomposition of CHP, effect of contaminants

2/3

32. Decomposition of cumene

33. Formation of salts

34. Flammability of active carbon

35. Too low temperature for cumene oxidation

36. Extra input of alkalic chemical disturbs the oxidation reaction

37. Extra input of NaOH causes slow decomposition of CHP and
formation of phenol

38. Cumene decomposes into sulphur acid due to high concentration of
sulphur in cumene input, sulphur acid decomposes CHP into phenol
which disturbs the oxidation reaction

39. Corrosion due to high concentration of sulphur in cumene flow

40. Oxidation reaction is disturbed by extra air

41. High concentration of CHP in cumene input disturbs the oxidation
reaction

42. Extra flow of phenol or sulphur into reactor disturbs the oxidation
reaction

43. Violent decomposition of CHP due to high temperature

44. Violent decomposition of CHP due to increase of concentration after
reaction has been stopped

45. Catalysis is prevented due to the presence of alkalic compounds

46. Catalysis is stopped temporarily due to extra water

47. Catalysis is stopped temporarily due to extra glycol

48. Catalysis is prevented due to extra salts

2/4

49. Corrosion due to organic acids formed as side product in CHP
decomposition into phenol

50. Erosion due to extra metals

51. Oxidation reaction is disturbed by extra metals

52. Flammability of air/CHP mixture

3/1

Appendix 3: Fluid model functionalities for
solving the example problems

State of matter in given pressure or temperature

2: Is it solid in atmospheric conditions?

7: How high temperature is needed to turn liquid into gas in the given
pressure? Is such a temperature increase possible?

How low pressure is needed to turn liquid into gas in the given
temperature? Is such a pressure decrease possible?

11: How low temperature is needed to turn liquid into solid in the given
pressure? Is such a temperature decrease possible?

How high pressure is needed to turn liquid into solid in the given
temperature? Is such a pressure increase possible?

12. How high temperature is needed to turn liquid into vapour in the given
pressure? Is the design temperature of the unit significantly above that?
(see also Decomposition)

13: As 11, but for a mixture

18: As 11, but for a contaminant

19: As 7, but concerning the formation of vapour

20: As 7

24: How low temperature is needed to turn gas into liquid in the given
pressure? Is such a temperature decrease possible?

How high pressure is needed to turn gas into liquid in the given
temperature? Is such a pressure increase possible?

3/2

27: As 11

29: As 7

Flammability

1. Is a solid material flammable (look at oxygen content?) ? What is the
flammability limit concerning water content? Is it possible that the
material contains less water than that?

2. What is the flammability range of dust from a solid material? Is it
possible that the dust concentration goes within that range?

3. As 2

6. What is the flash point of the fluid? Is the outside temperature above
that?

10. As 1

15. What is the flammability range of a gas? Is it possible that the outside
process concentration of the gas goes within that range at an indoors
located part of the process? What is the flash point of the gas? Is the
outside temperature or the surface temperature of process equipment
above that?

16. As 1

22. As 15, but also concerning the inside process concentration of air

30. As 6 and 22

34. As 1

52. As 22

3/3

Compatibility

4. Is the processed fluid or solid material erosive? What is the sensitivity
of the material to erosion?

8. What are the properties of a mixture in the given pressure: flash point,
flammability range, boiling point?

23. Do the mixed fluids react? Is the reaction violent? Is there heat or gas
generation? What are the reaction products and what are their
properties, compatibility and hazards?

33. As 23

38. As 23, but see also reaction problems

39. Does the fluid corrode the materials of the process equipment?

49. As 39, but see also decomposition

50. As 4

Toxicity

9. Is the fluid toxic?

28. As 9

Decomposition

14. What is the decomposition temperature of a solid material? Is it
possible to reach that temperature on the surface of process equipment?
What are the properties and hazards of the decomposition products?

25. Does the fluid polymerise? What is the polymerisation temperature? Is
such a temperature increase possible?

3/4

26. What is the decomposition temperature of a fluid? Is such a
temperature increase possible? What are the properties, compatibility
and hazards of the decomposition products?

31. As 26

32. As 26

49. as 26, but see also compatibility

Material limits

21. What is the lower temperature limit of the material? Is such a
temperature decrease possible?

Reaction problems

35. What is the lower temperature limit for the reaction? Is such a
temperature decrease possible? Do other reactions take place in that
situation? What are the reaction products and their properties,
compatibility and hazards?

36. What is the compatibility of the reaction with extra components? Do
other reactions take place in that situation? What are the reaction
products and their properties, compatibility and hazards?

37. As 36

38. As 36, but see also decomposition

40. What is the sensitivity of the reaction to concentration deviations?
Does it lead to the violent acceleration of the reaction? Do other
reactions take place in that situation? What are the reaction products
and their properties, compatibility and hazards?

41. As 40

3/5

42. As 36

43. What is the higher temperature limit for the reaction? Is such a
temperature increase possible? Does it lead to the violent acceleration
of the reaction?

45. As 36

46. As 36

47. As 36

48. As 36

51. As 36

4/1

Appendix 4: Combatibility matrix

5/1

Appendix 5: Program listings of the autohazid
fluid model functions

extern void checkFluidProperty(CondReply *crep, const Pred& P1,
 const Location& L1)
{
 // This section checks every component in the list of components
for L1,
 // and if it cannot find a component in the fluid library, or if
the
 // property is non-false for any of the components, then the
 // function returns 1.

 for (int i = 0 ; i < L1.NoComps() ; i++)
 {
 Str N1 = L1.CompName(i);
 Fluid *fp1 = findFluid(N1);
 if (fp1 == NULL)
 { crep->set_reply(1);
 return;
 }

 // if got here fp1 is the fluid object of interest

 List *objList;
 objList = fp1->get_ruleObjects();

 if (!objList || objList->is_empty())
 {
 crep->set_reply(1); /* if no rules are found, assume that
 the property holds */
 return;
 }

 /* Call the backward chaining procedure to resolve the query
 topEvent using the rules objList which are valid for the
 fluid fluidName */

 StrTree condTree;
 Str topEvent = P1.Name();

 /* add double quotes and parentheses to topEvent */
 char *dqTopEvent, *topPtr;
 dqTopEvent = (char *)malloc(strlen(topEvent) + 5);
 topPtr = dqTopEvent;
 *dqTopEvent = '(';
 dqTopEvent++;
 *dqTopEvent = '\"';
 dqTopEvent++;
 strcpy(dqTopEvent, topEvent);
 dqTopEvent = dqTopEvent + strlen(topEvent);
 *dqTopEvent = '\"';
 dqTopEvent++;

5/2

 *dqTopEvent = ')';
 dqTopEvent++;
 *dqTopEvent = '\0';

 /* call backward chaining of rules */
 int bc_ok = 0;
 bc_ok = backwardChain(&condTree, topPtr, objList);

 /* substitute variables
 NOTE! in case of multi-valued variables this should
 create multiple branches to the tree; an association list
 of variables and values should be used in the recursive
 variable substitution function to avoid using different
 value for the same variable within the same subtree */

 List var_list;
 List *var_list_p;
 var_list_p = &var_list;

 int sv_ok = 0;
 sv_ok = substituteVariables(&condTree, var_list_p, fp1, L1);

 /* evaluate the nodes */
 int en_ok = 0;
 en_ok = evaluateNodes(&condTree);

 /* return the answer */
 if (condTree.true()) crep->set_reply(1);
 else if (condTree.false()); /* leave the reply as it is */
 else crep->set_reply(2); /* error */
 }

return;
}

5/3

Fluid *findFluid(const Str& N1)
{
 // Scan the list of fluids known about by the program :
 for (Cell *c1 = fluidList.first() ; c1 ; c1 = fluidList.next(c1))
 {
 Fluid *fp1 = (Fluid*)(fluidList.content(c1));
 assert(fp1 != NULL);
 // Check for matching name :
 if (N1 == fp1->name())
 return fp1;
 }
 // If not found so far, return NULL :
 return NULL;
}

5/4

List* get_ruleObjects(){return &ruleObjects;}

5/5

int backwardChain(StrTree *condTree, char *topEvent, List *ruleList)
{
 FRule* rule_p_cvector[MAX_RULES_FOR_EVENT];
 int empty_node_flag;

 /* create tree node (topEvent) */

 StrTree *new_node_p;
 new_node_p = new StrTree();

 Str *eventStr;
 eventStr = new Str(topEvent);

 new_node_p->set_nodetext(*eventStr);

 new_node_p->set_gate_type(GTT_TERM);

 if (condTree->first_child() == NULL) /* no child nodes
 before */
 {
 condTree->set_first_child(new_node_p);
 new_node_p->set_parent(condTree);
 condTree->set_gate_type(GTT_OR);
 }
 else /* other child nodes exist */
 {
 new_node_p->set_next_sister(condTree->first_child());
 (condTree->first_child())
 ->set_prev_sister(new_node_p);
 condTree->set_first_child(new_node_p);
 new_node_p->set_parent(condTree);
 }

 /* find rules (topEvent) */

 FRule *fr;
 fr = (FRule *)(ruleList->content(1));
 fr->findRules(&rule_p_vector[0], topEvent, ruleList);

 /* examine the rules, to prevent loops, do not consider such
 rules which are already in use within this branch of the
 recursion */

 int rule_ind = 0;
 while (rule_p_vector[rule_ind] != NULL)
 {
 if (rule_p_vector[rule_ind]->bc_in_use() == EXPF_IN_USE)
 rule_ind++;
 else
 {
 rule_p_vector[rule_ind]->set_in_use(EXPF_IN_USE);

 /* if there are many rules, add an empty node to the tree
 to avoid mixing OR-statements with AND-statements;
 unnecessary empty nodes are removed before the end
 result is returned */

5/6

 int left_length = (rule_p_vector[rule_ind]
 ->left())->length();
 if ((left_length > 1) && (rule_p_vector[1] != NULL))
 empty_node_flag = EMPTY_NODE;
 else
 empty_node_flag = NO_EMPTY_NODE;

 if (empty_node_flag == EMPTY_NODE)
 {
 /* create a node */

 StrTree *empty_node_p;
 empty_node_p = new StrTree();

 empty_node_p->set_parent(new_node_p);

 /* use the empty node in place of the actual node */
 /* if there is already an empty node, make it a sister
 of the new empty node */

 empty_node_p->set_next_sister(new_node_p
 ->first_child());
 if (empty_node_p->next_sister() != NULL)
 {
 (empty_node_p->next_sister())
 ->set_prev_sister(empty_node_p);
 }

 /* the parent of an empty node should always be an
 OR gate */
 new_node_p->set_gate_type(GTT_OR);

 new_node_p->set_first_child(empty_node_p);
 new_node_p = empty_node_p;

 }

 /* examine the left side statements of the current rule */

 List* left_p = rule_p_vector[rule_ind]->left();
 int and_flag = GTT_OR;
 int left_ind = 1;

 while (left_ind <= left_p->length())
 {

 char *left_event;
 left_event = (char *)(left_p->content(left_ind));

 int bc_rec_ok;
 bc_rec_ok = backwardChain(new_node_p, left_event,
 ruleList);

5/7

 /* if there is only one left side statement, this
 makes the node an OR-gate */
 /* if there are more left-side statements, there will
 be a next round of this loop */
 /* and the node will be made an AND-gate */
 new_node_p->set_gate_type(and_flag);
 and_flag = GTT_AND;
 left_ind++;
 }

 /* if this is an empty node, return to its parent node */
 if (empty_node_flag == EMPTY_NODE) new_node_p =
 new_node_p->parent();

 /* as we have just returned from the recursive branch,
 mark the rule unused again */
 rule_p_vector[rule_ind]->set_in_use(EXPF_NOT_IN_USE);

 /* go to next rule */
 rule_ind++;
 }
 }

 return 1;
}

5/8

void FRule::findRules(FRule** rule_p_vector_p, char* topEvent, List*
ruleList)
{

/* initialize the pointer vector */

int rv_ind;

for (rv_ind = 0; rv_ind < MAX_RULES_FOR_EVENT; rv_ind++)
{
 rule_p_vector_p[rv_ind] = NULL;
}
rv_ind = 0;

/* loop through the rules */

int rule_ind = 1;

while (rule_ind <= ruleList->length())
{

 /* compare the top event to the right side of
 the rule */

 char *string1, *string2;

 FRule *rule_obj_p;
 rule_obj_p = (FRule *)(ruleList

 ->content(rule_ind));

 List *right_p;
 right_p = rule_obj_p->right();

 char *stat_p;
 stat_p = (char *)(right_p->content(1));
 lowercase(stat_p);
 lowercase(topEvent);

 string1 = this->Remove_Blancs(stat_p);
 string2 = this->Remove_Blancs(topEvent);

 if (!strcmp(string1,string2)){
 rule_p_vector_p[rv_ind] = rule_obj_p;
 rv_ind++;

 }

 /* go to next rule */

 rule_ind++;
}

return;

}

5/9

int substituteVariables(StrTree *condTree, List *var_list_p,
 Fluid *flu, const Location& L1)
{

 char *text_p, *word, *original_event_text, *event_p, *new_event_p;
 char new_event[MAX_EVENT_LENGTH];
 int word_end, rest_start;

 /* allocate memory for string manipulation results */
 char *string1, *string2, *string3;
 string1 = (char *)malloc(MAX_EVENT_LENGTH);
 string2 = NULL;
 string3 = (char *)malloc(MAX_EVENT_LENGTH);

 /* go through the subtree */

 List value_list;
 int value_flag = TRUE;

 while (value_flag == TRUE)
 {
 if (condTree != NULL)
 {
 if (condTree->this_node() == "")
 {
 value_flag = FALSE;
 int sv_ok = 0;
 sv_ok = substituteVariables(condTree->first_child(),
 var_list_p, flu, L1);
 sv_ok = substituteVariables(condTree->next_sister(),
 var_list_p, flu, L1);
 }
 else
 {
 /* set a pointer to the beginning of event_text and start to
 extract variable names until the end of event_text */

 value_flag = FALSE;
 text_p = (condTree->this_node());
 text_p++; /* skip the leading parenthesis */
 while ((value_flag == FALSE) && (text_p != NULL)
 && (*text_p != '\0') && (*text_p != ')'))
 {
 int skip_flag = FALSE;
 word = NULL;

 /* remove extra spaces and skip the operators <, >, = and
 !=, operator check added by PMH 2.7.1996 */
 while ((text_p != NULL) && (
 (*text_p == ' ') || (*text_p == '<') ||
 (*text_p == '>') || (*text_p == '=') ||
 (*text_p == '!'))) text_p++;
 if ((text_p != NULL) && (*text_p == '\0'))
 skip_flag = TRUE;

5/10

 /* if the next character is a double quote, move to the
 next double quote */
 if ((skip_flag == FALSE) && (*text_p == '\"'))
 {
 text_p++;
 text_p = strstr(text_p, "\"");
 if (text_p != NULL) text_p++;
 skip_flag = TRUE;
 }

 word_end = (int)strcspn(text_p, ") \0");

 word = (char *)malloc(word_end+1);

 strncpy(word, text_p, word_end);
 word[word_end] = '\0';

 /* when a variable name is found, retrieve values from the
 fluid object, convert the variable name
 to lower case */

 if (skip_flag == FALSE)
 {
 lowercase(word);
 double *d_value;
 d_value = (double *)malloc(sizeof(double));
 *d_value = -999.000;

 if (!strcmp(word, "cas"))
 {
 *d_value = flu->CasNum();
 }
 else if (!strcmp(word, "molwt"))
 {
 *d_value = flu->molWeight();
 }
 else if (!strcmp(word, "freezept"))
 {
 *d_value = flu->freezingPt();
 }
 else if (!strcmp(word, "decomptmp"))
 {
 *d_value = flu->decompTemp();
 }
 else if (!strcmp(word, "flashpt"))
 {
 *d_value = flu->flashPoint();
 }
 else if (!strcmp(word, "autoignitionpt"))
 {
 *d_value = flu->autoIgnitionPoint();
 }
 else if (!strcmp(word, "lowflamlim"))
 {
 *d_value = flu->lowerFlamLim();
 }

5/11

 else if (!strcmp(word, "tox"))
 {
 *d_value = flu->toxicity();
 }
 else if (!strcmp(word, "lat"))
 {
 *d_value = flu->latHeat();
 }
 else if (!strcmp(word, "boilpt"))
 {
 *d_value = flu->bpatamb();
 }
 else if (!strcmp(word, "phystate"))
 /* this is a call to the properties package */
 {
 /* default value 0 triggers the evaluation of
 convential rules for state of matter */

 *d_value = 0.0;

 #if _MSDOS
 int i_value, iErr;

 preparePropertyCall(pPrpSpec, PHYSTATE, L1);

 iErr = shz_calc_prp(pPrpSpec, pPrpRes);
 if (iErr) i_value = 0; /* default */
 else i_value = pPrpRes->Result1.iResult;
 *d_value = (double) i_value;
 #endif /* MSDOS */
 }
 else if (!strcmp(word, "pressure"))
 /* unit pressure from the input parameter */
 {
 *d_value = L1.Pressure();
 }
 else if (!strcmp(word, "temperature"))
 /* unit temperature from the input parameter */
 {
 *d_value = L1.Temperature();
 }

 if ((*d_value < -999.005) || (*d_value > -998.995))
 /* in other words, d_value != -999.000 which means
 value found */
 {
 value_list.append(d_value);
 }

 /* exit with no modifications if there are no values,
 and set the default truth value to true because
 there are variables with no values, PMH 2.7.1996 */

 if (value_list.first() == NULL)
 {

5/12

 condTree->set_true();
 skip_flag = TRUE;
 }
 }

 /* for the first value, modify event_text */

 value_flag = FALSE;
 if ((skip_flag == FALSE) && (value_list.first() != NULL))
 {
 event_p = (condTree->this_node());
 new_event_p = &new_event[0];
 while ((*event_p != '\0') && (event_p != text_p))
 {
 *new_event_p = *event_p;
 new_event_p++;
 event_p++;
 }

 char value[MAX_DOUBLE_LEN];
 char *value_str;
 value_str = &value[0];
 int dec, sign;

 double *var_value;
 var_value = (double *)(value_list.content(1));
 value_str = ecvt(*var_value, MAX_DOUBLE_LEN,
 &dec, &sign);
 if (sign != 0) /* negative */
 {
 *new_event_p = '-';
 new_event_p++;
 }
 if (dec > 0) /* part before decimal point */
 {
 strncpy(new_event_p, value_str, dec);
 new_event_p = new_event_p + dec;
 value_str = value_str + dec;
 }
 new_event_p = '.'; / the decimal point */
 new_event_p++;
 strcpy(new_event_p, value_str);
 new_event_p = new_event_p + strlen(value_str);
 rest_start = new_event_p - &new_event[0];
 event_p = text_p + word_end;
 while (*event_p != '\0')
 {
 *new_event_p = *event_p;
 new_event_p++;
 event_p++;
 }
 *new_event_p = '\0';

5/13

 /* store the original event_text for later use */

 if (condTree->this_node() == "")
 original_event_text = NULL;
 else
 {
 original_event_text =
 (char *)malloc(strlen((condTree->this_node()))+1);
 strcpy(original_event_text, (condTree->this_node()));
 }

 condTree->set_nodetext(&new_event[0]);

 text_p = (condTree->this_node());
 text_p = text_p + rest_start;
 word_end = 0;

 }

 /* remove all old values from value_list */
 int vl_len;
 vl_len = value_list.length();
 value_list.drop(vl_len);

 /* these help the system to work correctly even if no
 values were found */
 if (word != NULL) free(word);
 if (word_end == 0) text_p++;
 else text_p = text_p + word_end;
 }

 int sv_ok = 0;
 if (value_flag == FALSE)
 sv_ok = substituteVariables(condTree->first_child(),
 var_list_p, flu, L1);

 /* go through the sisters, too */
 if ((value_flag == FALSE) &&
 (condTree->next_sister() != NULL))
 {
 sv_ok = substituteVariables(condTree->next_sister(),
 var_list_p, flu, L1);
 }
 }
 }
 else value_flag = FALSE; /* condTree == NULL */
 }

 free(string1);
 free(string3);
 if (string2 != NULL) free(string2);

 return 1;
}

5/14

void preparePropertyCall(S_PRP_SPEC *pPrpSpec, SHZ_PROP routine,
 const Location& L1)
{
 pPrpSpec->PropName = routine;
 pPrpSpec->zMethod = "DEFAULT";
 pPrpSpec->fSpec1 = (float) L1.Temperature() + (float) 273.0;
 // Convert to K
 pPrpSpec->fSpec2 = (float) L1.Pressure();

 if (routine == TB)
 {
 pPrpSpec->fSpec1 = (float) L1.Pressure();
 pPrpSpec->fSpec2 = 0.0;
 }
 else if (routine == TFREEZE)
 {
 pPrpSpec->fSpec1 = 0.0;
 pPrpSpec->fSpec2 = 0.0;
 }

 pPrpSpec->iNComps = L1.NoComps();

 // Read the list of components and component fractions from L1

 for (int i = 0; i<L1.NoComps(); ++i)
 {
 pPrpSpec->faCompFrac[i] = (float) L1.CompValue(i);
 // The calls require the indexes of the component names
 // -1 is returned if the component specified for L1 is
 // not found in the global list
 // This means that non-existing components will be indicated
 // by 0 in iaCompList
 pPrpSpec->iaCompList[i] =
 globalCompList.Find(L1.CompName(i)) +1;
 }

}

5/15

int evaluateNodes(StrTree *condTree)
{
 char *char_p, *left_p, *left_end_p, *string1, *right_p,
 *right_end_p, *string2;
 char *dec_p, *cmp_str;
 int alloc_size, dl1, dl2, cmp_alloc, declen;

 StrTree *child_p;
 child_p = condTree->first_child();
 while (child_p != NULL)
 {
 int en_ok;
 en_ok = evaluateNodes(child_p);
 child_p = child_p->next_sister();
 }

 /* if the node is a terminal node, evaluate it,
 but if the default value is already true there is no need to
 evaluate because that means that there are variables with no
 value within nodetext, PMH 2.7.1996
 the function intforcmp and related preparative code added by
 PMH 31.7.1996 */
 if ((condTree->first_child() == NULL) && (condTree->false()))
 {
 char_p = strstr((condTree->this_node()), "!=");
 if (char_p != NULL)
 {
 left_p = (condTree->this_node());
 while (((*left_p == '(') || (*left_p == ' ') ||
 (*left_p == '\"'))
 && (*left_p != '\0')) left_p++;
 left_end_p = char_p;
 left_end_p--;
 while ((*left_end_p == ' ') || (*left_end_p == '\"'))
 left_end_p--;
 left_end_p++;
 alloc_size = strlen(left_p) - strlen(left_end_p) + 1;
 if (alloc_size < 1) alloc_size = 1;
 string1 = (char *)malloc(alloc_size);
 strncpy(string1, left_p, alloc_size - 1);
 string1[alloc_size - 1] = '\0';
 right_p = &(char_p[2]);
 while (((*right_p == ' ') || (*right_p == '\"')) &&
 (*right_p != '\0')) right_p++;
 right_end_p = &char_p[2];
 while (*right_end_p != '\0') right_end_p++;
 right_end_p--;
 while ((*right_end_p == ' ') || (*right_end_p == '\"')
 || (*right_end_p == ')')) right_end_p--;
 right_end_p++;
 alloc_size = strlen(right_p) - strlen(right_end_p) + 1;
 if (alloc_size < 1) alloc_size = 1;
 string2 = (char *)malloc(alloc_size);
 strncpy(string2, right_p, alloc_size - 1);
 string2[alloc_size - 1] = '\0';

5/16

 dec_p = strstr(string1, ".");
 if (dec_p == NULL) dl1 = 0;
 else dl1 = strlen(dec_p) - 1;

 dec_p = strstr(string2, ".");
 if (dec_p == NULL) dl2 = 0;
 else dl2 = strlen(dec_p) - 1;

 if (dl1 > dl2)
 {
 cmp_alloc = strlen(string2) + dl1 + 1;
 cmp_str = (char *)malloc(cmp_alloc);
 strcpy(cmp_str, string2);
 free(string2);
 string2 = cmp_str;
 declen = dl1;
 }

 if (dl2 > dl1)
 {
 cmp_alloc = strlen(string1) + dl2 + 1;
 cmp_str = (char *)malloc(cmp_alloc);
 strcpy(cmp_str, string1);
 free(string1);
 string1 = cmp_str;
 declen = dl2;
 }

 intforcomp(string1, declen);
 intforcomp(string2, declen);

 if (!strcmp(string1, string2)) condTree->set_false();
 else condTree->set_true();

 free(string1);
 free(string2);
 }
 else
 {
 char_p = strstr((condTree->this_node()), "=");
 if (char_p != NULL)
 {
 left_p = (condTree->this_node());
 while (((*left_p == '(') || (*left_p == ' ')
 || (*left_p == '\"'))
 && (*left_p != '\0')) left_p++;
 left_end_p = char_p;
 left_end_p--;
 while ((*left_end_p == ' ') || (*left_end_p == '\"'))
 left_end_p--;
 left_end_p++;
 alloc_size = strlen(left_p) - strlen(left_end_p) + 1;
 if (alloc_size < 1) alloc_size = 1;
 string1 = (char *)malloc(alloc_size);

5/17

 strncpy(string1, left_p, alloc_size - 1);
 string1[alloc_size - 1] = '\0';
 right_p = &(char_p[1]);
 while (((*right_p == ' ') || (*right_p == '\"'))
 && (*right_p != '\0')) right_p++;
 right_end_p = &char_p[1];
 while (*right_end_p != '\0') right_end_p++;
 right_end_p--;
 while ((*right_end_p == ' ') || (*right_end_p == '\"')
 || (*right_end_p == ')')) right_end_p--;
 right_end_p++;
 alloc_size = strlen(right_p) - strlen(right_end_p) + 1;
 if (alloc_size < 1) alloc_size = 1;
 string2 = (char *)malloc(alloc_size);
 strncpy(string2, right_p, alloc_size - 1);
 string2[alloc_size - 1] = '\0';

 dec_p = strstr(string1, ".");
 if (dec_p == NULL) dl1 = 0;
 else dl1 = strlen(dec_p) - 1;

 dec_p = strstr(string2, ".");
 if (dec_p == NULL) dl2 = 0;
 else dl2 = strlen(dec_p) - 1;

 if (dl1 > dl2)
 {
 cmp_alloc = strlen(string2) + dl1 + 1;
 cmp_str = (char *)malloc(cmp_alloc);
 strcpy(cmp_str, string2);
 free(string2);
 string2 = cmp_str;
 declen = dl1;
 }

 if (dl2 > dl1)
 {
 cmp_alloc = strlen(string1) + dl2 + 1;
 cmp_str = (char *)malloc(cmp_alloc);
 strcpy(cmp_str, string1);
 free(string1);
 string1 = cmp_str;
 declen = dl2;
 }

 intforcomp(string1, declen);
 intforcomp(string2, declen);

 if (!strcmp(string1, string2)) condTree->set_true();
 else condTree->set_false();

 free(string1);
 free(string2);
 }

5/18

 else
 {
 char_p = strstr((condTree->this_node()), "<");
 if (char_p != NULL)
 {
 left_p = (condTree->this_node());
 while (((*left_p == '(') || (*left_p == ' ')
 || (*left_p == '\"'))
 && (*left_p != '\0')) left_p++;
 left_end_p = char_p;
 left_end_p--;
 while ((*left_end_p == ' ') || (*left_end_p == '\"'))
 left_end_p--;
 left_end_p++;
 alloc_size = strlen(left_p) - strlen(left_end_p) + 1;
 if (alloc_size < 1) alloc_size = 1;
 string1 = (char *)malloc(alloc_size);
 strncpy(string1, left_p, alloc_size - 1);
 string1[alloc_size - 1] = '\0';
 right_p = &(char_p[1]);
 while (((*right_p == ' ') || (*right_p == '\"'))
 && (*right_p != '\0')) right_p++;
 right_end_p = &char_p[1];
 while (*right_end_p != '\0') right_end_p++;
 right_end_p--;
 while ((*right_end_p == ' ') || (*right_end_p == '\"')
 || (*right_end_p == ')')) right_end_p--;
 right_end_p++;
 alloc_size = strlen(right_p) - strlen(right_end_p) + 1;
 if (alloc_size < 1) alloc_size = 1;
 string2 = (char *)malloc(alloc_size);
 strncpy(string2, right_p, alloc_size - 1);
 string2[alloc_size - 1] = '\0';

 dec_p = strstr(string1, ".");
 if (dec_p == NULL) dl1 = 0;
 else dl1 = strlen(dec_p) - 1;

 dec_p = strstr(string2, ".");
 if (dec_p == NULL) dl2 = 0;
 else dl2 = strlen(dec_p) - 1;

 if (dl1 > dl2)
 {
 cmp_alloc = strlen(string2) + dl1 + 1;
 cmp_str = (char *)malloc(cmp_alloc);
 strcpy(cmp_str, string2);
 free(string2);
 string2 = cmp_str;
 declen = dl1;
 }
 else if (dl2 > dl1)
 {
 cmp_alloc = strlen(string1) + dl2 + 1;
 cmp_str = (char *)malloc(cmp_alloc);

5/19

 strcpy(cmp_str, string1);
 free(string1);
 string1 = cmp_str;
 declen = dl2;
 }
 else /* dl1 == dl2 */
 declen = dl1;

 intforcomp(string1, declen);
 intforcomp(string2, declen);

 if (*string1 == '-')
 {
 if (*string2 == '-')
 {
 if (strlen(string1) > strlen(string2))
 condTree->set_true();
 else
 {
 if (strlen(string1) < strlen(string2))
 condTree->set_false();
 else
 {
 if (*string1 > *string2) condTree->set_true();
 else condTree->set_false();
 }
 }
 }
 else condTree->set_true();
 }
 else
 {
 if (*string2 == '-') condTree->set_false();
 else
 {
 if (strlen(string1) < strlen(string2))
 condTree->set_true();
 else
 {
 if (strlen(string1) > strlen(string2))
 condTree->set_false();
 else
 {
 if (*string1 < *string2) condTree->set_true();
 else condTree->set_false();
 }
 }
 }
 }

 free(string1);
 free(string2);
 }
 else
 {

5/20

 char_p = strstr((condTree->this_node()), ">");
 if (char_p != NULL)
 {
 left_p = (condTree->this_node());
 while (((*left_p == '(') || (*left_p == ' ')
 || (*left_p == '\"'))
 && (*left_p != '\0')) left_p++;
 left_end_p = char_p;
 left_end_p--;
 while ((*left_end_p == ' ') || (*left_end_p == '\"'))
 left_end_p--;
 left_end_p++;
 alloc_size = strlen(left_p) - strlen(left_end_p) + 1;
 if (alloc_size < 1) alloc_size = 1;
 string1 = (char *)malloc(alloc_size);
 strncpy(string1, left_p, alloc_size - 1);
 string1[alloc_size - 1] = '\0';
 right_p = &(char_p[1]);
 while (((*right_p == ' ') || (*right_p == '\"'))
 && (*right_p != '\0')) right_p++;
 right_end_p = &char_p[1];
 while (*right_end_p != '\0') right_end_p++;
 right_end_p--;
 while ((*right_end_p == ' ') || (*right_end_p == '\"')
 || (*right_end_p == ')')) right_end_p--;
 right_end_p++;
 alloc_size = strlen(right_p) - strlen(right_end_p) + 1;
 if (alloc_size < 1) alloc_size = 1;
 string2 = (char *)malloc(alloc_size);
 strncpy(string2, right_p, alloc_size - 1);
 string2[alloc_size - 1] = '\0';

 dec_p = strstr(string1, ".");
 if (dec_p == NULL) dl1 = 0;
 else dl1 = strlen(dec_p) - 1;

 dec_p = strstr(string2, ".");
 if (dec_p == NULL) dl2 = 0;
 else dl2 = strlen(dec_p) - 1;

 if (dl1 > dl2)
 {
 cmp_alloc = strlen(string2) + dl1 + 1;
 cmp_str = (char *)malloc(cmp_alloc);
 strcpy(cmp_str, string2);
 free(string2);
 string2 = cmp_str;
 declen = dl1;
 }

5/21

 else if (dl2 > dl1)
 {
 cmp_alloc = strlen(string1) + dl2 + 1;
 cmp_str = (char *)malloc(cmp_alloc);
 strcpy(cmp_str, string1);
 free(string1);
 string1 = cmp_str;
 declen = dl2;
 }
 else /* dl1 == dl2 */
 declen = dl1;

 intforcomp(string1, declen);
 intforcomp(string2, declen);

 if (*string1 == '-')
 {
 if (*string2 == '-')
 {
 if (strlen(string1) > strlen(string2))
 condTree->set_false();
 else
 {
 if (strlen(string1) < strlen(string2))
 condTree->set_true();
 else
 {
 if (*string1 < *string2) condTree->set_true();
 else condTree->set_false();
 }
 }
 }
 else condTree->set_false();
 }
 else
 {
 if (*string2 == '-') condTree->set_true();
 else
 {
 if (strlen(string1) < strlen(string2))
 condTree->set_false();
 else
 {
 if (strlen(string1) > strlen(string2))
 condTree->set_true();
 else
 {
 if (*string1 > *string2) condTree->set_true();
 else condTree->set_false();
 }
 }
 }
 }

5/22

 free(string1);
 free(string2);
 }
 else condTree->set_true(); /* the terminal node does not
 contain operators; Default to true, PMH 2.7.1996 */

 }

 }

 }
 }

 /* if the node is not a terminal node, evaluate it based on the
 childrens truth values */

 if (condTree->gate_type() == GTT_OR)
 {
 condTree->set_false();
 child_p = condTree->first_child();
 while (child_p != NULL)
 {
 if (child_p->true()) condTree->set_true();
 child_p = child_p->next_sister();
 }
 }
 if (condTree->gate_type() == GTT_AND)
 {
 condTree->set_true();
 child_p = condTree->first_child();
 while (child_p != NULL)
 {
 if (child_p->false()) condTree->set_false();
 child_p = child_p->next_sister();
 }
 }

 return 1;
}

6/1

Appendix 6: AutoHAZID comparative
evaluation test cases

6/2

6/3

6/4

6/5

7/1

Appendix 7: Autohazid reports for test case 1

No fluid model

Report for FULL PLANT HAZOP.
HAZOP started at Thu Feb 12 10:32:57 1998
HAZOP completed at Thu Feb 12 10:34:40 1998

Library Used : library2
Plant Used : plants\test1.pl
Results File : results\test1.no
Templates File : tlib
Fluids File : fluidlib

Flag Settings Used

display faults with no consequences NO
display consequences with no causes NO
filter out repeat faults YES
filter out repeat fault-conseq pairs YES
display protections present NO
only display faults with no protections YES
consequence rank threshold set at 1

--
|DEVIATION |CAUSE |CONSEQUENCE |
--
pumpJ1 lessFlow	pumpJ1 air ingress into pump	possible internal
in		explosive atmosphere
		4

	dummyHead1 leak to environment	toxic release 2,
		fire/explosion risk
		2, fire or explosion
		risk 2,
		non-hazardous
		release 1
--
pumpJ1 moreFlow	pumpJ1 leak to environment	fire/explosion risk
in		2, toxic release 2,
		non-hazardous
		release 1
--
pumpJ1 noFlow	dummyHead1 no flow upstream,	dry running -
in	dummyHead1 blockage - solids,	possible pump
	dummyHead1 blockage - frozen fluid	rupture 2
--
pumpJ1 revFlow	dummyHead1 low pressure upstream,	seal failure due to
in	pumpJ1 loss of drive,	reverse impeller
	tail1 high pressure downstream,	rotation 2, possible
	pumpJ1 incorrect pump setup/installation	suction piping
		overpressure 2

7/2

--
pumpJ1	dummyHead1 blockage - solids,	cavitation due to
lessPressure in	pumpJ1 leak to environment,	evolution of gases 3,
	dummyHead1 blockage - frozen fluid,	cavitation - possible
	dummyHead1 leak to environment,	mechanical damage 3
	dummyHead1 low pressure upstream	
--
pumpJ1 lessTemp	dummyHead1 low temp upstream	seal failure -
in		freezing of seal
		fluids 2, brittle
		fracture 2
--
pumpJ1 moreGas	pumpJ1 air ingress into pump	vapour lock 3, pump
in		damage - increased
		vibration 3, bearing
		overheat - loss of
		lubrication 3
--
|pumpJ1 |dummyHead1 high temp upstream, |cavitation - possible|
|moreVapour in |pumpJ1 external fire |mechanical damage 3 |
--
pumpJ1 moreFlow	dummyHead1 high pressure upstream,	possible motor
out	pumpJ1 pressure surge at startup or	overload or trip 3
	shut-down,	
	pumpJ1 lessPressure out	
--
pumpJ1 noFlow	levelControlValve fails closed,	possible pump casing
out	tail1 blockage - frozen fluid,	overtemperature 2,
	valve1 closed,	possible seal
	valve1 blockage - frozen fluid,	overtemperature 2
	levelControlValve blockage - solids,	
	valve1 blockage - solids,	
	valve3 blockage - solids,	
	halfMileLine blockage - frozen fluid,	
	levelControlValve blockage - frozen	
	fluid,	
	halfMileLine blockage - solids,	
	tail1 complete blockage downstream,	
	valve3 closed,	
	tail1 blockage - solids,	
	valve3 blockage - frozen fluid	
--
pumpJ1	tail1 leak to environment,	toxic release 2,
lessPressure	valve1 leak to environment,	fire/explosion risk
out	levelControlValve leak to environment,	2, non-hazardous
	halfMileLine leak to environment,	release 1
	valve3 leak to environment	
--
pumpJ1	levelControlValve loss of control,	possible pump casing
morePressure	valve3 partly closed,	or delivery pipework
out	dummyHead1 high pressure upstream,	overpressure 2,
	tail1 blockage - frozen fluid,	possible seal
	valve1 blockage - frozen fluid,	overpressure 2
	levelControlValve blockage - frozen	
	fluid,	
	valve1 blockage - solids,	
	valve3 blockage - frozen fluid,	
	valve1 partly closed,	
	levelControlValve blockage - solids,	
	halfMileLine blockage - frozen fluid,	
	pumpJ1 pressure surge at startup or	
	shut-down,	

7/3

	tail1 high pressure downstream,	
	halfMileLine blockage - solids,	
	tail1 blockage - solids,	
	valve3 blockage - solids	

pumpJ1 moreTemp	dummyHead1 high temp upstream,	possible fluid
out	pumpJ1 lessFlow out,	decomposition 3,
	pumpJ1 external fire	possible seal
		overtemperature 2,
		possible pump casing
		overtemperature 2
--
|pumpJ1 |pumpJ1 no drains available |inadequate isolation |
|maintenance | |and drainage 2 |
--
pumpJ1 startup	pumpJ1 no pressure sensor on pump	cannot monitor
	delivery	pressure development
		at start-up 4
--
halfMileLine	halfMileLine unit can be locked in	potential for liquid
morePressure in		lock in and damage to
		unit by thermal
		expansion 3
--
halfMileLine	dummyHead1 high temp upstream,	design temp exceeded
moreTemp out	halfMileLine hot weather,	2
	pumpJ1 external fire,	
	halfMileLine external fire,	
	pumpJ1 lessFlow out	
--
|halfMileLine |halfMileLine no drains available |inadequate isolation |
|maintenance | |and drainage 2 |
--
dummyHead1	pumpJ1 incorrect pump setup/installation,	possible upstream
revFlow out	dummyHead1 low pressure upstream,	contamination 3
	tail1 high pressure downstream,	
	pumpJ1 loss of drive	
--
|tail1 lessTemp |levelControlValve flashing across valve |possible valve damage|
|in | |3 |
--

7/4

With limited fluid model

Report for FULL PLANT HAZOP.
HAZOP started at Thu Feb 12 10:43:01 1998
HAZOP completed at Thu Feb 12 10:44:34 1998

Library Used: library2
Plant Used : plants\test1.pl
Results File: results\test1.unc
Templates File : tlib
Fluids File : fluidlib

Flag Settings Used

display faults with no consequences NO
display consequences with no causes NO
filter out repeat faults YES
filter out repeat fault-conseq pairs YES
display protections present NO
only display faults with no protections YES
consequence rank threshold set at 1

--
|DEVIATION |CAUSE |CONSEQUENCE |
--
pumpJ1 lessFlow	pumpJ1 air ingress into pump	possible internal
in		explosive atmosphere
		4

	dummyHead1 leak to environment	fire or explosion
		risk 2,
		fire/explosion risk 2
--
|pumpJ1 moreFlow|pumpJ1 leak to environment |fire/explosion risk 2|
|in | | |
--
pumpJ1 noFlow	dummyHead1 no flow upstream	dry running -
in		possible pump rupture
		2
--
pumpJ1 revFlow	dummyHead1 low pressure upstream,	seal failure due to
in	pumpJ1 loss of drive,	reverse impeller
	tail1 high pressure downstream,	rotation 2, possible
	pumpJ1 incorrect pump setup/installation	suction piping
		overpressure 2
--
pumpJ1	dummyHead1 low pressure upstream,	cavitation - possible
lessPressure in	pumpJ1 leak to environment,	mechanical damage 3
	dummyHead1 leak to environment	
--
pumpJ1 lessTemp	dummyHead1 low temp upstream	seal failure -
in		freezing of seal
		fluids 2

7/5

--
pumpJ1 moreGas	pumpJ1 air ingress into pump	vapour lock 3, pump
in		damage - increased
		vibration 3, bearing
		overheat - loss of
		lubrication 3
--
|pumpJ1 |dummyHead1 high temp upstream, |cavitation - possible|
|moreVapour in |pumpJ1 external fire |mechanical damage 3 |
--
pumpJ1 moreFlow	dummyHead1 high pressure upstream,	possible motor
out	pumpJ1 pressure surge at startup or	overload or trip 3
	shut-down,	
	pumpJ1 lessPressure out	
--
pumpJ1 noFlow	levelControlValve fails closed,	possible pump casing
out	valve1 closed,	overtemperature 2,
	tail1 complete blockage downstream,	possible seal
	valve3 closed	overtemperature 2
--
pumpJ1	tail1 leak to environment,	fire/explosion risk 2
lessPressure	valve1 leak to environment,	
out	levelControlValve leak to environment,	
	halfMileLine leak to environment,	
	valve3 leak to environment	
--
pumpJ1	levelControlValve loss of control,	possible pump casing
morePressure	valve3 partly closed,	or delivery pipework
out	dummyHead1 high pressure upstream,	overpressure 2,
	pumpJ1 pressure surge at startup or	possible seal
	shut-down,	overpressure 2
	tail1 high pressure downstream,	
	valve1 partly closed	
--
pumpJ1 moreTemp	dummyHead1 high temp upstream,	possible pump casing
out	pumpJ1 lessFlow out,	overtemperature 2,
	pumpJ1 external fire	possible seal
		overtemperature 2
--
|pumpJ1 |pumpJ1 no drains available |inadequate isolation |
|maintenance | |and drainage 2 |
--
pumpJ1 startup	pumpJ1 no pressure sensor on pump	cannot monitor
	delivery	pressure development
		at start-up 4
--
halfMileLine	halfMileLine unit can be locked in	potential for liquid
morePressure in		lock in and damage to
		unit by thermal
		expansion 3
--
halfMileLine	dummyHead1 high temp upstream,	design temp exceeded
moreTemp out	halfMileLine hot weather,	2
	pumpJ1 external fire,	
	halfMileLine external fire,	
	pumpJ1 lessFlow out	
--
|halfMileLine |halfMileLine no drains available |inadequate isolation |
|maintenance | |and drainage 2 |

7/6

--
dummyHead1	pumpJ1 incorrect pump setup/installation,	possible upstream
revFlow out	dummyHead1 low pressure upstream,	contamination 3
	tail1 high pressure downstream,	
	pumpJ1 loss of drive	
--

8/1

Appendix 8: Autohazid reports for test case 2

No fluid model

Report for FULL PLANT HAZOP.
HAZOP started at Tue Mar 10 13:17:15 1998
HAZOP completed at Tue Mar 10 13:18:18 1998

--

Library Used: library2
Plant Used : plants\test2.txt
Results File: results\test2.no
Templates File: tlib
Fluids File : fluidlib

Flag Settings Used

display faults with no consequences NO
display consequences with no causes NO
filter out repeat faults YES
filter out repeat fault-conseq pairs YES
display protections present NO
only display faults with no protections YES
consequence rank threshold set at 1

--

--
|DEVIATION |CAUSE |CONSEQUENCE |
--
bufferTank1	dummyHead1 blockage - solids,	solid settling 3,
lessFlow in1	bufferTank1 morePressure vapour,	potential layering
	dummyHead1 blockage - frozen fluid,	and rollover 2
	dummyHead1 low pressure upstream	

	dummyHead1 leak to environment	solid settling 3,
		fire or explosion
		risk 2, toxic
		release 2, potential
		layering and rollover
		2, fire/explosion
		risk 2,
		non-hazardous release
		1
--
bufferTank1	dummyHead1 high pressure upstream,	potential static
moreFlow in1	bufferTank1 lessPressure vapour	fire/explosion hazard
		3, increased port
		erosion - dissolved
		gas 3, increased
		port erosion 3,
		frothing 3

8/2

--
bufferTank1	dummyHead1 no flow upstream	solid settling 3,
noFlow in1		potential layering
		and rollover 2
--
bufferTank1	dummyHead1 high temp upstream	increased vibration
moreTemp in1		due to flashing
		liquid 3
--
bufferTank1	bufferTank1 liquid leak to environment	toxic release 2,
lessFlow out1		flammable liquid
		release 2
--
bufferTank1	tail2 leak to environment	fire/explosion risk
moreFlow out1		2, toxic release 2,
		non-hazardous release
		1
--
bufferTank1	bufferTank1 vapour leak to environment	air ingress -
lessPressure		explosion risk 4,
vapour		air contamination 3,
		possible vacuum
		collapse 2, toxic
		vapour release 2,
		flammable vapour
		release 2

	bufferTank1 lessTemp vapour	air ingress -
		explosion risk 4,
		air contamination 3,
		possible vacuum
		collapse 2
--
bufferTank1	tail3 partly blocked,	possible overpressure
morePressure	bufferTank1 moreTemp vapour,	rupture 2
vapour	bufferTank1 moreTemp topLiquid	
--
bufferTank1	bufferTank1 moreTemp topLiquid,	design temp exceeded
moreTemp vapour	bufferTank1 external fire	- structural
		weakening 2
--
bufferTank1	dummyHead1 high pressure upstream,	liquid droplet
moreLiquid	bufferTank1 moreLevel topLiquid,	entrainment 3
vapour	bufferTank1 lessPressure vapour	
--
bufferTank1	bufferTank1 moreTemp topLiquid	vacuum collapse -
moreVapour		increased
vapour		condensibles 2
--
bufferTank1	bufferTank1 increased concentration of	freezing 3
lessTemp	volatiles,	
topLiquid	bufferTank1 cold weather,	
	dummyHead1 low temp upstream,	
	bufferTank1 increased reaction	
--
bufferTank1	dummyHead1 high temp upstream,	crystallisation 3,
moreTemp	bufferTank1 hot weather,	design temp exceeded
topLiquid	bufferTank1 external fire	- structural
		weakening 2

8/3

--
bufferTank1	dummyHead1 high composition upstream	increased corrosion 3
moreComposition		
topLiquid		
--
bufferTank1	dummyHead1 upstream contamination	increased corrosion
contamination		3, liquid contents
topLiquid		contaminated 3
--
bufferTank1	bufferTank1 liquid leak to environment	gas breakthrough 3,
lessLevel		flammable liquid
topLiquid		release 2, toxic
		liquid release 2

	tail2 low pressure downstream,	gas breakthrough 3
	bufferTank1 liquid leak to environment,	
	dummyHead1 low composition upstream,	
	bufferTank1 morePressure vapour,	
	dummyHead1 low pressure upstream,	
	dummyHead1 blockage - solids,	
	dummyHead1 leak to environment,	
	dummyHead1 no flow upstream,	
	tail2 leak to environment,	
	dummyHead1 blockage - frozen fluid	
--
bufferTank1	dummyHead1 high pressure upstream,	vessel overfilling 2
moreLevel	bufferTank1 lessPressure vapour	
topLiquid		

	tail4 blocked by frozen fluid,	liquid droplet
	tail2 complete blockage downstream,	entrainment 3,
	dummyHead1 high composition upstream,	vessel overfilling 2
	tail2 blockage - solids,	
	tail4 complete blockage downstream,	
	tail2 blockage - frozen fluid,	
	tail4 partly blocked,	
	tail2 high pressure downstream	
--
bufferTank1	bufferTank1 lessTemp topLiquid	freezing 3
lessTemp		
botLiquid		
--
bufferTank1	bufferTank1 moreTemp topLiquid	crystallisation 3
moreTemp		
botLiquid		
--
bufferTank1	dummyHead1 high composition upstream	corrosion 3
moreComposition		
botLiquid		
--
bufferTank1	dummyHead1 low composition upstream,	incorrect liquid out
lessLevel	bufferTank1 liquid leak to environment	3
botLiquid		
--
|bufferTank1 |bufferTank1 cannot isolate necessary |inadequate isolation |
|maintenance |lines |and drainage 2 |
--
|dummyHead1 |dummyHead1 low pressure upstream |possible upstream |
|revFlow out | |contamination 3 |
--

8/4

With limited fluid model

Report for FULL PLANT HAZOP.
HAZOP started at Tue Mar 10 15:25:18 1998
HAZOP completed at Tue Mar 10 15:26:20 1998

--

Library Used : library2
Plant Used : plants\test2.txt
Results File : results\Test2.unc
Templates File: tlib
Fluids File : fluidlib

Flag Settings Used

display faults with no consequences NO
display consequences with no causes NO
filter out repeat faults YES
filter out repeat fault-conseq pairs YES
display protections present NO
only display faults with no protections YES
consequence rank threshold set at 1

--

--
|DEVIATION |CAUSE |CONSEQUENCE |
--
bufferTank1	dummyHead1 leak to environment	fire or explosion
lessFlow in1		risk 2,
		fire/explosion risk 2
--
|bufferTank1 |tail2 leak to environment |fire/explosion risk 2|
|moreFlow out1 | | |
--
bufferTank1	bufferTank1 lessTemp vapour,	air contamination 3,
lessPressure	bufferTank1 vapour leak to environment	possible vacuum
vapour		collapse 2
--
bufferTank1	tail3 partly blocked,	possible overpressure
morePressure	bufferTank1 moreTemp vapour,	rupture 2
vapour	bufferTank1 moreTemp topLiquid	
--
bufferTank1	bufferTank1 moreTemp topLiquid,	design temp exceeded
moreTemp vapour	bufferTank1 external fire	- structural
		weakening 2
--
bufferTank1	dummyHead1 high pressure upstream,	liquid droplet
moreLiquid	bufferTank1 moreLevel topLiquid,	entrainment 3
vapour	bufferTank1 lessPressure vapour	
--
bufferTank1	bufferTank1 moreTemp topLiquid	vacuum collapse -
moreVapour		increased
vapour		condensibles 2

8/5

--
bufferTank1	dummyHead1 high temp upstream,	design temp exceeded
moreTemp	bufferTank1 hot weather,	- structural
topLiquid	bufferTank1 external fire	weakening 2
--
bufferTank1	dummyHead1 upstream contamination	liquid contents
contamination		contaminated 3
topLiquid		
--
bufferTank1	tail2 leak to environment,	gas breakthrough 3
lessLevel	bufferTank1 (etc) liquid leak to	
topLiquid	environment,	
	dummyHead1 leak to environment,	
	dummyHead1 low composition upstream,	
	bufferTank1 morePressure vapour,	
	tail2 low pressure downstream,	
	dummyHead1 no flow upstream,	
	dummyHead1 low pressure upstream	
--
bufferTank1	dummyHead1 high pressure upstream,	vessel overfilling 2
moreLevel	bufferTank1 lessPressure vapour	
topLiquid		

	tail4 partly blocked,	liquid droplet
	tail4 complete blockage downstream,	entrainment 3,
	dummyHead1 high composition upstream,	vessel overfilling 2
	tail2 high pressure downstream,	
	tail2 complete blockage downstream	
--
bufferTank1	dummyHead1 low composition upstream,	incorrect liquid out
lessLevel	bufferTank1 liquid leak to environment	3
botLiquid		
--
|bufferTank1 |bufferTank1 cannot isolate necessary |inadequate isolation |
|maintenance |lines |and drainage 2 |
--
|dummyHead1 |dummyHead1 low pressure upstream |possible upstream |
|revFlow out | |contamination 3 |
--

9/1

Appendix 9: Trichloroethane storage system

Published by

Vuorimiehentie 5, P.O.Box 2000, FIN–02044 VTT, Finland
Phone internat. +358 9 4561
Fax +358 9 456 4374

Series title, number and
report code of publication

VTT Publications 393
VTT–PUBS–393

Author(s)
Heino, Perttu

Title

Fluid property reasoning in knowledge-based hazard
identification

Abstract
The study of serious accidents, which have occurred in the chemical process industry in recent times,
highlights the need to understand fluid property related phenomena and the interactions between chemicals
under abnormal process conditions or with abnormal fluid compositions. Consideration of these issues
should be common practice in professional safety analysis work, and computer programs designed to
support this work have to be able to deal with them.

The purpose of Hazard and Operability (HAZOP) study is to identify all possible deviations from the way a
plant design is intended to be operated and all hazards associated with these deviations. Due to its
systematic nature, the method is a good candidate for automation. Several research groups have developed
embryonic knowledge-based HAZOP systems. However, no automated hazard identification features are
included in current commercial software packages supporting HAZOP. The main problem of knowledge-
based HAZOP systems is their poor performance in relation to the correctness and completeness of the
resulting HAZOP study.

This thesis describes a novel methodology for fluid property reasoning in connection to knowledge-based
HAZOP. Building on the earlier achievements of Loughborough University (LU) and Technical Research
Centre of Finland (VTT) researchers, the methodology enables knowledge-based hazard identification
programs to make a more intelligent assessment of the potential hazards and their causes.

In the first phase of the study, a rule-based fluid property and reaction property reasoning system was
created for use in the HAZOPTOOL program. In the second phase, the LU fault propagation reasoning
methodology implemented in the AutoHAZID HAZOP emulation program was extended with fluid
property reasoning capabilities.

AutoHAZID was subjected to extensive evaluation which consisted of an evaluation workshop, a fluid
model oriented study of the workshop results, and comparative testing based on a set of test cases. It was
shown that it is possible and beneficial to extend knowledge-based HAZOP with a capability to reason
about fluid properties and interactions. A framework for such a system is presented in this thesis together
with some ideas for future work. Based on the results of the work reported here, it is recommended that
fluid property reasoning is taken into use in any application of knowledge-based hazard identification.

Keywords
safety, hazard identification, HAZOP, computer-assisted hazard identification, physical and chemical
properties, knowledge-based systems, process industry

Activity unit
VTT Automation, Risk Management, Tekniikankatu 1, P.O.Box 1306, FIN–33101 TAMPERE, Finland

ISBN Project number
951–38–5395–0 (soft back ed.)
951–38–5396–9 (URL: http://www.inf.vtt.fi/pdf/)

61EUIST

Date Language Pages Price
September 1999 English 167 p. + app. 53 p. E

Commissioned by
National Technology Agency (Tekes), CTCI Corporation, Taipei, Taiwan

Series title and ISSN Sold by
VTT Publications
1235–0621 (soft back ed.)
1455–0849 (URL: http://www.inf.vtt.fi/pdf/)

VTT Information Service
P.O.Box 2000, FIN–02044 VTT, Finland
Phone internat. +358 9 456 4404
Fax +358 9 456 4374

	Abstract
	Preface
	Contents
	1. Introduction
	1.1 Computer software in the safety analysis of chemical processes
	1.2 Need for the study
	1.3 Scope and objective of the study
	1.4 Structure of the thesis
	2. Knowledge-based identification of process hazards
	3. The role of fluid property reasoning
	4. Theoretical framework
	4.1 Introduction
	4.2 Definition of concepts
	4.3 Overview of hazard identification
	4.4 Knowledge-based computerised methods
	4.5 Approaches to fluid property reasoning
	4.6 Summary of the state-of-the-art
	5. Methodology development, phase 1
	5.1 Introduction
	5.2 Overview of HAZOPTOOL development
	5.2.1 Background
	5.2.2 Unit level HAZOP models
	5.2.3 Representation of hazardous event chains with rules
	5.2.4 Reasoning
	5.2.5 Use of unit data in reasoning and presentation of results
	5.3 Method for reasoning on fluid and reaction properties
	5.3.1 Use of fluid and reaction knowledge from separate knowledge bases
	5.3.2 Properties of chemicals
	5.3.3 Properties of reactions
	5.3.4 Compatibility of chemicals
	5.4 Evaluation of methodology development phase 1 results
	6. Methodology development, phase 2
	6.1 Introduction
	6.2 Overview of AutoHAZID development
	6.2.1 Background
	6.2.2 Unit model library
	6.2.3 Fault propagation models
	6.2.4 HAZOP algorithm
	6.2.5 Filtering of results
	6.3 Reasoning with chemical knowledge
	6.3.1 The fluid model approach
	6.3.2 Properties of fluids
	6.3.3 Fluid compatibility
	6.3.4 Linkage to AutoHAZID
	6.3.5 Summary of implemented features
	6.3.6 Limitations and ideas for further development
	6.4 Implementation of the fluid model system
	6.4.1 Overview
	6.4.2 Function checkFluidProperty
	6.4.3 Function findFluid
	6.4.4 Function get_ruleObjects
	6.4.5 Function backwardChain
	6.4.6 Function findRules
	6.4.7 Function substituteVariables
	6.4.8 Function preparePropertyCall
	6.4.9 Function shz_calc_prp
	6.4.10 Function evaluateNodes
	6.5 Evaluation of methodology development phase 2 results
	6.5.1 Evaluation approach
	6.5.2 First stage: comparative evaluation
	6.5.3 Second stage: study of industrial example cases
	7. Discussion
	7.1 Methodological problems
	7.2 Summary of the results
	7.3 Utility and limitations of the results
	8. Conclusions
	9. Recommendations and future research
	References
	Appendix 1: Grammar for HAZOP expert rules
	Appendix 2: Example problems to be solved by the fluid model
	Appendix 3: Fluid model functionalities for solving the example problems

