
V  T  T    P  U  B  L  I  C  A  T  I  O  N  S

TECHNICAL RESEARCH CENTRE OF FINLAND       ESPOO 1999

Seppo Kuikka

A batch process management
framework
Domain-specific, design pattern and software
component based approach

3 9 8

Tätä julkaisua myy Denna publikation säljs av This publication is available from

VTT TIETOPALVELU VTT INFORMATIONSTJÄNST VTT INFORMATION SERVICE
PL 2000 PB 2000 P.O.Box 2000

02044 VTT 02044 VTT FIN–02044 VTT, Finland
Puh. (09) 456 4404 Tel. (09) 456 4404 Phone internat. + 358 9 456 4404
Faksi (09) 456 4374 Fax (09) 456 4374 Fax + 358 9 456 4374

V     T     T       P    u    b    l    i    c    a     t     i    o    n    s

V     T     T       P    u    b    l    i    c    a     t     i    o    n    s

V     T     T       P    u    b    l    i    c    a     t     i    o    n    s

V     T     T       P    u    b    l    i    c    a     t     i    o    n    s

V     T     T       P    u    b    l    i    c    a     t     i    o    n    s

V     T     T       P    u    b    l    i    c    a     t     i    o    n    s

V     T     T       P    u    b    l    i    c    a     t     i    o    n    s

V     T     T       P    u    b    l    i    c    a     t     i    o    n    s

V     T     T       P    u    b    l    i    c    a     t     i    o    n    s

P

ISBN 951–38–5541–4 (soft back ed.) ISBN951–38–5542–2 (URL:http://www.inf.vtt.fi/pdf/)
ISSN 1235–0621 (soft back ed.) ISSN 1455–0849 (URL:http://www.inf.vtt.fi/pdf/)

V
T

T
 

P
U

B
LIC

A
T

IO
N

S
 

398
A

 batch process m
anagem

ent fram
ew

ork. D
om

ain-specific, ...
S

eppo 
K

uikka

Requirements for product and production quality and variability, as well as
the needs for the efficient use of production equipment, emphasise the
benefits of batch production in the process industries. Emerging batch
standards as well as design pattern and software component technologies are
making it possible to design the needed flexible, distributed, and integrated
batch automation concepts.

An experimental batch process management framework was developed to
fulfil the aforementioned needs for batch automation. It also demonstrates
reusability by the so-called calling framework architectural style and
component interfaces. Framework components may be easily parametrized
and replaced by customised versions.

For some problem specific decision-making needs, enhancement of
component frameworks may be needed. Since this design problem is
recurrent, a generic design pattern, Agentified Component, was developed
within the framework. The approach retains the deterministic nature of the
framework, but simultaneously introduces the possibility of solving
problems using a knowledge-based approach.



VTT PUBLICATIONS 398

TECHNICAL RESEARCH CENTRE OF FINLAND
ESPOO 1999

A batch process management
framework

Domain-specific, design pattern and software
component based approach

Seppo Kuikka

VTT Automation

Dissertation for the degree of Doctor of Technology to be presented
with due permission for public examination and debate at Helsinki University
of Technology (Espoo, Finland) in Auditorium T2 (Konemiehentie 2, Espoo)

on the 10th of December, 1999 at 12 o´clock noon.



ISBN 951–38–5541–4 (soft back edition)
ISSN 1235–0621 (soft back edition)

ISBN 951–38–5542–2 (URL: http://www.inf.vtt.fi/pdf/)
ISSN 1455–0849 (URL: http://www.inf.vtt.fi/pdf/)
Copyright ©  Valtion teknillinen tutkimuskeskus (VTT) 1999

JULKAISIJA – UTGIVARE – PUBLISHER

Valtion teknillinen tutkimuskeskus (VTT), Vuorimiehentie 5, PL 2000, 02044 VTT
puh. vaihde (09) 4561, faksi (09) 456 4374

Statens tekniska forskningscentral (VTT), Bergsmansvägen 5, PB 2000, 02044 VTT
tel. växel (09) 4561, fax (09) 456 4374

Technical Research Centre of Finland (VTT), Vuorimiehentie 5, P.O.Box 2000,
FIN–02044 VTT, Finland
phone internat. + 358 9 4561, fax + 358 9 456 4374

VTT Automaatio, Teollisuusautomaatio, Tekniikantie 12, PL 1301, 02044 VTT
puh. vaihde (09) 4561, faksi (09) 456 6752

VTT Automation, Industriautomation, Teknikvägen 12, PB 1301, 02044 VTT
tel. växel (09) 4561, fax (09) 456 6752

VTT Automation, Industrial Automation, Tekniikantie 12, P.O.Box 1301, FIN–02044 VTT, Finland
phone internat. + 358 9 4561, fax + 358 9 456 6752

Technical editing Maini Manninen

Libella Painopalvelu Oy, Espoo 1999



3

Kuikka, Seppo. A batch process management framework. Domain-specific, design pattern and
software component based approach. Espoo 1999. Technical Research Centre of Finland, VTT
Publications 398. 215 p.

Keywords batch control, object-oriented software, batch process management, framework,
design pattern, software component, software agent

Abstract

Requirements for product and production quality and variability, as well as the
needs for the efficient use of production equipment, have emphasised the
benefits of batch production in the process industries. The resulting complexity
of batch control has, however, been a challenge to control engineers. Emerging
batch standards and software component technologies have now made it possible
to design flexible, distributed, and integrated batch automation concepts to
satisfy the requirements.

The batch control domain was studied in this thesis in terms of domain
standardisation, existing batch control systems, and related research approaches.
The applicable information technology, object-oriented software component
frameworks and multi-agency, was surveyed and evaluated. Guidelines for
deploying generic software design patterns in designing domain-specific
frameworks, were adapted.

An experimental batch process management framework, was developed to fulfil
the aforementioned flexibility, distribution and integration needs for batch
automation. It also demonstrates reusability by the so-called calling framework
architectural style as well as internal and external component interfaces.
Framework components may be easily parametrized and replaced by customised
versions. Additionally, the framework can be integrated with other systems by
using component technology.

For some problem specific needs of local decision-making and interaction,
enhancement of component frameworks may be needed. No applicable design
patterns were found for this kind of design issue. Since the design problem is



4

recurrent, a generic design pattern, Agentified Component, was developed and
experimented with within the framework of this thesis. The approach retains the
deterministic nature of the framework, important in the automation domain, but
simultaneously introduces the possibility of solving specific problems using a
knowledge-based approach.



5

Preface

I have been involved in several ways with software development for automation
applications during my professional life. From the point of view of this thesis, an
important impetus was the 1995 Summer School on Reusable Architectures in
Object-Oriented Software Development in Tampere (supported by the Finnish
Program of Doctoral Studies in Computer Science). Within that excellent event
my - until then - preliminary ideas of deploying design patterns for developing a
domain-specific automation framework began to take shape.

I studied the themes of this study within several postgraduate seminars in
Helsinki University of Technology (HUT) in the years 1995 - 1998. Another
important impetus for this thesis took place during one of these seminars. I was
given an opportunity to participate (starting from spring 1996) in a VTT
Automation research programme CAIP (Control Architectures for Intelligent
Production). A CAIP project (and a continuation project of it) made it possible
to develop the experimental Batch process management framework, described in
this thesis. It thus helped to verify the domain-specific, design pattern, and
software component based approach to automation software development. It also
made it possible to study the integration of multi-agent technologies into a
component framework.

I am especially thankful to my supervisor, Professor Kari Koskinen from the
Laboratory of Information Systems in Automation of HUT, who previously also
acted as the leader of the CAIP research programme in VTT. I also want to
express my deepest gratitude to my instructor and group leader, Dr. Olli Ventä
from VTT Automation. A third person, to whom I am also indebted, is the
automation systems team leader and my co-worker at VTT Automation, Mr.
Teemu Tommila. These colleagues have provided for the facilities and
prerequisites for this research and development work and, more importantly,
they have always been willing to give professional support and warm
encouragement.

Other people, discussions with whom have been important for developing the
ideas and/or writing the thesis are: Professor Aarne Halme, Mr. Alexander Ran,
Mr. Thomas Fischer, Mr. Kevlin Henney, and Dr. Seppo Haltsonen. I am also



6

grateful to Professors Pentti Lautala and Ilkka Haikala  from Tampere University
of Technology for providing expert criticism and valuable suggestions for this
thesis.

I also want to thank all my colleagues at VTT Automation, several post graduate
seminar instructors and students in HUT and my colleagues and students in
Espoo-Vantaa Institute of Technology (EVITech) for relaxed but inspiring
working environment. For the financial support, I express my gratitude to VTT,
Tekes, and EVITech. Finally, my warmest thanks are reserved for my family;
my wife Tarja and daughter Katri for their love, patience, and support during the
studies and research work.



7

Contents

Abstract …………………………………………………………………………3

Preface …………………………………………………………………………..5

Part I. Introduction

Abbreviations ......................................................................................................11

Glossary...............................................................................................................13

1. Introduction...................................................................................................19
1.1 Motivation and background .....................................................................19
1.2 Hypotheses and goals of the study ...........................................................21
1.3 Research approaches and methods...........................................................22
1.4 Contributions ...........................................................................................25
1.5 Structure of the thesis...............................................................................27

Part II. Review of the State of the Art

2. Batch Control as a Development Domain.....................................................29
2.1 Introduction..............................................................................................29
2.2 Standardisation.........................................................................................30

2.2.1 Background...................................................................................30
2.2.2 Batch process, equipment, and equipment control .......................32
2.2.3 Recipes .........................................................................................35
2.2.4 Batch control activities .................................................................38

2.3 Batch control systems ..............................................................................43
2.3.1 Background...................................................................................43
2.3.2 Batch process, equipment, and equipment control .......................44
2.3.3 Recipes .........................................................................................46
2.3.4 System architectures .....................................................................48



8

2.4 Related batch research .............................................................................52
2.4.1 Background...................................................................................52
2.4.2 Batch process, equipment, and equipment control .......................53
2.4.3 Recipes .........................................................................................55
2.4.4 Architectural concepts ..................................................................57

3. Object-oriented Software Component Frameworks......................................59
3.1 Introduction..............................................................................................59
3.2 Objects and components ..........................................................................60

3.2.1 Object orientation in short ............................................................60
3.2.2 Software component technology ..................................................62
3.2.3 Component composition...............................................................66

3.3 Design patterns ........................................................................................69
3.3.1 Background and definitions..........................................................69
3.3.2 Pattern collections and languages.................................................73
3.3.3  On the domain independence and uniqueness of design patterns ..76

3.4 Domain frameworks.................................................................................78
3.4.1 Background and definitions ............................................................78
3.4.2 Designing domain frameworks with patterns .................................80
3.4.3 On example frameworks ................................................................87

4. Multi-agency .................................................................................................91
4.1 Introduction..............................................................................................91
4.2 Agents …………………………………………………………………..91

4.2.1 Background and definitions..........................................................91
4.2.2 Agent architectures in short ..........................................................93
4.2.3 Knowledge representation ............................................................95
4.2.4 Planning and execution of plans ...................................................96

4.3 Multi-agent interaction.............................................................................98
4.3.1 Background...................................................................................98
4.3.2 Agent communication...................................................................99
4.3.3 Co-operative agent negotiation...................................................101

4.4 Multi-agent systems ...............................................................................103
4.4.1 Background.................................................................................103
4.4.2 Domain independent multi-agent systems..................................104
4.4.3 Multi-agent systems in automation domain................................111
4.4.4 Developing multi-agent applications..........................................114



9

Part III. The Problem Statement

5. The Research and Development Problem...................................................117
5.1 Introduction............................................................................................117
5.2 Justification of the approach from the domain point of view ................119

5.2.1 In reference to the standard and advanced industrial needs........119
5.2.2 In reference to existing batch automation systems .....................120
5.2.3 In reference to the research work in batch control......................121

5.3 Justification of the approach from the technology point of view...........122
5.3.1 In reference to component technology........................................122
5.3.2 In reference to design patterns....................................................123
5.3.3 In reference to domain-specific frameworks ..............................123
5.3.4 In reference to multi-agent technology.......................................124

Part IV. The Proposed Solution

6. The Development of the Batch Process Management Framework .............126
6.1 Introduction............................................................................................126
6.2 Logical models - requirements definition ..............................................128

6.2.1 Use cases ....................................................................................128
6.2.2 Object classes .............................................................................130
6.2.3 Scenarios.....................................................................................133

6.3 Subsystems - architecture and structures ...............................................135
6.3.1 Layers pattern .............................................................................135
6.3.2 Broker pattern .............................................................................138
6.3.3 Model -View-Controller pattern .................................................140

6.4 Dynamics - behaviour and interoperation..............................................142
6.4.1 State pattern ................................................................................142
6.4.2 Observer pattern .........................................................................144
6.4.3 Mediator pattern .........................................................................147

6.5 Distribution - distributed components and multithreading ....................149
6.5.1 Proxy pattern...............................................................................149
6.5.2 Active Object pattern..................................................................152
6.5.3 Deployment ................................................................................154



10

7. The Reuse and Enhancement of the Framework.........................................157
7.1 Introduction............................................................................................157
7.2 Use and reuse .........................................................................................159

7.2.1 Customising the framework components ...................................159
7.2.2 Connecting the framework to a DCS..........................................161

7.3 Enhancement by agentifying..................................................................165
7.3.1 Problem definition ......................................................................165
7.3.2 Agentified Component pattern ...................................................167
7.3.3 Problem solution.........................................................................177

Part V. Discussion

8. Conclusions.................................................................................................185

9. Considerations.............................................................................................188
9.1 Introduction............................................................................................188
9.2 Components and frameworks in general................................................189

9.2.1 Background for commercial deployment ...................................189
9.2.2 Market potential..........................................................................190
9.2.3 Software development process and organisation........................193

9.3 The approach of this thesis ....................................................................196
9.3.1 On potential market impact ........................................................196
9.3.2 On organisation and training ......................................................200
9.3.3 On future research and development ..........................................202

References .........................................................................................................204



11

Abbreviations

ACL Agent Communication Language

BDI Belief, Desire, Intention (agent model)

CBD Component-Based Development

CIM Computer Integrated Manufacturing

CORBA Common Object Request Broker Architecture

COTS Commercial Off The Shelf (component)

DCOM Distributed Component Model

DCS Digital Control System

EJB Enterprise JavaBeans

ERM Enterprise Resource Management

ERP Enterprise Resource Planning

FIPA Foundation for Intelligent Physical Agents

IDL Interface Definition Language

ISA International Society for Measurement and Control

KIF Knowledge Interchange Format

KQML Knowledge Query and Manipulation Language

MAS Multi-agent System



12

MES Manufacturing Execution System

OPC OLE (Object Linking and Embedding) for Process Control

PFC Procedure Function Chart

SCM Supply Chain Management

SFC Sequential Function Chart

SQL Standard Query Language

UML Unified Modelling Language



13

Glossary

Agent - see Software agent

Agent intention
An agent's commitment to act while in a certain mental state.

Agent interaction
An agent’s capability to exchange information and knowledge with other agents and the
environment. Uses a transport protocol (e.g. TCP/IP), an agent communication language
(ACL, e.g. KQML or FIPA ACL), and a negotiation protocol (e.g. contract net).

Allocation
A form of co-ordination control that assigns a resource to a batch or a unit.

Arbitration
A form of co-ordination control that determines how a resource should be allocated when
there are more requests for the resource than can be accommodated at one time.

Architectural design pattern
A fundamental structural organization schema for software systems. It provides a set of
predefined subsystems, specifies their responsibilities, and includes rules and guidelines
for organizing the relationships between them (Buschmann et al., 1996).

Basic control
Control that is dedicated to establishing and maintaining a specific state of equipment or
process condition.

Batch
1. The material that is being produced or that has been produced by a single execution of
a batch process.
2. An Entity that represents the production of a material at any point in the process.

Batch control
Control activities and control functions that provide a means to process finite quantities of
input materials by subjecting them to an ordered set of processing activities over a finite
period of time using one or more pieces of equipment.



14

Batch process
A process that leads to the production of finite quantities of material by subjecting
quantities of input materials to an ordered set of processing activities over a finite period
of time using one or more pieces of equipment.

Batch process management
The control activity that includes the control functions needed to manage batch
production within a process cell.

Batch schedule
A list of batches to be produced in a specific process cell.

CAIP – SWF project
A research and development project Software Factory (SWF), belonging to a VTT
Research Programme  Control Architectures for Intelligent Production (CAIP). The
project was carried out in VTT Automation in the years 1996 and 1997. The basic
framework of this thesis was developed in this project.

Component - see Software component

Component framework
A software entity that supports components conforming to certain standards and allows
instances of these components to be ‘plugged’ into the component framework. The
component framework establishes environmental conditions for the component instances
and regulates the interaction between component instances.

Component interoperation
The capability of a software component to request a service and respond to a request
using well-defined application level interfaces. The parameter delivery between the
client, requesting the service and the server, providing it, is automated.

Component system
A set of related components that collectively accomplish a function larger than that
accomplished by a single software component.



15

Control module
The lowest level grouping of equipment in the physical model that can carry out basic
control.

Control recipe
A type of recipe which, through its execution, defines the manufacture of a single batch
of a specific product.

Co-ordination control
A type of control that directs, initiates, and/or modifies the execution of procedural
control and the utilisation of equipment entities.

Design pattern
A design pattern systematically names, motivates, and explains a general design that
addresses a recurring design problem in object-oriented systems (Gamma et al., 1995).

Equipment control
The equipment-specific functionality that provides the actual control capability for an
equipment entity, including procedural, basic, and co-ordination control, and that is not
part of the recipe.

Equipment entity
A collection of physical processing and control equipment and equipment control
grouped together to perform a certain control function or a set of control functions.

Equipment module
A functional group of equipment that can carry out a finite number of specific minor
processing activities.

Equipment procedure
A procedure that is part of equipment control.

Equipment unit procedure
A unit procedure that is part of equipment control.



16

Exception handling
Those functions that deal with plant or process contingencies and other events which
occur outside the normal or desired behaviour of control.

Formula
A category of recipe information that includes process inputs, process parameters, and
process outputs.

Framework - see Software framework

General recipe
A type of recipe that expresses equipment and site independent processing requirements.

Header
Information about the purpose, source and version of the recipe such as recipe and
product identification, creator, and issue date.

Master recipe
A type of recipe that accounts for equipment capabilities and may include process cell-
specific information.

Path
The order of equipment within a process cell that is used, or is expected to be used, in the
production of a specific batch.

Procedural control
Control that directs equipment-oriented actions to take place in an ordered sequence in
order to carry out some process-oriented task.

Procedural element
A building block for procedural control.

Process cell
A logical grouping of equipment that includes the equipment required for production of
one or more batches. It defines the span of logical control of one set of process equipment
within an area.



17

Recipe
The necessary set of information that uniquely defines the production requirements for a
specific product.

Recipe procedure
The part of a recipe that defines the strategy for producing a batch

Scenario
A single path through a use case, one that shows a particular combination of conditions
within that use case.

Site recipe
A type of recipe that is site specific.

Software agent
A computer system, situated in some environment, that is capable of flexible autonomous
action in order to meet its design objectives.

Software component
A reusable, executable, self-contained piece of software, which is accessible only through
well-defined interfaces.

Software framework
A partially complete software (sub)system that is intended to be instantiated. It defines
the architecture for a family of (sub-)systems and provides the basic building blocks to
create them. It also defines the places where adaptations for specific functionality should
be made. In an object-oriented environment, a framework consists of abstract and
concrete classes.

SWFBatch project
A continuation R&D project to the CAIP – SWF project, financed by Tekes, VTT and
Honeywell-Measurex Inc. The project was carried out in VTT Automation in the year
1998. The framework of this thesis was integrated with a DCS and enhanced with multi-
agency in this project.



18

Unit
A collection of associated control modules and/or equipment modules and other process
equipment in which one or more major processing activities can be conducted.

Unit recipe
The part of a control recipe that uniquely defines the contiguous production requirements
for a unit.

Use case
A typical interaction between a user and a computer system.



19

1. Introduction

1.1 Motivation and background

 Digital process control and information management systems and programmable logic
and PC-based systems are often distributed. Traditional distribution of control and
management systems is ruled partly by the necessary distribution of the controlled
process equipment and by the requirement for high availability of automation. Also the
benefits of decomposing functionality and layering it into an automation hierarchy of
production planning, production control, coordination, and basic control have been
recognized for a long time (Williams, 1989).

 The above kind of hierarchical distribution of control activities is necessary but not
always sufficient. Functionally originated distribution is also needed from the design
perspective. This means that control decisions shall be made as autonomously as possible,
partly near process equipment, partly on various levels of the automation hierarchy, and
partly near operators responsible for production. Additionally, for business reasons,
specific control algorithms and other proprietary expertise, shall often be enclosed within
autonomous information processing entities near the controlled process units. These
requirements are implicit, for example, in the new standardization efforts for batch
control (ISA, 1995; ISA, 1999a).

New integration needs are also emerging. Process control and management systems must
be able to interoperate with other information systems on a high semantic level, not only
convey data. Interoperation, especially with Manufacturing Execution Systems (MES)
and Enterprise Resource Planning (ERP) systems, becomes more important for optimal
production. The implementation is expected to be open, i.e. systems, subsystems, or even
individual control entities, may be acquired from various vendors and still be able to
interoperate. These needs are evident, for example, when considering the interfaces
between the so-called level 2 (including process management), level 3 (including MES),
and level 4 (including ERP) functionalities in the abovementioned automation hierarchy
(ISA, 1999b).

Within bulk chemical process industries it is often possible to achieve cost advantage by
continuous production on high production levels. This is especially true, if the products
are undifferentiated, sold on the basis of their chemical composition and purity. For these



20

products there are normally several, globally operating manufacturers, which compete
mostly on the basis of price.

The situation is different when smaller quantities of differentiated high-technology
products (for example pharmaceuticals, speciality chemicals, or biotechnology products)
are produced. The products are purchased because of their effect rather than their
composition. An extensive skill-base is needed in both chemical development and
production. The prices for these products are also normally higher than those of
undifferentiated products (Sharratt, 1997).

In the case of differentiated products and relatively small production quantities, modern,
flexible batch production is a necessity (Rosenof & Ghosh, 1987; Fisher, 1990; ISA,
1996; Sharratt, 1997). Also individual customer service and product quality requirements
highlight the benefits of batch processing and, accordingly, batch control, as compared to
continuous processing and control (Tommila, 1993). Small batch-oriented plants can be
re-sized economically according to changing market demands. Multipurpose process
units allow further flexibility to production of various products with the same processing
equipment.

In batch control, recipes provide a means to describe products and the manner in which to
produce them. A recipe contains production-related information on a sufficiently detailed
level for a specific product (master recipe) or for its batch-wise production (control
recipe). Batch-process equipment, on the other hand, is formed of process cells and units.
Major batch-processing activities can be conducted in consequent units along so-called
paths within a process cell (ISA, 1995).

The challenge to batch control, which results from the requirements of flexible
production, is the variability and complexity of control tasks. Equipment controls need to
be designed for several alternative products, production configurations, and operating
conditions. Product batches must be optimally scheduled and process equipment must be
allocated to them dynamically. The operations of the batches must also be effectively co-
ordinated. Moreover, this new functionality needs to be included into the architecture of
the batch control and management system, in order to be reused from one application to
another.

Batch Process Management control activity consists of control functions Batch
Management and Process Cell Management. Batch Management, based on recipes, is
focused on batch products and production. Process Cell Management, based on
equipment descriptions and procedures, is focused on equipment management and control



21

(ISA, 1995). The separation of concerns of product- and production-oriented Batch
Management, from equipment- and control-oriented Process Cell Management,
emphasises the need for distribution, integration and flexibility within batch process
management software architecture.

The research work within batch process management has lately been concentrated on
Petri Net based, mostly analytic approaches (Tittus et al., 1995; Tittus & Egardt, 1996;
Åkesson & Tittus, 1998; Johnsson, 1996a,b; Årzen & Johnsson, 1996; Johnsson & Årzen,
1998). Some researchers (Fleming & Schreiber, 1998) have focused on batch control
design problems, arisen from the need to integrate production-oriented procedural control
and process-equipment-oriented equipment control. In spite of the great software
architectural challenges of batch process management, few researchers have concentrated
especially on them, most notably Simensen and his colleagues, (Simensen et al., 1997).

1.2 Hypotheses and goals of the study

The above-mentioned distribution needs require that software modules, which are used
for the control tasks, must be well encapsulated, containing both the information and
operations needed to implement the services requested. This leads to the use of
distributed object technology. For the system to be internally coherent and well integrated
with other systems, the interoperations of relevant information entities shall take place via
defined interfaces only. This leads to the deployment of software component technology.

The interoperations within batch control are often complex and thus the simple approach
of composing components by using scripts is not sufficient. Instead, a proper way to
create larger, functional entities is to develop frameworks based on distributed component
models. One efficient way to design frameworks is to make systematic use of generic
expertise on the object-oriented and component-oriented research and development, so-
called design patterns.

The main hypothesis of this study is that domain-specific frameworks for batch control
are to be developed on the basis of sufficient and judiciously applied domain knowledge
while exploiting generic design patterns. Domain knowledge is needed not only to define
the requirements for the framework and to specify it, but also to make design decisions
concerning the structural and behavioural aspects of the architecture.

Traditionally, the value of domain knowledge has been acknowledged when defining
requirements but design decisions have been considered domain independent. This study



22

indicates that design issues, or so-called forces, cannot be explicated without domain-
specific considerations. Thus domain knowledge is needed in deploying generic design
patterns to the design of the framework.

 The definition of requirements is based on analytic requirement models, and the design is
based on synthetic design pattern models. In this study, batch domain dependency is
explicit for both of these. In order to be valuable in practice, the domain-specific
frameworks should also be designed to be reusable for several different application
projects in the batch domain. This emphasises the need to correctly abstract
commonalities of the domain into the design of the framework.

 In certain applications and specific problems of the batch automation domain (for
example, in dynamic unit allocation within batch process management), both local
decision making and collaboration between decision-making entities are needed. One way
to achieve this, is the so-called multi-agent technology, which can be applied within
several system architectural settings. A further hypothesis of this thesis is that multi-
agency can also be applied in industrial domains like batch control, if it is seamlessly
embedded within domain-specific component frameworks. This new approach is here
called agentifying the component framework.

The main goals of this study are both to refine the distribution, integration, and flexibility
needs in batch-control domain, as well as to adapt the above technologies for the
development of batch-domain specific frameworks. Moreover, the validity of the
hypotheses is to be tested experimentally by verifying that the domain-specific
requirements for a new batch process management system can be fulfilled with the help
of the new information technologies.

1.3 Research approaches and methods

The batch control domain is studied and evaluated with a uniform approach to assess the
new batch control standard (ISA, 1995; ISA, 1999a), the foremost commercial batch
control systems (InBatch, 1998; VisualBatch, 1998; OpenBatch, 1999), and the research
in the domain, referred to in the previous section. In all areas, the literature study
proceeds from process, equipment and control aspects to recipe-oriented product and
production aspects and then to architectural issues. With this approach it is possible to
compare the batch standard, the batch control products and the new development
concepts systematically. It makes it possible to evaluate how well the commercial
products conform to the standard. It also indicates opportunities for research and



23

development, especially in areas discussed in the standard but not adequately covered by
the systems or research.

The approach in presenting and discussing object-oriented software component
frameworks is different. The background of the study is industrial software development
and training experience in automation software, which is traditionally developed with
structured methodologies, if any. A concise survey on objects, components (OMG, 1995;
Microsoft, 1996; Rogerson, 1997; Arnold & Gosling, 1998; OPC, 1998; D’Souza &
Wills, 1999), and component composition (Bosch, 1997; Buchi & Weck, 1997; Kopetz,
1998; Voas, 1998; Thompson, 1998; Szyperski 1998) sums up the need for and benefits
of these new techniques which complement in a vital manner the older, structured
techniques. The new techniques are the basic ingredients in the development approach of
this thesis.

When reviewing and discussing design patterns (Alexander, et al., 1977; Gamma, et al.
1995; Buschmann, et al. 1996; Vlissides, 1998), the models for the design work, the
approach is both informative and critical. The ways in which design patterns, valuable
knowledge for developers, are also unnecessarily ‘invented’ (Aarsten, et al., 1995;
Buschmann, et al., 1996) are pointed out. The approach in representing frameworks on
the other hand, strives to extract the basic characteristics of good frameworks from
practical examples (Dagermo & Knutsson, 1996; Doscher, et al. 1998; Hodges, 1998).
Also guidelines on how to design domain-specific frameworks with the help of design
patterns are developed.

Agent technologies are often offered as a generic solution for the needs of functional
distribution, integration and flexibility. Accordingly, the original approach of the survey
of agencies was wide. It encompassed agent architectures (Hayes-Roth, 1995; Musliner,
1995; Ferguson, 1995; Mueller, 1996; Bradshaw, et al., 1997; Genesereth, 1997), various
forms of knowledge representation (Genesereth, 1995; Finin, et al., 1997; FIPA, 1998)
and the reactive (Brooks, 1991) and deliberative (Fikes, 1993) as well as intentional
(Cohen & Levesque, 1990) functionality of the agents. Later, it became clear that the
contribution in fulfilling the batch control needs would come rather from local, problem-
specific decision-making and multi-agent interaction (Kuroda & Ishida, 1993; Jennings,
et al., 1995; Barbuceanu & Fox, 1995; Chauhan & Baker, 1998). The focus in studying
agent technologies was subsequently shifted to these issues.

The research problem is formulated and the development approach is justified in detail
both from the domain, i.e. batch process management, and the information technology
points of view. This is needed to focus the limited resources on new, experimental design



24

issues, leaving more conventional tasks, like the refinement of user interface and
databases, aside. Quoting one of the foremost researchers of software engineering, Victor
Basili, (Basili, 1996):

Software engineering is a laboratory science. It involves an experimental component to
test or disprove theories, to explore new domains. We must experiment with techniques to
see how and when they really work, to understand their limits, and to understand how to
improve them. … Our goal is to build improved products. However, unlike
manufacturing, software engineering is development, not production. We do not re-
produce the same object, each product is different from the last. Thus the mechanisms for
model building are different; we do not have lots of data points to provide us with
reasonable accurate models for statistical control. … There is a lack of useful models that
allow us to reason about the software process, the software product and the relationship
between them.

In this thesis both analytic, semiformal requirements models and synthetic, design pattern
models, are used as a basis for the experimental development work. In an analogous but
not similar manner to, for example, physical theories and models explaining the laws of
nature, generic design patterns explain recurrent design issues in software engineering. As
an experimental physicist observes and measures natural phenomena, so a software
researcher should observe and measure the results of software products and processes
when testing them and experimenting with them.

In order to test and experiment, the software must be designed, here with the help of
design patterns, and implemented, in this case using software component technology.
From the development point of view, design patterns are seen as models with the help of
which the framework is to be synthesised. The selection and judicious deployment of the
patterns is thus a major concern. Guidelines for this are developed in the thesis. The
selection of a given design pattern can even be seen as a minor hypothesis in its own
right. It is tested by experimentally verifying its usability in the framework.

While the development of the framework is mainly synthetic work, its testing and use or
reuse is predominantly an experimental task. However, as previously mentioned, there is
also a specific need to enhance the framework by agentifying, preferably by reusing the
basic framework as such. The task was pursued, in concert with the design-pattern based
approach, by developing a generic design pattern for this domain-independent and
recurrent design purpose. This part of the work is model building, creating a design
model, which is then experimentally verified by applying it to a domain-specific problem.



25

The study is complemented with practical considerations of the new information
technologies applied and the results achieved in this thesis. This is accomplished by
considering first the general implications of components and frameworks to software
markets and development processes (Jacobson, et al., 1997; Szyperski, 1998; Brown, et
al., 1999; Vayda, 1999). Subsequently, the experience gained in this study is used to
focus on automation markets, software-design practices, training, and further research and
development.

1.4 Contributions

The main contributions of this thesis are: the refinement of requirements for new batch
process management systems, the adaptation of new information technologies to fulfil
these needs and, based on the above, the development and agentifying of an experimental,
reusable component framework for batch process management.

The batch-control domain has been studied in terms of the domain standardisation,
existing control systems, and related research approaches. It can be concluded that
domain knowledge is needed both in defining requirements for the framework and in
making design decisions for it. The separation of concerns of product-related and
production-related functionality from the equipment-related and control-related
functionality and the vital interactions between them have been found to form a good
basis for new architectural designs.

The applied technology, object-oriented software component frameworks, has been both
surveyed and evaluated. Object orientation and software component technology, which
are the constituents of the development, have been described in a concise manner. An
approach to deploy generic software design patterns to design domain-specific
frameworks, has been developed. It concentrates on the commonalities of all applications
in a given domain and strives to make the domain-specific software design
comprehensible to both domain and information technology experts.

An experimental batch process management framework, Figure 1.1, has been developed
in this thesis, to verify the hypotheses of Chapter 1.2.



26

Control recipe
      client

Distributed
(thin client)

user interface
Path client

Control recipe
       server

Path server

Manage Batches

Unit Supervision

Manage Process Cell Resources

Figure 1.1. An overview of the batch process management framework.

 The framework demonstrates the realisation of the distribution, integration and flexibility
needs for batch automation. It also demonstrates reusability by the so-called calling
framework architectural style and external and internal component interfaces in such a
manner that components can be easily replaced by customised versions.

 The architectural, behavioural and distribution aspects of the framework have been
designed with the help of chosen design pattern models in order to solve the batch
specific design issues and to achieve the main goals of the thesis. As an experimental part
of the work, the framework has also been reused by adding application specific
components. It has also been integrated via standard component interfaces to a
distributed digital control system.

 For some problem-specific needs of local decision-making and interaction (in this thesis,
dynamic unit allocation), the framework may have to be enhanced, preferably by reusing
the original framework. For this kind of design task no applicable design patterns were
found. Since the design problem is recurrent, a generic design pattern, Agentified
Component was developed and experimented with. This approach retains the
deterministic nature of the frameworks, which is especially important in the automation
domain but it simultaneously introduces the possibility of solvíng specific problems by a
knowledge- based approach.

 The research and development work of this thesis has been carried out at VTT Automation
Industrial Automation within CAIP – SWF and SWFBatch projects, both of which have
also included other tasks, not reported in this thesis. The author participated, with other



27

members of the project team, in the requirement-definition phase of the batch process
management framework. He is responsible for the definition of Manage Batches and (the
present version of) Manage Process Cell control functions. The author alone is
responsible for the design and implementation of the experimental framework. In
integrating the framework to a DCS, the author has developed the component-based
connection concept and designed and implemented the Windows NT resident part.

1.5 Structure of the thesis

The thesis is divided into five parts, each containing one or more related chapters.

Part I. Introduction includes:

Abbreviations

Glossary

Chapter 1. Introduction

Part II. Review of the State of the Art includes:

Chapter 2. Batch Control as a Development Domain. The batch control domain is studied
in terms of domain standardisation, existing control systems, and related research
approaches.

Chapter 3. Object-oriented Software Component Frameworks. The applicable,
fundamental information technology: object-orientation, software components, design
patterns, and domain-specific frameworks are surveyed and evaluated.

Chapter 4. Multi-agency. Software agents are introduced, multi-agent interaction methods
are surveyed and evaluated, and ways to develop applications having multi-agency
features are discussed.

Part III. The Problem Statement includes:

Chapter 5. The Research and Development Problem. The research and development
problem of this thesis is first presented in a general way. The problem is then justified in
detail both from several domain-specific and information technology points of view.



28

Part IV. The Proposed Solution includes:

Chapter 6. The Development of the Batch Process Management Framework. The
definition, design, and implementation of the experimental batch process management
framework is presented.

Chapter 7. The Reuse and Enhancement of the Framework. The scheme of reuse of the
framework is presented, the manner by which it was integrated to a digital control system
is described, and its enhancement by agentifying is detailed.

Part V. Discussion includes:

Chapter 8. Conclusions. Here the technical results of this thesis are summarised.

Chapter 9. Considerations. The implications of the applied technologies, and the results
obtained, for automation business, design and training are tentatively discussed. Outlines
for future research and development projects are presented, as well.



29

2. Batch Control as a Development Domain

2.1 Introduction

This chapter presents the development domain for the batch process management
framework. First, the new batch control standard, fundamental for development and
research in the domain, is introduced. Then the three leading commercial batch
automation systems are presented, which at least partially conform to the new standard.
Finally, research work related to this thesis is reviewed.

The frame of reference adapted for the presentation of batch control in this chapter
emphasises the need to consider production and product related issues, realised in recipes,
separate from process equipment and control issues, realised in equipment entities, Figure
2.1.

Process,
Equipment,

Controls

Products,
Production,

Recipes

Control activities,
Architectures

Figure 2.1. A frame of reference for batch control presentation.

It is furthermore argued that this separation of functionality and, which is more important,
the interactions between the parts, form an excellent basis when evaluating control
activities and commercial system architectures and research concepts for architectures, as
well. The above frame of reference is explicit also in the contents of the sections of this
chapter concerning batch control standard, commercial batch automation systems and
research work. This general approach, is also applied when developing the new software
framework for batch process management, as described in Chapter 6.



30

The approach is both descriptive and evaluative. The main concepts and artefacts are
described and information is given on their application. While describing the commercial
automation systems and the latest research developments, a general evaluation of the
approaches is given. The closer assessment of the approaches in relation to this thesis will
be given in Chapter 5.

Dealing with commercial batch automation systems was considered beneficial, although
not absolutely necessary from the research point of view. The commercial systems have a
role as references for the results of this thesis. They also act as potential platforms into
which parts of the experimental software framework, developed in this thesis, can be
embedded. This chapter is not, however, meant to be an all-encompassing survey of the
field. Only such issues of the batch control domain that are relevant from the process
management research and development point of view are covered.

2.2 Standardisation

2.2.1 Background

Industrial processes are usually classified as continuous or sequential (discrete). In
continuous processes, the goal is to keep the process conditions constant for longer times
whereas sequential processes are characterised by frequent and planned transitions
between operational states. Batch processes are a subset of sequential processes. They
deliver their products in discrete amounts of material called batches. Input materials are
transformed into products in an ordered set of processing activities carried out in one or
several pieces of equipment (Rosenof & Ghosh, 1987; ISA, 1995).

Currently, about 50% of the industrial processes include batch processing. The main
industries are the manufacturing of pharmaceuticals, food and beverages industry,
metallurgical industry and chemical industry. The increasing emphasis on specialized
high-technology products, customer service, and product quality all highlight the benefits
of batch processing.

Small plants can be economically re-sized according to changing market demands.
Multipurpose process units allow the flexible production of many different products.
When units are correctly sized and organized as networked production lines, batch plants
can produce efficiently several batches of different products in parallel. The quality of
each batch can be analysed, and corrected if necessary, before the delivery to the
customer.



31

A challenge in batch processing is its complexity. At any instant, a large plant may
contain several different batches of various products and each batch may be at a different
stage of processing. Process equipment must be designed for various potential
configurations and operating conditions. Batches must be scheduled and process
equipment, raw materials and other resources must be allocated to them. The sequential
operations of the batches must be monitored and coordinated. Shared resources, like
utilities and manpower, must be managed. Finally, historical records must be collected
and maintained for each batch.

Unlike traditional regulatory controls, there have been no widely accepted theories,
practices or control products for batch applications. Fortunately, this situation is
changing. Since the early 1980’s, terminology and models have been developed, first by
the German NAMUR (Interessengemeinschaft Prozessleittechnik der chemischen und
pharmazeutischen Industrie) and then by the Instrument Society of America (ISA, 1995)
and the International Electrotechnical Commission (IEC, 1997). Recently, World Batch
Forum (WBF) and to some extent also European Batch Forum (EBF) and Japan Batch
Forum (JBF) have contributed to the standardisation work of ISA and IEC.

The purpose of the standardisation efforts has been to emphasise good practices and to
improve communication between collaborating parties. This helps to reduce the time to
market for new products and the costs across the process and product life cycles. The
basic concepts have been well accepted by many leading batch automation system
manufacturers as well as many engineering companies designing and end user companies
using batch control in their production. The research community within the domain has
accepted – and contributed to the development of – the new standards.

The treatise in this chapter is based mainly on the standard ISA-S88.01-1995 (ISA, 1995),
which is the first part (Models and Terminology) of the new ISA/IEC Batch Control
standard. More detailed data models, recipe representation and, data exchange format are
being worked out in the second part of the standard (ISA, 1999a), of which currently a
thirteenth draft has been published and utilized also here, where appropriate.

According to the standard the main independent functions of a batch control system can
be divided into procedural control and equipment control. The task of the procedural
control is to accomplish the processing activities of batch production defined in the
product related recipe. To enable this, it uses services provided by the equipment control.
In the next section, batch process, equipment, and equipment control are described. Then
the format, classification and use of recipes are presented. Last, the control activities in



32

batch control, integrating equipment control and procedural control aspects with the help
of co-ordination control, are described.

2.2.2 Batch process, equipment, and equipment control

The term process refers to a sequence of chemical, physical or biological operations for
the conversion, transport or storage of material or energy (ISO 10628, 1992). These
activities are performed by a physical process plant consisting of the necessary
equipment. ISA standard (ISA, 1995, pp. 18 … 24) divides a batch process hierarchically
into process stages, process operations and, finally, into process actions. The physical
equipment model comprises process cells, units, equipment modules, and control
modules.

Process cells are logical groupings of equipment that include the equipment required for
production of one or more batches. They can be categorised as single product and multi-
product process cells. The process cells can also be divided according to path (or train)
structure such as single path, multiple path, or networked process cells. Figure 2.2 shows
an example of a single product, multiple path process cell of a fictive fine chemical
factory.



33

Prokutamin unit
PTA-line 420000
Process flow diagram

From raw material storage Raw materials

Reactor unit
3100

Reactor unit
2100

Centrifuge unit
3200

Centrifuge unit
2200

Dryer unit
2300

Dryer unit
3300

To product storage

To distillation unit

Reactor unit
1100

First stage reactor

Second stage reactors

Figure 2.2. A part of a fine chemical process cell, modified from ATU, 1992.

In a batch process cell, each unit is usually capable of processing several products, and
each product can, with certain constraints, be produced by more than one set of units. A
unit is a collection of associated control modules and/or equipment modules and other
process equipment in which one or more major processing activities can be conducted.

The types of control needed in batch processes are basic control, procedural control, and
co-ordination control. These control types are run together to enable the production of
various products using the same set of process equipment. Interoperation of the control
types is implemented by exchanging command messages and the respective responses
between the corresponding control activities or the (sub)systems implementing the
controls.



34

The basic control, including discrete-logic control, interlock control, regulatory control,
and exception handling, does not differ functionally from continuous processes. The main
difference is in the requirements for flexibility and adaptability due to a greater amount of
external stimuli. For example, changes in setpoint values are frequent due to the fact that
they may differ on different steps of a recipe procedure. In addition, the amount of
exceptions is normally greater and their nature more complex than in continuous
processes. Basic control may also include equipment-phase logic, containing a set of
steps to accomplish a process action, for example adding material to a vessel. It is
important to note, however, that this kind of sequence in basic control is equipment-
specific, not product-specific.

Product-specific procedural control is typical of batch process control. A recipe
procedure is decomposed into unit procedures, which are further decomposed into
operations and phases. There are also various possibilities to decompose a procedure. In
simple cases there is no need for operations and unit procedures, in complex cases
additional levels (for example non-standard super- and sub- operations and macro phases)
may be needed. Sequential function chart (SFC) or preferably process function chart
(PFC), developed within ISA-S88.02 (ISA-TR88, 1996; ISA, 1999a, pp. 120 … 140) can
be used to represent the procedural logic in a comprehensible and easily modifiable
manner.

Co-ordination control directs the recipe procedure of a batch, as well as, the way in
which it uses the process equipment. It contains the allocation and arbitration of
equipment and other resources to batches. It also manages the use and allocation of
common equipment, the selection of a specific path through the equipment for a batch,
and the co-ordination of multiple simultaneous batches in a process cell.

A fundamental concept in the batch standard is the equipment entity that contains both the
process equipment and the equipment control needed to control it. The control is seen
from outside as a service provided by the equipment, so called equipment capability. The
use of these capabilities to accomplish processing tasks is important in batch processing.
In practice, the capabilities are usually implemented as equipment procedures, i.e. pre-
programmed sequential controls. For example, a reactor unit may have preprogrammed
sequences for mixing and charging raw material.

The standard (ISA, 1995) uses – somewhat misleadingly – the same names for the
equipment entities and the process equipment belonging to them. Thus a process cell, a
unit, an equipment module and a control module mean both so-called intelligent
equipment provided with controls and physical process equipment, as such. The physical



35

process equipment can be used to produce products only by controlling them manually or
by automatic control in a manner described below. The intelligent equipment entity, on
the other hand, can be regarded as a (set of) intelligent resource(s). The services of it can
be combined in order to perform the different processes required in production of various
products.

Process cell control may contain the basic control of several units and an execution of a
control recipe procedure as well as invocations of unit procedures. On process cell level
most important is, however, co-ordination control, especially resource allocation, since
each process cell contains normally several process units and a process cell produces
several batches simultaneously. Furthermore, decisions have to be made about potential
paths for a given batch and also potential longer-term reservations may have to be co-
ordinated in beforehand.

Unit control contains, for basic control, setpoint calculation for equipment modules and
control modules. For procedural control, the unit equipment control either executes in an
autonomous manner unit procedures or runs lower level controls with the assistance of
the control recipe. The process unit may need co-ordination control as well, for example
when using common resources and when interacting with other units by using unit-to-unit
requests.

Equipment and control module control is mainly basic control that controls directly
actuators and other control modules. Equipment and control module control does not
perform product specific procedural control and the contribution to procedural control is
limited to specific mode transfers and responses to service requests.

According to the standard (ISA, 1995, p. 23), a unit shall only handle a single batch at a
time. This is somewhat controversial and some colleagues in the domain would like it to
be relaxed. There is, indeed, no absolute necessity for this constraint from the end user
point of view. The constraint seems to be included in the standard to make the
implementation of a (standard conformant) batch automation system and projectwise
designs of equipment controls clear and manageable.

2.2.3 Recipes

A recipe consists of the information needed to uniquely define the production
requirements of a specific product (ISA, 1995, p. 35). Thus the recipe defines both the



36

product and the way in which it is produced. The general structure of a recipe is shown in
Figure 2.3.

Procedure

Unit procedureUnit procedure
OperationOperation

PhasePhase

Header

Formula

Procedure

Equipment requirements

Recipe: General, Site
             Master, Control

Figure 2.3. The structure of a recipe.

The header contains management information such as the name, version, status, date and
author of the product. The formula specifies the process inputs (information on the
materials, energy and other resources needed) and the expected outputs (information on
the products, byproducts and waste products). It also defines the required process
parameters that are needed for the characteristics of the products or processes (like the
temperature setpoints, flowrates, mixing times and reaction times). The formula thus
defines, directly or indirectly, the parameters to be transferred to equipment procedures
during recipe execution.

The recipe procedure defines the sequential and parallel actions needed to produce a
batch of a certain product. It can be hierarchically decomposed into recipe unit
procedures, recipe operations and recipe phases. Recipe procedures can be created by
combining pre-defined library elements with pre-programmed equipment procedures
included in the equipment control. Equipment requirements are used to select the specific
process equipment for a given batch. The selection can be based on the equipment type,
equipment properties, material transfer paths, or specific unit names.

The standard recognizes four types of recipes according to their level of detail and
equipment specificity. General recipes describe, from a chemical point of view, the
process needed for transforming raw materials into end-products. General recipes are



37

applied enterprise-widely, indicating material and processing requirements for multiple
manufacturing sites.

In site recipes, plant specific information, such as the available process equipment, is
added. They correspond approximately to the written instructions given to plant operators
in manual or semiautomatic production. Site recipes are derived from the information in a
general recipe by taking into account local material availability and processing
capabilities. The management of general and site recipes is an engineering design
activity, not a control activity (Brandl, 1998) and these kinds of recipes can be used for
enterprise-wide and site-wide production scheduling, respectively.

Master recipes are type specific definitions of the processing steps that must occur in a
given process cell, using its control capabilities. They are created based on the
information specified in a site recipe or in a general recipe, the specific processing
capabilities of the process cell and the possible material flow connections between units.
The master recipes can be stored in a recipe library and transformed into executable
control recipes.

The creation of control recipes from master recipes includes, for example, the definition
of a batch identifier, the allocation of process equipment, and the scaling of recipe
parameters according to the batch size. The master recipe, acting as a template for control
recipes, defines the possible actions in a process cell and the potential paths through the
cell. The executing control recipe defines the specific actions and the actual path for a
given batch.

A recipe contains production-related information for the manufacture of a specific
product but it does not contain actual scheduling information or equipment control
information. Thus, by keeping the product related information as separate as possible
from the equipment control it is possible to produce the same product starting from a
single recipe and using different equipment entities. It is also possible to produce various
products with their respective recipes by using a single equipment entity.

What some researchers find somewhat difficult to accept, is the constraint that S88.01
standard specifies exactly four levels in the recipe procedure hierarchy (procedure, unit
procedure, operation, phase). This makes, however, a recipe procedure understandable
from the user point of view and is thus necessary in the first part of the standard (Models
and Terminology) that should be comprehensible to all users of the standard.



38

Unambiguous levelling is also important from the design point of view, as exemplified
well in (Fleming & Schreiber, 1998) and described in Chapter 2.4. The constraint of the
four recipe hierarchy levels is, however, properly relaxed and the level concept
generalised in the Data Models section of the (draft of) second part of the standard S88.02
(ISA, 1999a). S88.02 is intended mainly for the use of system suppliers, integrators, and
researchers.

Another issue that will be clarified in the second part of the standard is recipe
representation. A Procedure Function Chart (PFC) representation is introduced as a
standard and well-defined way to represent a recipe procedure for both master and control
recipes. It is based on a proven representation, Sequential Function Chart (SFC), which is
defined in the standard IEC 60848. The S88.02 working group takes the stand that SFC
should be the preferred language in displaying and implementing equipment phases,
whereas PFC should be used on other levels of the hierarchy.

The greatest difference between PFC and SFC is that in PFC, each step of the procedure
can independently take care of its own completion, which need not be specified with an
external transition with respective transition conditions, like in SFC. The new PFC
representation also makes a graphic notational difference between a procedure, unit
procedure, operation and phase and indicates with notation (with a + sign) if there are
lower level procedural elements in a given procedure, unit procedure or operation, as can
be seen in Figure 2.3.

2.2.4 Batch control activities

Both equipment entities and control recipe procedural elements may, at any time, be in
various modes and states, which together define the status of an equipment entity or a
procedural element, respectively. The modes specified in the standard (ISA, 1995, p. 57)
are automatic, semi-automatic and manual for procedural elements, and automatic and
manual for the basic control functions of equipment entities. The procedural elements and
equipment entities may change their mode due to internal or external stimuli and these
changes may propagate mode changes in other procedural elements or equipment entities.

Twelve states for recipe procedural elements have been defined (idle, running, complete,
pausing, paused, holding, held, restarting, stopping, stopped, aborting, aborted). The
states and transitions between them, Table 2.1, are vital for the batch control
functionality.



39

Table 2.1. State transition matrix, recipe procedural elements, modified from ISA, 1995.

Command No

Command

Start Stop Hold Restart Abort Reset Pause Resume

Initial state

Idle Running

Running Complete Stopping Holding Aborting Pausing

Complete Idle

Pausing Paused Stopping Holding Aborting

Paused Stopping Holding Aborting Running

Holding Held Stopping Aborting

Held Stopping Restarting Aborting

Restarting Running Stopping Holding Aborting

Stopping Stopped Aborting

Stopped Aborted Aborting Idle

Aborting

Aborted Idle

Procedural elements and equipment entities typically react differently to external
commands and other stimuli, for example failures or other notifications from other
entities, while being in different states. State transitions are additionally often propagated



40

in complex ways between various procedural elements and equipment entities. State
transition matrices like the one above, are helpful in analysing and designing state-
dependent batch control functionality. They can be used, as indicated in Chapter 6.4 of
this thesis, in deciding which states, if any, can be aggregated as a single entity based on
similar or analogous behaviour.

Possible states for equipment entities are for example: on, off, closed, open, failed and
available. Both the modes and the states of the equipment entities have been presented in
the standard as examples. All the presented modes and states are not needed in every
application and, on the other hand, some applications need additional states. By using the
modes and states presented – when they are applicable to the application in question –
one can, however, ease the communication on these issues.

Batch control is decomposed in the standard into control activities according to Figure
2.4, below. Compared to the original figure in the standard, the control activities Process
Management, Unit Supervision, and Process Control are here expanded with respective
control functions. The control functions Manage Batches and Manage Process Cell
Resources are especially interesting from the framework development point of view,
Chapter 6. The control activities Unit Supervision and Process Control are referenced in
Chapter 7 from the framework use point of view.

R ec ipe
M ana gem ent

Produ ction
P lanning and

Schedu lin g

Produ ction
Inform a tion

M an agem en t

Pro cess M an agem en t

M anag e
B atches

M an age
Pro cess C ell
R esou rc es

C ollec t Batch
and Process  C ell

Info rm a tion

U n it Su p erv isio n

A cqu ire an d
Ex ecu te

Pro cedu ra l
E lem en ts

M an ag e
U nit

R eso u rc es

C ollec t Batch
and U n it

Info rm a tion

Process  C ontrol

Execute
Eq uipm ent

Ph ases

Execute
Ba sic

C ontro l

C ollec t
D ata

Figure 2.4. Batch control activities, modified from ISA, 1995.



41

Recipe Management contains all activities involved in the creation, storage and
maintenance of general, site and master recipes. The end product of the control activity is
the master recipe, which will be used by Process Management. Creating a master recipe
requires knowledge of the processing and control capabilities of the process cell. Recipe
management also includes the co-ordination of the recipe information with the scheduling
information.

Of the tasks of Production Planning and Scheduling, the standard encompasses planning
of a batch schedule for each batch to be produced. This activity uses higher level
(enterprise and plant-wide) production plans, recipes from Recipe Management and
resource availability information from Process Cell Management, to design a batch
schedule using a chosen scheduling algorithm. The feasibility of the planned schedule is
also ascertained.

Production Information Management collects, refines, stores, and reports the information
originated in batch production. Of the resulting reports, Production Planning and
Scheduling needs actual production summary information and information on resource
usage. Recipe Management, on the other hand, needs comparisons between the planned
and the actual production. Batch Management needs information on the process history
and also planned – actual comparisons. Users and external information systems may
need, additionally, information concerning product and production quality and potential
failures.

Process Management contains two major control functions, in addition to batch and
process cell information collection. Manage Batches is a control function in which a
control recipe is created from a copy of a master recipe, a batch is initiated based on the
scheduling information and operator input, and the execution of the batch is supervised.
Manage Process Cell Resources is a control function in which process cell resources are
managed by allocating units and other equipment, by arbitrating multiple requests for the
same equipment, and by providing a mechanism to control unallocated equipment. The
process management activities are mostly focused on co-ordination control, since there
may simultaneously be several batches in production within a process cell.

Unit Supervision is the control activity that ties the control recipe execution to the
equipment control via Process Control. Unit Supervision executes unit level recipe
procedures and commands of Process Management by initiating and parametrizing
equipment procedures. To accomplish the required tasks, Unit Supervision manages its
own dedicated resources and may also request services from other units. On the other
hand, it delivers information about the production of units to Process Management.



42

The lowest level, Process Control encompasses sequential, regulatory and discrete
control distributed among the units, equipment modules and control modules. Regarding
the execution of recipe procedures, the main function of the process control is to execute
equipment phases according to the commands received from Unit Supervision. Phases do
not interact with physical process devices directly, but through basic controls, e.g. PID-
controllers included in control modules.

Batch control activities in a specific plant can be implemented by different batch
automation (sub)systems from various vendors. That is why the draft of the second part of
the standard has defined a means for Data Exchange, primarily for the interfaces between
the control activities:

•  Recipe Management to/from Process Management

•  Production Planning and Scheduling to Process Management

•  Production Information Management from Process Management

The data exchanges (form and format) are defined by database schemata, which are
described by standard query language (SQL) as exchange tables (ISA, 1999a, p. 44 …
64). The draft standard does not specify how and by which tools the exchange tables are
implemented or how they are utilised.

It is, however, questionable to specify data exchanges with conventional SQL-tables,
when the future batch control systems will probably use method invocations of software
component interfaces and object databases. The implementation-oriented convention,
brought about by the SQL-tables into the draft standard, is an unnecessary constraint that
may later prove to be obsolete.

The standard does not constrain the data structures or data exchange within the control
activities, which is reasonable. Each vendor can freely design the internal structure of a
control activity. Also the communication within the control activity can be implemented
in various ways; e.g. using file transfers, SQL-queries, and method invocations of
software component interfaces. This offers vendors many opportunities to supply
customers with solutions designed and implemented even with the most advanced
software technologies.



43

2.3 Batch control systems

2.3.1 Background

It is evident that the new batch standard (ISA, 1995), will become a reference to all
information and automation systems in the domain, see e.g. (Haxthausen, 1998). Various
software products will converge to deal with the same batch concepts and to use the same
terminology. This eventually increases the openness and competition in the market.
Various products can, on the one hand be integrated to each other, and on the other hand,
be compared with each other according to the functionality they provide, by using the
standard as a reference model.

The first part of the standard SP88.01 is particularly aimed at being a reference model but
also the standard draft dSP88.02 is useful as it completes and refines the first part with the
data models. If the vendors will make their data available to other applications complying
with these models, it is possible that one system can generate data that can then be used in
another system. Also the data exchange formats applied are important for the
interoperability between the systems.

However, only when the batch control systems will be architecturally based on software
component technology, discussed in the next chapter of this thesis, it will be possible to
successfully mix and match individual components, developed by various vendors. These
commercial-off-the-shelf (COTS) components may then be combined with self-made
components using batch automation frameworks to best achieve the specific business
goals of a plant.

It is useful and instructional to compare the three leading commercial batch control
systems (InBatch by Wonderware Corp., VisualBatch by Intellution Inc. and OpenBatch
by Sequiencia Inc.) using the reference model provided by the standard. In addition to
providing an example on how to use the reference model of the standard (ISA, 1995) in
system comparisons, the comparison also gives information on how to incorporate
‘foreign’ software components into these systems.

The comparison is made so that first batch equipment related support is discussed in the
section Batch process, equipment, and equipment control and then recipe related support
is discussed in the section Recipes. Finally, the architectural structure, the high level
implementation of batch control activities, provided by the automation systems, is
discussed, first in general, then considering the systems as component platforms. This



44

approach is compatible with the approach of the previous chapter, although not the one
that would be conventionally used by batch control system vendors.

2.3.2 Batch process, equipment, and equipment control

In InBatch, there are three ways to develop a model for a batch plant (InBatch, 1998).
Either a so-called comprehensive model or a connectionless model, or a hybrid of them
can be used to configure the process model. A description of the approaches and the
respective benefits and liabilities are presented below.

In the comprehensive model, a physical process is defined using units and the connections
between them. The units are defined as in the standard; the connections are comprised of
material transfer equipment, i.e. pumps, valves, etc., necessary to transfer a batch from
one unit to another. Plants may have units that are connected to more than one unit and
some plants have also multiple connections between two same units. The connections
which are included in the model can be further divided into segments.

All units that have the same processing capabilities are grouped in the same process class
(named somewhat misleadingly). All connections between the same two process classes
are grouped in a transfer class. In addition to process classes, specific instances of each of
the process classes may be defined. These process instances for the units must be defined
always when more than one unit of the same class is used in a given recipe procedure.
When process instances are defined, the resulting transfer instances must also be defined.
The batch management system is responsible for co-ordinating unit to unit material
transfers when it executes a recipe, which refers to process classes only.

In the connectionless model of InBatch, a physical process is defined with units only. All
units that have the same processing capabilities or perform the same function are again
grouped into the same process class. Connections are not defined when using this
approach. The movement of material between units is accomplished using so called
complementary process phases, which are added to normal phases, needed to implement
the actual processing operations.

In the hybrid model, a physical process is defined with units and connections. However,
only the static, non-flexible material paths are defined as connections. Flexible paths, i.e.
the paths that involve many possible destinations are not defined as connections. Process
classes and respective units, as well as transfer classes and connections are defined as in



45

the comprehensive model. The flexible paths will use the complementary process phase
approach described in the connectionless model. Thus, this approach minimises the
number of connections that exist in the model, while still preserving the connections for
the paths that are constant.

In InBatch the batch management system is responsible for executing batches. The
batches consist of a recipe and a train assignment. The recipe is typically equipment
independent, referring to process and transfer classes only. The train is used to provide a
list of potential equipment to the batch management system for dynamic selection while
the batch is executing. If a unit is not in the assigned train, it is not available to be used
for the production of the batch. A train can contain one or more units, and a unit can be a
part of multiple trains. Trains provide thus in InBatch a standard compliant way to
represent various paths through the process.

In VisualBatch, a batch plant is modelled by first defining an area to represent the extent
or scope of the plant model. In the area, one or more process cells are defined to contain
the equipment needed to produce a batch of a given product. Then the units that reside in
the process cell are defined. For each unit, the equipment phases that execute on the unit
are defined (VisualBatch, 1998).

If there are several identical units in the plant, a unit class for each type of unit in the
plant can be defined. For example, mixers, heaters, and reactors could be unit classes in
VisualBatch. For each unit class, the class properties are defined. Then a unit instance for
each physical unit in the process cell is defined in an object-oriented manner by giving
values to the unit properties. The use of unit classes lets recipe authors build class-based
recipes, similarly to the procedure in InBatch.

Once the units have been defined, they can be linked together. The linking of the units
enables phases to communicate across units. When the phases must communicate across
the units, VisualBatch verifies that the units are linked at runtime. Linking units defines
also the path (or the train) between units similarly to InBatch.

VisualBatch handles multiple requests for the same resource by allowing the operator of
the system to configure equipment arbitration. Equipment arbitration co-ordinates the
allocation of resources when there are more requests for a given resource than can be
served at a specific instance of time. Configuring arbitration consists of defining for each
piece of equipment in the plant: its equipment identifier, maximum owners, and other
equipment needed for execution.



46

In OpenBatch (OpenBatch, 1999) a batch plant is modelled as areas, process cells, units,
equipment modules and control modules strictly according to the batch standard (ISA,
1995). In addition to unit classes (like in InBatch and VisualBatch), also process cell
classes and equipment and control module classes are introduced. The concept of
equipment entity (or equipment class) as a collection of equipment that has essentially the
same capabilities, is well defined in OpenBatch. It simplifies both the configuration of
similar equipment and allows recipe procedures to be configured to work with a class of
equipment instead of a specific piece of equipment.

When starting the batch equipment definition in OpenBatch, the first step is to define at
least one process cell class on a blank template representing the specific area. In addition
to the name and icon of the process cell class, also specific process cell instances are
defined. Then so-called arbitration information for each process cell instance is defined.
It is a list of required resources that must be available prior to starting any procedure on
this specific process cell. In this way, one process cell class can describe several
instances, each having, for example, various raw material supplies.

The selection of specific unit instances from unit classes takes place in OpenBatch in a
similar manner than the configuration of process cell instances. In addition to unit name
and arbitration information, also associated data tags (corresponding to control system
data points) are defined. At the same time as units are added, also possible inter-unit flow
paths can be defined graphically.

InBatch, VisualBatch, and OpenBatch comply fairly well to the standard as to the
modelling and terminology of the batch plant. VisualBatch and especially OpenBatch
describe the physical equipment model in a more thorough and object-oriented manner
(properly named classes and instances) than InBatch. The terminology in VisualBatch
and OpenBatch is strictly compliant with the standard. InBatch also introduces non-
standard vocabulary, presumably due to compatibility to older versions of the product.

2.3.3 Recipes

InBatch contains a recipe management system (InBatch, 1998) that enables master
recipes to be constructed and edited. A master recipe becomes a control recipe when it is
assigned to a train and initialised. The control recipe is process cell specific. InBatch
provides table driven and graphical editors to construct and edit recipes. Recipes can be



47

saved, retrieved, and printed. A revision history capability enables the users to enter,
save, and review the change history for each recipe.

The recipe parts provided by the InBatch recipe editor, are the same as in the standard
(ISA, 1995): the Header, the Equipment Requirements, the Formula, and the Procedure.
In InBatch, Equipment Requirements specifies the process classes (i.e. unit classes) and
their attributes. When defining the attributes, the user must specify the minimum and
maximum values for each attribute. When a specific characteristic is required, the
minimum and the maximum are assigned the same value.

When the trains were defined in equipment definition, it was possible to have multiple
destination units available for a given transfer. The operator may be allowed to select the
desired destination unit, or the selection is to be done automatically. A so-called unit
selection mode is used to define or change the selection method when defining the
equipment requirements for a recipe. The InBatch Recipe Editor automatically inherits all
process and transfer phases associated with the process classes defined in the equipment
requirements. Only these phases can be used to build the recipe procedure.

Defining multiple instances in equipment definition allows the recipe builder to process
in or transfer to multiple units of the same process class. The process class instances can
also be assigned their own specific attribute ranges, or a specific unit can be assigned.
The formulas in InBatch are standard-compliant, consisting of input, output and process
parameters. The procedures define the sequence of process actions needed to execute one
batch of a recipe.

The VisualBatch Recipe Editor displays recipes graphically like the InBatch Recipe
Editor. The VisualBatch Editor complies fully with the Batch Control standard (ISA,
1995) and supports IEC 1131-3 symbols and sequential function charts (SFC). In addition
to recipe procedures, operations and phases like in InBatch, also unit procedures are
identified as a part of a procedural recipe hierarchy, as also specified in the standard.

Typically, when creating an operation in VisualBatch, a specific unit is assigned to it.
This is adequate if the operation runs in one unit only. However, when an operation needs
to run in several units, so called class-based recipes can be used. A class-based recipe is a
recipe that defines the equipment in terms of a unit class. The recipe can be assigned to
any unit in the unit class at run-time.

Recipe formulas can be created in VisualBatch on any recipe level. Once created, formula
values (or equivalently formula parameter values) are set from the higher recipe level.



48

Thus, when creating formulas for an operation, a unit procedure or a procedure, their
values are set respectively from the unit procedure, the recipe procedure or by the
operator when the batch is started.

Also the OpenBatch Recipe Editor complies fully with the Batch Control standard (ISA,
1995) and supports IEC 1131-3 symbols and sequential function charts (SFC). Recipe
procedures, operations and phases, are identified as a part of a procedural recipe, like in
InBatch. A one-to-many relationship exists between recipe phases and equipment phases.
For example, a recipe procedure can require any reactor that can heat and agitate to be
used. In various batch runs this phase may be implemented by different reactors
(OpenBatch, 1999).

The OpenBatch recipe hierarchy (procedures, unit procedures and operations) uses SFC
to represent all levels of procedural functionality. On the highest level, only the
connections between unit procedures are described within the recipe. Each unit procedure
can be opened to reveal its operations, which in turn can be opened to reveal their
embedded phases. Looping and parallelism are likewise allowed on every procedural
level.

InBatch, VisualBatch and OpenBatch comply fairly well with the standard (ISA, 1995) as
to the format and terminology of recipes. The emphasis in recipe management in all
systems is on Master recipes and Control recipes. General recipes and Site recipes are
considered simply as generalisations of Master recipes. VisualBatch and Openbatch
describe the procedural recipe hierarchy in a somewhat more thorough and object
oriented manner (using recipe classes and instances) than InBatch. Unit procedures are
missing from InBatch. The recipe terminology in InBatch, VisualBatch, and OpenBatch
is compliant with the standard.

2.3.4 System architectures

Wonderware’s InBatch (InBatch, 1998) supports scheduling batches, initialising batches,
co-ordinating the execution of batches with the control system, interfacing with operators,
and storing all batch activity. The Batch Manager, the Batch Scheduler, and the Batch
Display programs implement this functionality.

The Batch Scheduler dispatches batches, which are ready to run, to plant floor operators.
Scheduling involves a manual entry of the batch identification, the master recipe, the



49

batch size, and the train into the Batch Scheduler. After the parameters have been entered,
each batch is initialised by validating the recipe and checking that the recipe’s equipment
requirements are satisfied.

The Batch Manager directs the execution of each batch. It co-ordinates the usage of
process units for each batch. Based on the procedure of the recipe, the so-called blocks of
control software are signalled to execute. Phase block control logic, located in the control
system, is responsible for controlling the process. If the phase block is ready to be
executed, the phase parameter values are downloaded to the block, and the block is
started.

The Batch Manager also interfaces with Batch Display programs. The Batch Display
provides operators with information on all batches initialised and/or executing in the
system. Through these displays, operators can put a batch or phase in hold, as well as
restart and abort batches or phases.

InBatch uses a relational database as its historical repository to provide access to all batch
history data. The Batch Management System writes all information related to the
production of a batch to the history database. The retrieval of historical data in the form
of reports is provided by the runtime Reporting System. Reports can be automatically
triggered during the execution of a batch or at the end of a batch.

There are two ActiveX objects that are provided with InBatch. The SFC ActiveX Object
provides a standard SFC visual representation of a batch from within any ActiveX
container application. The Batch ActiveX Object provides access to all scheduling and
batch management functions from any ActiveX container application. This control
provides the functionality for the Batch Scheduler and Batch Display applications.

Intellution’s VisualBatch (VisualBatch, 1998) uses the Intellution WorkSpace for recipe
development from a single location, integrates with Man Machine Interface (MMI)
packages, and integrates batch data and recipes into Enterprise Resource Planning (ERP)
systems. Both VisualBatch and InBatch use a client-server architecture. A typical
VisualBatch system consists of the following computers: a VisualBatch Server, one or
more Clients, and a Development Workstation. In addition, if a MMI system is included,
the batch system architecture can include one or several MMI Clients.

The VisualBatch Server is the batch management system that co-ordinates the
functionality of recipes, the equipment database, and each VisualBatch Client during the
execution. The VisualBatch Server also generates batch event data and communicates



50

with the relational database, and OPC-aware process hardware. The VisualBatch
Workstation is used to develop recipes and equipment database. During the development,
the automated batch process can be modelled and tested using a simulator.

When configured to do so, VisualBatch also stores batch data and recipes in a relational
database. This provides an access to batch data and integrates data into a potential
Enterprise Resource Planning system. Integrating data with manufacturing systems can be
accomplished in several ways; the data may even be in the same relational database.

The functions provided in VisualBatch Integration Services (VBIS) can also be used to
integrate VisualBatch data with manufacturing enterprise data. VBIS is a collection of
Application Programming Interface (API) services that allows external programs to
monitor and control VisualBatch. When the data is stored in separate relational databases,
the data can be integrated by writing a SQL program to query the VisualBatch and ERP
data and make joins of them.

The OpenBatch batch control system (OpenBatch, 1999) is, unlike InBatch and
VisualBatch, commonly integrated into other automation systems as an OEM-product,
providing the needed batch control functionality. Thus its software architecture,
consisting of seven major subsystems, Figure 2.5, is most interesting from the point of
view of system integration.

Equipment
Editor

Recipe
Editor

Physical
Model

Procedural
Files

Simulator

Batch
View

Batch
Server

Event
Journals Archiver

Report
Editor

Reports Reports

Relational
DatabaseData

Server

DCS / PLC

OFF-LINE ON-LINE

Figure 2.5. OpenBatch architectural overview.



51

Of the OpenBatch subsystems, the Equipment Editor and the Recipe Editor have been
discussed previously. The OpenBatch View provides an operator interface to
communicate with the OpenBatch Server. Many components of the View are
implemented as ActiveX controls, and they can thus be inserted into container
applications, notably Web browsers. From the functional point of view, it is interesting
that using the View the user can choose one of three allocation scenarios:

•  Specify a unit to be allocated before the execution of the recipe.

•  Prompt an operator for instantiating a unit from a unit class during the recipe
execution.

•  Choose automatically the first available unit during the recipe execution.

The OpenBatch Server is a centralised execution engine that executes the recipes and co-
ordinates communications between the View, the process connected devices, other
OpenBatch subsystems and external software packages. The server also provides
automatic restart control based on journaling all actions taken, so that a full recovery can
be achieved in the event of a control system failure.

The Simulator is used to simulate and test recipes against equipment specifications
without a connection to the actual process. The Archiver is used to transfer electronic
batch record data created during the recipe execution to ODBC-compatible databases.
The Report Editor is used to create and customise graphical batch reports from batch
record data. Phase execution information is available via these reports.

OpenBatch has been licensed by several automation system vendors (VisualBatch has
been developed on the basis of a former version of OpenBatch) as a part of their own
product, which is a sign of its good interconnectivity and interoperability with other
systems. Also ERP and MES systems can be integrated with OpenBatch, as was the case
with InBatch and VisualBatch, to provide for example inventory management and
tracking as well as automated scheduling.

The architectures of InBatch, VisualBatch and OpenBatch are distributed in a traditional
manner, based on the computer hardware distribution. The main functionality lies in
servers, which are situated in database oriented computing nodes, in InBatch to the extent
that a relational database is an integral part of it. The use of a relational database is
optional, but well integrated also in the architectures of VisualBatch and OpenBatch.



52

All architectures claim to be open. Support for database integration through SQL,
application programming interfaces for other applications and most notably OPC-
standard interfaces for hardware are important assets of all three systems. Genuine
software component based interoperability, in which components originated from various
vendors could be composed together, to be discussed in chapters five and six, is still
lacking in these commercial systems. Steps to this direction have, however been taken,
most notably with InBatch’s ActiveX controls, VisualBatch’s component base kernel, so
called ICore architecture, and OpenBatch’s COM-based integration characteristics.

2.4 Related batch research

2.4.1 Background

In addition to industrial research and development, also vendor independent research has
profited from the ISA SP88 standardisation. Especially research on process equipment
partitioning, recipe structures and architectural concepts have benefited. Also other
standards, technologies, and development approaches have been exploited and integrated
within these research efforts.

Much of the research in the domain has lately been concentrated on Petri Net based
approaches. This is because the so-called safe nets are easily related to Sequential
Function Charts, (Åkesson & Tittus, 1998). Nets are useful, in particular, for analysing
concurrency and reachability aspects of dynamic systems. The approaches of various
researchers are not coherent, however.

The batch control approach by Tittus and his collaborators from Chalmers University
(Tittus et al., 1995; Tittus & Egardt, 1996) concentrates mainly on the batch process and
equipment design, as well as, on a static and dynamic synthesis of batch operations based
on the so-called Labeled Petri Nets. In a labeled net, each transition is associated with an
event. Recently, the researchers in Chalmers University have also studied deadlock
avoidance in the execution of batch recipes (Åkesson & Tittus, 1998).

In Lund Institute of Technology, Årzen and Johnsson have developed the so-called High
Level Grafchart (Johnsson & Årzen, 1996a,b; Årzen & Johnsson, 1996; Johnsson &
Årzen, 1998), a batch control concept based on Sequential Function Charts and High
Level Petri Nets. A High Level Petri Net allows a compact graphical description of



53

systems with similar parts. The researchers in Lund have also developed an
implementation by using G2 – development platform and tool of Gensym.

Besides Petri Nets, some researchers, most notably Fleming and Schreiber (Fleming &
Schreiber, 1998) have concentrated on integration of batch equipment control and
procedural control into conceptually sound design practices. Some others have
concentrated more into software architectural issues, most notably Simensen, (Simensen
et al., 1997). The approach of this thesis is another example on this.

The above-mentioned approaches, which are related to the batch process management
functionality, are discussed and evaluated in the next sections. There is, of course, a lot of
research concentrating on other batch subdomains, for example on batch scheduling,
exception handling, validation, and supply chain management, which are not covered in
this chapter.

2.4.2 Batch process, equipment, and equipment control

According to the batch standard (ISA, 1995, p. 34), partitioning the process equipment is
a challenging task:

Effective subdivision of the process cell into well-defined equipment entities is a complex
activity, highly dependent on the individual requirements of the specific environment in
which the batch process exists. Inconsistent or inappropriate equipment subdivisions can
compromise the effectiveness of the modular approach to recipes.

Fleming and Schreiber (Fleming & Schreiber, 1998) have taken this challenge in earnest.
They have developed a methodology to modularise the batch process starting from P&I
diagrams into Process cells, Units, Equipment modules and Control modules so that it
supports the development of reusable recipes in an optimal manner. The approach is
based on a top down decomposing of process equipment and a respective bottom up
composing of recipe procedures, Figure 2.6.



54

Process cell

Units

Equipment
modules

Control modules Phases

Operations

Unit procedures

Procedures

PHYSICAL MODEL                     PROCEDURAL MODEL

Top-Down       Bottom-Up
 delimiting        building

Figure 2.6. Batch process equipment decomposition and recipe composition.

The approach gives guidelines for identifying and delimiting Units, Equipment modules
and Control modules and identifying and building the respective Unit procedures,
Operations and Phases. Recipe development takes into account the needed basic,
procedural and co-ordination control. Specifically, transfers are seen as important parts of
co-ordination control. The approach emphasises the need to either include transfers
within communicating units (transfers in and out respectively) that control their own
resources or to have equipment modules containing specific phases to control transfers.

Batch plant equipment is modelled in Tittus’s approach (Tittus et al., 1995; Tittus &
Egardt, 1996) with two kinds of resources: processors and transfer or transport devices.
Processors are partly autonomous, container-type units equipped with control devices
needed to manipulate a batch. Transport devices, on the other hand, open and close
connections between processors, enabling and preventing material flow. The processing
capabilities of the plant are thus determined by the capabilities of the various processors
and the connections by the transport devices between these processors.

Åkesson and Tittus also introduce a concept of a (connection) line for deadlock
prevention and avoidance purposes as the set of required transport devices in order to
connect source processors with target processors (Åkesson & Tittus, 1998). For a recipe
to move material between two processors, the recipe needs to book the source and the
target processor and the corresponding line.

The line is responsible for booking all necessary transport devices. Unfortunately, this
kind of an active line does not conform to the standard. The need for a set of active
devices in between units has also been recognised elsewhere. For example, the transfer



55

class instances in InBatch’s comprehensive model are an implementation of active
devices between units.

Another approach, explicit in the batch standard as well as in VisualBatch, OpenBatch,
and in Chapter 6 of this thesis, is to avoid using sets of active devices in between process
units. Instead, by including suitable equipment and control modules in units, it is possible
to develop process units autonomous enough to take care of material transfer between
them. This approach, contrary to that of Åkesson and Tittus, gives possibilities to develop
the autonomy of process units further, for example by increasing their communication
and even negotiation capabilities as demonstrated in Chapter 7 of this thesis.

In a mapping model, in Åkesson and Tittus approach, each processor is modelled as a
Petri net with exactly one place. All physically possible connections are modelled by
means of transitions between the places. A synchronisation model shows the mode of
operation of the resource while executing batches. In the synchronisation model, all
processors and transport devices are modelled as finite state automata. The states are,
however, restricted to only three (unbooked, wait and operate). A behavioural model
describes the detailed behaviour of each processor. So-called local hybrid controllers
denote the termination of an operation, started by the recipe.

2.4.3 Recipes

The emphasis on the High Level Grafchart (Johnsson & Årzen, 1996a,b; Årzen &
Johnsson, 1996; Johnsson & Årzen, 1998) is on modelling and controlling the procedural
sequence of recipe execution. High Level Grafchart (HLG) differs from the well known
Sequential Function Graph in the possibility to include extended procedural elements
(steps) in the procedural sequence.

The actions contained in the steps of HLG resemble conventional programming language
statements, implemented in this case by the action types of G2 tool. An application
programmer specifies the transitions between the steps using events and conditions,
which tell when the transitions should fire. The events and conditions are translated
during compilation into G2 rules.

So-called macro steps can be used in HLG to represent procedural elements having a
hierarchical structure of (sub)steps, transitions and other macro steps. Sequences, which
are executed in several places, can be represented as re-entrant Grafchart procedures,



56

which can be methods of general G2 objects. If a procedure step is to be started in parallel
with other steps, a so-called process step is used. The transitions after a process step
become fireable immediately after the execution of the process step has been started.

From an object-oriented point of view, an interesting extension in HLG, compared to
SFC, are the so-called Object Tokens. In SFC, a token simply indicates whether or not the
step is active. In HLG, an object token, instantiation of an object token class has
attributes, which may be altered from inside step actions. The Object tokens are inspired
by High-Level Petri Nets.

Johnsson and Årzen have presented (Johnsson & Årzen, 1998) four different recipe
structures with their advantages and drawbacks: Control recipes as function charts,
Control recipes as object tokens, Multidimensional recipes, and Process cell structured
recipes. This indicates the expressiveness of their High Level Grafchart approach. On the
other hand, the use of this expressiveness instead of the batch standard’s approach of
separating recipes from process equipment arouses questions of standard conformance.

In Tittus’s approach so called mapping recipes are generated from product specific
general recipes by transforming them into a Petri Net form. The amount of variations of
recipes is then minimised by synchronising the result with the Petri Net model of the
plant, thus creating in effect a product and plant equipment specific set of recipes. To
obtain a suitable representation for control, the set of recipes is then translated into
another representation, a so-called synchronisable master recipe, consisting of building
blocks, each controlling an operation or a material transfer.

The synchronisable recipes describe alternative specifications for the so-called event
sequences through the plant. Collectively, they form a joint specification of the system
behaviour, which can be utilised to generate a supervisory control algorithm for the
plant. The generated algorithm is theoretically complete (following all uncontrollable
events) and trim (completing all specified batches) but it assumes a fully deterministic
plant.

Both of the research approaches described above, have their main emphasis on analytical
modelling and only to some extent on a synthesis of procedural control, i.e. sequential
functioning of batch processes. Petri Net based methods are, indeed, appropriate for
analysis purposes and the approaches above continue the research tradition started already
when developing the SFC standard.



57

2.4.4 Architectural concepts

The approaches described in the previous sections have also succeeded in exploiting
some of the benefits of (non-distributed) object orientation in the implementation of the
batch control architecture. In Årzen/Johnsson approach this has taken place mainly in
terms of object oriented G2 – methods from within recipes and encapsulation of
synchronisation functionality by object tokens.

In Tittus’s approach implementation inheritance has been utilised when modelling
process and control equipment (equipment classes). The distributed computation aspect
has not been considered in the approaches, in addition to the inherent modelling
capability of parallel activities with Petri Nets.

A more extensive object-oriented modelling approach is reported by Simensen (Simensen
et al., 1997) which resembles the generic OMT modelling (Rumbaugh et al., 1991). In
Simensen’s modelling approach, an overall Information Model for Batch Control is
divided into a Functional Model, a Domain Model and several Dynamic Models. The
Functional Model consists of ISA S88.01 Control Activity Model, described in Chapter
2.2, extended by the so-called Organisation information and Engineering control
activities, the contents of which are not, however, further detailed.

The Domain Model is an object-oriented representation of static structures of a batch
plant. It consists of batch objects, resource objects (i.e. process equipment) and control
objects (i.e. recipes). Some objects are so-called hierarchical or composite objects,
objects aggregated of ordinary objects. For example, a process unit is regarded in this
context as a hierarchical object, made of basic equipment objects and having, for
example, temperature control capabilities. The composite object may have an icon of its
own and it may be connected to other objects. A system, an entity implicated to a flow of
material, energy or information, can also be represented as a composite object.

The Dynamic Models are divided into two categories: normative or control models and
descriptive models. Control models express how a batch process is supposed to operate
by design. Examples of these models are recipes, State Task Networks, Petri Nets and
High-Level Grafcharts. The term descriptive model is used for what actually happened,
i.e. batch histories and equipment logs.

In the dynamics of batch production, modelled with the dynamic models above, it is
considered problematic, how to represent a batch as a totality during its lifecycle in its
relevant so-called views (as an order, as a control recipe, as a batch history). Dynamic



58

inheritance, where a batch as an entity belongs to various classes over time, is proposed to
solve this problem. It may be argued that this approach is more object-oriented than the
standard since it tries to encapsulate recipe and equipment control into one entity.

The ISA S88.01 standard (ISA, 1995), however, takes another stance in the integration
aspect of the batch. It maps the procedural control represented by recipes with capabilities
provided by individual equipment entities, even with several alternative mappings (levels
of collapsibility), but keeps these entities separate. In this sense it emphasises the
independence of both recipe and equipment control as entities of their own. The standard
further recognises state and mode changes separately for both recipes and equipment
entities.



59

3. Object-oriented Software Component
Frameworks

3.1 Introduction

This chapter presents the main technological background for the batch process
management framework of this thesis. First, object orientation and software component
technology, the basic constituents, are described in a concise manner. Then, the design
pattern approach for object-oriented software design is presented as an important means
to develop frameworks. Finally, the domain-specific software frameworks are introduced,
both by definition and by two representative examples, relevant in the domain of the
thesis.

A frame of reference in this chapter, adapted to present the relevant software technologies
emphasises the need to consider both the inheritance based techniques of object
orientation and the newer composition based software component technology, Figure 3.1.

Object
orientation

Component
technology

Domain specific
frameworks

 Design
patterns

in a
domain
specific
manner

Figure 3.1. A frame of reference for technological background presentation.

It is, however, argued that instead of pure inheritance or composition, a better way to
build frameworks is based on a domain-specific deployment of generic design pattern
methodology. Batch control as the application domain has been presented in Chapter 2.
The frame of reference is seen in the contents of this chapter’s sections concerning
objects and components, design patterns and domain-specific frameworks. The approach
adapted is used when developing a new architectural framework for batch process
management, described in Chapter 6.



60

This chapter does not deal with object modelling techniques, employed in software
requirement definition and analysis. Those techniques, important as they are in all
software development, are applied similarly from the technical modelling point of view
both when developing frameworks and when developing ordinary applications. However,
using commercial-off-the-shelf (COTS) components in the development process brings
about the need to consider their granularity already in the analysis model of the
framework or application.

Furthermore, when developing a domain-specific component framework, the focus of the
analysis is on a family of applications in a domain rather than on a particular application.
Therefore, concentrating on commonalities in the domain (in this case in batch process
management) is needed. Generic object modelling techniques are employed using domain
analysis point of view in developing the batch process management framework. The use
of the object models is reported in Chapter 6.2, Logical Models.

The approach in this chapter is both descriptive and evaluative. The main technologies
are presented both by defining the concepts and by giving descriptions on their
application. When discussing the latest research developments, related to the theme of
this thesis, also a general evaluation of the approaches is given. The justification of the
approach of this thesis in relation to the presented technologies is postponed to Chapter 5.

The entire software development process or organisation is not a research topic of this
thesis. They are, however, affected by the reuse oriented, component based development,
and are thus discussed tentatively in Chapter 9. The design guidelines for domain-specific
component frameworks, which are important for achieving the goals of this thesis, have
been developed and are presented in Chapter 3.4.

3.2 Objects and components

3.2.1 Object orientation in short

Traditionally, software in automation and control domain was developed by using
structured analysis and design. The main characteristics were separation of functionality
and data, as well as decomposition as the principal means for advancing in the
development process, see for example (Kuikka, 1985).

Object orientation has brought about the possibility to encapsulate functionality and
information together into entities, objects, belonging to classes which define both the



61

properties (attributes, or instance variables) of the objects and their operations (services or
methods). The classes normally make up class hierarchies, in which lower level classes,
the so-called subclasses, inherit both attributes and operations from upper level classes, or
the super-classes.

Inheritance has become (in addition to structured analysis based decomposition) the
principal means for managing complexity in software development. Object orientation
has reached a certain level of maturity and is a standard approach in developing new
software, partly due to the possibility to reuse implementation – and to some extent also
analysis and design.

In object orientation, inheritance is the basic mechanism of code reuse. For example, a
class may be added into a class hierarchy by inheriting most of its properties and
operations from an existing class and adding some new properties and operations. The
methods of object classes on various levels of class hierarchies may have same names;
i.e. the names may be overloaded. In the case of overloading a compiler may be able to
resolve the to-be-invoked function from the functions having the same name. This is
called early binding. In object oriented languages, it is also possible to resolve the called
function at runtime, which is called dynamic or late binding.

Polymorphism is especially important for the reusability of class libraries. Dynamic
binding is one example of polymorphism since the methods having the same names
actually have many (poly) functionalities or forms (morphs), (Haikala & Märijärvi, 1997,
p. 299). Some operations in the subclasses may be redefined by overloading the method
name and changing or overriding the respective functionality but maintaining the
signature (the method call with parameters) of the super-class.

Due to same signatures, the operations of the super-class may be invoked without a
change in calling code also for the objects of the new subclass. This is possible, because
the super-class operation is not bound to a function of a specific class until at runtime.
Nevertheless, the subclass must normally (if no so-called dynamic link libraries, loaded
during the execution, are used) be linked to the application before the execution.

It is also important that information content and functionality may well be added to the
object classes of an application gradually, thus exposing the objects not until it is
absolutely necessary. Therefore, it is possible to develop new properties and operations
into an application in phases during which new, derived object classes are introduced. As
Bertrand Mayer puts it in an article (Mayer, 1998) the open-closed principle is one of the



62

central innovations of object technology: the ability to use an object as it is, while
retaining the possibility of adding to it later through inheritance.

Although the implementation inheritance, described above, is a powerful mechanism for
design and implementation reuse, it has its restrictions. In some cases the changes made
to the upper level classes in class hierarchies make it exceptionally difficult to correctly
anticipate all the changes taking place in the derived classes. The problem is called a
fragile base class problem, when it is so severe that it threatens the integrity of the whole
system. For the design guidelines necessary in this case, see for example (Mikhajlov &
Sekerinski, 1998).

What is perhaps even more constraining in inheritance-based object orientation is that
object orientation as such does not provide actual runtime reuse possibilities. It should be
possible to add new functionality or modify existing functionality in applications while
they are in use. As described above, even when using implementation inheritance with
dynamic binding, the new, inherited classes often have to be developed, compiled and
linked to the application before use.

Whereas ordinary objects are constrained to a single process or thread in one computing
node, distributed objects can reside in any thread or process in any computing node on a
network which is accessible remotely by other objects. Robust distributed object systems
allow objects, written in various programming languages, to communicate using
standardised messaging protocols (for example TCP/IP). Distributed objects allow
applications to be split into subsystems that can be executed in several computers and, the
benefits of distributed computing are reached.

Distributed objects as such do not, however, give any help in finding or locating objects
or services that are capable of performing operations which a given object needs. Objects
must thus know the methods of other objects in detail. While standardised, but low level
messaging protocols are used in inter-object communication, even normal message
passing functionality, let alone higher level interoperation between objects is tedious to
implement with conventional distributed object techniques.

3.2.2 Software component technology

In order to enable also runtime reuse and to alleviate the problems of implementation
inheritance, as well as difficulties in implementing distributed applications; software



63

component technologies have been developed. Software components are reusable, self-
contained pieces of software, which are accessible only through well-defined interfaces.
A component has to be self contained, autonomous enough to be able to perform a well-
defined task, which has its place within various applications. The services provided by the
component must be explicit to the potential users, as well. That emphasises the
importance of interfaces.

Instead of implementation inheritance, composition of existing components, discussed in
the next section, is the main mechanism of reuse within software components.
Components use inheritance, too, but now at the interfaces in which only signatures are
inherited, whereas each inheriting component class defines its own implementation. This
is conceptually comparable to object inheritance from an abstract superclass.

Some authors adopt more general definitions for components. For example, Ivar Jacobson
defines a component (Jacobson, et al., 1997) as “a type, class or any other work product
that has been specifically engineered to be reusable”. The definition adopted in this thesis,
above, is closer to those of OMG’s CORBA (OMG, 1995) and Microsoft DCOM
(Microsoft, 1996) which consider a component to mean an encapsulated module of code
which is transformed into run-time objects providing services to their users. Desmond
D’Souza uses the term a component in code which becomes a component instance
(D’Souza & Wills, 1999, p. 390) for this kind of a component.

The strict definition in this thesis, as well as the ones by OMG and Microsoft, emphasise
the role of components as operational run-time entities whereas Jacobson uses the term
‘component’ for all kinds of reusable software artefacts. The benefit of Jacobson’s
definition is that it makes explicit the need to reuse all artefacts of software engineering
and to manage them in a coherent manner. This thesis, however, considers components
from an operational point of view and in such a level of detail that analysis and design
artefacts cannot be included in the definition of components.

An ideal component (in the strict sense) should be an autonomous unit that maintains its
encapsulation when considered from various points of view. In automation, important for
the autonomy of components is (Kopetz, 1998) that they can be considered as
independent units of service provision, error containment, reuse, design and maintenance
and, validation. Well-designed error containment is needed in critical applications: a
component should either operate correctly, remain silent, or produce a detectably
incorrect result, without disturbing the other components in the system. It is also
important to be able to validate the proper operation of a component separately, both in
the value domain and in the temporal domain.



64

Components can at best, be used by any developer, with mixed languages or platforms.
They can be arbitrarily distributed (considering reliability, availability and security
aspects) within a local network, intranet, extranet, Internet, or in some applications, even
in a mobile network. In most cases, as also in this thesis, components are implemented
with object-oriented technology, enabling also the exploitation of the significant benefits
of object orientation in development work. Components also differ from other types of
reusable software modules in that they can be selected and invoked at runtime as binary
executables.

Interfaces define the way (methods with input and output parameters) in which the
components are accessible. From the interface definitions, so-called proxies and stubs are
automatically generated (Microsoft, 1995, Chapter 7, p.5). Proxies are representatives of
the server’s (component provider’s) components in the client’s (component user’s)
address space. Stubs are representatives of the client’s objects in the server’s address
space, Figure 3.2.

Proxy for a
remote
component

Component

Client process Server process

Computing node X Computing node Y

Figure 3.2. Accessing a component in a remote server.

The generic standard interfaces define functionality for various common purposes, for
example for file systems, compound documents and user interface controls. These
interfaces may be inherited as such, or overridden by the application developers. Custom
interfaces have to be defined and the corresponding functionality implemented when
domain-specific or application-specific functionality is developed for software
components. Components, both existing ones and those developed during the application
project, may then be used in composing the needed functionality.

Component lifetime management is an important aspect in component technology.
Components are instantiated or constructed dynamically, when their capabilities are
needed and they have to be removed or destructed respectively when they are no longer
needed. There exist mechanisms based on both explicit reference counting and so-called
garbage collection (Rogerson, 1997, pp. 63 … 83; Arnold & Gosling, 1998, p. 47).



65

With reference counting, the application has a better control of the lifetimes of the
components. Reference counting has, however, to be explicitly implemented. Garbage
collection is automatic and helps to avoid the so-called dangling references but may cause
non-deterministic overhead, which may affect adversely time critical automation
applications. Effective incremental garbage collection algorithms, introduced recently,
alleviate this problem, however. Contrary to a common belief, memory leaks may also
occur when using garbage collection, as noted by Java’s developer Gosling (Arnold &
Gosling, 1998, p. 48). Accordingly, component lifetime issues shall be taken care of in
component-based system development irrespective of the chosen implementation
language.

The need to distribute components and supply them with well-defined application
programming interfaces has brought about object or component distribution models. The
most important of them are CORBA (Common Object Request Broker Architecture),
developed by the standardisation body Object Management Group, (OMG, 1995) and
DCOM (Distributed Component Model), developed by Microsoft Inc., (Microsoft, 1996).
The third distributed object model, EJB (Enterprise JavaBeans), has been developed by
Sun Microsystems (Sun Microsystems, 1998). This object model is currently being
integrated with CORBA technology.

The above-mentioned component models, as well as application-domain bound
component model specifications are important enabling technologies when developing
domain-specific frameworks. The most important component model specification for
process-control domain at present is OLE for Process Control (OPC, 1998). OPC is
designed to allow control room client applications to access plant floor data and control
devices in a consistent manner.

An OPC server comprises several component instances from three main component
classes: server, group, and item. The OPC server component acts as a container for OPC
group components. The OPC group component provides mechanisms for containing and
logically organising OPC items, which are references to factory floor data. Both generic
and domain-specific distributed component models have been discussed more thoroughly
elsewhere, for example in (Kuikka & Karhela, 1998).

The use of components brings about risks, which may be especially great in critical
automation applications. The risks can be categorised into areas of component design,
procurement, use and maintenance, (Lindqvist & Jonsson, 1998). The design of
individual components may be inadvertently or even intentionally flawed, they may
contain too many features to be usable and sometimes they may be poorly documented.



66

When buying COTS components, it is often difficult to ascertain that the components are
properly validated, especially if the marketing channel is unknown or insecure. The
deployment of, for example, user interface components by the end user may also be such
as was not intended by the designers, due to lacking skills and/or poor user
documentation.

If the design is not documented well enough, it is also difficult for application developers
to analyse the effects involved in component use on the system’s performance and
potential side effects on other functions. Updating policies of COTS components may
also be insufficient, especially if a small vendor has provided the components. Perhaps
the greatest risks lie, however, in integrating components into applications, or composing
them, which is described in more detail in the next section.

3.2.3 Component composition

Application specific (sub)systems and domain-specific frameworks are constructed from
the nearly autonomous components, described in the previous section. The general term
component system (Jacobson et. al., 1997) is used for these “sets of related components
that collectively accomplish a function larger than that accomplished by a single
component”. The development of component systems should be such that characteristics
(for example real time properties and testability) that have been established on the
component level also hold on the system level. If that is the case, the principle of
composability is fulfilled (Kopetz, 1998).

Application and framework development consists in essence of selection, adaptation and
composition or assembly of components. When selecting commercial components,
developers must also consider, in addition to the requirements, the quality factors and
risks involved, described in the previous section. From the composition point of view, the
most important factor is, however, what impact the selected component will have on the
developed system as a whole. This, so called composition compatibility of the
components can be improved, for instance by component wrapping (Voas, 1998), by
putting a software layer around the component to limit what it can do.

Very seldom, however, can domain-specific components be used straightforwardly as
such. Some kind of adaptation is necessary. A component can be adapted using white-box
approach and black-box approach. The white-box approach means implementation
inheritance of component classes. Thus potential changes in the design and



67

implementation of the reused super class functionality have to be considered, too. The
black-box approach in adapting components does not change the original component. It
can be carried out, for example, by complementing a known component with a wrapper.
In this case new functionality is added to the component, (Bosch, 1997).

One important special case of adaptation is to wrap a CORBA object, JavaBean or
DCOM component so that it can appear in one or two other component models. Such
adaptivity was especially appreciated in a Workshop on Compositional Architectures
(Thompson, 1998). In order to make this kind of wrapping possible; the developed
components should not be strongly dependent on the underlying component model. On
the other hand, all components need not necessarily be fully interoperable with other
components. Several levels of (required) interoperability have been discussed, as well as
solutions toward component model interoperability.

Composition of components relies theoretically on component interfaces only, and can
thus be called black-box reuse of components, (Szyperski, 1998, p. 137). According to
Figure 3.3, individual components, acting in the role of clients use the services of other
components via their interfaces. When composing a single component, also the other
components, needed by the component to-be-composed, have to be available.

C o m p o n e n t 1

C o m p o n e n t 3

C o m p o n e n t 2

Figure 3.3. Black-box component composition.

White-box reuse, on the other hand, means that the client component is fully aware of the
implementation of other components’ operations, which is, of course, in contradiction to
the idea of encapsulated, independent components. Buchi and Weck (Buchi & Weck,
1997) introduce a grey-box component, which reveals a part of the component’s internals,
not just the relations between input and output. The internals are specified in their
approach by abstract statements of imperative languages, enriched by data types like sets
and sequences.



68

Another approach to specify the semantics of component composition is to use contracts
between components. Contracts are descriptions of interaction between components.
Reuse contracts (De Hondt et al., 1997) specify both dependencies on other components
and conflicts between them. There are different types of component composition
contracts: pre- and post-conditions for interactions is a common approach, abstract
statements and formal specifications can also be used. Pre- and post-conditions can be
defined, for example with UML’s OCL (Object Constraint Language), (UML, 1997).
Also a diagrammatic notation has been developed which can be used as an alternative or
complement of textually written constraints, (Kent, 1997).

Metadata, machine-readable, descriptive information associated with components, is also
regarded as an important composition enabler (Thompson, 1998). A client should be able
to describe what it wants to use (from components and their interfaces) instead of refer to
which specific component or interface it needs. Simple examples of this kind of
information are the interface repository in CORBA (OMG, 1995) and the type library
information in COM (Microsoft, 1995). In complex systems, metadata may be organised
by using views, e.g. a security view and a reliability view.

As well as composition enablers, there are also inhibitors of composition (Thompson,
1998). The most important of them are the relative immaturity of the field, the missing
definitions of some key terms and the lack of analysis information. Also computational
complexity, which is inherent, whenever semantically rich metadata has to be processed,
may inhibit composition. In this respect, a key strategy proposed by Thompson is to keep
systems so simple that they can be shown to work well in a given application domain.

When composing systems from components off the shelf, one integrative approach is to
apply a mix of formal and informal approaches in order to build trust on the composition.
This approach has been adopted by Bertrand Mayer and his colleagues (Mayer et al.,
1998) and it is based on six principal techniques: design by contract, formal validation,
reuse library techniques, global public scrutiny, extensive testing and metrics efforts. By
the global public scrutiny, the authors mean making components freely available in
source code and seeking contributions and criticism in the worldwide Internet
community. Contracts between components were described above; other constituents of
the approach are familiar practices in producing quality software.

Ivar Jacobson and his colleagues (Jacobson et al., 1997) put emphasis on various
variability mechanisms when developing component systems: inheritance, extensions,
parametrization and configuration. They also give recommendations about the kinds of
contexts for which various variability mechanisms are most appropriate. From the point



69

of view of process management system framework, parametrization and configuration are
especially interesting variability mechanisms in component composition, because they
have been proved to be useful in many traditional automation systems, as well.

Another interesting approach to component composition is to use automatic software
generators. GenVoca generators, (Batory & Geraci, 1997) synthesise software systems by
composing ready-made components from reuse libraries. GenVoca library components
are originally designed to export and import standardised interfaces (components may
contain multiple classes and their methods). They should thus be interchangeable, and
interoperable with other components. GenVoca also provides techniques to decompose
existing applications into reusable and composable components.

The GenVoca developers correctly note, however, that all syntactically correct
compositions of components are not semantically correct and express the need to
thoroughly validate the generated compositions of library components. They also show
that components that export and import immutable interfaces are often too restrictive for
software system synthesis. Components need to enlarge upon instantiation in a manner
analogous to the previously discussed approach of Jan Bosch, using wrappers.

One claim of this thesis, justified in more detail in Chapter 5, is that individual
components and their generic, domain independent composition as such, even with the
help of various formal and informal techniques and generators, is not a sufficient
methodology of software development in domain-specific contexts. In addition to generic
compositional techniques, described above, also design patterns are needed when
domain-specific component frameworks are developed.

3.3 Design patterns

3.3.1 Background and definitions

Object and component oriented development is normally begun with analysis in which
the requirements of the software system to be developed are found out and a model – or
more often a set of models – of the system is developed. The software requirement
specification or definition document consists of the models and additional textual
requirements and descriptions. This document, developed originally in the analysis phase
of a software-engineering project, will then be the basis both for the design and
implementation and for quality assurance of the various baselines of the software product.



70

Specification and modelling is usually iterative, it may consist of several refinement
cycles to the original requirements specification, it may cover separately various
behaviours and features of the system, and thus continue in time to design and even
implementation phase. The idea is, anyhow, that the requirements specification deals with
requirements, what is to be designed and implemented.

For the synthesis in object-oriented development, especially for the architectural design,
there has not existed too much methodological support. In object orientation, design
modelling notations and techniques are largely the same as those employed in analysis.
As such, they do not give developers any implementation oriented support to proceed in
design modelling in the way the informal requirements by a customer, vague as they may
be, do in analysis modelling.

The lack of methodological support for architectural design is considered in this thesis as
more severe in object oriented than in structured approaches. This is due to the fact that
the fairly straightforward decomposition approach of structured design has in object
orientation been replaced with a more complicated approach. The information content
and behaviour is designed for collaborating, but independent and encapsulated entities,
objects and software components.

Because of the above-mentioned needs for a synthesis methodology, a substantial and
serious part of the object oriented software community has begun to research, develop,
and deploy design patterns:

A design pattern systematically names, motivates, and explains a general design that
addresses a recurring design problem in object-oriented systems (Gamma et al., 1995).

When developing software frameworks, the so-called architectural design patterns are an
especially important subclass of design patterns:

An architectural pattern expresses a fundamental structural organization schema for
software systems. It provides a set of predefined subsystems, specifies their
responsibilities, and includes rules and guidelines for organizing the relationships
between them (Buschmann  et al., 1996).

The definitions above, although rigorously phrased, are somewhat mechanistic and do not
necessarily convey the richness of the design pattern concept and the significance of the
approach for development. The origins of design patterns lie in architecture, more
specifically in the works of Christopher Alexander, who has written much on patterns in
architecture for buildings and urban communities.



71

In a seminal work on patterns, (Alexander et al., 1977), Alexander does not even try to
formally define the term pattern, but gives instead a large collection of pattern entries.
Each entry links a set of forces, a configuration of artefacts, and a process for
constructing a particular realisation. The entries thus intertwine the problem space
(‘what’), solution space, and construction space (‘how’) issues, so that they may evolve
concurrently when patterns are used in development.

The first published work about patterns in software development, was Erich Gamma’s
doctoral thesis in 19911. Since then – and also largely independently of each other –
several leading designers and writers in object-oriented community have contributed with
theses, books and articles on pattern deployment. Patterns are becoming important in
object-oriented software development, because developers, striving towards quality
software, take the time to study them, use them in various application domains, discuss
them, and develop and write them.

It is interesting that in several object-oriented design patterns of the vast pattern literature,
the interface inheritance and composition of objects are important, the same themes that
differentiate component based software development from traditional object-oriented
development. This is an excellent basis for implementing the design-pattern based
framework design with component technology, the approach chosen in this thesis.

Lieberman (Lieberman, 1986) noted already before design patterns had been introduced
to software engineering that delegation of operations to other objects makes composition
as efficient in reuse than implementation inheritance. Delegation of operations to
collaborating objects is a mechanism often used in design patterns, some patterns (for
example state pattern (Gamma et al., 1995)) rely heavily on it. This conformance is
another issue that makes design patterns and composition of components close to each
other.

To make design patterns easier to study and apply in object-oriented design, presentation
schemes have been developed for the catalogued patterns. The scheme by Erich Gamma
(Gamma et al., 1995) is a good example. It contains, in addition to graphical and textual
design description, also information on the decisions, alternatives, and compromises that
led to the documented design, i.e. the ‘whys’ of design:

                                                     

1 Although already in 1987, Ward Cunningham and Kent Beck used Alexander's ideas to develop a
small, five pattern language, (Beck & Cunningham, 1987).



72

Name, the pattern name followed by its classification.

Intent, a short statement of what the pattern does, or which particular design issue or problem it
addresses.

Also Known As, a list of alternative names (if any) for the pattern.

Motivation, a scenario that illustrates a generic design problem, along with the solution offered by
the pattern.

Applicability, when to use the pattern, and when not to use it.

Structure, a graphical representation of the classes and/or objects in the pattern.

Participants, the classes and/or objects participating in the pattern and their responsibilities.

Collaborations, how the participants collaborate to carry out their responsibilities.

Consequences, the tradeoffs and results of using the pattern.

Implementation, hints or techniques for implementing the pattern.

Sample Code, code fragments that illustrate the implementation in a particular programming
language.

Known Uses, references to real systems where the patterns are used.

Related Patterns, other patterns which are either similar or are often used with this pattern.

When documenting the use of patterns employed in the design, the properties of the
catalogued patterns need not be repeated; reference to them can be made with the help of
the pattern name. Pattern names are a common vocabulary, which helps designers and
developers to communicate better. Patterns are in this sense, in effect “a common asset
which expand people’s communication bandwidth” (Vlissides, 1998).

In pattern based design, class notation with proper naming is used; see the last section of
this chapter for the naming in developing frameworks. The application or the framework
documentation reader is also provided with textual information about the context of the
design problem to be solved, as well as with a description of the problem and its solution.
The problem to be solved is often given in terms of the forces, or the design issues of the
problem that shall be considered when solving it, such as requirements, constraints and
desirable properties. The solution then balances the given forces.



73

3.3.2 Pattern collections and languages

In order to make the design patterns reachable for software developers, collections of
them have been assembled and pattern languages have been developed.

The patterns described in the seminal pattern source, (Gamma et al., 1995), are
categorised into three groups:

•  Creational patterns: Abstract Factory, Builder, Factory Method, Prototype,
Singleton

•  Structural patterns: Adapter, Bridge, Composite, Decorator, Façade, Flyweight,
Proxy

•  Behavioural patterns: Chain of Responsibility, Command, Interpreter, Iterator,
Mediator, Memento, Observer, State, Strategy, Template Method, Visitor

Creational patterns deal with the process of object creation. Structural patterns deal with
the composition of classes or objects. Behavioural patterns describe the ways in which
classes or objects interact and distribute responsibility. The above-mentioned patterns
have interesting relationships to each other, which are useful, when deploying patterns in
design work, Figure 3.4.



74

 

 Figure 3.4. Design Pattern relationships, from (Gamma et al., 1995).

 Another important pattern collection concentrates mainly on architectural patterns. It has
been published by Frank Buschmann and his colleagues (Buschmann et al., 1996). They
divide their patterns into:

•  Architectural patterns: Layers, Pipes and Filters, Blackboard, Broker, Model-
View-Controller, Presentation-Abstraction-Control, Reflection, Microkernel



75

•  Design patterns: Whole-Part, Master-Slave, Proxy, Command Processor, View
Handler, Forwarder-Receiver, Client-Dispatcher-Server, Publisher-Subscriber

•  Idioms.

The definitions of architectural patterns and design patterns in the preceding section are
also valid for the categorisation above. Idioms are low-level patterns, specific to a
programming language. As stated by Buschmann: “An idiom describes how to implement
particular aspects of components or the relationships between them using the features of a
given language”.

 There are patterns that have especially strong relationships to each other. Some patterns
are, for example, needed to implement others, and some patterns may work best in close
collaboration with others. Some authors speak in this context about Pattern Systems. For
example, Buschmann defines a Pattern System for software architecture as “a collection
of patterns, together with guidelines for their implementation, combination and practical
use in software development”.

 Often writers, however, claim that it is more appropriate to talk about Pattern Languages,
when discussing collectively patterns that are developed and/or deployed and adapted for
a specific purpose. Conferences on Pattern Languages of Programs (PLoP, ChiliPLoP,
and EuroPLoP) have acquired a notable role in Pattern development. Selected papers
from those conferences have been edited into a Book series: Pattern Languages of
Program Design (Coplien & Schmidt, 1995; Vlissides et al., 1996; Martin et al., 1997).

 The term ‘language’ in Pattern Language refers more to a natural language than to a
design or programming language. Indeed, as noted in (Coplien & Schmidt, 1995), PLoP
was founded to create a new literature to “capture and refine a broad range of software
development expertise in a systematic and highly accessible manner”. The textual parts of
pattern descriptions are needed, because they document the design decisions, the reasons
for a particular pattern based solution. This is important when teaching and training
patterns, when assessing the quality of the software and when making decisions on
changing the solution (and respective pattern(s)) or merely refining it during the
maintenance phase of a software product.

 



76

3.3.3 On the domain independence and uniqueness of design patterns

 Most of the design patterns included in collections, pattern systems and even pattern
languages are independent of a particular (vertical) domain. Some of the collections or
languages have, however, been developed for different (horizontal) areas of information
technology2, for example for data management, user interfaces and real-time computing.

 The characteristics of an application domain have been seen mainly in the decisions of
what patterns to use and how to adapt or vary them when developing applications or
domain-specific frameworks. This is reasonable, in view of this thesis. For example,
telecommunications as an application domain and several of its subdomains are very
close to automation technology and its subdomains. The similarities are explicit in
required functionality, quality criteria and applicable implementation technology base. It
is thus beneficial to develop and exploit common (design pattern) knowledge base for the
applications and architectures in these application domains.

 The above is exemplified by the patterns Acceptor, Connector, Reactor, Router, and
Active Object, developed by Douglas C. Schmidt and his research group for concurrent,
parallel, and distributed systems (Schmidt, 1995). These patterns have been originally
developed for, and first applied in a domain-specific Adaptive Communication
Environment (ACE) framework. The ACE has been subsequently applied in several
telecommunication systems (Schmidt, 1998).

 However, the patterns are also applicable to other distributed systems, for example new
control systems. The design issues of the Schmidt’s design patterns include event
demultiplexing and event handler dispatching, signal handling, service initialisation,
interprocess communication, shared memory management, message routing, dynamic
(re)configuration, concurrent execution and synchronisation. All these are important
aspects of real-time control architectures.

 When used, for instance, in batch control, the above-mentioned patterns are best
applicable to Unit Supervision and Process Control levels of functionality, due to their
orientation to concurrent, time critical tasks. In this thesis, when developing Process
Management framework for batch control, the Active Object pattern (Lavender &

                                                     

 2 The term ‘domain’ means in this thesis, an application domain of information technology, for
example batch control or telecommunications. The term ‘area’ of information technology is used
for distinct functionalities of information systems irrespective of their (application) domains.



77

Schmidt, 1996) has been found useful, as well. In designing multithreading issues of both
recipe elements and process units, a variation of the Active Object has been deployed as
described in Chapter 6.

 While most of the design patterns are naturally ‘common heritage’ for various application
domains and often for various areas of information technology, there may be some
patterns which are genuinely domain-specific. Unfortunately, however, on various
application domains, there are published patterns that are only superficially different from
others, published earlier. They thus harm the development work of the application and
framework developers by unnecessarily adding to the pattern vocabulary. They make the
common language harder to master and widen the search space from which to select
patterns for the development of a domain-specific framework.

 For example G++, A Pattern Language for Computer-Integrated Manufacturing (Aarsten
et al., 1995), contains both patterns (Hierarchy of Control Layers, Visibility and
Communication between Control Modules) that are variations of previously published,
well-known patterns (Layers, Observer), and original, domain-specific patterns (for
example Implementation of Control Modules). The former ones are hardly ever referred
to in literature, but the latter ones have been found valuable in domain-specific
development. Also some of the patterns (Whole-Part, Proxy, Publisher-Subscriber) in
(Buschmann et al., 1996), are unnecessarily published variations of the respective
original patterns (Composite, Proxy, Observer) in (Gamma et al., 1995).

 While frameworks, to be presented in the next section, are normally domain-specific, the
patterns used in developing them, can – and in the view of this thesis should – be viewed
as domain independent, generic constituents of a framework. It is argued that
architectural design can thus be made understandable for both experts in a domain (due to
domain-specificity of the framework) and for software engineers (due to generic patterns
used). The need for general readability, and possibility to understand and review the
framework with the help of common, generic design patterns, is seen as important for the
way to develop a domain-specific framework.

 Generic design patterns are needed both as a means of developing the design and a way to
document the domain-specific or information technology area oriented framework
(Johnson, 1992; Beck & Johnson, 1994). Good documents make the widespread reuse of
software frameworks possible also in other application domains and areas of technology.
On the other hand, while frameworks contain domain-specific behaviour, designed with
the help of patterns, they are good examples of concrete realisations of abstract design
patterns, comprehensible also to domain experts.



78

 In many cases domain independent but technology area specific frameworks, (or
application frameworks and support frameworks, as they are also called (IBM, 1995)) are
useful. In addition to conventional examples in graphical user interface design, also
functionally new ones have emerged. A good example is a framework that abstracts
generic collaboration properties of groups of classes (D’Souza, 1998).

 In some cases also component sets, which allow developers to assemble business
applications from existing parts, are called frameworks, most notably SanFrancisco by
IBM (IBM, 1997b). This is reasonable if the component sets are complemented with
standardised Core Business Processes, like in SanFrancisco. Most often design patterns
are deployed, however, in designing applications or domain-specific frameworks,
described in the next section.

3.4 Domain frameworks

 3.4.1 Background and definitions

 A framework is a set of co-operating classes that makes up a reusable design for a
specific class of software (Gamma et al., 1995, p. 26). The framework is meant to
synthesise the architecture and capture the architectural design decisions common to the
application domain. The domain framework will be customised to a particular
application, normally by parametrizing framework components, by incorporating new
component classes and/or by creating application-specific subclasses of the abstract
classes of the framework.

 Another definition, stricter but less descriptive than the previous one, for a framework is
given by (Buschmann et al., 1996, p. 435):

 A framework is a partially complete software (sub)system that is intended to be
instantiated. It defines the architecture for a family of (sub)systems and provides the basic
building blocks to create them. It also defines the places where adaptations for specific
functionality should be made. In an object-oriented environment, a framework consists of
abstract and concrete classes.

 In addition to domain-specificity issues, there is one vital difference between design
patterns, described in the previous chapter, and frameworks, described here. A pattern is
an abstract design artefact, described mostly in a language-independent manner, whereas
a framework is an implementation of (or a part of) a software architecture and normally



79

implemented in a particular programming language or languages. However, patterns and
frameworks are synergistic concepts, neither subordinate to other (Schmidt et al., 1996).
As noted earlier, object-oriented and software component frameworks explicitly
implement many patterns and patterns, on the other hand, are used to document the form
and contents of the frameworks.

If the basic constituents of a framework are software components, instead of object
classes, the inserting, or ‘plugging in’ of component instances into the framework is
emphasised, as defined by Szyperski (Szyperski, 1998, p. 280):

 A component framework is a software entity that supports components conforming to
certain standards and allows instances of these components to be ’plugged’ into the
component framework. The component framework establishes environmental conditions
for the component instances and regulates the interaction between component instances.

 The documentation of a domain framework resembles in many ways normal software
documentation. There has to be a domain oriented requirement definition or specification
(‘what’) consisting of domain business classes, which can be modelled using standard
object analysis methodologies. Also the implementation and testing documentation is
ordinary. Compared to application documentation, the quality requirements are greater,
since the framework will be designed for reuse in several applications.

 The main difference in documentation of normal applications and frameworks lies in
design documentation. The design documentation of the framework has three purposes;
patterns can help in each of them (Johnson, 1992). The documentation must describe the
purpose (‘why’) of the framework, based on which the application developer may decide
whether or not the framework really is suitable to the application problem. It must also
describe how to use the framework when building the application. The third purpose of
the framework documentation is to describe the design, including not only the different
classes in the framework but also the way the instances of these classes, individual
objects or component instances, collaborate.

 When using – and reusing – a framework, there are two basic approaches of which
various combinations exist, too. Called frameworks are much like conventional class
libraries in the sense that application code calls the framework when some framework
service is needed. In calling frameworks, on the other hand, the main body of the
framework is used as such, and only the application specific small amount of code is
written, which will be called by the framework, Figure 3.5.

 



80

Fram ework specialization

Calling framew ork

Application specific
             code

A pplication code

Fram ework interface

Called fram ework

Application
specialization

 

 Figure 3.5. (Re)use of a called and calling framework.

 The above-mentioned inversion of control between the application and the framework on
which it is based is typical to calling frameworks. It leads to potentially higher rates of
reuse and increased productivity, compared to the called framework approach or the
library based software reuse. This is due to the fact that in the case of a calling framework
more ready and higher quality code will normally be (re)used. The application designer’s
degrees of freedom in design are, of course smaller, when using calling frameworks.

 Effective reuse presupposes the capability of the framework designer to include the
stable, non-variable domain issues (sometimes called frozen spots) in the framework and
yield control of application-specific structure and behaviour to the application designer.
The application specific parts in the final application architecture are represented by so
called hot spots (Pree, 1995) of the framework, parts that are designed to be easily
adaptable to application specific needs.

 

 3.4.2 Designing domain frameworks with patterns

Architectural models

As indicated in the previous section, domain frameworks are partial implementations of
architectures, sometimes also called microarchitectures, designed to be reusable for a
family of application systems. Within software engineering, architecture may, more
generally, be defined as (Garlan & Perry, 1995):



81

 The structure of the components of a program/system, their interrelationships, and
principles and guidelines governing their design and evolution over time.

The above definition is focused on architecture as a model or frame of reference, which is
needed when developing frameworks. A disciplined development of architectural
frameworks can have a positive impact on various aspects of software development.
Garlan and Perry, for example, note the importance of architecture in furthering
understanding, reuse and evolution of the developed systems, as well as in providing new
opportunities for analysis and management of the development process itself.

It is also beneficial to look at a software framework from various points of view. What is
important in an architecture, varies according to the stage of development and purpose for
which the architectural document is developed. Thus one architectural model is usually
not sufficient, but several models, each having their own point of view and purpose, are
needed.

 Soni (Soni et al., 1995) has identified four distinct architectures:

•  The conceptual architecture, which describes the system in terms of its major
design elements and the relationships among them.

•  The module interconnection architecture, which consists of two orthogonal
structures: functional decomposition and layers.

•  The execution architecture, which describes the dynamic structure of the system.

•  The code architecture, which describes how the source code, the binaries, and the
libraries are organised in the development environment.

 The conceptual architecture is best developed on the basis of the object-class model of the
framework resulting from domain analysis. Design patterns, on the other hand are,
according to this thesis, most helpful in developing the module interconnection
architecture and the execution architecture. The code architecture is mostly influenced by
the distributed component model and the development environment.

Another categorisation of software architectures is given by Kruchten (Kruchten, 1995).
The classification consists of five concurrent views about the system to be developed,
Figure 3.6:



82

 

Logical V iew

Process View Physical V iew

Development
View

Scenarios

End-user functionality

Performance, scalability

Software m anagem ent

Topology, com munications

 Figure 3.6. Architectural views, modified from (Kruchten, 1995).

•  The logical view describes the class-object model of the system.

•  The process view describes the design’s concurrency and synchronisation aspects.

•  The physical view describes the mapping of the software into the hardware and
reflects its distributed aspect.

•  The development view describes the software organisation in its development
environment.

•  The scenarios view illustrates the architectural decisions made according to the
previous four views with a few selected use cases or scenarios.

 In the categorisation above, design patterns are best employed in developing the process
view, the physical view and the development view after the domain-specific logical view
has been developed with the help of scenarios. Scenario techniques, which are first used
from end-user perspective when developing the logical view, have proved to be useful
also in later framework development supporting the design pattern based design,
especially when designing the needed collaborations of components.

 

 



83

Design guidelines

After having an idea of in what architectural aspects or views of framework design to
exploit design patterns, it is necessary to ponder how they could be best used. The
approach adapted for this thesis has been to:

•  Find feasible design patterns for a given domain-specific design issue and select
the most suitable.

•  Study the pattern(s) in detail.

•  Make relevant design and implementation decisions, vary the original pattern, if
needed (but do not make a new pattern), and name properly.

•  Implement and combine the pattern with the other patterns and components of the
framework.

 Iteration is, of course, needed in the process above; it cannot proceed without refinements
in previous phases. Due to the object-oriented and component-based approach and the use
of design patterns, the gradually changing framework can, however, be managed even in
evolutionary software development processes. Component framework can also be well
managed during the maintenance and potential enhancement phases. A precondition for
this is, however, that the evolving architecture corresponds correctly the domain
requirements and that the applied development procedures are systematic.

 The approaches for finding design patterns, potentially suitable for the problem domain
design issue, are vital in the design process. Erich Gamma has given some good advice
about how to find suitable object-oriented patterns in their pattern catalogue (Gamma et
al., 1995, p. 28 … 29). The advice has been complemented in this thesis with domain-
specific and component based issues, resulting in the following procedure:

•  Consider how the domain-specific design problem can be solved with generic
design patterns.

•  Find out how the patterns interrelate, utilise relationship categories.

•  Compare patterns of similar purpose and consider what should be variable in your
design.



84

•  When making the selection, consider the coherence of the whole architecture.

When developing a domain-specific framework, it is important to first clarify with the
help of the requirement definition (conceptual architecture or logical view, above), the
domain-specific design problem, and after that look for the patterns. Gamma’s original
text is in this respect totally domain independent, stating generally “design patterns help
you find appropriate objects, determine object granularity, specify object interfaces, and
several other ways in which design patterns solve design problems”.

When finding how patterns interrelate, it is beneficial to proceed beyond the simple but
important relationships of Figure 3.4. The relationships between patterns have been
classified (Noble, 1998) more thoroughly into primary relationships (uses, refines, and
conflicts), and secondary relationships (similarity, combination, tiling). Categorisation is
helpful, because the search space is large, consisting of several sources: books, articles,
and web pages, not only Gamma’s catalogue (Gamma et al., 1995).

Several design patterns, having similar purpose, make it possible to vary different design
issues, by letting the developer change these issues without the need to redesign the
framework. For example, if the design problem is the creation of domain-specific
components, several patterns are available, for example Factory Method, Abstract
Factory, Builder and Prototype (Gamma’s catalogue), each allowing different aspects to
be changed.

The component object model employed (DCOM, CORBA, or Enterprise Java Beans
(EJB)) imposes, however, some restrictions to the choices available but, on the other
hand, provides implementations, as well. The component platform shall therefore be
considered when selecting patterns for frameworks. For example, as discussed in (Plasil
& Stal, 1998) DCOM and CORBA Lifecycle Service deploy the Abstract Factory pattern
in component creation. EJB, on the other hand, includes the factory method in the so-
called home interface of an enterprise bean (Sun Microsystems, 1998, p. 20).

Additionally, the composition compatibility aspects, discussed in Chapter 3.2, should be
taken care of. It is even more important when selecting the design patterns for the
architecture than when selecting the components to be ‘plugged’ into the framework, that
the new patterns do not make the architecture incoherent. A candidate pattern should thus
also be considered from the framework point of view (overall architecture) and from the
viewpoint of existing components (implementation restrictions), in addition to
considering the way in which it solves the actual design problem.



85

When an appropriate pattern – or a few of them - has been found and selected from
several sources, it has to be used in a way that extracts all important details to the
domain-specific framework. This means a thorough study of the pattern, first on an
abstract level (Intent, Motivation, Applicability, Structure, Participants, and
Collaborations) then going into the concrete example of the pattern (Implementation,
Sample Code). After that, the implications (Consequences, Known Uses, Related
Patterns) of the pattern and its possible variations shall be considered.

 After having enough information on the pattern, a design decision has to be made on
either using it as such or developing a variation of the pattern and also on the manner in
which it will be used in the framework. Sometimes the introduction of a new pattern
causes a need to restructure the existing framework. This should be accomplished by first
carefully refining the original architecture to be suitable for the new pattern and only after
that integrating the new pattern to the framework.

 The names for the object classes, acting as pattern participants, shall be chosen next. As
described in Chapter 3.3, it is considered important to use the original names for the
generic patterns in order to increase the general comprehensibility of the framework. It
has been found optimal, however, to use such names for participating component classes,
as incorporate both a domain-specific part and the original pattern-derived part, for
example BatchMediator in Chapter 6.4. The domain part of the name is important from
the point of view of an application domain expert, the pattern part from the point of view
of a software engineer. It is possible for both of them to understand the concept and the
relevant design issues and contribute to the design for example, when working in a joint
development team.

 After the needed patterns and their variations have been properly named, the classes
involved in the patterns shall be identified, their interfaces designed, relationships
established, and the attributes and operations adapted to the patterns. When developing a
component framework, interface definition is especially critical, since the component
interfaces are immutable. The defining of the interfaces is, on the other hand, supported
by the interface definition languages and tools, which partially automate their use. The
names of the operations used, should be partly domain-specific, partly pattern specific, as
the names of the participating classes.

 When implementing the patterns in designing and programming the framework
components, some hints and even code may be acquired from the implementation
sections of the pattern catalogues. The catalogue implementation examples are important
for familiarising oneself with the essentials of the pattern. At best they are, however,



86

quite simple (for pedagogical purposes) and thus of restricted use in framework
development as such, especially if the pattern in question has to be modified. The use of
COTS components brings about the need to iterate with design, implement wrappers
around COTS components, and optionally to utilise contracts when integrating them into
the framework, as indicated in Chapter 3.2.

 

Non-functional aspects

 A good example of designing an object-oriented framework, or actually iteratively
evolving one, is given in (Roberts & Johnson, 1996). In the paper, the process of
framework development is described with the help of so-called process patterns. The
patterns include: Three Examples, White-box Framework, Component Library, Separate
Changeable from Stable Code, Add Parameters to Eliminate Subclasses, Fine-grained
Objects, Black-box Framework, Visual Builder, Language Tools. The long names of the
patterns give a good suggestion of their contents. The patterns are applied otherwise in
the sequence given, but ‘separating code’, ‘adding parameters’ and ‘refining objects’ are
used in parallel.

 Many design patterns incorporate into object-oriented framework development classic
design principles, or enabling techniques, as called by (Buschmann et al., 1996, p. 397 …
404). Some of these principles are: abstraction, encapsulation, information hiding,
modularization, separation of concerns, coupling and cohesion, sufficiency,
completeness, separation of policy and implementation, separation of interface and
implementation, and divide-and-conquer. The significance of the design principles has
increased with the emerging needs of software architectures and with the possibility to
include them into design patterns, making applicable techniques out of these outstanding
design principles.

 When developing a domain-specific architectural framework, also non-functional
requirements for the software architecture have to be considered (Buschmann et al., 1996,
p. 405 … 410). They are often omitted from the requirement specification, which
naturally tends to be oriented towards application functionality. These requirements are
usually not achievable within components. The architectural framework has to be
considered as a whole. The non-functional properties of the architecture have a great
impact on the development and maintenance of the framework as well as its general
operability and its use of computer resources. Architectural design patterns often enhance



87

these non-functional aspects or - ilities (as they are sometimes collectively called):
changeability, interoperability, efficiency, reliability, testability, and reusability.

 

 3.4.3 On example frameworks

 An interesting example of distributed component frameworks in automation domain is the
CIM Framework Specification, (Doscher et al., 1998) of the Semiconductor
Manufacturing Technology consortium (Sematech). It is a large specification document,
which defines an overall application framework for computer-integrated manufacturing
(CIM), within semiconductor industries, Figure 3.7.

 

Object Request Broker (CORBA)

Events

Distributed
Computing

Infrastructure

Common
Components Object

Component

Object

Standard
Component
Interfaces

Clients and
Conformant
Extensions

Application
Objects

Names Persist. etc.

Object Object

Object

Manager

Object

Component

Object

Manager

 

 Figure 3.7. Sematech’s CIM framework.

 The purpose of the CIM Framework Specification is to assist potential system vendors in
building integrated, flexible frameworks according to the model. This would lead the
vendors to an open, multi-supplier CIM system development. An industrial end user
could integrate the functionality of frameworks, representing various subdomains of the
specified CIM model, to a customised, plant specific application system.

 It is important, from the point of view of this thesis, that the specification of Sematech’s
CIM is clearly and rigorously domain-specific. The starting point is an object class model



88

of the domain, i.e., semiconductor manufacturing. Moreover, the large manufacturing
domain is divided into nine subdomains corresponding the groups of common
components in Figure 3.7 (factory services, factory management, factory labour, machine
control, material management, material movement, advanced process control, process
specification management, and schedule management).

 (Sub)domains are then modelled with five models: component relationship model,
component information model, component interaction diagram, object dynamic model,
and object state tables. In addition to the models, also textual interface specifications for
software components are included in the framework specification. These interfaces are
written in the CORBA Interface Definition Language of the Object Management Group
(OMG, 1995).

 Sematech has also previously published an architectural guide (Doscher et al., 1997) that
provides some architectural principles and guidelines as a background of the
specification. It does not consider the actual design decisions needed to develop a
framework, decisions that in this thesis are suggested to be made with the help of design
patterns. The Specification includes, however, interface specifications of components,
corresponding the domain-specific, or so-called business objects. Other, design and
implementation oriented interfaces, cannot of course, be specified at this stage.

 The Sematech approach is interesting, because it implies that the developers of the
specification consider it possible - and even recommendable - to develop appropriately
individual components at least up to defining strictly their interfaces before making
design decisions concerning the software architecture. In a workshop position paper of
the project (Hodges, 1998) it is, however, acknowledged that “We still have a long way to
go to achieve the level of rigor required to specify independent, but composable
components”.

 It is considered especially difficult to specify the client side of the dependency in the
interaction between a client and a component. Sematech is, indeed, in the process of
considering, instead of a strict conformance on component level, various levels of
required conformance to the specification from the potential vendors:

•  Architectural conformance (required interoperability technology)

•  Syntactic conformance (required interfaces)

•  Semantic conformance (required behaviour in test scenarios)



89

•  Substitutability conformance (proven composition and decomposition)

 The result of the Sematech effort, described above, is a large specification of a
component framework, expecting vendors to develop compatible implementations to be
used by application developers.

 The DOVER project (Dagermo & Knutsson, 1996) on the other hand, is an example of a
small-scale implementation of an object-oriented framework. The DOVER framework,
which has been developed as an ESPRIT III/ESSI project, is targeted to ship control
domain. The framework includes:

•  A set of design objects used to develop a new ship control system

•  An execution model

•  Distribution mechanisms

•  Configuration files

•  Documentation

In DOVER, the task of a control system is seen essentially as that of a continuous re-
computation of a number of output values as a response to changes in a number of input
values. The concept of Value is thus important and it has been chosen as a class of its
own, having subclasses Computed Value, Input Value, Input Event Value, Network
Source Value, and Pulse Value. Dependency graphs are used to show the dependencies
between different values in the system and event traces to describe the dynamic behaviour
when objects from classes InputValue and ComputedValue interact.

The execution model of the framework is based on a real-time operating system, which is
augmented by the so-called time triggered approach. The approach means that a control
system observes the state of the environment at specific points in time, after which it
decides what actions must be taken. An Observer pattern (Gamma et al., 1995) is used in
the framework in notifications of the input values. Communication with other systems is
handled via interrupts and queues. Objects of the PulseValue class are used for generating
start, stop, and clutch in/out signals. Objects of the InputEventValue class react on
external events, set their values and notify dependent values and then reset themselves.



90

The distribution of functionality in DOVER is designed so that a set of values on each
node is declared to be globally visible over the network. The Proxy pattern (Gamma et
al., 1995) is used to make it transparent that value objects are located on different nodes.
On each node, there is a NetworkManager object, which knows about the globally visible
NetworkSourceValue objects. The NetworkManager class, which is designed according
to a Singleton pattern (Gamma et al., 1995), has a DDENetworkManager and
TCPNetworkManager as its subclasses.

The way to start using the framework is to define a Value instance for each sensor and
actuator. The sensors will be instances of InputValues and the actuators instances of some
subclass of a ComputedValue. Nearly all other objects in the program are dependent on
one or more InputValues, according to the Observer pattern. DOVER has reportedly been
used for developing two prototype implementations in the Microsoft Windows platform.
The developers have estimated substantial benefits to be gained with the framework in
terms of the amount of code to be needed, of the reusability achievable and of the quality
improvable.

DOVER framework is based on a proper use of design patterns. An object class model of
the ship control domain has been developed and a domain-specific framework developed.
The framework is comparatively small and it is based on a somewhat simplified paradigm
of a control system as a continuous computing engine, reading input values and acting
upon them. Nevertheless, the ideas of design pattern use in making decisions on
architectural design are well presented.

The DOVER approach does not consider explicit interfaces of individual objects; that is,
technological aspects of individual components and component composition are lacking.
Moreover, while the approach also includes low-level distributed communication aspects
within the framework; the potential use of available middle-ware technologies CORBA or
DCOM is missing.



91

4. Multi-agency

4.1 Introduction

This chapter presents the technological background for enhancing the batch process
management framework with multi-agency features. First, agent technology, which is the
basis of intelligence of individual software components in this thesis, is shortly described.
Then agent interaction techniques are presented as a means to achieve co-operative
interaction. Multi-agent systems are introduced both by describing their architectures and
by some examples of their application. Finally, the approach adapted in this thesis, the so-
called agentifying of software component frameworks, is introduced.

Agency and multi-agency are seen in this thesis, not as an overall architectural paradigm,
but as a possibility to enhance a software component framework. The approach is
applicable to specific problems, which need local decision-making and collaborative
interaction. An architecture that would be solely based on autonomous agents is not
considered viable within an automation system. The requirements concerning
determinism, timeliness, robustness, reliability, and comprehensibility of automation
functionality are too stringent. It is, however, advantageous to be able to deploy agent
technology in automation, by embedding agency in systems and utilising it on a local
scope, where and when considered appropriate from domain-specific premises.

The approach in this chapter is both descriptive and evaluative. The main technologies
are presented both by defining the concepts and by providing information on their
application. When describing the research developments, also evaluation of the
approaches is given from the point of view of this thesis.

4.2 Agents

4.2.1 Background and definitions

The definition of an agent has been heavily debated during the whole period of agent
oriented research, see for example (Franklin & Gaesser, 1997) for discussion. In the first
issue of an international journal, devoted entirely to autonomous agents and multi-agent
systems, the editors (Jennings et al., 1998) give a compact definition of an agent as:



92

A computer system, situated in some environment, that is capable of flexible autonomous
action in order to meet its design objectives

This definition has been affected by the critical notes in (Wooldridge, 1997) following the
discussion of (Franklin & Gaesser, 1997). In some other definitions, agents are ascribed
additional attributes, for example on mobility, learning, and benevolence. These attributes
are not considered necessary for agents in the context of this thesis but may well be seen
as optional agent attributes.

Situatedness means that an agent receives input from its environment and that it can
perform actions which change its environment in some way. The environment may be the
whole physical world, a local area network or the Internet, for example. From the point of
view of engineering, smaller environments, for example a batch process cell, are more
interesting. Autonomy means that the agent is able to act without direct intervention of
humans (or other agents) in its environment, and that it has control of its own actions and
internal state. Flexibility means in this context, that the system is:

•  Responsive: agents should perceive their environment and respond in a timely
fashion to changes that occur in the environment.

•  Proactive: agents should be able to exhibit goal-directed behaviour and even take
initiative, when appropriate.

•  Co-operative: agents should be able to interact, when appropriate, with other
artificial agents and humans in order to solve their own problems and to help others
with their activities.

 Intelligent agents perform continuously three functions: perception of conditions in the
environment, action to affect the conditions in the environment and planning or
reasoning to interpret perceptions, solve problems, draw inferences and determine
actions. The (co-operative) interactions of the agents with other agents and humans can
be separated from their interactions with other computer systems and the physical
environment.

 The traditional Artificial Intelligence (AI) approach in agency has been knowledge
representation and reasoning oriented. The traditional agents make a plan for their actions
with the help of a static world model before the execution of the plan. From that premise
the knowledge and tasks of the agent are well decomposable and it is possible to plan the
actions in detail in advance. These systems did not, however, succeed often in real world



93

environments. The domain of applicability of successful systems was typically static and
narrow.

 However, the traditional AI techniques can be used - and have been used and further
developed - as planning parts of newer, more reactive agent architectures. A seminal
classic planner is the STanford Research Institute Problem Solver (STRIPS; Fikes, 1993).
STRIPS conforms to the classic AI planning problem in which the world is regarded as
being in a static state and being transformable to another static state only by a single
agent. Extensions and further developments to STRIPS (Russel & Norvig, 1995) take into
consideration the dynamic nature of the environment and the fact that there exist multiple
agents in the system.

 Another classic, although more recent, approach is Brooks' subsumption architecture,
(Brooks, 1991), which relies heavily on individual agents' reactive interaction with the
environment through perception and action. Additionally, Brooks claims that knowledge
representation, in terms of models of the environment (world models), is not needed at
all. It is better to use the real world (with humans and other agents) as a model of its own.
He admits, however, that there is a need to consider perception - agent-action –
interaction sequence, in terms of the agent's layers of intelligence operating in parallel.
This approach has succeeded quite well in the automation domain when developing
incrementally more advanced robot societies (Halme et al., 1996).

 

4.2.2 Agent architectures in short

 The architecture of an individual agent can be defined to be a set of structural entities in
which perception, action and reasoning (or a subset of them) occur, and the
interconnections of these entities. Many practical agents (like the ones developed in this
thesis) have simple internal architectures, because they are sufficient to support the local
behaviour required in the application. In multi-agent systems, the individual agents are
often specialised and heterogeneous. The properties of the system as a whole are achieved
by the co-operation of the individual agents.

 However, if and when adaptation, learning, and evolution are required of an agent, the
requirements for the architecture of the individual agent become more demanding. A
comparison between the requirements for an adaptive intelligent system (AIS) and a
typical AI agent is given on Table 4.1, (Hayes-Roth, 1995).



94

 Table 4.1. Behavioural adaptations of an AIS (modified from Hayes-Roth, 1995).

  Required AIS adaptations  Typical agent behaviours

 Perception strategy  Adapt to information requirements and resource

limitations

 Fixed

 Control mode  Adapt to goal-based constraints and environmental

uncertainty

 Fixed

 Reasoning tasks  Adapt to perceived and inferred conditions  Single task

 Reasoning methods  Adapt to available information and current

performance criteria

 Single reasoning method

 Meta-control strategy  Adapt to dynamic configurations of demands and

opportunities

 Unnecessary

 

 
 The Guardian agent architecture, (Hayes-Roth, 1990; Hayes-Roth, 1995), is an example
of an adaptive intelligent system having subsystems for perception, action and reasoning.
In Guardian, perception processes acquire, abstract and filter sensed data before sending
it to other subsystems. The action subsystem controls the execution of external actions.
The reasoning subsystem interprets perceptions, solves problems, makes plans, and
guides both perceptual strategies and external actions. The main application area of the
Guardian architecture has been patient monitoring, but applications also exist in the areas
of power plant and materials processing monitoring. An application study in the area of
adaptive intelligent robots has also been started.

 Another example of an agent architecture, which puts more emphasis on the real time
properties of the agent and on the separation of concerns between real-time and artificial
intelligence features, is the Co-operative Intelligent Real-time Control Architecture
(CIRCA), (Musliner et al., 1995), Figure 4.1.



95

E nv iro nm ent

R eal-T im e S u bsy stem

S ched uler

A I S u bsy stem
W orld  M o del

selec ted
T A P s

T A P
sched ules

co n tro l
s ig nals

sen so r
d ata

T A P  sched u les

feed back  d a ta

 Figure 4.1. The CIRCA agent architecture.

 The AI subsystem (AIS) performs reasoning about tasks and, in co-operation with the
Scheduler, develops low-level control plans (test-action-pairs, TAPs). These plans are
executed in a predictable real-time fashion by the real-time subsystem (RTS). CIRCA is
interesting in respect to this thesis, because the agent subsystem (AIS) is closely co-
operating with a non-agent subsystem (RTS), a premise that is important when
incorporating agent features into an existing information system or framework.

 

4.2.3 Knowledge representation

 Knowledge representation is needed to express the agent’s state, goals, world model, or
parts of it, i.e. facts and propositions concerning the agent and its environment.
Knowledge should be represented in a form, which is interpretable at least by all
collaborating agents. Agents need knowledge representation both to store their internal
knowledge and to exchange the stored knowledge with other agents. Rules and predicate
logic expressions are the most common formats for knowledge representation.

 The Knowledge Interchange Format (KIF), (Genesereth & Fikes, 1992; Genesereth,
1995) is a formal, predicate logic based, but also human readable language for the
interchange of knowledge between computer programs, for example, software agents.
KIF can also be used as an internal knowledge representation format of the agents.

 The main characteristics of KIF are:

•  It has declarative semantics. The meaning of expressions can be understood
without an agent interpreting them, unlike the meaning in logic programming
languages, for example, in Prolog.



96

•  It can be used to express arbitrary sentences in first-order predicate logic.

•  Also metaknowledge (knowledge about knowledge) is expressible with it.

 A knowledge base consists of a finite set of definitions and sentences. The knowledge
base is structurally a set, not a sequence; the order of the definitions and sentences is
unimportant. The users of a declarative knowledge representation language, like KIF,
usually have their own application domain or, in AI terms, universe of discourse. KIF is
not restricted to any specific domain.

 KIF is most often used in connection with KQML (Knowledge Query and Manipulation
Language, described in the next section), as the most frequently used content
representation format of its messages. KQML essentially wrappers KIF as its internal
packet structure. KIF is used the internal knowledge representation in, for example, an
agent development environment by IBM, Agent Building Environment Developer's
Toolkit ABE, (IBM, 1997a). While KIF is used as the standard knowledge format for
rules in ABE, the KIF syntax is considered to be too far from the natural language of a
common end-user. A mapping from KIF rules to a rule representation in a natural
language is thus defined in ABE’s user interface.

 For many agent architectures, a knowledge base consisting of facts and simple rules,
integrated with effectors or sensors (for perception) and actors or actuators (for actions) is
sufficient, no deliberating or reasoning functionality within the agents is necessarily
needed. A most notable example of these, pure reactive agent execution architectures is
the subsumption architecture by Brooks, (Brooks, 1991). If agent architectures, however,
contain reasoning or single agent planning functionality, they normally also need more
advanced knowledge representation formats. In this thesis, a KIF-like representation is
used in agent communication, whereas the local knowledge of the agents consists of
simple rules.

 

4.2.4 Planning and execution of plans

 Artificial Intelligence (AI) plans and traditional control algorithms, for example those
within batch control, try to solve the same general problem in an industrial context, i.e.
how to choose actions to influence an environment or a physical process in a desired, goal
driven way. The levels of abstraction and the time scales for plans and controls normally



97

differ, AI plans are more abstract and have a longer time scale and a wider scope than
controls (Dean & Wellman, 1991, p. 177).

 In AI, plans are often generated and evaluated off-line, using a world model of the
domain-specific environment for which the plans are made. The idea is that the AI plans
are in effect sequences of steps, needed to achieve the chosen goal, a given state of the
world model. Normally, the role of a feedback from the environment is smaller (or non-
existent) within plans than within controls, where corrective action provided by on-line
feedback is essential.

 The plans of individual agents may, alternatively, consist of local rules and, additionally,
of so-called agent interactions containing interaction rules. The interaction rules describe
what an individual agent is supposed to do, when it gets a message from another agent,
constraining thus its operation. In this way the plan of an individual agent consists of its
own goals (local rules) and the goals imposed upon it by the need to interact with other
agents in a coherent way.

 The above kind of interaction (or, more specifically, conversation or negotiation, see the
next section) approach is originated by Terry Winograd and Fernando Flores (Winograd,
1987). Mark Fox and Mihai Barbuceanu have concretised it in their agent co-ordination
language, COOL, and also applied it into the manufacturing domain (Barbuceanu & Fox,
1995). In COOL design and implementation, the conversations are separate entities from
the agents, which is a good design decision from the point of view of reusability.

 The conversation approach seems promising from the point of view of automation
applications, because in it, the autonomous, local decision-making of individual agents is
integrated with conversations, which can be modelled with the help of conventional finite
state machines. Several ‘pure’ agent frameworks are also available, implemented with
Java, based on the above-mentioned conversation theory, and COOL implementation, see
for example (Chauhan & Baker, 1998).

 In some agent architectures individual agents are able to change their plans while
executing them. Integrating the making and the execution of plans in control applications
can be considered both in terms of planning for execution and (re)planning while
executing the plan (Kuikka, 1997). A starting point for the first approach is the separation
of the time consuming planning functionality from the execution of the plans. A premise
for the second approach is that the planning and the execution of the plans shall be
integrated into the same system. This is normally possible only by modifying or adapting



98

existing plans. The second approach is a more natural path for further development in the
chosen conversation theory based approach of this thesis.

 

4.3 Multi-agent interaction

4.3.1 Background

 According to (Finin et al., 1997) three fundamental facilities are required to enable agents
to interact effectively: a common language, a common understanding of the knowledge
representation exchanged, and the ability to exchange the previous two items. The
common language can be seen as a common vocabulary of intention carrying messages
between agents. The common understanding of the knowledge can be further divided into
two parts. The first is the problem of translating from one knowledge representation to
another, from KIF to rules, for example. The second part is the problem of defining the
ontology, i.e. the semantic content of the knowledge. Knowledge representation has been
discussed in the previous section concerning individual agents.

 This section discusses multi-agent interaction, i.e. agent communication languages and
negotiation or conversation protocols, Figure 4.2. The ability to transport common agent
language and messages relies in this thesis on distributed software component model, on
which also the agent functionality is designed.



99

COMMUNICATION

transport protocol

communication language

negotiation protocol

AGENT CAPABILITIES

perception and acting

world modelling

planning and reasoning

REPRESENTATION

knowledge format

ontologies

 Figure 4.2. Multi-agent interaction.

 In multi-agent interaction, also the knowledge format and the agent planning issues,
described in the previous section, have to be considered. Knowledge representation is
also needed for the agents’ local knowledge base and planning for its local decision-
making. Those issues belong to multi-agent interaction only to the extent that has to do
with message contents, on one hand, and plan execution by conversations, on the other.
The whole area of interest in multi-agent interaction is thus indicated within the dotted
line in Figure 4.2.

 

4.3.2 Agent communication

 There are several requirements for an agent communication language. Finin et. al. classify
the general requirements into seven categories: form, content, semantics, implementation,
networking, environment, and reliability (Finin et al., 1997). The form of the languages
should be declarative, syntactically simple, and human readable. The content part of the
language (expressing domain knowledge) should be separate from the proceeding of
conversations. The semantics of the language should support shared understanding but,
simultaneously, be formal enough for agent interaction. The implementation of the
language should fit well with the software platform, especially with the underlying
transport protocol and distributed network environment. Reliability is an issue, too,
especially if the agents communicate in the Internet.



100

 From the point of view of this thesis and in addition to the previous requirements, it is
beneficial if the communication language is extensible in a domain-specific fashion. In
addition to generic message contents, also contents specific to domain, in this case batch
control, will be needed, as described in Chapter 7.3. It is, furthermore, necessary that the
communication language should be as common and well standardised as possible, as it is
not to be on the focus of this research and development work. When considering all of the
preceding issues, there remain two language candidates: KQML and FIPA ACL.

 KQML is a query language for the communication between software agents. As the
knowledge representation language KIF, it has been produced by Knowledge-Sharing
Effort consortium (KSE). Although there are several variations of KQML (Labrou &
Finin, 1997), it can be regarded as the de facto standard agent communication language.
One might even claim that the new, FIPA standard agent communication language FIPA
ACL (FIPA, 1998) is actually a semantically well-defined variation of KQML.

 KQML is both a message format and a message handling protocol. The message types
convey an attitude about the content they carry (e.g. request, query), but KQML is opaque
about the exact content, giving no restrictions or interpretations. The structure of the
KQML message is simple (Labrou & Finin, 1997). The intention carrying message, or
performative3, is expressed as an ASCII string using a LISP type of list notation. Unlike
in LISP, the parameters in KQML performatives are indexed by keywords and are
therefore order independent.

 The KQML performatives can be classified into three categories according to their usage.
The discourse performatives convey typically a query of some kind or an attitude about the
content. The purpose of these performatives is usually to make the recipient edit its
knowledge base in some way. The second category holds performatives that are used to
handle errors or mechanics of the conversation. The third category lists special
performatives, which may be domain-specific extensions. A communication link is needed
to carry KQML messages. KQML does not specify the transport protocol but it assumes
that for the agents the communication appears to be point-to-point message passing.

 The Foundation for Intelligent Physical Agents (FIPA; FIPA 1998) is another
collaboration effort targeting to specify agent communication. The FIPA is a non-profit

                                                     

3 Performatives are originated from the so-called speech act theory. The speech act theory is
derived from the linguistic analysis of human communication. The key idea is that a speaker
performs actions when he uses language (I hereby declare …, I hereby request …).



101

association whose purpose is to promote the success of emerging agent-based
applications, services and equipment. As indicated before, the overall structure of FIPA
standardised Agent Communication Language (FIPA ACL) resembles very much
KQML. The messages in FIPA ACL are called communicative acts, but they have the
same purpose as the performatives in KQML. The communicative acts convey other
mental attitudes than intention as well, namely belief and uncertainty.

 The syntax of a FIPA ACL message is similar to the KQML message syntax, except that
the defined communicative act set differs from the KQML performative set, as is the case
with the predefined parameters, as well. There are altogether 20 message types and the set
resembles the KQML category of discourse performatives. The semantics of the FIPA
ACL message contents is formally defined with a Semantic Language SL. The FIPA
ACL semantics is more oriented to specifying actions of a negotiation protocol than
making a query to the receiver’s knowledge base, which is typical of KQML. Well-
defined semantics and orientation to agent interaction, instead of knowledge queries, were
the main reasons for choosing FIPA ACL as the communication language for this thesis.

 

4.3.3 Co-operative agent negotiation

 A set of agents in a distributed environment, equipped with agent communication
capabilities, described in the previous section, may consider the interaction needed as
either co-operation or competition. If the agents, for example, belong to one control or
process management system or represent a robotics society owned by one company, they
are most likely to co-operate to achieve common goals. If the interacting agents, however,
represent different organisations, they will most likely have at least somewhat different
goals from each other.

 The negotiation problem can in general be categorised into domains according to the type
of the goal (Rosenschein & Zlotkin, 1994):

•  Task oriented domain. The activity of an agent can be defined as a set of tasks it has
to achieve.

•  State oriented domain. The mission of an agent is to move the world from an initial
state to a goal state.

•  Worth oriented domain. The agents have worth for each potential state.



102

 To make the negotiation between agents possible, some mechanisms are needed to co-
ordinate the process. A specified negotiation process or protocol includes rules about
what the allowed actions are and how the negotiation comes to an end (or how to
recognise that a negotiation result has been achieved). In a seminal work on negotiation
(Rosenschein & Zlotkin, 1994), negotiation protocols are studied from a game theoretic
point of view and evaluated e.g. on the basis of the properties of efficiency, stability,
simplicity, distribution and symmetry. Each individual agent will, in addition, need a
negotiation strategy of its own, which is a predefined (pre-programmed) set of decisions
that the agent will make in certain situations.

 When the nature of the required agent interaction is co-operative, co-ordination is needed
to manage the dependencies between the agent activities (Kuikka & Valtari, 1998). Co-
ordination problems arise, because there are alternative actions that an individual agent
can choose from its local plan and, furthermore, the order and the execution time of the
chosen actions affect other agents and the whole environment. There is thus a need to
explicitly represent the interactions taking place between the agents. One important
model for including these aspects of co-operation is the Joint responsibility model
(Jennings et al., 1995), described in the next section in connection with the GRATE*
multi-agent system.

 Another model, adapted for the main approach in this thesis, is based on conversations,
specified for individual agents’ interaction with other agents, as described in the previous
section (Barbuceanu & Fox, 1995). The use of conversations as units of modelling
interaction between agents has proven to be more appropriate than the plain
performatives in several industrial applications (Bradshaw et al., 1997). The
conversation-based interaction model does not presuppose any intellectual capabilities of
the agents participating in the interaction, which makes it possible to include many kinds
of agents, also simple ones, in the interaction.

 The chosen approach for co-ordination is supported by both the analysis possibilities to
verify coherence (reaching a common goal) and the fact that it is possible to further
develop the conversations with decision theoretic planning as indicated in (Barbuceanu &
Fox, 1997). It is also possible to have the agents refine their conversation rules when new
knowledge is achieved from other agents, which is in effect one form of (re)planning
while executing the plans (Kuikka, 1997).



103

4.4 Multi-agent systems

4.4.1 Background

In multi-agent systems (MAS), agents are autonomous and typically heterogeneous
entities. In addition to interaction, they are capable of sensing the environment (consisting
of the physical world, non-agent applications and other agents) and act accordingly in a
purposeful manner. Research on MAS is mainly concerned with communication and
negotiation mechanisms between agents, described in the previous chapter, as well as
organising the agents structurally into multi-agent systems, and applying them in various
application domains.

Previously multi-agent applications were classified into three areas: distributed situation
assessment, distributed scheduling, planning and resource allocation as well as distributed
(mainly rule-based) expert systems (Lesser, 1995). In the near future, relevant domain-
specific problem solving techniques from the above-mentioned technology area based
categories can be integrated into existing information systems and frameworks.
Additionally, evolutionary and learning aspects can be incorporated. Agent functionality
can be integrated (for example, in the manner developed in Chapter 7 of this thesis) into
distributed, software component frameworks. The agent functionality can provide
autonomous solutions for e.g. resource usage, configuration, and security problems.

The agents, negotiating with each other, as described in the previous section, can be
viewed from an organisational point of view, as a society. The agents work to achieve
their own goals and also common or joint goals of the society. When considering co-
operating multi-agent applications, having a well defined joint goal, it is reasonable to
combine the traditional deliberative and the newer reactive approach for agency.
Striving for a goal which requires co-ordination from the system as a whole - while
maintaining autonomy of the individual agents - implies the deliberative approach. The
inevitability of changes and unknown events in the environment and the requirements for
flexibility and robustness imply the reactive approach.

It is also important to take care of the coherence of the multi-agent system architecture. It
was discussed in terms of agent interaction in the previous section. It may also be defined
more generally, in terms of solution quality, efficiency, conceptual clarity of system
behaviour and the possibility of graceful degradation (Aitken et al., 1994). These needs,
as well as both the deliberative and the reactive approaches mentioned above, have been
pursued in the multi-agent architectures described next.



104

4.4.2 Domain independent multi-agent systems

The TouringMachine architecture and BDI agents

In the TouringMachine Architecture, Figure 4.3, (Ferguson, 1995) individual agents
comprise three concurrently operating, task-achieving control layers.

Sensory
Input

Action
OutputModelling Layer (M)

Planning Layer (P)

Reactive Layer (R)

Perception
Subsystem

Action
Subsystem

Context-activated
Control Rules

Figure 4.3. A TouringMachine (modified from Ferguson, 1995).

The Reactive layer (R) provides the agent with reactive, not planned capabilities. The
Planning layer (P) allows the agent to generate, execute and dynamically repair
hierarchical partial plans. The Modelling layer (M) allows the agent to construct
behavioural models of world entities that can be used to explain observed behaviours and
to predict possible future behaviours. Each layer is a so-called approximate machine,
having incomplete world models. The layers are mediated (by modifying layer's data) by
interlayer message-passing control with domain-specific control rules.

The structures used by an agent to model behaviour are 4-tuples of the form <C, B, D, I>.
C is the agent's configuration (for example the location, speed, acceleration, and
orientation of a robot). B is the set of the agent's beliefs (about the environment and other
agents). D is its list of prioritised goals or desires and I its individual intention structure.
The concept of intention (Cohen & Levesque, 1990) is used to define an agent's
individual behaviour in a social context. It can be defined, in short, as “a commitment to
act whilst in a certain mental state”. Intentions should be internally consistent and



105

consistent with the beliefs of the other agents in the multi-agent society. BDI-models4

within the TouringMachines are implemented by templates, which the agent obtains from
an internal model library.

Reasoning with behavioural models involves looking for the "interaction of observation
and prediction" in a somewhat analogous manner as in model predictive control. First any
discrepancies between the actual behaviour of an agent and that desired by it, are
observed. Once the discrepancies have been identified, predictions are formed by
projecting temporally the agent's configuration vector C in the context of the current
world situation and the agent's intentions. Should any conflicts exist, the agent should
have enough knowledge (priorities of goals, space-time urgency information, constraints)
to resolve them. The conflicts can be either intra-agent (between the agent's own
predicted and desired actions) or inter-agent (between the agent's predicted actions and
other agents' predicted actions).

TouringMachines have been implemented as mobile agents in a simulated multi-agent
traffic navigation domain, the TouringWorld. Tasks, carried out by the agents, are
prioritised in advance and include goals like moving from an initial location to a target
destination within certain time bounds and/or spatial constraints, avoiding collisions (with
other agents and obstacles) and obeying a set of traffic rules. The if-then rules act
effectively as filters between the agent's sensors and its internal layers (censors) and
between its layers and action effectors (suppressors). This approach is analogous to that
of suppression and inhibition in Brook’s subsumption architecture, (Brooks, 1991).

Although complete BDI-modelling, exemplified by the TouringMachines, is theoretically
interesting in agency, need for it is highly application specific. The process unit allocation
problem - to be solved using multi-agency in this thesis - does not require modelling of
beliefs or desires, for example. The information that an agent gets in Process Cell
Management from other agents and software components can be considered trustworthy
and the goals of individual agents do not call for complex intention structures. The
conversation approach adapted in Chapter 7.3, for agent interaction does, however, yield
the future use of complete BDI-models for individual agents, if/when needed.

                                                     

4 If the agents are considered to have beliefs, intentions, and desires or similar mental attributes,
they are called strong agents, if they do not have this kind of intentional stance, they are weak
agents.



106

The InterRAP architecture

The TouringMachine Architecture described previously, as well as Brooks' subsumption
architecture and many of its reactive successors, are horizontally layered multi-agent
architectures. In these architectures, all layers of an agent have access both to the
perception and to the action entities. This necessitates the use of some kind of centralised
control authority (context-activated control rules in TouringMachines) and brings about
complexity as to the concurrent handling of perceptions and actions by various layers.
The observation above has led to the development of vertical multi-agent architectures,
of which InterRAP, (Mueller et al., 1994; Mueller, 1996) is a good example, Figure 4.4.

Social Model

Mental Model

World Model

Sensors Communication Actors

Cooperative Planning
Layer CPL

Local Planning
Layer LPL

Behaviour-based
Layer BBL

w o r l d   i n t e r f a c e ( w i f )

Agent
Control

Unit

information
flow

control flow

Figure 4.4. The InterRAP Architecture (modified from Mueller, 1996).

An InterRAP agent consists of a set of functional layers, linked by an activation-based
control structure and a shared hierarchical knowledge base. The world interface (wif)
contains the agent's facilities for perception, action and communication. The Behaviour-
Based Layer (BBL) implements and controls the basic reactive behaviour of the agent as
well as its procedural knowledge (abstract actions). The Local Planning Layer (LPL)
contains a planning mechanism, which is able to activate subplans or primitive actions to
achieve goals. Planning is also needed to co-ordinate the actions of the agents, for
example to devise joint plans. The Co-operative Planning Layer (CPL) takes care of the
co-ordination.



107

The agent knowledge base is a hierarchical blackboard system, split into three layers
corresponding the functional layers above. The agent’s World Model contains its object
level beliefs about the world; the Mental Model holds information on goals, plans and
intentions. The Social Model represents what the agent believes about other agents, and
contains information about joint goals, plans and intentions.

The overall control behaviour of an InterRAP agent emerges from the communication
among the layers. Based on events in the world, recognised by the agent, control is
shifted upward until the appropriate layer deals with the situation. There are three
execution paths: the reactive path, the local planning path and the co-operative planning
path, each indicating the highest layer needed.

There are some interesting similarities and differences between the pure agent
architecture of InterRAP above, and the overall architectural structure of agentifying of
the framework developed in Chapter 7.3 of this thesis. The BBL layer is replaced in the
framework by the (reused) host software component. The LPL layer is designed in both
architectures using local if-then rules, which in the design solution of the thesis have
access to the attributes of the host software component itself. The CPL layer corresponds
to the conversation rules of the individual framework agents, which are connected with
other agents with the common agent interaction interface, used only for agent negotiation.

The approach of the thesis, unlike InterRAP, separates clearly normal component
communication from agent negotiation. Agents need to communicate, not only with
normal components, but also with other agents in a nonagentified manner. For example,
when a PathAgent in Process Cell Management wants to read a state variable, containing
the previous BatchId, from the UnitAgent, there is no need to use an agent performative,
a normal software component interface is sufficient. In the view of this thesis, only actual
agent negotiation shall take place through agent interfaces. This approach, detailed in
Chapter 7.3, separates the concerns of agent interaction and normal component
communication and also helps to keep the number of the conversation rules in the
interaction small and their structure concise.

The GRATE* architecture and Joint Responsibility

Most multi-agent architectures provide possibilities for agent interaction by signals,
traditional data message based communication or speech-act-based interaction. The
(generic) multi-agent architectures do not as such consider the way in which the



108

negotiation is carried out - leaving it to the application. The GRATE* architecture
(Jennings et al., 1995), together with the conversation approaches discussed previously,
are notable exceptions in this respect.

The GRATE* architecture implements the so-called Joint Responsibility Model of agent
collaboration, based on so-called joint intentions of the agents. Joint responsibility is
needed when the system has global constraints (total cost or timing, for example), when
activities by individual agents are interdependent (either positively or negatively), and
when no one agent has sufficient competence, resources or information to perform the
entire task alone. The model consists of two constructs: defining individual behaviour in
a social context and defining co-operative behaviour.

The intentions of individual agents, which define their individual behaviour, should be
stable enough and follow general policies or conventions, which tell when they should be
re-examined. For the intentions to function, the commitment must operate in a way that
ensures that agents behave rationally. Specifically, an agent should reconsider its
commitments to a goal (G) if:

•  G is already satisfied.

•  G will never be satisfied.

•  Motivation for G is no longer present.

Joint intention can be defined as a joint commitment to perform a collective action while
being in a certain shared mental state. According to Jennings (Jennings et al., 1995), it is
necessary but not sufficient to have the agents commit themselves to a common goal, the
agents must also want to achieve their goal in a co-operative manner. There must thus be
a commonly agreed plan, which the agents are working under.

At any instant of time, the plan is likely to be partial, either informationally (lacking
parameter values), temporally (lacking exact ordering) or structurally (lacking detailed
actions). Refining the partial plan is a complex activity for which various kinds of (often
domain-specific) planning paradigms are needed.

Joint responsibility provides an explicit model of co-operation. All the agents have a joint
goal and they execute a common plan to which they have commitment and, additionally,
all the agents know mutually what the others are doing. The GRATE* implementation of



109

the Joint Responsibility model adopts a rule based approach, having so-called situation
assessment rules and co-operative rules. The situation assessment rules are needed to:

•  Decide when co-operation for a joint goal is appropriate.

•  Develop an agreement on a common plan.

•  Ensure that the existing commitments are honoured and the new ones are
consistent with the old ones.

•  Monitor the problem solving state.

•  Decide what to do, if a joint commitment is dropped.

The rules, which control co-operative interactions, ensure that all team members are
informed, if the local agent gives up its joint commitment, and they also propose remedial
actions. Before the co-operation in a system with GRATE* architecture can proceed, a
joint action must be established. After the agent has selected an appropriate plan to
achieve the desired goal, it has to determine, whether the activity should be completed
locally or whether assistance should be sought from the team members. If a joint action
with several agents is needed, the agent that detects the need, becomes a so-called
organiser.

After the need for a joint action has been identified, the process of establishing a co-
operating group can proceed:

          Phase 1

          Organiser detects need for joint action to achieve goal G and determines the plan R

Organiser contacts all acquaintances, capable of contributing to R to determine if they will participate in the joint
action using Joint responsibility co-operation model

          W = set of willing acquaintances

Once all the team members who were identified as potential participants have replied, the
second phase of the protocol begins and the team specifies the exact details of the
common plan:

          Phase 2

          FORALL actions in R



110

          select agent A from W to carry out action f belonging to R

(criteria: minimises number of group members)

calculate time t for f to be performed based on temporal orderings of R and the anticipated communication delay

          send (f, tf) proposal to A

          A evaluates proposal against existing commitments (C’s):

          IF no-conflict(f, tf)

THEN create commitment Cf for A to (f, tf)

          IF conflicts((f, tf), C) AND priority(f) > priority(C)

THEN create commitment Cf for A to (f, tf) and re-schedule C

          IF conflicts((f, tf), C) AND priority(f) < priority(C )

THEN find free time (tf + delta tf ), note commitment Cf and

          return updated time to leader

          return acceptance or modified time to team organiser

          IF time proposal modified

THEN update remaining actions times by delta tf

          END-FORALL

The process of agreeing on a time for each action continues until all of the actions have
been dealt with. At this point the common plan is agreed upon and the organiser informs
all team members about the final solution. The joint action is now operational and the
agent monitors its execution - to find out when it should reconsider its commitments
according to the Joint responsibility model and thus start a new distributed planning cycle
for a new joint action.

Although the joint responsibility model and the conversation based planning approaches
may seem totally different from the outset; they do have significant similarities. The if-
then rules of an individual agent above correspond to the conversation rules in the
conversation approach. In the Joint responsibility model there is, however, a common,



111

global plan5, whereas in the conversation approach a common plan is not explicit, but
consists of the conversations of the individual agents.

The approach of this thesis is, as described earlier, to use the conversation theory as the
basic mechanism of interaction (Barbuceanu & Fox, 1995). The concept of a central
‘organiser’ has, however, been adopted from the Joint responsibility model.6 Among the
batch process cell management, the ProcessCellAgent is the organiser, which initiates the
negotiation process with feasible UnitAgents and PathAgents after it has received the unit
allocation request from the Manage Batches control activity. Also the use of local
planning rules is analogous in the Joint responsibility model and the approach of this
thesis, presented in detail in Chapter 7.3.

4.4.3 Multi-agent systems in automation domain

All the aforementioned multi-agent systems are generic in the meaning that they do not
make a difference between various categories of agents. Agents may be internally
heterogeneous, but their specific tasks cannot be seen in the architecture as a whole.
Specialisation of agent categories can, however, be incorporated into the agent
architecture, as well.

In one of many proposed multi-agent architectures for computer integrated
manufacturing, (Rabelo & Camarinha-Matos, 1994) four categories of agents are
identified: the scheduling supervisor agent, the local spreading centre agent, the enterprise
activity agent and the consortium agent. The scheduling supervisor is created to control
the execution of schedules. The local spreading centre agents are needed for groups of
production facilities (one agent for milling operations, one for turning operations, one for
transporting etc.). The enterprise activity agent represents a local controller of the
production resource, having also a production maximising function. The consortium
agent represents a group of enterprise activity agents, specially created to execute a
certain job and destroy itself after that.

                                                     

5 Or ‘Recipe’ (R), as Jennings calls it – not to be mixed with batch control recipes, which is the
reason, for not using the term here.
6 The need for this kind of organiser, or facilitator, as it is also called, has been noticed also in
several other multi-agent systems, see, for example (Finin et al., 1997).



112

A somewhat similar, domain-specific approach, has also been suggested by Kuroda and
Ishida (Kuroda & Ishida, 1993) for pipeless chemical batch processes. All functional
units in the control architecture for batch production plant are categorised into Process
Managers, Reactors and Stations, Figure 4.5. The pipeless physical process consists of
respective, mobile reactor vessels, which are moved from one static processing station to
another during the production of a batch.

Process Managers

Reactors Stations

Generation and
Allocation of recipe

Environmental
Management

Emergency
Treatment

Production of
Lot A by Date X

Production of
Lot B by Date Y

Feeding

Storing
Temperature
Controlling

Washing. . .

. . .

Figure 4.5. Task sharing of a batch production process (modified from Kuroda & Ishida,
1993).

The assignment of subtasks to functional units and the schedule of subtask-execution are
completed by using negotiation message exchanges according to the contract net model
(Smith, 1980). When a unit needs another unit's support in collaboration (for example, a
reactor requires material from a feeder station) a contract is made, which assigns a unit
and plans a work-starting time by local message exchange. Making a contract proceeds
with advertising (making a tender) by the master, submitting bids (offering) by the
potential subcontracting units and evaluating the bids and selecting (ordering) an
appropriate subcontractor by the master.

The total decision-making in the system takes place in two phases. The static evaluation
by the Process Manager selects and orders suitable station-candidates and orders them for
each operation at the beginning of a production lot. The candidates and the evaluation
results are recorded in a recipe. In dynamic evaluation, as described above, a Reactor
starts the lot based on the recipe and selects the most suitable Station(s) among the
multiple candidates taking the static evaluation results and the dynamic situations of
stations into consideration.



113

By using a contract net, decomposable tasks can be distributed among a group of agents
in a flexible manner. Global coherence should be achieved through negotiation as a
mechanism for interaction, through task decomposition and the common language shared
by all agents. However, if the tasks cannot be easily divided, then the synthesis of the
results may be problematic, (Aitken et al., 1994). It has also been noticed that a simple
bidding process does not lead to a satisfactory result because longer sequences of
resource exchanges are not explored. Better solutions have been obtained by gathering
‘market statistics’ and adding a new inference rule that uses these statistics in the
selection process.

The conversation approach of this thesis has similarities and differences with the
Kuroda–Ishida approach. Both approaches have two phases, the first, the static phase
finds the feasible process Units or Stations, respectively. Unlike the Kuroda–Ishida
approach, the framework of this thesis does not need negotiation for the first phase.
Starting with the actual, dynamic negotiation by an ‘organiser’ (the Process Manager in
the Kuroda–Ishida approach and the ProcessCellAgent in the framework) is essentially
similar in both approaches. However, while in the dynamic negotiation of this thesis the
singleton ProcessCellAgent is participating, in the Kuroda–Ishida approach the dynamic
negotiation phase is carried out by the mobile Reactors and static Stations alone.

In the framework of this thesis, multi-agent negotiation is only used in a specific,
dynamic unit allocation problem, concerning all types of process Units in a similar
manner, detailed in Chapter 7.3. In the Kuroda–Ishida approach, the Process Manager
negotiates first with the Stations and finds out production candidates among them, using a
specific set of criteria. This static station information is then inserted in (non-standard)
‘Recipes’, which are used by Reactors when they negotiate with the Stations using
another set of decision criteria. In the framework, unlike the Kuroda–Ishida approach,
there is no need for several types of negotiations between the interacting agents. The
conversation approach applying the modified contract net protocol of Chapter 7.3, was
thus sufficient in comparison to the two-phased, more complex approach used by
Kuroda–Ishida.



114

4.4.4 Developing multi-agent applications

Customising multi-agent systems

When either a generic or domain-specific multi-agent system, capable of working
together in a co-ordinated, collaborative manner has been developed - or acquired - the
application specific goal has to be imposed upon it. The goal in the automation area of
applications may be as varied as, for example, a production optimisation task, a motion
planning task or an allocation or a scheduling problem. That is why the ways in which the
common goal is presented to the multi-agent system also vary considerably. The
representations are also dependent on the degree of specialisation of the multi-agent
architecture itself.

Additionally, the real environments for multi-agent systems are dynamic and populated
by multiple co-operative agents and possibly also by other software modules. This offers
continuously new possibilities (if only for a limited time interval) for the system to
achieve the original goal, making, however, the goal setting more difficult. Explicit meta-
level reasoning in the multi-agent system implementation can be utilised and thus goal
setting in the form of so-called societal rules or norms can be employed when expressing
the needed behaviour of the multi-agent system.

However, it is often more effective to incorporate meta reasoning in the multi-agent
architecture (or agentified framework) itself like, for example, in the Joint Responsibility
Model of GRATE* and in the conversation rule scheme of the co-ordination language
COOL. In GRATE*, the application specific rules have to be coded into the situation
assessment module. In addition to local action, also the other team members have to be
informed when an individual agent's commitment is given up. This is realised by the co-
operation module of GRATE*, based on the information provided by the situation
assessment module.

In the domain-specific CIM-scheduling approach (Rabelo & Camarinha-Matos, 1994), a
common goal for the multi-agent system is given in terms of a hierarchy of business
processes (BP). The deepest level in the hierarchy represents an elementary task
description that can be implemented by a basic functionality, the so-called enterprise
activity (EA). For the specification of the interrelationships between BPs and/or EAs,
procedure rule sets (PRS) are utilised. To use more conventional manufacturing control
terminology, BP corresponds to a job, an EA to a process plan operation and a PRS to
precedence relations between the operations. The CIM-scheduling architecture's



115

specialised agents then negotiate until one enterprise activity agent or a group of them is
selected to execute all the BP's EAs.

Batch production, in the Kuroda and Ishida's domain-specific architecture (Kuroda &
Ishida, 1993), is started by a user presenting a recipe (containing minimum information
about the process sequence) to the system's Process Manager. It will then be further
refined and sent to a Reactor by the Process Manager. The Reactor interprets the recipe
with its own domain-specific knowledge and starts the production process in co-operation
with functional Stations having also domain-specific information contents.

Agentifying information systems and frameworks

The possibilities of multi-agency for distributed, autonomous, and flexible decision-
making, presented in this chapter, are often needed locally in the domain, for specific
problems in the application, and possibly even intermittently in systems having other
kinds of software architectures. There is thus a definite need to agentify existing
information systems and software frameworks.

There are far fewer examples of enhancement than visions and expressions of a need to
enhance the operational functionality of automation systems by adding agent features to
them. Within user interfaces and information retrieval, on the other hand, so-called
interface agency is gradually becoming commonplace (Guilfoyle, 1998; Lieberman,
1998). It seems to be difficult to integrate within automation systems, both conventional
information representation and communication, and knowledge representation and agent
interaction.

The co-operative Intelligent Real-time Control Architecture (Musliner et al., 1995),
described previously, is one example of agency in the automation domain. The CIRCA
architecture as a whole was, however, designed using the agent paradigm, and thus the
division of work and interaction between the agentified and nonagentified parts of the
system was comparatively straightforward. The KaOS agent architecture puts emphasis
on the integration of objects and agents, as well, but the goal in its development is
explicitly An Open Agent Architecture (Bradshaw et al., 1997).

Multi-agent features, described in this chapter, can however, be embedded in new,
distributed, domain-specific component frameworks. This can be achieved locally, in
those parts of the framework, where a genuine, domain-specific need for agency is. It can



116

even be accomplished in such a manner that the underlying software component
framework remains intact and is thus reused as such.

In the approach developed in this thesis, the starting point for agency enhancement are the
component classes (so-called host components) of the framework itself, or alternatively,
of an application, based on the framework. The host components have been derived from
the design pattern based class model of the framework and have the domain-specific
component interfaces. Those specific components that need multi-agency capabilities, can
be agentified by incorporating into the so-called agentified components:

•  The host component by component containment

•  The knowledge base and inference mechanism (consisting of interactions,
interaction rules and associated methods) by object implementation inheritance
from a generic agent class

•  The interaction capability for agent interactions (consisting of component interface
for FIPA ACL communicative acts) by interface inheritance from a generic
interface

All domain-specific components of the framework can be agentified – if/when needed - in
this manner by designing and implementing the problem specific agency details only and
reusing the host components of the framework as such.

There is not - according to the knowledge of the author – any other software component
framework that has been agentified, or enhanced by agency, in the manner described
above. Thus an original design pattern has also been developed to support this generic
design issue. The enhancement of the domain-specific batch process management
framework of this thesis by agentifying, as well as the design pattern, Agentified
Component are presented in detail in Chapter 7.3. The specific process management
problem, which requires agentifying, process unit allocation, is also described in detail in
Chapter 7.3.



117

5. The Research and Development Problem

5.1 Introduction

Batch process management, described in Chapter 2, needs a new kind of approach to
system architecture development, outlined in Chapter 1. Information technologies,
described in Chapters 3 and 4, offer significant possibilities for fulfilling these needs. The
main research and development task of this thesis is thus to develop an experimental
batch-process management framework which:

•  Conforms to the requirements of the new application-domain standards and
considers additional, advanced industrial needs.

•  Relies for its design and implementation on distributed object and software
component technology and on design pattern methodology.

•  Facilitates local autonomous decision-making through multi-agent technology,
embedded in the framework.

 A frame of reference for the chosen approach, Figure 5.1, emphasises the need to
consider domain-specific requirements, realised in batch domain standards and industrial
experience, as a starting point for framework development with the help of new
information technology.

Batch Process Management

Information Technology

distribution
integration

flexibility

software
components design

patterns

agents

Figure 5.1. A frame of reference for the approach of the thesis.

 The most important application-domain standards in batch control are ISA-S88.01: Batch
control - Part 1: Models and Terminology (ISA, 1995) and ISA-dS88.02: Batch control -



118

Part 2: Data structures and Guidelines for Programming languages (ISA, 1999a). They
are described in Chapter 2.2 and will be referred to as the standard hereafter. Commercial
batch automation systems, which are at least partly compliant with the standard, are
discussed in Chapter 2.3. Chapter 2 thus gives a concise view on the present state of the
art in industry and, simultaneously, acts as a reference to which the concepts developed
in Chapter 6 of this thesis can be compared.

 Application-oriented research work is discussed in Chapter 2.4. The research in batch-
process management has largely concentrated on development of analysis methodologies.
Lately there has also been some research on architecture development and automation-
application design, as indicated in Chapter 2.4. Because the research has focused on
analysis problems, it has put less weight on the issues of functional distribution,
integration, and flexibility, needed for variable and exceptional processing conditions and
the exploitation of the autonomy of new processing equipment. This thesis thus strives to
complement the existing batch-control research in the above-mentioned respects.

 Chapter 3 gives a short overview of distributed object and software component
technology (Chapter 3.2), as well as a more detailed description on how to exploit design
pattern methodology (Chapter 3.3) in developing domain-specific frameworks (Chapter
3.4). Two examples of frameworks for related approaches and analogous domains have
also been described as information technology references to the framework of this thesis.

 Chapter 4 describes multi-agent technology. The issues concerning individual agents,
their knowledge representation and planning capabilities are described briefly in Chapter
4.2. Multi-agent interaction is discussed, concentrating particularly on co-operative
negotiation (Chapter 4.3). Multi-agent architectures are also reviewed, and finally an
alternative to pure multi-agent systems is introduced, incorporating multi-agency within
component frameworks through agentifying in Chapter 4.4.

 The selected information technologies are considered in this thesis to be vitally important
in developing domain-specific frameworks. In many cases these technologies are,
however, deployed in isolation from each other, without realizing the value of integrating
them. Object orientation, software components and design patterns are considered as
fundamental technologies, whereas multi-agency is seen as a means to enhance the
(reused) framework in a problem-specific manner. The following sections justify the
chosen approach. Both the batch-process management and the information technology
points of view are considered.

 



119

5.2 Justification of the approach from the domain point of view

5.2.1 In reference to the standard and advanced industrial needs

 The standard is an excellent basis for framework development. It does not, however,
address explicitly the issues of varying and exceptional processing conditions, considered
important for flexible production in advanced industrial applications. Furthermore, the
standard does not consider the possibility of adding value in the production by enabling
autonomous decision-making within process units. These issues have been considered
necessary requirements for the new experimental framework.

 There is a great need for co-ordination control in batch-process management. The
separation of concerns of the products (explicated in various types of recipes of the
standard) on the one hand and the equipment (explicated in process and control
equipment modularity) on the other hand, require independence of the corresponding
information entities. At the same time they must, however, be able to interoperate closely
in varying processing conditions in order to achieve the overall goals of efficient
production.

 At best the co-ordination should maintain independent operation also in situations when
connections between the entities will be temporarily lost. This implies the need of
autonomous functionality (a generalization of set point based control) in the control
activities. The economic need to run the plant with a minimum number of operators
brings about requirements to distribute the user interfaces of the framework flexibly
among the control rooms. Changes of user interface locations from one control room to
another, as well as dynamic extensions of the user interfaces are needed.

 Also the exceptional processing conditions in batch production have to be provided for.
When a batch-production sequence is stopped due to an equipment failure or a material
jam, for example, it must react immediately in a purposeful manner. In these cases, it
often has to be able to dynamically change the normal order of processing steps (recipe
procedural elements).

 The requirements imposed upon the control-system architecture by the needs above are
interesting. In order to be able to react optimally to these kinds of malfunctions, both
recipe procedural elements and equipment entities (for example process units) have to be
independent active entities, and their functioning must be explicitly state dependent.
Moreover, the larger containing entities, namely control recipes for products and paths
(or trains) of units, have to be flexibly configurable.



120

 A need for agentifying in batch process management may arise if a processing unit
component, for example, has enough local information to decide whether or not to
participate in producing a given recipe. The facts and the knowledge may be available,
for instance, in terms of the services and their costs as well as the operational state and
allocation status of the unit. The unit may then find out whether or not it is locally
optimal to respond affirmatively to a service request and if so, for what price the service
can be provided.

 

5.2.2 In reference to existing batch automation systems

 The commercial batch automation systems described in Chapter 2.3 comply fairly well
with the standard as to the modelling and terminology of the batch plant and the recipes.
Some non-standard concepts also exist, due to the need for compatibility with older
versions of the systems. The implementation of the system architectures is generally
conventional. The distribution of functionality is mainly based on hardware distribution
to client and server computers only.

 The present design practices in both automation system and application development are,
for the most part, based on structured analysis and design. The commercial control
system architectures have also been developed in a structured approach, considering the
required functionality and the data separately. Interaction and collaboration possibilities
in the architectures are limited, which also makes the three referred systems, which
represent the foremost in the domain, unnecessarily closed. Object orientation is exploited
in commercial batch automation systems only partially, the structure of all the referred
systems is explicitly execution engine and relational database oriented.

 The situation is, however, improving due to the fact that some vendors have developed
the system functionality partly with the help of (ActiveX) components. These
components can be embedded into component containers developed by other vendors.
The containers can be both automation systems and so-called back-office products. Also
the fact that a part of the functionality consists of components with well-defined
interfaces makes it in principle possible for other vendors to implement alternative
functionality, replacing the original implementation but having the same interfaces.

 It is argued in this thesis that a distributed software component model is a necessary but
not sufficient condition for the achievement of co-ordination and interoperation for
closely related batch-control functionality. As discussed in Chapter 3, even component



121

composition is not enough, the collaborating components have to be designed into
architecturally larger reusable entities, frameworks. Their structure and behaviour shall be
based on batch domain-specific semantics.

 Moreover, several of the components included in the frameworks shall be active
components, executing in their own threads. As such, they can be used as individual
components, executing in parallel within commercial batch automation systems.
Especially interesting in this respect are the agentified components, not found in
commercial batch automation systems. They are best applied for achieving value-added
goals (for example cost reduction in process unit allocation) which need autonomous
local decision-making and co-operative negotiation.

 

5.2.3 In reference to the research work in batch control

 The research approaches reported in Chapter 2.4 do not explicitly solve application-level
distribution issues. Their emphasis is on analysis, and, to some extent, recipe execution as
well as on modelling the batch equipment. The approaches have, however, exploited
some object orientation in batch control implementation. In Johnsson and Årzen’s
approach (Johnsson & Årzen, 1998), object-oriented G2 - methods may be invoked from
within recipes, and synchronisation is encapsulated by object tokens. In Tittus’s approach
(Tittus et al., 1995), inheritance has been used in process and control-equipment models.

 Distributed computation aspects have not been considered in the approaches, in addition
to the modelling and analysis of concurrent activities. In the view of this thesis, the Petri
Net functionality could be generalised, but it should not be presented to batch control
system users as Petri Nets - or the like. For better understanding and communication,
recipes should be represented as described in the Procedural Function Chart (PFC) of the
developing ISA88.02 standard (ISA, 1999a).

 Simensen’s approach (Simensen et al., 1997), reported in Chapter 2.4, proposes the
modelling of batch-control architecture by object- modelling techniques. An interesting
original, but non-standard, aspect to batch control is the concept of the batch life cycle,
integrating both procedural control and equipment control into one entity having time
dependent properties. This thesis prefers the standard’s approach of separating the
procedural control and the equipment control - considering it one of the strengths of the
standard - but values the above-mentioned time-dependent ‘change of class’. An
analogous idea is refined and further developed in the thesis by making a control recipe



122

change its class when changing its state - by using a State design pattern, detailed in
Chapter 6.4.

 This thesis thus complements the existing research work. It introduces a batch-standard-
based experimental framework, which is implemented on a distributed software
component platform. Various kinds of batch control research problems can be
experimented and explored using the framework which has active components executing
in parallel in threads of their own. The fact that the components can be agentified
increases its research potential substantially.

 

5.3 Justification of the approach from the technology point of
view

5.3.1 In reference to component technology

The design and implementation of the new batch-process management framework is not
restricted to any present architectures. The architectural style of the prototype framework
is a functionally distributed, multi-tiered component architecture. Clients and servers, for
example, are functional roles in relation to software components, adopted according to
the batch-control activities of the standard. They are not predominantly physical
processes, let alone computers, as in traditional architectures.

 The framework provides software component interfaces to other systems which are
willing to act in the role of its clients. A relational database is not used in the framework,
but the components, some of which are active, are made persistent by object serialisation.
The deployment of serialisation services provided by the Microsoft Foundation Classes
class library is here considered as a proper implementation technique due to the similarity
to the approach of another component technology, JavaBeans.

Domain-independent composition of individual components, even with the help of
various formal and informal techniques and generators, is not the most effective way to
reuse software in domain-specific contexts. The composition techniques, although
needed, are not sufficient in domain-specific application development. Instead, domain-
specific software frameworks, consisting of components, shall be designed. It is further
argued that one suitable approach for developing these kinds of frameworks is based on
design patterns.



123

 

5.3.2 In reference to design patterns

 When considering the way in which to deploy design patterns, it is argued that it is best to
use the published, original patterns with comprehensive guidelines. By relying on the
knowledge and documentation of familiar design patterns, it is easier for other people to
understand - and also criticise - design decisions made when developing the framework,
as well as to learn from them. This approach also facilitates a transfer of design
knowledge from one application domain to another.

 As indicated in Chapter 3.3, too many ‘new’ patterns unfortunately exist. They resemble
closely the original, already catalogued and publicly available patterns. Accordingly, they
tend to confuse the application and framework developers rather than contribute to the
common design knowledge. Another frequent pitfall in using design patterns in
development work is to try to apply them always and everywhere. Design patterns often
complicate the design and may also cause performance degradation, which are good
reasons not to apply a specific design pattern in some contexts.

 Design patterns should thus be applied judiciously, only when they provide domain-
specific flexibility and variability needed in the framework. This thesis adheres to a
restrained application of well-known generic design patterns. It deploys them in a manner
which makes the domain-specific requirements explicit. This approach is developed in
Chapter 3.4, and tested in Chapter 6 within the development of an experimental batch-
process management framework. Only when enhancing the developed framework with
agentifying (Chapter 7.3) has a totally new generic design pattern Agentified Component
been needed and developed.

 

5.3.3 In reference to domain-specific frameworks

Without architectural frameworks, the semantic level interoperability of the components
does not succeed, and the productivity potential when developing applications will not be
reached. An architecture should thus consist of component frameworks as the main
reusable entities for application developers in a given domain. The framework provides a
domain ontology based skeleton for an application or for a part of it.



124

 With reference to the example frameworks in Chapter 3.4, in this thesis it is considered
best to start from domain (standard) based requirements models and proceed to a
domain-specific framework using generic design patterns. Only after the architectural
aspects have been incorporated into the framework, will there be enough information to
specify the component interfaces in detail. This approach is different from the one
adopted in the Sematech project, in which interfaces of individual components have been
specified - by the Sematech consortium - before architectural design decisions have been
made - by individual system and software vendors.

 The approach of the Sematech project is clearly component-oriented. It is primarily
concerned with standardising external properties of individual components. The approach
of the Dover project, on the other hand, is system- or architecture-oriented. The focus is
on specifying how the objects are organised and how they communicate with each other.
It is argued here that both of the above aspects, component orientation and architecture
orientation, are needed.

 This thesis integrates the two approaches in framework development by designing the
framework architecture with an architectural design technology, design patterns, and by
deploying existing component middle-ware technology in implementation. It also
provides the framework with outer component interfaces, which comply semantically
with the batch standard. The thesis does not, however, argue for the compliance of all of
the individual component interfaces within the framework.

 

5.3.4 In reference to multi-agent technology

The approach to agency in this thesis is distinct from several existing experimental multi-
agent applications and architectures described in Chapter 4. Multi-agency is not
considered suitable as the principal, let alone only, technique for achieving co-operative
behaviour in batch-process management. Instead, agent properties should be embedded in
a few judiciously selected software components of the framework.

 The components selected for agentifying in the experimental framework of this thesis, are
the participants in the dynamic unit-allocation decision-making in the control function,
Manage Process Cell Resources. This selection is an example of a more general tendency
in the automation applications of agency, namely that the use of agent technology is
normally co-operative, striving towards a common goal, not competitive in nature, as in
some other multi-agency application domains.



125

The contribution of this thesis with reference to multi-agency is in designing the manner
in which software components can be agentified if there is a domain-specific need for
that. Furthermore, the thesis demonstrates how an agent interaction mechanism, needed
by the agentified components to reach a common goal, can be built upon existing
communication mechanisms of a distributed software component model. It also shows
how this kind of relatively large functional enhancement can be embedded into a
reusable, calling framework, without changing the framework.



126

6. The Development of the Batch Process
Management Framework

6.1 Introduction

This chapter presents the development of the domain-specific framework for Batch
Process Management control activity, see Chapter 2.2. On a general architectural level,
the whole Process Management is covered. Detailed designs and prototypical
implementations are, however, developed only for the Manage Batches and Manage
Process Cell Resources control functions. From the research point of view, a less
important data-collection function, Collect Batch and Process Cell Information, is not
covered in this thesis.

The development work is based on:

•  Domain (batch process management) specific functionality, discussed in Chapter 2

•  Object-oriented framework development with design patterns and distributed
software components, discussed in Chapter 3

Detailed justification for the development approach adopted, has been given in Chapter 5,
seen from both the domain and the technology points of view.

In the requirements definition, a class model for the Process Management has been
developed. It has been complemented with use cases and use case based scenarios,
describing the behavioural aspects of the system, seen from the point of view of the user.
The class model and the scenarios as such are not, however, a sufficient basis for
framework implementation.

The domain objects and components of the class diagrams co-operate together in various
roles to carry out their tasks within the batch process management framework. To design
the architecture, design patterns are used, especially the so-called architectural patterns,
see Chapter 3.3. The creational and structural design patterns are also important, mostly
when considering the architectures of individual software components. In batch control, it
is necessary to consider the states and modes of recipe procedural elements and pieces of
equipment. The behaviour of the components in their various roles, states and modes has
to be designed. Thus many behavioural design patterns are needed.



127

Considering the implementation of the process management framework, the distribution
and integration needs, described in Chapter 1, imply that the distributed subsystems must
be able to interoperate at the application level in a standard way. This is where a
distributed component model is needed. The resulting implementation, an experimental
software component framework for batch process management, is a set of interoperating,
mainly domain-specific components. It forms a reusable design and implementation for
the developers of batch control applications.

The approach to developing the batch process management framework has been to first
develop the domain-oriented class model, use cases and scenarios. This work is described
in Chapter 6.2 Logical Models. Then the architecture has been developed and
documented from the points of view of the functional decomposition and module
interconnection aspects. The results are described in Chapter 6.3 Subsystems. Also, a user
interface has been designed with the help of design patterns. The above issues cover the
entire Process Management control activity.

The behavioural aspects of the architecture, covering the control functions Manage
Batches and Manage Process Cell Resources, are described in Chapter 6.4 Dynamics.
Framework-based applications can be distributed to several nodes of a local area network
and their functionality is inherently concurrent. The necessary distributed and concurrent
nature of the application has a profound effect on some design decisions. This
development work is described in Chapter 6.5 Distribution.

The development has proceeded along the guidelines of Chapter 3.4. The role of the
design patterns has been emphasised in this chapter by naming the relevant section
subheadings with the names of the most important applied design patterns. Another way
to emhasise the role of design patterns in the framework would have been to depict the
framework as a package and the design patterns simply as collaborations within it
(Booch, 1999, pp. 381 … 392). The explicit partition of the deployed main patterns,
based on architectural, behavioural, and distribution related design issues was, however,
preferred in this thesis.

As noted in the guidelines of Chapter 3.4, the relationships of the design patterns to other
patterns are also important. In addition to the patterns named in the headings, other,
related patterns, are used and reported in the text in the context of the main patterns. The
batch process management framework of this thesis has been reported in the following
publications: (Kuikka & Ventä, 1997), (Heikkilä et al., 1997), (Kuikka et al., 1999),
(Kuikka, 1999).



128

6.2 Logical models - requirements definition

In Soni’s (Soni et al., 1995) architectural categorisation (conceptual, interconnection,
execution, code), described in Chapter 3.4, the conceptual architecture consists of
domain-specific object classes and the relationships between them. It is affected both by
the application domain and by the abstract software paradigms and methods. This
architectural model is the closest to the class model of the requirements definition; other
models are more design and implementation oriented. As Soni’s conceptual architecture
is close to the class model, according to Kruchten’s (Kruchten, 1995) classification
(logical, process, physical, development, and scenarios views), described also in Chapter
3.4, the logical view is exactly the class model itself.

Logical models have been developed for the Process Management control activity of the
standard (ISA, 1995; IEC, 1997). The standard defines Process Management textually,
giving functional descriptions of the tasks that the control activity is responsible for. The
standard makes a clear distinction between the product view (explicit in the recipes of the
Manage Batches control function) and the process equipment view of production (explicit
in the equipment descriptions of the Manage Process Cell Resources control function).

Based on the textual descriptions of Manage Batches and Manage Process Cell Resources
(see Chapter 2.2) use cases, class-object models and scenarios have been developed and
documented with UML-notation, (Fowler & Scott, 1997; Booch et al., 1999). The
development of the models has been partly helped, partly hindered (due to frequent
changes and some inconsistencies) by the ongoing standardisation work of the ISA
Working group WG5, (ISA 1999a).

6.2.1 Use cases

Use cases are typical interactions between a user and the system to be developed. A
conceptual level use case (a user goal use case) achieves a specific goal for the user. In
Manage Batches, the most important use cases are the Create, Modify, and Execute
control recipes. In Manage Process Cell Resources, the most important use cases are
Create Path, Modify Path, Modify Unit, and Maintain Process Cell.

All of these use cases are relevant for a person playing the role of an actor when
interacting with the system. In Batch Process Management, only two actors have been



129

identified: Operator and Configurator. The same person may, of course, play both these
roles. The actors and their respective use cases are described in Figure 6.1, below.

Operator

Configurator

Create
control
recipe

Modify
control
recipe

Modify
path

Create
path

Modify
unit

Execute
control
recipe

Maintain
process

cell

Figure 6.1. Domain actors and use cases in Batch Process Management.

The operator is responsible for executing control recipes. He also creates control recipes
from master recipes, and optionally modifies the recipes and the respective paths, needed
in the recipe execution.

The (process management system) configurator, on the other hand, is responsible for
configuring paths. He can also make changes in the process cell configuration by adding
and removing units (and services provided by them) from a configuration file. He can
also update individual process unit information.

Only the high-level use cases, which are relevant to the actors when they perform their
tasks, are shown in Figure 6.1. These user goal use cases can be further decomposed into
so-called system interaction use cases (Fowler & Scott, 1997, p. 44 … 45).



130

6.2.2 Object classes

The most important object classes in the class model are control recipe and control recipe
procedural element in Manage Batches and process cell, path and unit in Manage Process
Cell Resources. The instances belonging to these classes, as well as the user-interface
objects with batch control significance are called domain objects7. Below is a (somewhat
simplified) example of an UML-diagram of the domain object classes with their main
relationships, Figure 6.2.

BATCH
SCHEDULE

ENTRY
MASTER
RECIPE

CONTROL
RECIPE

- time-related attributes
- product-related attributes
- batch identifier
- priority, state & mode

modify, size, assign batch-id,
excetution services,notifyBATCH-ID RULES

SIZING RULES

CONTROL RECIPE
PROCEDURAL ELEMENT
- required service
- allocated unit instance
- equipment procedure ref.
- formula, state & mode

modify,excecution services,
notify

MASTER RECIPE
PROCEDURAL

ELEMENT

PROCESS
CELL

UNIT

PATH

*

   *

 *

 *

  *

 *

   *

*

 * * *

Figure 6.2. Main domain object classes in Batch Process Management.

In general, control recipes are derived from master recipes within Manage Batches but
many of their attribute values depend on entities in other batch-control activities, as
indicated by the relationships in Figure 6.2. Control recipe procedural elements are

                                                     

7 If they are implemented as software components (having IDL-interfaces) they can also be called
domain components.



131

aggregated by control recipes but they also have relationships with Process Cell Resource
Management components, which are relevant when executing a control recipe.

More specifically, a control recipe is initially created by copying a master recipe that is
specified in the batch schedule entry. It is assigned a unique batch identifier (or the
uniqueness of the identifier is verified if is already assigned). The control recipe is then
sized according to product-related attributes, batch schedule entry and sizing rules.
Various kinds of (application-specific, optionally multi-step) verifications may also be
needed before the execution of a control recipe can be started. The control recipe and the
aggregated control recipe procedural elements can also be modified before execution.

In Manage Process Cell Resources, on the other hand, various instances of an object class
Path are created by the configurator and possibly modified by the operator. The paths
consist of all the possible (from a physical-process point of view) connected collections
of unit components in the process cell for producing a given product from raw materials.
In the framework, a control recipe may change a path dynamically during the batch
production. This makes it possible to balance the use of the process equipment as well as
to flexibly react to faulty or otherwise unavailable process units.

The unit allocation within the Manage Process Cell Resources is vital when considering
the flexibility of the framework. More specifically, quoting the standard (ISA, 1995, p.
54) about unit allocation:

Even though a (batch) schedule may have been planned to totally optimise the processing
sequence from the standpoint of equipment utilisation, it is often desirable to allow
alternate equipment to be used if the units planned for a batch are not available when
planned. In this case the allocation of units to the batch – the routing or path of the batch
– is a decision which must be made every time there is more than one path the batch can
take through the available equipment.

The above has been the starting point when developing the dynamic unit allocation
scheme of the framework. The implications for the design of the unit allocation are:

•  The sequences of units needed for a given batch, are originally (pre-)planned
when planning the batch schedule within Production Planning and Scheduling
control activity.

•  Several alternative units should be available, to be used for the execution of a
given control recipe within Process Management.



132

Arbitration of common (to various units) resources within process units (ISA, 1995, p.
55) is closely related to unit allocation:

If there are multiple requesters for a resource, arbitration is required so that proper
allocations can be made. Arbitration resolves contention for a resource according to
some predetermined algorithm and provides definitive routing or allocation direction.

The implications of the above for the design are:

•  Arbitration is needed when there are exclusive-use common resources. When
planning and/or executing unit recipes, arbitration should be implemented at the
Unit Supervision level.

•  Only the arbitration of equipment modules and control modules is explicitly
mentioned in the standard, not the arbitration of units. There can, however, be
several batches (and associated control recipes) which need to use the same unit
simultaneously.

The unit for the control recipe is selected in the framework immediately before the
execution of the respective control recipe procedural element thus making the use of the
process cell equipment dynamic and flexible. By deploying the concept of path, various
kinds of unit configurations may be planned beforehand, based on configuration
information of the Unit classes and the respective unit instances (corresponding to
physical process units). The Unit component class has, additionally, as one of its
attributes, an indication of which batch (and the respective control recipe) is using it or
has been using it last.

The selection of a given unit instance for allocation depends, therefore on three factors:

•  A service or capability, defined by the control recipe, based originally on the
chemical engineer’s knowledge of what kind of treatment is needed for a product
in a given production phase.

•  The paths available for producing a product based on the production or control
engineer’s knowledge of the various physical connections of the process units
needed to produce a specific end product.

•  The attributes of the Unit component class indicating the latest batch which has
used a given unit (the unit which will be a predecessor of the new unit to be
allocated), the allocation state and the operational state of the unit.



133

Because the above-mentioned pre-planning or reservation of paths and units is the
responsibility of the Production Planning and Scheduling control activity, the batch
process management framework does not give support to it, other than giving the operator
the possibility of modifying the paths. It is, however, recognised that when starting to
produce a critical batch, the execution of which must not be interrupted, it is important to
ascertain that feasible units and paths will be available in due time.

Thus the pre-planning and reservation issues are seen as important themes for research
and development when designing a framework for Production Planning and Scheduling.
The pre-planning and reservation functionality of Production Planning and Scheduling is
easily integrated with the dynamic unit allocation of the Process Management. The
former produces a set of feasible units and paths, which the latter can then choose from
during the execution of a batch.

6.2.3 Scenarios

The detailed class-object model of the framework has been complemented by some use
case based scenarios, or interaction diagrams, describing the behavioural aspects of the
system. Below, in Figure 6.3, is an example of a scenario capturing the normal behaviour
of the Execute control recipe use case.

Operator(interface) PROCESS
CELL

ControlRecipe ControlRecipePE UNIT
SUPERVISION

Execute()

AllocateResources()

Start()

AllocateUnit()

StartUnitRecipe()

DeallocateUnit()

Notify()

DeallocateResources()

Notify()

Notify()

Figure 6.3. Execute control recipe scenario (or interaction diagram).



134

The execution of a control recipe begins when all the starting conditions (the time-related
attributes of the control recipe) have been satisfied. First the control recipe requests the
allocation of common resources (recipe or product-related attributes, i.e. raw materials
and the like) from the process cell. Then the first control recipe procedural element
allocates a unit, which provides the required service from the process cell, and gets, as a
response, reference to an allocated unit instance. The execution of the control recipe
procedural elements takes place in parallel, if needed.

In the framework, a control recipe procedural element for mixing, for example, allocates
a unit which is capable of mixing. It may be a specific mixer, a reactor or some other kind
of mixing vessel. The process cell component, which is unique (a singleton) for a given
physical process cell, has knowledge of all its units and the services or capabilities they
provide. Units are considered to be autonomous components, which are capable of
executing their respective unit recipes, see Chapter 7.2 for details.

A control recipe procedural element is started by calling the respective unit recipe
reference (in Unit Supervision) with proper parameters. The parameters are the allocated
unit instance, which was received as a response from the process cell, and all the formula
values needed. After the execution of a given control recipe procedural element is
completed, its allocated unit will be deallocated in the process cell by the control recipe
procedural element. After the whole control recipe is completed, all the resources in its
use (product related attributes) will be de-allocated, as well.

Scenario techniques are descriptive for developing and refining use cases by presenting
single behaviours (or traces) of sets of components. However, they cannot as such
provide a complete dynamic representation of the whole system. As pointed out by
Krutchen, (Krutchen, 1995) concerning his scenario view, several of the scenarios can be
designed and utilised in later phases of development. Accordingly, scenarios have been
used as working documents in investigating system interactions when designing the
framework, especially the state-dependent behaviour of the components. The importance
of the scenarios is seen not so much as a part of the documentation but more in aiding the
development by helping to make other models complete and consistent.



135

6.3 Subsystems - architecture and structures

The development view of software architecture by (Kruchten, 1995), introduced in
Chapter 3.4, is analogous to traditional software module architecture, for example
functional decomposition and layering are included in the development view. There are,
however, some additional issues: requirements related to the ease and evolving nature of
the developed system, reuse and commonality as well as the constraints imposed by the
development environment. These may well be captured into the design using design
patterns.

From the framework point of view, the so-called architectural patterns, see Chapter 3.3,
are most important. The layered aspects are covered by the Layers pattern, the component
interconnection problems are assisted by the Broker pattern. The separation of user
interface and application logic is helped by a variation of the Model-View-Controller
pattern. Neither of these patterns will, however, suffice as such but they will have to be
adapted and their use restricted when developing the domain-specific framework.

In the design it is also important to consider the relationships between the patterns as
noted in the guidelines of Chapter 3.4. The pattern relationships, together with the
requirements definition, suggest the order of applying the patterns. It is reasonable to
begin with the pattern that addresses the most important design aspect and then proceed
with other design issues, one at a time, considering the pattern-relationship information
available. In this way a coherent architecture for the framework can be achieved. There
are more design options than in conventional development involving decomposition, but
at the same time the design issues are more difficult.

6.3.1 Layers pattern

The ISA-standard (ISA, 1995) based requirements definition gives a good reason to start
with the Layers – an architectural pattern for the batch control domain as a whole,
(Buschmann et al., 1996, p. 31 ... 51). A complete batch-control application is certainly
large enough to require decomposition. The functionality can naturally be partitioned into
layers on various functionality levels according to the control activity grouping of the
standard, see Figure 2.4 in Chapter 2.2.

Additionally, the importance of interface stability - one of the design issues of the Layers
pattern - is very important in batch control. Several teams can be independently



136

developing partial frameworks for the whole batch control system of a company. These
teams may belong to various vendor organisations, and they may work at different times.

On the other hand, the component framework boundaries with parameter-marshalling
techniques may decrease the performance of the system if large amounts of data must be
transferred over several boundaries. This tends to decrease the optimal degree of
decomposition and thus increase the size of individual components and frameworks. The
granularity of the control activities and control functions of the ISA-standard is here
considered an appropriate solution also for framework implementation. This design
decision is due to the standard-compliant cohesive functionality, to small enough
development tasks and to large enough interfacing entities.

According to a pure Layers – based architectural solution, the application is decomposed
into groups of sub-tasks in which each group is on a particular level of abstraction. Most
of the services provided by an upper level layer (n) are composed of services provided by
a lower level layer (n-1). Additionally, some of the layer n services may depend on other
services in layer n. Thus the layer n provides services used by the upper layer n+1 and
delegates sub-tasks to the lower layer (n-1). Perhaps the best examples of utilising pure
layered architectures can be found in telecommunications.

In batch process control, the Layers - architecture can be applied to the overall
hierarchical control activity decomposition. The interfaces between the subsystems are
reasonably well defined in the standard and the services are mainly requested from above
and provided from below. For example, the tasks of the Process Management control
activity request mainly the services of Unit Supervision. Also the amount of data
transferred between the control activities can be kept small if this design issue is
considered when defining the individual interfaces. The details of interfaces regarding the
contents of the messages (or parameters of method invocations) are naturally not
specified in the batch standard.

More specifically, the information contents of the interfaces between the Process
Management control activity and Recipe Management, Production Planning and
Scheduling as well as Production Information Management on the upper layer and Unit
Supervision on the lower layer, respectively, are described in Figure 6.4. The dashed line
in Figure 6.4 includes the control functions Manage Batches and Manage Process Cell
Resources, which belong to the framework, as well as their respective interfaces.



137

Manage
Batches

Manage
Process Cell
Resources

Collect Batch
  and Process Cell

Information

Recipe
 Management

Production
Planning and
Scheduling

Production
Information

Management

Unit
Supervision

Master Recipe

Batch and
Resource
Information

Process Cell
Information

Batch Information

Unit Recipes,
Commands, and
Batch and Status
Information

Commands and
Status Information

Batch
Scheduling
Information

Batch Progress
and Proces Cell
Status Information

Batch and
Process Cell
Information

Figure 6.4. Process Management (modified from ISA, 1995).

The main tasks of the Process Management are to manage batches and to manage process
cell resources. Based on master recipes, the required control recipes are created. They are
executed using process cell equipment according to the batch schedule supplied by
Production Planning and Scheduling, on a higher layer. Unit Supervision, on the lower
layer, is the control activity that connects the control recipe to the equipment control. The
Unit Supervision executes unit level recipe procedures invoked by the Manage Batches
by initiating and parametrizing equipment procedures of devices. It also receives
allocation and de-allocation commands from the Manage Process Cell Resources and,
additionally, sends respective status information to these control activities.

There is a need for horizontal requests, too. For example, in Figure 6.4, there is a bi-
directional interface between the control functions Manage Batches and Manage Process
Cell Resources as well as unidirectional interfaces from them to Collect Batch and
Process Cell Information. More importantly, however, the layered architecture scheme as
such is far too general to be applied as a sole basis for architectural design and
implementation. Other related patterns are needed.



138

6.3.2 Broker pattern

By distributing the batch-process-control functionality both horizontally inside and
between the layered control activities, a flexible, maintainable and changeable framework
can be achieved. The Broker pattern (Buschmann et al., 1996, p. 99 ... 122) is,
accordingly, used within the batch process management framework to structure the
system into uncoupled software components that interoperate by remote service calls.
There are important design issues or forces in the batch control domain which are
balanced by using the broker pattern:

•  The software components within various control activities must be able to access
services provided by others through remote, location-transparent service
invocations.

•  It should be possible to modify, add and remove (even at runtime) components
developed by various control-software vendors.

•  The implementation-platform and language-specific details, especially
concerning distributed communication protocols, should be hidden from batch
control developers, i.e. the users of the components.

The broker itself is responsible for co-ordinating communication between the objects and
components in clients and servers of the system, which are seen in this context primarily
as logical roles of software component groups, and only secondarily as structural entities.
The servers make the services (provided by their software components) available to
clients through component interfaces. The clients access the functionality of the servers
by sending requests via the broker. Thus the same software process can act both as a
client and a server.

The decisions having effect on the sequence of the process stages and operations are
made both in the context of control recipe management in Manage Batches and
equipment management in Manage Process Cell Resources. This division to batch-control
functions gives rise to the primary distribution of the Process Management functionality.
The interdependency of the two control functions is, however, tight, which can be seen in
the many interdependencies between single components in these control functions.

The user interfaces for the control functions, Manage Batches and Manage Process Cell
Resources, should convey to the user a clear distinction between, on the one hand,
product and recipe-related issues, and on the other hand, resource and equipment-related



139

issues. The client processes designed to implement user-interface functionality for these
control activities should thus be separate from each other. These views of the process
should also be easily integrated and customised according to the tasks of operators. Due
to the need for functional distribution, the user interfaces should be independent of the
respective server processes, which contain the application logic. The resulting general
architecture of the framework is presented in Figure 1.1 of Chapter 1.4.

The above-mentioned client and server processes can be situated on various
computational nodes of a local network or intranet. The control recipe server and the path
server processes act as servers in relation to their respective user interface clients. They
are simultaneously clients for the unit server and additionally, the control recipe server
acts as a client for the path server, see Figure 1.1. The architectural style of the
application is thus so-called multi-tier architecture.

Each server process contains several domain components and other objects. The servers
also include a mechanism (a class-object factory) for instantiating components from their
classes according to requests from the clients. The class-object factory of the framework
implements an Abstract Factory design pattern, see Chapter 3.3, which is, in this context,
an associated design pattern used by the main Broker pattern. The framework
components, which are distributed according to the Broker pattern, are described in
Chapter 6.2. The detailed design of their distribution among the clients and the servers is
presented in Chapter 6.5.

The Broker’s tasks in co-ordinating communication include locating an appropriate
server for a requesting client, forwarding the request of the client’s object to the server’s
software component and transmitting results back to the appropriate client. It also allows
change, addition, deletion and relocation of software components. Software component
interfaces are made available to service users through an interface definition language
(IDL).

The Broker also offers application-programming interfaces to clients and servers. They
include operations for registering servers and components on various computing nodes of
the network. Also other services, for example name services and object persistence
services, may be integrated into the Broker. There are several candidates for Brokers,
both commercial products and research prototypes; notably the ones provided by the
CORBA (Common Object Request Broker Architecture; OMG, 1995) and DCOM
(Distributed Component Object Model; Microsoft, 1995) component models. The
platform of the framework of this thesis is DCOM, due to its good tool support and its



140

significance in industrial automation, especially through OPC standardisation (OPC,
1998).

6.3.3 Model -View-Controller pattern

In Manage Batches as well as in Process Cell Management it is evident in the basis of the
functional distribution needs that the user-interface (client) part of the system should be
separate from the logic functionality (server). It was also important to design the
implementation of the user interface to be easily changeable, separately from the more
permanent application logic. Both the Windows desktop and Internet browsers are
considered important as user-interface platforms in the batch-control domain.

This has lead to the application of a variation of the well-known Model-Controller-View
pattern (Buschmann et al., 1996, p. 125 ... 143). From the domain point of view the
important design issues or forces to be balanced by the pattern are:

•  The display of process events and responses of the application logic must reflect
the user’s control commands immediately. This is traditionally well achieved with
proprietary distributed control systems and is thus expected by the users of the
batch process management system.

•  The changes in the user interface should be easy, and possible to make at runtime.
The inherently high requirements for control system availability must not,
however, be endangered by changes in the user interfaces.

Supporting different ‘look-and-feel’ standards should not affect the application logic.
Continuing increases in the level of batch automation also increase the need to make user
interfaces similar in all information systems of a plant, since they are used by the same
operators. This often makes it necessary for new systems to be adapted to company
standards, or various other existing ‘look-and-feels’.

In the Model-View-Controller pattern, the model component encapsulates core data and
functionality, being independent of input and output. The view components display
information to the user after obtaining the data from the model. There may be multiple
views corresponding to one model. Each view has an associated controller component,
which receives user input from user-interface devices (normally mouse, buttons and
keyboard) as events. If the user changes the model, via the controller of one view, all the
other views dependent on the same data, should reflect the changes.



141

What makes the design of the framework different from the Model-View-Controller
pattern is the fact that the responsibilities of the view and controller have been combined
and thus the design incorporates a variation of the original Model-View-Controller, the
so-called Document-View pattern (Kruglinski, 1996, p. 332). The document component
corresponds to the original model, and the view includes both the original view and the
controller.

From the user interface point of view control recipes and control recipe procedural
elements in Manage Batches and paths and units in Process Cell Management are
examples of documents. The former are located in a control recipe server process, the
latter in a path server process. The main views of a control recipe client are the control
recipe view, representing all the control recipes manipulated by a given user and the batch
view, representing all the control recipe procedural elements of a given running control
recipe. In a path client process the main view is the path view which represents all the
paths created or modified by a given user.

The separation of user-interface objects from application-logic components is further
emphasised by the fact that clients and servers can be distributed to different
computational nodes and, whether local or remote, they communicate via component
interfaces. According to the functional distribution requirements of Chapter 1, the clients
have also been designed to be thin, having only the functionality needed by a given user,
but at the same time self-sufficient and independent of other clients.

Thus a given Manage Batches user has in his/her control recipe view a list of the most
important information on the control recipes that the user is manipulating. This
information makes it possible for him/her to modify and execute the actual control recipes
in the control recipe server at will. In a similar manner, a given Process Cell Management
user has in his/her path view a list of the path names that the user has created and/or
modified.

The user interface of the batch process management framework has been implemented in
the Windows NT environment, using the Microsoft Foundation Classes class library. The
thin client functionality above could, however, have also been implemented with web
browser technology, for example along the lines of a simulator user interface, presented
in (Karhela et al., 1998).



142

6.4 Dynamics - behaviour and interoperation

Behavioural design patterns have been used when classifying the batch-process
management components of Chapter 6.2 into groups according to their roles in the
framework. The patterns have also been used to design their behaviour and
interoperations, and to incorporate some new object classes to fulfil the behavioural
requirements. The most important patterns that have been needed are State pattern,
Observer and Mediator.

6.4.1 State pattern

Within the batch process management framework it is advantageous to define the
behaviour of the system in various states (specifying the current condition) and the modes
(of operation) of its components and to consider their behaviour both in normal operation
and in various kinds of exceptional situations. Both procedural elements and equipment
entities have states and modes. A control recipe procedural element, for example, can be
in 12 distinct states (idle, running, complete, pausing, paused, holding, held, restarting,
stopping, stopped, aborting, aborted) at any given instance of time (ISA, 1995, p. 59).
Likewise, it may have three modes (automatic, semi-automatic and manual).8

When considering the execution requirements of the control recipe procedural elements
the decision to use the state pattern (Gamma et al., 1995, p. 305 ... 313) was made.
Design issues or forces important to batch control, balanced by the state pattern are:

•  The behaviour of a control recipe procedural element depends on its state, and it
must be able to change its behaviour at run-time depending on that state.

•  Operations performed by the control recipe procedural element would have large,
multipart conditional statements that depend on the object’s state, if the state
pattern were not used.

The state pattern allows an object to alter its behaviour when its internal state changes. By
switching the state object associated with the control recipe procedural element

                                                     

8 In the semi-automatic mode, the procedure requires manual approval to proceed after the
transition conditions are fulfilled.



143

(ControlRecipePE) component, the behaviour of the component can be modified. The
important subset of the ISA-standard states in this context are: idle, running, paused, held
and complete, Figure 6.5. While the behaviour of a control recipe procedural element
changes according to its state, its interface, used by its clients, remains the same, defined
by the component class ControlRecipePE.

ControlRecipePEState ControlRecipePE

IdleControlRecipePE PausedControlRecipePE CompleteControlRecipePE

RunningControlRecipePE HeldControlRecipePE

*

Figure 6.5. Control recipe procedural element State.

The implementation of control recipe procedural elements by state-dependent object
classes, Figure 6.5, also makes the modifications (for example adding new states) in the
software easy. For example, in the framework the need of the state ‘held’ was not
considered necessary at the beginning. When it became necessary (as a combination of
ISA-states held and stopped), its inclusion was straightforward; the code in the other
classes remained intact. It is probable that additional states will also be needed in further
development. However, which of the remaining 7(6) states of the ISA-standard (pausing,
holding, restarting, stopping, (stopped), aborting, aborted) shall be added, depends on the
needs of the new features to be developed.

In connection with the state pattern, it was also fairly straightforward to fulfil the obvious
(batch) control domain need that a given control recipe procedural element should be at
every instance of time in one and only one state. Each ControlRecipePE component
maintains as a member variable a reference to an instance of the concrete state subclass
that defines its current state. The state pattern as such does not, however, specify the class
of an object that initiates the state transitions.

In the batch process management framework, transitions can be initiated both by a
ControlRecipePE component and concrete state subclass objects. The former is needed,
for example, in failure situations or when the user wants to control the operation of



144

ControlRecipePEs manually or semi-automatically. The latter is mostly needed in normal
automatic operational state transitions, for example from ‘idle’ to ‘running’ and from
‘running’ to ‘complete’.

The degree of decentralisation in the transition logic decisions is thus mostly a matter of
domain-specific requirements. In general, however, a high degree of decentralisation
increases the expandability of the system by making it easy to incorporate new concrete
state subclasses. Since these classes have to know their successor relationships it,
however, also incorporates unwanted dependencies between the subclasses.

The inclusion of the state pattern in the design of the framework is, unfortunately, not
free. Compared to a more conventional approach, an additional abstract class,
(ControlRecipePEState) has to be implemented and its concrete subclasses constructed.
The proper method delegation between these new classes must also be taken care of. This
increases the complexity of the design and decreases somewhat its clarity.

In Manage Batches the benefits achievable with the state pattern were considered greater
than the liabilities for the highly state-dependent control recipe procedural elements, but
not for the control recipes having more state-independent functionality. In Manage
Process Cell Resources the state pattern is not needed, since the allocation states of the
units are few, ‘allocated’ and ‘free’. Moreover, the respective functionality, as well as
operational state and mode-dependent functionality, is well managed without the use of
the state pattern.

6.4.2 Observer pattern

In order to be able to propagate the information on the changes of states and modes of the
batch-control components to other objects, an Observer pattern, (Gamma et al., 1995 p.
293 ... 303), was found suitable. The Observer pattern defines a one to many (subject to
observers) dependency between objects so that when one object (the subject) changes
state, all its dependants (the observers) are notified. The subject knows its observers. Any
number of observers can observe a subject. The subject also provides an interface for
attaching and detaching observer objects.

The most important design issues or forces to be balanced by the observer pattern in the
batch control domain are:



145

•  A subject should be able to notify other objects without making assumptions
about what these objects are. The control recipes and control recipe procedural
elements in Manage Batches as well as the units in Manage Process Cell
Resources should be able to notify other objects.

•  All the observers should be notified whenever the subject undergoes a specified
change in state or mode. In batch control the number of possible state and mode
changes of the subjects on the one hand, and the number of potential observers
per subject on the other is large. Thus it is important to restrict the changes to be
notified in order to avoid exploding the communication.

In Manage Batches, the control recipe server’s ControlRecipe acts as a subject and the
control recipe client’s ControlRecipeView as an observer. More importantly, the
ControlRecipePE also acts as a subject, and the server’s BatchMediator, as well as the
client’s user interface object BatchView act as observers, Figure 6.6.

Subject

ControlRecipe

ControlRecipePE

Observer

ControlRecipeView

BatchMediator

BatchView

**

*

*

*

Figure 6.6. Control recipe observer.

According to the Figure 6.6 above, one ControlRecipeView observes all the
ControlRecipes created and run by a given user during a given session and one
BatchView as well as one BatchMediator observe all the ControlRecipePEs belonging to
an active batch.

When using the observer pattern, a push model (with suitable parameters) is applied when
the ControlRecipe and the ControlRecipePE notify their observers, respectively. This
means that the subject sends the observers all the needed information about the state or
mode change. This way the communication overhead is minimised in comparison to the
alternative pull model, according to which the subject would only send minimal



146

notification and the observers would ask for details with separate requests. The push
model assumes that the subjects know something about the needs of their observers,
which is reasonable in the batch-control domain and further clarified when discussing the
application of the mediator pattern.

The observer pattern presumes that ‘the subject broadcasts its notifications to all
interested objects that subscribe to it’. Thus there has to be a mechanism for a subject to
keep track of the observers it should notify. The simplest solution for this, explained in
(Gamma et al., 1995, p. 293 ... 303) would be to store references to observers explicitly in
the subject. In the batch process management framework, however, a more versatile
mechanism, the so-called Connection points, was chosen. It is specified in the DCOM
standard interfaces (Distributed Component Model; Microsoft, 1995, Chapter 9 p. 1 …
10), but could also be implemented when using the CORBA object model.

In the Connection point mechanism the subject has an enumerated set of connection point
objects, one connection point for each observer of the subject. The observer uses the
connection-point interfaces (amongst other requests) to subscribe to the subject. When
subscribing, it also tells the subject the identification of an object that is to get the
notifications from the subject (a so-called sink object, not necessarily the observer itself).
The connection points within the subjects and the sinks within the observers thus provide
additional flexibility in the implementation of the observer pattern.

In the Batch process management architectural framework, the concern of connectedness
has, additionally, been separated from the domain functionality by providing a class of its
own for connection related issues other than the connection points themselves (which
belong to their own class). From this class, the domain object classes acting as subjects
(here ControlRecipe and ControlRecipePE) inherit the functionality needed for the
connections to their respective observers (here ControlRecipeView, BatchView and
BatchMediator).

What is more complicated is the fact that the state changes of the control recipes and
control recipe procedural elements take place - seen from the point of view of the client
objects - in an arbitrary order. Thus, for example, the BatchMediator and the
BatchMediatorView must be able to accept notifications at any time from any
ControlRecipePE of a given batch. This implies the utilisation of a proper message-
queuing practice by the observers, discussed in Chapter 6.5.

The observer pattern could also be used for notifications from one ControlRecipePE to
other ControlRecipePEs belonging to a given batch, in order to synchronise the execution



147

of the ControlRecipe as a whole. The use of the observer pattern for this kind of
synchronisation would, however, give rise to a substantial number of observer-subject
pairs and respective notifications per batch.

6.4.3 Mediator pattern

The above-mentioned potential use of the observer pattern alone was, however, discarded
and a related Mediator pattern (see Figure 3.4 in Chapter 3.3) was considered to be more
appropriate. A suggestion of this design decision is seen in the Observer pattern of Figure
6.5 where one of the observers is named BatchMediator. The Mediator pattern, (Gamma
et al., 1995, p. 297 ... 282), defines in general an object that encapsulates how a set of
other, collaborating objects interact. The mediator promotes loose coupling by keeping
the objects from referring to each other explicitly. The interacting objects have
knowledge only of the mediator, not of each other.

An abstract mediator defines an interface for communication with so-called colleague
objects. A concrete mediator implements the co-operative behaviour by co-ordinating the
colleague objects, and knows and maintains information about them. Each colleague
knows its mediator and communicates with it, instead of communicating directly with
other colleagues.

The most important design issues or forces to be balanced by the mediator pattern in the
batch-control domain are:

•  A set of components communicate in complex ways so that the resulting
interdependencies are difficult to understand. In Manage Batches the most
important interdependency is the predecessor - successor - relation between the
(execution of) individual control recipe procedural elements.

•  A behaviour that is distributed between several classes should be customizable
without a lot of changes. Specifically, in a domain-specific component framework
like the batch process management framework, it is important to minimize the
number of changes in domain components. By using the Mediator as an
interoperation centrepoint, it is possible to change the behaviour of the
interoperation by changing only the Mediator, leaving the batch-domain
components as they are. The batch components can then be reused without
interoperational concerns by the application developer, who uses the framework
according to application-specific needs.



148

•  There is a need to simplify the protocols and to abstract how components and
objects co-operate. In an architecture with a lot of interoperations, it is generally a
good idea to replace many-to-many interactions with one-to-many interactions
between the Mediator and the domain objects.

The BatchMediators mediate between the components (ControlRecipePEs) needed in a
given batch, Figure 6.7.

ControlRecipe BatchColleague

BatchMediator ControlRecipePE
*

Figure 6.7. Batch Mediator.

The BatchMediator is implemented partly as an Observer in relation to ControlRecipePEs
as described earlier in the text and in Figure 6.6. It gets the completion notifications from
the ControlRecipePEs in the role of an Observer and then synchronises their execution in
a more complex role of a Mediator.

In the framework, the BatchMediator co-ordinates the execution of the ControlRecipePEs
of a given batch using preconditions. The parallel/sequential execution requirements are
internally represented by preconditions imposed upon all individual procedural elements.
The values for preconditions are given, when a ControlRecipe is originally instantiated
from a Master recipe or a ControlRecipe, or when its procedural elements are modified.

The preconditions indicate which other ControlRecipePEs have to be completed in order
to start a given procedural element. This approach provides good opportunities for
specialisation (Mayer, 1997) and it is thus a suitable implementation basis for a more
advanced mediation, as well. The new proposal for recipe representation (ISA, 1999a, pp.
120 … 140) indicates that the synchronization interdependencies within recipe procedural
elements, executing in parallel, are to be taken into account in implementation. This
makes the future tasks of a BatchMediator more challenging, but clearly better
manageable than would be the case without the use of a Mediator pattern.

It is argued here that it is also true in general that the way in which objects or software
components use their interfaces when interoperating is a highly domain-specific issue. It
is fundamental to the domain-specific frameworks, described here for the batch process



149

management domain. The object classes participating in interoperation make so-called bi-
directional contracts (Box, 1998, pp. 356 … 369), the contents of which reveal a lot of the
specified domain functionality. The domain-specific deployment of both the Observer
pattern and the Mediator pattern described above, are examples of this.

6.5 Distribution - distributed components and multithreading

The requirements for the distribution of functionality in the batch-control context were
stated generally in Chapter 1 and the domain-specific architectural aspects in designing
distribution were covered in Chapter 2. It is also important to consider the necessary
interfaces (based on component interoperations) through which the domain components
provide their services. The semantics of the application domain - batch process
management - has a substantial effect on this. Additionally, it is important to consider the
distribution of the components in the processes, and the threads within the processes.
Also in these design decisions the application domain requirements have an important
role.

6.5.1 Proxy pattern

Interfaces are of primary importance when developing software components and
frameworks based on components. Interfaces define the way (methods with input and
output parameters) in which the components residing in the servers are accessible for the
clients. CORBA and DCOM have their own Interface Definition Languages (IDL), to be
used when defining the interfaces of components. From the interface definitions, proxies
and stubs are automatically generated. They are representatives of server components in a
client’s address space and client objects in a server’s address space, respectively, see
Chapter 3.2.

Proxies and stubs are implementations of the Proxy pattern (Gamma et al., 1995, p. 207
... 217; Buschmann et al., 1996, p. 263 ... 276). However, since they are generated
automatically by CORBA and DCOM IDL-compilers, their application does not involve
any design decisions per se. Thus the emphasis here is on describing the interfaces from
which the proxies and the stubs are generated. The generic standard interfaces of the
component model define common functionality for various purposes, for example for file



150

system, for compound documents, and for user-interface controls. These interfaces are
inherited as such in the batch process management framework.

In designing the framework, the DCOM-dependent standard interfaces have been utilised
sparingly, in such a manner that compatibility with the CORBA object model has been
preserved as much as possible. Thus many special OLE-dependent interfaces (OLE,
1995; Brockschmidt, 1995) have not been used but the architectural framework has been
designed and implemented with the basic DCOM-interfaces. A notable exception in this
respect is, however, the utilisation of Connection point interfaces, which is described and
justified in connection with the Observer pattern.

From the batch-control point of view, the custom interfaces are more important than the
standard interfaces. They define the batch-centric services provided by the components,
which represent the semantics of the developed domain-specific framework. They also
require more definition and implementation effort than the standard interfaces because
there are no interface classes from which they can be derived from.

In the architecture of the batch process management framework of this thesis, the custom
interfaces are divided into static and dynamic interfaces. The former take care of
persistence (saving and loading) of the software components and modification of the state
variables of the components as static entities. The latter influence the execution of the
components as dynamic, active objects. The serialisation services provided by the
Microsoft Foundation Classes class library are considered here a proper implementation
technique for persistence, due to the similarity of the approach to that of another
component model, Enterprise JavaBeans. The dynamic aspects are described in
connection with the Active Object pattern below.

Interfaces form elementary contracts between a client and the components of a server. A
client, for instance, queries the interfaces for its particular use from the components, and
it is also possible for a client to find out runtime type information on the interfaces and
behave accordingly. The interfaces, defined with the help of an interface language, are
also a good basis for designing more complex interactions when developing multi-agent
properties for the framework, see Chapter 7.3.

The distribution of the domain components within the client and server processes is
summarised in a tabular form. Table 6.1 presents the most important domain objects and
components contained in the clients and servers of Manage Batches and Manage Process
Cell Resources. Also the client and server roles played by the software processes are
indicated.



151

Table 6.1. Client and server processes and domain object classes.

Control function Software
process

Client/Server-role
of the process

Domain object/component
within the process

Manage Batches

CRServer S + C ControlRecipe

ControlRecipePE

CRClient C ControlRecipeView

BatchView

Manage Process Cell
Resources

PathServer S + C ProcessCell

Path

Unit

PathClient C PathView

As described previously, client and server processes can be distributed anywhere on the
local net, or (with security related restrictions) on intranet. The domain components, as
well as other objects needed in implementation, are contained within servers, which thus
act as component containers. The server processes also act as clients for a lower level, the
Unit Supervision functionality, as indicated in Table 6.1.

While implementing the framework (most importantly the domain objects) as software
components having well defined interfaces, it would also have been possible to distribute
functionality physically even further. For example, control recipes might reside on a
different computational node to their respective control recipe procedural elements. That
would, however, increase the communication overhead without bringing any obvious
benefits. As an option, the possibility of distributing further is, however, important. It is



152

needed for example if/when the PathServer process is distributed near the physically
distributed process equipment.

The design decision of client and server processes containing several domain-specific
components brings about the need to utilise multi-threading within processes, since there
is a requirement for parallel activity. For example, the control recipe procedural elements
that belong to the same control recipe have to be able to run in parallel. In the design of
multi-threading implementation, a variation of the Active Object pattern, presented next,
was utilised.

6.5.2 Active Object pattern

The Active Object pattern (Lavender & Schmidt, 1996) uncouples method execution from
method invocation in order to simplify synchronised access to a shared resource by
methods, invoked in different threads of control. A variation of the Active Object pattern,
making the execution of control recipe procedural elements (ControlRecipePE)
independent of each other, is used in the batch process management framework. Control
recipe procedural elements are active objects, which are invoked by the control recipe and
synchronised by the batch mediator, but which execute in threads of their own.

The most important design issues or forces to be balanced by the active object pattern in
the batch process management domain are:

•  It simplifies concurrent programming. The message queue used by a given
ControlRecipePE takes care of the messages coming to the ControlRecipePE in
its various states. The messages can request the services of the ControlRecipePE
from the user interface CRClient, from Process Cell Management, and from Unit
Supervision subsystems. They will all be handled in order and without losing
any.

•  It takes advantage of parallelism. As noted before, both the sequential and the
parallel execution of ControlRecipePEs is a batch control domain requirement
implied by the needs of procedural control of the standard (ISA, 1995).
Additionally, it is important that the responses to the user are prompt enough.

Although ControlRecipe procedural elements are invoked by the control recipe, they get a
permit to execute from the BatchMediator. After being allowed to run, a
ControlRecipePE allocates a process unit, executes the respective unit recipe, and de-



153

allocates the unit. This is performed in its own thread, separately from the main thread of
the server process. After finishing, the ControlRecipePE notifies the BatchMediator,
which keeps track of the completeness status of all ControlRecipePEs of a given batch.
The BatchMediator is thus capable of allowing the execution of the ControlRecipePEs
according to the preconditions discussed in the previous section.

When comparing the variation of the batch process management framework to the
original Active Object pattern (Lavender & Schmidt, 1996), the following
correspondences can be noted. The custom interfaces of the ControlRecipePEs (used, for
example by the ControlRecipe in invocation) correspond to the Client Interface proxy, the
ControlRecipePE’s attributes represent the Resource Representation, and the state-wise
methods represent the Method Objects. A class that utilises the DCOM Apartment
threading model (CRPEApartment), corresponds to the Activation Queue and Scheduler
in the original pattern. The interface pointer of a ControlRecipePE, which is returned to
the caller when invoking a method of the ControlRecipePE component, represents the
Result Handle of the (Lavender & Schmidt, 1996) - pattern.

The apartment object class (CRPEApartment) takes care of message queuing and
initialisation of the COM library at the beginning of the thread execution. It also
uninitializes the COM library at the end of the execution, as well as providing
information about the state of the thread during the execution. All this is needed, since
applying multi-threading in DCOM with the apartment threading model means that the
software components residing in various threads have to be queried and message
parameters marshalled as if they were in another process (or equivalently, in another
computational node; Rogerson, 1997, p. 320 … 324).

Separating the concern of threading functionality from the concern of domain
functionality within a threading class helps to keep the domain objects (here the
ControlRecipePE and its state-dependent subclasses) comprehensible. The use of the
DCOM apartment-threading model in the implementation simplifies the synchronisation.
However, at least if deploying this Active Object pattern variation in time-critical
applications, it may be beneficial to make the message-queuing priority based, instead of
FIFO based as it is by default.



154

6.5.3 Deployment

The distribution of the batch process management framework functionality into control-
function based subsystems, client and server processes and several threads within the
processes, gives rise to many interactions between the distributed software components.
The required complex interactions are, however, comprehensible to the application
developer through the use of the Observer and Mediator design patterns. The same
applies to general architectural issues through the use of Layers, Broker, and Model-
View-Controller patterns and to the internal issues of the components through the use of
State, Proxy and Active Object patterns.

Since the batch process management framework has been designed as a calling
framework, see Chapter 3.4, the application developer does not have to worry about the
architectural aspects, the interoperations, the state behaviour or the threading behaviour of
the components, which are all encapsulated within the framework. He/she perceives the
framework as a set of interconnected components, which he/she can parametrize and
reuse when developing the custom application.

 Control recipe procedural element (ControlRecipePE) components, which are logically
aggregated by a control recipe component, are concurrently executing domain
components in Manage Batches, Figure 6.8. They execute in threads (depicted with
curved lines) of their own.

Control
Recipe

Control
RecipePE1

Control
RecipePE2

Control
RecipePEn

 
 Figure 6.8. ControlRecipePEs within a ControlRecipe.

Within the path server in Manage Process Cell Resources control activity, unit
components are logically aggregated by a process cell component in a similar manner as
ControlRecipePE components by a ControlRecipe component above.



155

In Table 6.2, there is a list of all the message types of the messages sent between the
client and the server processes. This list also indicates the custom interfaces, which have
been defined in the framework for the respective software components. The fact that a
given client component uses (or imports) a respective server component interface can be
notationally described with a so-called dependency relationship from the using
component to the interface (Booch et al., 1999, p. 348).  A component can be used in a
context if and only if all its import interfaces are provided by the interfaces (in this
context also called export interfaces) of other components.

Table 6.2. Messages between framework clients and servers.

Direction of the messages Message contents

CRClient -> CRServer Requests for creating, modifying and running
ControlRecipes and ControlRecipePEs

CRServer -> CRClient Responses and notifications of the state of ControlRecipes
and ControlRecipePEs

CRServer ->PathServer Requests for allocation and deallocation of Units for batch
production with ControlRecipes

PathServer -> CRServer Responses to the allocation/deallocation requests

PathClient -> PathServer Requests for displaying and coordinating Paths and Units
of the Process  Cell

PathServer -> PathClient Responses to the display and coordination requests

PathServer -> Unit Supervision Process unit allocations

Unit Supervision -> PathServer Responses to process unit allocations

CRServer -> Unit Supervision unit recipe invocations

Unit Supervision -> CRServer Responses to unit recipe invocations

In the application development, the developer has to (re)define only the few application-
specific custom interfaces that are needed in addition to the interfaces of the messages in
Table 6.2, or as their replacements. The new interfaces, potentially defined by the
application developer, can be inserted into the framework components in a plug-in
manner, described in Chapter 7.2.



156

Since the batch process management framework is based on a distributed component
model, the messages between components are defined in terms of the interface definition
language of the component model. The interface definition language is a solution
provider for low level communication issues. The developer of an application does not
need to bother about the communication protocol issues.

On the other hand, the interface definition language is in general a constraint for the
implementation of higher level co-operation and interaction techniques. However, also
agent interactions, based on communicative acts, discussed in Chapter 4.3, can be
embedded within the component interfaces. This is possible by using the Agentified
Component design pattern presented in Chapter 7.3.



157

7. The Reuse and Enhancement of the
Framework

7.1 Introduction

This chapter presents the use and reuse of the batch process management framework in
applications. The framework is a so-called calling framework. The application developer
considers it as a set of interconnected, domain-specific components, which can be
inherited and/or parametrized. According to the inversion of control principle, the
structure of the framework, presented in Chapter 6.3, as well as the dynamic and
distribution properties, presented in Chapters 6.4 and 6.5, stay the same in all
applications. They are thus considered to be the stable, non-variable domain-specific
characteristics (or frozen spots, see Chapter 3.4) of the framework.

 There are also changing parts (or hot spots). They have been designed to be replaceable
for each appropriate component type. The framework is thus customised for a specific
application by:

•  Reusing the framework architecture and characteristic properties as such.

•  Reusing the domain-specific components by plugging in type-specific interfaces
and implementing the respective functionality.

•  Giving parameter values via a user interface.

 The plug-in reuse is possible because the framework is composed of software
components, reusable in binary form. The plug-in reuse is utilised by deploying the
COM–reuse techniques, containment and aggregation (not to be mixed with containment
and aggregation in object class modelling).

 This kind of reuse of the domain components has not been provided by the commercial
systems in which various types of modules are considered as independent entities, having
no common super-class. Details on how to exploit reusability are presented in Chapter
7.2. A unit recipe for mixing, MixingPE, which contains a more general procedural
element, ControlRecipePE component, is used as an example.



158

 Chapter 7.2 also presents how the framework has been interfaced to a Unit Supervision
subsystem and to a commercial Digital Control System (DCS) by reusable components.
These, so-called batch automation components consist of both Unit Supervision and DCS
functionality. The DCS implements equipment procedures that can control the actuators
of the process unit and collect measurement information from it. For the Unit
Supervision, a unit recipe invocation interface and the respective functionality have been
designed and implemented.

A method of an interface (IMixer, for example) is invoked to start the execution of the
unit recipe within the process unit. The Unit Supervision part of a batch automation
component contains the functionality that is needed to communicate with the DCS.
Integration with the DCS has been developed using OLE for Process Control (OPC,
1998) interfaces. A process unit, Mixer, is used as an example in Chapter 7.2.

The enhancement of the framework by agentifying, presented in Chapter 7.3, is based on
multi-agency, discussed in Chapter 4. Multi-agency is embedded into the batch process
management framework so that the framework is reused as such. In this sense the
enhancement of the framework is also an example of its reuse. Multi-agent technology is
demonstrated as an enabling technology for bringing in local intelligence to those
problem-specific parts of a framework having a genuine need for it.

The dynamic process unit allocation is an important batch domain-specific problem,
which benefits from multi-agency. The problem is analysed in the first section of Chapter
7.3. A design pattern, the Agentified Component, for agentifying software components
and component frameworks, is developed and presented in the second section using the
design pattern presentation scheme, introduced in Chapter 3.3. The pattern is applied to
solve the unit allocation problem and the results are compared with the non-agentified,
algorithmic solution of the basic framework, in the final section of the Chapter 7.3.

The generic design problem of embedding multi-agency within a component framework
was solved by developing a specialised pattern, there being no suitable pattern available.
This is seen as an indication of the strength of the proposed approach of using generic
design patterns for developing domain-specific frameworks. Using insights gained by
pattern reading and deploying, it is possible to apply them to pattern designing and
writing and to develop generic (usable in other application domains) design patterns. The
Agentified Component design pattern of this thesis has been accepted for EuroPLoP ‘99
Pattern Writing Workshop.



159

7.2 Use and reuse

7.2.1 Customising the framework components

The methods of the domain-specific components of the framework, e.g. those of the
control recipe procedural elements (ControlRecipePE), are accessed by two types of
interfaces, a static interface (IControlRecipePE) and a dynamic interface (IStep). The
methods of these interfaces, described in Chapter 6, are used as such in each application.
However, a customised, type-specific component must provide an additional interface
with which the type-specific attributes of the component can, at least, be modified (set)
and retrieved (get).

 The contents of the generic batch-domain component, control recipe procedural element,
can be seen in Figure 6.2 of Chapter 6.2. All attributes other than the formula are the
same in all types of control recipe procedural elements, and the application developer can
parametrize them. The formula enables reuse of the control recipe procedural element by
being a hot spot, see Chapter 3.4, of the framework. It contains type-specific (different for
mixing, feeding, and storing, for example) input, processing and output parameters, as
described in Chapter 2.2. A type-specific component interface for the procedural element
is thus needed to modify these formula values.

 A type-specific (here mixing) interface has been added to a generic control recipe
procedural element in Figure 7.1, by using the technique of component containment
(Rogerson, 1997, pp. 160 … 169). Another technique for component inheritance within
the COM component model - component aggregation - could also have been used, but
containment was chosen, due to the greater flexibility in potential changes needed in the
application-specific use of the framework interfaces.

 



160

MixingPE

Outer component

Inner component

ControlRecipePE

IControlRecipePE

IStep

IMix

IUnknown

IUnknown

 Figure 7.1. Control recipe procedural element reuse.

 Logically the inner component, ControlRecipePE, is the more general one, having the
outer component, MixingPE, as its subclass. If the method invocations of the outer
component interfaces (IControlRecipePE and IStep) are simply delegated to the inner
component, the inner component is reused in a black-box manner without adaptation (see
Chapter 3.2).

 If adaptation is needed by adding a filtering code, for example (dashed lines in Figure
7.1), it is black-box adaptation. The outer component is modified, but it still does not
know anything about the implementation of the inner component, but reuses it as such.
The black-box adaptation would not be possible if aggregation had been chosen as the
component inheritance implementation technique. In aggregation, the interfaces of the
inner component are exposed to the user of the outer component as such.

 Until now, however, the customisation of the framework has succeeded with the black-
box reuse approach. Black-box adaptation, which, of course, increases the application
developer’s work, has not been needed. This is presumably due to the fact that the
component state-dependent functionality has been designed using the state pattern (see
Chapter 6.4), and the multithreading functionality using the active object pattern (see
Chapter 6.5). The use of these patterns has made it possible to encapsulate the respective
functionality so that it is sufficient for various application-specific components.

 It is, however, important that there is – via component containment – a possibility of
employing even black-box adaptation for unanticipated application-specific needs. This is
more important within component inheritance than it would be in object inheritance,



161

because the binary (inner) components are accessible through immutable interfaces only
(see Chapter 6.5). On the other hand, in comparison to object (implementation)
inheritance, the component inheritance has all the black-box benefits. The inner
components can be, for example, binary COTS (commercial-off-the-shelf) components.

From the batch domain-specific point of view, it is important, that the inevitably type-
specific part of the customised component, the formula, is enclosed within the outer
component of Figure 7.1. When using a more traditional approach, the parameter
information would be stored in a centralised database. In this approach, the parameter
information, which is encapsulated within the outer component, has an application-
specific interface of its own (IMix in the Figure 7.1). This design localises the changes
needed when modifying unit recipes and also makes integration with various user
interfaces and other component based systems easier.

In general, the type-specific interfaces include all the methods needed by a specific
component type which are not provided by the generic interfaces (for example,
IControlRecipePE and IStep) of the framework. Nothing but a minor loss of
comprehensibility, brought about by deeper containment hierarchies, prevents the use of
this reuse mechanism recursively. For example, a mixing procedural element (MixingPE)
might be further reused as an inner component of a more specific mixing procedural
element.

7.2.2 Connecting the framework to a DCS

As described in Chapter 2.2, control recipes are created, modified, and executed within
the Process Management control activity. Control recipe procedural elements, which in
this framework correspond to the unit recipes, are handled as the smallest procedural
entities. On the other hand, the Unit Supervision is the control activity which, according
to the batch standard (ISA, 1995), ties the control recipe execution with the equipment
control of Process Control.

The Unit Supervision executes unit recipe procedures and commands from the Process
Management, by initiating and parametrizing equipment procedures. The lowest level, the
Process Control control activity encompasses sequential, regulatory and discrete control,
distributed among units, equipment modules and control modules.



162

The Unit Supervision and the Process Control control activities do not belong to the batch
process management framework developed in this thesis, see Figure 1.1. However, in
order to demonstrate the use of the framework, an interoperation concept to a Digital
Control System (DCS), so-called batch automation components9, has been developed
(Kuikka, 1998a).

Batch automation components are used to connect the batch process management
framework to a DCS (in this case TotalPlant Alcont by Honeywell-Measurex Inc.). Batch
automation components are independent entities at the Unit Supervision and the Process
Control levels. The components contain both information (state, attributes) and
functionality (services, methods) for performing control tasks on the process unit level.

The main characteristics of the batch automation components are that:

•  They represent autonomous process units on Unit Supervision level of the batch
standard. The units are controlled by Process Management clients. These initiate
services, most importantly unit recipes, and allocate or de-allocate physical units.

•  Their services are defined by external, batch domain-specific interfaces.

•  They have, in addition to external interfaces, also internal, generic process
control interfaces (OPC, 1998) to the DCS.

•  The equipment procedures, needed to carry out the services, are encapsulated
within the DCS.

The external interfaces are implemented as custom interfaces of the distributed
component model DCOM, Figure 7.2. The Unit Supervision control activity is
implemented as an executable unit server, into which the in-process OPC server of the
DCS is loaded at run time. A batch automation component consists of a DCS
implementation (Tommila, 1998) and one OPC Group in the in-process OPC server
(DLL, provided by the DCS-vendor, Honeywell-Measurex Inc.), as well as an interfacing
component within the unit server. Each batch automation component instance is uniquely
identified with a process unit name.

                                                     

9 The naming of these components may, unfortunately, suggest to a more general use in batch
domain.



163

 

Manage
Batches

Manage
Process Cell
Resources

DCS

DCS I/O

Internal
OPC
interfaces

External
unit recipe
invocations,
statuses

External
allocation and
deallocation
requests, statuses Batch automation component

Unit server OPC server
of the DCS

Figure 7.2. Batch automation components.

The interfacing component within the unit server process maps allocations, de-allocations
and unit recipe invocations to appropriate internal OPC-interfaces that communicate with
the DCS-specific OPC server. The external interfaces conform to the Process
Management - Unit Supervision functional layer boundary of the batch standard and the
internal interfaces conform to the OPC standard (OPC, 1998). In this way, the unit server
bridges a gap between batch domain-specific (upper level) functionality and generic
process control (lower level) functionality.

The allocation and de-allocation of a batch automation component has been implemented
by adding and removing the respective OPC group and writing the allocation and de-
allocation information via it to the DCS. OPC groups are added and removed with the
AddGroup and RemoveGroup method invocations of the IOPCServer standard interface.
The reads and writes needed for the allocation and de-allocation are performed with the
OPCWrite method of an IOPCSynch standard interface.

In an analogous manner to control recipe procedural elements, also all the batch
automation components reuse a common external interface (IBatchComponent) and
binary code of the generic services (the methods of IBatchComponent interface) Allocate
and Deallocate. The mixer component implementation provides additionally a type



164

specific service Mix. Thus the external interfaces10 and their respective methods,
provided by the Mixer batch automation component are:

IBatchComponent

              Allocate(Unitname, BatchId)

              Deallocate(Unitname)

IMixer

Mix(Unitname, BatchId, 1{Material_k, Amount_k}n, MixingSpeed, MixingTime,

MixingTemperature, FinalTemperature)

The design and implementation of the generic allocation and de-allocation functionality
of a batch automation component, as well as the component-type specific implementation
of Mix functionality is described in detail in (Kuikka, 1998b). It uses a hand-shaking
protocol for parameter download, equipment procedure activation and report upload.

Various batch automation component types can reuse, in addition to the generic domain-
specific interface IBatchComponent above, also other interfaces. For example, a chemical
reactor process unit normally has a mechanical mixing capability as well. The respective
Reactor component thus contains, in a plug-in manner, the IMixer interface above. The
clients of the component, for example the batch process management framework, can use
a given reactor, in addition to its main tasks, for mixing operations, when the reactor is
idle and simple mixers are not available.

The framework – DCS – connection has been tested and experimented in SWFBatch
project (Kuikka, 1998b; Tommila, 1998) in Windows NT – TotalPlant Alcont –
environment. The DCS has not been connected to a physical process unit, but the
functionality has been simulated with Alcont function blocks.

The new OPC standard (OPC, 1998) also provides facilities for asynchronous alarm
handling, based on the COM Connection point implementation mechanism. The versatile
mechanism has already been employed within the framework, see Chapter 6.4. This

                                                     

10 The ‘behaviour oriented’ interfaces provided by the Batch automation components are named
with nouns instead of verbs (IMixer and not IMix, for instance). The reason for this naming is that
- as described in previous section - verb based interface names have already been reserved for
control recipe procedural element components.



165

makes continuation projects concerning exceptional condition handling interesting, also
from the implementation point of view.

7.3 Enhancement by agentifying

7.3.1 Problem definition

As pointed out in Chapter 2.2, the dynamic unit allocation within the Manage Process
Cell Resources control function is important when considering the flexibility provided by
batch process management systems. Chapter 6 presented in general the manner in which
the dynamic unit allocation has been specified and implemented in the basic, non-
agentified version of the batch process management framework of this thesis.

The commercial batch control systems, surveyed in Chapter 2.3, give some support to the
dynamic unit allocation. In InBatch, an application developer can create and maintain
several tables indicating whether or not the units in the process cell belong to paths, have
appropriate attributes, and are connected to each other. The InBatch application acts in a
table-driven way when dynamically allocating a unit. In VisualBatch and OpenBatch, the
approach is object-oriented. For each unit class, class properties are defined and unit
instances are defined by giving values to the properties used in allocation.

The dynamic unit allocation procedure of the framework of this thesis checks the present
feasibility of the path. In unit allocation, a transfer connection is checked, from the
process unit where the batch was previously processed to the unit to be potentially
allocated. This is performed in a more convenient manner than in InBatch’s table
approach, resembling the configuration in VisualBatch and OpenBatch.

The non-agentified dynamic unit allocation of the framework also checks the operational
state (terminology of the standard, Chapter 2.2) and the allocation state ‘free’ or
‘allocated’ of the unit. In the surveyed commercial systems, only one availability flag is
used. In the framework, the operational and allocation states are separate in order to
facilitate more accurate conditional allocation. However, in the non-agentified version of
the framework, a process unit may be allocated only if its operational state is ‘idle’ and its
allocation state is ‘free’, which makes the scheme act in practice similarly to the
commercial systems.

However, there is potential for substantial improvements in situations where the units to
be allocated have a large amount of local knowledge and autonomy. It is relevant to



166

consider that providing a service (running the respective Unit recipe) is more expensive in
one physical unit than in another. For example, if a batch might be mixed both in a given
reactor and in a given mixer, and both would be idle and free and properly connected, it
would generally be cheaper to use a mixer than a reactor. The situation might, however,
be occasionally different due to capacity usage or maintenance issues, for instance.

Actual pricing schemes have not been implemented in any of the commercial systems
discussed. In VisualBatch, it is possible to prioritise the use of units belonging to the
same unit class. However, priorities within unit classes do not consider the fact that the
same services (mixing, for example) may be provided by units belonging to different unit
classes (mixers and reactors, for example) and that transfer costs between the units should
also be considered.

In the agentified pricing approach of the framework, each agent that represents a feasible
unit is sent a call for a processing proposal from the process cell agent. Each agent that
represents a feasible path is sent a call for a transfer proposal. Each unit/path agent then
either proposes or refuses to perform its processing/transfer task. Also the price for
performing the service is proposed by the agent. The price can be computed on the basis
of the capacity usage, for example. The selection of a unit and a path is made by the
process cell agent, based on the proposals by the unit and path agents.

In batch production there may, additionally, be several batches (and associated control
recipes) needing the same process unit simultaneously. Thus, in addition to, and
simultaneously with, the allocation of a process unit, arbitration of the unit may be
needed. The problem of selecting (at a given instance) a control recipe that would get a
unit for its use, can be solved by comparing the priorities of the competing control
recipes, if available. Additionally, it should also be possible for an urgent, high priority
control recipe to pre-empt the execution of a normal priority control recipe in an allocated
unit.

This need for priority-based, pre-emptive behaviour of a unit is another application-
specific problem for agentifying. On the one hand, local knowledge may be needed in a
unit to find out the state of all the relevant equipment and control modules and to
subsequently decide whether or not the unit recipe currently running can be interrupted11.
On the other hand, the concise results (in terms of pre-emption being possible or not)

                                                     

11 These decisions are, additionally, (sub)domain-specific, different for example, when producing
beverages, medicines and explosives.



167

from all the units have to be available at the process cell level for decision making, in
order to get the urgent batches running.

The overall approach to dynamic unit allocation in the batch process management
framework is thus based on:

•  The feasibility of the units – providing the services needed by the control recipe.

•  The availability of the units – having proper instantaneous allocation state and
operational state.

•  The feasibility of the paths – existing current connection from the preceding unit.

•  The prices proposed by the unit agents for processing services.

•  The prices proposed by the path agents for batch transfers.

•  The pre-emption of the unit activities by high priority control recipes.

The first three issues are included in the non-agentified version of the framework,
presented in Chapter 6. The last three issues are solved with the help of a developed
generic design pattern. The design pattern, the Agentified Component, is described in the
next section using the presentation scheme of Chapter 3.3. The new pattern is needed for
designing a generic manner in which multi-agency properties may be embedded into a
framework consisting of software components.

7.3.2 Agentified Component pattern

Name Agentified Component

Intent Integrate both local and distributed intelligence of multi-agency with host
software components and frameworks reused as such.

Motivation

Software components and component frameworks are maturing and beginning to partially
fulfil the everpresent goal of practical software reusability. Distributed component model



168

platforms (CORBA implementations and DCOM) enable developers to distribute
applications and domain-specific frameworks on local nets and the Internet. Component
communication is already efficient enough for application requirements in several time-
critical domains, for example in telecommunications and automation.

Agent technologies, i.e. local decision making of individual agents and co-operative
multi-agent interaction, are also emerging. Multi-agency is becoming an important
enabling technology for distributed problem-specific decision making. The local decision
making and agent interactions are, however, often time consuming and hard to manage.
Multi-agency is not considered here viable as a primary, let alone only, approach for
frameworks in time-critical application domains. It should be used instead, only where
and when genuine decision making and negotiation is needed. Software components
should be reused for more conventional computing and communication.

There is thus a need to integrate:

•  Local, knowledge-based decision making (often experimental and exploratory in
nature) and distributed, agent interaction (based on an agent communication
language and an evolving agent interaction protocol)

with

•  Local, component-based computing (including often proven and stable solutions
within individual components) and distributed, component interoperation (based on a
domain-specific framework on a distributed component model platform)

The Agentified Component pattern, Figure 7.3, describes how to embed multi-agency
(local decision-making and agent interaction) into pre-existing software components and
frameworks (local computing and component interoperation). The key classes in this
pattern are agent, host component, and agentified component. The agent interaction
requires, additionally, interaction and interaction rule object classes.

Applicability

Use the Agentified Component pattern in cases where both of the following are true:

•  The software, which provides generic or domain-specific functionality, has been
developed or is being developed with software component technology.



169

•  A need for intelligent decision making, enhancing the basic functionality, has been
identified, and may be attributed to a few autonomous entities, or agents12,
representing given software components. These ordinary components are called here
host components, distinguishing them from the agentified components.

Do not use the Agentified Component in cases where either of the following is true:

•  There is no genuine need for local decision making and/or multi-agent interaction.
Distributed software component-based systems are mostly challenging enough,
without the inherent complexity brought about by agency.

•  The software to be developed is such that it would be best designed as a pure multi-
agent architecture, i.e. it has no relevant conventional computing component
communication or interoperation needs.

Structure

Agent Interaction

InteractionRule

*

*

AgentifiedComponent

HostComponent

Figure 7.3. Structure of the Agentified Component pattern.

Participants

Agent

•  Defines generic operations, attributes and associations for agency.

•  Specifically, an agent aggregates instances of the Interaction class.

                                                     

12 Either interaction oriented, so-called weak agents, or the so-called strong agents, having an
intentional stance (beliefs, desires, intentions), or hybrids of them.



170

Interaction

•  Defines functionality needed to achieve a (sub)goal in agent interaction, from the
point of view of the aggregator (parent) agent13.

•  Defines a start state and a set of final states for the interaction, the interaction ends
when one of its final states has been reached.

•  Specifically, an interaction aggregates instances of the Interaction Rule class.

Interaction Rule

•  Defines a given state transition of an interaction if/when a message, i.e. a
performative (Labrou & Finin, 1997) or a communicative act (FIPA, 1998) is
received from another agent, or if internal antecedents of the transition have become
true.

•  Specifically defines what to do before and after the state transition of the rule, what
local decisions to make and what kind of performative(s) or communicative act(s), if
any, to send to other agent(s).

Host Component

•  Defines local attributes and operations of the host component14.

•  Specifically encapsulates all methods to be accessed from outside (also from the
agentified component), within component interfaces.

Agentified Component

•  Inherits (extends) agent functionality from the agent class.

•  Implements agent interactions with extended interactions and interaction rules.

•  Specifically encapsulates the performative (KQML) or communicative act (FIPA
ACL) – or both - within an agent component interface.

                                                     

13 This is a so-called pre-specified interaction protocol (FIPA, 1998) with potentially several
simultaneous interactions per each agent.

14 In a component framework, there may exist both instances of ordinary host components and
agentified components, associated to them according to this pattern.



171

Collaborations

•  In component communication or interoperation, i.e. when the agentified component
acts in its role of a component, all messages are delegated to the contained host
component, Figure 7.4, via IComponent interfaces (there may, of course, be several
of them).

AgentifiedComponent

HostComponentIComponentIComponent

IAgent

Agentified
Component

Interaction InteractionRule HostComponent

Activate()

Invoke()

SendMessage()

Agent or
Agentified

Component

IAgent:CommunicativeAct()

IAgent:CommunicativeAct()

IComponent:GetValues()

Figure 7.4. Interfaces and interactions of the Agentified Component pattern.

•  In agent interaction, i.e. when the agentified component acts in its role of an agent,
all performatives or communicative acts use the agent interface IAgent, Figure 7.4.

•  After receiving a communicative act, the agentified component activates (either starts
or resumes execution of) the relevant interaction. The interaction invokes a specific
interaction rule according to the present state of the interaction.



172

•  When the agentified component (or objects aggregated by it) needs services of the
host component it uses the IComponent interface. The interaction rule, for example,
retrieves host component attributes that are needed in local decision making.
Reference (or interface pointer) to the host component interface is an attribute of the
agentified component, which gets a value, when the host component is instantiated.

Consequences

Some of the benefits and liabilities of the Agentified Component pattern are:

1. Reuse and multi-agency. Components with immutable interfaces are a necessity when
striving to industrial software reuse. On the other hand, when designing a solution to a
domain-specific problem by using agency, both local knowledge and interaction protocols
are constantly changing. The Agentified Component pattern resolves these conflicting
issues by enhancement of reusable software components with (less reusable) agent
properties and by leaving the original components and frameworks intact.

2. Generics and problem specifics. Generic agent functionality remains unchanged within
the agent class. Problem-specific agent interaction can be specified with state machines
(situated automata) and implemented by instances of the extended Interaction class.
Problem-specific local knowledge can be specified in terms of inference rules, for
example, and implemented within instances of the extended Interaction Rule class.

3. Optional agency. Agentified components are easily accessed also by ordinary
components via their IComponent interfaces. An agent interaction or negotiation process
may begin as a response to a conventional component message. When a given agentified
component gets ordinary component messages, it may first decide whether or not to use
agency at all in the problem to be solved. If so decided, it may start forming a team of
agents and/or agentified components, which will then collaboratively (using agent
interaction) work towards the common goal. However, if agency is not needed, based on
information in the received message, an algorithmic solution to the problem can proceed.

4. No unnecessary agent interaction. The amount of - potentially performance degrading
- agent interaction can be kept to a minimum by using component communication, also
with agentified components, when they are acting in their role as components. This is
unlike the situation in pure multi-agent architectures, where all communication is
normally carried out with agent-interaction practices15. There are performatives (and

                                                     

15 Agent interaction is often layered, see for example (Finin et al., 1997), in three layers: transport
protocol (TCP/IP, for example), agent communication (KQML or FIPA ACL, for example), and
agent negotiation  (conversation theory based implementation, for example).



173

communicative acts) for this kind of ordinary information exchange, for which the agent
interaction brings about extra overheads in comparison with component communication.

5. Embedding multi-agency within a distributed component model. Where genuine agent
interaction is needed, even this is encapsulated within an immutable interface (IAgent).
The potential of generic agent communication languages (KQML or FIPA ACL) may
thus be exploited in a generic distributed component model setting. There are no extra
syntactical requirements for agent communication languages, but the interface definition
language (IDL) of the component model (CORBA or DCOM) may be used for agentified
components in their agent roles, as well.

6. Selection of the agent communication language. Agent communication languages are
an area, where standardisation is important, since agents are, by definition, more
autonomous than software components, and there is a need for intersystem interaction
between ‘agencies’ developed by various vendors. On the other hand, standardisation is
very difficult, because the problems to be solved are varied and application specific. The
selection of an agent communication language (in practice either KQML or FIPA ACL),
is not critical as such. It has, however, an effect on how to specify and implement
interactions and interaction rules.

7. Problem specific local knowledge representation. The Agentified Component pattern
does not constrain local knowledge representation within an agentified component, since
it is considered to be a highly problem-specific issue. A knowledge base and an inference
mechanism are to be designed and implemented within the agent or the agentified
component. The Agentified Component pattern as such does not give support for this.

8. No panacea. In all of the domain-specific problems, which need enhancement by
multi-agency, it is not possible to identify host components, which could be agentified in
a manner described in this pattern. Some problems require either several, totally new,
pure agent components or some pure agent components (so-called facilitators, for
example) in addition to the agentified components. The Agentified Component pattern is
thus not an all-encompassing solution to the problem of agentifying existing component-
based systems and frameworks.

Implementation

Issues related to the implementation are concerned here with the application of the pattern
when using the distributed component model DCOM. DCOM is important within control
applications due to the NT-platform, generally applied in the branch, and the domain-
specific OPC – standardisation (OPC, 1998).

1. Component containment. The logical component inheritance has been implemented
with a component containment technique (Rogerson, 1997, pp. 160 … 169).  The host
component is instantiated within an initialisation method after the agentified component
has been instantiated. When instantiating the host component, its interface pointer (or one



174

of them, if there are several) is saved as a member variable of the agentified component.
Thus the host component is easily accessible from the agentified component.

2. Delegation of component interface method calls. The method calls of the agentified
component in its component role are simply delegated to respective host component
interfaces. It is, however, possible to add filtering code within the agentified component
before invoking the respective host component method. The agentified component might,
for example, check preconditions for invocation of the host component method16.

3. Component garbage collection. With DCOM components, unlike with JavaBeans, for
example, garbage collection is not automatic, but has to be taken care of by the reference-
counting mechanism of the component17 or individual interface. If properly implemented,
the host component will take care of its own lifetime. The agentified component must
also have the COM standard interface IUnknown, with methods for lifetime management.

4. Multi-agent interaction. There exist several, mostly prototypical implementations of
multi-agent architectures and frameworks. In the agentified component interaction
implementation, speech-act and conversation theory based approaches (Winograd, 1988)
have been found applicable. Specifically, the co-ordination language COOL (Barbuceanu
& Fox, 1995) and its Java based implementation (Chauhan & Baker, 1998) are good
examples.

5. Agent communication. KQML has, for a long time, been the de facto standard among
agent communication languages. It is, however, oriented to knowledge queries and its
semantics are not unambiguously defined. FIPA ACL is more action oriented and it
includes a formal Semantic Language (SL) used for defining its communicative acts.
FIPA ACL is thus considered a good choice for an agent communication language
implementation18.

6. Inference rules. In small applications, a simple set of rules, which have access to host
component’s attributes via IComponent interface, is sufficient for knowledge
representation. These local rules may be arranged in the implementation so that they are
interpreted within an Interaction Rule instance. Thus there is, in effect, a single perceive –
decide – act – sequence within each interaction rule invocation.

                                                     

16 When using another plausible component reuse method of COM, so-called aggregation, the host
component interfaces are exposed as such and no option for filtering exists.
17 The ability to have explicit control of component lifetimes is a substantial benefit in some
control applications. If it is not needed, there are so-called smart interfaces (Box, 1998, p. 68 ... 69)
for taking care of reference counting.
18 KQML may also be used, by defining the IAgent interface to support its performatives instead
of ACL’s communicative acts.



175

Sample Code

The following code fragments and description illustrates implementation of the
Agentified Component pattern in DCOM environment using C++ programming language.
In this example, an experimental batch process management framework (Kuikka, 1999) is
being enhanced with multi-agent properties in order to improve an existing process unit
allocation scheme.

An agent class, in this application named BatchAgent, is the agent class from which
agentified components ProcessCellAgent, UnitAgent, and PathAgent are inherited. On
the other hand, these agentified components contain, using component containment, the
respective host components ProcessCell, Path, and Unit. In COM, instantiation of the
contained host component (Unit) may be done within the agentified component as
follows:

                  HRESULT hr = ::CoCreateInstance(CLSID_Unit, NULL, CLSCTX_ALL, IID_IUnit, (void**)&m_pIUnit);

                  ASSERT_HRESULT(hr);

Where m_pIUnit is the interface pointer of the instantiated host component. Delegation of
the methods of the agentified component to the host component, in the case where no
filtering is needed, is done simply as indicated in the following code:

HRESULT __stdcall UnitAgent::GetValues(unsigned char** pUnitName, long* pBatchId, long* pPriority,
unsigned char** pStatus, unsigned char** pState)

{

 // Call respective host component's method

HRESULT hr = m_pIUnit->GetValues(pUnitName, pBatchId, pPriority, pStatus, pState);

ASSERT_HRESULT(hr);

  return S_OK ;

                   } ;

Known Uses

This pattern is a so-called proposed pattern. The author does not know of any other uses,
than the one above. The pattern could also be called ‘Agent as a Component’ or
‘Componentized Agent’ when focusing on the component interfaces. However, because
the premise (see Motivation) has been to enhance components with agent properties, the
name ‘Agentified Component’ has been considered better.



176

Related Patterns

Elizabeth Kendall and her colleagues have used design patterns for developing multi-
agent architectures (Kendall et al., 1997). She has previously also proposed a pattern
language for multi-agency. The use of generic, catalogued, object-oriented patterns is
documented in detail; the patterns developed for agency are described on a more general
level.

Alberto Silva and Jose Delgado have developed an interesting Agent Pattern (Silva &
Delgado, 1998) for distributed agent systems. Their approach has some resemblance to
the Agentified Component pattern, as well as to some existing agent frameworks, with
regard to the agent architectural issues. They position their Agent pattern in the middle
layer, between the ‘OO approach’ of CORBA frameworks and the ‘agent-based
application frameworks’.

The approach of (Aarsten & Brugali, 1997) is perhaps closest to the one presented here.
Their goal is also to enhance system functionality (in their case G++ pattern language) by
agency. The focus is on weak agency issues, i.e. agent interaction and collaboration. They
have also utilised their agent patterns in production scheduling in manufacturing, which is
quite close to the application-specific problem in the example case of this pattern.

As to the catalogued object oriented design patterns, the Extension Object (Gamma,
1998) is perhaps closest to the Agentified Component in the interface extension sense.
Also it extends existing classes with new interfaces without having an effect on those
clients that don’t need the added, enhancing interfaces. The pattern Role Decoupling
(D’Souza & Wills, 1999) also resembles this pattern in the sense that separate interfaces
(or types) are multiply inherited by a given class. The clients use only the interfaces they
explicitly require when collaborating with the objects of the class in their various roles.

None of the aforementioned patterns, however, explicitly integrates reusability of
software components (based on a distributed component model) and local and distributed
intelligence through multi-agency, which is the intent of this Agentified Component
pattern.



177

7.3.3 Problem solution

The design approach to agentifying is based on the Agentified Component pattern of the
previous section, see especially Figures 7.3 and 7.4. The agent interaction capabilities are
inherited from a common Agent class, BatchAgent, with its associated object classes for
interaction. The BatchAgent class is extended by inheritance to make up problem specific
agent classes. These agent classes: UnitAgent, PathAgent, and ProcessCellAgent are
provided with a common IAgent interface, see Figure 7.4. The interface is here named
IBatchAgent, which has as its only method CommunicativeAct. The method is needed for
embedding the chosen agent communication language FIPA ACL (FIPA, 1998) within a
COM interface. All batch agents use this interface for agent communication.

The collaborations of the agentified components ProcessCellAgent, UnitAgents, and
PathAgents are based on both agent communication (ACL in COM) and component
communication (COM) as described in Figure 7.519. The negotiation behaviour of the
participating agentified components in agent interaction is refined with state machines of
Figures 7.6 … 7.8. The component interoperation is described in Chapter 6.5. The
collaborations thus consist of agent components (structural part) and their interactions
(behavioural part) as defined in UML (Booch et al., 1999, p. 371).

Unit
Supervision

Manage
Batches

UnitAgent PathAgent

ProcessCellAgent

COM

ACL in COM and
COM ACL in COM

COM

COM

Figure 7.5. Collaborations of the agents in unit allocation.

                                                     

19 The collaborations could have been named individually as proposed in (Booch et al., 1999, p.
379). Here it was considered more important to make a distinction between agent interaction and
component interoperation.



178

The ProcessCellAgent (a singleton) gets a unit allocation message (COM) from the
Manage Batches control activity. The ProcessCellAgent is here instructed by the Manage
Batches to use agent interaction (or not to use it, in which case an algorithm is used
instead) with a parameter value in the allocation message.

The actual negotiation process is begun by the ProcessCellAgent, which interacts with
both the UnitAgents and the PathAgents (ACL in COM) using a modified contract net
protocol (FIPA, 1998). In the negotiation, the communicative acts: call for proposal,
propose, and refuse (with appropriate parameters) are used between the ProcessCellAgent
and the UnitAgents as well as the PathAgents, respectively.

In decision making, the PathAgents also need state information from the UnitAgents
(COM). When an optimal solution (in terms of both processing prices of units and batch
transfer prices of paths) has been reached, the respective physical unit is allocated by
sending a message (COM) to the Unit Supervision control activity. After that the name of
the allocated unit is sent to the Manage Batches control activity for further activities.

More specifically, the UnitAgent is responsible for the use of the capacity of a given
physical process unit. The UnitAgent (together with its associated Unit component)
knows the state and status of the unit as well as the cost of providing a service with the
unit. The UnitAgent collaborates with the ProcessCellAgent in unit usage interaction,
allocation, and de-allocation. In allocating and de-allocating the actual process unit, it
communicates with the respective batch automation component in the Unit Supervision.

 The knowledge base of the UnitAgent consists of rules to be applied, when the
ProcessCellAgent calls for a proposal of a service by invoking the CommunicativeAct
method of the IBatchAgent interface:

 if operational state is idle and allocation state is free

 propose with serviceCost(i)

 
 if operational state is idle and allocation state is allocated and requestor priority is higher than priority

 propose with serviceCost(i)

 
 if operational state is idle and allocation state is allocated and requestor priority is lower than priority

 refuse

 
 if operational state is running and allocation state is free

 refuse



179

 notify error

 
 if operational state is running and allocation state is allocated and requestor priority is higher than priority

 propose with serviceCost(i)

 
 if operational state is running and allocation state is allocated and requestor priority is lower than priority

 refuse

 
 if operational state is not available

 refuse

 

 The ProcessCellAgent also allocates and de-allocates the process unit via the UnitAgent
by sending component messages. The serviceCost(i)s may change dynamically, based on
the processing situation and on long-term reservations, for example. This information is
local in the UnitAgent, not known by the ProcessCellAgent.

The PathAgent (together with its associated Path component) is responsible for the use of
the transfer capacity of a specific production path (or train). A path consists of process
units needed to produce a given batch and material transfers between the units. The costs
of the transfers are given as input transfer costs, i.e. assigned to each unit in the path from
the preceding unit. The PathAgent also finds out the feasibility of the path for a given
batch by checking that the requesting batch (identified with a batch identifier) has used a
service of the preceding unit in the path before using a service of the current unit.

 The knowledge base of the PathAgent consists of rules to be applied, when the
ProcessCellAgent calls for a proposal of a given unit (i) for a given batch:

 if path is feasible (requesting batch has used the preceding unit(i-1) in this path)

 propose with transferCost(i)

 
 if path is not feasible (requesting batch has not used the preceding unit in the path)

 refuse

 

 The transferCost(i)s may change dynamically, based on the processing situation and the
process unit as well as material availability, for example, in the Manage Process Cell
Resources control activity.



180

The ProcessCellAgent (together with its associated ProcessCell component) is an agent
that allocates and de-allocates process units, which provide necessary services and reside
on feasible paths. The allocations and de-allocations are initiated by requests from the
Manage Batches control activity. After a request for a service is received from the
Manage Batches, the ProcessCellAgent first finds out from the contained ProcessCell
component, all the units providing the requested service. Then it sends calls for a
proposal of the requested service to the respective, feasible UnitAgents. For those units
which propose the service (with a service-processing price), feasible paths are found, by
sending calls for a proposal of the unit to the PathAgents.

After receiving proposals with the service costs from UnitAgents and with the input
transfer costs from PathAgents, the ProcessCellAgent optimises the unit selection so that
the total cost of the unit consisting of the service and input transfer costs will be
minimised. After making the selection, it allocates the unit with a minimum total cost.
Also, the de-allocation requests are initiated by the ProcessCellAgent.

 The ‘knowledge base’ of the ProcessCellAgent consists of a sequence of calculations to
be applied when it resolves the optimal units and the optimal path from the feasible ones:

     for feasible units ( providing the requested service ) find the proposing units
 

 if none found, return with failure code
 

 else for the proposing units find the feasible paths ( preceding unit used by the batch )
 if none found, return with failure code
 
 calculate totalCost and find the optimal unit

 return name of the optimal unit
 

The optimisation above is a piecewise, short-term activity, which takes place in
connection of the unit allocation. This is plausible, since the relevant costs may change at
any time and since, also the path is chosen anew within every unit allocation. The batch
can, so to speak, change paths for every step in the recipe procedure. The agent structure
does not preclude, however, longer-term optimisation that could also exploit proactive
agent planning activities. This long-term optimisation could be embedded within the unit
reservation in Production Planning and Scheduling.

As to the agent negotiation, the ProcessCellAgent initiates the unit allocation after getting
an allocation request from the Manage Batches control activity. The agent aggregates a
ProcessCellConversation class, from which a new object is instantiated each time the
agent gets a new allocation request. Figure 7.6 shows a state machine representation of
the ProcessCellConversation.



181

start transmit: cfp service
to current UnitAgent

service
called-for

received: refuse
from current PathAgent

received: propose
from current UnitAgent

transmit: cfp unit
to current PathAgent unit

called-for

received: refuse
from current UnitAgent received: propose

from current PathAgent

units
found

succeeded

failed
No feasible
unit-path-pairs

Feasible unit-
path-pairs found

No proposing
units

Proposing
units found

Figure 7.6. ProcessCellConversation.

The ProcessCellAgent finds feasible units (which provide the requested service) without
interaction. For each feasible unit, a call for proposal (cfp) of the service is made to the
respective (current) UnitAgent. If the UnitAgent proposes the service, the unit is included
into a set of proposing units. For each proposing unit, the corresponding feasible paths are
found by calling for proposal (cfp) of a unit to all the PathAgents in the process cell.

For all {a proposing unit on a feasible path} – pairs, the total cost is calculated. The final
state failed indicates the case in which no proposing units or feasible unit-path-pairs have
been found. The final state succeeded in this conversation indicates the fact that a non-
empty set of feasible unit-path pairs has been found in the conversation. The minimum
total cost is then obtained and the respective unit allocated.

The UnitAgent has a UnitConversation class from which a new object is instantiated each
time the agent gets a call for proposal (cfp) of service from the ProcessCellAgent. Figure
7.7 shows its state machine representation.



182

start

received: cfp service
from ProcessCellAgent

service
called-for

transmit: propose to
ProcessCellAgent

transmit: refuse to
ProcessCellAgent

proposedrefused

Figure 7.7. UnitConversation.

The UnitAgent evaluates the call for proposal according to its local rules and a refusal or
a proposal accompanied by the processing price is transmitted to the ProcessCellAgent.
From the point of view of this conversation, the refusal leads to the final state refused and
the proposal to the final state proposed. If a proposition is made, the UnitAgent may or
may not subsequently receive a COM message for allocation from the ProcessCellAgent,
according to the optimisation performed by it.

The PathAgent has a similar PathConversation class from which a new object is
instantiated each time the agent gets a call for proposal (cfp) of unit feasibility in the path
from the ProcessCellAgent. Figure 7.8 shows its state machine representation.

start

unit
called-for

transmit: propose to
ProcessCellAgent

transmit: refuse to
ProcessCellAgent

proposedrefused

received: cfp unit
from ProcessCellAgent

Figure 7.8. PathConversation.

The PathAgent evaluates the unit-path feasibility according to its rules and a refusal or a
proposal with the transfer price is transmitted accordingly to the ProcessCellAgent. From



183

the point of view of this conversation, the refusal leads to the final state refused and the
proposal to the final state proposed.

The above-mentioned unit allocation specific conversations and conversation rules, as
well as the local inference rules have been designed and implemented within the
agentified batch process management framework according to the generic Agentified
Component design pattern of the previous section.

When comparing the non-agentified and agentified ProcessCell functionality, the
following can be noted:

•  Either non-agentified or agentified functionality for allocation can be chosen at
any time with a parameter of an allocation request. Thus, if needed, a client
process can compare the allocation results in a straightforward manner.

•  If non-agentified functionality is chosen, the Allocate method of the ProcessCell
component, contained by the ProcessCellAgent, is invoked and no multi-agency
will be used. The non-agentified algorithm checks the unit and the path
feasibilities, as well as the states of the units, but does not try to minimize the
costs or to pre-empt the ongoing unit activity by a high priority control recipe.

•  If agentified functionality is chosen, the negotiation process is started in the way
described above and the total cost of the processing within the unit and of the
batch transfer from the preceding unit is minimized. Additionally, if the priority
of the allocating control recipe is greater than that of the running recipe within
the unit, pre-emption is carried out. This is performed, however, in a simplified
manner, without the state checks of the equipment and control modules used by
the running control recipe.

The agentified unit allocation scheme succeeds in considering the pricing issues and pre-
emptive needs of an urgent batch, described above. The negotiation procedure needs,
however, more processing time than the non-agentified algorithm. In experiments
comparing the approaches, the processing time taken by the agentified approach was on
average approximately twice as long as that taken by the non-agentified approach. The
average absolute time for the agentified unit allocation was, however, less than one
second when the paths consisted of four consecutive process units.

The dynamic unit allocation problem, solved with agentifying, is well manageable in the
sense that the conversations needed are modelled with comparatively simple state models,
Figures 7.6, 7.7, and 7.8, providing together a coherent solution to the problem. In this
case the benefits of agentifying were clearly greater than the liabilities.



184

The thesis does not, however, argue in favour of the developed agentifying approach in
comparison with other potential optimisation techniques, whether distributed or non-
distributed. The results only show the value of agentifying a software component
framework in an applicable problem in comparison with a non-agentified approach.

The following prerequisities for successful agentifying were found during the
experimentation:

•  A specific, negotiable problem (here dynamic unit allocation)

•  Sufficient problem-specific decision-making capabilities, attributable to agents
associated with domain components (here software agents representing
autonomous process units and paths)

•  An interaction protocol, suitable for the problem (here a modified contract net)



185

8. Conclusions

The main contribution of this thesis is the development of an experimental software
component framework for batch process management. As described in Chapter 5.1,
characteristic of the research and development approach of this thesis is that the resulting
framework:

•  Conforms to the requirements of the new application-domain standards and
considers additional, advanced industrial needs.

•  Relies for its design and implementation on distributed object and software
component technology and on design pattern methodology.

•  Facilitates local autonomous decision making through multi-agent technology,
embedded in the framework.

 The batch control domain is critically studied in Chapter 2. The focus is on the domain
standardisation, the existing batch control systems, and the related research. Domain
knowledge has been found relevant in this thesis, both in defining the requirements for the
framework (which is commonly agreed upon), and in making architectural design
decisions for it (which is not commonly understood).

 The need to consider production and product-related issues, concretised in recipes,
separately from process equipment and control issues, concretised in equipment entities,
is evident. This separation of functionality and the important relationships between the
respective control activities form a solid basis for new architectural designs in the batch
process management domain.

The applicable technology, object-oriented software component frameworks, is both
surveyed and evaluated in Chapter 3. Object orientation and software component
technology, which are the constituents of the development work, are described in a
concise manner. The design pattern approach in the object-oriented software
development has been critically evaluated and chosen as the design modelling method to
develop component frameworks. Domain-specific software frameworks are also
introduced, both by definition and by examples relevant to the domain of the thesis.

An approach to deploy generic software design patterns for designing domain-specific
component frameworks has been developed in Chapter 3. It concentrates on the



186

architectural commonalities of all the applications in a given domain. The approach
proceeds gradually from the domain requirements and abstract architectural points of
view to more concrete design pattern issues. Guidelines for finding applicable patterns
and using them have been adapted, putting special emphasis on relations of the patterns,
coherence of the architecture, and domain-specific naming. The approach strives to
enable joint development work by software engineers and domain professionals, which is
here considered important also when designing commercial domain-specific frameworks.

 In some application-specific or even domain-specific problems (like dynamic unit
allocation in this framework) decision making based on local knowledge and distributed
interaction between the local decision-making entities is needed. In Chapter 4, both the
software agents, autonomous decision-making entities, and their collaborative interaction
using agent communication languages and negotiation protocols are surveyed and
evaluated. Several experimental multi-agent architectures have also been studied, since a
considerable amount of research results about agent interaction is included in them.

 From the point of view of this thesis, one of the research problems was how to integrate
multi-agent interaction in a software component framework. The need is discussed in the
more general context of developing multi-agent applications. The role of multi-agency is
explicated as a problem-specific enhancement to the framework, not as an overall
solution to the industrial needs of distribution, integration and flexibility. The main
contribution in Chapter 4 is the notion of agentifying existing information systems and
frameworks. It retains the deterministic nature of the existing systems, but simultaneously
introduces the possibility of solving local problems by a knowledge-based approach.

 In the development of the batch process management framework, presented in Chapter 6,
the logical requirements analysis model has been developed first. It consists of use cases,
object classes and scenarios based on the batch process management functionality. Both
the architectural and behavioural aspects of the framework have been designed with the
help of chosen design patterns in solving the batch domain-specific design problems. For
the distribution and multithreading of the components, both design patterns and facilities
of a distributed component model (in this case DCOM) have been needed.

 The experimental framework of this thesis is flexible both from product and production as
well as process equipment and control points of view. It is possible to control and co-
ordinate the same processing equipment to produce various products by modifying
recipes on-line. It is also possible to utilise alternative and changing equipment to
produce a given product.



187

 The framework is functionally distributed, because it is based on distributed batch control
activities and user interface functionalities. It is also physically distributed, because it
resides on various threads, processes and computing nodes in a local net. It is integrated
with externally accessible (interface definition language) component interfaces for
interoperation with other systems. Additionally, the internal architecture of the
framework is based on components.

 The developed framework is a so-called calling framework. Thus both the architectural
and behavioural features of the framework are reusable as such. Individual framework
components can be replaced by customised versions and parametrized for application
specific needs. This scheme of reuse has been presented in Chapter 7. In addition to
domain-specific component reuse, the framework has also been integrated via a standard
component interface (OPC) with a distributed digital control system (DCS).

 For the problem-specific needs (in this thesis for dynamic unit allocation) of local
decision-making and interaction, an enhancement of the framework has been designed,
reusing the original framework. No applicable design patterns have been, however, found
for this kind of design issue. Since the design problem is at least potentially recurrent, a
generic design pattern, the Agentified Component has been developed. The pattern, as
well as its use in solving the dynamic unit allocation problem, are described in Chapter 7.

 The thesis does not argue in favour of the developed agentifying approach in comparison
with other optimisation techniques, whether distributed or non-distributed. The emphasis
is on the value added by the agentifying approach to an existing framework, in a situation
where sufficient local information exists.

 The batch process management framework of this thesis is experimental in two meanings
of the word. It has been developed when experimenting with design pattern and software
component based approaches to domain-specific frameworks. The implemented
framework is thus a prototype, not a software product. Many conventional programming
issues concerning, for example, user interface and data management functionality, have
not been refined.

 Furthermore, the framework has been developed to experiment with so-called intelligent
concepts, in particular multi-agency. There have been no substantial constraints of
compatibility with old product versions or development tools. The framework should thus
indicate the development ideas based on design patterns, software components, and multi-
agency in a comprehensible form.



188

9. Considerations

9.1 Introduction

 In Chapter 3, software components and their composition were discussed from a technical
point of view. However, for a component market, also a need-based demand by customers
and a supply of high-quality components by vendors are necessary. Once the technology
is mature enough, and the demand and the supply meet in a market segment, it is probable
that application systems will be composed or assembled from software components in
that market segment20.

 Furthermore, the component and framework technology and market will also affect the
engineering and development process of application systems. The main emphasis is on
two considerations: the requirements of the application domain and the availability of
components and frameworks on the market. Chapter 9.2 discusses the implications of the
component and framework technology on the software and application system market and
their influence on the software development process and on the organisation within
information technology in general.

 The automation domain, specifically the batch control domain, provides some interesting
points of view of its own. New information technology is generally well accepted within
the automation market, especially if its benefits, both in terms of increased product and
production quality as well as reduced costs, can be shown. The increased application of
fuzzy, neural and genetic algorithm techniques is an indication of this. Batch
manufacturers and vendors, on the other hand, have been active in developing domain
standards and deploying new computational platforms.

 The tradition of software design in the automation domain, however, is based on
structured techniques and, in general, on implementation standards, which have
proceeded more slowly than, for example, in the domain of telecommunications. In
Chapter 9.3, the potential impact of the new domain-specific, software component, and
design pattern based approach of this thesis to the automation software market, as well as

                                                     

20 At least at present, there is no indication that software engineering would in the long run differ
in this respect (systems composed of components) from more mature engineering disciplines.



189

to automation design and training, is discussed. Also some related research and
development projects based on the above technologies are reviewed briefly.

Unlike the previous chapters, this chapter is tentative in nature. The considerations
discussed in Chapters 9.2 and 9.3 are based on the insights acquired when studying the
relevant information technologies and when developing the experimental batch process
management framework. Chapter 9.2 is also a context for Chapter 9.3, meant as an
introduction to the general component market and organisation issues, which are then
refined, and focused on automation and batch control in Chapter 9.3.

9.2 Components and frameworks in general

9.2.1 Background for commercial deployment

The size or granularity and the adaptability of the market components and frameworks are
important issues from the point of view of deployment and marketing. In a so-called
black-box framework, only ready-made interfaces and means for parametrization are
provided, and all implementation issues are hidden. The framework, as a whole, is one
unit of abstraction when developing an analysis model for an application system, based
on the framework.

It is, however, usual that at least some customisation is necessary, using, for example,
component containment or object-class inheritance. When deploying the framework in an
application system, the framework cannot be considered as one unit. At least something
of the inner structure of the framework has to be included in the analysis model of a
specific application system. This complicates the deployment of the framework.
However, calling frameworks (e.g. the framework of this thesis) need considerably less
customisation effort than so-called callable frameworks, which in extreme cases are very
close to class libraries, see Chapter 3.4.

 A single component either provides a completely new functionality for an application
system, or extends the existing functionality. In both cases, a component, as a unit of
extension, should match with the respective unit of analysis in the requirements definition
of the application system (Szyperski, 1998, p. 124 … 128). If the match is not achieved, a
component extension could be integrated into an application system with an incomplete



190

or overly restrictive context. This would make the overall behaviour of the application
system unpredictable.

 Components are by definition the smallest units of enhancement, e.g. the reuse of
components or the development and use of an agentified component as described in
Chapter 7.2. However, when changing only the implementation of a component, more
than just functional properties and inter-component dependencies have to be considered.
A client may, for example, be dependent on a timely response to a request, which may be
compromised when enhancing the functionality of the components in a manner
incompatible with the performance requirements.

Although all frameworks are not necessarily domain-specific, they are usually concept
specific (Szyperski, 1998, p. 274). A framework encompasses both the high level
architecture and the integrating infrastructure. The degree of integration depends,
however, on a framework. A framework that is too tightly integrated may leave out
potential application systems, whereas a framework that is too loosely integrated will lead
to inefficiency and complexity. In the view of this thesis, domain-specific frameworks
may be tight, calling frameworks. They are a feasible concept for deployment within
application-system deliveries in a given, well-defined domain.

9.2.2 Market potential

 Reusable components and frameworks are the main units of delivery for system-integrator
customers. Application systems, on the other hand, are the main units of delivery for end-
user customers. Compliance with domain-specific requirements, sufficient
documentation, and the need to market and maintain components, add to the costs of both
the individual components and the domain-specific frameworks. The reuse of
implementation by deploying components and the reuse of both design and
implementation by deploying frameworks, are needed to make the components and the
frameworks financially viable for vendors.

Components and frameworks are commercially justified only if the investment in their
development is fully returned. This is achieved by deploying the components and the
frameworks in a sufficient number of application systems. Within in-house projects of
end customers the benefits are achieved by a faster development time, lower development
costs, a better manageability of the application project, and by the maintainability of the
software. The same benefits are also achieved when a system integrator develops an



191

application system for the end user. These benefits are added to the technical advantages
of distribution, integration and flexibility, detailed previously in this thesis.

 Commercial benefits can also be achieved from marketing and selling components and
generic frameworks. An innovative use of new distribution channels, especially based on
the Internet, is an important aspect in the creation and growth of these primary component
markets. Software vendors can, by choosing proper intermediaries, concentrate on their
core competence, i.e. the development of components. Alternatively, they can take the
whole distribution chain of the software in their control.

 A secondary, complementary market, is the market of the component tools. Because
software component development and deployment are more demanding than traditional
software, there is an urgent need for supporting tools. Component design tools are being
integrated into development environments. Also simple tools for testing the use of
component interfaces are usually available within the development environment.
Advanced tools for component testing are, currently few or non-existent. Restrictions on
the composability of components into applications and frameworks make the
development of an effective testing tool a challenging but important task.

 There is also a market potential for tools for (visual) component assembly and
composition as well as for diagnosis and maintenance of the component system.
Assembly and composition tools are likely to be tightly integrated with the development
environment, whereas in diagnosis and maintenance there is potential for tools which can
even be composed of components from various vendors. Component-tool vendors should,
indeed, begin to see the tools that they provide as genuine components. Diagnosis and
maintenance tools should be remotely operable, and conform to standards and security
policies. Component vendors could also deliver, together with the actual components, the
associated components needed in diagnosing the component behaviour within various
environments.

 System integrators, on the other hand, can focus on the third existing market and
specialise on deploying components and frameworks, and on marketing them within
component based application systems to end users. This market is closest to the present
application system market, familiar to most information and automation system vendors.
As will be described in the next section, the component assembly process, which is the
core business process of system integrators, differs substantially from the component and
framework development process. Thus a small vendor should presumably concentrate
either on the role of a developer or of an integrator.



192

 However, a large vendor may operate with big revenues by acting both as a developer of
software components and frameworks, and as a system integrator to industrial end users.
This is shown by some successful, large enterprise resource planning (ERP) and
enterprise resource management (ERM) system providers, and by some not so successful
smaller integrators. It is obvious that the best application knowledge of the components
and frameworks can be kept – if so wanted - within the company that has developed the
components or frameworks.

 According to Szyperski (1998, pp. 339 … 344), a central paradox in component
marketing, which may lead the software-component approach to a financial failure in
consumer markets, is how to get people to pay for software components that can be
downloaded from the Internet. He notes that the access charges to the Internet are so
minimal that software distribution has to be moved totally from physical stores to virtual
stores. He questions the usefulness of an almost free Internet access if the contents are
expensive. He continues that competition will, however, take care of keeping the
component price low.

 In order to increase the profit from the component sales, Szyperski suggests the use of
branding. Component users can be encouraged to browse the catalogues carrying the
right brands. The brands can be established, not only by component vendors, but also by
wholesalers, by brokers or by other intermediate agents. Another way to get income from
components, especially from user-interface components delivered via the Internet, is the
placing of advertisements of tangible (non-software) products in the software
components.

 Although branding and advertisements have mainly been discussed within the consumer
markets, they also have distinctive significance in the business-to-business market. A
prominent vendor brand creates trust in its components, whereas company images,
created and maintained largely with advertisement, also have a distinctive effect on
business-to-business trade.

 Another approach to collecting revenues, suggested already by Brad Cox (Cox, 1990) is
the pay-per-use model. This model is possible for component trade due to the licensing
services in both COM and CORBA component models. A single component may be too
small a unit for invoicing and the fact that components frequently use the services
provided by other components makes this approach tedious. There are advantages,
however. The income to the component vendors can be fairly distributed and the
component users only pay for the services that they need and subsequently use.



193

 In addition to the software products above, the associated services will also be important
commercially. It is interesting to see, to what extent the application system architecting
tasks are kept in the end user company and to what extent they are outsourced. When
domain-specific frameworks mature, it is probable that some of the business critical
application systems of the end user companies are developed in-house by integrating and
customising the frameworks. On the other hand, several non-critical application systems
will also, in the future, be integrated by system integrators and delivered as turn-key
systems to the end users. Nevertheless, external consulting services will certainly be
needed by the end-user companies for architecting and for procurement.

 Consulting services will be needed in component assembly and composition, at least
when large application systems are developed. Also diagnosis, maintenance and
component configuration management may provide interesting possibilities for service
businesses. Various distribution channels and intermediaries are also needed in the
service market. It is often beneficial to package the components together, not only as
frameworks, but also as class libraries or other marketable sets of integrated components.

The correct timing of market entry is crucial in the emerging component business. This is
one good reason for larger vendor companies to utilise smaller, flexible and swift
consulting companies and software houses as subcontractors. Research institutions and
universities can also provide valuable research and development services for the
component and framework market.

9.2.3 Software development process and organisation

 When developing components and component-based frameworks, the traditional
development methods are no longer sufficient. Top-down methods involving
decomposition will be complemented with new approaches. Structured layering and
decomposition are combined with object-oriented use cases, scenarios, object class
models and design patterns, as well as component-based reuse and composition methods,
as shown in Chapter 6 of this thesis.

 It is anticipated here, however, that the division of a software development process into
incrementally applied requirements definition, design, implementation (or constructing
and packaging), and testing phases will prevail. In fact, the incremental approach is well
supported by the component technology, based on encapsulation and interfaces.



194

When considering the software development organisation, a good starting point is a
general model of reuse processes and organisation, proposed by Ivar Jacobson. The
model defines three software engineering processes, each with a specific responsibility
(Jacobson et al., 1997, pp. 232 … 239):

•  A Component System Engineering process staffed by a team for each component
system. This process designs, constructs and packages components into a
component system or framework. The process captures requirements from
business models, domain experts, and application end users. The results are used
to incrementally architect, design, implement and test components and
component systems or frameworks.

•  An Application System Engineering process staffed by a team for each
application system. This process builds application systems by selecting,
customising, and assembling components and frameworks from component
systems or frameworks. The process starts with requirements capture from the
customer and the end users of the application system. The application system is
then incrementally analysed, designed, implemented, and tested – by reusing and
specialising components and frameworks. Even if the application engineers try to
reuse as much as possible, they often have to analyse, design, and implement
system features that have little or no support from the component systems or
frameworks.

•  An Application Family Engineering process staffed by a team focusing on the
definition of the division into systems and the interfaces between them. This
process captures the requirements from a range of customers and transforms them
into a suite of application systems. The process produces an architecture that
defines the layers of the component systems and frameworks. Also make-or-buy
decisions are made, concerning applicable component systems or frameworks.

Another approach to the component-based software development process is formulated in
the developing pattern language (see Chapter 3.3) ComponentDesignPatterns (Brown et
al., 1999). The so-called Component Developer Perspective to the Component-Based
Development (CBD) process corresponds to the Component System Engineering process
above. In the same pattern language, the so-called Component Assembler Perspective
corresponds to the Application System Engineering process above. The Component
Developer Perspective has, additionally, some similarity to the Application Family
Engineering process.



195

A developer with the Component Developer Perspective analyses the common
requirements of the component users and knows how to construct reusable components.
The developer focuses on understanding the underlying component object model, and on
implementing a solution that can be reused many times in many different contexts. The
tasks cover “the burden of multiple-component object models, multiple platforms, and
components developed in different programming languages across many address spaces”.
Special emphasis is put on quality issues, because the developed software will be used in
several application systems.

A developer with the Component Assembler Perspective, on the other hand, adapts,
customises, and integrates pre-existing components into the application system. The
assembler focuses on delivering a solution that adequately solves the business problem at
hand with one or several frameworks and pre-existing components. The tasks are domain
oriented and focused on productivity and usability. The developers of
ComponentDesignPatterns (Brown et al., 1999) indicate that the component assemblers
often only ‘glue’ the components together by scripting and it may thus be difficult for
them to discover opportunities to create new components based on their experiences in
assembling the solution.

 Also Ivar Jacobson notes that when the reuse business is first introduced into the
organisation, or if the architecture is simple, it may well make sense to combine an
instance of Application Family Engineering and Component System Engineering
(Jacobson et al., 1997). When integrating these two software processes, the earlier
Jacobson approach co-incides notably well with the more recent Component Developer
and Component Assembler perspectives above.

The transition to component-based development leads to a need for learning on both
individual and organisational levels. Individuals need to learn new technologies,
processes, and tools. The organisation as a whole has to adapt to the new processes and
organisational structures gradually, the larger the organisation, the longer it takes to
change. Proper pilot projects and management commitment are also needed in this
evolutionary process. Tom Vayda has published a list of guidelines (Vayda, 1999) for the
transition to component-based development. It is presented here in a somewhat shortened
and modified form:

•  Start small. Smaller pilot projects and focused business units have a higher
probability of success.



196

•  Pick the highest potential gain. Choose business units with high visibility and
potential to produce a set of reusable components, or a simple, but mission-
critical server system.

•  Focus on three time horizons. The introduction of components should produce
useful results quickly, but the medium (change in the organization) and long-term
(measurable process) targets must not be forgotten.

•  Apply both top-down and bottom-up strategies. Both enterprise models of large-
scale business processes, and small sets of components are important, for
example a component set that implements the security rules of an organization.

•  Measure the results. Collect simple but powerful project and process metrics that
demonstrate the return on investment. The project metrics could include the
amount of reuse, or time or cost per function point. The process metrics include
the time and effort spent in various life cycle phases and tasks.

9.3 The approach of this thesis

9.3.1 On potential market impact

Component technology offers several benefits for vendors of process-management and
process-control systems. Components provide interoperability, portability, and location
transparency, enabling the development of coherent functionality on distributed
platforms. The clear separation between interface and implementation, inherent in
software components, has been traditionally characteristic of automation entities, as well.

The function blocks within distributed control systems are connected to process inputs,
outputs and to each other with messages, represented in the design as graphic signal
wires. The compositions of function blocks make up automation modules, one for each
control circuit. If the function blocks – and, more importantly, several upper level
automation entities – are implemented as software components, they can be more flexibly
composed together, into component systems or frameworks, which can be developed and
deployed in parallel.

From the point of view of an end-user or a manufacturing company, component
technology provides a means to capitalise on scale when customising application systems
either by developing or by buying components to be used in several applications. This is



197

beneficial with user-interface components (ActiveX Controls or JavaBeans, for example)
which can already be plugged into the user interface of a control or process management
system. Components are also a way to make the user interfaces of automation and process
management systems compatible with office automation and business information
systems, based both on desktop and browser technologies.

Batch-manufacturing companies may also be interested in embedding strategic
knowledge on products and production in special automation components. These domain
or application-specific components can be developed in the manufacturing company.
After testing, they can be integrated into a generic control or process management system
by using the component interfaces of the system.

By composing components, manufacturing companies, system integrators and process-
unit vendors are also able to develop larger functional entities than single components.
They can develop domain-specific component frameworks and integrate them into control
or process management systems. This requires, however, more development resources
than component development and is normally not possible for a manufacturing company
or a process unit vendor alone.

 It seems thus possible that, in addition to the four component markets described in
Chapter 9.2 (components and generic frameworks, tools, application systems, services),
also a fifth market, that of domain-specific component frameworks may eventually
emerge in the automation domain21. Specialised expertise in the control domain can be
combined with software design technology, for example with design patterns, in
developing and deploying reusable component frameworks.

 The frameworks can then be marketed both to system integrators, process equipment
vendors and manufacturing end-users in a business-to-business market. The market
volume is relatively small but, on the other hand, the customers are, unlike in the
consumer market discussed in Chapter 9.2, accustomed to paying well for productive
solutions.

 The providers of domain-specific component frameworks within automation, can also
create new market opportunities, especially in cases in which the computational
infrastructure and generic component functionality is already in use. The platform of the

                                                     

21 There are already some early examples on this in the domain of telecommunications, most
notably ACE (Schmidt, 1998).



198

framework of this thesis, the COM component model and the NT operating system is one
example. EnterpriseJavaBeans is another, emerging platform. Furthermore, the end-user
companies have to have specific needs, which cannot be fulfilled with traditional systems
without compromising the business goals of the companies.

On the above premise, there seems to be potential in the batch control domain for
software vendors, who would operate in the fifth, domain-specific framework market:

•  To co-operate with system integrators in developing component frameworks (for
example intelligent unit allocation or exceptional condition handling) which
enhance a commercial system (for example InBatch, VisualBatch, or OpenBatch,
discussed in Chapter 2). When commercial control systems gradually develop
into a more software-component-based direction it will become easier to
incorporate component-based frameworks in them.

•  To co-operate with process equipment vendors in developing process unit
specific (on the Unit Supervision and Process Control levels of functionality)
frameworks. These could be marketed to end users as embedded parts of so-
called intelligent process units.22

•  To co-operate with technology-oriented manufacturing end users, the so-called
early adopters, using both of the approaches above (developing enhancing
frameworks or process unit specific frameworks). This could possibly also
succeed in joint operation with a system integrator or process equipment vendor.

 As indicated above, the fifth market will be, in the beginning at least, a mixed software
product and service market. The potential market volume and the correct timing for
market entry has, of course, to be thoroughly investigated, and both the technical risks,
discussed in Chapter 3.2, as well as business risks analysed and managed. The component
technology provides, however, interesting opportunities to start in a small way, in a

                                                     

22 The development from physical process unit vendors to equipment entity (see Chapter 2.2)
vendors has been common long before the emergence of component technology which can,
however, further intensify the development.



199

focused manner, and to first select the gains with high potential, as discussed in Chapter
9.2.

Batch process management has been appropriate as an example domain for the new
experimental framework of this thesis, due to the relative familiarity of the process
management (sub-)domain via the S88.01 (ISA, 1995) standard. Within Batch Process
Management, the market potential is mainly in enhancing the existing systems, which
have strong market positions.

It is, however, probable that process unit specific frameworks will prove to be
commercially more significant in terms of new products and services. The reasons for this
are:

•  Several process unit vendors are already committed to making their process units
truly autonomous, sometimes even intelligent (having local decision-making
capabilities). Enclosing the control knowledge of a specific physical unit into a
respective equipment entity may be a decisive competing factor for a process unit
vendor.

•  It is often beneficial, also, for manufacturing companies to encapsulate process
knowledge, for example business critical recipes. Within pulp and paper
industries, the recipes used in coating kitchens, are paper-grade-specific trade
secrets, not to be exposed to control system or process unit vendors. Components
and component frameworks also enable this kind of encapsulation.

•  Unit Supervision component frameworks can be built on the basis of inexpensive
solutions at Process Control level, because several control device and PLC
vendors provide their solutions with OPC-servers (OPC, 1998).

•  Component-based frameworks are easier to integrate into the new component-
based upper level management execution (MES) as well as into enterprise
resource planning (ERP) and  management (ERM) systems than the conventional,
non-component systems.

Multi-agency in the automation domain is useful when fulfilling the need to distribute
knowledge and provide problem-specific decision-making capability. Which architectural
concepts will be competitive is more difficult to anticipate. It seems possible that
agentified component frameworks can take their place beside pure multi-agent systems.
One reason for this is that the use of multi-agency is embedded, hidden in the framework.



200

It may also be made invisible to the operators, not familiar with the paradigm. The market
potential of multi-agency in the automation domain is also expected to be restricted to
specific problems, in contrast to components and domain-specific component
frameworks, which may gain wider ground.

9.3.2 On organisation and training

The main theme of this thesis is the development of an experimental batch control
framework. It is, however, worthwhile discussing the effects of deploying frameworks in
automation design as well as the organisation of development and deployment. This is
due to the fact that the domain-specific framework design, proposed in this thesis, cannot
be separated as clearly from the application-specific automation design as within
conventional control systems.

Based on the one hand on Chapter 9.2, and on the other hand the tradition of automation
design, a minimum organisational structure for successful component-based
development (CBD) within automation software can be suggested. It could consist of two
separate types of teams:

•  A team for component and framework development

•  A team for application system delivery

 The development team would belong to the automation software vendor organisation
whereas the delivery team might belong to the vendor organisation (turnkey deliveries),
to a separate system integrator, or even to the customer organisation (in-house
development). The development teams would be permanent, whereas the delivery teams
may be formed flexibly, in some cases for single projects. A more permanent team
organisation could be created, however, to advance and maintain, besides development
knowledge, also delivery knowledge within the organisation.

 When the development team defines the requirements for a domain-specific framework,
the commonalities of the domain must be captured. This should be based on domain
experience. Additionally, the development team has to have expertise on component
models, which act as platforms for the frameworks, as well as efficient component-
composition techniques, for example design patterns, as proposed in this thesis. A design



201

pattern based approach to develop domain-specific frameworks is discussed in detail in
Chapter 3.4.

When the delivery team analyses the user requirements and constructs models based on
them, also the supply of market or in-house components and frameworks has to be
considered. It is necessary to be familiar with the available COTS components already in
the requirements phase in order to avoid a mismatch between units of requirements
analysis and the ready-made components as units of execution, as indicated in Chapter
9.1.

Architectural frameworks, which have been developed by developer teams within system
vendors, will be used by parametrizing them and developing new functionality by
inheritance and composition. Potentially also the use of design-pattern based, application-
specific software development is needed. The emphasis in future deliveries will, however,
presumably be on component and framework composition using visual composition and
assembly tools.

Tommila (ATU, 1992) gives a good overall description of and guide to disciplined and
organised automation design practices. This approach successfully separates the iterative
phases of requirements analysis, functional specification, and design of the application-
specific automation. It considers the automation design process from the points of view of
process, control and organisation, having the automation degree as a central unifying
concept which strives to integrate the above-mentioned points of view.

However, the approach does not give help to the automation designer when he/she would
like to proceed in the analysis and design in an object-oriented or component-based
manner. This is natural because the technology provided by the present automation
systems largely follows the structured approach, and is based on the configuration of
function blocks, as previously noted. If and when new commercial control and process
management systems, based on distributed software components, emerge, the way in
which to design automation applications will also have to change.

There is thus a need to incorporate the techniques mentioned above, of software
component and framework development and delivery into the more general automation-
design process. It is, furthermore, possible that design patterns could be exploited, not
only for automation-software design, but also for general automation design. The essence
of design patterns is the capturing and reuse of design knowledge. Patterns have been
used, in addition to software design, for designing buildings and organisational



202

architectures, which are indeed very close to the points of view of process and
organisation in the automation design guide (ATU, 1992).

Considering the training implications of the above, it is obvious that automation
engineers will need substantially more knowledge on information technology and
software design capabilities when developing new plant-wide application systems. The
amount of the knowledge to be learned is vast considering the fact that there is not too
much obsolete content in the present curricula. One approach is to train automation
engineers who will have a broad general knowledge of control engineering and
information technology and who will specialise in one or several automation sub-
domains.

Fortunately, the present automation students seem to be capable of working responsibly in
teams whose members have various backgrounds and capabilities. This is necessary to
succeed in the challenging industrial automation tasks. In addition to project work, which
is at present an important learning by doing method when training engineers, there will
also be training given in working in conflicting roles, as leaders and team members in
developer and delivery teams, for example.

9.3.3 On future research and development

The business aspects of software components and frameworks, discussed previously in
this chapter, will be researched in more detail in a future project on technology
assessment. The goals of the project are to evaluate the technological foundations, as well
as market demand and supply for component software. Special emphasis will be put on
the analysis of the success factors, pitfalls and risks of component development and
deployment.

Component and framework technologies will also be incorporated into a research
programme, which is focused on virtual factories. One of the main tasks in that
programme is to develop a specification and prototypical implementation for a Supply
Chain Management (SCM) framework. The framework will be concentrated on the needs
of independent small and medium size companies, working in a close production co-
operation. Especially challenging, from the component and framework technology points
of view, is the fact that the goal is to reuse the same SCM framework in different types of
inter-organisational, network-based settings.



203

In the case of automation design, a co-operative project with Finnish industries has been
started. The goal of the project is to develop a guide for automation design and evaluation
which will support specification, documentation, quality assurance, and communication
between the various participants in all phases of the design process. The focus is on
applications, which have stringent requirements for the quality of automation. The project
also intends to incorporate object-oriented and component-based technologies in this
more general automation design process.

The batch process management framework, developed in this thesis, has already been
used in training engineers in component-based software development and in multi-
agency. The research and development experience shall, however, be further exploited for
didactic purposes. Important ideas have been gained for curriculum development,
focusing on a more comprehensive deployment of modern information technologies in
automation engineering. For example, the integration of software components and
component frameworks into commercial control systems gives an opportunity to integrate
automation-software development training (developer team tasks) with automation-design
training (delivery team tasks).

The projects and tasks above are concrete, i.e. incipient or ongoing research and
development in the area of components and frameworks. The (more recent) multi-agency
approach developed in this thesis, the agentifying of components, is considered to be one
feasible way to solve application or domain-specific problems within a component
framework. The ideas for its further application, presented next, are still in a conceptual
phase.

The dynamic unit-allocation approach of this thesis can be generalised into problems
concerning long-term resource reservation, with the help of agentified components. This
approach presupposes, in addition to the agentifying of relevant components, also further
architectural modelling of process cell equipment. When developing longer term,
proactive agent functionality, there are also interesting possibilities for adaptive planning,
discussed in Chapter 4.2.

There is also potential for agency within control room user interfaces. Personalised and
semi-autonomous user assistance functionality can be based on the operators’ cognitive
models of the controlled process. This functionality may be embedded as agentified
components into a user-interface framework. In this kind of research and development the
potential of human-machine psychology and new information technology could be
integrated and realised into novel user-interface concepts.



204

References

Aarsten, A. & Brugali, D. From Object Orientation to Agent orientation. In: Proceedings
of ICRA'97 Workshop on Object Oriented Methods for Distributed Control
Architectures. Albuquerque, New Mexico, 1997.

Aarsten, A., Elia, G., Menga, G. G++ : A Pattern Language for Computer-Integrated
Manufacturing. In: Pattern Languages of Program Design, Addison-Wesley (Software
Patterns Series), 1995.

Aitken, J. et al. A Knowledge Level Characterisation of Multi-Agent Systems.
Proceedings of The ECAI-94 Workshop on Agent Theories, Architectures, and
Languages, Amsterdam, The Netherlands, August 1994, pp. 179 ... 190.

Alexander, C., Ishikawa, S. & Silverstein, S. A Pattern Language. Oxford University
Press, 1977.

Arnold, K. & Gosling, J. The Java Programming Language, 2. Ed., Addison-Wesley,
1998.

ATU, Process control and management - task definition of process automation. Suomen
Automaation Tuki Oy (ATU), 1992 (in Finnish).

Barbuceanu, M. & Fox, M. COOL: A Language for Describing Coordination in Multi-
Agent Systems. In: Proceedings of the First International Conference on Multi-Agent
Systems, AAA Press/The MIT Press, 1995.

Barbuceanu, M. & Fox, M. Integrating Communicative Action, Conversations and
Decision Theory to Coordinate Agents. Proceedings of the ACM Agents’97 Conference,
USA, 1997.

Basili, V. The Role of Experimentation in Software Engineering: Past, Current, and
Future, Proceedings of ICSE-18, IEEE, 1996, pp. 442 … 449.

Batory, D. & Geraci, B. Composition Validation and Subjectivity in GenVoca
Generators. IEEE Transactions on Software Engineering (special issue on Software
Reuse), February 1997, pp. 67 … 82.



205

Beck, K. & Cunningham, W. Using Pattern Languages for Object-Oriented Programs.
Technical Report No. CR-87-43, Submitted to the OOPSLA-87 Workshop on the
Specification and Design for Object-Oriented Programming,
http://c2.com/doc/oopsla87.html, [referenced 29.4.1999]

Beck, K. & Johnson, R. Patterns Generate Architectures. European Conference On Object
Oriented Programming, ECOOP’94, 1994.

Booch, G., Rumbaugh, J. & Jacobson, I. The Unified Modeling Language User Guide.
Addison-Wesley, 1999.

Bosch, J. Adapting Object-Oriented Components. Proceedings of the 2nd International
Workshop on Component-Oriented Programming, 1997.

Box, D. Essential COM. Object Technology Series. Addison-Wesley, 1998.

Bradshaw, J.M. et al. KAoS: Toward an industrial-strength open agent architecture. In:
J.M. Bradshaw (Ed.) Software Agents. AAAI/MIT Press, 1997, pp. 375 … 418.

Brandl, D. Making Batch Plants Bloom. Chemical Engineering, June 1998, pp. 72 … 79.

Brockschmidt, K. Inside OLE, Microsoft Press, 1995.

Brooks, R. Intelligence without representation. Artificial Intelligence 47 (1991), pp. 139
... 159.

Brown, K., Eskelin, P. & Pryce, N. Component Design Patterns: A Pattern Language for
Component-Based Development. http://c2.com/cgi/wiki?ComponentDesignPatterns,
[referenced 23.4.1999]

Buchi, M. & Weck, W. A Plea for Grey-Box Components. TUCS Technical Report No
122, Turku Centre for Computer Science, 1997.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. & Stal, M. A System of
Patterns - Pattern-Oriented Software Architecture. Wiley, 1996.

Chauhan, D. & Baker, A. Developing Coherent Multiagent Systems using JAFMAS. In:
Proceedings of the Third International Conference on Multi-Agent Systems, IEEE
Computer Society, 1998.



206

Cohen, P. & Levesque, H. Communicative actions for artificial agents. In: Software
Agents, AAI Press/The MIT Press, 1997.

Cohen, P. & Levesque, H. Intention is Choice with Commitment. Artificial Intelligence,
42 (1990), pp. 213 ... 261.

Coplien, J. & Schmidt, D. Pattern Languages of Program Design. Addison-Wesley
(Software Patterns Series), 1995.

Cox, B. Planning for software industrial revolution. IEEE Software, vol. 7, 1990.

D’Souza, D. Interface Specification, Refinement, and Design with UML/Catalysis.
Journal of Object Oriented Programming, June 1998.

D’Souza, D. & Wills, A. Pattern 16.15 Role Decoupling. In: Objects, Components, and
Frameworks with UML – The Catalysis Approach, Addison Wesley, 1999.

Dagermo, P. & Knutsson, J. Development of an Object-Oriented Framework for Vessel
Control Systems. Technical Report, ESPRIT III/ESSI Project, nr.10496, 1996.

De Hondt, K., Lucas, C. & Steyaert, P. Reuse Contracts as Component Interface
Descriptions. Proceedings of the 2 nd International Workshop on Component-Oriented
Programming, 1997.

Dean, T. & Wellman, M. Planning and Control. Morgan Kaufmann Publishers Inc., USA,
1991.

Doscher, D., et al. (editors), SEMATECH Computer Integrated Manufacturing (CIM)
Framework Architecture Guide. V1.0, 1997.

Doscher, D., et al. (editors), SEMATECH Computer Integrated Manufacturing (CIM)
Framework Specification. V2.0, 1998.

Ferguson, I. On the role of BDI modeling for integrated control and coordinated behavior
in autonomous agents. Applied Artificial Intelligence, 9 (1995), pp. 421 ... 447.

Fikes, R. & Nilsson, N. STRIPS, a retrospective. Artificial Intelligence 59 (1993), pp.
227 ... 232.



207

Finin, T., Labrou, Y. & Mayfield, J. KQML as an Agent Communication Language. In:
Software Agents, AAI Press/The MIT Press, 1997.

FIPA, Foundation For Intelligent Physical Agents. FIPA 97 Specification, Version 2.0,
Part 2, Agent Communication Language, 1998.

Fisher, T. Batch control systems: Design, application, and implementation. Instrument
Society of America (ISA), 1990.

Fleming, D. & Schreiber, P. Batch Processing Design Example, World Batch Forum,
1998.

Fowler, M. & Scott, K. UML Distilled - Applying the Standard Object Modeling
Language. Addison-Wesley, 1997.

Franklin, S. & Gaesser, A. Is it an agent, or just a program ? In Intelligent Agents III,
Springer-Verlag, 1997, pp. 21 … 36.

Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design Patterns - Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

Gamma, E. Extension Object. In: Pattern Languages of Program Design 3, Addison-
Wesley, 1998.

Garlan, D. & Perry, D. Special Issue on Software Architecture. IEEE Transactions on
Software Engineering, vol. 21, no. 4, April 1995.

Genesereth, M. An Agent-Based Framework for interoperability. In: Software Agents,
AAI Press/The MIT Press, 1997.

Genesereth, M. & Fikes, R. Knowledge Interchange Format Version 1. Reference
Manual, Stanford University, 1992.

Genesereth, M. Knowledge Interface Format Specification. X3T2 Group on KIF, 1995.

Guilfoyle, C. Vendors of Intelligent Agent Technologies: A Market Overview. In:
Jennings, N. & Wooldridge, M. (Ed.) Agent Technology. Springer-Verlag, 1998, pp. 91
… 104.



208

Haikala, I. & Märijärvi, J. Software Engineering, Suomen ATK-kustannus, 1997 (in
Finnish).

Halme, A. et al. Bacterium Robot Society - A Biologically Inspired Multi-Agent Concept
for Internal Monitoring and Controlling of Processes. IEEE/RSJ International Conference
on Intelligent Robots and Systems, 1996.

Haxthausen, N. Bottlenecks in batch integration - can standards help remove them ?
Proceedings of the World Batch Forum 1998.

Hayes-Roth, B. An architecture for adaptive intelligent systems. Artificial Intelligence 72
(1995), pp. 329 ... 365.

Hayes-Roth, B. Architectural Foundations for Real-Time Performance. In: Intelligent
Agents, The Journal of Real-Time Systems, 2 (1990), pp. 99 ... 125.

Heikkilä, A., Kuikka, S., Tommila, T. & Ventä, O. Intelligent batch control - disciplined
control engineering and advanced software technology. Automation Technology Review
1997, VTT Automation, pp. 38 … 47.

Hodges, B. Component Specification and Conformance: What Components must Expose
to Compose. Position Paper for the OMG/DARPA Workshop on Compositional Software
Architectures, Monterey, USA., January 1998.

IBM Agent Building Environment Developer's Toolkit. Level 6, IBM Intelligent Agent
Center of Competence, 1997a.

IBM, IBM SanFrancisco Technical Summary, 1997b,
http://www.software.ibm.com/ad/sanfrancisco/prd_summary.html, [referenced
23.4.1999].

IBM, IBM Taligent, Building Object-Oriented Frameworks, 1995,
http://www.ibm.com/java/education/oobuilding/index.html, [referenced 23.4.1999].

IEC IEC 61512-1: Batch control - Part 1: Models and terminology. Final draft
international standard, 1997, International Electrotechnical Commission (IEC).

InBatch, InBatch User’s Guide. Wonderware Inc., 1998.



209

ISA, ISA-S88.01-1995, Standard: Batch Control. Part 1: Models and Terminology. The
International Society for Measurement and Control, 1995.

ISA, ISA-dS88.02-1999a, Standard draft: Batch control - Part 2: Data structures and
Guidelines for programming languages. Draft 13, 1999. Instrument Society of
America(ISA).

ISA, ISA-dS95.01-1999b, Standard draft: Enterprise – Control System Integration - Part
1: Models and Terminology. Draft 11, 1999. Instrument Society of America(ISA).

ISA, Practical Guides for Measurement and Control: Batch Control., 1996, Instrument
Society of America(ISA).

ISA-TR88, ISA-TR88.0.03-1996, Technical Report: Possible Recipe Procedure
Presentation Format. The International Society for Measurement and Control, 1996.

ISO 10628, Flow diagrams for process plants - Part 1: General rules. International
Organization for Standardization (ISO), draft international standard, May 1992.

Jacobson, I., Griss, M. & Jonsson, P. Software Reuse - Architecture, Process and
Organization for Business Success. ACM Press, Addison-Wesley, 1997.

Jennings, N. et al. Controlling cooperative problem solving in industrial multi-agent
systems using joint intentions. Artificial Intelligence 75 (1995) pp. 195 … 240.

Jennings, N. et al. A Roadmap of Agent research and Development. Autonomous Agents
and Multi-Agent Systems. Vol. 1(1998), No.1, pp. 7 … 38.

Johnson, R. Documenting Frameworks using Patterns. Proceedings of OOPSLA, Object-
Oriented Programming Systems, Languages and Applications, 1992.

Johnsson, C. & Årzen, K-E. Grafchart and Batch Recipe Structures. World Batch Forum,
USA, 1998.

Johnsson, C. & Årzen, K-E. Batch Recipe Structuring using High-Level Grafchart. USA,
IFAC’1996a.

Johnsson, C. & Årzen, K-E. Object Tokens in High-Level Grafchart. CIMAT’1996b,
France.



210

Karhela, T., Kuikka, S. & Paljakka, M. Application of Web Browser and Software
Component Technologies in Operator User Interfaces in Process Simulation: A Case
Study on dynamic Simulation of a Rotary Lime Kiln. Eurosim Congress, 1998.

Kendall, E. et al. Multiagent system design based on object-oriented patterns. Journal of
Object Oriented Programming, June 1997.

Kent, S. Constraint Diagrams: Visualising Invariants in Object-Oriented Models.
Proceedings of OOPSLA, Object-Oriented Programming Systems, Languages and
Applications, 1997.

Kopetz, H. Component-based design of large distributed real-time systems. Control
Engineering Practice 6, 1998.

Kruchten, P. The 4+1 View Model of Architecture. IEEE Software, November 1995, 12
(6), pp. 42 … 50.

Kruglinski, D. Inside Visual C++. Microsoft Corporation, 1996.

Kuikka, S. An Experimental Framework for Batch Process Management. World Batch
Forum (WBF’99), USA, 1999.

Kuikka, S. & Karhela, T. Application of Software component and Web browser
technologies in Automation. Helsinki University of Technology, Information and
computer systems in automation, Report 1, June 1998.

Kuikka, S. Requirements Definition and Specification in Automation Software
Production, Licentiate thesis, Tampere University of Technology, 1985 (in Finnish).

Kuikka, S. On Batch automation components. Project report of SWFBatch-project, VTT
Automation Industrial Automation, 1998a.

Kuikka, S. On Batch automation component interfaces and the responsibilities of OPC
client and server. Project report of SWFBatch-project, VTT Automation Industrial
Automation, 1998b.

Kuikka, S. Planning and Control. Helsinki University of Technology, Seminar on
Knowledge Engineering, 1997, http://www.cs.hut.fi/~sto/planning-
seminaari/kuikka/sk_tutkielm1.htm, [referenced 23.4.1999]



211

Kuikka, S., Tommila, T. & Ventä, O. Distributed Batch Process Management Framework
based on Design patterns and Software Components. World Congress of International
Federation of Automatic Control (IFAC’99), 1999.

Kuikka, S. & Valtari, K. Distributed Multi-Agent Systems, an interaction oriented
approach. Helsinki University of Technology, Software Agents Seminar, 1998,
http://smartpush.cs.hut.fi/SoftwareAgents/Seminarpapers/Distributed_Multi-
Agent_Systems/Distributed_Multi-Agent_Systems.htm, [referenced 23.4.1999]

Kuikka, S. & Ventä, O. Object oriented, distributed batch control architecture.
Proceedings of Automation Days 97, 1997.

Kuroda, C. & Ishida, M. A Proposal for Decentralized Cooperative Decision-Making in
Chemical Batch Operation. Engineering Applications of Artificial Intelligence, Vol. 6
(1993), No. 5, pp. 399 ... 407.

Labrou, Y. & Finin, T. A Proposal for a new KQML Specification. CSEE/UMBBC,
Technical Report CS-97-03, February 1997.

Lavender, K. & Schmidt, D. Active Object - An Object Behavioral Pattern for Concurrent
Programming. Proceedings of ACM Conference on Object Oriented Programming
Systems, Languages and Applications, OOPSLA, 1996.

Lesser, V. Multiagent Systems: An Emerging Subdiscipline of AI. ACM Computing
Surveys, Vol. 27(1995), No. 3, pp. 340 ... 342.

Lieberman, H. Integrating User Interface Agents with Conventional Applications.
Proceedings of the ACM Conference on Intelligent User Interfaces, January 1998.

Lieberman, H. Using Prototypical Objects to Implement Shared Behavior in Object
Oriented Systems. Proceedings of First ACM Conference on Object Oriented
Programming Systems, Languages and Applications, OOPSLA, 1986.

Lindqvist, U. & Jonsson, E. A Map of Security Risks Associated with Using COTS.
IEEE Computer, June 1998.

Martin, R., Riehle, D. & Buschmann, F. Pattern Languages of Program Design 3.
Addison-Wesley (Software Patterns Series), 1997.



212

Mayer, B., Mingins, C. & Schmidt, H. Providing Trusted Component to the Industry.
IEEE Computer, May 1998.

Mayer, B. Object-Oriented Software Construction. 2nd ed., Prentice-Hall 1997.

Mayer, B. Tell Less, Say More: The Power of Impliciteness. IEEE Computer, July 1998.

Microsoft, The Component Object Model Specification. Draft Version 0.9. Microsoft
Corporation and Digital Equipment Corporation, 1995.

Microsoft, Microsoft Windows NT Server DCOM Technical Overview White Paper,
Microsoft Corporation, 1996.

Mikhajlov, L. & Sekerinski, E. A Study of The Fragile Base Class Problem. 12th
European Conference on Object-Oriented Programming (ECOOP’98), Brussels, Belgium,
1998.

Mueller, J. et al. Modeling Reactive Behaviour in Vertically Layered Agent
Architectures. Proceedings of The ECAI-94 Workshop on Agent Theories, Architectures,
and Languages, Amsterdam, The Netherlands, August 1994, pp. 261 ... 276.

Mueller, J. The design of Intelligent Agents. Springer Verlag, 1996.

Musliner, D. et al. World modeling for the dynamic construction of real-time control
plans. Artificial Intelligence 74 (1995), pp. 83 ... 127.

Noble, J. Classifying Relationships between Object-Oriented Design Patterns. 1998,
http://www.mri.mq.edu.au/~kjx/classify.ps [referenced 29.4.1999]

OLE, OLE 2 Programmer’s Reference. Microsoft Corporation, 1995.

OMG, The Common Object Request Broker: Architecture and Specification. Object
Management Group, 1995.

OPC, OLE for Process Control. Data Access Standard V2.0, OPC Foundation, USA,
1998.

OpenBatch, OpenBatch 3.1 Professional Edition. Technical Brief. Sequencia Corporation,
USA, 1999.



213

Plasil, F. & Stal, M. An architectural view of distributed objects and components in
CORBA, Java RMI and COM/DCOM. Software – Concepts & Tools, No. 19, 1998, pp.
14 … 28.

Pree, W. Hot-spot-driven framework development. Summer School on Reusable
Architectures in Object-Oriented software Development, Tampere, Finland, 1995.

Rabelo, R. & Camarinha-Matos, L. Negotiation in Multi-agent based Dynamic
Scheduling. Robotics and Computer-Integrated Manufacturing Vol. 11 (1994), No. 4, pp.
303 ... 309.

Roberts, D. & Johnson, R. Evolve Frameworks into Domain-Specific Languages.
Proceedings of the 3rd International Conference on Pattern Languages for Programming,
USA, September 1996.

Rogerson, D. Inside COM. Microsoft’s Component Object Model. Microsoft Press, 1997.

Rosenof, H. & Ghosh, A. Batch process automation - Theory and practice. New York,
Van Nostrand Reinhold Company Inc., 1987.

Rosenschein, R. & Zlotkin, G. Rules of Encounter. The MIT Press, 1994.

Rumbaugh, J. et al. Object-Oriented Modelling and Design. Prentice Hall, 1991.

Russel, S. & Norvig, P. Artificial intelligence - A Modern Approach. Prentice Hall, USA,
1995.

Schmidt, D. An Architectural Overview of the ACE Framework. A Case-study of
Successful Cross-platform Systems Software Reuse. USENIX login magazine, Tools
special issue, November, 1998.

Schmidt, D., Johnson, R. & Fayad, M. Communications of the ACM. Special Issue on
Patterns and Pattern Languages, Vol. 39, No. 10, October 1996.

Schmidt, D. Using Design Patterns to Develop Reusable Object-Oriented Communication
Software. Communications of the ACM, Vol. 38, No. 10, October 1995.

Sharratt, P. Chemicals manufacture by batch processes. In: Handbook of Batch Process
Design, Blackie Academic and Professional (Chapman & Hall), 1997.



214

Silva, A. & Delgado, J. The Agent Pattern: A design Pattern for Dynamic and Distributed
Applications. Third European Conference on Pattern Languages of Programming and
Computing, 1998.

Simensen, J., et al. A Multiple-View Batch Plant Information Model. PSE’1997, Norway,
1997.

Smith, R. The contract net protocol: High-level communication and control in a
distributed problem solver. IEEE Transactions on Computers 29, 1980.

Soni, D. et al. Software Architecture in Industrial Applications. Proceedings of the 17th,
International Conference on Software Engineering, Seattle, Washington USA, 1995.

Sun Microsystems, Enterprise JavaBeans Architecture Specification V1.0, Sun
Microsystems, 1998.

Szyperski, C. Component Software - Beyond Object-Oriented Programming. Addison -
Wesley, 1998.

Thompson, C. (editor), Workshop Report, Workshop on Compositional Software
Architectures. Monterey, USA, 1998.

Tittus, M., Egardt, B. & Lennartson, B. Plant and Product Models for Batch Processes. 3rd

European Control Conference, Italy, 1995.

Tittus, M. & Egardt, B. On the Use of Multiple Models and Formal Control Synthesis in
Batch Control. 13th World Congress of IFAC, USA, 1996.

Tommila, T. Batch process automation. Espoo, Technical Research Centre of Finland
(VTT), Research Notes 1487, 1993 (in Finnish).

Tommila, T. On the implementation of batch automation components. Project report of
SWFBatch-project, 1998.

UML Object Constraint Language (OCL) Specification, 1997.

Vayda, T. Organizing for Components – Managing risk and maximizing reuse.
Component Strategies, February 1999.



215

VisualBatch, VisualBatch 3.0 Electronic Books. Intellution Inc. 1998.

Vlissides, J., Coplien, J. & Kerth, N. Pattern Languages of Program Design 2. Addison-
Wesley (Software Patterns Series), 1996.

Vlissides, J. Pattern Hatching - Design Patterns Applied. Addison-Wesley, 1998.

Voas, J. Certifying Off-the-Shelf Software Components. IEEE Computer, June 1998.

Williams, T. (editor) A Reference Model For Computer Integrated Manufacturing (CIM)
- A Description from the Viewpoint of Industrial Automation. CIM Reference Model
Committee of International Purdue Workshop on Industrial Computer Systems,
Instrument Society of America, 1989.

Winograd, T. A Language/Action Perspective on the Design of Cooperative Work.
Human-Computer Interaction 3:1 (1987-88), pp. 3 … 30.

Wooldridge, M. Agents as a Rorschach Test. In: Intelligent Agents III. Springer-Verlag,
1997, pp. 47 … 48.

Åkesson, K. & Tittus, M. Modular Control for Avoiding Deadlock in Batch processes.
World Batch Forum, USA, 1998.

Årzen, K-E & Johnsson, C. Object-oriented SFC and SP88 recipes. World Batch Forum,
Canada, 1996.



Published by

Vuorimiehentie 5, P.O.Box 2000, FIN-02044 VTT, Finland
Phone internat. +358 9 4561
Fax +358 9 456 4374

Series title, number and
report code of publication

VTT Publications 398
VTT–PUBS–398

Author(s)
Kuikka, Seppo

Title

A batch process management framework
Domain-specific, design pattern and software component based
approach

Abstract
Requirements for product and production quality and variability, as well as the needs for the
efficient use of production equipment, have emphasised the benefits of batch production in the
process industries. The resulting complexity of batch control has, however, been a challenge to
control engineers. Emerging batch standards and software component technologies have now made
it possible to design flexible, distributed, and integrated batch automation concepts to satisfy the
requirements.
The batch control domain was studied in this thesis in terms of domain standardisation, existing
batch control systems, and related research approaches. The applicable information technology,
object-oriented software component frameworks and multi-agency, was surveyed and evaluated.
Guidelines for deploying generic software design patterns in designing domain-specific
frameworks, were adapted.
An experimental batch process management framework, was developed to fulfil the
aforementioned flexibility, distribution and integration needs for batch automation. It also
demonstrates reusability by the so-called calling framework architectural style as well as internal
and external component interfaces. Framework components may be easily parametrized and
replaced by customised versions. Additionally, the framework can be integrated with other systems
by using component technology.
For some problem specific needs of local decision-making and interaction, enhancement of
component frameworks may be needed. No applicable design patterns were found for this kind of
design issue. Since the design problem is recurrent, a generic design pattern, Agentified
Component, was developed and experimented with within the framework of this thesis. The
approach retains the deterministic nature of the framework, important in the automation domain,
but simultaneously introduces the possibility of solving specific problems using a knowledge-based
approach.
Keywords

batch control, object-oriented software, batch process management, framework, design pattern, software
component, software agent

Activity unit
VTT Automation, Industrial Automation, Tekniikantie 12, P.O.Box 1301, FIN–02044 VTT, Finland

ISBN Project number
951–38–5541–4 (soft back ed.)
951–38–5542–2 (URL: http://www.inf.vtt.fi/pdf/)

A9SU00171

Date Language Pages Price
November 1999 English 215 p. E

Name of project Commissioned by
VTT Automation,
National Technology Agency (Tekes)

Series title and ISSN Sold by
VTT Publications
1235–0621 (soft back ed.)
1455–0849 (URL: http://www.inf.vtt.fi/pdf/)

VTT Information Service
P.O.Box 2000, FIN–02044 VTT, Finland
Phone internat. +358 9 456 4404
Fax +358 9 456 4374


	Abstract
	Preface
	Contents
	Abbreviations
	Glossary
	1. Introduction
	1.1 Motivation and background
	1.2 Hypotheses and goals of the study
	1.3 Research approaches and methods
	1.4 Contributions
	1.5 Structure of the thesis

	2. Batch Control as a Development Domain
	2.1 Introduction
	2.2 Standardisation
	2.2.1 Background
	2.2.2 Batch process, equipment, and equipment control
	2.2.3 Recipes
	2.2.4 Batch control activities

	2.3 Batch control systems
	2.3.1 Background
	2.3.2 Batch process, equipment, and equipment control
	2.3.3 Recipes
	2.3.4 System architectures

	2.4 Related batch research
	2.4.1 Background
	2.4.2 Batch process, equipment, and equipment control
	2.4.3 Recipes
	2.4.4 Architectural concepts


	3. Object-oriented Software Component Frameworks
	3.1 Introduction
	3.2 Objects and components
	3.2.1 Object orientation in short
	3.2.2 Software component technology
	3.2.3 Component composition

	3.3 Design patterns
	3.3.1 Background and definitions
	3.3.2 Pattern collections and languages
	3.3.3 On the domain independence and uniqueness of design patterns

	3.4 Domain frameworks
	3.4.1 Background and definitions
	3.4.2 Designing domain frameworks with patterns
	3.4.3 On example frameworks


	4. Multi-agency
	4.1 Introduction
	4.2 Agents
	4.2.1 Background and definitions
	4.2.2 Agent architectures in short
	4.2.3 Knowledge representation
	4.2.4 Planning and execution of plans

	4.3 Multi-agent interaction
	4.3.1 Background
	4.3.2 Agent communication
	4.3.3 Co-operative agent negotiation

	4.4 Multi-agent systems
	4.4.1 Background
	4.4.2 Domain independent multi-agent systems
	4.4.3 Multi-agent systems in automation domain
	4.4.4 Developing multi-agent applications


	5. The Research and Development Problem
	5.1 Introduction
	5.2 Justification of the approach from the domain point of view
	5.2.1 In reference to the standard and advanced industrial needs
	5.2.2 In reference to existing batch automation systems
	5.2.3 In reference to the research work in batch control

	5.3 Justification of the approach from the technology point of view
	5.3.1 In reference to component technology
	5.3.2 In reference to design patterns
	5.3.3 In reference to domain-specific frameworks
	5.3.4 In reference to multi-agent technology


	6. The Development of the Batch Process Management Framework
	6.1 Introduction
	6.2 Logical models - requirements definition
	6.2.1 Use cases
	6.2.2 Object classes
	6.2.3 Scenarios

	6.3 Subsystems - architecture and structures
	6.3.1 Layers pattern
	6.3.2 Broker pattern
	6.3.3 Model -View-Controller pattern

	6.4 Dynamics - behaviour and interoperation
	6.4.1 State pattern
	6.4.2 Observer pattern
	6.4.3 Mediator pattern

	6.5 Distribution - distributed components and multithreading
	6.5.1 Proxy pattern
	6.5.2 Active Object pattern
	6.5.3 Deployment


	7. The Reuse and Enhancement of the Framework
	7.1 Introduction
	7.2 Use and reuse
	7.2.1 Customising the framework components
	7.2.2 Connecting the framework to a DCS

	7.3 Enhancement by agentifying
	7.3.1 Problem definition
	7.3.2 Agentified Component pattern
	7.3.3 Problem solution


	8. Conclusions
	9. Considerations
	9.1 Introduction
	9.2 Components and frameworks in general
	9.2.1 Background for commercial deployment
	9.2.2 Market potential
	9.2.3 Software development process and organisation

	9.3 The approach of this thesis
	9.3.1 On potential market impact
	9.3.2 On organisation and training
	9.3.3 On future research and development


	References

