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Abstract
A component framework is based on a software architecture, a set of compo-
nents and their interaction mechanisms. This thesis examines the component-
based software development by reviewing the requirements for a component
framework development, proposing a model of a component framework of a
distributed control systems family and demonstrating results with cases drawn
from the control systems families.

The product families of the machine control systems, process control systems
and manufacturing systems are studied to set the requirements for the component
framework. Three main problems are discovered. A lack of appropriate model-
ling methods prevents describing product features and variability at the software
architecture level. Interoperability and adaptability of software components that
are required in the integration phase are inadequate in most cases. Furthermore,
integrators and maintenance staff also need support software for extending and
upgrading systems.

The component framework of a distributed control systems family introduces
two dimensions: tiers and elements. The three tiers of the component framework
define the subsystems in the first tier, integration platform in the second tier, and
the product family in the third their. The tiers explain the domain, technology
and business viewpoints of the framework correspondingly. The elements define
the product features, software architecture, components and their interaction
mechanisms. The development and utilisation of the component framework have
three main tasks, described as the viewpoints of the component-based software
development, concurrent software engineering and software configuration man-
agement.

The development of the component framework is presented by the development
of the reuse assets: the product features, product-family architecture and soft-
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ware components. The architecture styles, key-mechanisms, services and com-
ponents of each tier are depicted. The framework mixes agent, layered, client-
server and rule-based system architectures and their mechanisms to provide a
coherent solution for software flexibility and stability required by the product
families.

The results are analysed as regards the evaluation criteria, set for the component
framework as the result of the problem analysis. Variability and adaptability are
examined at the architecture and component level, as well as the interoperability
of tiers, services and applications and interchangeability of product features and
components.

The adaptive approach restricts the affects of the changes in the business, tech-
nology and application domain to the corresponding tiers that provide their own
mechanisms for adaptability. The integration tier could be reused community-
wide, whereas the subsystem tier is domain-specific and the product-family tier
is always an organisation-dependent solution.
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1. Introduction
The life cycle of embedded systems produced by the electronic and software
industry is continuously shortening due to the acceleration of technologies and
cutting time-to-market. Real-time and embedded systems are integrated into the
products in many technology areas, for instance in different kinds of automation
systems controlling production and machines.

Historically software reuse focused on reusing code. The use of design methods
and CASE tools encouraged reuse of software designs and thereafter, reuse of
software architectures and components (Prieto-Diaz 1987; Seppänen 1990; Tracz
et al. 1993). There is no mutual understanding of, what software architecture and
a component are, and they have different definitions according to the context
they are set (Szyperski 1997; Clements 1996; Bass et al. 1998b). Nevertheless,
the effectiveness of software reuse depends on how the different viewpoints of a
software architecture and components are taken into consideration and commit-
ted by their stakeholders. Architectural styles and patterns, product-family ar-
chitectures, connectors and configuration of components, for example, are dif-
ferent approaches to reuse software architectures and components (Shaw 1995;
Bushmann et al. 1996; Bass et al. 1998b; Brown & Wallnau 1998; Bishop &
Faria 1996).

A component framework is based on a software architecture, a set of compo-
nents and their interaction mechanisms. This thesis examines component frame-
works applied to the distributed control systems domain. We review require-
ments for a component framework development, propose a model of a compo-
nent framework of a distributed control systems family, and demonstrate results
with cases drawn from the families of machine control systems, process control
systems and manufacturing systems.

1.1 The need for component frameworks

Software reuse can be considered from the viewpoints of the organisation, the
development process, technology, and products. The organisation sets the long-
term objectives by specifying business goals and market segments. The devel-
opment work has organisational and process aspects that define the work-
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allocation, used engineering methods and tools, whereas technology provides
alternatives that are limited by the requirements of the distributed control sys-
tems family.

Distributed control systems are automated systems that are controlled by embed-
ded microcomputers and programmable logic, as well as personal computers and
workstations. Distribution modularises and adjusts the level of automation, and
networks, such as field-buses and local area networks, are used for connecting
heterogeneous subsystems. Subsystems are developed in concurrent engineering
processes, each of which is concentrating on its own aspects, e.g. mechanics,
electronics, and software (Rossak et al. 1994). Due to the complexity of the
software of distributed systems, the software is normally decomposed into
smaller, less complex parts, which are allocated to engineering teams and sub-
contractors. Therefore, there is a need for a development method that systemati-
cally guides and supports the development of software components, which are
interoperable but can be produced independently. Independence of a software
component does not only assist in allocating resources but also helps to integrate
a system through carefully designed interfaces and guidelines how to use them.

The use of third party components is remarkable in the development of distrib-
uted control systems. In process control systems, for example, over 80 % of
software components are third party components and the system development by
integration is the most general manner in the engineering practice (George &
Kryal 1996). Many software development problems arise in the integration
phase, often due to missing standard interfaces, resulted from their poor per-
formance, lack of knowledge and training time required for their use. However,
the diversity of communication protocols and media is a problem that control
engineers are aware of and there is ongoing research into more flexible solutions
(Siegel 1996; Cysewski et al. 1998; Polze & Sha 1998). Therefore, the most
complicated parts of the distributed software, that is the communication of dis-
tributed applications should be standardised and designed as common communi-
cation rules used by each application.

Software architecture is often poorly designed and misunderstood by application
developers because a uniform architecture description language is missing or it
should be adapted to existing modelling methods (Robbins et al. 1997; Clements
1996; Perry & Kramer 1998). Development methods need adaptation to the ap-
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plication domain and training to use them. Software architecture is usually de-
scribed as functional blocks and interconnection between them. Non-functional
requirements, called also quality requirements, are defined as constrains in hard
real-time and safety critical systems. Designers or, at the latest programmers,
make their own decisions how quality requirements are implemented and there-
fore, the system may have different kinds of policies, for example in error han-
dling and resource allocation. This may lead to an unbalanced and inefficient
solution and produce additional problems in integration and maintenance.

Systems themselves are complicated, but it is more complicated to design a
software architecture that can be utilised for a product family of distributed sys-
tems. Seldom do application developers have such a knowledge or understanding
about a product family that they can define, which features should or should not
be changed in the systems family. Especially, if the developers work in several
co-operating organisations, reasons behind design decisions are often blurred
(Dolan et al. 1998).

Diversity in product features, resulted from the needs of market segments, has
brought out plenty of problems in software development: inability to describe
product variants clearly, to understand descriptions of product variants, and to
maintain product variations. There is a lack of modelling methods and tech-
niques for deriving commonality and variability of a product family. The meth-
ods are needed for separating generic and specific parts of the software and for
documenting them completely (van den Hamer et al. 1998). A method for cus-
tomising the software architecture and components for a product variant has
been lacking. Digre (1998) proposed a component description language (CDL)
as a solution for defining semantic contracts for business object components that
utilise the CORBA framework as an execution environment. However, it sup-
poses that the domain framework already is available. Customising and configu-
ration is essential when the cost-effectiveness of the software development is
considered. The development of software architecture for a product family is
time-consuming and expensive, and repayment can happen only by reusing it, in
the best case several times during the life cycle in installing and upgrading a
distributed control system.

As a summary, in the distributed control systems domain there is a need for the
means to develop software to provide a coherent solution for the marketing,
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system designers, application development, systems integration, and mainte-
nance. A component framework provides an architecture, a set of components
and their interaction mechanisms, and therefore, a component framework has
been seen as a concrete and promising means to increase software reuse and
share reusable assets among the stakeholders.

1.2 Component framework architectures

1.2.1 Definitions

Software architecture is an abstract and overall design description of a system
integrating different issues that are separate but have a contrary influence on
each other (Szyperski 1997; Bass et al. 1998b). Component-based software ar-
chitecture is a structure of the system including software components, the exter-
nally visible properties of those components and relationships among them (Bass
et al. 1998b). Stakeholders, i.e. people and organisations that are interested in the
development of systems, have different concerns that they wish the system to
provide. Therefore, the software architecture seeks out for balances between
understandability, functionality, and economy and provides the basis for inde-
pendence and co-operation of software components. A layered architecture is a
traditional bottom-up software architecture that decomposes software hierarchi-
cally.

Brown and Wallnau (1998) summarises several definitions of a software compo-
nent that diverge from each other concerning the size, autonomy and context of a
component to some extent. The large-grained nature of a component emphasis
on a business concept and defines a component as a replaceable part of a system,
a dynamically bindable package of one or more programs that are managed as a
unit. Szyperski (1997) underlines the context of a component and defines a soft-
ware component as a unit of composition with contractually specified interfaces
and explicit context dependencies only. The context defines the required inter-
faces and the acceptable execution environments of a component. A component
is an independent unit of software that is deployed in the binary format and used
as a third-party component.
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Another viewpoint is taken when reusable design models are also seen as soft-
ware components (Rossak et al. 1997; Gomaa & Farrukh 1997; Johnson 1997;
Digre 1998; Bass et al. 1998b; Brown & Wallnau 1998). In this case, the focus is
on the software reuse at the system development level and components are in-
separable from its architecture. Because the software components of distributed
control systems are not designed to be delivered as products themselves, reus-
able design models are also considered as software components in this thesis.
However, subsystems are components that are deployed independently or they
can consist of deployable commercial components, e.g., communication proto-
cols. A component can be layered or it is located within a particular layer of a
system’s architecture.

A framework is a skeleton of a system with an integrated set of components that
can be reused and customised (cf. Johnson 1997; Brugali et al. 1997). A compo-
nent framework of a product-family defines the product features that are fulfilled
with a dedicated and focused software architecture, a few key-mechanisms and a
fixed set of policies for the mechanisms at the component level (cf. Szyperski
1997). A component framework of a product family has three tiers: subsystem,
integration and product-family (Figure 1). The tiers of the component framework
point out the views of its stakeholders; application developers, system integrators
and system developers, correspondingly. Each tier embodies the component
architecture using architectural styles and patterns. A style defines the types of
components and a way of their runtime control and data transfer. An architec-
tural pattern is a reusable design that realises a style or several styles.

A subsystem framework is a first-tier component architecture that defines the
styles, patterns and components for a specific application domain. The tier may
also be layered. The difference between tiers and layers is in their focus. A tier
concentrates on systems’ integration and layers are used for portability and
modifiability within a tier. Layers are hierarchical and classified according to the
degree of abstraction and generality. A layer hides its implementation details
from the upper layer by providing a generic service interface. Component
frameworks, first of all, are applied to application domains, for example moni-
toring systems and graphical user interfaces, and therefore, the first tier repre-
sents the domain viewpoint of a system and the tier may also be called a domain-
specific framework.
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A component system architecture is an architecture that consists of a set of plat-
form decisions, a set of component frameworks, and interoperation design for
the component frameworks (Szyperski 1997). A component system architecture
is a second-tier component architecture that mediates between subsystem
frameworks and is called an integration framework. The terms ‘platform’ and
‘core assets’ have the same meaning: they describe a set of software solutions
that are shared with diverse products (Clements & Northrop 1998). The integra-
tion framework focuses on the technology viewpoint of distributed systems and
the integration of applications. According to the definition, the Object Request
Broker (ORB) of CORBA (OMG 1995) is the first-tier component architecture,
when it mediates between components, whereas the ORB represents the second-
tier, if it integrates subsystems produced by component frameworks. On the
contrary, CORBA services and facilities are layers that utilise the services of the
ORB and provide services for the vertical CORBA domains, the top layer.

Figure 1. Tiers of component architectures.
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A product-family is a third-tier component architecture. It focuses on the vari-
ability and commonality of a systems family and represents a business viewpoint
of the distributed systems. It is an overall design of the systems in a product
family. Generalising and abstracting a product-family architecture captures im-
portant aspects of the product family and enables the creation of an individual
product architecture from a product-family architecture (Perry 1998). Producers
of product-lines and product-families are more market-oriented rather than cus-
tomisation-oriented (Dolan et al. 1998). Product-line architecture refers to prod-
ucts that are produced by different production lines and intended to satisfy dif-
ferent market segments. However, control systems are always customised at
some level according to the customers’ and end-users’ needs, and therefore, a
product-family describes better the characteristics of the control systems domain.
A product-family may be more difficult for customisation-oriented system-
producers due to indistinct differences between products and a great deal of
variations. However, component-based software can also be used for customised
control systems, if the flexibility of components could be provided for changing
parts of software.

A product-family has the software architecture that every system of the product
family is dealing with. Thereafter, the component architecture of a product fam-
ily is an architecture, which mediates between component system architectures
within the second-tier. In other words, a component architecture that supports a
product family is a third-tier component architecture. In our context, the third
tier is more abstract than the component system architecture that provides its
implementation. However, the tier can be called a product-family tier according
to its focus.

The term ‘component framework’ is used in two meanings. A singular means a
descriptive framework for the tiers of the component software architectures, as it
is used in stating the research problem and defining the model of the component
framework in Chapter 3. The tiers are instantiated as component frameworks and
a plural is used to refer to these instantiations.

1.2.2 Applied approaches

The X-model defines software reuse by two processes: the software development
for reuse and the software development with reuse (Hodgson 1991). There are
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three main reuse-approaches; a feature-oriented approach, an architecture-
oriented approach and a language-oriented approach, that are closely twisted
round the development of a component framework of a product family. How-
ever, each approach has a diversity of methods that highlight organisational,
process, technical and product aspects in different way.

Feature-oriented domain analysis (FODA) is a model-driven approach for re-
quirement analysis that describes functional features of a system (Kang et al.
1990). However, the distributed control systems also have quality, e.g., real-time
and safety requirements that have to be defined. The management of the product
features of distributed systems is also difficult, owing to the large amount of
features that have to be shared among development teams.

Software architecture recovery represents the architecture-oriented approach that
aims at identifying architectural patterns in the code and to define, whether
matched code can be associated with a component or with the infrastructure
(Mendonca & Kramer 1998). An integral hierarchy and diversity models are also
used to describe an extendible software architecture for product families (van
den Hamer et al. 1998). In this case, variation points are included inside compo-
nents and feasible combinations of component variants are expressed by explicit
connections between interfaces. The model does not describe the guidelines of
how to define and manage the component connections and how to add or change
components of an existing system.

Agent architecture is a possibility to achieve flexibility at the architectural and
execution level (Wooldridge & Jennings 1995; Fisher 1995; Lejter & Dean
1996). Intelligent agents with different kinds of distribution control protocols,
e.g., request-response and peer-to-peer strategies are applied to fulfil the adapt-
ability requirements of control systems. Using agents, the focus of the architec-
ture is on the negotiation-based communication. Although the systems’ flexibil-
ity, achieved by loosely coupled software agents, provides possibilities for soft-
ware reuse through extendibility, other techniques are required for defining and
supporting software reconfiguration.

Port-based objects, as a language-oriented approach, form the basis of a pro-
gramming model that provides specific guidelines to create and integrate soft-
ware components, which are designed to be dynamically reconfigurable (Stewart



24

et al. 1997). The approach was used for robot control systems and it supports the
domain characteristics in respect of real-time and configuration aspects, which
are integrated with the operating system. However, most control systems also
use commercial software, and so far a special framework can be reused quite
restrictedly.

Domain-specific frameworks, mostly based on object-orientation, are believed to
be the answer to reduce a product’s time-to-market and provide the opportunity
to respond to new and rapidly changing markets (Schmidt & Fayad 1997;
Codenie et al. 1997). A domain framework is based on a reusable software ar-
chitecture defined by collaboration contracts between classes and a set of varia-
tion points, where the framework can be customised. Therefore, a domain-
specific framework is a first-tier component architecture with the support for a
product-family tier. The collaboration contracts define the rules that customisa-
tion must obey. In this case, the software reuse is based on reusable object
classes and the systems should be constructed by using the selected domain-
specific framework. In the control system domain, systems are based on concur-
rent development processes and commercial components that are integrated to-
gether. Therefore, a domain framework alone is not enough but provides a par-
tial solution for the software reuse of distributed control systems.

Object-orientation is a key-technology in the development of product-family
architectures and software components. A domain framework that is a combina-
tion of patterns and components provides a practical way to manage and share
reusable assets in a focused domain. Therefore, a component framework is ex-
amined as a means to carry out reusable assets for a distributed control systems
family in this work.

1.3 Scope of the research

1.3.1 Application areas

The research is focusing on the characteristics of the three levels of the distrib-
uted control systems: manufacturing execution systems, process control systems
and machine control systems (Figure 2). The levels may be considered as hierar-
chical layers that use the operational services and data produced by the lower
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layers (Törngren & Wikander 1992; Ferguson 1995). In this context, each layer
represents different kinds of timing requirements and implementation technolo-
gies.

An exceeded timing requirement that always causes an error in hard real-time
systems, is occasionally accepted in soft-real time systems. Embedded control-
lers (EC) with hard real-time requirements are typical for machine control sys-
tems. Embedded personal computers (EPC), programmable logic controllers
(PLC) and personal computers (PC) with mixed or soft real-time requirements
are used in process control systems level. A process control system, in the used
context, is a system that controls several machines and their co-operation. It can
be a cell control system in a manufacturing system or a repayment control sys-
tem that manages the repayment process of bottles and cans. The manufacturing
execution systems are mission critical systems that mostly utilise commercial
software components, for instance databases and protocols, and PCs and work-
stations as execution environments.

Manufacturing execution systems (MES) are task-oriented systems that are re-
sponsible for making optimised execution plans carried out by process control
systems (Greenwood 1986; Ljung 1986). Manufacturing systems handle and
manage state information and adapt their control by performing transactions that
may consist of the operations performed in several process control systems.
Therefore, the level is called the transaction level. The transaction level can con-
sist of soft real-time requirements, but concurrent transactions that have to be
performed according to the ACID properties (Atomicity, Consistency, Isolation,
and Durability) are more typical (Barry 1994; Kappel & Vieweg 1994). Com-
puter integrated manufacturing (CIM) systems and flexible manufacturing sys-
tems (FMS) have the same kinds of properties. They both are highly computer-
ised and they control the workflow that produces products. However, FMS can
produce different kinds of products at the same time and they also control the
tools used in the production line. The local-area network is nowadays used as a
distribution medium in manufacturing systems.
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Figure 2. Control system domains.
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nal events by scheduling tasks according to their priorities and available re-
sources. A machine control system is an exemplar at the hard real-time level.
Machine control systems are based on controllers that co-operate through the
distribution media, e.g. field buses, and perform the distributed operations
tightly-coupled with data and its timestamp (Kopetz et al. 1989; Törngren &
Lind 1994).

Numerical controls, PLCs and robot control systems are out of the scope, as well
as Computer Aided Manufacturing (CAM). The component framework is based
on the software engineering practice used in networked embedded systems, i.e.
embedded controllers, EPCs and the systems that they are connected to.

1.3.2 Research areas

The development of a component framework supposes knowledge of the tech-
nology, products, and their development process. System integrators’ and main-
tenance engineers’ knowledge is also required to understand how the component
framework is going to be used. Therefore, this research concerns the software
engineering research area from several viewpoints (Figure 3). Firstly, the com-
ponent-based software engineering (CBSE) highlights requirement analysis and
software architecture and components. Requirement analysis is based on feature-
oriented domain analysis performing conceptual knowledge of the control sys-
tems domain that pays attention to the products and their markets, i.e. the
business beside products. Software architecture and recovery are based on the
knowledge produced by the analysis. Reverse- and re-engineering are used to
develop component-based software and architecture. Distributed systems are
constructed by incremental integration from subsystems developed by concur-
rent software engineering (CSE). This special feature is noteworthy and affects
software architecture and components, and above all the features, which are
widespread in the systems and require sophisticated methods to be managed and
traced by the software configuration management (SCM).
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Figure 3. Views of the research area.
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case, the software configuration management is an integrated property of a prod-
uct that supports the evolution aspect of distributed systems.

Although, the process-oriented viewpoint is mainly out of the scope of the thesis,
the concurrent software development and software configuration management
are the research areas closely connected to the development of a component
framework.

1.4 Problem statement

1.4.1 Research problem

Based on the previous discussions of applied approaches and the scope of this
work, the research problem is defined as follows:

What kind of a component framework supports the development and evolution
of distributed control systems’ family?

The control systems domain, the development of a component framework, and
the development and maintenance of control systems set different requirements
for the component framework. Based on the different views to describe require-
ments for a component framework, the research problem can be stated as sub-
problems that mirror technical (Q1, Q2), process (Q3) and organisational (Q4)
viewpoints:

Q1. What requirements does a control systems family set down for a component
framework?

Q2. What kind of a component framework supports the evolution of a distributed
control systems family?

Q3. How should the component framework of a product family have to be devel-
oped?

Q4. How does a component framework of a product family change the compo-
nent-based software development?
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Our tentative approach to the research problems is as follows:

•  Marketing aspects of systems products are reflected on the end-users’ re-
quirements, the existing knowledge of marketing area and systems products.
The research problem is reduced to finding such a modelling method that fa-
cilitates explicit requirement definition as product features and their evolu-
tion.

•  Product features are classified according to the type of a system family and
its constraints to the development process and the execution platform. The
classification assists in analysing the essential features and constraints of a
product family and defining the style of software architecture and compo-
nents.

•  A part of the software architecture and components stays stable over 5–10
years in spite of variability inside a product family and the evolution of the
system products. By isolating the common software from the variable soft-
ware, a generic software platform for a systems family can be developed.

•  The software platform, designed according to the needs of the development
and maintenance, provides sufficient flexibility that the software platform
stands up to the changes in implementation technologies and the needs of
end-users.

The hypothesis can be summarised as follows:

A component framework of distributed control systems has to be based on the
features of a product family which are mapped into application components and
the software platform that supports the incremental development and mainte-
nance of the distributed control systems.

The problem analysis and the component framework presented in Chapter 3
answer the first two research problems. Practical experiences, presented in the
thesis and papers, answer the two latter questions.
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1.4.2 Research assumptions

Existing systems and domain experts’ knowledge are necessary to collect do-
main knowledge. If documentation is not up-to-date, reverse engineering is used
to bring back the designs of existing code. Re-engineering is required to improve
architecture and components of existing systems for software reuse. However,
the reverse-engineering and re-engineering do not emphasise why domain analy-
sis is required and for whom its results are intended. Software components and
architecture are quickly ruined and software reuse seems to be ineffective, unless
the software development process is improved at the same time.

The focus of architecture recovery is on improving software architecture system-
atically. It emphasises the evolutionary aspects of software architecture, but it
ignores those who are using the architecture, and therefore, the results of the
recovered architecture are not utilised as extensively as possible. The architec-
ture recovery is a time-consuming and an ineffective way to develop a product-
family architecture. This is due to undocumented design decisions of existing
systems and high-level abstraction that hampers the understanding of the specifi-
cations of a product-family architecture.

Application frameworks focus on components that are reused by means of in-
heritance and polymorphism in common and special application areas, and the
frameworks are used as existing resource for application development by
changing class hierarchies and interfaces. System-level software architecture and
the means to upgrade systems are rarely considered. This is a repetitive problem
when distributed systems, which have a graphical user interface based on an
application framework, have to be upgraded or new features have to be added to
them.

We believe that the viewpoints of different stakeholders of the software archi-
tecture are essential to develop a component framework successfully. A product-
family architecture, derived from the features of a product family or families,
takes account the aspects of marketing staff. The product-family architecture is
the basis of a component framework, but it has to be developed for the users of
the component framework, that is for system integrators and maintenance staff.
We believe that if the different viewpoints are combined, and the product fea-
tures are kept as a leading thread in the framework development, the component
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framework is enough of an efficient and effective means of software reuse and
investments for it are acceptable.

1.4.3 Research methods and results

Several research methods were used in the different phases of the research. The
first phase was mainly analytical, and industrial case studies were the way to
obtain domain and product knowledge, to understand the problem domain. An
analytical method was used to describe the requirements and features of the ap-
plication domains and products. As information, we used literature, the results of
interviews and inspection meetings. Literature of control systems, information
systems and software engineering were used. Several interviews of industrial
partners and domain experts were made and descriptions were inspected with the
industrial representatives.

In the second phase, engineering methods, for example FODA, ROOM and
OMT, were used to create a component framework that was applied to construct
the prototypes of the case studies. The significance and the relevance of the
framework were measured and analysed as regards the requirements of the ap-
plication domains: machine, process, and manufacturing systems. Both quantita-
tive and qualitative analyses were made.

During the third phase, a generic model of the component framework was for-
mulated and analysed by reflecting the results of the case studies (cf. Glass 1995;
Pfleeger 1997). Evaluation criteria for the trials are derived from the results of
the analytical phases of the case studies. The state variables are classified into
the four main categories according to the characteristics of the product family,
used methods and tools, development process, and end users. Response variables
are derived from the requirements of the prototypes and they are defined as re-
sults of the problem analysis in Chapter 2.

Figure 4 depicts the followed research strategy summarising the problem do-
mains, software engineering technologies, parts of our solution and the applica-
tion domains, where the constructed prototypes were evaluated. Arrows indicate
the process and its repetition. Problem domains represent the three levels of
timing requirements and the size of the systems. Machine control systems have
hard real-time requirements, process control systems are mainly soft-real time
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systems, and flexible manufacturing systems represent mission critical systems.
The size of the systems is contrary to the timing requirements, i.e. hard real-time
systems are mostly small systems. Although the size and the timing requirements
of control systems are different, the application domains may be physical layers
of a manufacturing system. Therefore, the component frameworks can be ap-
plied in these layers, as they are applied in the case studies. Correspondingly,
Papers I, III and IV concern the machine control systems domain, Paper V the
process control systems domain, and Papers VI and VII the manufacturing sys-
tems domain.

Figure 4. The applied research strategy.
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The software engineering technologies define the areas used in the development
of the prototypes of the component frameworks. In addition to the above- men-
tioned papers, Papers I, II and III focus on used techniques: re-engineering and
feature modelling combined with reusable software architectures. The tiers of the
component framework are called the subsystem, integration and product-family
tier according with their focus and use. Correspondingly, the numbers of trials,
referred in parenthesis in each tier in Figure 4, mirror the focus and results of
each case study, which are described in detail in Table 1. It also gives a brief
description of the applied approach and the research contribution of each case
study.



Table 1. A summary of the trials to develop a component framework.

Description Results and main contributions

Trial I: The KIURU project 1994–1995
Goal: Software architecture and components for
interoperable subsystems.

Approach: Domain analysis and re-engineering
were used for transforming slightly from RTSA to
object oriented technology. The ROOM method and
ObjecTime tool were applied for modelling and
simulating component-based distribution architec-
ture and a component framework for subsystems.
Prototyping was used for validating components and
subsystems incrementally.

� Subsystem: A layered component-based software architecture with
responsibility-driven classification of components and their inter-
faces.

� Integration: System and application development processes were
isolated. The dispatcher pattern applied for a generic communica-
tion component of the subsystems.

� Product family: Mode-based configuration of the communication
components.

Contribution: A layered component architecture for a sub-systems
family in the distributed machine control domain.

Trial II: The DYNAMO project 1996
Goal: Software architecture and mechanisms for
dynamic configuration of architectural components.

Approach: Mechanisms for dynamic configuration
was constructed by using the OMT method and C++
on the QNX operating system and its messaging
services. Photon was used for developing presenta-
tion components of the applied PAC architectural
pattern.

� Subsystem: Agents as independent medium-grained architectural
components that separate application logic from its presentation.

� Integration: An integration frame was applied as a part of location-
independent architectural components. Configuration mechanisms
were implemented as a part of the integration framework.

� Product family: A tool for the on-line configuration of architectural
components

Contribution: A component framework for dynamically configurable
applications using layers and PAC agents in the MES domain.
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Table 1. A summary of the trials to develop a component framework continued.

Description Results and main contributions

Trial III: The DYNAMO project 1997
Goal: Software architecture and components for
different product variants.

Approach: The features of the product family was
described by the OMT method and allocated to the
default and optional properties of components. A
simulation model that included the integration plat-
form and independent applications was used to vali-
date the software architecture.

� Subsystem: Reactive agents as location-independent logical sub-
systems.

� Integration: An application-specific software bus as an integration
platform. The centralised data management and configuration sup-
port was implemented as a part of the framework.

� Product family: Configuration through the platform by a configu-
ration tool. The development of the applications and the software
platform was isolated.

Contribution: A component framework of a product family by means
of the independent components and data centred repository architec-
ture styles in the domain of process control systems.

Trial IV: The ARTTU project 1997–1998
Goal: Component-based architecture and platform
with the COTS and OTS.

Approach: A features model and scenarios described
the functional and behavioural features of a product
family. CORBA RPC was combined with Event-
Condition-Action (ECA) concept. The ECA execu-
tive acted as a centralised propagation point and an
externalised binding mechanism for product features.

� Subsystem: A dispatcher as a component of the subsystem frame-
work.

� Integration: An integration framework by applying commercial
components, a CORBA and an OODB, with an ECA executive
and an adapter for the legacy systems.

� Product family: The management of the product features was im-
plemented by the rule database and ECA executive.

Contribution: A component framework of a product family using the
client-server and rule-based styles in the FMS domain.

36



37

In the last trial, a model of the component framework of a distributed control
systems family was created by synthesising and analysing the results of the ear-
lier phases. The influences of the different control domains on the component
framework are analysed by reflecting to the experiences received in the case
studies. This thesis includes the results of the last trial.

1.5 Outline of the dissertation

Chapter 2 analyses the problems that the software developers have in the devel-
opment and maintenance of distributed control systems. These problems are
taken as the requirements for the component framework presented in Chapter 3
that describes a component architecture for each tier of the component frame-
work, the subsystems, integration, and product-family tier.

The development and evaluation of the component framework are studied in the
following two chapters. The tiers of the component framework are presented and
demonstrated by the developed prototypes.

Related work is reviewed and compared to the results of the thesis in Chapter 6.
An introduction to the included papers is given in Chapter 7 and Chapter 8
draws the conclusions of the thesis.

Papers I to VII are presented in appendices.
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2. Problem analysis
This chapter studies the problems that appear in the development of component-
based software of distributed control systems. The aim is to define critical fac-
tors for successful software reuse and set the requirements for the development
of a component framework. The definition of the key factors is based on empiri-
cal analysis in the projects related to the product families of distributed machine
control systems, automatic repayment control systems and flexible manufactur-
ing systems. The discovered problems are emphasised by other findings of com-
ponent-based software engineering and control systems, as well as the literature
used in the development of the prototypes. This study is used as requirement
analysis for the component framework that is presented in Chapter 3.

2.1 Component-based development of a product family

The development of a product family is based on (Soininen 1997):

•  a basic product that can easily be modified, extended and customised, or

•  a core-product that itself is not a product but embodies the core technology
and know-how of the development organisation.

In the former case, the benefits from a product family are achieved by improving
the development process. In the latter case, the dominant factor is the manage-
ment of technology and interfaces of the core-product. In the distributed control
systems, the core product covers in-house components and commercial compo-
nents that require special expertise to develop and apply.

The component-based software development of distributed control systems can
also be seen as two information flows, the one for managing reuse assets and the
other for product data management (Figure 5). Software, mechanical and electric
engineers produce components that are used while constructing products. Al-
though not all components are software, the people in the production-chain are
involved in software architecture and its components, because all components
have to match together. Product managers who are responsible for the deliveries
of the systems need to know the product data, the whole information produced
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during the development, from the order to the delivery. Therefore, marketing
people are also involved in the product features that are realised by using the
product family architecture.

Component-based software engineering is divided into domain and application
engineering (Bass et al. 1998b; Sodhi & Sodhi 1999). Domain engineering pro-
duces the reuse assets that are utilised in the application development. From the
viewpoint of the system development, component-based software engineering
has the system and component development processes and an integration and
configuration process for assembling a system from the reusable assets.

Figure 5. Component-based software engineering.
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2.2 Problems in the component-based software
development

Problems in the component-based software development of distributed systems
can be classified to product, technique, process and organisation dependent
problems. The component-based software development aspires to components
that are used in a product family. Therefore, the software development consists
of the problems that result from the shortening life cycle of products and the aim
to reduce the time-to-market. Software engineers should also have knowledge of
existing and forthcoming features of product variants to be able to design a
product-family architecture. If there is no formal way to share information be-
tween marketing and software development staff, the information mismatch
leads to improper products and lengthening production time. Software engineers
also have difficulties to figure out the differences between variants and versions.
(Bosch 1998). Variability describes differences in a product family and versions
are different instantiations of the same variant. Variants mirror the dissimilarities
between products and versions reflect the evolutionary aspect of components
(Figure 6). Nevertheless, variants are not stable, but their life cycles are longer
than versions’.

Figure 6. Variants and versions of a component.
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Technical difficulties of gathering and reusing the domain knowledge appear
while knowledge, spread by ad-hoc manners, is tried to be formalised by using
semiformal models that do not adhere to strict rules and lead to semantic mis-
match. Several modelling methods, architectural description languages (ADLs)
and tools are proposed and evaluated in industrial case studies (Jacobson et al.
1997; Clements 1996; Griss et al. 1998). However, tools may be inappropriate or
they are unable to be customised according to their end-users’ requirements
(Bosch 1998).

Process-dependent problems appear as an inability to trace and manage variabil-
ity between products and deliveries due to an immature software development
process and software configuration management. It has been estimated that the
maturity of the software development process should be at CMM Level 2, at
least concerning the software configuration management (Bass et al. 1998a). The
mapping between component versions and variants should be managed so that
the previous products can be re-created easy and dependably.

Nevertheless the software configuration is mature enough, the organisation may
have problems in the utilisation of commercial components and in the allocation
of the software development to development teams and subcontractors. Re-
searchers have paid less attention to these complex problems that arise from
crossing organisational boundaries. Dolan et al. (1998) have discovered the
stakeholders of a product-family architecture, but he ignores the integrators’
aspect of commercial components and services. The evaluation is simpler in the
case of COTS, but most control systems require special components that are
produced by subcontractors. Therefore, they accompany an important factor in
the component-based software development of distributed control systems.

In the following chapters, we shed light on the problems encountered in the
software development of the distributed control systems families and possible
approaches to solve them.
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2.2.1 Domain analysis

The following aspects are essential in the domain analysis of distributed control
systems:

•  distribution degree,

•  functional and quality requirements of the products,

•  the commonality and variability of a product-family, and

•  skills of the development team.

The distribution degree is a technical factor that affects used methods and tech-
nologies. Distribution is understood as a distribution of data, functions, and con-
trol (Lawson 1992). Data can be collected into a centralised database or it can be
distributed by federative databases or intelligent agents (McCarthy & Dayal
1989; Hawryszkiewycz & Rose 1995). A functional architecture, which is often
used in control systems, decomposes functionality of a system to several com-
municating subsystems. Functions and data may be distributed, but control is
still kept centralised. The solution is less error-prone than distributed control, but
may be ineffective and inflexible (Kappel & Vieweg 1994). Autonomous sub-
systems implemented as agents that have a common goal are more flexible,
however, the design is more complicated and time-consuming. Although the
distribution is only one factor, it is a fundamental one, which affects other re-
quirements, for example extendibility, scalability and safety.

Traditionally, system requirements are defined as functional requirements and
other requirements are defined as a set of constraints. Feature-oriented domain
analysis (FODA) introduced functional features from the end-users’ perspective
(Kang et al. 1990). FODAcom is an enhanced model-driven approach for re-
quirement analysis that describes end-users as actors and their interactions by a
use-case model, in which extension and parameter points can be defined (Dionisi
Vici et al. 1998). In the enhanced RSEB method, use-case models describe the
capabilities of a system for the users and system engineers, and on the contrary,
features models assist re-users and domain engineers (Jacobson et al. 1997;
Griss et al. 1998). However, the common problem is how to keep the features
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model simple, understandable, and consistent. The management of product fea-
tures is more important in the development of large systems, owing to collabo-
ration among several development teams.

Above-mentioned feature modelling methods consider functional properties of
systems and the variability inside them. Quality requirements, i.e. non-functional
requirements, are seldom included in the domain analysis or explicitly described.
Bellay and Gall (1998) have categorised architectural properties, such as safety
and variance that are beyond design descriptions, and therefore, represented in
an implementation instead of a design. The essence is that quality requirements
should have to be described in software architecture. In practice, safety and reli-
ability requirements, however, are defined in later design phases and imple-
mented as aspects of software components (Kiczales et al. 1997). Time-threads
are scenarios that capture behavioural requirements as causality flows in relation
to activities and components. Although time-threads only can be made explicit
in software architecture design, when partitioning of components is clear, they
keep the focus on performance and robustness issues in the analysis phase (Buhr
& Casselman 1993).

Quality Function Deployment (QFD) is a method for analysing the quality of
design decisions in the development process (Day 1993). The main tool, the
House of Quality matrix plays the central role in defining the link between the
customers’ needs and the technical requirements. In addition to the customers’
needs and technical features, it consists of the analysis of the customers’ satis-
faction, correlation between needs and features, correlation between features and
comparisons with competitors’ products. The structure of the matrix is not fixed
but it can be modified according to the need of the organisation.

The engineering of control systems is nowadays based on the use of CAD and
CAE tools that are heavily affecting how design results can be transferred be-
tween concurrent development processes of a control system. The main problem
is that engineering tools do not assist engineers to understand each other, and
therefore, domain knowledge is ineffectively reused (Seppänen et al. 1995). The
key-point in the software development is to get a balance in work-allocation,
team-members’ responsibilities and supporting methods and tools. Therefore,
design methods have to be adapted to the skills of the development team and
their working manners. If the skills of developers do not meet the requirements
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of the selected method, the desired benefits of new technology are not attained
(Macala et al. 1996).

This work focuses on technology-independent methods and existing tools to
describe and validate product features.

2.2.2 Feasibility studies

Distributed control systems are heterogeneous systems combined by using dif-
ferent hardware and software technologies as execution platforms. The diversity
of used technology produces problems for the component-based software by
demanding a set of feasibility studies. Because the results of the feasibility stud-
ies are knowledge that should also be reused in the design and implementation of
software architecture and components, they concern:

•  commercial off-the-shelf components,

•  legacy systems and components, and

•  software architecture styles and patterns.

The feasibility of commercial components, e.g., operating systems, communica-
tion protocols, databases, and GUI development tools need to be studied. COTS
can save time and money, but their use requires guidelines for certifying (Tran &
Liu 1997; Voas 1998). Interfaces of COTS components may be complicated and
too slow, also they could restrict programming languages, component models
and software architecture styles. The quality of COTS components may be weak
or a producer can be unreliable. Because commercial components are mostly
black-box components, delivered in the binary format, their quality is hard to
find out. If COTS is a key-component, i.e. a component of the core-product, its
dependability and safety have to be able to be evaluated thoroughly. Black box
testing is proposed to be used in defining the risks of commercial components
(Voas 1998; McGraw 1998). Testing takes time, and therefore, the selection of
COTS presumes a quite long-term commitment. The same problem is with leg-
acy systems and legacy software, however, their quality is better known.



45

Existing systems and experiences are the basis of the feasibility studies. Archi-
tecture styles and design patterns are collected and documented experiences to
solve the same kind of problems (Shaw 1995; Shaw & Garlan 1996; Schmid
1996b). However, their suitability has to be evaluated as regards product variants
and used technology. Architecture styles and patterns may be technology-
dependent, for example object-orientation, and require professional skills that
may be missing. Therefore, the use of new technologies provides challenges that
development teams have to accept and be committed.

Although the feasibility studies are done in practice, their results are poorly
documented and their affects on the other requirements, defined in the domain
analysis phase, are not considered. Thus, domain and feasibility analysis are
iterative.

The aim of the work is to discover how COTS, legacy software and architectural
styles and patterns can be used in the development of a component framework.

2.2.3 Software architecture

The software architecture of a product family balances conflicting requirements.
Architecture is based on the results of the domain and product analysis and fea-
sibility studies by matching them to the style, structure and flexibility. The
problems in software architecture design of a product family concern:

•  available documentation of software architectures,

•  architecture description languages,

•  validation and verification techniques of software architectures, and

•  selection of techniques for component design.

Although the same software architecture is used for product variants, the soft-
ware of a new product is tailored from the former rather than made by selecting
components, that is a product family is based on a basic product. The problem is
in the non-identified differences between products. Because the code is mostly
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the only up-to-date and available information, the identification of variation is
difficult and time-consuming.

Contradictory requirements, which have to be balanced in a software architec-
ture, are difficult to prioritise, and therefore, several design cycles are needed.
Distribution and product variants bring additional difficulties to the software
architecture design and supporting tools are necessary. Modelling languages
consider behavioural aspects of systems, contrary to ADLs that concentrate on
representing components and their interconnections. Although modelling lan-
guages may also support software architecture design, their capability to de-
scribe variability and contextual dependencies is mostly inappropriate (Selic et
al. 1994; Burns & Wellings 1995; Bass et al. 1998b). However, modelling and
prototyping have proved to be valuable while discovering a balanced solution for
quality-in-use and real-time requirements (Savola et al. 1995; Alonso et al.
1998). Duenas et al. (1998) also defined an evaluation model of quality require-
ments and proposed that the common metrics of internal quality have to be
adapted to ADLs. On the other hand, the software architecture of a control sys-
tem is described in practice at the information level without an ADL. Engineers
also prefer target systems as validation environments to the simulation tools.

The black-box and white-box techniques are common design techniques in com-
ponent design. The black-box method with parallel components is useful, if clear
differences between component variants are defined. The white-box technique
relies heavily on the properties of the object-orientation, i.e. inheritance and
dynamic binding. However, it is a noteworthy approach when the scope of a
domain is quite small and a great deal of frequently changing variations has to
be managed. The weakness of the technique is that developers have to have in-
timate knowledge of the internal structure of object classes (Fayad & Schmidt
1997).

The characteristics of the software development process affect software decom-
position. Dependencies of components dictate how the work has to be allocated
to subcontractors and team-members. The communication of the engineering
teams should be intensive and formal, if architectural components have a great
deal of dependencies, whereas loose dependencies make it possible to use differ-
ent design methods and tools. If subcontractors are forced to use a method or a
tool that they have no experience in, problems may arise. Therefore, a uniform
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design method can seldom be used in the development of distributed control
systems.

This work examines the means to define a product-family architecture by using
heterogeneous design methods and tools.

2.2.4 Component design and implementation

The interface description and the scope of a component define its reusability.
Components can be classified to architectural components and those that are
reused in the development of architectural components. Because the context, for
which the component is designed, defines the interfaces, the component design-
ers have to know the software architecture, i.e. where the component is desired
to be used (provided interfaces) and what its dependencies are to other compo-
nents (required interfaces). However, this kind of information is often lacking or
incomplete. The problems concerning the component design and implementation
are mostly some of the follows:

•  the lack of interface descriptions,

•  the diversity of component models, device and communication platforms,
and

•  technology-dependent testing tools.

While object-orientation is preferred, an environment-independent definition
language, such as the IDL can be used. Most control systems are modernised
gradually and they use several programming languages, e.g., C, C++, and
graphical programming languages. Although it is unrealistic to suppose that the
IDL could be used in all cases, modern languages can be used parallel with tra-
ditional ones.

CORBA, COM and Java components are the three main component models. The
CORBA model is language-independent and its focus is on object-orientation at
the enterprise level. On the contrary, Microsoft’s COM model is designed for the
desktops and is based on C. Java components, as also COM components, are
language-dependent. However, all these models can be applied in control sys-
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tems in the area where they come into their own (Polze & Sha 1998; Santori
1997; Lange 1998). The problems, caused by heterogeneous languages and
component models, are attempted to be solved by bridges that require more
computing resources and may be inappropriate for real-time and embedded con-
trol systems.

Distributed control systems normally uses more than one device and communi-
cation platform, which brings out the need for portable applications and services.
Product families can be classified to the four classes according to the common
property: technology, the objective, the use (a set of devices) and generation
(Soininen 1997). The objective of a control system is to control, e.g., machine,
process or manufacturing systems, and these subsystems may be used together.
However, the used hardware can be totally different. The problem can be solved
by isolating differences, for example by leaving out the product that uses totally
different technology, or in some case, selecting an architecture that is able to
support the diversity of hardware platforms.

Software components have to be verified that they are consistent with the archi-
tecture and their implementations fulfil the quality requirements. However, tools
are often technology-dependent, and customisable testing and simulation tools
for heterogeneous engineering environments are not available.

The focus of this work is to find out the contribution of the IDL for heterogene-
ous distributed control systems and a practical testing technique for software
components.

2.3 Problems in integration

In the system integration phase, software components with syntactical and se-
mantic differences prevent their inter-operating temporarily or permanently.
Temporal differences can be avoided by using adapters, filters, type casting,
polymorphism, or a wrapping technique. Semantic differences are aspects that
are designed according to some policy. The policy defines how some restricting
features, i.e. aspects, are implemented all over the system architecture. Kiczales
et al. (1997) define an aspect as follows:
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“A property that must be implemented is an aspect if it can not be cleanly en-
capsulated in a generalised procedure. Aspects tend not to be units of the sys-
tem’s functional decomposition, but rather to be properties that affect the per-
formance or semantics of the components in systematic ways.”

Reliability, performance and safety requirements are allocated to strategies,
through which restricted resources and unordinary situations are managed. As-
pects are properties of software components that are based on the design deci-
sions, made under software architecture design and they can not be changed or
are difficult to change afterwards. However, the selected policy determines how
easily or not the properties of components will be changed in the system inte-
gration. Examples of policies implemented as aspects are:

•  Communication policies applied to communication media.

•  Scheduling, synchronisation and allocation policies used to computing re-
sources.

•  Security and synchronisation policies applied to data and states.

•  Memory allocation policies used to manage memory resources.

•  Error handling policies for exceptions.

These aspects have different kinds of realisation in the hard real-time, soft real-
time and transaction levels and the scalability and extendibility indicate if these
aspects have been taken into consideration in the development of a component
framework.

Co-operation of distributed systems may be seen as a set of aspects, which de-
fine policies and mechanisms for interactions between components. Communi-
cation policy defines how the distribution media can be used. The synchronisa-
tion of data and states describes how the balance is kept between computing
systems. Resource allocation policy defines how computing resources is man-
aged. Lack of co-operation is found in problems with component interfaces,
interoperability, and adaptability.
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2.3.1 Interfaces

System integrators have two kinds of problems in interface technology: prob-
lems with user interfaces and subsystems. The features of graphical user inter-
faces are the first and the most impressive properties of the systems. While try-
ing to fulfil the end-users’ needs, developers have encountered enormous prob-
lems with the use of GUI tools and application frameworks. Tight coupling be-
tween GUI and application logic, non-portable software, and lack of configura-
tion support are the main reasons. Reconfiguration is also needed to customise
user interfaces for new end-users and environments.

Although industrial device and system producers mostly use standard interfaces,
the variety of standards makes it almost useless. Interfaces may be defined and
documented correctly, but additional conversions are needed. Lack of infra-
structure results in the conversion code being multiplied, and therefore, com-
puting and memory resources are lost. The reason for this is the software archi-
tecture that is defined and maintained independently of the component develop-
ment. A hot-spot architecture and building blocks with export and import inter-
faces are proposed as a solution (Schmid 1996a; van der Linden et al. 1995). In
the former case, the interfaces of subsystems are described as sub-classes from
the base class. It resolves the variability problem at the application level, if the
analysis produces a base class with a generic interface for a set of subsystems.
However, it does not resolve the diversity at the communication level, that is the
diversity of protocols and media. The latter solution introduces a binding inter-
face that links interfaces at different layers. The approach supposes that the in-
terface is known in the development phase, and therefore, it provides flexibility
for software development, but not for integration.

This work aims at providing the means to integrate subsystems in a systematic
way and isolate GUI components from the application logic.

2.3.2 Interoperability

Semantic differences between components appear as interoperability problems
that may concern data, functionality, states, communication and timing. The
development of predictable and reliable software for real-time control systems is
difficult due to differences in timing, communication, and state information. On
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the other hand, data and functional consistence are the characteristics of process
and manufacturing systems.

A control system observes the state of environment at a specific interval and
decides on the base of acquired state information, which actions have to be
taken. Therefore, it is important that the hard real-time and safety critical system
supports periodic execution of tasks with minimal jitters. That is known as time-
driven approach (Eriksson et al. 1995). In this approach, the communication
resources are split up slices that are allocated to the processes, which communi-
cate periodically. In distributed systems, this is reflected on the interoperability
of networked subsystems that have beforehand designed slices of time to send
messages, that is the messages are time-synchronised.

However, all communication is hard to design beforehand. Distribution makes it
more complicated because control systems may have subsystems that are not
control systems and their characteristics are based on asynchronous and syn-
chronous messages. The approach is called communication-based synchronisa-
tion (Törngren & Backman 1993; Gyllenswärd & Eriksson 1994). Thus, the
important relationship between components is temporal. How could temporal
behaviour be predicted, if this kind of description does not exist at the compo-
nent level? In practice, engineers execute tests in the target system. Because
timing requirements are heterogeneous, the temporal behaviour of the whole
system is not necessary to be predicted, but only as concerns the hard real-time
level. The problem is simpler, if the hard real-time level can be isolated from the
other parts of the system and its predictable behaviour could be designed as
communication policies.

Exception handling is another aspect of interoperability. If exception handling is
not defined systematically, all subsystems handle exception according to their
own principles. Although exceptions can be refined and their scope and context
can be determined, it may lead to unexpected behaviour at the system level.
Integration work often consists of the adaptation of exception policies that reli-
ability can be guaranteed at the system level. Centralised controllers, for exam-
ple an error logger and exception handler, are their practical solutions and Event-
Condition-Action (ECA) rules with a rule processor is a solution to implement
an event-controller (Dittrich et al. 1986; Kappel et al. 1994).
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Some functions are common to all systems and they have remarkable effects on
the systems’ co-operation. The functions that deal with timing and the system’s
state, for example, are shared with subsystems and co-ordination is based on
shared knowledge that may be allocated to one’s responsibility. The master-
slave control architecture is based on one’s authority, on the contrary, agents are
based on shared authority and autonomy. The philosophies behind the ap-
proaches are opposing and can not be used in the same system without adapta-
tion. The trend is to transfer from master-slave systems to agent-based systems,
in which a global clock is replaced with a reference clock and periodic time cor-
rection (Genesereth & Ketchpel 1994; Gergeleit & Streich 1994).

In large control systems, as manufacturing execution systems, shared data may
bring out integration problems that result from weak designs, heterogeneous
databases and their different access policies. Data consistence checking and
fault-tolerance are responsibilities of databases, and they can be dealt with using
different kinds of policies. These differences have to be faded by adaptation.
Non-interoperability also appears in the formats of stored data that have to be
filtered or converted and the data presentations that need to be scaled according
to the viewers and roles of end-users. If interoperability of data management has
not been paid attention to in the software development, redesign and re-
implementation have to be done in the integration phase (Kappel & Vieweg
1994). All in all, interoperability depends on interfaces, their completeness, us-
ability, performance, and reliability.

This work attempts to find out an architectural solution that enables to control
semantic differences in communication and the management of exceptions, state
and data.

2.3.3 Adaptability

Incomplete and changing requirements are the main reason why adaptability is
needed in the integration phase. The last one is the most usual reason in large
control systems, in which changes are made in the installation and introduction
phase. The reason for incomplete requirements is the fact that all exceptional
situations are hard to imagine beforehand and systems are designed with the
thought ‘normal operation’. Therefore, new situations arise in the installation
phase, and the features have to be added and changed. In component-based
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software, changes might not have influences on other components or their influ-
ence should be able to estimate and manage. Changes may cause performance
problems and reallocation. Therefore, software adaptability concerns location-
independence, environment-independence, extendibility, and flexibility.

Because software reuse attempts to reduce redesign, re-implementation and re-
testing, applications should have to be isolated from the network topology and
the execution environment, i.e. an operating system, protocols and hardware.
They are preconditions for the systems’ extendibility that is needed in integra-
tion and upgrading. Extendibility embodies features, components, and subsys-
tems. Thus, the integration needs to be supported by management and configu-
ration interfaces at the architectural level (Ran & Xu 1996).

Flexibility is required in component interfaces when the attributes of an inter-
face, i.e. parameters, operations or bindings, are changed. Parameterisation, type
casting and also polymorphism and dynamic binding are solutions, if they are
supported by the language. A filter, connected to the interface, performs a data
conversion. Adaptation between components concerns interoperability and is
called inter-component adaptation (Pryce & Crane 1996; Lycett & Paul 1998).

Legacy software needs other kinds of adaptation. Dissimilarity between subsys-
tems is often in protocols and data formats and applications may use different
architecture styles that need to be adapted. An adapter and wrapper adjust a leg-
acy application to a new software architecture and its interconnection rules. Glue
software, such as a wrapper, decreases performance, but it is a viable solution in
proportion to the size of a component and re-development effort. This is called
inter-framework adaptation (Mowbray 1997; Lycett & Paul 1998).

Adaptation can be done statically or dynamically. Traditionally, software con-
figuration management is aimed at static configuration. In some cases, the stop-
ping of a distributed control system brings out significant economic losses and
therefore, dynamic adaptation is needed (Lim 1996).

This work focuses on the mechanisms and interfaces demanded of the compo-
nent framework for reconfiguring product features, services and applications of
distributed control systems.
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2.4 Problems in upgrading systems

In this thesis, maintenance problems are considered from the viewpoint of the
development of a component framework, i.e. how the maintenance point of view
should be paid attention to in the development phase. The justification for our
approach is as follows:

•  The installation and instruction phase of a manufacturing system or a com-
plex machine control system can take weeks depending on the size, com-
plexity and quality of a system. If the system software supports reconfigura-
tion and allows for making changes in software according to the beforehand
fixed guidelines and rules, lower maintenance costs and better customers’
satisfaction are achieved.

•  Due to the lack of maintenance professionals, upgrades should be able to
perform by less experienced staff. This provides that the systems are sup-
ported with appropriate maintenance tools.

According to our experiences, the evident parts of software that are changed
during the life cycle of a distributed control system are the following:

•  User interface. User interfaces need to be customised according to end-
users’ expertise and situation action of the work. Information, in different
forms, has to be propagated to several places, for example to a worker, a
foreman and management. The location and shape can also change, which
can result from the changed workflow or physical structure of a control sys-
tem, for example a cell or store is added.

•  Communication. Network communication media, protocols, data conver-
sions, routing and message definitions need to be changed while connecting
a control system to an other system.

•  Environment interface. Interfaces to the surrounding environment should be
able to be changed easily because data acquisition and control devices could
get broken or be modernised.
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•  Physical components. Although the hardware is attempted to be kept stable,
an upgrade can cause performance problems and new hardware is required.
Due to physical extensions and changed working manners, a controllable
target may change. In most cases, this means a new system.

This work aims at a flexible solution for managing the predictable changes in
user interfaces, communication network, and system’s environmental interfaces.

2.5 Summary

The problem analysis is summarised as essential requirements of the develop-
ment of a component framework (Table 2). The requirements illustrate the over-
all tendency to manage the changes that get their origins from marketing needs,
evolution of implementation techniques and systems themselves. Justifications
of the requirements reflect the problems discovered in the application domain.

Table 2. Key requirements of the component framework.

Requirement Justification Discussed
Start from the business issues
of a product-family.

New features spring up from
marketing issues and affect the
repayment-time of the compo-
nent framework.

Section 2.2,
Papers II, VI

Analyse functional and quality
requirements as regards prod-
uct diversity.

Diversity of requirements is
needed to get a balanced prod-
uct-family architecture.

Section 2.2.1,
Papers IV, V,
VII

Consider the consequences of
the distribution degree as re-
gards the other requirements
of the products and their de-
velopment.

Philosophy behind the distri-
bution is essential in the soft-
ware architecture design and
allocation of the development
work.

Section 2.2.1,
Papers IV, V

Describe the strategies for
extensions, replacing and
scaling.

Strategies guide in design and
implementation of components
and keep the framework flexi-
ble.

Section 2.4.1,
Papers IV–
VII

Make feasibility studies of
styles, policies and COTS.

Evaluation and risk analysis
assist to select the appropriate
development approach.

Section 2.2.2,
Papers II, VI
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Requirement Justification Discussed
Utilise architecture styles and
design patterns.

The styles and design patterns
guide in making design deci-
sions and are tested reusable
assets.

Section 2.2.3,
Paper VII

Prioritise contradictory re-
quirements and evaluate risks
with different priorities.

The prioritised requirements
assist to discover a balanced
architecture.

Section 2.2.3,
Paper IV

Select the communication
policies for component inter-
actions.

Classification of interfaces
guides the implementation.

Section 2.3.1,
Papers IV, V

Isolate user interfaces from
the application logic.

User interfaces are changed
frequently and have to be sub-
stitutable components.

Section 2.3.1,
Papers V–VII

Define timing, communica-
tion, exception and data ac-
cess policies.

Adjustment of policies is diffi-
cult to make afterwards.

Section 2.3.2,
Papers III,
IV, VII

Define adaptability for loca-
tion, environment, extensions
and component interfaces.

Adaptability increases the
capabilities of a system to be
evolving.

Section 2.3.3,
Papers V–VII

Describe items and mecha-
nisms for reconfiguration.

Reconfiguration is a software
component of the framework.

Section 2.4,
Papers VI–
VII

Evaluate and select modelling
methods and tools as regards
the product-family architec-
ture.

Graphical representations give
support to transfer information
between team-members and
evaluate possible solutions.

Section 2.2.3,
Papers I–III

Evaluate and adapt techniques
and tools for the use of engi-
neering teams.

Products are multi-techno-
logical, and heterogeneous and
legacy technology is used con-
currently with new ones.

Section 2.2,
Papers I–III

Evaluation criteria of the component framework are derived from the above-
mentioned requirements (Table 3). Because the component framework oughts to
solve the technical problems concerning a set of distributed control systems, its
ability to solve the problems of variability and distribution are the most impor-
tant. The suitability of the component framework is evaluated concerning the
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process issues that have been important in the case studies of the control systems
domain.

Table 3. Evaluation criteria for the component framework.

Criteria Description

Variability

Configurability

The ability to define and manage product features and vari-
ants.

The ability to map variability to the product family archi-
tecture.

Ability to select and change product features.

Interoperability

Portability

Flexibility

Extendibility

Interoperability of tiers, services and applications.

Ability to manage syntactic and semantic differences.

Independence of applications and services, hardware inde-
pendence, installability.

Ability to change functionality, user interface, system’s
topology and hardware.

Ability to add applications and services.

Suitability Operability and simplicity.

Ability to use commercial and legacy software.

Ability to use heterogeneous methods and tools.

Required expertise and the amount of developers.

The costs of the framework development.

Ability to share the framework among stakeholders.
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3. A component framework of distributed
control systems

The component framework, described in this chapter, has been driven by the
needs of industry that are presented as the requirements in the previous chapter.
With the intention of maximising software reuse, the component framework
focuses on adaptive design and attempts to meet the challenges that the changing
requirements entail to the software development. In addition, business and or-
ganisations also evolve and bring about needs to change the properties of sys-
tems and their development and maintenance.

Evolution also reflects the component framework that is presented. The same
kind of progress is evident, if the component-based software development is
applied to the engineering practice. The history of how the ideas have pro-
gressed, therefore, is described briefly as motivation to the component frame-
work. The tiers of the framework are described in more detail, and they tend to
put the things described in Chapters 4 and the papers in a context that could be
used outside of this thesis.

3.1 An overview of the component framework

The component framework was devised by synthesising and generalising the
frameworks developed and applied in the case studies and described in Papers
IV–VII. In the first phase, adaptive and component-based software design, pre-
sented in Papers I, III and IV, were applied to the machine control systems do-
main. The software architecture included three layers: system, node, and com-
munication layers. A generic communication layer acted as an integration plat-
form providing a transparent communication mechanism for the subsystems. In
addition to the communication layer, subsystems also had a node layer with
application-specific data and operations, and a system layer with system-level
data and a configuration mechanism.

In the next phase, dynamic configuration was applied to architectural compo-
nents of distributed control systems (Paper VII). An agent architecture was ap-
plied to logical subsystems that may be physical subsystems or twin processes in
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the same computing environment. Transparent communication and on-line con-
figuration support provided the integration services and generic interfaces for the
subsystems.

These two approaches were combined in an application-specific software bus
that was used in the automatic repayment systems (Paper V). In this phase, sys-
tem-level data was integrated as a part of the integration framework, as well as
the configuration support software. A configuration tool enabled to change
functionality, communication, and data. Agents and the simplified interface
technique were applied to the subsystems. The integration framework was based
on client-server and agent architectures.

In the last experiment, the on-line configuration support of product features was
developed and applied to flexible manufacturing systems (Paper VI). A com-
mercial CORBA implementation was used as the integration framework, which
was extended by an ECA executive and a commercial OODB as the components
of the configuration management and a data propagation mechanism. Behav-
ioural patterns of the system were configured through a rule database. Moreover,
the software architecture style was shifted to the client-server and rule-based
system architectures.

The overview of the component framework (Figure 7) describes the main ele-
ments of the component framework and its different views (cf. Figure 1). As
defined earlier, a component framework has a dedicated architecture, some key-
mechanisms and a set of policies how components use these mechanisms. These
elements describe what a component framework is, and product features define
for what a component framework exists.

The tiers of the component architectures emphasise the above-mentioned views
in different ways. The first tier that is applied to logical subsystems focuses on
the characteristics of the application domain. The term ‘subsystem’ is used to
emphasise independence and interchangeability of the applications. The second-
tier emphasises the technical means to provide an open platform for interoper-
able subsystems, and therefore, it is called an integration framework. A product
family characterises the business view of the third tier. The development and
utilisation of a component framework have three main viewpoints, described as
CBSE, CSE, and SCM in Figure 3. Each viewpoint is dominant in different tiers



60

and has different aims and design rationale. The complementary viewpoints of
the elements are presented in parentheses.

Element→→→→

View/Tier↓↓↓↓

Product
Features

Architecture &
Mechanisms

Components &
Policies

Domain/Subsystem CBSE

(SCM)

CBSE CBSE

(CSE, SCM)

Technology/Integration CSE

(SCM)

CSE

(CBSE)

CSE

(CBSE, SCM)

Business/Product-family SCM SCM

(CBSE)

SCM

(CBSE)

Figure 7. An overview of the component framework.

Component-based software engineering (CBSE) principles are essential in the
subsystem tier, whereas concurrent software engineering (CSE) focuses on the
integration tier. Software configuration management (SCM) gets its origin from
the features of a product family, but requires components and policies of the
subsystem and integration tiers to use mechanisms in the product-family tier.

The software architecture of a tier balances the contradictory requirements, and
it should have to provide solutions for the requirements, set by the related view-
points. Therefore, each tier may have to be described and developed in different
ways.

The next chapters give an overview of the elements of each tier and the relation-
ships between tiers and the viewpoints of software engineering.

Viewpoints
CBSE CSE SCM
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3.2 The subsystem tier

CBSE is the dominant viewpoint that deals with the subsystem tier and it focuses
on:

•  Speeding up the application development.

•  High-quality products by reusing application knowledge.

•  Easy connected subsystems for networked control systems.

•  Adaptable solutions for different kinds of control tasks.

These issues are the main goals that a component framework, used for develop-
ing subsystems, should have to fulfil. Speeding-up the application development
provides that the knowledge of application area and earlier products is high, in a
reusable form and that there is a means of its utilisation. High quality is the aim
that is achieved by using earlier tested and reliable artefacts, such as software
architectures and components. Compatibility highlights the ability to develop
application concurrently (CSE) and the ability to use applications easy in lager
contexts, for which they are not designed from the first. Adaptability focuses on
forthcoming needs by providing the techniques to change the purpose and prop-
erties of applications by software configuration management (SCM). The sub-
system tier attempts to meet the above-mentioned goals by providing such ar-
chitecture, mechanisms, and components that fulfil these product-oriented and
organisational aims.

The subsystem has the two main layers that are the interface layer and the con-
trol application layer (Figure 8). The control application layer consists of one or
more application-specific software agents that may also be layered. An agent
consists of two or three components. An abstraction component defines data
structures of an agent. A control component controls the behaviour of an agent
and its communication. A presentation component, if needed, defines formats
and operations to describe state and data of an application agent. The architec-
tural pattern is known as the PAC (Presentation, Abstraction, and Control) pat-
tern (Buschman et al. 1996). In our case, the components of an agent are loosely
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coupled and the presentation component may be allocated to a different node
than the abstraction component and control component (Paper VII).

The interface layer assures adaptability of subsystems. It provides a standard
interface for communication and configuration and connects subsystems to the
integration tier. All inter-agent communication is directed through it to the inte-
gration platform (Paper V). In order to be interchangeable, application agents
also have a configuration interface. If on-line configuration is necessary, a sub-
system may be configured in two ways. Parameterisation is used to change the
internal variables of a subsystem, e.g. the message types or controlling interval.
Reconfiguration is made under the control of the integration platform. If an ap-
plication agent is updated or a new one added, a sophisticated negotiation-based
interface is required (Paper VII). In that case, the agent decides how to react to
an in-coming configuration request. If the request is accepted, the interface pre-
pares the agent into the appropriate state and monitors whether configuration is
performed correctly.

Figure 8. The component architecture of subsystems.

The purpose of the interface layer is to provide an environment-independent
solution for portable applications. A physical implementation of the interface

Subsystem Framework

Control Application Layer

Interface Layer

Presentation

Control

Abstraction Presentation
Control

Abstraction
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layer has appropriate components from the interface layer of the integration
framework, for example the interfaces of an operating system, a communication
medium, and environment devices. These components are logical parts of the
integration framework, but they may be allocated in different ways to the physi-
cal subsystems. Therefore, only application-dependent components of the inter-
face layer are included in the subsystem tier.

The subsystem tier is a domain specific framework and its architecture style is
selected according to the characteristics of the control domain. An agent archi-
tecture is preferred to client-server architecture in hard and soft real-time sys-
tems, and in manufacturing systems that need on-line configuration support. The
layers provide adaptability and portability as regards environment-independence
and location-independence.

A more comprehensive description is given in Table 4, which represents the
solutions and their intentions according to each element of the component
framework.
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Table 4. Elements of the subsystem framework.

Element Solution Intention

Product
feature

•  Data-based configura-
tion by parameterisa-
tion

•  On-line configuration
by a negotiation-based
interface

•  Adaptability for variability
inside components

•  Adaptability for updating and
adding application agents

Architecture •  Interface layer for port-
ability and adaptability

•  Agents embody the
roles of applications

•  Layered agents for
intelligent, autonomous
agents

•  A uniform interface simplifies
application development

•  Systematic application devel-
opment due to layers, agents
and components

•  Increased reuse by isolating
domain and technology-
dependent parts by the layers

Mechanism •  A mediator for com-
munication and con-
figuration

•  A bridge for isolating
applications from their
environment

•  Centralised communication
and a centralised changing
point increase system’s flexi-
bility

•  Portable applications

Component •  Classification of com-
ponents and their re-
sponsibilities according
to the PAC pattern and
the roles of agents in
the system

•  Location-independent
agents and presentation
components

•  The responsibility-driven ap-
proach increases modularity

•  Decomposition supports vari-
ability inside agents and layers

•  Separated allocation of appli-
cations simplifies the devel-
opment and increases systems’
flexibility

Policy •  Configuration and
communication policy
of applications

•  Message-based com-
munication for loose
coupling

•  Local error handling
policies

•  Speeding up application de-
velopment, increasing quality,
and compatibility

•  Easily connected and config-
ured subsystems

•  Enables to balance network
load
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3.3 The integration tier

Concurrent software engineering (CSE) is the dominant viewpoint that has an
influence on the development of an integration tier. This means that the tier has
to support the concurrent development of subsystems and incremental integra-
tion of a distributed system. The tier can also be defined as the infrastructure, a
uniform development and operation-support environment that provides a set of
generic services to the application components and implements a set of common
functions defined by the architecture (Rossak et al. 1997). The integration tier
provides a generic platform for the subsystems developed according to the prin-
ciples of the subsystem tier. Although CSE is dominant in developing and using
the tier, CBSE affects its architecture and components, as well as that SCM at-
tempts to manage the changes required due to evolution. The intention of the
integration tier is to

•  Provide a stable, application-independent distribution-platform.

•  Support incremental software development.

•  Be capable of adapting applications for interoperability.

•  Be adaptable to different implementation technologies.

•  Provide adequate services for applications.

•  Allow variability of the used services.

The integration tier acts as a mediator that decouples applications and provides a
transparent distribution platform by the four layers: the interface layer, message
transmission layer, co-operation layer, and co-ordination layer (Figure 9). The
first three layers represent technology aspects and may have several configura-
tions due to the variability of implementation technology and required services.
The co-ordination layer is an application specific layer and provides the services
required for the data and control management at the system level. The co-
operation layer has mechanisms for binding components and routing messages
and uses application-specific data, but its functionality is application-
independent.



66

The interface layer provides flexible connections to communication media,
hardware, operating systems, and applications (Papers IV and VII). The name of
the layer is the same as in the subsystem tier, but its purpose is also to provide a
service interface for applications and the interfaces to COTS and hardware for
the upper layers of the integration tier. It hides the complexity and heterogeneity
of the implementation technology so that technological changes do not affect the
means in which the services are used. On the contrary, the interface layer of the
subsystem tier provides a standard way to connect an application to the integra-
tion platform. A hot-spot and a bridge pattern (Schmid 1996b; Gamma et al.
1994; Buschmann et al. 1996) provide mechanisms for achieving adaptability,
also required if legacy systems and COTS components are wrapped for the inte-
gration platform (Papers VI and VII).

The services of the message transmission layer may be implemented in three
ways. Firstly, the layer may be implemented utilising the services of operating
systems (Papers V and VII). Secondly, a commercial component as an ORB and
its RPC mechanism for message transmission may be used, if it is appropriate
for the applications (Paper VI). The third way is to develop an own communica-
tion layer (Paper IV), which is the most appropriate solution for hard real time
systems. In the latter case, both the periodic and event-driven message passing
services are required. Periodic messaging is a time-driven communication
mechanism for real-time purposes. Event-driven messaging provides loosely
coupled applications without hard response times. The used technique depends
on the required performance and heterogeneity of operating systems, communi-
cation media, and protocols. Adapters are additional components of the message
transmission layer in heterogeneous environments (Paper VI).
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Figure 9. The component architecture of the integration platform.

The co-operation layer includes a binding mechanism, a connection manager
that manages the binding information defined by the configuration service
(Paper VII). The layer also includes knowledge of how the messages, transferred
by the message transmission layer, have to be routed to the subsystems (Papers
V and VII). Application agents send information without knowing its receivers
and therefore, the bindings define the producers and consumers of information.
Physical bindings are determined in the integration phase while allocating
applications. The co-operation layer provides the mechanisms required to
interconnect subsystems, that is the mechanisms of the network configuration
software.
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Although the integration tier is mostly application-independent, the data man-
agement service includes application-specific, system-level data, required for the
co-ordination and reconfiguration of subsystems (Papers IV and V). System-
level data is produced during the system development (Papers IV, V and VI).
Filters may be used for adapting data to a uniform format required for
interoperability. The configuration mechanisms that process the configuration
rules defined in the product-family tier are the link between the integration tier
and the product-family tier.

The architectural style of the integration tier is a combination of the client-server
and layered architecture. However, an intelligent agent, which provides versatile
routing services, for instance, pier-to-pier, multicasting and broadcasting, with
several routing algorithms, may be applied in the co-operation layer of complex
networked systems (Papers V and VII).

The integration tier is the glue that hides the diversity of used technology and
connects together old and new systems. Therefore, the integration tier has to be
ported to different hardware and software platforms and integration support for
legacy systems is also required. Adapters and filters as common services provide
a uniform solution, but in most cases, the use of wrappers may be more practical
for adapting legacy software for the integration tier, for instance, wrapping ex-
isting applications by the PAC interface-wrapper.

The summary of the integration framework depicts the used solutions of each
element and their meanings (Table 5).
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Table 5. Elements of the integration framework.

Element Solution Intention

Product
feature

•  Optional components of the
services

•  Selectable components for
required services

Architecture •  System-dependent co-
ordination layer

•  Co-operation layer for
interoperability

•  MTL for message transmis-
sion

•  Interface layer for portability
and adaptability

•  Hot spot for interchangeable
protocols

•  Separation of concerns:
application, technology, re-
sponsibility, change-
frequency

•  Layered architecture for
management and evolution

•  Client-server architecture
for application purposes

•  Patterns for achieving
flexibility

Mechanism •  Configuration manager
•  Connection manager
•  Separated components for

periodic and event-driven
messaging

•  Dispatchers for periodic
message-passing, routing and
task ordering

•  Adapter for integrating het-
erogeneous systems

•  Bridge for environment-
independence

•  Filter for data translation
•  Wrapper for unifying inter-

faces
•  ORB as MTL

•  Support for incremental
software development

•  Location-independent ap-
plications

•  Isolated real-time layer in
messaging

•  Reusing mechanisms
•  Adaptation for

interoperability by using
design patterns

•  COTS as a distribution
platform

Component •  Service interface for subsys-
tems

•  Standard interfaces for OS,
hardware and communication
media

•  Customising layers by the
selection of components

•  Stability of the platform
•  Portability of the frame-

work
•  Restricted flexibility and

variability inside layers

Policy •  Communication policies:
periodic, event-driven and
RPC

•  Centralised error-handling
services.

•  Several allocation policies for
the services

•  Loosely coupled subsys-
tems

•  Co-ordination point for
system-level error handling

•  Distribution degree is freely
selectable
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3.4 The product family tier

The product family tier represents the characteristics of the business domain.
SCM focuses on product features and their management, representing the view-
points of marketing and maintenance. The marketing staff is interested in re-
ducing time-to-market and cost, but maintenance staff are interested in easy and
correct configuration. Therefore, the principles, used in CBSE, affect the product
features and their management.

Product features define the semantics of applications and therefore, they are also
called semantic components (Bergmans 1998; Digre 1998). A product family
has varying properties that are described in the features model of a product fam-
ily. Therefore, the features model is the essential knowledge for producing a
correct configuration of a system product. The product family tier produces and
organises the product-knowledge into a form that can be used in upgrading a
system and adding features to an existing system (Figure 10). Configuration data
identifies and describes the features that can be configured only in the manners
that are described as the configuration rules. Data and rules are stored in a
configuration database, which is a component of the product family tier. Con-
figuration mechanisms with user interfaces are the other part of the support
software. The mechanisms are the components that are implemented as a part of
the integration tier.
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Figure 10. Integrated support of a product family.

The tier consists of the definitions for relevant product features, rules to use
them and configuration tools to carry out legal combinations (Papers II and V)
(Table 6). The features of a product family are defined during the development
of a product-family architecture, but the features of a system are defined using
the subsystem and integration frameworks. Therefore, the product features are
fragmented and mostly mapped to the components developed by the subsystem
and integration frameworks. Nevertheless, the components of the third tier are
needed to define how the features are implemented and how they can be used.
The implementation of the product-family tier varies due to the variability of the
product family and the reconfiguration support that is needed for the integration
and maintenance.

The semantic information is required in the co-ordination and co-operation layer
of the integration tier and in the way in which the applications co-operate
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through the integration platform. Although the product-knowledge is all over the
system, they are controlled through a point, the configuration interface and
mechanisms, for example an ECA executive that processes Event-Condition-
Action (ECA) rules. Reconfiguration tools are intended to be used by the system
administrator because overall understanding of the product-family is required.

The summary of the product family framework depicts the used solutions of
each element and their meanings (Table 6).

Table 6. Elements of the product family framework.

Element Solution Intention

Product
feature

•  Features model of a product
family

•  Variants and permitted
combinations

Architecture •  Semantic components de-
scribed as rules, data and
functions

•  Components for managing
semantic components

•  Centralised support soft-
ware integrated as a part of
a system product

Mechanism •  Database for configuration
data and rules

•  ECA executive

•  Configuration files

•  Configuration user interface
for on-line modifications
through the configuration
database

•  Product knowledge stored
in reusable format

•  Activation mechanism for
behavioural features

•  Activation mechanism for
feature variables

•  Integration and main-
tenance support

Component •  Configuration management
as default components of the
integration platform

•  Simplified on-line configu-
ration support for incre-
mental development, inte-
gration, and maintenance

Policy •  Restricted variations

•  Integrated product data
management

•  No conflicting features

•  User-friendly change man-
agement
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3.5 Summary

The component framework of distributed control systems is depicted as three
tiers that are used for different purposes. The subsystem tier focuses on the char-
acteristics of the control systems domain and provides a conceptual architecture
for agents that are autonomous as regards control, location, and evolution.
Agents have standard interface, communication and error handling policies, but
in other concerns agents are flexible and illustrate the dynamics of the control
systems domain. Layers and responsibility-driven components provide inherent
flexibility for applications. The framework supports the concurrent application
development and its interface layer connects subsystems to the integration tier.

The integration tier focuses on the development of distributed systems. The tier
provides a common infrastructure for logical subsystems produced according to
the subsystem framework. The tier hides technological implementation from the
services provided for location-independent applications. The integration tier
supports integration-engineers that develop distributed systems from building
blocks, application agents and common system-level services and provides con-
figuration mechanisms for the product-family tier.

The product family tier provides a systematic means of integrating marketing
and maintenance viewpoints to the system development. The use of the tier as-
sumes that the first two tiers are available and that the product features and their
use could be defined. The tier represents the highest level of reuse and the
knowledge is product and market dependent, not technology or domain-
dependent.

Although the tiers are described independently, their implementation is closely
interlocked with each other. Due to selected distribution degree and technology,
the tiers may have different implementations. Performance and memory size can
enforce an allocation model, where physical controllers have only the control
components of application agents and the presentation and abstraction compo-
nents are centralised into a node with appropriate memory and performance
properties. Distribution of the co-operation and co-ordination layers that requires
more sophisticated decision-making and communication than the centralised
one, can not be avoided in large distributed systems.
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4. Development of the component
framework

In this chapter, we describe how the component framework, depicted in the ear-
lier chapter, may be developed. The development of a component framework is
presented as the development of the reuse assets, i.e., the product features, the
product-family architecture and software components. Descriptions and tech-
niques, used in each phase, attempt to illustrate the useful approaches experi-
enced in practice.

Usually, distributed control systems are constructed in association with several
industrial partners. A developer of a distributed control system may have one or
both of two roles: to develop subsystems and to develop distributed systems by
integrating third-party components and subsystems, produced by subcontractors.
The integration platform is important for system developers and the subsystem
tier for the developers of applications and subsystems. Subsystems may also
form a product family, and therefore, the importance of a product family does
not depend on the role that the partner plays in the development process of a
distributed system. In addition, the product family is the prerequisite for success-
ful component framework development, because it defines the requirements and
properties of the software architecture and components, the essential elements of
the component framework.

4.1 Development of reusable assets

The development of a product family focuses on the development of

•  a basic product that can easily be customised, or

•  a core-product which is used as a part of the products.

On the base of the focus, the development of reusable assets is divided into do-
main-oriented re-engineering and domain engineering (Figure 11). The main
difference between these approaches is that domain-oriented re-engineering is
the interest of the software developers, on the contrary to the domain engineer-
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ing that is a planned activity of an organisation. However, re-engineering is also
a partial activity of domain engineering.

Re-engineering is mainly a bottom-up technique and always necessary when no
reuse asset exists yet. In this case, reusable assets are mined from existing sys-
tems and domain experts’ knowledge. The re-engineering process produces a
domain model including domain concepts, domain architecture, and reusable
components. Re-engineering integrates domain analysis, the process of identi-
fying, collecting, organising, and representing relevant information in a domain,
with analysis and design methods such as RTSA or OMT (Paper I). Step-wise
architectural design recovery is also proposed for identifying reusable software
components from the code of existing systems and used COTS (Bratthall &
Runeson 1998). Domain-oriented re-engineering may be seen as a first step to-
ward more comprehensive domain engineering.

Domain engineering is mainly a top-down technique to develop reuse assets.
When there is already experience of the development of reusable components,
the development and management of reuse assets can be planned and done in a
systematic way. Business plans and marketing modules are the initial informa-
tion of domain engineering, as well as all documentation of existing products
and experiences from the product development. Marketing modules, if available,
represent the features of existing systems, the commonality and variability of a
product family from the customers’ viewpoint. The business plan gives a vision
of what kinds of features ought to be demanded in the near future and indicates
the anticipated changes of the product features.
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Figure 11. Development of reusable assets by domain-oriented re-engineering
and domain engineering.

Domain engineering that consists of domain analysis, architecture and compo-
nent design and implementation produces the following reuse assets:

•  a features model of a product family,

•  a product-family architecture,

•  feasibility reports of COTS,

•  software components of a product family,

•  principles, guidelines, methods and tools for domain engineering, and

•  test plans and cases for component and integration testing.
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The rest of this chapter concentrates on the first four reuse assets. Methods, prin-
ciples and testing techniques are given as examples, as used in the case studies.

The following chapters also emphasise the stakeholders’ roles in the develop-
ment of a component framework for a product family (Table 7).

Table 7. Stakeholders of the component framework.

Stakeholder Main interests

Marketing staff, customer,
end-user

Product features

Domain analyst Product features, product-family architecture

Application developer Components and connections, common services

System integrator Common services, integration support

Maintenance staff, cus-
tomer, end-user

Reconfiguration support

4.2 Features of a product family

The features of a product family are conceptual, semantic models that describe
the intended purpose of the products. Changes in the market segments and end-
users’ needs are reflected immediately in the product features.

The definition of product features includes two phases, specifying and validating
features. Product features should be defined and reviewed in co-operation with
the product managers and marketing staff. However, if there is no commitment
by these people, the work falls on the domain analyst. Unfortunately, this seems
to be the situation in most cases in practice.

4.2.1 Defining product features

We developed the product feature modelling method (PFM) that enhanced
FODA by defining typed feature-blocks, default features and mutual exclusion
of child features in the parent feature (Paper II). However, the need of a special
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modelling method is not essential in small systems. For instance, the OMT
method and tables were sufficient for the product family of the automatic re-
payment systems (Paper V). In this case, the product family had three main
product variants and the varying features could be allocated to the subsystems
directly. Large systems, such as manufacturing systems, require a feature mod-
elling method to define and manage:

•  features of physical environments,

•  features of user interfaces,

•  operational features (functionality, behaviour, timing), and

•  relationships between different features.

Most changes concern the features of the physical environment and user inter-
faces, and therefore, they are defined separately. The following models are re-
quired:

•  a features model for describing the structure of product features,

•  use-cases and scenarios for describing the intended use of features, and

•  a time-thread model for timing requirements.

In the first phase, the features model describes the structure of the product fam-
ily as logical subsystems, which are actors in use-cases and scenarios. The three
models are defined concurrently, and they require several iterations.

The features model is a hierarchical tree that may include combined features,
single features, or lists of the alternative features (Figure 12). The features model
is semiformal and changed by adding, removing features and structuring them in
a new way.

A feature is typed. The type may be mandatory, optional, or conditional. Man-
datory features are required in all product variants, as in the maintenance UI in
the example. Optional features are selected into known product variants, e.g. the
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continuous treatment. A conditional feature is selectable only if the required
feature is also selected and the possible exclusive feature is not selected as proc-
essing and crushing in the example. A features model describes the structure and
relationships between features. The model organises the product knowledge and
the allowed combinations are driven from the types and relationships of the
features. Leafs represent functional or informational properties.

Figure 12. A features model.
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A scenario describes the intended use of features and the connections between
combined features. A scenario is an semantic component of a system that is to be
mapped to a component or several components. Use-cases may be used to de-
scribe interactions between actors at a generic level, but scenarios are more use-
ful for sketching and illustrating the intended behaviour of the systems.

Scenarios are hierarchical. A mandatory behavioural feature combines functional
and informational features and forms the main scenario. An optional feature is
described as a sub-scenario (Figure 13). Thus, the variation points between the
mandatory and optional levels can also be taken into consideration in the sce-
narios. Scenarios can be combined and described as a use-case with actors,
which form an abstract domain architecture. More fine-grained variability, for
instance, parameterisation is described at the architecture and component level.

Figure 13. Mandatory and optional features in a scenario.
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Time-thread models are scenarios that represent slots for operations, potential
components and the timing requirements for a chain of operations (Figure 14).
The example describes two time-threads with different timing requirements, and
potential components and their operations that are marked as codes, for example
the operation F1 in the Velocity Sensor component. Codes inside components
are functional features defined in the features tree.

Time-threads are used to describe the behaviour of time-critical systems, for
example machine control systems. Although other quality requirements, e.g.,
safety and robustness, are also important, they were not modelled but defined in
a textual form, if they were included in the scope of the case study.

Figure 14. A time-thread model.
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Iteration of the feature, scenario and time-thread models gives the first proposal
of mapping features to components. Comprehensive feature-component-
mapping is done in the architecture and component design phase. Time-threads
can be utilised as guidelines in defining communication and allocation.

Table 8 summarises the representations of product features and the intended use
of each model.

Table 8. Models of product features.

Model Representation Purpose

Structured tree Classifying and managing features

Required relationship Pre- and post-conditions of a feature

Feature

Leaf in the tree Functional or informational property

Single scenario Semantics of the functional features for
actors inside and outside the systems

Hierarchical scenario Variability in behaviour, separation of
mandatory and optional features

Scenario &
use-case

A use-case A combined set of features describing
behaviour at the architecture level

Slots Operations or components in a timing
chain, pre- and post-conditions in timing

Time-
thread

Join and fork Variability in a timing chain

4.2.2 Validating features

We used the QFD method to check that the features were appropriate before
starting their development. The same method was applied to evaluate potential
COTS components.
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In the first phase, the stakeholders’ needs are defined and classified into five
categories: usability, functionality, quality, conformance, and adaptability
(Figure 15). Usability includes the needs concerning the use of a system, for
example ease to install and maintain. The functional and quality needs describe
desired operational properties and their quality, e.g., safety, performance, reli-
ability and robustness. Conformance means required standards the products have
to meet and the constraints of software execution environments. Adaptability
focuses on changes and the importance of evolutionary aspects of the products.
Each category may have constraints.

The strength of each need is defined concerning the stakeholders, including sales
and marketing, end-users, developers, integrators, maintenance, and training
staff. Because products are targeted at different marketing segments, the differ-
ences between segments are also analysed. The total value of a need illustrates
its significance. Each feature also has a weight-factor that defines its importance
in relation to the quality of the whole product.

In the next phase, the features that relate to a need are analysed and classified. A
feature can have a negative influence on a need and a positive influence on the
others as the features F1 and F2 in Figure 15. A feature that has a positive influ-
ence, e.g., the feature F3 in Figure 15, on the important needs such as N1 and
N3, should be a mandatory feature, if it is not only the interest of a special
group. Analysis of the features is made for each need respectively.

Each decision about a feature that has contradictory influences is specific and
generic rules can hardly be given. However, the following principles may be
useful:

•  Mandatory features fulfil needs that are important for most stakeholders.

•  Mandatory features should not have negative impact. This leads into a com-
promise because a feature can have a negative influence on a quality issue
that is not important in some market segment but extremely important in the
other segments.

•  Optional features satisfy needs that are important only for some group of
end-users or marketing segments.



84

•  Conditional features meet needs that are important for a special group of
stakeholders, for instance maintenance staff.

•  Features that meet less significant needs are matched to optional features.

•  Features that have contradictory influences are optional or conditional fea-
tures.

Figure 15. Analysing features by QFD.

In our case, the only knowledge was the experience of the developers and prod-
uct managers who estimated the impacts of the product features on the custom-
ers’ needs. Estimation was made by teamwork, combining the existing experi-
ence without analysing markets and customers’ satisfaction.

The other approach to validate product features is clustering them into two
groups: the features of the core-product and the features of variants (Soininen
1997). Grouping assists to manage a multitude of features. The quality function
of a feature can be classified, according to the Kannon model (Day 1993), into
three classes: features of basic, expected and surprising quality.

Strength indicator:

1=weak, 4=reasonable,

9=strong

Requirement class

M
ar

ke
tin

g 
&

 S
al

es

D
ev

el
op

er

In
te

gr
at

or

M
ai

nt
en

an
ce

Tr
ai

ni
ng

En
d-

us
er

To
ta

l

Usability 1 1 9 9 1 9 30

Functionality 4 4 9 4 4 9 34

Quality 9 4 4 1 1 4 18

Conformance 1 4 9 1 1 1 17

Adaptability 4 9 9 4 1 1 28

Needs of market segments Features of a product family

Mandatory

Optional

Conditional

Influence:
Positive:1,4,9
Negative: -1,-4,-9

Need Fe
at

ur
e 

F1

Fe
at

ur
e 

F2

Fe
at

ur
e 

F3

*N1 1 -1 9

N2 - 4 4 9

*N3 9 4 4

N4 1 4 1

N5 4 9 4

Classified Features

1=weak, 4=reasonable,

9=strong

Need class

M
ar

ke
tin

g 
&

 S
al

es

D
ev

el
op

er

In
te

gr
at

or

M
ai

nt
en

an
ce

Tr
ai

ni
ng

En
d-

us
er

To
ta

l

Usability 1 1 9 9 1 9 30

Functionality 4 4 9 4 4 9 34

Quality 9 4 4 1 1 4 18

Conformance 1 4 9 1 1 1 17

Adaptability 4 9 9 4 1 1 28

Strength indicator:



85

After clustering, the product family is analysed in two phases (Soininen 1997).
First, each product variant is analysed as regards the quality and differentiation
in the market segment. The result indicates the goodness of the specification of a
variant. Secondly, the product family is analysed as regards the competitive
products, which produces information about the superiority of a product family.
The approach has been applied to embedded products and validation was made
by measuring customers’ satisfaction, achieved by interviews and monitoring.
The approach may be applied to software as well. In this case, the features of the
core-product are mandatory features of basic and expected quality. Variants have
optional and conditional features of expected and surprising quality that would
be analysed as regard each market segment. Lastly, all features would be ana-
lysed in respect of the competitive products.

In addition to the QFD method, simulation and prototyping with a target envi-
ronment are potential techniques for validation of functional and user-dependent
properties. Simulation models with skeletal components are useful while testing
user-interfaces and architectural partitioning. Validation of a new control algo-
rithm may require an expensive test-bench. However, CACE and CASE model-
ling environments such as LabVIEW, Prosa/om and ObjecTime, can be inte-
grated and used in the development of software architecture and components
(Papers III and IV). Table 9 defines the tasks of modelling, prototyping and de-
veloping reusable components, depicted as an integrated development environ-
ment in Figure 16. The first three tasks concern feature modelling.



86

Table 9. Validating features by prototyping.

Task Result
1. Define the features of a product

family using a CASE tool.
•  Behavioural and functional

properties: event scenarios,
time-threads, a features model.

2. Design control algorithms using
the CACE tool.

3. Connect and test the CACE models
with the target environment using
data acquisition boards.

•  Tested functional primitive
components for applications.

•  Performance results of compo-
nents in one environment.

4. Convert graphical CACE models
to object classes and communica-
tion models using the CASE tool.

•  Architectural components with
functional properties.

5. Refine the software architecture
and components by using the
CASE simulation tool, e.g. Objec-
Time.

•  Refined and validated software
architecture of a product-
family.

•  Tested architectural compo-
nents with functional, behav-
ioural and timing properties.

•  Alternative distribution models.
6. Develop the control software using

the reusable software components
and test in the target environment.

•  Reusable assets.
•  Tested real-time properties.

The refinement of software architecture, in the phase 5, can include contradic-
tory requirements concerning, for example, flexibility and performance that have
to be balanced. Therefore, the product features also have to be validated in clus-
ters, i.e., the mapping of features to the architectural components.
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Figure 16. CACE and CASE tools as an integrated development environment.
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tecture that is a specific solution by combining a set of styles and patterns.
Therefore, modelling methods and tools used in product-family architecture
design have to match with the used styles.

4.3.1 A layered architecture

A layered architecture of the component framework is intended to support
maintenance and evolution of the systems. Layers separate application-
dependent parts from technology-specific software, for example the co-
ordination layer from the message-transferring layer. Layers also separate fre-
quently changed components from more stable components, for example the
message transfer layer from the network interface layer.

A layer has a structural and behavioural description. The structure describes the
components and their connectors inside and outside a layer. Figure 17 illustrates
the MTL in the machine control systems family, defined by the ROOM method.
The layer has three components that have their own behavioural description. The
structure represents the connectors, called ports, of the layer and each compo-
nent, for example the Message and EventMessage ports. Connectors that are not
connected to other components of the layer, or inter-layer connectors, e.g., Con-
trol and Exception ports are controlled and connected by the behavioural de-
scription of the layer, which performs join and fork operations inside a layer.

Each port has a protocol that defines the direction of the port, the used commu-
nication manner, synchronous or asynchronous, and the format of the data. Ports
are classified to the four main classes: configuration, control, event, and data
interfaces (Paper IV). Exceptions are normally event-based, but error-logging
results are transferred through data-exchange interfaces. Configuration and In-
terLayerControl ports are control connections to the upper layer. Data and Event
are the basic data-exchange and event-state interfaces to the upper layer. On the
contrary, Message and Communication Exception interfaces are the connectors
to the lower layer.
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Figure 17. A structural description of a layer.
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Monitor, in the case of localised control and exception handling. The monitor
component can be kept simple, its only duty is configuration of the layer.

The summarised description of the interface layer as an example lists the main
components, connector classes and structural and behavioural constraints (Table
10).

Figure 18. Behaviour of the monitor component.
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Table 10. A definition of the interface layer.

Components •  NetworkInterface: message transferring, network configuration and
monitoring

•  EnvironmentInterface: data acquisition, control sending, and
monitoring

•  OSInterface: a bridge to operating-system services
•  ServiceInterface: provided services for applications
•  ErrorHandler: optional, local error handling

Connectors •  Classes: configuration, control, state-event, and data-exchange
connectors

•  Role: intra- and inter-level connectors
•  Type: input, output and bi-directional connectors
•  Protocol: asynchronous inter-layer communication, synchronous

and asynchronous intra-layer communication
Structural
constraints

•  Configuration connectors for co-operation and co-ordination layers
•  Control and data-exchange connectors for the upper layers
•  The Bridge pattern for isolating interface classes from their imple-

mentation
Behavioural
constraints

•  Errors are handled inside the layer, or dispatched to the co-
ordination layer (variability concerns)

•  Restricted state-events to the co-operation and co-ordination layers
•  Synchronised configuration with the co-ordination layer

4.3.2 An agent architecture

The subsystem tier consists of software agents, but they may also be used in the
co-ordination and co-operation layer of the integration framework. The aims at
applying agents are:

•  to outline responsibilities of software components,

•  to restrict control-treads among components, and

•  to get coherent structure, behaviour and interface descriptions for container
components.
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Agents may be reactive or intelligent. A reactive agent is an autonomous opera-
tional unit without knowledge of the common goal of the system. A reactive
agent may be a surrogate that has a substitute in the real world and is stimulated
by events occurred in the environment. State-based controllers and dispatchers
are typical exemplars of reactive agents.

An intelligent agent has knowledge and alternative ways to perform operations.
An agent is active by requesting, responding, activating and connecting to other
agents, and it makes decisions on the base of its knowledge and received infor-
mation. An intelligent agent has higher-level responsibility than a reactive agent,
and it may use several communication manners. Events and signals carry state-
based information. Message-based communication is dealt with request-reply
couples, directed and undirected propagation messages. In some situation, com-
mands may be necessary. However, communication is asynchronous because of
autonomy. An intelligent agent has mechanisms to acquire and handle varying
data on the basis of knowledge stored as states and rules. An agent may act, for
example, as a co-ordinator, a connection manager, a message router, an alloca-
tion optimiser, or an event scheduler.

An agent is logically formed from the six parts (Figure 19). An observer is a data
acquisition mechanism to environmental and internal events. An event-handler
identifies and deals with events by accepting, refusing and propagating. It may
also make low-level decisions, by combining events and data before transferring
it for monitoring and reasoning. The third part is the plan that defines the goal
and the means to achieve it, i.e., the relevant events and operations within the
known period or context. The reasoning part uses the plan as rules to activate
and perform actions. If the action is distinct, and there is no alternative way to
perform it, the monitor activates the action directly. The plan and reasoning of a
reactive agent are simple, and mostly implemented by state-machines and data
structures.
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Figure 19. The parts of an agent.

The main structure of a software agent has three components: an abstraction, a
control, and a presentation component (Figure 20). An abstraction component
defines data required for the plan and the rules, used in identification and rea-
soning. The abstraction component also includes data for configuring connec-
tions, i.e. logical names, and communication partners or groups.

The content of the abstraction component is used by the control component that
has the only access to the data of an agent. The plan and reasoning of a reactive
agent is implemented as data structures of the abstraction component and hard-
coded state-machines of the control component (Papers V and VII). However,
the rules can also be defined by means of separate ECA rules (see section 4.3.3)
that the control component activates by triggering events (Paper VI). The inter-
face layer and a common mechanism, e.g. an ECA executive, provide the agent
interface, the observer and event-handler mechanisms. The interface mecha-
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nisms are configured by event identification numbers and the propagation plan
defined by the abstraction component or ECA rules (Papers V and VI).

The presentation component is optional, most reactive agents do not need pres-
entation components. Intelligent agents that inform and collaborate with users
have presentation components, which can show the same information in situa-
tion-specific ways, i.e., the same information in several places in different for-
mats. Therefore, the presentation component is logically a part of the agent, but
loosely connected to the control component through the agent interface (Paper
VII). Flexible coupling assists evolutionary changes and location-independence
of user interfaces.

Figure 20. Components of an agent.
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functional responsibilities, product variations and organisational aspects. Top-
level and bottom-level agents are reusable units of the software development,
but medium-grained agents are autonomous units, integration-oriented compo-
nents and their development may be allocated among the team-members and
subcontractors (Figure 21).

Figure 21. Layered agents.

The characteristics of a medium-grained agent are summarised in Table 11.
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Table 11. The definition of a medium-grained agent.

Components •  The abstraction component includes structural and behav-
ioural information. The component defines the logical name
of the agent, the group the agent is belonging to or its logical
connections to other agents. The behavioural information de-
fines the states of the agent and internal sub-states and op-
erations. Internal state-information is separate and restored
while reconfiguring, contrary to the main states of the agent
that are generic for all agents.

•  The control component is the connection point to other
agents and the only access to the content of the abstraction
and presentation components. The control is centralised in
the component, but common mechanisms, e.g. an ECA ex-
ecutive, may be used as outside services.

•  The presentation component is a user interface of the appli-
cation-logic part of the agent. The component has tight logi-
cal coupling with the control component, but it is physically
independent.

•  The interface component defines messages and their han-
dling, used by the control and presentation components.

Connectors •  Classes: configuration and communication connectors
•  Role: inter- and intra-agent connectors
•  Type: input and output for abstraction, bi-directional for

control and presentation components
•  Protocol: synchronous for abstraction, asynchronous for

presentation and control components
Structural
constraints

•  The PAC design pattern, optional presentation component
•  The Bridge pattern for isolating the interface component

from the operating system
•  The intermediate level only has configuration connectors.
•  Inter-agent communication through the communication con-

nectors, a special interface of control and presentation com-
ponents.

Behavioural
constraints

•  Communication and configuration have separate message
definitions and mechanisms.

•  The interface has a synchronisation mechanism for on-line
configuration.
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4.3.3 A client-server architecture

Client-server architecture is the upper-level architecture that intermediates be-
tween tiers, the subsystem tier that requires services from the integration tier.
The focus is on integration and therefore, the architecture describes provided
services and their interfaces. Because the integration framework is the platform
of a product-family, it is also varying. Therefore, the framework has mandatory
and optional services. The classification of the services into the mandatory and
optional application-specific services and generic services gives an idea of cate-
gorised services. The integration framework provides the mandatory services,
and variant-dependent services are offered as optional software packages that are
loosely connected to the integration platform (Figure 22).

Figure 22. Mandatory and optional services.
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The integration framework has the four layers with different combinations of
services (cf. Figure 9). The services of each layer and their appropriate use are
described in the following sections.

Services of the message transmission layer

The MTL consists of one message-passing service or all three, the RPC, the
periodic and event-driven messaging. Adapters of legacy systems are varying
with the need of adaptation. A commercial RPC is appropriate for mission criti-
cal systems. The event-driven messaging is used in soft RT systems, and peri-
odic and event-driven messaging are jointly used in hard RT systems. The prin-
ciple of each communication service is different. The RPC highlights sequential
functionality, and concurrent processing is the aim of asynchronous events and
periodic messaging. However, the latter is focusing on time-driven messages
(Figure 23). The connectors of the periodic and event-driven messaging are de-
picted in Figure 17 and RPC based messages are defined by IDL as two-way or
one-way calls.
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The RPC is the simplest communication manner for application developers, but
clients and servers are tightly coupled in respect of timing and control. There-
fore, it is appropriate for mission critical systems, but not for real-time systems.
Location-independence is provided by an internal interface repository and a
locator service. One-way remote calls simulate the message-based communica-
tion, but a server and its clients ought to use the similar interface.

Event-driven messages provide loose coupling as regards timing, interface and
location. However, it presumes that location information is defined and avail-
able. The interface is generic, the message identification number is the only cou-
pling information between clients and servers.

The periodic-message service does not have a locator. The service presumes that
every client defines the messages it is interested in, and the message definitions
are loaded to the nodes during the start-up. However, configuration can also be
done dynamically using event-driven configuration messages. All periodic mes-
sages are coded in a common way and receivers ought to be intelligent enough
to pick out the messages, which they are interested in, from the communication
channel. Therefore, clients and servers have to design in a beforehand-defined
manner and binding is done in the development phase.

A flexible adapter adapts legacy systems, which do not use any of the provided
messaging services (Figure 24). In the example, the adapter class defines a stan-
dard service interface to dispatch messages through the RPC based ORB (Paper
VI). The messages of transporting and machining devices are derived from the
Adapter class and further converted to the form of physical machines. Corre-
spondingly, filters are used to match the data from machines to a generic data
format understood by the other components. Filters and conversions are primary
components that are used as building blocks. The protocol stack, the lower part
of the MTL, may have one or more instances of classes defined by the Protocol
class hierarchy.
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Figure 24. A flexible adapter for product-variants and legacy systems.
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whole layer. The message queue service of the QNX operating system was used
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(Paper VI).
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Figure 25. Reusable OTS and COTS in the MTL.
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Figure 26. Dynamic binding of connections.
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The connection manager deals with the bindings of agents by connecting and
cutting connectors at run-time (Paper VII). Each agent defines its structural in-
formation, i.e., the logical name, the partners it is willing to be connected to or a
group to which it belongs. The connection manager carries out the connections
according to this information, when the system is ready for it. The behaviour of
dynamic configuration depicts the negotiation-based communication and syn-
chronisation between the configuration manager, connection manager and an
agent (Figure 26).

If several message passing services are used, the messages need to be routed
according to information produced in the network configuration (cf. Figure 25)
and the connection manager. The network configuration manager configures the
MTL for the purpose of the co-ordination layer and produces the available
physical addresses. The connection manager maps the logical names to the
physical names according to the allocation model, defined by the configuration
manager of the co-ordination layer. The router is a mechanism that uses the con-
nection information for routing messages to the correct addresses. A dispatcher
is a typical implementation of a routing mechanism.

Services of the co-ordination layer

The co-ordination layer consists of three management services: the data man-
agement, the control management, and the configuration management. Due to
the characteristics of the layer, which is more application-specific than the lower
layers, the needed services and their implementations vary according to the
characteristics of a product family.

The data management service can be a component, a main-memory database, or
a commercial database. In hard real-time systems, data management components
are allocated to the nodes, and the consistency is dealt with exchanging system-
level data between nodes (Paper IV). A centralised main-memory database is a
more sophisticated manner for soft real-time systems, which handle objects and
data associated with them (Figure 27). Due to the reasoning mechanism, the data
management has characteristics of an intelligent agent. A commercial database is
suitable for mission critical systems, e.g. manufacturing systems. The problem,
arising from COTS, is the interface technique. A generic interface may be miss-
ing or it makes the system tight coupled with the COTS.
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Figure 27 depicts the reasoning process in the repayment systems. The operation
and command databases define static information for treatment operations and
presentation formats. The processing of objects, inserted to the object database
by the identification activity, uses the defined information for reasoning. Data
and control are tightly coupled in this example, and therefore, the mechanisms
and data are allocated near to each other.

Figure 27. An example of data-based reasoning of the control and data man-
agement services.

The configuration management is a service provided for integration and mainte-
nance. Depending on the needs of the product family the configuration service
provides mechanisms and the user interfaces for configuring connections, de-
fining the database, messages and their parameters, activating and deactivating
features. The connections of software agents are configured by the definitions of
the abstraction components, given through the user interface (Paper VII). A da-
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tabase may be changed by a special user interface as it was done in the automatic
repayment systems family. In the FMS family, the on-line schema modifier was
utilised to construct an association changer for manipulating associations be-
tween the components of ECA rules (Figure 28). Configuration files and a spe-
cial user interface were used to configure messages and their parameters. The
used mechanism depends on what is changed and when it has to be changed.

The ECA concept is a way to use the rule-based architecture style, combined
with the client-server architecture in our case study. The ECA concept defines
how the rules have to be defined and how they are performed. A rule has a con-
dition and action-list that are linked together by a trigger. An event, defined as a
triggering event in the selector of a trigger, activates the execution of a rule. The
ECA executive processes the rules according to their modes and priorities. The
mode can be immediate, deferred, or separate. In the immediate mode, the rule is
executed immediately after detecting an event. The deferred mode is used when
the execution order of a rule is defined by its priority. The separate mode can be
used if concurrent rule processing is necessary. In the case study, we used the
deferred mode.

Figure 28. The components of an ECA rule.
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The ECA concept is a centralised controller to manage data, control and configu-
ration. The ECA with CORBA provide event-based behaviour on the RPC-based
communication. The ECA was used to propagate GUI information and activate
functional and behavioural tasks, e.g., to create a component and activate a se-
mantic component, defined by a rule.

Service interface

The service interface is a provided interface for application agents, and it is used
for configuration and communication. The configuration is done by changing the
messages the agents deal with, or by changing their physical locations.

The communication is message-based, either events or data. Control is not
passed through the service interface. An event activates a service, e.g., the ECA
executive observes an event and activates the operations associated with the
event. When an agent has executed its operations, a state-based information is
sent and stored by the data management service. The next operation is activated
as a result of reasoning based on the updated state information. However, if an
agent does not have the required information, it requests further information,
which is passed as a data-exchange message.

Optional services do not affect service interface. They are activated by a generic
triggering-event. The differences in the implementation technology of the co-
ordination layer and the applications that utilise its services produce different
kinds of service interfaces. However, the service interface should offer the re-
quired services of a product family, not services for all kinds of control systems.
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A summary of the provided services is depicted in Table 12.

Table 12. Categorised services and the their relationships.

Layer Service Relationships

MTL •  Periodic messaging
•  Event-driven messaging
•  Remote procedure call
•  Adapters

•  Network configuration
•  Network configuration
•  Other services of the layer
•  Used messaging services

Co-
operation

•  Network configuration
•  Connection management
•  Routing

•  Services of the MTL
•  Configuration management
•  Other services of the layer

Co-
ordination

•  Configuration manage-
ment

•  Data management
•  Control management

•  Connection management
and other services of the
layer

•  Data and control manage-
ment: data and mechanisms

4.4 Summary

Because a product-family architecture is the core competitiveness of an organi-
sation, the development of the component framework was presented by means of
a conceptual architecture that combines the selected architectural styles and pat-
terns. A PAC agent, applied in the subsystem tier, is a combination of heteroge-
neous styles: event-based independent components, interpreters, and layers.
Application agents are in the role of clients to the integration tier that provides
services by layers and independent components. The product-family tier em-
bodies a rule-based system that has the knowledge of a product family in formal
rules and an engine for their processing. The implementation of the rule-based
system is a part of the co-ordination layer in the integration tier that manages the
application-dependent information. Applications are connected to the integration
tier by a service interface.

The development of the component framework highlights the concerns of local-
isation, adaptation, timing, and controlling. Localisation defines how the func-
tional responsibilities, connections and services may be identified and located.
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An agent provides a coherent unit for localised functionality. A centralised con-
nection manager is a mechanism for connecting communicating functional ele-
ments of a system. It may also be a central point for resource allocation. Separa-
tion of functional properties from the resources isolates two development proc-
esses, application and system development, from each other.

Because the systems are evolving, adaptability and adaptation are the corner-
stones in software reuse. Adaptability is the ability to reuse software in different
kinds of environments and products. Adaptation is the ability to change the ex-
isting software for different use. Filters and the Bridge pattern give reusable
solutions for informational and structural adaptability. Run-time adaptability is
achieved by dynamic bindings. Legacy software and COTS may be adapted by
adapters and wrappers, by changing their functionality, interfaces and data for-
mat.

Schedulers and dispatchers are mechanisms for controlling time and order. Iso-
lating data and mechanism software is inherently flexible, and therefore, less
adaptation is needed in the future.
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5. Experiences with the development of the
component framework

The development of the component framework consists of the four case studies
briefly described in Chapter 1. In this chapter, we analyse the differences of the
developed solutions as regards the evaluation criteria defined in Chapter 2. In the
case studies, the component frameworks supported diverse product families, and
the results and experiences of the development of these frameworks are used for
justification.

5.1 Diversity of the product families and used technology

The state variables of the case studies are classified to the two main categories:
the product and process dependent factors. The used execution platforms and the
end-users of the systems changed according to the product family but the devel-
opment methods, tools and developers’ expertise also varied.

The execution platform depends on what the systems are intended to control,
how the tasks have to be distributed, and what kind of a distribution medium and
operating system the product family uses. The latter two factors depend on the
first, the type of system. The machine control systems, i.e., hard RT systems,
were quite small embedded systems without any operating system using a CAN
field-bus as a distribution channel. The material transferring system was a soft
RT system that used the QNX operating system with the local-area network. The
repayment systems family, soft RT systems, included four nodes, two embedded
controllers, an embedded and a standard personal computer and used the QNX
operating system in the PCs. LAN, LON and serial communication were used as
distribution media. The mission critical system, i.e., the FMS family in our con-
text, used LAN as a communication medium and Windows NT as an operating
system. Commercial software, such as Orbix, Objectivity\DB and MFC, was
used as the components of the integration tier. The subsystems of the machine
control systems formed a product family, from which commonalties and varia-
tions were identified. The repayment systems family included three main vari-
ants and customisable features of each variant. The FMS family had two main
variants and many customised features.
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The role of end-users varied from customers of repayment systems and drivers
of farming tractors to workers and controllers of a production line. The amount
of concurrent end-users of the systems also varied from one to dozens.

In the case studies, we used object-oriented methods, OMT and ROOM, ex-
tended by PFM and scenarios. The implementation language was C++, except in
the automatic repayment system and the GUI software of the material transfer-
ring system that were implemented by the C code. Component interfaces were
defined by IDL in the FMS family. On the other cases, graphical and textual
descriptions were used. Prosa/om, ObjecTime and Visio with a set of drawing
stencils formed the tool-set.

The used development process was a combination of the waterfall and concur-
rent software engineering with incremental prototyping. The level of experience
varied with the role of the team-members. A domain expert assisted with the
product knowledge of the industrial partners made domain analysis and the basic
architecture. Software engineers with moderate or novice skills designed and
implemented the components in the two latter case studies, on the other hand,
the more experienced engineers worked in the first two case studies. The
author’s contribution to these case studies was the analysis, design and imple-
mentation of the first case study, the machine control systems family. In the
latter case studies, the author selected the used approaches and was involved in
analysis and design, as well as supervising the development of the systems,
mainly performed by undergraduates.

5.2 Justification for the selected environments

In the case of the machine control systems, the main objective was to find out
the means to define and validate the requirements of a subsystem in order to be
able to allocate the development work to several subcontractors. The CAN bus
was selected for a distribution media because it is generally used in the machine
control systems. LabVIEW was used as the prototyping environment due to its
support for graphical components and connectivity with a target system, which
removed the need of an expensive test-bench. The ROOM method was selected
because of its ability to describe and simulate concurrence and timing properties,
required in the design of distributed systems.
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In the second case study, the aim was to develop the mechanisms for the dy-
namic configuration of applications in a RT environment. The commercial com-
ponents, the QNX, CORBA and the Photon GUI tool were selected on the base
of their interoperability. The Orbix for QNX was evaluated but dismissed be-
cause of its unsuitability for RT systems. LAN was used as a distribution media
in the final solution, but another field-bus, Profibus, was also evaluated but
dropped due to its complex configuration procedure and less general use in dis-
tributed systems. Due to the Photon tool, C instead of C++ was used for imple-
menting the GUI components.

In the case of the repayment systems, the aim was to develop an application-
specific platform for the product family. The same commercial components as in
the preceding case study were used, supplemented by the LON network due to
distributed variables. The selected commercial component, a card reader, had
only a serial communication channel that the platform also had to support. The
analysis was made by the OMT method, but the platform was implemented by
the C code, due to the used tools and commercial components.

In the FMS family, the aim was to find out a flexible software architecture and
mechanisms for managing variability and extending systems. Object-oriented
commercial components were used with the intention to get experiences with
their maturity and suitability for the application domain, in which relational da-
tabases and structural analysis are normally used. However, two relational data-
bases and three OODB were evaluated before Objectivity\DB was selected. The
selected operating system, Windows NT, also reduced the alternatives. The fol-
lowing properties assisted to make the decision: modelling support for complex
objects, ability to get the CORBA adapter, safety and fault tolerance support,
and good references in the control systems domain. The promised CORBA
adapter of the database restricted the CORBA implementation to Orbix. LAN
was a natural choice for the distribution due to CORBA and the possibility to
switch the OSI based connections of the PLC subsystems over to the TCP/IP
based connections, recently being come to the market.

In the following chapters, the component framework is examined as regards the
evaluation criteria, depicted in Chapter 2.5.
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5.3 Variability of a product family

5.3.1 Defining and managing product features

The consistency and completeness of a product features model are important but
difficult. The problem is considerable in small and medium size systems, as it
was in the machine control systems and automatic repayment systems. In both
cases, the features were clustered into subsystems and the variability was de-
fined inside subsystems. Scenarios and message sequence charts assisted to de-
fine a feature completely and follow up the mapping of the features to the layers
and components. Subsystems were mandatory or optional and used configurable
services, which were the mandatory features of the product family. Moreover,
the maturity of the product family facilitated to cluster the features to the sub-
systems. When the context of the features had been defined, standard CASE
tools were adequate for the definition and management of features and no spe-
cial tool was needed.

In large systems, as in the manufacturing systems family, this did not work. One
way to manage the problem is to cluster the features to the services and thereaf-
ter, to components (Figure 29). The mandatory and optional services were de-
fined (cf. Chapter 4.2.1) and the principles, such as defined in Chapter 4.2.2,
support the management of the features, but a special tool support is still needed.
The principles are used inside the scope of a service, an architectural component,
and a primary component. After clustering and modelling the features they are
formulated as rules and stored into a database, where they can be managed and
their use is possible to be checked with an algorithm. The approach needs further
studies, and there are still open questions, to which this work can not answer
exhaustively. However, the viewpoint-oriented domain requirements definition
method and the multi-modelling approach with concepts and features (Mannion
et al. 1998; Simos et al. 1998), which have similarities with our approach,
strengthen our belief in its correctness.
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Figure 29. Defining the scope of variability.

The main weakness of our approach seems to be the lack of support for large
distributed systems. Therefore, the following areas need further studies:

•  A formalised feature modelling method with concepts.

•  Tools for modelling and managing features and variants of large distributed
systems.

•  An explicit means to describe services and manage their relationships.

•  Group-ware support that is necessary for the development of large distrib-
uted systems.

5.3.2 Mapping variability to the architecture and components

The product-family architecture is a conceptual architecture that has several
realisations. Therefore, services and architectural components are mandatory,
optional, or conditional. A service is a set of components that may be architec-
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tural or primary components. Agents, in our context, are architectural compo-
nents representing applications. Due to loose coupling and dynamic binding
there is no problem to manage functional diversity of applications with black-
box components at the architecture level. However, the services are more com-
plicated owing to the relationships between components. Layering, separation of
mechanisms and data, isolation interface technique and adapters provide flexi-
bility needed for the diversity of services. However, they do not define how the
services should have to be organised and configured for product variants. There-
fore, the following approach has been applied in the case studies:

•  Scope. A variable feature was targeted to a layer, a service or a component.

•  Quality. The target entity was tagged by a basic quality, for example, a hard
RT MTL, a soft RT error handler, a safety-critical brake control system and
a DB with the fault-tolerance option.

•  Relationships. The relationships were defined between layers and services,
as depicted in Table 12 and Figure 30.

•  Mapping. Variability was mapped to data, structure, behaviour and connec-
tions of the components by choosing an appropriate means to carry out the
variants.

In the case of the machine control systems, the variable services were carried
out by a generic communication service that was used in every node and config-
ured according to the communication description. Each node also had a local
configuration manager in the upper layer, one of them acting as a co-ordinator.
The communication service was configured by data, which is a time and space
saving means, and therefore, suitable for real-time systems.

The repayment systems required different configuration management for the
network and co-ordination layer. However, the following principles were used in
both cases:

•  The upper layer configures the services of the lower layer, controlled by the
monitoring component of the layer.
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•  A special service of the configuration management deals with the system-
level configuration on the co-ordination layer.

The approach provides that a service defines its relationships to system-level
data and the services on the underlying layer. Variability of the system-level data
is defined in the features tree as informative leaves. The relationships of the
services, as depicted in Figure 30, are structural and behavioural defining pre-
requisites. A connection manager dealt with the structural relationships in the
MES family, and the ECA executive managed the behavioural relationships in
the FMS family.

There are two main approaches to carry out the variability at the component
level: by inheritance in white-box components and by parameters and connection
points in black-box components. The use of the hot-spot design pattern and in-
heritance were the appropriate ways to implement variability, if changes could
be anticipated. In this case, the structure, operations, and behaviour may be
changed at the same time. The used approach also depends on the amount of
dependencies and the use of a component. A component that has a few depend-
encies and is repeatedly used in the systems, is a black-box component, other-
wise white-box.

Parameterisation was a useful technique to vary mechanisms and install surro-
gate components to match the real environment. The means was used, for exam-
ple, for the sensor and valve components in the machine control systems family
and for the device components in the FMS family. The parameters were fixed by
instantiation, statically or through a user interface.
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Figure 30. Relationships of the services in the FMS family.

Although the structure and functionality of an architectural component is the
same, its connections may vary and filters are needed to adapt a component to its
new context. Two connection points were provided: the connection manager to
change the connections of the PAC agents and the ECA executive to change the
connections of the internal components of the PAC agents and services. Al-
though the connection manager does not enable to import a filter directly, a filter
class can be added to the class hierarchy of the COMI interface. In this way, the
internal state of a replaceable agent is able to be conformed to the state of the old
one. The same can be carried out by a black-box component that the ECA ex-
ecutive connects to an agent. In the case studies, a filter was applied to convert-
ing messages from one protocol format to another, and it was implemented as
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the methods of a class in the inheritance hierarchy of the adapter, depicted in
Figure 24.

If behavioural variability was required in services and non-architectural compo-
nents, ECA rules with the ECA executive was used. This way of managing vari-
ability is not straightforward, but it provides the most versatile means of reusing
product features. Through the ECA rules, all aspects of a component -- structure,
operations, data, behaviour, and connections -- may be changed at the same time
or one at a time. Therefore, variability is the strictly beforehand-defined property
of a component, and the ECA concept is a flexible solution to manage semantic
components of the product-family tier. On the other hand, it has side effects on
the execution time and memory requirements, and therefore, its use is restricted
in RT and embedded systems. A faster implementation with a main-memory
database and an optimised ECA executive in a node with necessary computing
resources may be the solution to the problem.

5.3.3 Configurability of a product family

The selection of product features is a hierarchical decision tree (cf. Figure 29). In
the first phase, mandatory and optional services and logical subsystems are se-
lected. In the second phase, conditional relationships of services and subsystems
are considered and corresponding components are selected. In the third phase,
the fine-grained features of the services and application agents are selected and
possible new features are defined. The dependencies of new features have to be
checked as regards the features tree of the product family. In the optimum case,
the selection is based on black-box components, except fine-grained features that
are implemented by an inheritance hierarchy and parameters.

ECA rules replace the white-box feature-selection by bringing it to a later devel-
opment phase. In this case, the selection of fine-grained features is done in the
installation and instruction phase by on-line changes in the associations of the
rule-members. In large control systems, this way produces better satisfaction of
the end-users that could smooth the system according to their work and working
manners. However, if the features can be selected in the development phase and
need not to be changed during the life-cycle of a system, the on-line configura-
tion is unnecessary. Selecting black-box components and configuring the inte-
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gration platform with data and operation through parameters give the reasonable
flexibility as regards product features.

If on-line configuration is required, the connection manager and ECA executive
provide the mechanisms to change applications and features. By the connection
and configuration manager, an application agent can be moved and changed. Its
presentation component can also located to different node than the control and
abstraction components. However, their reconfiguration always has to made at
the same time.

The connection and configuration managers were used with the messaging
services of the real-time operating system, QNX. The performance tests of the
implementation showed that the execution times are too slow for real-time sys-
tems. Preparing a replacing agent ready to work before the connections of the
old one are cut and reconnected to the new agent, shortens the execution time of
the replace-operation. However, it may be an adequate improvement for soft
real-time but hardly for hard real-time systems. Thus, the configuration of hard
RT systems should have to be made during the start-up or using a faster mes-
saging service and an optimised interface.

The ECA concept provides the following reconfiguration manners:

•  to change the state of a trigger,

•  to change the associations between triggers and rules,

•  to change the conditions and actions of a rule,

•  to change logical links between events and selectors, and

•  to create a new rule chain for a new feature.

The first three are on-line, the rest off-line configuration manners. A simple user
interface was developed for modifying triggers and associations on the fly. New
rules were evaluated while constructing the prototype incrementally.



 120

The state of a trigger activates a product feature or a set of features. The property
is useful in the installation phase by allowing one to add new features on-line.
However, it provides that the corresponding functionality is implemented in the
services and applications.

By clustering a set of functional features to a rule, a standard way to react, for
example, to errors can be defined and reused. If this behavioural pattern is
needed to be changed, replacing the rule with a new one carries out the change
and an on-line change in association between a trigger and rule is enough.
Changing the components of a rule, its conditions and action-list, produces sub-
tler tailoring capabilities for tuning a system.

The link between events and selectors provides a possibility to change the be-
haviour of the systems. An event can be connected to a new behavioural pattern
or the existing behaviour can be activated by a new source. The former is
needed, if the functionality of a system is changed. The latter is used, if the acti-
vator is changed, for example by changing a software or hardware component.
However, recompiling is required in both cases.

The rule database represents the knowledge of a product family as a part of the
core product, whereas the activated rules and associations between the compo-
nents of the rules form the description of a product variant. When the product
features model is constructed incrementally or updated, new features are added
by defining a new rule. Respectively, the ECA rule is destroyed, when the fea-
ture is no longer relevant to the product family. However, the use of the ECA
concept has the following limitations:

•  The maturity of a product family and the development process must be high
enough so that the product features could be identified and defined exactly
by rules.

•  Because of its influence on the size of memory and performance, lighter
configuration manners are more suitable in small systems and the systems
that need only limited customisation during the integration and installation
phase.
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•  The rule database may be deployed as a component of the systems. In some
cases, the new version of the rule database is enough for upgrading, but this
requires the termination of a system and restarting the applications.

•  A centralised configuration builder, which actually creates the object in-
stances to the rule database, simplifies the implementation of rules and acts
as a reusable software component. However, no automatic support exists and
each change in the product features is reflected in the configuration builder
that has to be updated manually.

The configuration tool of the automatic repayment systems provided a means of
changing the identification manners of target objects, as well as the objects and
operations of the continuous treatment (Figure 31). The data-based configuration
activates and changes the behaviour of the system, but it is a special solution for
restricted use. On the contrary, the ECA concept is a generic mechanism and
provides the same functionality extended by the ability to reuse the components
of existing rules, i.e., actions and conditions. However, the simple configuration
tool was enough in the repayment systems family.

The configuration of the machine control systems was made by loading configu-
ration data during the start-up. The same technique was also used for defining
messages of the interacting applications in the repayment systems family. In
most cases, this is enough for integrators, if a system is installed at the same
time. On the contrary, large systems, such as manufacturing systems, are incre-
mentally installed, and then the ECA concept is a powerful tool for fine-tuning a
system’s properties.
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Figure 31. A configuration tool.

5.4 Interoperability of distributed control systems

5.4.1 Interoperability between tiers

The inter-framework interoperability is achieved by generic communication
mechanisms, configured for the required use. In the machine control systems,
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the periodic messaging service was configured by the message identifications
and timing requirements by loading them to the configuration managers during
the start-up. The local configuration manager selected a set of parameters and
configured the communication mechanisms during the execution according the
state of the system at the time. The other service, to which the periodic message
service was connected, was the data management service. In other words, the
interoperability was achieved by implementing a generic communication
mechanism, and the configuration managers controlled the co-operation of the
applications.

The lightweight communication interface was the generic component for
interoperability in the repayment systems. The interface, configured during the
start-up, is suitable for real-time and embedded systems with limited memory.
The performance of the communication depends on the underlying message
transmission services, not the interface itself. The same approach was used in the
material transferring systems, but it was implemented as a frame. The generic
communication interface simplified the connections of applications and guaran-
teed the interoperability between subsystems and the integration platform.

The ORB as an integration platform, used in the manufacturing systems family,
seems to be adequate for soft RT and mission critical systems, where the average
frequency of operation calls is not high. Usually, the responses to the user-
activated commands are desired to get within 200 ms in order to avoid user’s
negative feelings about the system. This restricts the allocation of applications
and the way in which the ECA executive handles the GUI messages. Although
the ECA concept provided event-based behaviour using the one-way calls, the
interfaces of applications were defined by IDL and communication was RPC-
like. Because no generic interface component could be used, the applications
with the underlying integration framework, the CORBA ORB, were tightly cou-
pled.

5.4.2 Interoperability of services

The type of the control systems family had the greatest influence on the required
services of the integration platform and their allocation policy. In the machine
control systems, the co-ordination and co-operation layers were allocated to each
physical subsystem, whereas the automatic repayment systems had the central-
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ised ones. Due to performance requirements, the configuration and control man-
agement of the machine control systems was near to the messaging services that
passed messages regularly, but shortly.

The services of the automatic repayment system consisted of the configuration
management of application agents and the network, the memory management,
and the message transmission layer with asynchronous message-passing to the
LAN, LON and serial communication networks. The routing mechanism on the
co-operation layer dealt with the messages to the proper addresses. The network
interface layer with appropriate services integrated the services with the physical
environment. Because there were no hard real-time constraints, commercial
components were used without testing their performance. Due to missing docu-
mentation, an additional testing software was needed for discovering the inter-
face of a commercial card-reader, connected by a serial communication channel.

The FMS family has an evident need of CORBA services as mandatory services.
For example, the concurrence, transaction management, and persistence services
are required. Clients have to be able to perform atomic operations within one or
more server objects. Data consistency should also be ensured and the mapping of
data objects into the database should have to be transparent. Unfortunately, only
a few ORB vendors could provide these services. Therefore, our approach util-
ised commercial ORB as the building blocks that were fulfilled by off-the-shelf
components, an adapter and ECA executive. However, they do not remove the
need of above-mentioned services.

The ECA concept provides services for several purposes. Firstly, it facilitates to
create and bind surrogate objects and their GUIs. Secondly, it controls the co-
operation of application agents, if the communication sequence is implemented
as a sequence of operations and stored as a method list in the database. Thirdly,
the ECA executive was used for propagating event-based messages to several
GUI components. In this case, the ECA concept acted as a dynamic binding
mechanism performing the logical multi-cast communication. This is useful
when information flows have to be re-ordered and controlled. It also provides a
systematic way to pass information from the control components to the presen-
tation components.
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The other off-the-shelf service, applied in the manufacturing systems family,
was the adapter (Figure 24) that provides the RPC compliant communication to
the legacy systems of the lower physical layer. The adapter has three parts; a
standard interface, derived from the responsibilities of the controlled machines, a
filter component that formulates data to the required physical format and vice
versa, and a protocol stack, which consists of the used protocols. The adapters
may be implemented in the same server with corresponding machine control
objects and protocols. However, separate servers are simpler and more useful if
several protocols are required and physical changes are anticipated.

5.4.3 Interoperability of applications

Applications have to be syntactically and semantically interoperable. The inter-
face technique and the principles of its use provided the syntactic
interoperability. There was no problem, when the same interface component was
used in every application (Papers V and VII). On the other hand, the use of the
ORB required some additional principles (Paper VI). Because of the need of
memory and memory management, the CORBA interface should not be used
when an a-part relationship prevails between objects. A database, not CORBA
objects, should have to manage the associations between data objects. Large
systems also need a garbage collection policy that should be selected from the
two alternatives: the client destroys the object when it is no longer needed, or the
server cleans up the objects after specified time-outs. The selection depends on
the timing requirements of the product family.

It is the responsibility of the co-operation and co-ordination layer to guarantee
the semantic interoperability of applications. If the co-ordination consists of the
controlling mechanism and the data that configures the mechanism, the flexibil-
ity of the systems can be provided and the connections of applications are inter-
changeable.

Defining and changing the co-ordination and co-operation layers of the machine
control systems were complicated due to the strict timing requirements associ-
ated with the definitions of periodic messages. Therefore, the communication
between subsystems had to be designed separately, and next, the message defi-
nition with their timing requirements were loaded to the co-ordination layer, i.e.
the configuration manager, and further to the communication components. The
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approach needed a special tool with simulation capabilities. The ObjecTime tool
was selected for this purpose. After the architecture was modelled and simulated,
a real-time subsystem was implemented. In the simulation, the interoperability
was verified by a model of two subsystems and the CAN network. Although the
timing requirements of the messages were easy to design for two nodes, it may
be extremely difficult for a system with dozens of nodes.

In the repayment systems, the same architecture was applied, but the system had
the centralised co-ordination and co-operation layers with soft real-time re-
quirements, and therefore, the semantic interoperability was much easier to
manage.

Although the ORB provides the syntactic interoperability of application objects,
ORB-based systems without domain services have a co-ordination problem. In
large systems, the chain of control spreads out into the distributed objects and
therefore, the co-ordination of the objects is impossible to manage without the
co-ordination layer.

5.5 Adaptability of the component framework

5.5.1 Portability of distributed control systems

The ability to move applications and services to another environment, shows the
independence of software. In the case studies, application-independence was
supported by the following manners:

•  Applications are uniform software agents that apply the PAC pattern.

•  The levels define the scope and responsibilities of agents: primary compo-
nents at the top level, building blocks at the bottom level and logical sub-
systems at the intermediate level.

•  A standard interface to the integration framework.

•  Dynamic configuration for the agents at the intermediate level.
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•  Presentation components are separated from abstraction and control compo-
nents.

The independence of services is more complicated. The services were targeted to
the layers that attempted to reduce their dependencies by separating technology-
dependent and application-dependent services. The Bridge pattern was used to
separate technology-dependence software, for example the operating system,
from the messaging service. However, if a service is transferred from one envi-
ronment to another, some modifications and recompiling are needed.

In machine control systems, the implementation of surrogate components, e.g., a
sensor component, with a separate hardware interface provided the hardware-
independence of sensors and valves. The Bridge pattern was useful to manage
the evolution of hardware interfaces and surrogate components separately. In the
repayment systems, the separation was implemented by gathering the hardware-
dependent parameters and software to a file that could be changed at the same
time as the communication network.

5.5.2 Flexibility of the component framework

Flexibility concerns how easily a user interface, system’s topology and hardware
can be changed. In the case studies, the following approach was applied:

•  The allocation model is separated from the development of the applications.

•  User interfaces are separated from the application logic.

•  Separate interfaces and configuration support were applied to the network
and interface devices.

•  Built-in configuration support for applications and the network.

Due to the separate allocation phase, applications and subsystems can be easily
changed. The connection and configuration managers provided the support to
allocate applications freely, and therefore, the system’s topology does not affect
the applications. The ORB provided the corresponding support in the FMS fam-
ily. However, the message-based communication is preferred to RPC-like com-
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munication, because the former provides looser coupling. The interface could
also be customised by parameters in the majority of cases.

By using PAC agents, user interfaces could also be allocated freely. A PAC
agent is flexible enough, if a system needs only an instance of each GUI, but the
presentation components may have to be allocated separately in large distributed
systems. Therefore, the allocation of multiple instances of the same GUI was
demonstrated with the ECA executive that propagated the information to the
bound user interfaces (Paper VI). However, the same could be implemented by
small changes in the connection and configuration manager.

Dynamic binding and transparent communication assure that the topology of the
network does not affect the applications, whereas changes in the network affect
the services of the integration platform. However, the changes are tolerable and
manageable, if layers with components are used. Changes in interface devices
are limited to the surrogate components or their interfaces only.

5.5.3 Extendibility of distributed control systems

The ability of a system to add applications and services defines its extendibility.
For applications, the following approach was applied:

•  Syntactic conformance. Applications have a uniform structure and a generic
interface component that connects them to the integration platform.

•  Independence. Applications are location-independent. It is the responsibility
of the integration framework to manage locations and bindings between ap-
plications.

•  Semantic conformance. Applications are configured through the integration
framework that stores and manages the definitions of semantic
interoperability.

If applications fulfil these three requirements, a system is extendable as regards
applications. Although the extendibility of services is much more complicated,
the following approach was tried and tested in the case studies:
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•  Placeholders were reserved for the architectural components in the struc-
tural and execution architecture, i.e., a slot for the variants of a component in
the structure and time-thread.

•  An externalised binding mechanism was provided for the behavioural vari-
ants, i.e., a place to add and change the connections of components.

•  Alternative behavioural patterns were stored as the ECA rules into the data-
base of the integration platform, i.e., configuration knowledge as rules.

•  The associations of fine-grained components were changed on-line by the
configuration management tool.

Although this approach provided the ability to add a service by connecting it to
the other services through the ECA executive and a set of rules, it does not pro-
vide the on-line configuration for a service but some features of a service. The
approach also requires that the new service is syntactically and semantically
interoperable with the existing ones. Therefore, the use of commercial software
as a service presumes that its properties are defined, managed and configured in
the same way as the other services’.

5.6 Suitability for the control systems domain

5.6.1 Operability and simplicity

PAC agents, applied to the repayment systems and material transferring systems,
supported mapping the variability to the responsibility-driven logical subsys-
tems. Layers provided the means of bringing together the components at the
same control level. In this way, the PAC agents defined the conceptual archi-
tecture, whereas the layers formed the aggregation level of the architecture. Dy-
namic architecture concerned only the agents at the intermediate level. The ar-
chitecture was workable in both cases, because there were only a few main vari-
ants and diversity could be targeted to the logical subsystems directly.

In the FMS family, the rule-based system architecture was combined with the
client-server architecture, because functionality was more natural to define as
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services than agents. The reason was that each service had several relationships
to other ones, whereas an agent is an autonomous unit. However, the PAC pat-
tern might also be applied to the FMS family, but the behavioural pattern of an
agent should be defined by a set of ECA rules.

5.6.2 Adaptation of COTS and legacy software

The interfaces of COTS were mostly unsuitable for our experiments. The COTS
and off-the-shelf software, used in the repayment systems, had to be tailored.
The LON-dependent software had to be customised regarding the interfaces of
the operating system and hardware. The functionality of the software compo-
nents were customised as regards the interrupt services, implemented by the
supplier. Although tailoring was needed when the version of the operating sys-
tem changed, there was no change in the API. On the other hand, for the serial
communication software that was an off-the-shelf component, only a few con-
figurations were made easily by changing the parameters. In the last case study,
COTS was offered with a new interface that at the end of the project was still
under development. The COTS itself was stable, but the supplier was not reli-
able.

The transaction service, needed for the manufacturing systems, was not available
at first. Later, its high price and supplier-dependence should have restricted the
selection of other COTS and made it a critical component in the systems. In the
other case, the LON network configuration tool was a critical component. Sys-
tems had to be configured with an expensive tool that could not be used without
expertise. According to our experiences, the critical factors in the use of COTS
are (cf. Voas 1998):

•  The provided properties of a component compared to its requirements.

•  The quality of a component and the reliability of the supplier.

•  The impact of a component on the product family.

The liability of the supplier and the impact of a component are more important
when a component is intended to be used in a product family, not only in a sys-
tem.
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5.6.3 Heterogeneous methods and tools

In the analysis phase, we used technology independent methods and the Visio
drawing tool. The PFM, based on FODA, was suitable for small systems, but its
expressive ability is limited. Therefore, the definition and management of the
services of large distributed systems need more support for design and mainte-
nance. The same concerns the QFD method that was applied to validating a
small system and commercial components. However, these methods do not need
the skills of special technology and therefore, they are appropriate for
stakeholders’ team-working.

Time threads and scenarios, on the other hand, proved to be useful in all cases.
Although they are descriptions of object-oriented methods and used mainly by
domain and software engineers, they are easy to understand, for example, by
mechanical engineers and marketing staff, whereas the IDL descriptions can be
used only among software engineers.

5.6.4 Impacts on the development process

According to our experiences, both the product family and the development
process have to be mature enough: product variants have to be identified and
defined and the change management has to be guided. In the case of not being
able to identify all product variants straight away, the scope of a component
framework should be restricted to the application framework or the integration
platform. In this way, we performed the case of the machine control systems and
the FMS family.

To be successful, the modelling of product features has to be the responsibility
of the domain experts. The developers of user interfaces are responsible for de-
scribing the features with the concept models of different roles and skills. Sub-
contractors are responsible for defining the functional, safety and performance
features of their components. The same requirements have to be set for the
COTS suppliers, in addition to their reliability. However, the domain experts and
marketing staff validate the product features.

The parts of the component framework were developed in several projects, in
which ten software engineers worked for fifty man-months altogether. Each



 132

project included familiarisation with the application domain and products. The
technology that had been used was changed entirely three times. However, if the
product family and the development process are mature enough, it roughly takes
one to three man years to develop a component framework. The scale is due to
the size of the systems and the amount of product variants and features.

The development and use of the component framework presume that the product
managers and domain experts work together with the developers of the compo-
nent framework. The product-family tier is shared by the domain analysts, prod-
uct and marketing managers and its development requires all their expertise.
Application developers, system integrators and maintenance staff share the inte-
gration platform, and their expertise with the experienced technology experts of
distributed systems are needed for its development. The expertise of the applica-
tion domain is important in the development and use of the subsystem tier.
However, application developers can be much less experienced than the domain
analysts that needs the knowledge of the products, technologies, and develop-
ment process. Their responsibility is to define the principles, rules and guidelines
that the application developers utilise in a production line. The development of
reuse assets and systems are separate development processes, both of which are
made incrementally and systematically, and therefore, an organisational change
may have less influence on the quality of software.
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6. Related research
The topic of this thesis concerns software engineering, but there are other re-
search areas that have also dealt with it, for example computer science, artificial
intelligence, and control engineering. We review different reuse approaches and
the aspects related to the development of a component framework. CBSE fo-
cuses on product features, software architectures, and components. Dynamic
configuration is near to architecture description languages and an enabling tech-
nology for the run-time configuration of component-based software. Concurrent
software engineering focuses on processes and environments that support the
management of reuse assets. We compare some environments and frameworks
that support component-based software development to our component frame-
work.

6.1 Approaches to the component-based software
development

There exist various approaches to component-based software development in the
literature. The following three main approaches, which have matured nearly all
together, are prevailing: a feature-oriented approach, an architecture-oriented
approach, and a language-oriented approach.

The idea of program families originates from the stepwise refinement develop-
ment method and information hiding modules (Parnas 1976). Goullon et al.
(1978) applied the principle of data abstraction to types and models for dynamic
restructuring of module’s implementation. Prieto-Diaz (1987) made the pio-
neering work of domain analysis by defining the faceted classification technique
for finding components from code. Furthermore, module interconnection lan-
guages (MIL), the predecessors of IDLs, were the first step towards architectural
languages that have directed the interest of a large research community back to
product-family architectures (Prieto-Diaz & Neighbours 1986; Shaw & Garlan
1996; Bass et al. 1998b). However, the target of reuse has changed from code to
product features and product-family architectures.
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6.1.1 Feature-oriented software reuse

In the 1990s, Feature Oriented Domain Analysis (FODA) has become the most
popular domain analysis method (Kang et al. 1990; Dionisi Vici et al. 1998;
Griss et al. 1998). The method made a significant contribution to model-driven
analysis, which uses several complementary views of a domain to convey com-
plete information. FODA consists of two activities: context analysis and domain
modelling. The context model describes the environments in which the applica-
tions will be used. Domain modelling produces entity-relationship models that
depict developers’ understanding of the domain entities. A features model firstly
included only the end-user’s perspective, but it has been enhanced with the
viewpoint of developers. Data flows and finite-state machines illustrate the func-
tional requirements of the applications. The strength of FODA is in its product-
orientation and technology-independence. We enhanced and applied FODA for
describing mandatory, optional and conditional features of product-families
(Papers II, Chapter 4).

The Synthesis method defines the domain process that creates and manages re-
use-assets, and the application engineering process that utilises the assets
(Campbell 1992; Mannion et al. 1999). Contrary to FODA, Synthesis is a proc-
ess-oriented method consisting of three activities, that produce a domain plan,
definitions, and specifications. The method provides a systematic way to pro-
duce and document the scope, glossary, assumptions, and maturity of the do-
main. The main contribution of the method is that it considers business and mar-
ket needs and technical feasibility in addition to the existing products in the do-
main. The practical feature modelling method (PFM), depicted in Paper II, com-
bines the component-development process and enhanced FODA, later called
PFM, together due to the need to automate feature-component-mapping.

Joint Object Oriented Domain Analysis, JODA (Holibaugh 1993), is based on
the Coad/Yourdon Object-Oriented Analysis method (OOA) (Coad & Yourdon
1990). Business and methodology planing are the preceding phases of domain
and application engineering processes. Domain analysis is a part of the domain
engineering process that has three phases: prepare a domain, define a domain
and model a domain. The preparing phase corresponds to the definition phase of
Synthesis. Domain definitions that are refined during the domain modelling
produces a subject diagram, whole-part diagrams, domain services, domain de-
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pendencies, and a domain glossary. Software reuse is based on object classes
and features are described by specialisation-hierarchies, denoting the parts that
are parameterised, added or changed. JODA is a technology-oriented method
that focuses on reusable requirements. Domain services that are visible to sub-
systems are listed as well as the dependencies of services that must be available
from subsystems for the domain to meet its requirements.

The main contribution of JODA is the separation of domain engineering from
application engineering and their interaction. JODA also emphasises business
and methodology planning as a starting-point of domain and application engi-
neering, as well as the reuse-asset library as a part of domain engineering. The
method is a comprehensive, “pure” DA method and can be applied straightfor-
ward, if the OOA method is used. However, more often a method has to be
adapted to the needs of an organisation, as OMT in Paper I.

The Organisation Domain Modelling method (ODM) emphasises organisational
and non-technical issues, but builds directly on insights of methods such as the
faceted classification and FODA (Simos 1995). ODM is a technology-
independent process-oriented method that assumes that there is a set of legacy
systems, which are reasonably stable. Therefore, the method is suitable for or-
ganisations that already have the well-defined software development processes.

ODM has three activities: domain planning, domain modelling, and component
engineering. Business objectives and stakeholders’ needs are considered in a
domain plan that focuses on the current and future exemplars and other domains.
The domain model contains a lexicon, a set of concept models, and a set of fea-
tures models, which reflect different views of the domain. A concept model de-
fines semantic relationships between domain terms that are defined in the lexi-
con. A feature is an attribute of a concept that characterises the concept by de-
fining it or distinguishing it from other concepts or instances of the concept.
Features are clustered within a concept or between different concepts. Clusters
reduce the number of combinations and guide the component development.

To sharpen the differences of features and concepts, Simos and Anthony (1998)
applied the Sigma formalism in the model web clarifying the problems in the
semantics of concepts and features. In the model web, certain models have the
status of concept models because they are central to the domain focus estab-
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lished by the stakeholders’ interests. Other models, due to their form and corre-
lation to the model-world play the role of features models within the web. In the
FMS family, roles, skills and work played the attributes that gave the status of
concept models. However, Simos and Anthony have formalised that which we
attempted to describe informally.

The contribution of ODM with Sigma is its strength to describe features of large
distributed systems with several stakeholders and “hot-spots” that are the sec-
ond-level features, i.e. concept models, in the domain model. Formalism makes
it possible to construct business level architectural components from the seman-
tic models that non-programmers can develop and evolve to compose and cus-
tomise applications. Digre (1998) has presented a concrete example with a com-
ponent definition language and a business object component architecture. Our
code-from-features-approach, presented in Paper II, proved to be proper for
small and centralised systems, but not for distributed systems. The problem is
the management of product features. Therefore, formalism and a corresponding
tool are essential for the product features of large distributed systems.

The Reuse Driven Software Engineering Business (RSEB) is founded on Jacob-
son’s use-case driven OO method (Jacobson et al. 1997). The method is organi-
sation-oriented and defines a domain as a business area, in which a suite of ap-
plications realise one or more business processes (Mannion et al. 1999). RSEB
has four processes. Object-oriented business engineering reengineers the target
business processes that benefit from software reuse. Use-case driven object-
oriented software engineering consists of software family engineering to engi-
neer the application family architecture, component system engineering to de-
velop components and application systems engineering to develop new applica-
tions from the application family architecture and components.

The contributions of RSEB are the mapping between business and SWE proc-
esses, as well as incremental development and variation points defined in be-
havioural patterns. However, we prefer scenarios to use-cases, because they give
stricter understanding of the behaviour of the systems (Papers III and VI).

FODAcom (Dionisi Vici et al. 1998) is extended FODA that has been applied
within a telecommunication business unit. The method uses three models in
requirement analysis: an actor diagram as a context model, use-cases, and a fea-
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tures model. Parameterisation and extension points are described in the use-case
model, derived from RSEB. The extensions aimed at encouraging the reuse of
requirements specifications and integration of definition processes within the
domain projects. Griss et al. (1998) refined FODAcom further by integrating
features to RSEB using use-cases and extended features trees. Actors and use-
cases are used to express the commonalities and differences, but on the contrary
to FODAcom, variation points are described in a features model with OR, XOR
and required relationships. The latter requires an expanded view of the features
model. Justification of these two models is that a use-case model is intended for
system engineering and communication with end-users. The features model, on
the other hand, is used in domain engineering for defining technical features.
The features model is similar to our model, except for notation and required
relationships, which are described in the same model in our approach. Further-
more, optional scenarios are also described in our approach.

Bergmans (1998) introduced a notation to describe concepts of a product-family
architecture as a concept map. The notation bridges the gap between the infor-
mal nature of the domain analysis and the formalism required from an architec-
ture description. Concepts are categorised into aspect-of relations, is-a relations,
semantic relations, and constraints. An aspect-of relation defines the composi-
tional structure of concepts, and an is-a relation represents a specialisation rela-
tion. A semantic relation represents certain domain-specific semantics, e.g., in-
teraction or co-operation. The three categories of relations are interpreted
through the variability of systems by defining the allowed configurations and
deriving the constraints that can be positive, negative, and semantic. A positive
constraint defines that a certain concept is valid only with another or other con-
cepts. Negative constraints define combinations that are not allowed. Semantic
constraints describe quality requirements, e.g. time, space and performance re-
quirements. Relevant quality requirements tag the concepts and relations in the
concept map. In PFM, positive and negative constraints are defined by required
and exclusive relationships and semantic relationships by time threads. How-
ever, the main contribution of the notation is that it considers quality require-
ments, on the contrary to the others that are focusing on functional and behav-
ioural features.

All of the above-reviewed methods have their strengths and weaknesses, but
none of them alone provides comprehensive support for feature-oriented soft-
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ware development. However, the trend of combining and formalising a DA
method, for example ODM with Sigma formalism, could resolve the problems
that product-families of distributed systems embody. An enhanced ODM
strengthened with an incremental development tool, the business-view and
variation points of RSEB and the semantic constraints of Bergsmans’ approach
could be the answer to the development of the semantic components of the prod-
uct-family tier.

6.1.2 Architecture-oriented software reuse

We categorise architecture-oriented software reuse to the five categories: archi-
tecture styles, architectural patterns, domain-specific architectures, product-
family architectures, and reference architectures. The scope of reuse is different
in each class. Styles are reused as principles when software architecture is de-
veloped and architectural patterns are selected. An architectural design pattern,
for example a broker, is a macro architecture applied as a common reuse-asset in
several business areas. A design pattern, for example a dispatcher, is a micro
architecture, i.e., a common way to solve a focused problem. Domain architec-
ture is a focused architecture in a well-known domain without categorising mar-
ket segments that are the focus of product-family architectures. A reference ar-
chitecture is an informal or formal architecture model, which is accepted and
reused community-wide.

Architecture styles

A style is determined by a set of component types, a topological layout of the
components, a set of semantic constraints and a set of connectors (Bass et al.
1998b). A style defines a class of architectures and is an abstraction for a set of
architectures that meet it. Examining existing systems Show and Garlan have
catalogued a set of architecture styles (Shaw 1995; Shaw & Garlan 1996). Bass
et al. (1998b) gives a small catalogue by defining five main classes: independent
components, data flow centred, data-centred, virtual machine, and call-and-
return architectures (Table 13).
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Table 13. Architecture styles (Bass et al. 1998b).

Main class Characteristics

Independent
components

Dominated by communication patterns among independent,
usually concurrent processes, e.g. event systems and commu-
nicating processes.

Data flow Dominated by motion of data through the system, e.g. pipes
and filters, and batch sequential.

Data centred Dominated by a complex central data store, manipulated by
independent computations, e.g. repository and blackboard.

Virtual ma-
chine

Characterised by translation of one instruction set into another,
e.g. interpreters and rule-based systems.

Call and
return

Order of computation, usually with single thread of control,
e.g. objects and call-based client-server, layered architecture.

A system is seldom built from a single style, but it is a combination of heteroge-
neous styles. For example, a PAC agent, which is used in the subsystem frame-
work, is based on event-based independent components, interpreters, which are
sub-classes of the virtual machine class, and layers, which represent the call-and-
return style. The execution topology of layers is hierarchical, as well as inter-
preters. On the contrary, independent components are arbitrarily executed. An
agent itself is an architectural pattern that represents these three styles. Further-
more, an intelligent agent also consists of a repository and filters, which repre-
sent data-centred and data-flow centred styles. Thus, styles are design rationale
that is reused through architectures and architectural patterns.

Architectural patterns

Utilisation of architectural styles and patterns are typical for domain-specific
architectures, product-family architectures, and reference architectures. Patterns
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are widely reused and verified solutions for their specific problems. Buschmann
et al. (1996) groups patterns into three categories: architectural patterns, design
patterns and idioms.

Architectural patterns express fundamental structural schema for software sys-
tems, which are applied for high-level system subdivisions, distribution, interac-
tion, and adaptation (Buschmann et al. 1996). Layered architecture is a call-and-
return style, when it defines an overall style to interact. When it is strictly de-
scribed and commonly available, it is a pattern (cf. Bass et al. 1998b; Busch-
mann et al. 1996). For example, ROOM and ObjecTime encourage to use layers,
and thus, a layer is a pattern supported by the method and the tool. In our com-
ponent framework, the subsystem and integration tiers used layers mainly for
subdivision, distribution, and adaptation and their intention is to support systems
management and evolution (Papers IV to VI).

The Broker pattern is intended to structure distributed software systems with
decoupled components that interact by remote service invocations. A broker is
responsible for co-ordinating communications, as well as transmitting results
and exceptions. CORBA ORB, used in the FMS family, is a practical example of
a broker used in COTS (Paper VI). A generic communication component and the
software bus are examples of a broker, implemented as OTS (Papers IV and V).

The Presentation-Abstraction-Control pattern defines a structure for interactive
software systems that form a hierarchy of co-operating agents. Every agent is
responsible for a specific aspect of the application’s functionality. The PAC
pattern was applied in the subsystem tier of our component framework and the
intention is to guarantee the independence of applications (Paper VII).

The Reflection pattern is an example of patterns used in adaptable systems that
have to be open for modifications and extensions. A reflector has two levels: a
meta level provides a representation of structure and behaviour in terms of meta-
objects that are utilised by the application logic at the base level. The base level
is independent of the aspects that are subject to change, they are responsibilities
of the meta level (cf. Welch & Stroud 1998; Robben et al. 1998). In our frame-
work, the Reflection pattern was applied in the implementation of ECA rules:
the metal level defines the structure and behaviour of a trigger as base classes
and application logic is described as instances of the derived classes.
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A design pattern describes a recurring structure of communicating components,
which solves a general design problem in a particular context (Gamma et al.
1994). Design patterns are micro architectures and do not guarantee a good
overall architecture. They do not lead to direct code reuse either, but they have
to be implemented each time they are applied. The Bridge pattern is an example
of design patterns, which has been reused for isolating a physical part from a
logical part of an interface (Papers IV and VII).

Idioms are the lowest-level patterns. They describe how to implement particular
aspects of components or relationships between them using the given language.
Idioms have not been used deliberately in our experiments.

Domain-specific architectures

Domain-Specific Software Architecture (DSSA) defines the process model of
the domain engineering that targets reusable software architectures (Tracz et al.
1993). FODA is one of its inspirers, but DSSA is focusing on a solution domain,
i.e., the solutions that meet the requirements, and the constraints that limit the
number of ways to solve the problem. The approach, as depicted in Paper I, is
useful in re-engineering, if commonality and variability of existing systems are
examined. Hayes-Roth et al. (1995) have used DSSA in the development of a
domain architecture that is based on agents, reusable components, and an appli-
cation configuration tool. The approach is applied in the mobile office robots
domain and has similarities with our approach. However, the viewpoints of dis-
tribution and product-family are missing.

Evolutionary Domain Life Cycle model (EDLC) is the next step toward product-
family architectures (Gomaa 1995). EDLC consists of three major activities:
domain modelling, target system generation and target system configuration.
EDLC categorises requirements into four classes: kernel, optional, prerequisite
and mutually exclusive requirements. They correspond to mandatory, optional,
and conditional features of PFM, respectively. The method focuses on functional
features from the end-users’ viewpoint and provides two alternative approaches:
the kernel-first approach and view integration approach. In the former case, the
kernel is a generic domain architecture and systems are developed by extensions
to the kernel. In the latter case, each system is considered a view of the domain,
and the integration of these views creates the domain architecture. Domain evo-
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lution is considered as a variation from the previous version of the domain
model. The main contribution of EDLC was its feature-object mapping and
evolutionary aspects. Mapping defines a feature with its relationships to exclu-
sive, required, optional and specialised features.

Product-family architectures

Domain architectures consider the similarity and variability of an architecture in
a domain. Product-family architectures focus on reuse assets that include a base
architecture and a set of common components that populate it. However, the
results of performance analysis, testing, project planning, development tools and
processes can also be reused in a product-family (Bass et al. 1998b; Clements &
Northrop 1998). On the contrary to the domain architecture, which can be reused
by a single person or a group of designers, a product-family architecture is a core
competitiveness of an enterprise and has to be committed by all stakeholders.

As depicted in Figure 5, reuse assets include product features, product-family
architecture, used COTS and OTS, test cases, methods and tools. However, to be
successful, the development of these assets set preconditions to the organisation.
Dikel et al. (1997) have discovered the organisational principles that are critical
to the long-term success of a software architecture:

•  Focus on simplification, minimisation, and clarification.

•  Adapt the architecture to future customer needs, technology, competition,
and business goals.

•  Establish a consistent and pervasive architectural rhythm.

•  Partner and broader relations with stakeholders.

•  Maintain a clear architecture vision across the enterprise.

•  Manage risks and opportunities actively.

The first two principles also deal with products, and they are applied in our ap-
proach by the separation of concerns, adaptability, and product features. The last
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four principles are organisational issues that have to be adapted to the develop-
ment processes of each organisation. Reuse-environments that will be presented
in Chapter 6.3 glance partly at these topics from the viewpoint of development
environments and frameworks.

Because product-family architectures are core competitiveness of enterprises,
they are not commonly available, as reference architectures are.

Reference architectures

Bass et al. (1998b) divide community-wide reusable architectures to informal
and formal architectures. Informal architectures are reference architectures that
are widely used but not formally specified. CASE tools and application genera-
tors are typical examples that utilise reference architecture without an exact
specification about it. A formal reference architecture is the development of
open systems (Bass et al. 1998b). Open systems have interface specifications
that are fully defined, freely available, distributed in the form of standards, and
controlled by a group of vendors and users. The ISO OSI communication model
is traditionally used in the telecommunications area. The reference model of
Open Distributed Processing is an architecture for heterogeneous distributed
systems (ODP 1995). Its standardisation is a joint effort of ISO and ITU-T.
OMG’s CORBA architecture, another example, is widely used in the object-
orientation community.

The OSACA model (OSACA 1996) and the CIM Framework (Doscher 1997)
are reference architectures in the distributed control systems domain that are
proposed for standardisation. The OSACA model is based on architecture ob-
jects and a system platform. Architectural objects (AO) are modules that have
the only access to the platform through a standardised API. The architecture is
layered: the platform consists of the message transport and application services
systems. The communication object manager layer mediates between the plat-
form and AOs. The approach is frame-based like our COMI interface (Paper
VII), but the interface frame does not support run-time configuration. The other
difference is that an AO is a single process, whereas we used a couple of proc-
esses.
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The CIM Framework architecture is a component-based architecture that builds
on OMG’s specifications including the following layers: CORBA ORB, COR-
BAservices, and CORBAfacilities (Doscher 1997). The architecture defines
mechanisms for component interoperability, substitutability, and extensibility.
The CIM Framework Specification provides a reusable component design con-
sistent with the rules stated in the architecture guide. The framework aims at
manufacturing execution systems that are software systems between equipment
control and enterprise planning systems. It is a business domain layer on the top
of the layered CORBA architecture. However, it does not emphasise product
features and variability, whereas the product-family tier of our component
framework does.

6.1.3 Language-oriented software reuse

Architectural description languages (ADLs) are a linguistic approach of archi-
tectural descriptions and software reuse. Shaw & Garlan (1996) elaborated six
classes of properties that characterise what an ideal ADL should provide: com-
position, abstraction, reusability, configuration, heterogeneity, and analysis.
Vestal (1993) had a few additional requirements: communication integrity, hier-
archical refinement support, and ability to reason about causality and time.
Clements (1996) applied FODA to refine the requirements as features that ADLs
should have. The features are classified into three categories: system-oriented
features, language-oriented features, and process-oriented features. The result of
his survey defines the following set of minimal features for ADLs:

•  An ADL has to support creation, refinement, and validation of architectures.
It must embody rules about what constitutes a complete or consistent archi-
tecture.

•  An ADL must provide the ability to represent most of the common archi-
tectural styles.

•  An ADL must have the ability to provide views of the system that express
architectural information, but at the same time suppress implementation or
non-architectural information.
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•  If an ADL can express implementation-level information, then it must con-
tain capabilities for matching more than one implementation to the archi-
tecture-level views of the system. That is, it must support specification of
families of implementations that all satisfy a common architecture.

•  An ADL must support either an analytical capability, based on architecture-
level information, or a capability for quickly generating prototype imple-
mentations.

Academic ADLs

UniCON and WRIGHT are ADLs that are developed by Carnegie Mellon Uni-
versity (Shaw & Garlan 1996). UniCON is intended to use in defining software
architecture in terms of abstraction. WRIGHT specifications are based on the
idea that interaction relationships among components should be specified as
protocols that characterise the nature of the intended interaction. According to
Clements (1996) WRIGHT has better ability to represent styles. Completeness
and consistency of architecture specifications are also more comprehensive.
Furthermore, WRIGHT’s support for variability is also better than UniCON’s.
On the other hand, UniCON is more powerful in real-time issues and code gen-
eration.

Rapide is intended to support specification, analysis, and verification of system
architectures composed of event processing components that have an ability to
generate events independently (Luckham et al. 1993; Luckham et al. 1995;
Luckham & Vera 1995). Asynchronous communication is modelled by connec-
tions that react to events generated by components. However, synchronous
communication is also possible.

Causality between events is modelled by reactive behaviour of components, and
the execution architecture, also called an interface connection architecture, is a
poset (i.e. partial ordered event set) showing dependencies between events. The
interface connection architecture is a set of interfaces, a set of connection rules,
and a set of constrains. Thus, a poset captures the semantics of communication
and the behaviour of a component is defined in its interface. Therefore, variabil-
ity can be defined as alternative posets. An event pattern is an expression of a
poset. Rapide has the same goal as scenarios, time-threads and ECA rules have
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in our approach. Scenarios and time-threads define interactions with variability
and timing constraints, which are defined by event patterns in Rapide. An ECA
rule also has the same triple as a poset: actions, rules, and conditions.

Mode-based programming, semantic classification and semantic concepts (Tai-
valsaari 1993; Meslati & Ghoul 1997; Digre 1998) have similarities with Rapide
and the ECA concept. The first two try to narrow the gap between design and
implementation, whereas semantic components represent business object com-
ponents, i.e. the components of the product-family tier.

Configuration and interface languages

Although Darwin is a configuration programming language (CPL), that is a sub-
set of an ADL, it has much in common with ADLs in describing a system as a
configuration of connected component instances (Magee & Kramer 1996;
Bishop & Faria 1996). Darwin is a declarative language that divides the descrip-
tion of structure from that of computation and interaction and does not have
connectors as ADLs have. Darwin has been used in the context of Conic and
Regis systems, whereas Software Architect’s Assistant is a visualisation tool for
the design and construction of Regis distributed programs (Magee et al. 1989;
Magee et al. 1994; Ng & Kramer 1995).

An interface definition language (IDL) is like a CPL without hierarchies of
component types and the reuse of patterns. However, it is a separate language for
system design. OMG’s CORBA IDL and Microsoft’s MIDL are examples of the
commercially applied interface languages. The use of IDL encourages incre-
mental and concurrent engineering acting as a common tool between design and
implementation.

Used architectural descriptions

We used the commercial ObjecTime tool that is based on the ROOM method in
the development of the component framework. The ROOM ADL fulfils all
above-mentioned criteria (cf. Bass et al. 1998b). The tool supports incremental
development with simulation capabilities and all main architectural styles, which
are defined in the previous chapter, can be used. Variability is supported by ab-
stract actors, parameterisation and inheritance of actors, data classes and proto-
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cols. An abstract actor reserves “a slot” for the component variants that are in-
stantiated dynamically. Interfaces are described by ports that are directed and
typed by a protocol. Parameterisation may be loaded by instantiation or special
messages. Others, except abstract actors were used in the case study of machine
control systems.

In ObjecTime, timing requirements can be expressed at the architecture-level,
and implementation could be generated in RPL, C++, and C. Analytical reports
are available from simulations, but more important is the ability to generate a
target code, which can be analysed in a target environment. However, according
to our experiences, a less formal method is also needed for sketching. OMT and
the Visio tool were used for this purpose.

The CORBA IDL, which was used in the FMS family, seemed to be a too low-
level language for describing a product-family architecture. The architecture
could not be simulated before implementation without the additional test com-
ponents. The Visio drawing tool with UML stencils was used for the definitions
of components and their variations. However, there was a gap between the
graphical representations and CORBA IDL descriptions, and therefore, an ADL
with simulation capabilities and preferably with the ability to produce CORBA
IDL is required for the architecture design of large distributed systems.

6.2 Mechanisms for dynamic configuration

There are two approaches to support dynamic configuration. The first is intended
to be used for updating product features. The other approach includes support
software for extending and replacing existing applications and components. In
order to be able to reconfigure, the software systems have to provide mecha-
nisms and target objects, which are implemented with an ability to be replace-
able. In this chapter, we compare our approach to those of others.

6.2.1 Changing product features

The EDLC model (Gomaa 1995) proposed that the variants of an object type are
stored in a generalisation-specialisation hierarchy, which supports the is-a rela-
tionship. Hyes-Roth et al. (1995) applied the EDLC model for adaptive intelli-
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gent systems that have a two-level reference architecture (i.e. the cognitive and
physical level of an agent) and a set of components for both levels. In addition to
the planning, information base and behavioural parts, both levels have a meta-
controller that generates executable behaviour. An application configuration tool
that uses the tasks, methods and domains, i.e. the components of each level, is
used to perform the variety of individual agents. The configuration is done at the
development time. However, the meta-controller that acts at the run-time, per-
forms the same semantics. The approach is similar to our ECA concept, except
the meta-controller is intended to use for achieving a system’s run-time adapta-
tion to the changing world.

Gomaa & Farrukh (1997) enriched the EDLC model by mapping object types to
component types according to the Darwin CPL. A scenario driven approach, like
our approach, was used to map a feature to a design fragment as collaboration
among the components, required to support a given feature. Conceptual frag-
ments had been used earlier in TEDIUM (Blum 1996). Both approaches are
based on generated target systems, which supports software reuse at the organ-
isational level, but does not support the flexibility and evolution of a distributed
system.

In our approach, the ECA executive acts as a meta-controller that uses the ECA
rules, which are the semantic components, described as behavioural patterns. We
prefer the term ‘a semantic component’ to a fragment because a component has
its own value and users in the product-family tier instead of fragments that are
pieces of a set of other entities.

6.2.2 Replacing applications and components

Yasmin applied the architecture-oriented approach for dynamic configuration
(Deri 1997). The architecture of Yasmin defines a droplet that has similarities
with our PAC agents (Paper VII). The droplet is an architectural component with
a well-defined interface that can be loaded at runtime and replaced. The respon-
sibilities of the droplet manager and collaboration services are quite similar to
the services of the co-ordination layer of the integration framework. Our ap-
proach does not cover the versioning of applications, but the semantic compo-
nents of the product-family tier play the same roles as versions in Yasmin. The
service manager and resource manger have similarities with the co-operation
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layer of the integration tier. However, the resource manager that acts as a peri-
odically activated garbage collector to purge resources no longer needed, is not
appropriate in control systems due to the required predictability.

Yasmin, which was applied in the network management domain, used the frame-
based approach to achieve runtime configurable applications. The provided
services also have many similarities with our approach that encourage us to be-
lieve that the presented component framework could also be applied in domains
other than distributed control systems. Yasmin was developed at nearly the same
time as our PAC agents with COMI interfaces (Paper VII). Therefore, the devel-
opers of Yasmim, like us, highlighted the inability of CORBA implementations
to provide support for the development of independent and interoperable appli-
cations that support runtime application evolution. Also nowadays, the situation
of CORBA is the same.

Port-based objects (PBO) are dynamically configurable real-time components
that are categorised to five classes (Stewart et al. 1997). Generic components are
hardware and application independent, such as the mechanisms in our approach.
A hardware-dependent component can only be executed when the hardware is a
part of the system, such as the LON driver in our context. A hardware-dependent
interface-component converts hardware-specific signals into hardware inde-
pendent data that is used by generic components. The same technique is used in
the class hierarchy of our adapter. Hardware-dependent computation-
components are generic components that have been specialised by extended
functionality of better performance. This means optional features and component
variants. Application dependent components implement the specific details of an
application. This corresponds to PAC agents.

A PBO is independent of the granularity of functionality and is implemented as a
thread that is a finite state machine with four states: not_created, off, on and
error. The PBO approach provides a systematic way to develop configurable
components with the following restrictions:

•  The same operating system is used in each node.

•  The operating system provides a template for concurrent processes (PBOs).
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•  The communication can be based on shared memory that is updated at pre-
determined times only.

•  No explicit synchronisation is needed among processes.

Stadel (1991) proposed a language-oriented approach for the dynamic configu-
ration by introducing a dynamic link loader that the operating system is intended
to provide. Maintenance commands are entered through the user interface of an
online configuration manager. The loader saves the entry addresses of loaded
classes and keeps book of all loaded code with a creation counter. Using a class
that clones the state of an existing object to the new one, new objects replace the
old ones. The approach provides dynamic loading for the objects of the same
class, but does not support reconfiguration of components. Kniesel (1998) has
enhanced the approach by component connections. However, the approach has a
weakness: there should be a language-independent means to change both in-
coming and outgoing component connections.

6.3 Frameworks

Although components and frameworks are different, they are co-operating tech-
nologies and a framework is a combination of components and patterns (Johnson
1997). Component frameworks that will be presented in the next three chapters
are classified according to the tiers of our component framework. The domain-
specific frameworks are corresponding to the subsystem tier or a part of it. Inte-
gration frameworks attempt to hide the complexity of the distribution, whereas
product-oriented frameworks focus on product-features and business aspects.

6.3.1 Domain-specific frameworks

Domain-specific frameworks are focussed frameworks that simplify the devel-
opment of portable and efficient system infrastructure such as operating system
(Stewart et al. 1997), communication (Schmidt & Fayad 1997; Cysewski et al.
1998) and user interfaces (Poutain 1995; Szyperski 1997). Schmidt & Fayad
(1997) classify frameworks by the techniques used to extend them, which range
along a continuum from white-box frameworks to black-box frameworks.
White-box frameworks rely heavily on object-oriented language features, like
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inheritance and dynamic binding. Black-box frameworks support extensibility
by defining interfaces for components that can be plugged into the framework.

Losavio & Matteo (1997) developed a white-box framework that uses the PAC
pattern as a basic architecture for the user-interface development. The BlackBox
component framework, formerly Oberon/F (Poutain 1995) is a component
framework extended by development tools, providing e.g., compilation and de-
bugging capabilities (Szyperski 1997). The framework consists of a core set of
layered modules and an open set of subsystems. Each subsystem is itself a set of
layered modules. The BlackBox architecture has similarities with our subsystem
tier, but the component framework focuses on visual components, provided by
OLE, JavaBeans, and ActiveX controls. The BlackBox architecture is based on a
number of design patterns, for example a hierarchical version of the model view
controller (MVC) pattern, which is the predecessor of the PAC pattern. As a
summary, the PAC pattern has proved that it is powerful both in the white-box
and black box approach in the user interface domain.

The control-domain orientation is obvious in the multi-agent approach (Lejter &
Dean 1996) that does not use the PAC pattern, but focuses on co-ordination
protocols among agents. The presented solution for the negotiation-based co-
ordination protocol that is based on a game theory, has some similarities with
our approach. The protocol includes two components, the arbiter part and plan-
ner part of an agent. The arbiter is responsible for receiving messages from other
agents, as the COMI interface in our approach. The planner part has a set of
responsibilities: to accept and merge requests, to submit a composite plan, to
accept the evaluated plan and finally, execute it. Our model (cf. Chapter 4,
Figure 20) allocates these responsibilities to several components, for example
the evaluation of the plan and its execution is separated and can be modified
independently. However, the co-ordination protocol is implemented as object
classes and each agent that communicates in a negotiation-based manner inherits
this protocol interface. The same approach was used in our COMI interface for
the run-time configuration of the applications (Paper VII).

6.3.2 Integration frameworks

Expecting emerging industry middleware standards, like CORBA, DCOM, or
Java RMI, to eliminate distributed software complexity is very risky (Schmidt &
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Fayad 1998). Although low-level services, such as ORBs, are reaching maturity,
the semantics of higher-level services, such as the CORBAservices and COR-
BAfacilities, are still vague, non-interoperable, and not commercially available
(Paper VI).

Distributed programming environments commonly restrict programmers to one
of inter-component interaction. Event-based and message-based integration is
the most prevalent approach to loose integration, but the comparison of available
solutions is impossible without a consistent model. Barrett el al. (1996) de-
scribed an event-based integration (EBI) model that they applied for comparing
three messaging implementations, among others the CORBA 2.0 specification
(OMG 1995). The EBI framework defines a registrar and a router that includes
message transforming functions, and delivery constraints, i.e. ordering, timing
and atomicity properties. In the comparison, CORBA ORB without Event Serv-
ice had many serious weaknesses:

•  Multicast messaging is missing.

•  Message transforming functions are unspecified.

•  Router’s message delivery model (polling/active) is not specified.

•  Delivery constraints are at the most once and the best effort without priori-
ties, timing or atomicity properties.

The formal specification of the Event Service is now available, but Messaging
Service is still under the development. In our integration framework, the event-
driven messaging service is responsible for the message transforming functions
and delivery constraints. On the contrary, locating participants, polling, as well
as point-to-point and multicast message sending are the responsibilities of the
router in our integration framework. The aim is to isolate changing parts to the
upper layer so that the message-transferring layer could be kept the same. How-
ever, only ordering and timing constraints were used, and missing atomicity
properties caused problems in the FMS case study (Paper VI).

Crane (1996) proposed a framework for distributed interaction that supports
several interaction policies, for example RPC, events, signals and asynchronous
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notification. The framework provides location transparency, runtime binding,
and the type and role compatibility of participants. The framework integrates the
same properties as ours, except the compatibility of participants is not checked
by our integration framework. Although the interaction framework provides a
systematic approach for the co-operation layer, the co-ordination and message
transferring layers are not supported. Pryce & Crane (1996) enhanced the inter-
action model by adding service endpoints for clients and servers through which a
programmer can emulate alternative interaction policies. Our framework does
not have this property, however, it might be useful in the integration phase.

Composite objects enhance interoperability between real-time and non-real-time
systems that are connected by gateways with two timing levels (Polze & Sha
1998). CORBA stubs are used for communication without QoS guarantees and
RT threads for real-time messaging. The approach has similarities with our ap-
proach that uses an adapter for different communication protocols (Paper VI).
Although we do not recommend the use of CORBA in real-time systems, a
composite-object might be used as a design pattern for adaptation. In our ap-
proach, the required services have to be provided by the integration framework
and used by application developers. The router is responsible to order the mes-
sages in such a way that quality requirements can be achieved. The aim is to
make a clear distinction between the responsibilities of the subsystem and inte-
gration tiers in order to simplify the application development. However, our
experiments were not heterogeneous as regards timing requirements and RPC
based and periodic messaging were not used in the same system.

A wrapper is another commonly used adaptation technique, applied for
RTDBMS (Ginis et al. 1996). In our experiments, the ECA executive was the
only component connected to the OODB, because there was no commercial
adapter available and due to a limited schedule, it could not be constructed. A
trader can adapt the changing interaction policies between frameworks by acting
as a centralised changing point for evolution (Graw & Mester 1998). The ap-
proach may be useful, e.g., when control systems are connected to information
systems that use different frameworks. Our component framework does not have
this kind of support.

The integrated network component architecture (INCA) provides an integration
framework for the business components of interactive systems (Ben-Shaul et al.
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1998). Components are coarse-grained as medium-grained PAC agents are in
our context, but no architectural pattern is used. Instead of a co-operation proto-
col, each component listens to and acts on events for which it is configured.
Platform independence and location transparency have been provided on the top
of Java RMI and CORBA ORB, and therefore, the architecture is a means of
adapting heterogeneous component models of user interfaces. We did not need
this kind of integration support in our experiments, but user interfaces are the
most frequently updated software, and the used technique has tended to change
during upgrades. However, the model is useful for isolating user interfaces from
the application logic, as we did by the presentation components of PAC agents.

6.3.3 Product-oriented frameworks

Software developers tend to migrate features to the integration framework in
order to reduce customisation efforts. This results in over-featuring, i.e. the rele-
vant features for a particular user or a product are a part of the standard platform
(Codenie et al. 1997). Therefore, it is important to draw a distinction between
product variations and the integration framework. Demeyer et al. (1997) pro-
posed two means as a solution: to package components that they can be reused
in as many contexts as possible and to design software architecture that is easily
adapted to target requirements. The approach is not in contradiction with our
approach. However, we underline that product features form semantic compo-
nents that should be reused at the requirement analysis of a product family.

Bäumer et al. (1997) define organisational concepts and the layers of the frame-
work according to them. The technical and desktop layers are common for the
rest: the application layer for workplace contexts, the business section layer with
specific classes of each business section and the domain layer for the business as
a whole. The architecture is quite similar to the CORBA architecture and they
are both convenient for information systems. However, the variations in work-
place contexts, business sections, and business domain can be applied to the
context of control systems domain as follows:

•  Situation action contexts: a work cell, the role and skills of a user.

•  Product variants for different control purposes.
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•  Product variants for different market segments.

The CIM framework (Doscher & Hodges 1997) is a vertical business domain on
the top of the CORBA layers and the use of the framework presumes that the
underlying layers are available. Owing to the missing commercial implementa-
tions, the framework can be applied after the other layers have been imple-
mented. Therefore, the layers could not been developed incrementally and con-
currently, as the tiers of our component framework can be. However, the devel-
opment of our framework has also to be balanced, so that the features used by
the product-family tier have to be supported by the subsystem and integration
tiers.

Brugali et al. (1997) combine white-box and black box techniques by applying
black boxes for features that are common for all systems and white-box compo-
nents that have variations. The framework has a layered architecture and uses
patterns to describe fine-grained, medium-grained, and large-grained compo-
nents. The pattern actions triggered by events specifies the way to model fine-
grained concurrency. Actions are sequential objects and correspond to the ac-
tions of an ECA rule. The pattern services waiting for and the Thread class are
used to specify a medium-grained component that carries out a service. The
pattern corresponds with a trigger and its set of rules. Large-grained components
follow the pattern client/server/service. The Service class extends the Thread
class corresponding to a process with its internal data, state and event genera-
tion. A service belongs to a server that offers concrete public methods for asyn-
chronous, synchronous and deferred-synchronous service requests. In our con-
text, CORBA components, the ORB and the ECA executive correspond to the
services. Binding a service to a server should be able to be made in the integra-
tion phase, not in the design phase and therefore, the presented framework sup-
ports evolution of the framework but not the incremental development of sys-
tems.

The last two exemplars are SWE environments that are used to develop distrib-
uted systems by a product-oriented reuse method. In GenSIF (Rossak et al.
1997), a domain model, a domain architecture and a domain infrastructure are
the means of the development of an integrated domain specific environment.
The GenSIF’s reference architecture has two parts: the first captures design ra-
tionale; the second introduces the architectural elements. The design rationale
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includes concepts, rules, principles, and guidelines. Concepts include required
system properties and the elements available to build the system that the archi-
tecture must support. Rules specify constraints on concepts addressing structural
aspects of concepts, for example the types of connectors between components
and single inheritance classification hierarchy. Principles describe what is con-
sidered to be “good practice” and correspond to software design patterns in our
approach. Guidelines try to anticipate design problems and help to solve them.
We did not give guidelines, but the use of principles attempts to avoid problems.

Architectural elements are building-blocks, components, contracts and scenarios.
A building block is an autonomous structural primitive of the architecture and
corresponds to a top-level agent in our context. A component is a cluster of
building blocks and/or components with defined external behaviour and corre-
sponds to a bottom-level and medium-level agent in our architecture. A contract
is a set of requirements and constraints on one or more components prescribing a
collective behaviour of participating interfaces. Contracts are behavioural mod-
els of the layers in our approach. A scenario is a dynamic configuration of ar-
chitecture components describing a complete design pattern or a thread of exe-
cution in a complex system. Scenarios and time-threads are also used in our
approach.

Feature-Oriented Reuse Method (FORM), extended from FODA, attempts to
capture commonality and variability of applications (Kang 1998). The case tool
(FORM 1999) is based on the following principles of the FORM method:

•  Features are used to parameterise architectures and components.

•  The layered architectural framework provides subsystems, processes, and
modules.

•  Components are separated from the component connection mechanisms.

•  Design components are synthesised by selecting features.

The last principle means code generation and is not relevant in our approach.
Although the first three principles have similarities, they are applied in a differ-
ent way. Features parameterise architectures and components, but clustered fea-
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tures also define the properties of components and services in our approach. The
features model also defines the relationships between features, i.e. between
components that implement them.

We used the layered agent, client-server and rule-based system architectures and
the interface layer separates components from their connection mechanisms. The
strength of the FORM framework is that the implementation technique can be
selected freely after the architecture and component design.

6.4 Summary

Several reuse approaches were reviewed in order to discover the weaknesses and
strengths of existing methods for the development of a component framework.
Semantic components of the product-family tier requires such a technology-
independent feature-oriented domain analysis method that supports organisa-
tional and business issues, but at the same time, it has to be product-oriented and
formalised method with the support for product variations. An enhanced ODM
with some propertied of RSEB can be the solution. However, the method should
be supported by appropriate tools.

The component framework has to be based on architectural styles and patterns.
The ROOM method provides the properties required for the ADL, but its support
for behavioural patterns and variations is not enough. The integration of UML
with the ROOM method may be the answer to the problem, but it does not pro-
vide a solution for the reconfiguration of features and applications. The fusion of
Darwin and EDLC seems a promising approach for this problem. However, the
aim should have to be for a product-family architecture that is supported by the
services of the integration framework in a language-independent way. The simi-
larities of our approach with Yasmin encourage us to believe that the reconfigu-
ration support is much more widely needed than applied and the approach is
useful for the software reuse. On the contrary, the ECA concept could prove its
significance once the DA method with tools are provided for generating rules
automatically from the descriptions of semantic components. Thus, there is a
need for the integration of the generative and component-based software devel-
opment.
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Several frameworks support parts of the application and integration tiers. How-
ever, none of them could be applied straightforwardly. The technology-
dependent parts of the integration tier could be COTS, if its configuration is
supported. The subsystem framework can only be reused in the control systems
domain and the product-family tier is an organisation-dependent solution, except
the generic mechanisms.
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7. Introduction to the papers
The papers included in this thesis were written over a period of five years, from
1995 to 1999. They demonstrate how ideas have progressed over time and how
principles used in the later papers were first outlined in the early papers. The
topics of the papers also illustrate the views of architectural components, CBSE,
CSE, and SCM, and the various issues presented in papers are summarised from
these views (Table 14).

Table 14. Summary of the issues presented in the papers.

Paper→
Issue↓

I, II, III IV, V, VI VII

Domain Embedded ma-
chine control
systems

Machine and
process control,
and manufactur-
ing systems

Manufacturing
systems

Dominating tier Product family
and subsystem
tiers

Product family
and integration
tiers

Integration tier

Modelling
techniques

RTSA, OMT,
ROOM, PFM,
scenarios, time-
threads

PFM, OMT,
UML, scenarios,
MSC

OMT, MSC

Architecture Layers with
components

Client-server,
layers, agents and
rule-based sys-
tems

Layers and agents

Implementation
technology

C, C++ C/Photon, C++,
Orbix, MFC

C++, C/Photon

Main contribu-
tion

Methods of prod-
uct-oriented
software devel-
opment

Distribution plat-
forms for product
families

On-line configu-
ration support for
applications
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The papers discuss various aspects of component frameworks. Different views
of the papers are illustrated in the context of the component framework pre-
sented in Chapter 3 of this thesis (Table 15).

Table 15. The relationships of the papers to the component framework.

Elements →
Tier↓

Product Features Architectures Components

Subsystem Papers I & III Papers I, IV, VII Papers I, III, V

Integration Papers V–VI Papers IV–VII Papers IV–VII

Product Family Papers II, IV Papers V, VI Papers II, VI

7.1 Component-based software engineering

The following three papers deal with the software engineering methods used in
CBSE and discussed briefly in Chapter 4. Domain analysis is highlighted by re-
engineering and feature-oriented approaches. The last paper illustrates software
architectures and components as reusable assets.

7.1.1 Paper I: Domain analysis by re-engineering application
software

Paper I describes a practical approach for re-engineering machine control soft-
ware. Shifting RTSA models to object-oriented designs is the means of increas-
ing software reuse by defining software architecture and components for a set of
machine control systems. The focus of this paper is on a traceable development
process that

•  defines the scope and specific concepts of the application domain,

•  provides principles for re-engineering software architectures, and

•  adopts component-oriented features of the structural modelling techniques
into object-oriented modelling.
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Section 1 presents state-of-the-practice in modelling embedded systems. RTSA
methods and tools were preferred to object-oriented methods at that time. Sec-
tion 2 highlights the differences between object-oriented and RTSA and prob-
lems encountered in modelling real-time embedded systems. Section 3 describes
the used re-engineering process for shifting from RTSA to object-orientation.

Section 4 states criteria for identifying the software suitable for re-engineering.
Time-threads were used for illustrating important behavioural patterns and tim-
ing requirements. Section 5 gives guidelines for identifying object candidates.
The classification and generalisation of object classes describe the subsystem
architecture for a set of actuator control systems, as depicted in Figure 3 in Sec-
tion 6. The steps for designing object classes are defined in Section 7. White
classes are modifiable classes, but black classes are designed as implementation
classes and adapted with the configuration parameters. Section 8 summaries the
experiences of reducing the risks of the re-engineering process by the combina-
tive and adaptive approach instead of pure object-orientation.

7.1.2 Paper II: Product features and component-based software

Paper II depicts a feature modelling method and a software development envi-
ronment that integrates product features to object-based models of components
and produces the target code and configuration data for product variants. The
contribution of this paper is to

•  describe a systematic component-based software development process,

•  define a modelling method for structuring product features, and

•  introduce basic principles for feature-component mapping.

Sections 1 and 2 introduce common modelling techniques used in the software
development of embedded systems and define the five phases of the reuse-
oriented development process; domain analysis, architecture analysis and design,
feature modelling, component design and software production. Section 3 repre-
sents the background and extensions of the practical feature modelling method.
Section 4 gives the overview of the prototyping environment and defines two



 162

means of mapping features to components; through the component variants and
parameters.

7.1.3 Paper III: Development of software components

Paper III presents prototyping as a means of early-verification in component-
based software development. It presents an incremental prototyping method to
reuse design knowledge of several engineering domains and put it together into
the product. The aim of the paper is to

•  emphasise software reuse among different engineering disciplines,

•  illustrate a software component as a fusion of design models, used for dif-
ferent purposes, and

•  use prototyping as a means of validating component candidates before im-
plementing them into the target code.

The paper gives the motivation for integrated prototyping, and describes the
heterogeneity of design methods and tools used in the development of multi-
technology products. The phases of the approach describe the modelling tech-
niques used for different purposes. Time-thread diagrams define functional
components and timing requirements, and a graphical programming language is
used for prototyping and integration tests with a target system before developing
the embedded product by object-oriented methods and languages.

7.2 Software engineering of distributed systems

The next four papers depict integration platforms implemented for different
product families that also represent the different real-time levels; hard real-time,
soft-real time and mission critical systems.
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7.2.1 Paper IV: An integration platform of real-time distributed
systems

Paper IV provides a communication bus as a channel of negotiation and trans-
mission of system data between autonomous subsystems of distributed machine
control systems. The main points in Paper IV are:

•  to describe a method for achieving software adaptability for product fami-
lies,

•  to define a software architecture for flexible distributed systems, and

•  to depict a mechanism for run-time adaptability of real-time systems.

The first two sections introduce the needs of software adaptability and describe
the means how to achieve it. Classification of messages and interfaces, and
communication rules are the discovered means of software adaptability in the
design phase. Mode-based configuration, configurable communication mecha-
nisms, and configuration management are presented as a means of run-time
adaptability.

Section 3 describes the architecture and a C++ wrapper of the demonstration
environment. Layers are used for isolating system and node-level operability,
while the communication layer acts as a generic configurable distribution plat-
form. A dispatcher pattern is used for the event-driven and periodic communica-
tion mechanisms, which are configured by parameters at the run-time.

Analysis, in Section 4, highlights the drawbacks that adaptability causes in exe-
cution times, an important aspect in hard real-time systems but meaningless in
other embedded systems.

7.2.2 Paper V: An integration platform of a product family

Paper V presents a software bus as a transparent distributed platform of an
automatic repayment systems family. Product features are defined by analysing
the application domain and existing products. The architecture is divided into
stable platform services and customisable application components that act as
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reactive agents of subsystems. Domain knowledge is stored as configuration data
into the software platform and used through a tool for configuring a network and
applications.

Section 1 motivates to evolutionary software development and introduces the
needs of extendible systems. Characteristics of the control system domain and
background are highlighted in Section 2. The following criteria for the software
platform are laid down:

•  The same software platform is used for all product variants.

•  Hardware change may not affect on the location-independent applications.

•  It should be possible to add new applications to the existing system with a
minimum of work.

Section 3 presents the integration framework and mechanisms for flexible con-
trol systems. A lightweight communication interface, suitable for embedded
systems, connects reactive agents to the services provided by the integration
framework. Layers isolate application-dependent software from mechanisms,
which provide message-routing and network connections. Commercial software
and off-the-shelf software components are used in the software bus that co-
ordinates execution of subsystems through a centralised main-memory database.

Section 4 summarises experiences and sheds light on the restrictions on the ap-
proach, i.e., the maturity of the software engineering process, known product
variants, and the routing mechanism applied for a network.

7.2.3 Paper VI: An ORB as an integration platform

Paper VI concentrates on integration techniques of heterogeneous distributed
systems, a flexible manufacturing systems family as an exemplar. The main
contribution of this paper is

•  to integrate commercial components as an OODB and a CORBA compliant
ORB with off-the-shelf components,
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•  to provide an integration framework for legacy systems and new object-
oriented applications, and

•  to add event-driven communication to the RPC of the broker.

The first two sections introduce the characteristics of integration-oriented devel-
opment and distributed CIM systems, as well as background knowledge for
CORBA. Section 3 presents the basic components of the distribution platform,
i.e., scalable application services, an adapter for legacy systems, and the ECA
mechanism for event-driven behaviour.

Section 4 summarises the experiences emphasising the advantages and short-
comings of the CORBA architecture and its implementations. Utilisation of the
CORBA and the ECA instead of black- and white-box components is presented
as an alternative means of supporting horizontal and vertical extendibility. Per-
formance and memory requirements are measured and evaluated to be reason-
able for mission critical systems, but there is an evident need of commercial
CORBA services.

7.2.4  Paper VII: Dynamic configuration of architectural
components

Paper VII represents a framework for the run-time configuration of distributed
software components that are medium-grained architectural components, applied
for logical systems and agents with generic communication interfaces. The con-
tributions of this paper are:

•  run-time configuration as a part of software architecture design,

•  a framework that supports the evolution of a product family by generic inter-
faces and configuration management software, and

•  a solution for location-independent user interface software.

The first two sections highlight the key-factors of adaptive systems from the
viewpoint of software configuration:
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•  How can software components be added into existing systems?

•  How can different kinds of components be used in the same framework?

•  How can components be changed at the run-time?

Section 3 presents a layered architecture as a basic architecture and distributed
PAC agents as an application architecture. PAC agents provide the basis of sta-
ble and interchangeable software. A configurable module interface (COMI) is an
implementation-independent solution for interoperability. The run-time configu-
ration management employs a COMI for achieving software flexibility and ex-
tendibility.

Section 4 presents the run-time configuration scenario and its performance tests.
Although performance does not satisfy real-time requirements, the approach is
suitable for mission critical and soft real-time systems.
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8. Conclusions and further research
In this thesis, we have studied the development of a component framework of a
distributed control systems family. According to the architecture-oriented soft-
ware reuse, we have presented the architecture of the component framework that
supports incremental development and maintenance of the distributed control
systems, constructed by the concurrently developed application components.

The development of a component framework has been studied from the view-
points of CBSE, SCM and CSE. CBSE provides the design rationale that have
been adopted and applied to the dynamic configuration and concurrent applica-
tion development. The viewpoints of the component framework have been pre-
sented as

•  the problems, from which we derived the requirements of the component
framework.

•  the tiers and elements of the component framework and its relationships to
the different viewpoints.

•  the method, how the tiers and elements of the component framework can be
developed.

•  the evaluation results of the constructed prototypes and the SWE approaches
related to the development and maintenance of component-based software.

The main results and prospects for further research are discussed in the follow-
ing chapters.

8.1 Answers to the research problems

The answers to the research problems, set in Chapter 1.4.1, are formulated as
follows:
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Q1. What requirements does a control systems family set down for a component
framework?

The requirements of the component framework have been obtained through
studying the problems that appear in the practical component-based software
development of distributed control systems. Although the studied domain areas,
machine, process and manufacturing control systems have significant differ-
ences, we discovered the following similarities:

•  The problem domains were quite stable and therefore, the component
framework could be used at the product-family level.

•  Each systems family had a multitude of technical features and several varia-
tions that had to be defined and implemented by the component framework.

•  Application developers might be subcontractors that had to use the same
component framework as the systems integrators.

•   The organisational culture favoured the use of third-party components.

•  The component framework had to support the roles and responsibilities of
different stakeholders.

•  The component framework could have to be used in the concurrent software
development.

•  The size of product variants varied, and therefore, extendibility and scalabil-
ity were required.

Briefly, the component framework has to support simultaneously the application
developers, the system integrators and the suppliers of distributed control sys-
tems.
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Q2. What kind of a component framework supports the evolution of a distributed
control systems family?

We applied the adaptive design for the problem solving by focusing on the
changes of the control systems families. Changes in the markets, used technol-
ogy and the application domain are the main reasons for the evolution of the
component framework, and therefore, the product family, integration and sub-
system tiers have their own scope and techniques for achieving adaptability.

At first, the product-family tier clusters the product features to the semantic
components that are implemented by the properties of the architectural compo-
nents within the subsystem tier and the services of the integration tier and their
interaction mechanisms. Fine-grained features are mapped to the properties of
the building-blocks, primary components and their configuration parameters.
The subsystems use standard interfaces with strictly defined policies, demanded
by the integration tier that hides the changes in the used technology providing an
application-specific layer for the subsystems integration. The architecture of the
product-family tier balances the architectures of the subsystem and integration
tier providing a systematic way to describe, manage and change product fea-
tures. The ability to configure applications dynamically is a part of the support
software in the product-family tier.

The support for systems’ evolution can be scaled in each tier. The reconfigura-
tion support for applications, integration platform and product features can be
implemented in a way that is suitable for the needs and used technology. The
larger the systems family is, the more comprehensive support is needed for
product variations.

Q3. How should the component framework of a product family have to be de-
veloped?

The development of the component framework embodies the following reuse
assets: product features, product-family architecture, components, and mecha-
nisms and policies for the use of components. Domain engineering produces the
features model, scenarios and time-threads that give the overall understanding of
the structural and behavioural properties of the systems and their execution con-
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straints. We proposed the QFD technique for the qualification of product fea-
tures and COTS components. The used techniques are technology-independent
due to heterogeneous design methods and tools used in the development of con-
trol systems.

The product-family architecture combines the layered, presentation-abstraction-
control, client-server and rule-based architectural styles. The layered architecture
is used for:

•  providing the portability of the framework,

•  isolating the frequently changing parts from the more stable parts, and

•  separating technology-dependent parts from application-dependent parts.

Layers are used in the subsystem and integration tiers. PAC agents have been
applied for applications with the ability of the run-time configuration. The cli-
ent-server architecture is obeyed between the applications and the integration
tier that provides transparent communication, co-ordination, allocation and con-
figuration services for the systems. The timing requirements define which com-
munication service is selected and how the integration tier has to be allocated.
The rule-based system architecture provides inherent software flexibility for a
product family.

The amount of required adaptability depends on the used COTS, heterogeneity
of communication media, operating systems, and environmental devices. Design
patterns and standard interfaces for communication and configuration have been
applied to achieve adaptability. An adapter, a wrapper and a filter are used for
the adaptation of legacy software to the integration tier.

Due to the incremental integration and long installation phase, control systems
need the configuration mechanisms that are integrated parts of the integration
tier and are used for customising application and product features. In small sys-
tems families, the configuration support is a simple user-interface with the abil-
ity to change product features by data-manipulation. Reconfiguration support for
fine-grained features is only needed in the complex systems that have a long
installation and introduction phase.
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Q4. How does a component framework of a product family change the compo-
nent-based software development?

The presented component framework sets some preconditions and restrictions,
but it also gives freedom to select the methods and tools applied within the tiers
that are often used by different organisations. However, the systematic way to
develop and manage reuse assets set the following preconditions:

•  The definition and management of product features require a mature product
family and development process. The whole organisation has to be commit-
ted to the systematic way to produce the reuse assets.

•  The suppliers of COTS have the responsibility to describe all features of
their components. The purchasing of COTS has to be guided by required
features including reuse requirements.

•  Stakeholders share the product-family architecture that has to be kept as
stable as possible within each tier.

•  Developers have to be familiar with the architectural styles and patterns.

•  The interfaces and policies of components have to be defined thoroughly.

•  The applications have to meet the specification of the interface layer.

•  The configuration of a system is a top-down activity that can be automated.

The above-mentioned conditions require that the stakeholders of the product-
family -- marketing staff, application developers, integrators, and maintenance
staff -- work together more closely then they do nowadays. Owing to COTS and
distributed application development the component framework needs an organ-
isational infrastructure that provides the services needed for sharing the knowl-
edge of reuse assets.
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8.2 Topics of further research

We developed the integration platforms for machine and small process control
systems and used the commercial ORB as a basic component for the manufac-
turing systems family. Our continuous work focuses on a generic integration tier
of embedded systems. This provides that the features of the services and compo-
nents in the integration tier have to be defined and managed in a way that the tier
could be configured for the needs of the applications. Several communication
services, based on multi-protocol stacks, will be needed, as well the quality and
security services, especially for Internet applications.

The other topic, which is further studied, is the formalisation and enhancement
of the feature modelling method and the validation of the product family archi-
tecture. A formalised feature modelling method with variation support is the
precondition that the semantic components can be defined and the configuration
rules can be produced automatically. This presumes that the generative approach
of the features modelling has to be integrated with the services of the integration
tier and the components of the subsystem tier. The feature modelling method
also needs special tools for modelling and managing features of large distributed
systems. Another project will be launched for this theme. The existing design
tools are appropriate for small systems, in which the reuse assets need not to be
shared. The developers of large systems, the kind that most networked control
and embedded systems will be in the future, need the supporting infrastructure
with the ability to share and manage reuse assets over organisational boundaries.

The ROOM method that was used in the case study proved to have appropriate
support for architecture modelling. However, its support for defining variation
points is limited. Therefore, there is a need for further studies to develop an inte-
grated development environment with the following properties:

•  The product-family tier should have to be supported by the tools to define
and manage product features, create semantic components, and generate and
validate the configuration rules of the target systems.

•  The subsystem and integration tiers need a tool for clustering component
variants according to the defined architecture styles, mechanisms, and poli-
cies.
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•  The evaluation of the architectural alternatives must be able to be validated
as regards functional and quality requirements.

•  Reuse assets have their own quality requirements, such as openness, main-
tainability, and portability, which have also to be validated at the architec-
ture level.

The subsystem tier that used the PAC architecture in the control domain needs
alternative architectures for different problem domains. In order to get a better
understanding of the suitability of the component framework, it needs to be ap-
plied for several domains. The application areas that have mature product fami-
lies and development processes are promising domains for component frame-
works.
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