
VTT PUBLICATIONS 406

TECHNICAL RESEARCH CENTRE OF FINLAND
ESPOO 2000

The reuse of tests for
configured software products

Jukka Korhonen, Mika Salmela & Jarmo Kalaoja
VTT Electronics

ISBN 951–38–5556–2 (soft back ed.)
ISSN 1235–0621 (soft back ed.)

ISBN 951–38–5557–0 (URL: http://www.inf.vtt.fi/pdf/)
ISSN 1455–0849 URL: http://www.inf.vtt.fi/pdf/)

Copyright © Valtion teknillinen tutkimuskeskus (VTT) 2000

JULKAISIJA – UTGIVARE – PUBLISHER

Valtion teknillinen tutkimuskeskus (VTT), Vuorimiehentie 5, PL 2000, 02044 VTT
puh. vaihde (09) 4561, faksi (09) 456 4374

Statens tekniska forskningscentral (VTT), Bergsmansvägen 5, PB 2000, 02044 VTT
tel. växel (09) 4561, fax (09) 456 4374

Technical Research Centre of Finland (VTT), Vuorimiehentie 5, P.O.Box 2000, FIN–02044 VTT, Finland
phone internat. + 358 9 4561, fax + 358 9 456 4374

VTT Elektroniikka, Sulautetut ohjelmistot, Kaitoväylä 1, PL 1100, 90571 OULU
puh. vaihde (08) 551 2111, faksi (08) 551 2320

VTT Elektronik, Inbyggd programvara, Kaitoväylä 1, PB 1100, 90571 ULEÅBORG
tel. växel (08) 551 2111, fax (08) 551 2320

VTT Electronics, Embedded Software, Kaitoväylä 1, P.O.Box 1100, FIN–90571 OULU, Finland
phone internat. + 358 8 551 2111, fax + 358 8 551 2320

Technical editing Maini Manninen

Libella Painopalvelu Oy, Espoo 2000

3

Korhonen, Jukka, Salmela, Mika & Kalaoja, Jarmo. The reuse of tests for configured software
products. Espoo 2000. Technical Research Centre of Finland, VTT Publications 406. 67 p.

Keywords software testing, feature-based software, regression testing, configured
systems

Abstract
New efficient software production techniques are important for improving the
time-to-market of software products. One example of such advanced techniques
is the so-called feature-based software production which employs high-level
requirements or features in finding and selecting reusable software components
for the development of new products. This kind of model-driven software
development shortens the production time, but the validation of configured
products still remains a bottleneck.

An effort to apply regression testing techniques to configured software products
shows that these techniques are not very well suited to meeting the new testing
challenges. It is obvious that retesting an entire program, containing possibly
only a few minor changes, is expensive. Therefore, an efficient testing approach
is required for optimizing the size of the test suite. Other important issues
concerning the testing approach are the design of reusable tests, the
configuration and management of tests, and the automation of test execution.

In the research, the testing efficiency problem is solved by using the idea of
reusable software components from the feature-based production. In software
testing the idea converts into a set of reusable test components designed for a
product family. From a test material repository a suitable subset of tests is
selected, modified, and configured to cover the characteristics of the product
being tested. In addition, the repository may contain other relevant test data to be
used for configuration, such as the test plans and the test environment
configuration. The technique is called the feature-based testing approach.

For identifying the relevant test data, the method proposes links to be created
between the product features and the test material. The result of the test
configuration depends on the automation degree, varying from a simple test

4

involving identification of lists useful in manual testing to executable tests in a
fully automated test environment.

Often in structured testing the test case assumes that the software is in a specific
state. Therefore joining test scripts arbitrarily may not produce the desired
results. For that reason, we propose utilization of test specification components
that are capable of using product feature data, taking care of the execution order
and selecting appropriate tests for the product.

When implementing the feature-based testing approach, the issues to be
emphasized are script development, test development and execution, and test
management. A support system implementing the main characteristics of the
feature-based testing approach has been outlined in the report. The tool is
demonstrated in a case study.

5

Preface
This work was carried out within the KATA-project by VTT Electronics, one of
the departments of the Technical Research Centre of Finland. The project was
funded by the National Technology Agency (Tekes), Nokia Display Products,
Semel, Suunto, Polar Electro, and Vaisala.

The objective of the KATA-project was to develop software testing techniques
for configured software products. Configured products have been seen as an
important constraint for the project as the trend in software production is moving
swiftly towards more advanced production techniques, one example of this being
the feature-based production concept. The project was initiated as a state-of-the-
art study of the currently applied testing techniques and tools, and as an
evaluation of their suitability for configured products. An outline for a new
feature-based testing approach is proposed on the basis of the study and the
survey on user needs.

The report presents the results of the survey and describes the feature-based
testing approach in detail.

Oulu, Finland, October 1999.

Jukka Korhonen, Mika Salmela, Jarmo Kalaoja

6

Contents

Abstract ...3

Preface...5

List of Symbols ...8

1 Introduction...9

2 Feature-based software development ..11

3 The problem and some definitions..13

4 The state of the art in feature-based testing...16
4.1 The Ovum report..16
4.2 Conference papers ...20
4.3 Some examples of the tools ...24

5 Testing based on features and test components ..27
5.1 The footing...27

5.1.1 Regression testing...27
5.1.2 Test management ..29
5.1.3 Generic reusability issues in test design31

5.2 The feature-based testing approach ...33
5.2.1 The feature-based testing concept ..33
5.2.2 The test material ...34
5.2.3 Organizing and linking the test material with the feature model..35
5.2.4 The processing of the test material ...37
5.2.5 The taximeter example ...42
5.2.6 Generating tests ..43

5.3 The optimization of test suites ...44

6 Support for the feature-based testing ..49
6.1 Script development ..49
6.2 Test development and execution..49
6.3 Test storage and management..50
6.4 A support system for test case reuse..50

7

6.5 The test process..52

7 A case study ..54
7.1 The system...54
7.2 The feature model of the system..55
7.3 Writing reusable test components..59

7.3.1 The variation points in testing ..61

8 Summary ...63

References...65

8

List of symbols
ERD Entity-relationship diagram

F Feature

FSM Finite state machine

GUI Graphical User Interface

HTML Hypertext markup language

OSI Open system interconnection

PR Product requirement

QA Quality Assurance

R Test result file

S Script

SUT Software under test

TS Test suite

TSRL Test requirements specification language

TST Test

TTCN Tree & tabular combined notation

URL Uniform resource locator

9

1 Introduction
The goal of testing is to discover problems or to make a judgment on the quality
or the acceptability of a product. Testing is needed, because we - analysts,
designers, coders - are fallible, and thus software systems contain faults.

Testing is not only a must, it is a laborious must. Even though automation can, to
some extent, be applied to testing, there are still application domains and
implementation solutions that are not amenable to the automation aspirations.
This is the reason for the demand for new testing approaches and methods.

Feature-based software production, which takes advantage of reusable software
components, is a fairly new method. The approach employs a feature model,
containing all the possible components for defining a new product in the
application domain. The desired characteristics for the product are gained by
selecting the relevant components from the model. The product is then
configured by means of the supporting tools.

Even though this kind of model-driven software development has shortened the
production time, the validation of configured products still remains a bottleneck.
Regression testing is a usual, straightforward means of validation.

In general, regression testing is initiated through the emergence of a new
requirement, or when the program and its documentation have been modified
and need to be tested. The goal of regression testing is to convince the
maintainer that the program still performs correctly with respect to its
requirements. However, the term regression testing is just a common name for a
re-testing process for modified software. It does not give us any instructions on
creating reusable test cases, or on how to configure test suites from existing test
material, nor does the term tell us whether or not it is reasonable at all to strive
towards reusable tests. To begin regression testing, the test organization and
personnel involved need to decide on the outline of the test procedure, or to
create a new one [von Mayrhauser et al. 1994]. In this matter, little help can be
drawn from literature.

An effort to apply regression testing techniques to configured software products
reveals that the techniques are not well suited to meeting the new testing

10

challenges. With the feature-based development paradigm, the production of
new software is rapid, and slowing down the process with any inefficient
validation procedures is not desirable. What is desired, is a method for bringing
the production of the test suites to the level of the production of software.

Although there is clearly great potential for test reuse in configured products, no
specific testing methods have been proposed for the purpose yet.

Extracting the essence of feature-based software production and applying this
knowledge to testing could serve as a basis for an efficient testing approach.
Thus we would have a set of reusable test components, capable of being
configured to cover the characteristics of the product to be tested.

This method brings out many questions. Should we decide to apply the method,
what kind of requirements would then be set on testing process and test case
design? There would also be the question of test automation and tool support in
the new situation. Could the benefits of feature-based software production also
be gained by the feature-based testing approach? These, and other related testing
issues are discussed and evaluated in the report.

11

2 Feature-based software development
The purpose of feature-based software development is to answer the high
requirements of today's system production. System production has to be capable
of addressing the needs of the customer rapidly and profitably. The list below
specifies the characteristics required for keeping up with the development.

• time-based competition
• quick response
• fragmented markets
• proliferating variety
• increased customization
• continual improvement
• shortening product life cycles
• cycle time reduction

Feature-controlled product configuration is targeted at addressing most of these
requirements.

The figure shows the feature-based software production process with two main
sections: software delivery and software development. Marketing and delivery
management use domain models developed and maintained by software
development. The essential model in the reuse and production of software is the
feature model, describing all the features and relations available in the domain.

Marketing specifies the product desired by the customer by means of a feature
model. The feature model presents the existing features to be re-used. At best,
the new product can be entirely configured by combining individual features
included in previous deliveries. This being the case, the software product can be
assembled simply by integrating existing software components on top of a
standard software platform (Figure 1).

12

SW platform

Feature model

Software components

SW Component
Design and
Implementation

SW Platform
Management

Product Feature
Modelling R

&

D

New customer needsCustomer
needs

Orders

Delivery

Marketing

Software
Delivery
Management

Relations

Figure 1. Feature-controlled software development and delivery process.

The feature-based production process seems to offer an excellent platform for
applying regression testing principles. The feature model defines the features for
the domain, thus providing a solid basis for system level testing.

The implementation of the feature-based production sets, inevitably, some
requirements on the products and on the domain. The number of the different
versions has to be fairly large for the feature-based approach to be profitable. On
the other hand, the differences between different versions should not be too
distinctive, or else the re-use rate tends to fall too low.

13

3 The problem and some definitions
Our intention is to find or to develop more efficient techniques for testing
component-based software products. We believe that the key issue in this effort
is the reuse of existing tests, including the selection of the necessary tests and the
configuration of the tests for the executable test suites.

The key issue can be expressed as follows:

How to validate a change in configured software by means of
existing tests in an efficient way?

This is the most important question. If we have a novel application in a domain,
it is in most cases useful to test the product as thoroughly as possible within the
limits of the test resources, in respect of the requirements of the product.
However, if several applications have already been generated, we will certainly
wish to reduce the testing effort by reusing the tests. An obvious decision in this
situation will be to concentrate on the features that have been changed compared
with the earlier applications. Therefore, considering the key issue, the main
purpose of the new technique is to maximize the use of the existing test material,
and at the same time to reduce the size of the test suite.

The report proposes a testing approach called feature-based testing, which,
essentially, follows the lines of feature-based production. For the term, we will
use the description given in Definition 1.

Definition 1. Feature-based testing is a testing method for configured
software products. In the method, test components and
product feature descriptions are used for selecting,
modifying and configuring the tests.

An outline of the feature-based testing approach is shown in Figure 2. The test
design originates from the product family characteristics described in the feature
model. The test design and implementation have to be carried out in
consideration of the generic design constraints, which stem from the test
environment, for instance. In addition, the requirements of reusability need to be
paid attention to.

14

Figure 2. The feature-based testing method.

The test component repository is used for storing the accepted test components.
A test component can, as a matter of fact, be any document relevant to testing.
For instance, test plans, test data files, test result files, and the test tool
configuration information are essential for efficient testing. They should be
included in the test repository, in addition to the test cases and scripts.

As new products are built, the features of the product are used as a basis for
selecting and configuring the test components. In most cases, a new product can
not be implemented as such by using only the existing software components,
which is why new software needs to be developed for the purpose. Accordingly,
as it is likely that the test components of the repository do not completely cover
all the product features, the test suites need to be enhanced with complementary
tests. These components are potential reuse material, and if applicable, they
should later be taken through the test component verification and validation
processes for inserting them in the test component repository.

One of the crucial things in the outline is the question of using the product
feature information for selecting the tests. Obviously, it is necessary to create
some sort of connection between the features and the tests. Other issues to be

 Test Component
Design and

Implementation

Test Configuration

Test Enhancement

Test Component
Repository

Product Family Information
Test Environment Information

Product Features
(from the feature model)

Additional Requirements
(not met by the feature model)

Test suites
Test data
Expected results
Test environment configuration
Relevant test plans

Product usage
Information about
operational environment

15

solved are, for instance, how to design tests to provide optimal reusability and
how to develop executable test suites.

But what is a feature? In general, a feature is considered to be something that the
user1 is able to notice in the product. In other words, we take the user’s point of
view when analyzing a product. Thus a feature may be a system function, a
subsystem name, or possibly a piece of some other qualitative information that
characterizes the product. A feature might be further divided into subfeatures.
We can also relate a feature to user requirements. This gives us the following
definition:

Definition 2. A feature is an implementation of one or several user
requirements.

This is a useful notion in case feature-based testing can not be applied. Instead,
we might find that some of the conditions for feature-based testing approach are
not met, and therefore we decide not to use the approach. When the relations
between the features and the requirements have been defined, we are able to use
the product requirements instead of the features. This method is frequently used
for many commercial tools.

1 Note that the term 'user' may include also other user groups than the end user, e.g.
production, or other organisations.

16

4 The state of the art in feature-based
testing

Test automation, supported by various test tools and environments, usually aims
at improving the testing efficiency, measuring the test coverage, or formalizing
the test process. Currently, the test tools are capable of supporting such test
activities as:

• planning and management
• requirements analysis and validation
• test case generation
• coverage analysis
• test development
• test execution
• simulation and load testing.

Example 1. Test tool characteristics.

Considering the focus of our researchREF, we can select the items that interest
us from the list in Example 1: planning and management, as well as test
development. Configuration means that a test set (or a test suite) can be
configured by using the knowledge related to the product, the requirements or
the application domain. Management implies that the test material can be stored
and retrieved in a controlled manner. The issues included in the previous topics
were studied by using the Ovum report on testing tools [Ovum 1998], as well as
papers and publications on the subject, published during the recent years.

4.1 The Ovum report

The Ovum report [Ovum 1998] evaluates the most popular testing tools by
means of an assessment framework. The framework applies the list of
characteristics shown in Example 1 in the previous chapter. Each one of the
main items on the list is further structured into several subitems. Though the
tools in the report are intended for various purposes, e.g. test management,
source code analysis, and Windows / client-server / GUI testing, and not all of

17

them are relevant in this case, the framework itself provides a useful
classification scheme for tool characterization.

In the Ovum evaluation structure, the most interesting item is test development,
which has three relevant subitems:

• script language
• test-development support
• storage and management

The script language is in our interest (for instance, the support for variation of
the tests may require parameterization of the test cases, and script language is
needed for enabling this), in addition to the test development support, storage
and management. According to the Ovum report it is advantageous if the script
language

• supports logical condition constructs, and
• supports the calling of sub-scripts with parameters.

There are 28 other, less relevant subitems for script language, which were all
considered to be of equal importance in the Ovum report.

The second item on the test development list is test-development support, listing
24 items concerning test design, debugging and documentation support. From
our point of view, the list reveals some interesting issues:

• support for the linking of the script components to the test cases
• support for libraries of commonly required functions / tests
• support for a sequenced running of the scripts from a test-control

script
• support for test sequencing through the knowledge of the application

structure;
• sequencing by selecting an execution path from the application

structure
• support for an automatic generation of a sequence for navigating to

all application states

The last item, storage and management, also needs to be discussed, because the
control and management of the test material, e.g. scripts, test data, test cases,

18

expected results, reports and test environment, is of great importance. In
addition, the version control of test material and organizing the test material for
a project- or product-related structure are equally important.

Through using the previous lists of items as tool selection criteria and studying
fifteen tool evaluations2 in the Ovum report, we notice that:

• the basic requirements set on the script language by us are met by all
of the selected test tools (Table 1);

• the first three items of test development are well covered by the tools;
however, the last three are met by very few tools (Table 2);

• the storage and the management of the test material is usually taken
care of by the tools, except in version controlling (Table 3).

Table 1. Script language issues.

Script language (total
number of tools is 15)

Logical conditional
constructs

Calling of sub-scripts
with parameters

Number of supporting
tools 15 15

2 Fifteen tools were selected out of the 42 tools in the report for closer evaluation. Only
the tools that are designed mainly for dealing with embedded systems, Windows or GUI
testing were included. The rest of the tools concentrate more on web testing, source code
analysis etc., and were therefore less appropriate for our purposes.

19

Table 2. Test development issues.

Test
Development
(total number
of tools is 15)

Li
nk

in
g

of
 sc

ri
pt

s
to

 te
st

 c
as

es

Fu
nc

tio
n

/ t
es

t
lib

ra
ri

es

Te
st

-c
on

tr
ol

sc
ri

pt
s

Te
st

 se
qu

en
ci

ng
ba

se
d

on
ap

pl
ic

at
io

n
st

ru
ct

ur
e

Te
st

 se
qu

en
ci

ng
ba

se
d

on
ex

ec
ut

io
n

pa
th

s

Se
qu

en
ce

 fo
r

na
vi

ga
tin

g
to

 a
ll

ap
pl

ic
at

io
n

st
at

es

Number of
supporting
tools

10 14 14 2 3 2

Table 3. The storage and the management of the test material.

Storage and
Management
(total number
of tools is 15)

Pr
od

uc
t-

re
la

te
d

st
ru

ct
ur

e
fo

r
te

st
m

at
er

ia
l

C
le

ar
 r

ep
re

se
nt

at
io

n
of

 th
e

te
st

co
m

po
ne

nt
s o

f t
he

ap
pl

ic
at

io
n

te
st

pl
at

fo
rm

A
ut

om
at

ic
 v

er
sio

n
co

nt
ro

l f
or

 te
st

m
at

er
ia

l

Number of
supporting
tools

12 10 3

The issue of supporting the test libraries for commonly required functions is
particularly interesting. Considering the problem definition of the study, this
item is obviously of great relevance. Linking the test libraries to product
functions means that by identifying a function the necessary tests are also
identified and this information is available for the next products. Subsequently,
the tester will be able to use the earlier function-test suite associations to
configure tests for a new product.

As Table 2 shows, all the tools except one have some sort of support for the test
libraries of common functions / requirements. A prompt analysis gives us the
following conclusions:

• The issue is considered important by the tool developers. Majority of
the relevant tools have supporting functions.

20

• However, the item is one among 23 other items that Ovum has found
equally important in test development.

• Using libraries of test material for common functions or features (this
is the solution applied by most of the tools) is a simple solution,
which, in spite of its seeming plainness, is able to provide many of
the potential advantages of requirements-based testing.

4.2 Conference papers

A survey of the latest conference publications on feature-based testing (or
requirements-based testing) reveals little new when compared with the Ovum
report. Though one would have expected a larger scope in the research papers,
nearly all papers concentrate on presenting a new tool for feature / requirements-
based testing. If a method is proposed, it usually concerns the size reduction or
the optimization of the test suite, thus failing to address the most essential issue
in this case.

The Ovum report shows that the configuration of the test suites by using the
product or software requirements is supported by the majority of the testing
tools. This tendency can also be noted in the conference papers. Typical
examples are the articles by [Little 1996], [Liu et al. 1993], and [Mayrhauser et
al. 1993], describing test techniques and test systems, all based on linking the
requirements and/or functions with the test material. The general approach to the
problem is quite similar in these cases, but differences can be noticed in the
implementation. The most popular solution seems to be a relational database,
which has been enhanced with some special, test supporting characteristics.

Liu [Liu et al. 1993] analyze regression testing, its problems, and come to the
conclusion that it is important to provide information for the testers about the
scope of the changes and to maintain a history of the test data. To meet these
requirements, a regression testing environment should provide:

• mechanisms for storing, retrieving, and updating test material

• a system of configuration management for the material

21

• traceability of relevant test material by linking the material with the
test objects

• support for analyzing the effects of changes in the test objects and
their links.

The authors also propose that there are two kinds of useful links, inner links and
outer links, which should be used for the test material. Inner links are needed for
viewing the relationships within single object types (e.g. a module, or a test
case). These links are useful, for instance, when several modules are needed for
building up a program. The outer relationships are related to 'life-cycle objects',
denoting the links between specifications, test cases and programs. Both links
are needed when the impacts of changes are being traced; the effects of changes
can be seen in either internally related components, in externally related
components or possibly in both of them.

Figure 3. The SEMST concept.

To demonstrate the previous objectives, the authors implemented a prototype
tool called SEMST (Figure 3). The SEMST system provides the necessary
functions through four major components: the system monitor, the specification
segment, the program segment, and the test case segment. The components are
manipulated through a database.

Modified ModulesModified Part of Specification

Affected Test Cases

S M1

M2

M3

T2

T1 T3

T4 T5

22

Figure 4. The logical structure of objects in SEMST.

Interestingly enough, the SEMST concept and the implementation reveal two
divergent visions for implementing the linking. The concept uses modified
specifications and programs to point out the test cases to be executed to validate
the changes. Links between the specifications and the modules are also used.
The implementation has taken a somewhat different viewpoint (Figure 4), with
the links starting at the test cases and ending at the specifications and the
modules. In conclusion, the SEMST concept proposes that both specifications
and modules are important sources of information in selecting the relevant test
cases after modifications have been made.

Von Mayrhauser [et al. 1993] suggest that test cases should be attached to
requirements instead of relating them to specifications (Figure 5). In case of
complex systems, the requirements have to be structured 'down to the actual
function level', to the so-called atomic requirements. They claim that this kind of
hierarchical structuring has several advantages:

• Functionally related requirements are clustered together.

Name of
Module

Text of
Module

Functionality
IdentifierName of

Module
Text of
Module

Calling
Routines

Name of
Module

Text of
Module

Functionality
IdentifierName of

Module
Text of
Module

Calling
Routines

Name of
Module

Text of
Module

Identi-
fyer Inputs Expected

Outputs
Testing
Strategy

Link
with

Specs

Link
with

ModsIdenti-
fyer Inputs Expected

Outputs
Testing
Strategy

Link
with

Specs

Link
with

Mods

Functionality
Identifier

Functionality
Description Functionality

Identifier
Functionality
Description Functionality

Identifier Functionality
Description

Functionality
IdentifierName of

Module
Text of
Module

Calling
Routines

Identi-
fier Inputs Expected

Outputs Testing
Strategy

Link
with

Specs

Link
with

Mods

Functionality-Based Specifications Programs

Test Cases

23

• The test case suites can be associated with a chosen level of
abstraction. This provides the basis for editing the requirements and
the related test cases at the highest applicable level of abstraction.

• Appropriate rules can be provided for the inheritance properties of
requirements and test cases.

• The representation of requirements relates to the abstraction level.
According to von Mayrhauser, the use of a proper tool changes the
representation of the requirements structure so that they can be
readily used for testing purposes.

The different types of requirements, qualitative and quantitative, are also
discussed. The solution offered involves fitting the qualitative requirements with
attribute tags. The reason for this is that qualitative requirements commonly
apply to more than one atomic requirement. The use of attribute vectors suggests
that it is necessary to have one abstraction level, i.e. the qualitative requirements
level, above the atomic requirement level. The tags provide two capabilities:

• Several instantiated requirements can be associated with a particular
qualitative requirements type.

• The attribute vectors can be associated with the test suites; if an
attribute value is present, the capability of executing the associated
test suite exists.

Figure 5. Requirements and test suites with attribute vectors.

In addition to the hierarchical structuring and the attribute tags, the authors
propose rules for identifying a suite for regression test cases. The rules could be
applied whenever the requirements are modified or new requirements are added.
The problem is to find the minimum set of test cases for validating a new

Test Case List

R11

R1

R12 R13 T11

T1

T12 T13

attribute tags

24

product version. The rules are based on the requirements structure. An example
rule is shown in Rule A.

Rule A. Select all test cases under the root that was modified.

However, these rules seem to be rather preliminary compared to the more
sophisticated test suite controlling methods available (see, e.g., [Harrold et al.
1993]).

4.3 Some examples of the tools

Many companies producing test tools provide an evaluation version of their tool
on the internet. Among the tools with interesting features from our point of view
are, e.g., the following:

• RequisitePro at www.rational.com/products/reqpro/index.jtmpl

• Test Director at www.merc-int.com/products/testdirguide.html

• QA Director at www.compuware.com/

• WinRunner at www.winrunner.com/

RequisitePro is able to trace the product's requirements on the tests.
Traceability relationships provide a direct link from a specific requirement to the
tests that have been designed to ensure that the requirement is met (Figure 6). By
using queries, it is possible to ensure the status of testing, what tests have been
conducted and what tests still need to be executed.

The traceability from requirements (PR1 in the figure) to testing
(TST1…TST10) is shown in the form of a tree. The user may also make queries
about some specific requirement, and also save the results (the related test cases)
for later use.

25

Figure 6. Traceability tree in RequisitePro.

TestDirector also links to any supplemental document related to a particular test
case (Figure 7). You can access any file on disk or a specific URL over the Web.
For example, the tester may create a requirements document using another
program, such as Microsoft Word or Excel. TestDirector can then link to this
document to provide traceability between the requirements attachment and the
test.

The top level QA Director window provides a tree-structured hierarchical view
of test plans, test case groups and test cases. In addition, it shows the history of
each test plan. The test cases are marked with specific icons denoting whether
they are manual tests, automated tests or test groups. You can also navigate from
this view to the test results.

Test plans, test groups, and test cases are validated by a version number. By
default, the references in the test plans relate to the current versions of the test
cases if they are not set to a specific version.

Test plans can also be replicated to a new version and then edited in situ. A
replicated version of a test plan initially contains the same versions of the test
cases as the master copy. You can add test cases to a test plan by selecting them
from a list of available test cases. You can not, however, reach the script itself,
because it is maintained by the QA Run database.

26

Figure 7. A view of requirements and tests in TestDirector.

Mercury Interactive has a testing environment called WinRunner, in which the
testing is based on GUI elements. WinRunner is able to translate business
processes into readable scripts, which can later be reused or replayed for
verification.

To make sure that these scripts can be reused, WinRunner uses a GUI map to
represent a repository of the application objects for each business process. The
GUI map is created automatically when recording a test script. Each object
within a test script has a minimum set of physical attributes that make it unique.
As the GUI map is built, WinRunner captures the application object information
and organizes it hierarchically.

27

5 Testing based on features and test
components

5.1 The footing

Since regression testing and reuse in general constitute the foundation for the
feature-based testing approach, we will take a short look at them before
discussing the approach itself.

5.1.1 Regression testing

When a software product has been modified, regression testing techniques are
usually applied to the testing of the software [Leung & White 1989]. Regression
testing is a common name for a testing process which is applied after a change
has been made to a program [Liu et al. 1993]. The change is initiated by a new
requirement, which is why the program and its documentation specifications
need to be modified. The goal of regression testing is to convince the maintainer
that the program still performs correctly with respect to its requirements. This
means that no new errors are introduced, and no unintended side-effects are
caused by the change.

In this effort, regression testing reuses the test material that was used when
testing the earlier products. The material may require some additions and
modifications, but usually most of the material will do as such. Regression
testing is thus a plain and simple process, which re-executes the slightly
modified test suite.

The goals of regression testing include both testing the fix and making sure that
no unintended effects have been caused. The following five steps summarize the
activities of the regression testing process:

1. Identify the effects of the changes to the code (or both to the
code and the specification).

2. Select the existing test cases and new test cases which will
be used in testing the affected region.

28

3. Execute the modified program based on the selected test
cases.

4. Ensure that the modified program still performs the intended
function defined in the (possibly modified) specification.

5. Update the old test plan for the next regression testing
process.

Figure 8 shows the regression testing steps, involving the reuse of the test case.
Test cases are stored in a test repository. The definition and the process above
reveal that regression testing is a method suitable for many types of testing, from
unit testing to system and acceptance testing. The process requires management
and tool support for submitting, retrieving, modifying and storing the test cases.

Figure 8. The regression testing steps in a software change process.

Considering the regression testing process, it is obvious that retesting the whole
program, which might contain only a few minor changes, is expensive. The
smaller the changes are, the greater is the desire to find only the relevant tests in
the test suite. Thus the main goals of regression testing are to optimize the size

 Create test
cases

Test

Modify code

Detect
associated

cases

Create new test
cases if needed

Test
case

reposit
ory

Retest

29

of the test suite, to produce reusable test material and to automate the execution
of the testing.

However, the optimization of the test suite has its problems. Unless the
reduction algorithm is not carefully considered and the optimization process
supported by proper tools, the reduction of the test suite may leave out tests that
will later prove necessary. This issue will be discussed in greater detail in the
following chapters.

5.1.2 Test management

A management viewpoint to regression testing is presented in Figure 9. The
picture outlines the activities which are involved in the process of controlling the
test components [Salmela et al. 1999]. A support tool for test reuse should carry
out most of these activities [Lewis et al. 1988].

Once the test components have been created they are submitted directly or
through a review process to a test repository. The test components can be
retrieved from the repository using queries or browse functions. The retrieved
test components can be modified and assembled to form complete test sessions.

Figure 9. The test management process.

Test cases are usually developed either manually or by means of a test case
generator, a capture tool or a recording tool. Generators usually produce test
cases from code or from definitions (e.g. diagrams). Capture tools are used
mainly in GUI testing to capture the user's actions on the screen. Also other
message-based data exchange can be captured and recorded. The flaw in using

Test Repository

create

submit

review

query

modify

assemble

browse

select

30

record/playback is that the system under test has to be brought to a definite state
before the testing can be started. The expected results must also be programmed.
The benefit of the record/playback approach is that after recording it is easy to
use the tests in regression and load testing.

The test repository is the core of the support system, storing all testing-related
items. A common way to implement the repository is to use a configuration
management tool as a platform. The repository should be able to perform the
retrieving and the submitting of functions, identity control, version control and
linkage management (for instance, a link from designs to implementation and
further to test documents). The configuration management system should also
include a test repository. This method should facilitate the linkage management
between software components and tests.

The tester should be able to assemble the test items to the test sets. A test suite
manager is usually applied. It shows the available scripts, while the tester selects
the relevant scripts for the new test compilation. For the compilation, the tester
needs to arrange the scripts to form the various testing hierarchies and to define
how many times a specific script is to be performed. The tester may also wish to
select whether to playback one script or an entire suite of scripts.

Test cycle management is considered another important testing aspect in the
Ovum project [Ovum 1998]. A test cycle describes the test steps as a process and
the tool should be capable of assisting the user in implementing the process. The
tools which advocate test-cycle management typically base their testing
approach on the vendor's definition of the test cycle. The test cycle may thus
define the entire mapping of the testing against the development lifecycle.
Alternatively, it may simply describe the events associated with carrying out a
discrete testing task.

The following list summarizes the features considered essential for the test
management tools in general:

31

• Repository
• Directory structure
• Test suites

• Linkage control
• Configuration management
• Version control
• Automatic logging of test result
• Search facilities
• Maintenance facilities like adding new tests, modifying

existing ones, and deleting redundant or useless tests.

List 1. The features considered essential in test management tools

5.1.3 Generic reusability issues in test design

Since regression testing concerns reusing existing tests, the issue of creating
reusable tests is inescapable. The techniques for developing reusable designs
share a common feature: they distinguish between a common part and a specific
part. For instance, the ISO/IEC 9646-2 standard (OSI conformance testing
methodology and framework - Part 2: Abstract test suite specification) mentions
the possibility of splitting a test suite to a common and a specific part when
using the method (Figure 10). The common part is dedicated to the elements or
features which are always included in the software under test, while the specific
part concentrates basically on the elements that may change or be totally
excluded.

Figure 10. Combining common and specific parts.

Test
suite

Specific part for product A

Specific part for product B

Common part

One of these

Merge

32

The idea of common and specific parts can and should be introduced at the test
case level already. Test cases should therefore be written in such a manner that
the test body contains only sequences which are valid for testing the target
software. The behavior related to the environment, e.g. software or hardware,
should be hidden in preambles, postambles, or in other test components [EWOS
95]. The behaviour of the environment generally implies that the system has to
be brought to a certain state before the actual testing can be initiated. These test
initiation and ending sequences should be separated into their own specific test
chunks.

Further general requirements on reusable tests include the following:

• Generality: a basic issue when reusability is being considered. Design
for reusability demands an increased amount of resources. Is the suite
generic enough to be used later so extensively that the extra cost can
be recovered?

• Compatibility: the enhanced properties brought by reusability in the
test suites should not cause any compatibility problems with the
existing test material.

• Simplicity: the needed extensions and their application rules should be
easily adapted to the current testing procedures. Any complicated
solutions should be avoided.

• Modularity: the reusable design should support the modularity, for
instance, in the description of how to reuse the testing material.
Modularity is necessary for making test documentation readable and
easy to maintain.

• Tool-applicability: the reusable design should be applicable to the test
tools. The transition to a new testing procedure should not be too
expensive for tool developers.

• Maintainability: the design should fit in with the maintenance and the
classification of existing test material, and the design should also be
open to future extensions.

The generic rules are often completed with application-specific rules, such as the
following examples provided in the TTCN style guide [ETR 141 1994].

33

• Keep the number of the formal parameters small.

• Use parameterized test steps to ensure the reuse of the test steps
within the test cases for different needs.

Although the rules mentioned above do give some assistance for designing the
reusable tests, some important issues, such as the configurability of the tests, are
not covered by the rules. Therefore, it is necessary to create a new kind of testing
approach capable of coping with the validation challenges of configured
software products.

5.2 The feature-based testing approach

The main idea with feature-based testing is to combine the potential advantages
of feature-based production with those of regression testing. The purpose is to
provide means enabling an efficient configuration of the tests and the testing
environment. To fulfill the task, the feature-based testing method has to be able
to answer the following questions:

• How to take the application domain knowledge into consideration in test
design?

• How the information of the feature model can be used in adapting the
tests to a desired software configuration?

• How the features of the software product can be used for selecting
appropriate test material?

• How to take mutually dependent features into consideration in the test
suite structure and in the test implementation?

• How the identified test material is developed into executable tests?

5.2.1 The feature-based testing concept

To clarify the feature-based testing concept, at first we need to define the
relation between testing and product featuring. The relation has to be made clear,
so as to be able to integrate the tests with the feature-based production process.
We assume here that we already have a feature model and are able to configure

34

software products by using the model. Thus some basic facilities already exist
for inserting the test material into the process.

The ERD-diagram in Figure 11 puts forward a proposal for defining the
relationships. The relations between feature-based production and the different
testing concepts are shown in the figure. There is a new term involved, feature-
model occurrence, defining the properties for a single product. A feature model
occurrence is a feature model from which the features not included in the
product have been removed.

Figure 11. An ERD of the feature-based production and testing.

5.2.2 The test material

The material for testing a software product should include at least (the following
list defines the minimum contents of the test material that is to be identified and
managed during testing):

• A test script - a mechanism for automating the execution of the
application in a controlled and repeatable manner

Application
Domain

defines Feature
model has

Feature

Product

is
built on

Platform

Component

implements

implements

consists
of

create

User
Requirement

Software
Module

1

N

N

N

integrates

N

N

N

Feature
model

occurrence
defines

Unit testing

validates

Integration
testing

validates

is
an instance

of

System
testingvalidates

done
against

35

• test data – the input data required for making the application follow a
specific execution path

• expected results - the state of some aspect of the application after a
specified test case has been executed.

In addition to the previous items, the test material usually includes test plans and
specifications, test environment configuration data etc. All the test data has to be
stored and managed in a consistent manner. This is a major concern for any test
organization, as the volume of the by-products of the testing process will grow
rapidly by the progression of the testing project. Currently, very few testing tools
employ the capabilities of version management or configuration management.
However, many of the required controls can be implemented by using the
conventional configuration management processes and tools.

5.2.3 Organizing and linking the test material with the feature
model

Linking the test material with the feature model is easier if the material has been
systematically arranged. There are several grounds for organizing the test
material, for example,

• the test type (e.g. these tests are intended for system testing);

• the feature or the requirement linked with the test (e.g. this test is
associated with the Display Refresh feature

• the type of the feature or the requirement linked with the test (e.g.
these tests are intended for the performance testing of the Display
Refresh feature).

All of the previous test organizing methods can be applied to the test hierarchy
levels. Thus, for instance, the tests associated with the Display Refresh feature
may be structured further. One possibility is the following, in which the tests are
classified on the basis of system modes:

36

Test Suite (TS) for the Display Refresh feature
TS for initiating the feature in different system modes

TS for initiating the feature in normal operation
TS for initiating the feature in the sleep mode

TS for validating erroneous user input during the execution of the
feature

Some other justification for classification, such as functional structuring, can
also be applied. This means that the functional descriptions of the feature are
used for structuring the tests. Tracing the procedure leads to a test repository
structure resembling the one presented in Figure 12.

Figure 12. A test repository structure.

There are many ways to organize the test material. This is why the test method
and the tools should have only few limitations on linking and defining the
organization of test data.

37

Figure 13. Linking the test material with the feature model or with the
requirements.

As Figure 13 proposes, the user may find it necessary to link the test plans with
the feature model or with the test environment configuration data. A free
building of links should be made possible by the support system.

The features and other objects associated with the tests are subject to a continual
change. This leads to changes in the application itself and, therefore, also in test
plans, test cases, scripts and the data itself. This maintenance burden can be
eased if the supporting system is capable of generating reports revealing the test
material that may be affected by the changes. Updating the links and adding new
material should likewise be easy.

5.2.4 The processing of the test material

The test material, now structured and linked with the feature model (or with
other suitable objects, e.g. the requirements), has to be developed further for
generating executable tests.

There are, in fact, several choices for processing the test material, depending on
the test execution environment. It may well be that there are no appropriate test
facilities available for employing executable tests. In this case, the only support
for the testers is provided by a list of relevant tests and other test material. The
testers will then execute the necessary tests manually (Figure 14).

Tests for Feature X.

Tests for Feature B.
Tests for Feature A.

A link list to the test material
that is needed for validating
Feature A.

The list contains links to
- relevant, existing test plan
 components
- test case identifications (opt.)
- test case parametrization data
- test result file identifications
- test environment
 configuration data

Feature A.
Feature B.
...
Feature N.
 Feature N.1
 Feature N.2
 ...
Feature X.

Feature Model Occurrence
List of
R i t

Test material

38

Figure 14. Solutions for test development.

If the test material processing is driven a bit further, the test supporting system
could, for instance, provide modified test scripts and test environment
configuration data for the testers. This could be called a partly automated
solution.

In the most advanced case, there is a test environment capable of executing the
tests. This being the case, the test material has been automatically configured in
such a manner that the features of the product are considered by the tests and
these can be executed without any additional, manual processing.

For automating the test execution, it is necessary to consider the implications a
feature model has on the test material. It may well be that the features have, for
instance, mutual dependencies, and therefore a solution involving a single static
test suite used for testing one feature is not reasonable. The feature model
occurrence has to be used for selecting and modifying the test suites for the
product.

Tests for Feature B.

Tests for Feature A.

A link list to the test material
that is needed for validating
Feature A.

The list contains links to
- relevant, existing test plan
 components
- test case identifications (opt.)
- test case parametrization data
- test result file identifications
- test environment
 configuration data

Feature A.
Feature B.
...
Feature N.
 Feature N.1
 Feature N.2
 ...
Feature X.

Feature Model Occurrence or
List of Requirements

Test material

Automated
Test Builder

Executable Test Driver

Test Tool

Manual

A list of appropriate
test material is
defined for the
testers.

Partly
automated

E.g., tests are
modified for a
software
product.

39

Definition 3. The features are mutually dependant if the selection
of one feature changes the behaviour of the other.

Let us assume that we have included feature F1 and some other features in a
product configuration and the resulting product needs to be validated. Test
scripts S1... Sn and corresponding result files R1... Rn have been developed for
the domain. The domain analysis has revealed that the feature F1 changes its
behaviour depending on the feature combination. In test design, this could
appear as follows:

• If F1 is selected, the script S1 is run for testing F1 and results defined by
R1 are expected.

• If both F1 and F2 are selected, the script S1 is run for F1, but the
expected results are now defined by R2.

• If both F1 and F3 are selected, the script S2 is run for F1 and R3 is
expected.

The idea is that testing of a feature may require several alternative test scripts
and test result files. The selection of appropriate tests depends on feature
configuration; F2 and F3 in the example above. The implementation of the test
material structure and the test configuration has to be able to handle the
conditions described above.

Compared with other software models, feature-based software production offers
certain advantages regarding test development. According to [Nilson et al. 1994]
domain analysis in the software process includes the following tasks: "carefully
bound the domain being considered, consider the ways the systems in the
domain are alike (which suggests required characteristics) and the ways they
differ (which suggests optional characteristics), organize an understanding of the
relationships between various elements in the domain, and represent this
understanding in a useful way". The next step is domain modeling, which
"provides a description of the problem space in the domain that is addressed by
software" [Krut & Zalman 1996]. The results of these tasks are applicable to the
test design as well, especially for identifying the instances for reusable test
components. The models define the user point of view to the product and in

40

some cases the test components can be directly extracted from the Use Case
descriptions.

In fact, use cases and test cases work well together in two ways: if the use cases
for a system are complete, accurate and clear, the process of deriving test cases
is straightforward. And if the use cases are not in a good shape, the attempt to
derive test cases will help to debug the use cases [Collard 1999].

Some software processes apply the commonality analysis of the Use Cases
during the definition of the requirements. The analysis surveys and identifies the
common parts of the Use Cases as the use case steps. If this information is
available, the common parts are already known and the test component design is
simple and straightforward. If the Use Case descriptions do not exist, it is
reasonable to start by creating the descriptions and proceeding with the test
component design from that point on.

Figure 15 illustrates how test cases are extracted from a use case. For each action
in the use case there is a corresponding test step. Common actions (e.g. related to
hardware or software environment) can be hidden in preambles, postambles, or
in other test components. These actions are needed for bringing the system to a
desired state and to initiate or to end the actual test. Specific, feature-related
actions are separated in specific test steps or components.

Figure 15. Abstracting test steps from a use case.

Use case descriptions are practical in modeling human user sequences. However,
systems have various types of interfaces and are seldom stimulated merely by

Action Pre

Action A

Action B

Action
Post

If feature A

If feature B

Preamble test
step Test step Postamble test

step

41

human users. A sensor or some other system is possibly used as a
communicating device. In simple cases the external device can be modeled using
a static input-file, but devices with complicated behaviour need executable,
dynamic models. These input-files and even system models can be handled like
the other test components; e.g., they can be parameterized and included in the
test configuration when needed [Haapanen et al. 1997].

Joining test case scripts arbitrarily may not produce the desired result. When
testing integrated components, one component presumes that the next
component is in a specific state. Therefore, test controlling scripts need to be
generated on the basis of the events and/or test steps which form a continuous
line of different states [Jeon & von Mayerhauser 1994].

Test components can be structured as presented in Figure 16. The purpose of the
method is to hide the numerous test steps in the test specifications and to make
test planning easier. The specification (i.e. test controlling script) defines one use
case step, but does not contain the actual test script. The actual script is located
in the component implementations. The alternative implementations are called
by the specification component, which uses feature selections to determine the
right implementation. Direct calls to implementations are not recommended, as
they may lead to a loss of the reusability of the components and thus increase the
maintenance load. This solution is similar to the "information hiding" principle,
according to which unnecessary details are hidden from the user.

Figure 16. The test case componentation hierarchy.

Spesification

Implementation Implementation Implementation

selects an implementation by
using feature configuration

implementation components,
which contain actual test scripts

Feature configuration

Test parameters

42

The selection of a test component implementation, i.e. the test script, is defined
in the specification using if-then clauses. The most general configuration is put
into the last if-block and the most infrequently used one on top of the list. When
the if -clause is used in this way, a new feature can be added into the system as a
new specialization, while the existing mappings/expressions remain the same.

If (most specific feature configuration) then
select script file 4

else if (specific feature configuration) then
select script file 3

else if (common feature configuration) then
select script file 2

else if (most common feature configuration) then
select script file 1

else
select default script file component

endif

Example 2. Selecting a proper test implementation.

Figure 16 presents only one level in the test hierarchy. The test structuring may
be continued to the desired level by applying the principle of sub-scripting. A
level may contain only the identifications for the next, lower level test scripts.

5.2.5 The taximeter example

Figure 17 describes a sample taximeter test case, Cash payment 100 units, which
simulates driving a taxi trip with fare 1 charge. Cash payment is simulated at the
end of the trip. The test case specification file is the top-level script that calls the
feature selection file and the three test component specification files.

43

Figure 17. Sample taximeter test case.

Select fare 1 is a test component specification with one implementation file. The
test component simulates the situation of a customer entering a taxi and the
driver selecting manually fare 1. The drive one unit component simulates
driving until a fare unit is counted. The component will be executed 100 times so
that the total fare will be 100 units. The component specification has two
alternate implementations, which are selected depending on the feature
selections. The cash payment component simply simulates normal cash payment.

5.2.6 Generating tests

The need of generating tests usually depends on test stopping criteria. If the
system is simple or the test set compact, the testing is usually stopped when all
the tests have been executed successfully. In some cases, e.g. if a statistical
requirement on test stopping exists, the static test sets are out of the question. In
this case the test specifications can be enhanced as dynamic user models. Usage
profiles or other coverage criteria for implementing dynamic control in test
specifications can be applied.

Another way of generating test is to employ usage modeling, by using the
Markov chains or the Finite State Machines, for instance. These approaches can
be applied for generating numerous stochastic tests imitating the way the system
would be used in an actual situation.

44

Figure 18. A usage model with probabilities.

Figure 18 shows an example of a usage model. The graphical model can, if done
by using a suitable description method, be compiled or executed as such. It is
evident that Markov models are very similar to use case descriptions, with the
exception of probabilities being included in the graphs. Thus use cases can easily
be enhanced to Markov diagrams (Figure 15 and Figure 18). The model can be
used as a top-level test controller. The probability conditions can also be
manually coded in the test specification (see Example 3).

The label 0,65 on the arrow means that the probability for the transition is 0,65 if
the optional feature has been selected. The implementation of probabilities is
easily accomplished by using a random generator with an even distribution
between [0, 1].

5.3 The optimization of test suites

We have noticed that the test suites for validating a product always contain all
the test cases associated with the selected features. Depending on the product
and the application domain, this may involve a considerable amount of time and
resources. One may wonder if the testing of the earlier, relatively similar
products could somehow reduce the effort of testing the new products. Even
though various optimization solutions have been proposed, the problem is not
easily solved.

Optimization needs are highly dependent on the application domain. A good
example of a potential optimization domain in regression testing is data
communications, where the context may include more than 20 million lines of

start of
session

cash
payment

end of
session

card
payment

0,35

0,65

mandatory feature

optional feature

45

code with over 50´000 discrete components. In such a case, the time needed to
run a fully automated regression test would be several weeks. A manual analysis
of which components need to be included and which ones can be left out safely
is simply not feasible. In this context, even the early algorithms by Leung and
White [1990] will have a tremendous payoff. The most recent reports state that
in the case above it has been possible to cut the total of tests down to 5% - 10%
of fully repeating the tests [Beizer 1999].

Since feature-based testing is relatively similar to ordinary regression testing, the
idea of applying test reduction techniques becomes very tempting. Situations
may arise where all the software components have already been used in earlier
products. A full testing of such a product seems waste of time (assuming that the
product is large and complicated enough, hence requiring a large test set). But is
this actually the case? What are the requirements for the test reduction
techniques and are they easy and straightforward enough to use?

Von Mayrhauser [et al. 1993] have proposed that the hierarchical structured tests
linked with the requirements could be used as a source of rules for identifying a
suite of regression test cases. The rules could be applied whenever the
requirements are modified or new requirements are set. The problem then is to
find the minimum set of test cases for validating the new product version. The
following are examples of the rules to be applied when an addition has been
made:

Rule 1. Select all test cases under the root that was modified.

Rule 2. Select all test cases related to the requirements that trace to the
code affected by the new code.

However, these kind of rules are not reliable and, furthermore, they may even
prove harmful to test set reduction. A similar heuristic might suggest that we
skip all the tests that are 'far from' the modified code. The new product might,
for instance, contain features used in earlier products with only one additional
feature selected. The situation could possibly make us concentrate on the tests
directly related to the new feature and omit the tests used for verifying other
features.

46

However, there is no guarantee of the safety of this kind of procedure. In this
context, the term safe should be interpreted as follows:

Definition 4. A safe regression test selection technique selects all
the test cases that can reveal a fault in the modified
system. [Rothermel & Harrold 1996]

In general, the safety requirement leads to analyzing the program's internal
structure and execution paths, i.e. to various kinds of coverage measurements.
As attractive as the possibility might be, we can not safely reduce the regression
test suite by examining the program through its external interfaces by using it as
if it was a black box.

The knowledge on earlier systems can, however, be used to some extent in
testing. The information is generally exploited in the assessment of the systems
that have to meet stringent reliability requirements. The tendency in reliability
assessment is shifting from human judgment towards mathematical approaches.
An example of this is the study of Littlewood and Wright [1997], who estimate
the reliability of a new product by using the evidence of previous comparable
products3. The authors have applied the Bayesian model to calculate the increase
in the probability of a failure-free operation for a new system when previous,
similar systems have operated faultlessly. They have proved, for instance, that if
we have three similar systems that have operated without failure 107 times, the
new system will have a 0,75 probability to survive the same amount of inputs,
i.e. 107. This piece of data is useful when estimating the test stopping criteria for
a new system.

However, the mathematical approach has some obvious drawbacks. How should
we define the similarity between two comparable products? And, even if we
could quantify the similarity, e.g. relying on experience, the increase in
confidence is still rather small. Furthermore, the procedure is valid for large,

3 Littlewood and Wright discuss the reliability assessment, which seems to have no
direct relation to testing. However, reliability assessment is based on system testing,
using test results in predicting reliability.

47

stochastic test suites and may not be applied without encountering problems in
general.

It is obvious that the heuristic and the mathematical approach both suffer from
obscurities, due to which a better method is called for. An excellent overview
and analysis of the current regression test selection techniques can be found in
[Rothermel & Harrold 1996]. In the report, the popular test selection techniques
(13 in total) are analyzed and it is shown that many of the techniques do not
meet the requirement of safety (see Definition 3). The evaluation is useful in the
sense of clearly identifying the strengths and weaknesses of the various
techniques. This provides help in selecting an appropriate test reduction
technique for a specific purpose. The referenced techniques analyze the structure
of the code by using various methods, which is also indicated in the names of the
techniques: Path analysis; Dataflow; or Program dependence graph.

However, many of the techniques have not been implemented and even fewer
have been subject to empirical studies. Thus, there are no commercial tools to be
readily applied. Some companies have implemented tools by themselves. This
can be done, as the techniques are openly presented, while the required effort is
still considerable. Furthermore, as discussed at the beginning of this chapter, the
test selection techniques are suitable for certain application domains, where the
size of the systems and the number of the software components is large.
However, commercial solutions are well on their way and probably within the
next ten years there will be some off-the-self systems available for test selection
and configuration.

From the discussion above, the following conclusions can be drawn:

• Heuristics is a commonly applied method for test reduction, but it is
not safe. (We may associate test cases to a certain feature, while we
can not guarantee that one feature does not affect the other features;
thus additional testing is needed.)

• A safe test reduction method requires verifying the internal structure
of the program (usually not reasonable to carry out manually).

48

• The safest test reduction method is to do no reduction at all; this is
feasible in cases where the size of the software is fairly small and
automated test execution environment is available.

49

6 Support for the feature-based testing
Let us assume that our application domain is suitable for feature-based testing
and we wish to apply the described testing procedures; what would this require?
Some of the requirements have been discussed earlier in the document, but a
more concise formatting is shown in this chapter. The list of the requirements is
by no means final, since different aspects can be emphasized or otherwise
modified depending on the user's needs.

6.1 Script development

A script can be described as a sequential set of commands which mimics the
normal controlling input to the application. Thus a script can be a reproduction
of a keying sequence from the user for screen manipulation.

A script language needs certain attributes, listed below, to be able to implement
hierarchical and modifiable test suites:

• logical condition constructions

• data manipulation

• external file input/output commands

• procedure calls with parameters

Since most script languages simply adapt to the existing languages, e.g. C or
Visual Basic, the requirements above are not hard to meet.

6.2 Test development and execution

Test development denotes the task of converting the test scripts into executable
tests. At this point, we have a set of test scripts to be transformed to an
executable format. Thus the test development has to support

• the linking of test scripts to features, and

• sequenced running of the test scripts from a test controlling script.

50

A test controlling script may be necessary, e.g. for controlling the execution
order of the scripts. The test execution tools typically support this requirement.
However, the first requirement has to be implemented otherwise, since no tool
support for that requirement is available. The issue is dealt with in detail in
[Salmela et al. 1999].

Joining the test case scripts arbitrarily may not produce the desired results.
Individual test cases always focus on one feature, function, object or component.
The components have inner states and variables. When testing integrated
components, one component presumes that the second one is in a specific state.
Therefore, the test controlling scripts need to be built up using the events/test
steps which form a continuous line of the different states [Jeon & von
Mayerhauser 1994].

The test execution may also contain other functions, such as recording
capabilities or the comparison between the expected test results and the actual
response, but these issues are not of great relevance from our point of view.

6.3 Test storage and management

Test execution tools usually have no support for normal configuration
management features. Even though this is not an essential characteristic in
feature-based testing, this issue should be brought into the implementation when
considering real-life applications. If no support for configuration management
exists, it might be a good idea to integrate the test tool with a configuration
management system (see for instance [Desai 1994]).

6.4 A support system for test case reuse

A test case reuse and management system is at its most useful when it can be
flexibly integrated with other testing and programming systems. In general, the
support system for reuse should offer an easy and effortless connection to the
test repository, from which the test designer is able to retrieve the necessary
components [Griss et al. 1997].

51

Requirement The support tool needs to be built on a version
management system which takes care of test
repository maintenance and linkage control.

If the tool has only one user, or if the test components are used only by one
person or on one workstation at a time, the repository can have a lighter
structure. The test components can be stored, for instance, in the directory
structure, which is organized according to the primary search structure (project,
release, delivery, and component).

If several persons need to use the same test repository, the support system should
be implemented in a client/server environment. A simplified solution is to
implement the directory structure on a shared hard disk. However, controlling
and delivering the files with a dedicated server software is a safer solution.

Requirement The user can search test cases using the different
search methods and browse the test cases.

The test components should be archived with additional information to facilitate
the searching and maintenance tasks. The hierarchy of the repository should be
arranged so that it corresponds to the primary search structure. For instance, the
main levels could be named after the project or product.

Requirement The user can modify and rearrange the retrieved
tests using a suite manager.

A searching and browsing tool is needed for retrieving the test components from
the repository. The search tool may use categories, keywords, application/SUT
and project names as search criteria. After searching or viewing the user receives
a result page, which shows links to the test objects and to other related
information, such as how to use the items. The search engine can be
implemented by using HTML, Java, or other web-based technologies.

In addition to the previous generic characteristics, the support system needs to
have the ability to link test scripts, and test material in general, with the features
of the product family. An equally important issue is the capacity of linking tests
with product requirements.

52

Requirement The test development has to support the linking of
test scripts to features.

Requirement The test development has to support a sequenced
running of the test scripts from a test controlling
script.

The latter statement means that the supporting tool is able to execute series of
tests in a controlled manner, taking into consideration the mutual dependencies
the features may have. Another equally important issue concerning the test
controlling script is the control of the execution order of the scripts.

6.5 The test process

The so-called V model is a commonly referenced software development model
at present. According to Figure 19, both system testing and acceptance testing
utilize the various requirement documents in test design. Tests are developed on
the basis of the usage models presented in development documents, e.g. as use
case descriptions.

Figure 19. The V-model.

53

This kind of test development can also be applied to feature-based testing.
However, a test domain analysis may be necessary for identifying the generic
test sequences (i.e. components) before entering the test design. Otherwise, the
process is similar to the test processes mentioned, e.g. in Atkins and Rolince
[1994]. The Test Requirements Specification Language standard (IEEE P 1029.3
TSRL), which they refer to, defines the following tasks for a generic test
process:

• the characterization of the test subject
• the definition of the test objectives
• the definition of the test requirements
• the selection of the test method and the test resources
• the generation of the test procedures.

These activities can be applied as such to the feature-based test process.

54

7 A case study
This case study puts into practice some of the ideas presented in the previous
chapters. For the purpose, we constructed a simple demonstration system,
consisting of the typical IO devices included in an embedded system: a
keyboard, a display and a card/bank card reader. The case is loosely based on
two real embedded systems [Kalaoja et al. 2000]. The main emphasis of the case
study is to show in practice how the test material configuration can be
implemented.

Thus, the demo system aims at presenting

• how the test data is managed and organized;

• how the feature model is used for test material selection;

• how the feature model is taken into consideration in the test design;

• how the selected features are brought and applied to the test scripts;

• how the mutually dependent features are taken into consideration in
the test suite structure and the test implementation; and

• how the identified test material is developed into executable tests.

7.1 The system

The system was expected to include characteristics which would bring out
potential problems in the implementation of the ideas, and, at the same time, the
system would provide a suitable 'test environment' with enough functional
variety. Since the demo system was fictive, only a limited specification of its
functionality was needed. The system is intended for placing bets, e.g. in
horseracing. The keyboard of the system contains a few function keys and a
numeric keypad. The system has a resemblance to automatic teller machines
(Figure 20).

The system has two main operation modes: maintenance (e.g. for display
adjustments) and bet placing.

55

Figure 20. A view of the system window.

There is a set of functions for display adjustments linked with the various
displays. This is the reason why several display models are available for the
system. The act of bet placing consists of a sequence of actions, including bet
entering, the selection of the payment method, as well as the payment actions
themselves. The features can be combined fairly freely, while a number of
different products can be built by using the feature-based production technique.

7.2 The feature model of the system

The KataSystems demo environment consists of three components: a betting
device, a tester and a configurator (Figure 21). The configurator is used for
modifying the outlook and the behaviour of the slot machine. When the user
configures the slot machine, the tester is loaded with tests that are connected to
the selected features. The tester is used to execute and to monitor the selected
test.

The possible variations of the slot machine are shown in a structured tree-like
feature model (see Figure 22). The EON (Embedded Object Notation) method
[Kalaoja et al. 1997] was applied to the feature model development. In the
diagram, the features are shown as boxes with an identification or, optionally,
with a value. The relationships between the features, e.g. feature and its
subfeature, are represented as arrows. The mutual dependencies are also shown
as arrows containing the req attribute.

56

Figure 21. The KataSystems demo environment.

Figure 22. The feature model of the slot machine.

The model shows that the slot machine always has a cash payment feature, but
there is an option for credit card payment. The credit card payment has an
additional option for payment correction, i.e. the bet can be changed. In addition,
there are further options for, e.g., display types and language.

Betting slot
machine

Tester Configurator

Test input System
configuration

Selected tests

Card�

Payment�

Correction�

VAT�

MenuOutlook =
1�

Maintenance� Reporting�

Version 1�

Version 2�

DisplayTube =
1�

AG_Flat�

Trinitron�

Language =
1�

English�

Finnish�

req

req

Cash�

57

The feature model is converted to the feature selector, which is implemented by
using check boxes and radio buttons. After the user has configured the system,
the tester is loaded with tests corresponding to the selected features. The tester
employs only the tests needed to carry out the testing of the configured product.

Figure 23 presents the layout of the configurator. Mutual dependencies are
shown as arrows referring to the other features. The user or the one configuring
the system can create different kinds of systems by clicking the desired features
and pressing the OK button.

Figure 23. The feature configurator for the demo system.

The selected features are imported to the test script as an include statement. The
control of the testing of the correct features is gained by using the data of the
feature_model.h file in the conditional statements. Test data is stored in files and
it can be made readable by using special routines. Note the implementation of a
usage profile using a random generator (see also Figure 18).

58

/* The feature configuration of the application */
#include "feature_model.h"

/* Test parameters */
get_test_params(PAYMENT_TESTING, number_of_tests, *bet_sums);

/* Test execution */
for (i=0; i < number_of_tests; i++)

{
/* Preamble */
start_user_session;
enter_bet(*bet_sum, i);

/* Feature configuration controls test selection */
/* If both features included, apply usage profile */
if (CARD_PAYMENT && (uniform_distribution(0,1) <= 0,65))

{ card_payment; }
else

{ cash_payment; }
/* Postamble */
enter_keycode(STOP_PAYMENT_SESSION);
}

Example 3. A part of the main test controller for the bet placing feature.

In the demo system, we used the C programming language as a test scripting
language. C is powerful enough for creating reusable test components and
functions. It also has an ability to pass parameters to the test components, which
was one of the main requirements for the script language.

59

Table 4. Test suite correspondence to features.

Feature Test suite

Payment payment_test

Cash cash_pay_test

Correction payment_correction_test

DisplayTube display_test

AG_Flat ag_flat_test

feature list continues...

The test suite hierarchy for the demo follows the structure of the feature model.
The list in the left column of Table 4 contains all the features, and on the right
you will find the corresponding test suites.

A simple way of implementing links between the test material and the feature
model is to use a test index file. The index file maintains links from the features /
functions / issues to the test files, e.g. the test specifications and scripts. When
the user makes selections in the feature selector, the necessary tests are searched
from the test index file. The test index file represents 'a small database'
maintaining links between the features and the tests.

Figure 24. The test index file.

7.3 Writing reusable test components

The C programming language has been used as a test scripting language. Using
C makes it is easy to write reusable test components and functions. Furthermore,
C has the ability to pass parameters to the components. This approach indicates

Card payment

Card payment

Maintenance

Maintenance

Test spec

card_and_pin.inrec

Test spec

select_report.inrec

Test file

Test file

Test file

Test file

Test indexesFeature model

Card payment

Maintenance

xxxx

60

that the scripting language should have structural programming capacities. This
chapter contains some examples of the test design.

Example 4 presents a lowest-level testing component, implementing the
connection to the betting slot machine. The component simulates manual button
pressing. The button to be pressed is indicated with the input parameter.

void press_button(int key)
{

SendMessage(GetDlgItem(hWnd, key),
BM_SETSTATE, TRUE, 0L);

Sleep(200);
SendMessage(GetDlgItem(hWnd, key),

BM_SETSTATE, FALSE, 0L);
SendMessage(hWnd, WM_COMMAND,

MAKEWPARAM(key, 0), 0L);
}

Example 4. A low-level component.

After developing the lowest-level components we can define more generic and
readable components using such basic components as press_button. Example 5
shows a few higher-level test components.

void press_number(int num)
{ switch(num)

{
case 1:

press_button(IDC_B_1);
break;

case 2:
press_button(IDC_B_2);
break;

...
}

void start_betting(void)
{ press_button(IDC_F1); }

void press_enter(void)
{ press_button(IDC_B_E); }

61

void type_number(int num)
{ int len, i;

char szNum[7], c;

itoa(num, szNum, 10);
len = strlen(szNum);
for(i = 0 ; i < len ; i++)
{ c = szNum[i];

press_number(atoi(&c));
}

}

Example 5. The test components.

In the previous example, the press_number, start_betting and press_enter
components are implemented by using the press_button component.
Type_number, a further component, is constructed by using the press_number
component.

If the script language of the tool offers this kind of structural programming
abilities, it is likely to provide a very efficient method for creating reusable
testing components. Furthermore, the ability to pass the parameters is essential
for the reusability and versatility of the components.

7.3.1 The variation points in testing

This example shows how to make implementation-specification pairs. In the
example, the function display_test is a component in the specification which
selects the correct implementation component according to the desired
configuration. In this case, the implementation components are trinitron_test and
ag_flat_test.

void display_test(void)
{

if(valid.iTube == TRINITRON)
{ trinitron_test(); }
else
{ ag_flat_test(); }

}

Example 6. A specification component for testing the display.

62

In the following example, a variation point is used for selecting the correct test
input file. At the bet_test the test input is written in separate files. Using the
separate input files provides an efficient way of writing large amounts of test
inputs. In this case, different inputs are needed, because the maximum bet sum
and the amount of the bets vary between the displays.

if(valid.iTube == TRINITRON)
{

// Open Trinitron test data file
create_file_name(

"testit\\bet_test_trinitron.dat", &file);
}
else
{

// Open AG Flat test data file
create_file_name(

"testit\\bet_test_agflat.dat", &file);
}

Example 7. Loading the test input files.

63

8 Summary
In general, reuse has been connected with software development and production
through software component design. In testing, the method of reuse seems to be
more of an ad-hoc nature, inspired by practical considerations. More formal
reuse procedures can be found in telecommunications, where the standards give
generic advice for reusable test design.

The feature-based testing method proposed in this research report is intended
mainly for systems which apply features for defining their properties or which at
least build products upon software components. The approach outlines the
essential characteristics for test reuse. Among these issues are test suite
structuring, test script design and test material management. Some of the ideas
have been presented earlier, even though not necessarily implemented or
evaluated as we did. This paper integrates the relevant ideas and reviews the
requirements for a test environment to support the approach.

The key issue of the approach is how to structure tests for the test components.
The components have to be configured in such a manner that the tests match the
features of the product. The test domain analysis, which can clearly draw upon
the feature domain analysis, has to be done prior to the structuring of the test,
since the test components are identified through the analysis.

An empirical evaluation of the results is essential, especially since the case has a
strong practical point of view. A demonstration system was constructed to
implement the essential features and ideas presented in the paper. Another,
equally important, purpose of this study was to evaluate the functionality and the
relevance of the proposed techniques and solutions. For the demonstration
system, the designing of tests was straightforward and easy, and the
configuration of the tests revealed no major problems in the approach. At best,
presuming that a new product is based on already existing software components,
all the necessary tests can be identified and configured by using the feature-
based testing approach.

Unfortunately, we did not have the opportunity to evaluate the approach with a
real product family. However, we believe that the ideas presented in the report
can be used as such to a great extent. We presume that a practical

64

implementation of the technique demands a more professional approach. The
demonstration tool described here is merely an exercise, having only little
practical value. We are looking forward to the ideas being brought forward in
new research programs to be initiated in the near future.

65

References
Atkins, R. & Rolince, D. TRSL standard supports current and future test
processes. In proceedings of AUTOTESTCON '94 conference. IEEE. 1994.

Beizer, B. Personal correspondence. 1999.

Collard, R. Developing test cases from use cases. In Software Testing &
Quality Engineering, July/August 1999.

Desai, H.D. Test case management system (TCMS). In proceedings of 1994
IEEE GLOBECOM. Communications: The global bridge. IEEE. 1994.

ETR 141. Methods for testing and specification (MTS) Protocol and profile
conformance testing Specifications: The Tree and Tabular Combined
Notation (TTCN) style guide. 1994.

EWOS/TA. Methods for testing and specification (MTS) partial & multi-part
abstract test suites (ATS), rules for the context-dependent reuse of ATSs.
EWSO/ETG 057. 1995.

Griss, M.L., Favaro, J. & d'Alessandro, M. Featuring the reuse-driven
software engineering business. A draft for Object Magazine. September
1997.

Haapanen P., Pulkkinen, U. & Korhonen, J. Usage models in realiability
assessment of software-based systems. Finnish Centre for Radiation and
Nuclear Safety. STUK-YTO-TR 128. April 1997.

Harrold, M.L., Gupta, R. & Soffa, M.L. A methodology for controlling the
size of a test suite. In ACM Transactions on Software Engineering and
Methodology, Vol.2, No.3, July 1993.

Jeon, T. & von Mayrhauser, A. A knowledge-based approach to regression
testing. First Asia-Pacific Software Engineering Conference. IEEE Comput.
Soc. Press, 1994.

66

Kalaoja, J., Rytilä, H. & Salmela, M. The final report on the Semel pilot case.
A KATA-project report. To be published in 2000.

Kalaoja, J., Toivanen, J., Okkonen, A., Niemelä, E. & Ihme, T. Configurable
feature-based application software. KOMPPI-project report. VTT
Electronics. 1997.

Krut, R. & Zalman, N. Domain analysis workshop report for the automated
prompt and response system domain. Special report. CMU/SEI-96-SR-001.
May 1996.

Leung, H.K.L. & White, L. A study of regression testing. In Proceedings of
the 6th International Conference on Testing Computer Software. USPDI.
1989.

Leung, H.K.L. & White, L. Insights into testing and regression testing global
variables. Journal of Software Maintenance. No 2 December 1990.

Lewis, R., Beck, D.W. & Hartman, J. Assay - a tool to support regression
testing. British Telecom Research Lab/Dept. of Computer Science,
University of Durham. 1988.

Little, L.A. A new approach to managing project requirements and system
testing. In proceedings of the Fourteenth Annual Pacific Northwest Software
Quality Conference. 1996.

Littlewood, B. & Wright, D. A Bayesian model that combines disparate
evidence for the quantitative assessment of system dependability, In:
Mathematics of Dependable Systems, II, edited by V Stavridou, Oxford:
Clarendon Press, 1997 pp. 243-258.

Liu, L., Robson, D.J. & Ellis, R. A data management system for regression
testing. In proceedings of the 1st International Conference on Software
Quality Management. March 1993.

67

Nilson, R., Kotgut, P. & Jackelen, G. Component provider's and tool
developer's handbook central archive for reusable defense software
(CARDS). (STARS-VC-B017/001/00). Reston, VA: Unisys Corporation.
1994.

Ovum. An evaluation of software testing tools. Ovum 1998.

Rothermel, G. & Harrold, M.J. A safe, efficient regression test selection
technique. In ACM Transactions on Software Engineering and Methodology,
Vol. 6, No. 2, April 1997.

Rothermel, G. & Harrold, M.J. Analyzing regression test selection
techniques. In IEEE Transactions on Software Engineering, Vol. 22, No. 8,
August 1996.

Salmela, M., Korhonen, J. & Kalaoja, J. Support system for feature-based
testing. A KATA-project report. To be published in 1999.

von Mayrhauser, A. & Olender, K. Efficient testing of software
modifications. In Proceedings of the International Test Conference. IEEE.
1993.

68

69

Published by

Vuorimiehentie 5, P.O.Box 2000, FIN-02044 VTT, Finland
Phone internat. +358 9 4561
Fax +358 9 456 4374

Series title, number and
report code of publication

VTT Publications 406
VTT–PUBS–406

Author(s)
Korhonen, Jukka, Salmela, Mika & Kalaoja, Jarmo

Title

The reuse of tests for configured software products
Abstract
New efficient software production techniques are important for improving the time-to-market of
software products. One example of such advanced techniques is the so-called feature-based software
production which employs high-level requirements or features in finding and selecting reusable
software components for the development of new products. This kind of model-driven software
development shortens the production time, but the validation of configured products still remains a
bottleneck.
An effort to apply regression testing techniques to configured software products shows that these
techniques are not very well suited to meeting the new testing challenges. It is obvious that retesting an
entire program, containing possibly only a few minor changes, is expensive. Therefore, an efficient
testing approach is required for optimizing the size of the test suite. Other important issues concerning
the testing approach are the design of reusable tests, the configuration and management of tests, and the
automation of test execution.
In the research, the testing efficiency problem is solved by using the idea of reusable software
components from the feature-based production. In software testing the idea converts into a set of
reusable test components designed for a product family. From a test material repository a suitable subset
of tests is selected, modified, and configured to cover the characteristics of the product being tested. In
addition, the repository may contain other relevant test data to be used for configuration, such as the test
plans and the test environment configuration. The technique is called the feature-based testing
approach.
For identifying the relevant test data, the method proposes links to be created between the product
features and the test material. The result of the test configuration depends on the automation degree,
varying from a simple test involving identification of lists useful in manual testing to executable tests in
a fully automated test environment.
Often in structured testing the test case assumes that the software is in a specific state. Therefore joining
test scripts arbitrarily may not produce the desired results. For that reason, we propose utilization of test
specification components that are capable of using product feature data, taking care of the execution
order and selecting appropriate tests for the product.
When implementing the feature-based testing approach, the issues to be emphasized are script
development, test development and execution, and test management. A support system implementing
the main characteristics of the feature-based testing approach has been outlined in the report. The tool is
demonstrated in a case study.
Keywords

software testing, feature-based software, regression testing, configured systems
Activity unit

VTT Electronics, Embedded Software, Kaitoväylä 1, P.O.Box 1100, FIN-90571 OULU, Finland
ISBN Project number

951–38–5556–2 (soft back ed.)
951–38–5557–0 (URL: http://www.inf.vtt.fi/pdf/)

E8SU00158

Date Language Pages Price
January 2000 English 67 p. B

Name of project Commissioned by
KATA Nokia Display Systems Oyj, Semel Oyj, Polar

Electro Oyj, Suunto Oyj, Vaisala Oyj
Series title and ISSN Sold by

VTT Publications
1235–0621 (soft back ed.)
1455–0849 (URL: http://www.inf.vtt.fi/pdf/)

VTT Information Service
P.O.Box 2000, FIN-02044 VTT, Finland
Phone internat. +358 9 456 4404
Fax +358 9 456 4374

	Abstract
	Preface
	Contents
	List of symbols
	1 Introduction
	2 Feature-based software development
	3 The problem and some definitions
	4 The state of the art in feature-based testing
	4.1 The Ovum report
	4.2 Conference papers
	4.3 Some examples of the tools

	5 Testing based on features and test components
	5.1 The footing
	5.1.1 Regression testing
	5.1.3 Generic reusability issues in test design

	5.2 The feature-based testing approach
	5.2.1 The feature-based testing concept
	5.2.2 The test material
	5.2.3 Organizing and linking the test material with the feature model
	5.2.4 The processing of the test material
	5.2.5 The taximeter example
	5.2.6 Generating tests

	5.3 The optimization of test suites

	6 Support for the feature-based testing
	6.1 Script development
	6.2 Test development and execution
	6.3 Test storage and management
	6.4 A support system for test case reuse
	6.5 The test process

	7 A case study
	7.1 The system
	7.2 The feature model of the system
	7.3 Writing reusable test components
	7.3.1 The variation points in testing

	8 Summary
	References

