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Abstract

The purpose of the architecture evaluation of a software system is to analyze the
architecture to identify potential risks and to verify that the quality requirements
have been addressed in the design. This research report addresses the issue of
how to perform an analysis of software product line architectures. Throughout
the chapters we will try to present a way of thinking founded on an analysis at
the architecture level of the quality attributes with the purpose to initiate and
maintain a software product line considering the quality as the main driver in the
product line development. The analysis strategy is exemplified with a
spectrometer controller product line, a case study where the product line is
initiated in a revolutionary style, which is such that the product line architecture
and its components are elaborated to match the requirements of all expected
product line members.

In this report, we will present our original contributions in developing this
significant and, at the same time, new research domain. In order to be able to
discuss an analysis strategy for a product line architecture, it is a considerable
advantage to have a good knowledge of the state of art and practice in the
software architecture domain. One of our contributions is to extract the main
concepts that are common to software architectures and to present what is
specific for the product line approach in software development. The study in the
first part of the report gathers together, for the first time to our knowledge, all of
the important published software architecture analysis methods and attempts to
compare them. This survey shows the state of the research at this moment, in
this domain, by presenting and discussing eight of the most representative
architecture analysis methods. The study represents a step towards defining a
general product line architecture analysis strategy. In practice, we will simplify
our analysis approach and the last part of this report focuses on our experiences
with the product line architecture analysis of the spectrometer controller PL.



4

Contents

ABSTRACT……………………………………………………………………………..3

LIST OF ABBREVIATIONS…………………………………………………………..7

1. INTRODUCTION.................................................................................................. 9

1.1 SOFTWARE QUALITY ANALYSIS AT THE ARCHITECTURE LEVEL............................. 9

1.2 INTRODUCTION TO SOFTWARE PRODUCT LINE .................................................... 10

1.3 ELEMENTS OF SOFTWARE PRODUCT LINE............................................................ 13

2. MAIN CONCEPTS RELATED TO PRODUCT LINE ARCHITECTURE .. 16

2.1 DEFINITION OF SOFTWARE ARCHITECTURE......................................................... 17

2.2 DESCRIPTION OF SOFTWARE ARCHITECTURE ..................................................... 17

2.2.1 Multiple views representation ................................................................... 17

2.3 THE MAIN SOFTWARE QUALITY ATTRIBUTES ...................................................... 21

2.3.1 A software quality model........................................................................... 21

2.3.2 General software quality attributes........................................................... 22

2.4 MAPPING QUALITY ATTRIBUTES AND ARCHITECTURAL VIEWS ........................... 26

2.5 ARCHITECTURAL STYLES AND PATTERNS ........................................................... 28

2.6 PLA SPECIFIC DESCRIPTION................................................................................ 29

3. METHODS AND TECHNIQUES FOR SOFTWARE ARCHITECTURE

EVALUATION ............................................................................................................. 31

3.1 EVALUATION TECHNIQUES ................................................................................. 32

3.1.1 A classification of the evaluation techniques ............................................ 32

3.1.2 Scenarios................................................................................................... 33

3.2 A SURVEY ON SOFTWARE ARCHITECTURE ANALYSIS METHODS.......................... 34

3.2.1 SAAM ........................................................................................................ 35

3.2.2 SAAMCS.................................................................................................... 38

3.2.3 ESAAMI..................................................................................................... 39

3.2.4 SAAMER ................................................................................................... 41

3.2.5 ATAM ........................................................................................................ 42

3.2.6 SBAR ......................................................................................................... 47

3.2.7 ALPSM ...................................................................................................... 50

3.2.8 SAEM ........................................................................................................ 51

3.3 DISCUSSION........................................................................................................ 52



5

3.3.1 Appropriateness study............................................................................... 53

3.3.2 Several classifications criteria of the analysis methods............................ 54

3.3.3 Common problems and different solutions in scenario-based methods .... 59

3.3.4 Methods evolution ..................................................................................... 61

3.3.5 The reusability of the existing knowledge ................................................. 62

4. PLA ANALYSIS STRATEGY............................................................................ 63

4.1 INTRODUCTION TO THE PLA ANALYSIS STRATEGY............................................. 63

4.2 THE MEASUREMENT INSTRUMENT ...................................................................... 65

4.3 THE EVALUATION PROCEDURE ........................................................................... 67

5. PLA ANALYSIS METHOD................................................................................ 69

5.1 REUSABILITY AND MODIFIABILITY CONSIDERATIONS ......................................... 69

5.1.1 Reusability................................................................................................. 69

5.1.2 Modifiability.............................................................................................. 70

5.2 METHOD DESCRIPTION........................................................................................ 71

5.2.1 Deriving change categories from the problem domain............................. 72

5.2.2 Scenario identification .............................................................................. 72

5.2.3 Description of the PLA.............................................................................. 74

5.2.4 Evaluate the effect of the scenarios on the architecture elements............. 75

5.2.5 Scenario interaction.................................................................................. 76

6. CASE STUDY....................................................................................................... 77

6.1 SCOPE OF THE PRODUCT LINE ............................................................................. 77

6.2 ANALYSIS OF THE COMMONALITIES AND VARIABILITIES OF THE PL

REQUIREMENTS ........................................................................................................... 78

6.3 PLA REPRESENTATION ....................................................................................... 87

6.3.1 Conceptual view of the PLA...................................................................... 87

6.3.2 Detailed functional decomposition structure ............................................ 89

6.3.3 The diversity view of PLA.......................................................................... 91

7. EXPERIENCES FROM SPECTROMETER CONTROLLER PLA

ANALYSIS .................................................................................................................... 94

7.1 REUSABILITY STRATEGY..................................................................................... 94

7.2 MODIFIABILITY STRATEGY ................................................................................. 97

7.2.1 Change scenarios for spectrometer controller software PL ..................... 97

7.2.2 A summary of the analysis PLA for modifiability.................................... 104

7.2.3 Detailed analysis of scenario categories related to hard disk ................ 105



6

7.3 SUMMARY OF THE PLA ANALYSIS STRATEGY .................................................. 110

8. CONCLUSIONS AND FUTURE WORK........................................................ 112

8.1 CONCLUSIONS RELATED TO SOFTWARE ARCHITECTURE ANALYSIS METHODS... 112

8.1.1 Progress identification and methods improvement techniques ............... 112

8.1.2 Existing problems and future work ......................................................... 114

8.2 CLOSING WORDS............................................................................................... 116

ACKNOWLEDGEMENTS………………………………………………………….117

REFERENCES………………………………………………………………………..118



7

List of abbreviations

ABAS Attribute-Based Architecture Style

ADL Architecture description language

ALPSM Architecture level prediction of software maintenance

ATAM Architecture tradeoff analysis method

BUFMAN Buffer management

CASE Computer assisted software environment

CIS Command Interface Subsystem

CPU Central processing unit

DMA Direct memory access

DRAM Dynamic RAM

EEPROM Electric erasable programmable read only memory

EGY Energy spectrum

ESAAMI Extended SAAM by integration

ESM Energy spectrum mode

GQM Goal-Question-Metrics

HD Hard disk

HK Housekeeping

MCS Measurement Controller Subsystem

MMS Memory management subsystem

MSC Message sequence charts

NFR Non-functional requirements

OBC On-board clock

OS Operating system

PL Product line



8

PLA Product line architecture

PMS Parameter management subsystem

QFD Quality Function Deployment

RAM Random access memory

RMA Rate Monotonic Analysis

RMEM Read memory

SAAM Scenario-based architecture analysis method

SAAMCS Scenario-based architecture analysis method with complex
scenarios

SAAMER SAAM improvement for evolution and reusability

SAEM Software architecture evaluation model

SBAR Scenario-based architecture re-engineering

SCV Scope, commonality, variability

SEC Single event characterization

SIXA Spectrometer instrument X-ray array

SPE Software performance evaluation

SRAM Static RAM

ST Star tracker

TIM Time interval mode

TOPSA Taxonomy of orthogonal properties of software architectures

WCM Window counting mode



9

1. Introduction

During the recent years many research efforts have focused on ensuring that the
quality of a software product is addressed at the architectural design level [9].
Architecture represents the first asset in an architecture-centric development
process and from this point of view analysis can reveal requirement conflicts and
incomplete design descriptions from a particular stakeholder perspective. There
are well-known advantages of the introduction of the architecture in the life-
cycle development of a single software product [18]. Because the product line
software development is a new approach in software engineering research, the
analysis of product line architecture should play an important role.

1.1 Software quality analysis at the architecture level

One of the major issues in the software systems' development today is quality.
The purpose of the evaluation is to analyze the architecture for the identification
of potential risks, verifying that the quality requirements have been addressed
[49]. The role of architecture in a life-cycle of a software product is very
important, but other stages of the development process (e.g. detailed design,
implementation) are important, too. It is recognized that it is not possible to get
an exact measure of the quality attributes for the final software product based on
the architecture model [13]. This would imply that detailed design and
implementation represent a strict projection of the architecture. The aim of
analyzing the architecture of a software system is to predict the quality of the
system before it has been built, not to establish precise estimates but the main
effects of an architecture [35].

The idea to predict the quality of a software product from a higher-level design
description is not new. In 1972, Parnas [55] motivated the use of modularization
and information hiding as means of high-level system decomposition to improve
flexibility and comprehensibility. In 1974, Stevens, Meyers and Constantine [63]
introduced the notions of module coupling and cohesion to evaluate alternatives
for program decomposition. During the recent years the notion of software
architecture has emerged as the appropriate level to deal with software quality.
This is because the scientific and industrial communities have recognized that
the software architecture sets the boundaries for the software qualities of the
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resulting system [8]. As one of the first decisions made, the software architecture
must be checked against quality requirements. Recent efforts on systematization
of the implications of using design patterns and architectural styles contribute,
frequently in an informal way, to the guarantee of the quality of a software
design [20, 25].

More formal efforts are concentrated on ensuring that the quality is addressed on
the architectural level. Various communities from the software metrics, scenario-
based and attribute model-based analysts have developed their own methods and
techniques. The software metrics community has used module coupling and
cohesion notions to define predictive measures of software quality [18]. Other
methods include a more abstract evaluation of how the architecture fulfils the
domain functionality and non-functional qualities [35]. Instead of introducing
metrics for predictive evaluation, they describe examples for performing a more
qualitative or quantitative evaluation. Analysis methods based on scenarios
could be considered mature enough, since they have been applied and validated
for the last six years, but the development of evaluation methods of attribute
model-based architecture is still ongoing. Future research is needed to develop
systematic ways to bridge quality requirements of software systems with their
architecture.

1.2 Introduction to software product line

Nowadays a new initiative is coming onto the scene - the software product line.
There are different topics to consider regarding a software product line [21].
Business, architecture, process and organization related aspects are the most
important keys to effective product lines. A product line approach of software
development is attractive to most organizations due to the focus on a strategic
reuse of both intellectual effort and existing artifacts such as requirements,
architectures and components (Figure 1). In the context of multiple software
products created in one company, it is recognized that the effort and costs could
be reduced if a product line is considered.

From the business point of view, strategic software reuse improves multiple
factors, which influence the achievement of fast, efficient, predictable, low-cost,
high-quality production and maintenance. We can enumerate the ability to take
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advantage of new products and new technology faster; the significant decrease
of time-to-market because off-the-shelf components and commercial-off-the-
shelf components (COTS) are ready to use; higher employee productivity, with
the emphasis not on coding but on reusing and integrating. Celsius Tech is one
of many examples of success [8].

Figure 1. Relationships between product line architecture, quality attributes and
software components.

The product line architecture is the main tangible element to consider in the
context of software product line. All the PL members should share the same
architecture. Under this new perspective the main question is what is the
difference in analyzing PLA and the architecture for a single product? Are more
architecture views or different evaluation techniques and methods needed?

The development process for a PLA is different than for one product [44]. The
essential practice areas in the development of a single product include software
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architecture modeling, representation, analysis, implementation in conformance
with the specification, and traceability with requirements. In product line,
additional practice areas such as generic and adaptable software architectures,
reusable component design and development, traceability with common and
variable requirements in a family of products are considered.

The goal of architectural analysis is to get measures of compliance with regard
to requirement specification. In the case of product lines it is very important to
identify, which are the relevant domain properties and how analysis techniques
and methods could be applied to product lines. There are two categories of
properties. The general one, like performance, satisfaction of real-time
requirements, reliability, etc. and is specific to product lines. Among the specific
points that deserve special attention are: kinds of variation which can be covered
by the architecture and properties that are preserved for all variants of an
architecture, and stability of components' interfaces with respect to evolution in
products.

The open problem of a PLA analysis strategy is how to take better advantage of
architectural concepts to analyze a software product line for quality attributes in
a systematic way.  The PLA must not only conform to quality requirements of
each PL member, but it must also be generic and adaptable to the whole PL
domain [19]. It is important to know how reusable and flexible PLA is to
anticipated changes. The driving forces behind the development of a PLA must
be reusability and modifiability. One objective of the evaluation is to estimate
these two main structural qualities such as to maximize the reusability and to
minimize possible changes in functionality required by various product
members. It is also important to identify potential risks and to verify that the
quality requirements of the PL domain have been addressed in the PLA design
[41]. The analysis could be associated with the design in an iterative
improvement of the PLA, when the PL is initiated in a revolutionary style, or for
the re-engineering of an existent PL due to the PL evolution process [14].
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1.3 Elements of software product line

A software product line is defined as a group of products sharing a common,
managed set of features that satisfies specific needs of a selected market [8]. The
products should be suitable to a market strategy and application domain. They
share an architecture and are built from components.

Figure 3. PL definition.

The PL definition includes three main concepts, which are feature, architecture,
and component. Figure 2 describes the way they are related to give a unitary
logic to the development of a PL. The common set of features represents the
source of information for the shared architecture design, which is called product
line architecture. From the viewpoint of decomposition and composition ap-
proaches of the architecture design methods, we can identify a bi-directional
relation between PLA and the set of components [2]. In one direction of this
relation, PLA influences component development considering the decomposi-
tion. The composition aspect acts in the opposite direction of this relation, and
the set of components influences PLA development.

Some of the issues with PL are related to the process of initiation and how to
deal with its evolution process.
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Initiation. Software product line does not appear accidentally, but requires a
conscious and explicit effort from the organization interested in using product
line approach. Basically, one can identify two relevant dimensions with respect
to the initiation process. The organization may take an evolutionary or a revolu-
tionary approach to the initiation process. In each dimension, the product line
initiation can be applied to an existing line of products or to a new product line
that the organization intends to use. Each case has an associated risk level and
benefits. For instance, in general, the revolutionary approach involves more
risks, but then, higher returns compared to the evolutionary approach. [15].
Revolutionary approach to a new product line means that a product line archi-
tecture and components are developed to match the requirements of all the ex-
pected product line members, before developing the first product in a new do-
main.

Evolution. The research in software PL shows that the evolution of a PL is
driven by possible changes in the requirements of existent members or the
addition of new product members [14]. In the case of changes in the
requirements of existent members, a typical way of handling this is to create two
independent evolution cycles for each product. One cycle incorporates product-
specific new requirements and the other is for the PLA as a whole, incorporating
new requirements that affect all or most of the products in the PL.

A study of a PL evolution, which consists of two generations and four releases
for each one, makes the definition of taxonomy of requirements and the analysis
of evolution of PLA possible. Considering domain-specific software architec-
ture, six categories of requirements have been identified. These are:

•  The market needs which lead to the construction of a new product line;

•  The addition of a new product to product line to improve the functionality;

•  Improvement of the existing functionality with supporting new features like
standards or user, requested;

•  Extension of standard support incorporated in the new versions;
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•  A new version of hardware, operating system or third party component,
which covers more functionality;

•  Improvement of quality attributes.

PLA evolution may occur due to:

•  A decision which states that a new set of products should be developed. In
this case the PL could be spli using the existing PLA as a template for
creating a new PLA or could be a derived PLA as a branch of the same PLA.

•  A PLA component, which could be a new one with a new functionality, is
changed, split or replaced to improve the quality attribute of PLA
component.

•  A new and changed relation between components as a consequence of the
causes mentioned above.
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2. Main concepts related to product line
architecture

In this chapter we will present an overview of the main concepts that are
relevant in the context of software product line architecture (Figure 4). The first
part is concerned with the terminology related to the common denominator in
software engineering development, which is considered the software
architecture. The definition, description and design elements, views of software
architecture, are introduced here. The second part describes the main software
quality attributes and their relatioships to architectural views. The third part
focuses on the particular concerns related to product line software development
such as architectural styles and patterns. Initiation and evolution processes of
software product line and also product line architecture specific description
represent the main headlines of this third part. The fourth part focuses on the
quality attributes especially critical in a PLA.

Figure 4. Main concepts of a software product line.
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2.1 Definition of software architecture

A definition of software architecture is given in [8]. Here the software
architecture of a program or computer system is defined as “the structure or
structures of the system, which comprise software components, the externally
visible properties of those components, and the relationships among them”. This
definition focuses only on the internal aspects of a system and most of the
analysis methods are based on this definition.

Another definition given by Garlan and Perry [56, 60] establishes software
architecture as “the structure of components in a program or system, their
interrelationships, and the principles and guides that control the design and
evolution in time”. This process-centered definition is used when the evaluation
model takes account of the presence of principles and guidelines in the
architecture description.

The authors of [48] in their analysis method of flexibility have found that for the
architectural analysis, the external environment is just as important as the
internal entity of a system. Their opinion is that the definition of a software
architecture should consist of two parts, namely of a macro architecture, which
focuses on the environment of the system, and a micro architecture, which
should cover the internal structure of a system.

2.2 Description of Software Architecture

2.2.1 Multiple views representation

The research in the architecture description is designed to address the different
perspectives one could have of an architecture. Each perspective is described as
a view. Although there is not yet any general agreement about which views are
the most useful, the reason behind multiple views is always the same: Separating
different aspects into separate views help people manage complexity. The
information relevant to one view is different from that of others and should be
described using the most appropriate technique for each view. Several models
have been proposed that include a number of views that should be described in
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the software architecture. For instance, the 4+1 View Model consists of the
following views:

•  the logical view, which is the object model of the design;

•  the process view, which captures the concurrency and synchronization
aspects of the system;

•  the physical view, which describes the mapping of the software onto
hardware and reflects its distribution aspect;

•  the development view, which describes the static organization of the
software in its development environment;

•  the scenario view, or the +1 view, which illustrates the way the architecture
satisfies the requirements and defines the relations among other views.

A similar set of views is distinguished in Hoffmeister’s et al. (Figure 6). A
conceptual view describes the system in terms of its major design elements and
the relationships among them. A module view decomposes the system into
modules and layers. An execution view describes how modules are mapped to
the elements provided by the runtime platform, and how these are mapped to the
hardware architecture. Lastly, a code view describes the mapping of runtime
entities in the execution view to deployment components, the mapping of the
modules from the module architecture to source components, and how the
deployment components are produced from source components.
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Figure 6. Views of architecture in Hoffmeister’s et al. [27].

What the view models have in common is that they address the static structure,
dynamic aspect, physical layout and development of the system. Bass et al. [8]
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control flow and the class structure. In general, it is the responsibility of the
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documentation the signature of a method could be its name and potential other
architecture elements parameter.

Static relations. The elements in the architecture have relations to other
elements. These relations make up the form or the structure of the architecture.
The relations must be documented by specifying, either in text or graphically,
the related components (2 or more) and the relation type (association,
aggregation, etc.). This information is hard to trace in the source code and will
be obscured in the implementation of classes.

Dynamic relations. The dynamic aspect of the software architecture is important
to determine its functions and qualities. The plausible way to document the
dynamic aspect is to use message sequence charts for the method usage between
architecture elements. Message sequence charts can help significantly in
understanding the software without getting too deep into the details, which are
left open for the detailed design and the implementation.

From the point of view of quality analysis at the architectural level, the possible
representations could be very relevant in the quality prediction and effort
estimation [33]. An evaluation method may need structures, which are
concerned with:

•  The decomposition of the functionality that the products need to support.
Components are functional (domain) entities, and the connectors are ‘uses’
or ‘passes-data-to’ relations. This structure is useful for understanding the
interaction between entities in the problem space, for planning functionality
and for understanding the domain variability, and hence thereafter, the
possibilities for creating a product line.

•  The realization in a detailed design of the conceptual abstractions from
which the system is built. Components can be packages, classes, objects,
procedures, functions, methods, etc., all of which are vehicles for packaging
functionality at various levels of abstraction. Relations include passes-
control-to, passes-data-to, shares-data-with, calls, uses, is-an-instance of, etc.
This structure could be crucial for understanding the maintainability,
modifiability, reusability, and portability of the system.
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•  Logical concurrency. The components of this structure are units of
concurrency that are ultimately refined to processes and threads. Relations
include synchronizes-with, is-higher-priority-than, sends-data-to, can’t-run-
without, etc. Properties relevant to this structure include priority,
preemptability and execution time. This structure is a key to understanding
performance and is also important in reliability and security.

•  Hardware including central processing units, memory, buses, networks, and
input/output devices. Properties relevant to this structure include availability,
capacity and bandwidth.

•  Files and directories. This structure is important for managing and ensuring
the administrative control of the system as it is fleshed out, including the
division of work into teams (i.e. modularity) and configuration management.

2.3 The main software quality attributes

2.3.1 A software quality model

A software quality is defined in IEEE 1061 [30] and it represents the degree to
which software possesses a desired combination of attributes (e.g. reliability,
interoperability). Another standard ISO/IEC Draft 9126-1 [31] defines a
software quality model. According to this model, there are six categories of
characteristics (functionality, reliability, usability, efficiency, maintainability,
and portability) which are further divided into sub-characteristics. These are
defined by means of externally observable features for each software system. In
order to ensure its general application, the standard does not determine which
these attributes are, nor how they can be related to the sub-characteristics. The
properties of the resulting system specify the quality features.

In a PL context, each software product member possesses a desired combination
of quality attributes (e.g. performance, reliability, safety, security, etc.). The
quality model of a PL domain must include the variability and commonality
among these quality requirements and a PLA design should conform to these
aspects. A quality-based PLA development must also prioritize the importance
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of each quality attribute from both a domain and PLA perspective. The PLA
perspective ranks reusability and modifiability high.

2.3.2 General software quality attributes

In this section the most important general quality attributes of software
architecture are introduced. Generally, the quality of a software system is
divided in two categories. The first one is the set of quality attributes that is
observable at run-time, such as performance, functionality, usability, and the
second one is the set of quality attributes that cannot be discerned at the run-time
such as reusability or integrability [8]. The quality attributes of the latter set are
also called non-functional qualities (NFR). Functionality is the ability of the
system to do the work for which it was intended. It is orthogonal to structure,
meaning that it is largely non-architectural in nature. The interest for the
architecture is how it interacts with, and constrains, the achievement of other
quality attributes (Table 1).

Non-functional qualities of a software system have a great impact on its
development and maintenance, its general operability and its use of computer
resources [51]. They have an equal impact on the software system, as have its
functional properties. The larger and more complex a software system and the
longer its lifetime, the more important its non-functional characteristics become.

Another form of expression for performance is the number of transactions per
unit time or the amount of time it takes a transaction with the system to
complete. In the case of distributed systems, performance is a function of how
much communication and interaction there is between the components of the
system. If all the components of the architecture are on the same processor then
performance is a function of the amount of interaction by a subroutine
invocation or it is referring to process synchronization. Performance analysis
looks at the arrival rates and distributions of service request, processing times,
latency and queue size if applicable.
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Table 1. Main quality attributes of software architectures.

Quality
attribute

Description

Performance Responsiveness of the system, which means the time required to

respond to stimuli (events) or the number of events processed in

some interval of time.

Security A measure of the system’s ability to resist unauthorized

attempts at usage and denial of service while still providing its

service to legitimate users.

Availablity Availability measures the proportion of time the system is up

and running.

Reliablity The ability of the system or component to keep operating over

the time or to perform its required functions under stated

conditions for a specified period of time.

Usability Can be broken down into the following areas:

•  Learnability: How quick and easy is it for a user to learn to

use the system's interface?

•  Efficiency: Does the system respond with appropriate speed

to a user's requests?

•  Memorability: Can the user remember how to do system

operations between uses of the system?

•  Error avoidance: Does the system anticipate and prevent

common user errors?

•  Error handling: Does the system help the user recover from

error?

•  Satisfaction:  Does the system make the user's job easy?

Modifiability The ability to make changes quickly and cost-effectively.

Maintainability The ease with which a software system or component can be

modified to correct faults, improve performance, or other

attributes, or adapt to a changed environment.

Flexibility The ease with which a system or component can be modified for

use in applications or environments other than those for which it

was specifically designed.

Scalability The ease with which a system or component can be modified to

fit the problem area.
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Table 1. Main quality attributes of software architecture continues.

Quality
attribute

Description

Portability The ability of the system to run under different computing

systems: hardware, software or combination of the two.

Reusability Reusability means designing a system so that the system's

structure or some of its components can be reused again in

future applications.

Integrability The ability to make the separately developed components of the

system work correctly together.

Interoperability A special case of integrability that measures the ability of a

group of parts (constituting a system) to exchange information

and use the one exchanged.

Testability The ease with which software can be made to demonstrate its

faults (typically execution based) testing.

Types of security threats could be: denial of service (by flooding the target with
connection requests or queries), or IP source address spoofing (by assuming the
identity of a host trusted by the target). Strategies against prevention, detection
and response to an attack are: authentication server, network monitors; and
"firewall", a system constructed on top of a trusted kernel that provides security
services.

Availablity is equals to mean_ time_ to_ failure/(mean_ time_ to_ failure +
mean_ time_ to_ repair). Designing components that are easy to modify and
designing a component interaction scheme that helps to identify misbehaving
culprits lowers Mean_time_to_repair.

Reliability is equals to mean_time_to_failure. Mean_time_to_failure is
lengthened by making the architecture fault tolerant, by the replication of critical
processing elements; by fielding a less error-prone system, which is addressed
architecturally by a careful separation of concerns, which leads to better
integrability and testability.

Modifications to a system can be divided in several categories of abilities. We
can distinguish the ability to acquire new features, simplify the functionality of
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an existent system, adapt to new operating environments, or restructure system
services. A restructuring ability of the system leads to a decomposition of the
system into modules, which in this way encourages the creation of reusable
components. Maintanability is the same with modifiability, from the
architectural point of view, but a fine distinction between the two terms has to do
with the type of change being installed.

Reusability is a synonym to integrability if the system has been structured so that
its components could be chosen from previously built products. It could be seen
as a special case of modifiability.

Integrability measures the ability of parts of a system to work together. It
depends on the external complexity of the components, their interaction
mechanisms and protocols, and the degree to which responsibilities have been
cleanly partitioned.

Testability refers to the probability that, assuming that the software does have at
least one fault, the software will fail on its next test execution. It is related to the
concepts of observability, to observe its outputs, and controllability, to control
each component's internal state and inputs.

Some quality attributes, like reusability and modifiability, have similar
architectural techniques for their achievement. It also happens that a similar
overall purpose is achieved by multiple different quality properties, like
portability and interoperability. Interdependencies and tradeoffs also exist
between quality attributes. In case of conflict, an ordering priority between
NFRs should be specified, or a preference of one NFR against another should be
defined.

In the context of software product line modeling, variability is essential for
building a flexible architecture. It is possible to anticipate some common and
variable aspects in requirements of different product members and to construct a
product member in such a way that it facilitates this type of variability. The
driving forces behind the development of software product line are reusability
and modifiability.
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2.4 Mapping quality attributes and architectural views

A taxonomy of formally defined orthogonal properties of software architectures
(TOPSA) that extends an architecture definition is given in [17]. The TOPSA
space has three dimensions: abstraction level (conceptual, realization),
dynamism (static, dynamic), and aggregation level. The TOPSA can facilitate
discussions regarding software architecture during the development and
evolution. This model makes a clear distinction between conceptual architecture
and realization architecture, suggesting the creation of architecture models suited
for different purposes and different stakeholders.

Syntactic architectural notations should be well understood by the parties
involved in the analysis. Architectural descriptions need to indicate the system’s
computation and data components as well as all the relationships between
components. The result of an architecture evaluation process depends on how
well the description is made. TOPSA model and the architecture representation
based on multiple views complement each other (Figure 8). Different views
offer valuable examples for abstraction, dynamism and aggregation dimensions
in TOPSA space.   
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Figure 8. Architecture description and the relevance to the analysis of quality
attributes.

Table 2 exemplifies the mappings of two quality attributes, performance and
reusability, on the architecture views associated with a TOPSA space. For
example, performance could be analyzed on the logical concurency view in a
realizational plane of a TOPSA space.

Table 3. The mapping of quality attributes on architecture description.

Quality

attribute

Architecture View TOPSA space (Abstraction,

Dynamism, Aggregation)

Performance Logical Concurrency Realizational

Reusability Functional, Detailed

design, Development

Conceptual/Realizational, Aggregation

An analysis method could exploit these relationships in the form of a defined set
of rules, which states which view in a TOPSA space is the most appropriate for
an analysis of a given quality attribute.
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2.5 Architectural styles and patterns

An architectural style includes a description of component types and their
topology, a description of the pattern of data and control interaction among the
components, and an informal description of the benefits and drawbacks of using
that style. In [60] and [20], several architectural styles are classified and
described. Architectural styles are important since they differentiate classes of
designs by offering experimental evidence of how each class has been used
along with a fitness association for each software product property.

Architectural patterns are the building blocks of software architectures. An
architectural pattern is different from an architecture style that is not
predominant in the architecture. Architectural pattern is a defined/documented
realization of a style or styles. The architecture of a complex system is likely to
include instances of patterns composed in arbitrary ways.

A recent research report evaluates collections of architecture patterns in terms of
both quality factors and concerns, and anticipations of their use [40]. The report
introduces the feasibility of architectural patterns being  ”pre-scored” to gain a
sense of their relative suitability to meet the quality requirements of a software
product. In addition to evaluating individual patterns, the report reveals that it is
necessary to evaluate compositions of patterns that might be used in an
architecture. Identifying patterns that are not composed well (the result is
difficult to analyze or the quality factors of the result are in conflict with each
other) should steer a designer away from “difficult” architectures, towards
architectures made of well behaving compositions of patterns.

An attribute-based architecture style (ABAS) helps to move from the notion of
architectural styles toward the ability to reason (whether quantitatively or
qualitatively) based on quality attribute-specific models. The goals of having a
collection of ABASes are to make architectural design more routine-like and
more predictable, to have a standard set of attribute-based analysis questions,
and to tighten the link between design and analysis. An ABAS is defined as
having four parts:

•  Problem description, which defines what problem is being solved by the
structure.
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•  Stimuli/Responses are a characterization of the stimuli that the ABAS is
designed to respond to, and the description of the quality attribute-specific
measures of the response.

•  Architectural style has a standard definition and the properties of the
components or connectors that are relevant to the quality attribute.

•  Analysis is a quality attribute specific model that provides a method of
reasoning the behavior of component types that interact in the defined
pattern.

Unfortunately, for the moment ABASes are not appropriate for any quality
attribute. Quality attributes such as reusability or modifiability cannot be
included, because there are no universal measures for them, only context
dependent measures.

2.6 PLA specific description

Our definition of PLA is according to [8]. A PLA is a software architecture and
a set of reusable components shared by a family of products.

The components are large pieces of software and are typically modeled as
object-oriented frameworks that cover functionality common for the products in
the product line and support the variability required for the various products.

An important aspect, which should be considered, is the component-based
development of PLAs. A component-based architecture is a general solution for
improving modifiability and reusability. Some quality attributes are domain-
dependent such as performance, security and availability but reusability and
modifiability are common for all product line architectures. At the conceptual
level, PLA description is modeled by an abstract framework with component
interconnections and a detailed representation of each contained component. The
abstract framework could be considered a domain-specific architecture, which
provides a global perspective of the group of products, while a component
detailed representation is a micro-architecture, which represents a cluster of
features.
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Similar structures as for single product software architecture could be used for
the representation of PLA. However, due to the presence of additional terms like
scope, commonality and variability, it is possible that new views are to be
introduced, such that facilitate the analysis of the PLA. Variability could be
incorporated in each view of the architecture. For example, the conceptual view
describes the components and their interconnection from the static point of view.
In an abstract framework the variability could be expressed by not showing what
is variable or by using specific relations and notations (aggregation,
specialization, etc.) of the modeling language (UML for example). The usage of
packages is a solution to express the diversity of specific component models. A
package with specific concrete components is organized for each product
member.
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3. Methods and techniques for software
architecture evaluation

In the previous chapter we presented the main concepts related to software
product line architecture. In order to decide whether an architecture fulfils the
quality requirements, it needs to be evaluated. In this chapter we will discuss a
number of different approaches to architecture evaluation that we have found to
be useful. The content of this chapter represents a surveillance study on the
software architecture analysis methods. The role of the study is to put all these
approaches in the same perspective by reviewing the state of art and practice in
the research domain.

Generally, methods include a predefined and organized collection of techniques.
In this perspective, we considered that it is important to present the classification
of the evaluation techniques available at the architecture level, in the first part of
this chapter.

The remainder of the chapter deals with the survey on the existent analysis
methods. Different viewpoints that these methods reflect on the evaluation of the
quality of software architecture make it very difficult to define a common
framework of presentation. We will discuss the analysis methods trying to look
for 1) their progress towards refinement over the time, 2) their main
contributions, and 3) advantages obtained by using them. The discussion about
the selected methods is focused on 1) discovering differences and similarities
between eight available methods, and 2) making classifications, comparisons
and appropriateness studies.

At the end of this surveillance work, we will draw some conclusions of the real
level of the current research as well as the future work in this domain area
defined by the presented methods. This study represents an important step
towards defining a strategy for an analysis of software product line architecture.
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3.1 Evaluation techniques

3.1.1 A classification of the evaluation techniques

Evaluation techniques, which could be included in architecture analysis
methods, are portrayed in the reference papers [1][5]. These techniques are
divided in two basic classes: questioning and measuring techniques. The first
category generates qualitative questions to ask about an architecture and can be
applied to evaluate an architecture for any given quality. Questioning techniques
include scenarios, questionnaires and checklists.

Measuring techniques suggest quantitative measurements to be made on an
architecture. They are used to answer specific questions and address specific
software qualities, and therefore, they are not as broadly applicable as
questioning techniques. This category includes metrics, simulations, prototypes
and experiences. Metrics are quantitative interpretations placed on a particular
observable measurement on the architecture, such as fan in/fan out of the
components.

A comparison between the existent evaluation techniques is presented in [8].
Generality, level-of-detail and phase are included in a multi-dimensional
framework of comparison. Regarding generality, the techniques could be general
(questionnaire), domain-specific (checklists, prototype), or system-specific
(scenarios). Level of detail (coarse-grained, medium or fine) indicates how much
information about the architecture is required to perform the evaluation.  There
are three phases of interest to architecture evaluation: early, middle and post-
deployment. The early phase evaluation occurs after initial high-level
architectural decisions have been made, the middle phase can occur at any point
of the iterative elaboration of the architecture design.

In terms of quantitative and qualitative aspects, both classes of techniques are
needed for evaluating architectures. Various modeling and analyzing models
expressed in formal methods are included in the set of quantitative techniques.
Most often, qualitative techniques illustrate software architecture evaluations
based on scenarios. Scenarios are rough, qualitative evaluations of architecture.
Scenarios are necessary but not sufficient to predict and control quality
attributes, and have to be supplemented with other evaluation techniques.  For
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example, including questions about quality factors in the scenarios enriches the
results of architecture evaluation.

The essential rules for analyzing software architecture to determine if it exhibits
certain quality attributes are described in [4]. These rules provide a context for
existent evaluation techniques such as scenarios, questionnaires, checklists and
measurements.  One of the first main rules is the identification of the contract
between the system and the environment. Conforming to this rule, scenarios
represent a form to express the expectations and the obligations of the system
and this technique defines what needs to be confirmed by the analysis.

3.1.2 Scenarios

Most of the considered architecture analysis methods use scenarios. The existing
practices with scenarios are systematized in [38]. The usage of scenarios is
motivated by the consensus and it brings to understanding of what a particular
software quality really means. Scenarios are a good way of synthesizing
individual interpretations of a software quality into a common view. This view is
more concrete than the general definition of software quality [29], and it also
incorporates the specifics of a system to be developed, i.e. it is more context-
sensitive.

Scenarios are a postulated set of uses or modifications of the system. In
analyzing a system, it is important that all roles relevant to that system (operator,
system designer, modifier, system administrator and others depending on the
domain) will be considered since design decisions may be made to accommodate
any of these roles. Scenarios are typically one sentence long and could be more
appropriately called vignettes. The modifications reflected in scenarios could be:

•  a change to how one or more components perform an assigned activity,

•  the addition of a component to perform some activity,

•  the addition of a connection between existing components, or

•  a combination of these factors.
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The development of scenarios is based on the system requirements that are
reflected in the architecture. Scenarios have to be sufficiently concrete to ensure
the expressiveness of the analysis. In this regard, the analysis performed in [45]
demonstrates that it does not seem to be possible to assess the reusability of
architecture in general. Typical reuse situations for applications in the respective
domain are depicted in a set of scenarios. The concentration on a specific set of
applications and specific reuse scenarios allows eliciting information about the
flexibility of software architecture and its constraints.

3.2 A survey on software architecture analysis methods

Being a new research domain, most of the structural methods for assessing the
quality of software architectures have been presented in conference and journal
papers. Although refinement and experiments for validating some of the
methods are ongoing, they deserve our attention because they contribute to the
development of this still immature research area.

The set of discussed methods includes:

•  the scenario-based architecture method (SAAM) [34] and its three particular
cases of extensions, one founded on complex scenarios (SAAMCS) [46],
and two extensions for reusability (ESAAMI) [54] and SAAMER [52],

•  the architecture tradeoff analysis method (ATAM) [37],

•  scenario-based architecture re-engineering (SBAR) [9],

•  architecture level prediction of software maintenance (ALPSM) [11],

•  a software architecture evaluation model (SAEM) [24].

We use these acronyms during our study for an easier reference and
identification.
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3.2.1 SAAM

SAAM provides a systematic approach for performing architectural reviews. Its
objective is to verify basic architectural assumptions and principles against the
documents describing the desired properties of a software system. In the early
phase of the system design, the correction of the architectural mistakes detected
by the analysis is still possible without causing excessively high costs.
Additionally, the analysis offers a contribution to assess the risks inherent to the
architecture. Related to organizational aspects, the analysis allows the
harmonizing of various interests of the involved stakeholder groups, thus setting
up a common understanding of the architecture as a base for later decisions.

SAAM appeared in 1993, corresponding with the trend for a better
understanding of general architectural concepts as a foundation for proof that a
system meets more than just functional requirements [35]. The main activities of
the method are introduced in [38] where the method is applied to evaluate
different user interface architectures with respect to modifiability.

In [34] we found that SAAM has been seen as a canonical method for a
scenario-based architecture analysis of computer-based systems. Scenarios are
considered the foundation for illuminating the properties of a software
architecture, and from a body of experience a stable set of six steps and
dependencies between those steps’ activities have emerged – this was called
SAAM (Figure 10).

The first step consists in the scenarios development. In this step, stakeholders
identify possible events that may happen in the life of the system. Scenarios
should illustrate the kinds of activities that the system must support and the
kinds of anticipated changes that will be made to the system.

The activity of the second step is the description(s) of the candidate
architecture(s). This step is recommended to be carried out in parallel with the
first one. SAAM is applied very early in the architecture design. Functionality,
structure and allocation are the three perspectives defined for understanding and
describing architectures. Functionality is what the system does. A small and
simple lexicon is used for describing structures for a common level of
understanding and comparing different architectures. The allocation of function
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to components identifies how the domain functionality is decomposed in the
software structure. The architectural components could be described either as
modules in the sense of Parnas [55], or as cooperating sequential processes.

Figure 10. Six steps of SAAM.

The final version of architecture description together with the scenarios serves as
the input for the subsequent steps of the method.

Scenario classification is the third step of the method. In this step it is important
to decide whether a scenario requires modifications to the architecture. Scenarios
that require no modifications are called direct and scenarios that do require
modifications are called indirect. The purpose of the classification is to reduce
the number of scenarios that is used as input for the next step in the method.
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The next step performs scenario evaluations. The cost of the modifications
associated with each indirect scenario is estimated by listing the components and
the connectors that are affected. The result of this stage is a table that lists all
scenarios (direct or indirect).

The table represents the input for the next step where scenario interaction is
revealed. The purpose is to determine which scenarios interact, i.e. which ones
affect the same component. High interaction of unrelated scenarios could
indicate a poor separation of functionality. The amount of scenario interaction is
related to metrics such as structural complexity, coupling and cohesion.
Therefore, scenario interaction is likely to be strongly correlated with the
number of defects in the final product.

SAAM can be used for both analyzing the quality attributes of a single software
architecture and comparing the quality attributes of a number of architectures.
The capability of the analysis method to evaluate the suitability of architecture
with respect to the desired properties of a specific system can also be used for
comparing different architectures. If the analysis is performed with the intention
to choose among several architectural alternatives the analysis results of the
considered architectures can be compared in the final step. To this end, scenarios
and the scenario interactions should be weighted in terms of their relative
importance. This weighting can then be utilized to determine an overall ranking
of the candidate architectures.

SAAM cannot give precise measures or metrics of fitness. The aim of the
architecture analysis is to guide the inspection of the architecture, focusing
attention on potential trouble spots. The result of this method is a collection of
small metrics (per-scenario analyses). This set of mini-metrics permits a
comparison per a scenario-basis of a number of competing architectures.

SAAM is a mature method validated in numerous case studies. SAAM has been
applied to evaluate a number of existing systems. The enumeration of the case
studies includes global information system, air traffic control, WRCS (revision
control system), user interface development environments, internet information
systems, keyword in context (KWIC) systems, embedded audio systems, and
visual debuggers.
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3.2.2 SAAMCS

This method is introduced in [46] with the consideration of the complexity of
scenarios as being an important factor for risk assessment. The contributions for
extending SAAM are, on one hand, directed to the way of looking for the
scenarios and on the other, to whereby their impact is evaluated. This method
consists of three steps. The activities of these steps are the description of
software architecture, identification of relevant scenarios, and evaluation of the
effect of scenarios. As in SAAM, the first two steps should be performed in
parallel. The goal of the second step is to find scenarios that may be complex to
realize, and the third step applies a measurement instrument to evaluate the
complexity of the scenarios.

The authors of the method introduce the idea that the systems within a domain
are not isolated, but are integrated within an environment. As a result of this new
supposition, the description of a software architecture of a system is divided into
macro-architecture and micro-architecture. The measurement instrument, which
is applied in the third step, includes factors that influence the complexity of the
scenarios. In order to express the complexity of a scenario three different factors
have been identified. These are:

•  Four levels of impact of the scenario: no impact, affects one component,
affects several components, affects software architecture.

•  The number of owners involved in the information system.

•  Four levels regarding the presence of version conflicts: no problem with
different versions; the presence is undesirable but not prohibitive; creates
complications related to configuration management; creates conflicts.

The method appreciates stakeholders' involvement and distinguishes the
importance of the role of a scenario initiator. This role is the organizational unit
that has most interest in the implementation of that scenario. Based on the
initiator of the scenario, software architecture description and version conflicts, a
list of classes of scenarios that are complicated to implement is provided.
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3.2.3 ESAAMI

The conventional SAAM analysis in an architectural-centric development
process considers only the problem description, requirements statement and
architecture description. ESAAMI is a combination of analytical and reuse
concepts and is achieved by integrating the SAAM in the domain-specific and
reuse-based development process (Figure 12) [54]. Three factors influence the
reusability of an architecture and are identified by the author of this method.
These factors are: a common basis for a variety of systems in a domain, a
sufficient flexibility to cope with variation among systems, and the
documentation of properties to make them available for the selection of an
architecture and its customization.
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Figure 12. SAAM integrated in the domain-specific and reuse-based
development [54].

A consistent basis for SAAM could be provided by reusable products which are
collected in analysis templates. The reuse of analysis templates reduces the cost
of the analysis and speeds up the process. The additional reusable products that
can be deployed in the various steps of the analysis method are:

•  Protoscenarios, which are generic descriptions of reuse situations or
interactions with the system. These are intended to be used in the scenario
elicitation step of subsequent architecture analysis after a selection and
refinement process.
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•  Evaluation protocols, proto-evaluations and architectural hints, which are
utilized during the step of scenario evaluation. These additional reusable
assets are present in the protocols of the earlier evaluations in different
projects, examples of descriptions of how the scenario can be performed
using a set of abstract architecture elements, and hints associated to each
scenario indicating which architectural structures would make the scenario
convenient to handle.

•  Weights established in different old projects in the same domain, thus
making the results of the analysis comparable.

ESAAMI extends SAAM with two new techniques. One is based on reusing the
domain knowledge by providing analysis templates representing the essential
features of the domain. The degree of reuse is improved by concentrating on the
domain. In this context, the analysis template is formulated on an abstraction
level defined by the commonality of a large fraction of the systems in domain,
and without referring to system specific architectural elements. The other
technique is the specific knowledge about a reusable architecture. Thus, a
reusable architecture is packaged with a tailored analysis template focused on
the distinctive characteristics of the architecture. All these packages represent
an input for the selection process of a reusable architecture. The selected one is a
starting point for the architecture design of the new system and method steps.

From the practical viewpoint, the first step of this method is to select a reusable
architecture to be deployed in a new system. It has to be ensured that the
reusable architecture provides an adequate basis for the system to meet its
requirements. SAAM estimates the effort for implementing scenarios that
illustrate the requirements in the target system, predicting the effort required to
realize a given part of a system's overall functionality. The selected architecture
is then adapted and refined to meet the new requirements. The same set of
scenarios is re-evaluated by SAAM to guarantee that the implemented system
does not violate the initial design principles of the architecture, and that the
initial assumptions about architectural properties of the system still hold. The
results of this analysis are themselves part of the new-built system.

The author of the method signals the danger that the objectivity of the analysis
may suffer due to the packaging of an analysis template together with a reusable



41

architecture. This problem result is similar to the well-known effects of solution-
oriented as opposed to problem-oriented. A combination of the evaluation of
architecture-related, domain- and project-specific scenarios is a solution to avoid
this type of problems. In this way, it is recommended to take project-specific
properties into consideration, while at the same time exploiting knowledge about
the specifics of the reused architecture and the system domain.

3.2.4 SAAMER

From the point of view of two particular quality attributes, evolution and
reusability, SAAM is extended in SAAMER [52]. The authors of SAAMER
introduce a framework and a set of architectural views. The framework for
information gathering and analysis consists of four activities: gathering
information about stakeholders [16], architecture, quality and scenarios;
modeling usable artifacts; analyzing; and evaluating. The method considers the
following architectural views as critical for this type of software architecture
analysis: static, map, dynamic, and resource. The static view integrates and
extends SAAM to address classification and generalization of a system’s
components and functions and the connections between components. This
classification and generalization of components and connections facilitates the
estimation of the cost or effort required for changes to be made. Additionally, to
further improve SAAM, two kinds of sources of information, the required
changes and domain experts’ experiences, are considered. Compared to SAAM
where the risk is estimated by just counting the number of changes, both the
information sources give a better suggestion about how the system could support
each of the quality objectives or the risk levels for system evolution, or how to
reuse across software domain systems.

An important point exposed by this method is that even if scenarios are
considered the main drivers to evaluate various areas of architecture, the
architectural views can also reveal deeper information. Scenarios describe an
important functionality that the system must support, or recognize, where the
system may need to be changed over time. Scenarios and the structural view are
effective in identifying components that need to be modified, or are useful for
preventive and adaptive maintenance activities. Analysis of scenario interaction
is a critical step in SAAM. A high degree of scenario interaction may indicate
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that a component is poorly isolated. However, the static view may show that this
is just the nature of a particular architectural pattern. The dynamic view is
appropriate to examine the behavior aspect to validate the control and
communication to be handled in an expected manner. The mapping between
components and functions could reveal the cohesion and coupling aspects of a
system.

Furthermore, the method gives a practical answer to the question regarding when
to stop generating scenarios. Two techniques are applied here. Firstly, scenario
generation is closely tied to various types of objectives: stakeholder,
architecture, and quality. Based on the objectives and domain experts’
knowledge, the scenarios are identified and clustered to make sure that each
objective is well covered. The second technique applied to validate the balance
of scenarios with respect to objective is Quality Function Deployment (QFD)
[16, 23]. From stakeholder objectives and architectural objectives to quality
attributes, a cascade of matrices is generated to show the relational strengths.
Finally, quality attributes are translated to scenarios to reveal the coverage of
each quality attribute. An imbalance factor is then calculated for each quality
attribute by dividing coverage by the priority of the quality. If the imbalance
factor is less than 1, more scenarios should be developed to address the quality
attribute in accord with the stakeholder, architecture and quality importance.

3.2.5 ATAM

The creators affirmed that ATAM has grown out of the work at the Software
Engineering Institute on architectural analysis of individual quality attributes:
SAAM for analyses of modifiability, performance, availability and security. The
method was described in August 1998 [37] as being a spiral model of design and
in May 1999 [33] as being a spiral model of analysis and design, which explains
the recent evolution and progress of this method. The principal difference
between other software analysis techniques is that ATAM considers the
connections between multiple attributes. The objective of this method is to
provide a framework to understand a software architecture’s capability with
respect to multiple competing quality attributes: modifiability, security,
performance, availability, etc. [6]. The practice and reality have shown that
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software systems need a trade-off among multiple software quality attributes,
when their architecture is modeled and before they are implemented.

The method is divided into four main areas of activity [37]. These are the
gathering of scenario and requirements, architectural views and scenario
realization, attribute model building and analysis, and tradeoffs (Figure 14).

6. Identify Sensitivities

7. Identify Tradeoffs

Action planPHASE IV
Tradeoffs

PHASE III
Attribute model
building and
analyses

PHASE II
Architectural views

and
Scenario realization

PHASE I
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gathering1. Collect
Scenarios

2. Collect
Requirements/

Constraints/Environment

3. Describe Architectural
Views

4. Realize
Scenarios

5. Attribute-Specific
Analyses

(best individual
theoretical models)

Figure 14. ATAM description.

Quality goals form the basis for architectural evaluation, but quality goals by
themselves are not a sufficient basis to judge architecture for evaluation.
Specific goals give a context and a meaning to quality attributes. So the first step
in the architecture evaluation is to elicit the specific quality goals against which
the architecture will be judged. The used mechanism is scenarios (Figure 16).
Three types of scenarios are identified to probe the system from different
architectural views, optimizing the chances of surfacing decisions at risk. These
are:

•  Use cases, which involve typical uses of an existing system and are
exploited for the information elicitation.

•  Growth scenarios, which cover anticipated changes in a system.
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•  Exploratory scenarios, which cover extreme changes that are expected to
”stress” a system.

involvement

conduct
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scenarios

Scenario coverage checking
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Figure 16. ATAM activities that consider scenarios.

We can identify a triple role of scenario usage in this method. This questioning
technique helps to put in concrete terms as well as otherwise vague and
unquantified requirements and constraints. Scenarios also facilitate
communication between stakeholders because it forces them to agree on their
perception of the requirement or constraint. Scenarios are also used to explore
the space defined by the attribute model. Scenarios help to put the parameters of
the models that are not part of the architecture into concrete terms. An existent
taxonomy of each attribute is another base for ATAM. The taxonomies help to
ensure attribute coverage and offer a rationale for asking elicitation questions.
Elicitation questions facilitate the complete elicitation of attribute-specific
information. In an analysis, the method also uses another type of questions.
Screening questions guide or focus the elicitation on more ”influential” places of
the architecture. These serve to limit the portion of the architecture under
scrutiny.

ATAM considers qualitative analysis heuristics. Qualitative analysis heuristics
are derived from ABAS and they are meant to be coarse-grained versions of the
kind of analysis that is performed when a precise analytic model of a quality
attribute is built. Asking these questions during an evaluation is more practical
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than building quantitative models at that moment. These questions capture the
essence of the typical problems or issues that are discovered by a more rigorous,
more formal analysis.

Architecture view. The candidate architecture is generated based on
requirements, scenarios and architectural design principles. The space of
architecture is constrained by legacy systems, interoperability, and success
failures of the previous projects. Architecture is a collection of functionality
assigned to a set of structural elements, with constraints on coordination model -
the control flow and data flow among them.

The architecture is described on the basis of five canonical or foundational
structures, which are derived from Kruchten’s “4+1 views” [42] (his logical
view is divided into function and code structures). These five structures plus the
appropriate mappings between them can be used to completely describe an
architecture. During the analysis process ATAM requires several different views
of the system: a dynamic view, showing how systems communicate, a system
view, showing how software was allocated to hardware, and a source view,
showing how components and systems were composed of objects. The
architecture description should be annotated with a set of message sequences
charts showing run-time interactions and scenarios. It is also important to
understand the mapping between these views so that it can be determined how a
change in one view will affect the representations and analytic models in another
view.

If ATAM is applied during the design in an incremental improvement of the
architecture, it does not require that all attributes be analyzed in parallel. The
method allows the designer to focus on those attributes that are considered to be
primary, and then introduce others later on. This can lead to cost benefits in
applying the method, since what may be costly analyses for some secondary
attributes need not be applied to architecture that was unsuitable for the primary
attributes.

The method integrates the best individual theoretical model of each considered
attribute in an efficient and practical way [28, 53]. Performance is one of these
which has been analyzed for a long time [62]. Rate monotonic analysis (RMA)
technique is part of performance analysis of real-time systems [39]. RMA is a
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collection of quantitative methods that enable real-time system developers to
understand, analyze, and predict the timing behavior of real-time systems.
Individual models of the components, their interconnections, the available
resources and the scheduling policies of the resources represent the basis for the
RMA technique.

In ATAM, attribute experts independently create and analyze their models, then
they exchange information (clarifying and creating new requirements). On the
basis of this information, they can refine their models. The interaction of
attribute specific analyses, and the identification of tradeoff have a greater effect
on the system understanding and stakeholder communication compared to what
any of those analyses could do on their own.

The process of analyzing architectural attributes forces to concretize the
requirements and helps to uncover implicit requirements. The attribute analyses
are interdependent: they depend, at least partially, on a common set of elements.
Each analyzed attribute has implications on other attributes. The attribute
interactions are discovered in two ways: using a sensitivity analysis to find
tradeoff points and by examining the assumptions.

Tradeoff points and sensitivity points represent key decisions. Recognized from
a knowledge base, unbounded sensitivity points are informally referred
properties that have not yet been bound to the architecture. This information
flags key decisions that have been made and those that have not yet been made.
In a correct definition a sensitivity point is a property of one or more components
(and/or component relationship) that is critical for achieving a particular quality.
In practice, thus, changes to the architecture parameters affect significantly these
modeled values. This can be obtained by using the stimuli and architectural
parameters branches of attributes taxonomies. Tradeoff points are architectural
elements to which multiple elements are sensitive. A tradeoff point could be
defined as a property that affects more than one attribute and is a sensitivity
point for at least one attribute.

During the architecture design the method provides an iterative improvement. In
addition to the requirements typically derived from scenarios that are generated
through interviews with the stakeholders, there are assumptions regarding
behavior patterns and execution environments. Because attributes "trade off"
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against each other, each assumption is subject to inspection, validation and
questioning as a result of ATAM. When all these actions have been completed,
the results of the analysis are compared to the requirements. If the system
predicted behavior comes adequately close to its requirements, the designers can
proceed to a more detailed level of the design or the implementation. In the
event of the analysis revealing a problem, an action plan for changing the
architecture, the models or the requirements, is developed. This leads to another
iteration of the method in the development of software architecture. If only
analysis is considered, the last step is to compare the results of the analysis to the
requirements.

3.2.6 SBAR

In [9], a scenario-based method of the architecture re-engineering that focuses
on multiple software qualities (reusability and maintainability) is presented.
Various quality attribute research communities have proposed their own design
methods for developing real-time [50], high performance [61, 62] and reusable
systems [32]. All these methods focus on a single quality attribute and treat all
others as having secondary importance, if any at all. SBAR considers these
approaches unsatisfactory because a balance of various quality attributes is
needed in the design of any realistic system. The contribution of this method is
not only in the architecture design but also in the scenario-based evaluation of
the software qualities of a detailed architecture of a system (Figure 18). A
particularity of this method is that for assessing the architecture of the existing
system, the system itself can be used. The goal of the evaluation method is to
estimate the potential of the designed architecture to reach the software quality
requirements.
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Figure 18. Reengineerining and architecture analysis by SBAR [9].

In SBAR, four different techniques for assessing quality attributes are identified:
scenarios, simulation, mathematical modeling, and experience-based reasoning.

•  Scenarios: This technique is recommended for the quality attributes of the
development, such as maintainability and reusability, which are exemplified
in the paper [9].

•  Simulation: Simulation completes the scenario-based approach, being useful
for evaluating operational software qualities such as performance or fault-
tolerance.

•  Mathematical modeling: Mathematical models allow a static evaluation of
architectural design models. This technique is an alternative to simulation
since both approaches are primarily suitable for assessing operational
software qualities. To evaluate operational software qualities, the existent
mathematical models or metrics developed by various research communities
for high performance-computing [61], reliability [59], and real-time systems
[50], could be used.
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•  Experience-based reasoning: This approach is founded on experience and
logical reasoning based on that experience. Experienced software engineers
often have valuable insights that may prove extremely helpful in avoiding
bad design decisions and finding issues that need further evaluations.
Although these experiences generally are based on anecdotal evidence, a
logical line of reasoning can justify most of them. This approach is different
from the other approaches. Firstly, the evaluation process is less explicit and
more based on subjective factors such as intuition and experience. Secondly,
this technique makes use of the tacit knowledge of the involved persons. For
each quality attribute, the evaluator, in this case the designer, can select the
most suitable approach.

Scenario-based evaluation of a software quality consists of defining a
representative set of scenarios, analyzing the architecture and summarizing the
results. The selected scenarios concretize the actual meaning of the attribute.
Scenarios that capture typical changes in requirements may specify the
maintainability. The performance of the architecture in the context defined by
each individual scenario for a quality attribute is assessed by the analysis. Posing
typical questions for the quality attributes can be helpful. The results from each
analysis of the architecture and scenario are then summarized into overall
results, e.g. the number of accepted scenarios versus the number of the not
accepted ones.

The assessment process consists of defining a set of scenarios for each software
quality, manually executing the scenarios for the architecture and subsequently
interpreting the results. The assessment can be performed in a complete or
statistical manner. In the first approach, a set of scenarios is defined; combined
together, they cover the concrete instances of the software quality. If all
scenarios are executed without problems, the quality attribute of the architecture
is optimal. The second approach is to define a set of scenarios that makes a
representative sample without covering all possible cases. The ratio between
scenarios that the architecture can handle and scenarios not handled well by the
architecture provides an indication of how well the architecture fulfills the
software quality requirements. Both approaches obviously have disadvantages.
A disadvantage of the first approach is that it is generally impossible to define a
complete set of scenarios. The definition of a representative set of scenarios is
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the weak point in the second approach, since it is unclear how one decides that a
scenario set is representative.

3.2.7 ALPSM

An example of the prediction method of a software quality attribute at the
architecture level is described in [11]. The method is related to the software
maintenance community through the analysis of software change impact [12],
but the main contribution consists of the architecture level where this prediction
is performed.

ALPSM defines a maintenance profile, like a set of change scenarios
representing perfective and adaptive maintenance tasks. A scenario describes an
action, or sequence of actions that might occur as related to the system. Hence, a
change scenario describes a certain maintenance task. Using the maintenance
profile, the architecture is evaluated using scenario scripting, and the expected
maintenance effort for each change scenario is evaluated. Based on this data, the
required maintenance effort for a software system can be estimated. The method
has a number of inputs: the requirements specification, the design of the
architecture, expertise from software engineers and possibly historical
maintenance data. This method consists of the following six steps:

1. Identify categories of maintenance tasks: formulate classes of expected
changes based on the application or program description.

2. Synthesize scenarios: for each of the maintenance tasks, a representative set
of scenarios is defined.

3. Assign each scenario a weight: the scenarios are assigned a weight based on
their probability of occurring during a particular time interval.

4. Estimate the size of all elements: to be able to assess the size of changes, the
size of all components of the system is determined. One of the three
techniques can be used for estimating the size of components: using
estimation technique of choice, an adaptation of an Object-Oriented metric
or, when historical data from similar applications or earlier releases is
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available, existing size data can be used and extrapolated to new
components.

5. Script the scenarios: for each scenario, determine the components that are
affected and to what extent they will be changed, this resulting in the size of
the impact of the realization of the scenario.

6. Calculate the predicted maintenance effort: the total maintenance effort is
predicted by summing the size of the impact of the scenarios multiplied by
their probability.

This method analyzes maintainability by looking at the impact of scenarios. It
uses the size of changes as a predictor for the effort needed to adapt the system
to a scenario.

3.2.8 SAEM

The evaluation process of the quality requirements of the software architecture is
rigorously formalized, especially in relation to metrics in the model described in
[24]. The basis for software architecture quality evaluation and prediction of the
final system quality is established in this model. For this purpose, a quality
model based on standard software quality assessment process [31] is chosen, and
a conceptual framework that relates quality requirements, metrics and internal
attributes of the software architecture and the final system is proposed.

The elements required for quality evaluation of a software system, based on
standard specification, are quality model, method for evaluation, metrics and
supporting tools. SAEM gives a quality evaluation model based on data
collection, measurement and analysis of the results.

The quality specification and the evaluation process are divided into external and
internal ones. The external quality expresses the user view, and a specific quality
evaluation model is applied to it. Internal quality expresses the developer view,
and the evaluation process is adapted to this feature. In this sense, the specified
quality requirements are mapped to internal attributes that will be present in the
software architecture based on the experts’ knowledge and company
accumulated data. The internal quality attributes are composed by special
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elements (such as functional elements or data elements) denoting quality
characteristics, and intrinsic properties resulting from the development process
(such as size, modularity, complexity, coupling, and cohesion). The author
mentions the necessity to establish a relative importance between internal
attributes and their values and recommends QFD [58] as a suitable technique for
this purpose.

For quality evaluation, the goal of metrics is to find whether certain attributes
meet the values specified in the quality specification for each software
characteristics. The evaluation model assumes the existence of a previous
internal quality specification, which defines the expected internal attributes with
their values and their evaluation procedure.

Architecture development process constraints the internal attributes, so the result
of the measurement process can improve architecture as a feedback. Internal
metrics of the architecture indicates that the software satisfies external quality
requirements of the product. An association between the internal characteristics
and external quality characteristics is required (for example modularity and
diagnostic function can be associated to maintainability). The architecture
description language (ADL) model should have attached questioning or
inspection techniques (such as software architecture models walkthrough) to
detect the presence or absence of special elements. The intrinsic properties can
only be detected by measuring techniques applied to the software architecture
representation formalized through an ADL.

3.3 Discussion

The purpose of this discussion is to offer guidelines related to the use of the most
suitable method for an architecture assessment process. The beginning part of
discussion focuses on an appropriateness study. This study identifies the
common goal and how this goal is interpreted by each of the analysis methods.
The next part of this section contains comparison discussions, which identify
differences and similarities between these methods. Several classifications of the
methods are also established. Included evaluation techniques, the number of
quality attributes, the stakeholders’ involvement and when the method is applied
in the architecture-based development process, are the main criteria of
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classification. To maintain a pertinent discussion in exemplification, we consider
only the most representative methods.

Common problems such as when to stop generating scenarios and how the
scenarios' impact on a considered architecture is evaluated are identified in the
analysis methods based on scenarios. Different proposed solutions are discussed
in the next part.

The headlines of the last part of this section consider the special case of the
evolution of ATAM from SAAM and how the existing knowledge is reused by
the analysis methods.

3.3.1 Appropriateness study

Objective views are considered a basis for establishing which analysis method is
most suitable for an architecture assessment process. Although each method has
its particularity in the definition of its objectives (i.e. confidence building or risk
assessment [47]), in all of them, we can identify a collective goal which is the
prediction of the quality of a system before it has been built. In each method this
goal is reflected under different angles and perspectives. The directions of these
reflections are oriented to:

•  guide the inspection of the architecture, focusing on potential trouble spots
(SAAM),

•  evaluate the potential of the designed architecture to reach the software
quality requirements (SBAR),

•  predict a quality attribute (maintainability) of a software system based on its
architecture (ALPSM),

•  establish the basis for the software architecture quality evaluation and
prediction of the final system quality (SAEM), and

•  locate and analyze tradeoffs in a software architecture, for these are the areas
of highest risk in an architecture (ATAM).
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3.3.2 Several classifications criteria of the analysis methods

3.3.2.1 Based on the included evaluation techniques

The common and particular characteristics of the goals drive to similarities and
differences between all these presented methods (Table 4). At this moment we
can establish a possible classification of the methods considering the techniques
they use. From this point of view some of the methods are:

•  only scenario-based, like SAAM,

•  scenario-based and attribute model-based analysis technique, like ATAM,

•  proposing different evaluation techniques depending on the attribute type,
like  SBAR,

•  related to metrics, like SAEM.

The quality model of attributes for quantitative evaluation is treated during the
evaluation process in two of the presented methods. However, from this angle
we identify different approaches:

•  SAEM, which is trying to define metrics based on the goal-question-metric
(GQM) technique,

•  ATAM, which considers that analysis techniques indigenous to the various
quality attribute communities can provide a foundation for performing
software architecture evaluation. It is not necessary to invent attribute-
specific techniques and metrics, but to integrate existing techniques and
metrics into systematic procedures or methods for architecture evaluation.
ATAM provides flexibility in the integration of the best individual,
theoretical model of each considered attribute.
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Table 4. A summary of analysis methods.

Issue\Method SAAM SAAMCS ESAAMI SAAMER

The included evaluation
technique

Scenarios Scenarios Scenarios Scenarios

Attribute model Qualitative using
scenarios

Like SAAM Like SAAM Like SAAM

Number of quality
attributes

Single Single Single Single

Stakeholders' involvement All All All All

When to stop generating
scenarios?

When the addition of a
new scenario no longer
perturbs the design.

Defines a framework
diagram to discover
all the complicated
scenarios

Like SAAM Uses a two-steps
procedure

When is the method
applied?

On the final version On the final version On the final version On the final version

Scenarios impact
evaluation

Relationship Relationships,
owners, versions

Like SAAM Estimates the cost
required for the
change to be made

Reusability of the existing
knowledge

Not used Not used Packages of analysis
templates and reusable
architectures

Not used

55
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Table 3. A summary of analysis methods continues.

Issue\Method ATAM SBAR ALPSM SAEM

The included
evaluation technique

Scenarios and attribute
specific model

Depends on the
attribute type:
scenarios,
mathematical
modeling, simulators,
objective reasoning

Scenarios Metrics

Attribute model Integrates existent
qualitative and
quantitative techniques

Qualitative Built a maintenance
profile based on
scenarios

Different metrics

based on GQM

technique

Number of quality
attributes

Multiple Multiple Single A quality model

Stakeholders
involvement

All Designer Designer Not used

When to stop
generating scenarios?

Uses a standard quality
attribute-specific
questions

Defines a complete set
or a representative set
of scenarios

Like SBAR Not applied

56
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Table 3. A summary of analysis methods continues.

Issue\Method ATAM SBAR ALPSM SAEM

When is the method
applied?

On the final version or
combined with the
architecture design into
an iterative
improvement process

Combined with the
architecture design
into an iterative
improvement process

During design to predict
adaptive and perfective
software maintenance
(based on previous
implementations)

On the final version

Scenarios impact
evaluation

Like SAAM Optimized or fulfilled By estimating the size of
the components and the
extent to which they are
effected

Not applied

Reusability of the
existing knowledge

Uses a set of pre-
packages analyses and
questions including
known solutions

Object reasoning is
proposed but not
exemplified

Not used Not used

57
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3.3.2.2 Based on the considered number of quality attributes

Some analysis methods are centered on the evaluation of a single quality
attribute. However, for a better understanding of the strengths and weaknesses of
a complex real system and its parts, performing a multi-attribute analysis is
required. An important characteristic revealed by studying the analysis methods
is the number of quality attributes a method focuses on. From this point of view
we can distinguish:

•  multiple quality attributes (ATAM, SBAR). For example, ATAM considers
the architectural elements where multiple attributes interact,

•  single quality attribute (SAAM), and

•  a specific quality model (SAEM).

Reusability and modifiability were defined as the main drivers of a PLA. In the
SBAR method, scenarios that are also used for modifiability in the SAAM
method, are recommed for the analysis of reusability and maintainability.

3.3.2.3 Based on stakeholders’ involvement

Although it is recognized that the involvement in the evaluation of all the
stakeholders facilitates communication between them, not all the methods
consider their presence as mandatory. ALPSM differs from SAAM in that it
does not involve all stakeholders, and thus requires less resources and time, but
instead provides an instrument to the software architects that allows them to
repeatedly evaluate the architecture during design. Due to the need of a
stakeholder’s commitment, this method could be used in combination with
SAAM. In SAAM and ATAM, architecture is evaluated in cooperation with the
stakeholders prior the detailed design, but in SBAR, architecture is evaluated on
a detailed design for re-engineering without any stakeholders' involvement,
however posing typical quality questions at the same time.
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3.3.2.4 When the method is applied

Considering the architecture-based development process, an important question
is: when is the method applied?

•  A common approach, which combines architecture analysis and design into
an iterative improvement process; it could be identified in ATAM and
SBAR. While SBAR includes guidelines about how to transform the
architecture in order to meet certain quality requirements, ATAM
concentrates on identifying sensitivities and tradeoff points. However,
ATAM could also be applied for the evaluation to the final version of the
architecture.

•  SAAM, SAAMCS, ESAM, SAAMER are applied to the final version of the
architecture, and therefore, they are appropriate in the evolution of a PLA.

•  ALPSM is applied during the design to predict adaptive and perfective
software maintenance.

SAEM is applied to the final version, but here it should be noticed that the
evaluation model considers software architecture from two different viewpoints,
developer’s and user’s. Therefore, the software architecture is either a final
product, or an intermediate in the software system development process. The
rigorous ambition of this model makes it hard to believe that it will be suitable
for usage in an iterative and incremental software architecture design process.

3.3.3 Common problems and different solutions in scenario-based
methods

Scenario-based assessment is particularly appropriate for qualities related to
software development. Software qualities such as maintainability, reusability,
modifiability, adaptability and portability can be expressed very naturally
through change scenarios. As Poulin [57] concluded for reusability, no
predominant approach for assessing this quality attribute exists. However,
scenario-based evaluation depends on the objectivity and creativity of the
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software engineers that define and execute them. In [1], the use of scenarios for
evaluating architectures is recommended as one of the best industrial practices.

3.3.3.1 When to stop generating scenarios

A common problem of scenario-based methods is when to stop generating
scenarios:

•  SAAM considers that the set of scenarios is complete when the addition of a
new scenario no longer perturbs the design.

•  In SBAR two approaches are discussed. One is to define a complete set,
which is generally impossible. The other is to define a representative set,
which has the weak point of how to define which is the representative set.
The last one is based only on the creativity and subjectivity of the software
engineer.

•  SAAMCS considers that the relevant scenarios are those which are,
possibly, complex to realize. A two-dimensional framework diagram (5
categories of complex scenarios, 4 sources of changes) that may help to
discover complicated scenarios is defined.

•  SAAMER defines a practical two-steps procedure. In the first step, a
coverage guarantee is obtained. The scenarios are identified and clustered
based on the objectives and domain experts’ knowledge, and the coverage is
checked against the objectives of stakeholders, architecture, and quality. The
second step validates the balance of scenarios with respect to the objective
based on Quality Function Deployment (QFD) technique. The decision to
develop more scenarios is made based on comparison against 1 of a
calculated imbalance factor for each quality attribute.

•  ATAM uses a set of standard quality attribute-specific questions to ensure
proper coverage of an attribute by the scenarios. The boundary conditions
should be covered. A standard set of quality-specific questions gives one the
possibility to elicit the information needed to analyze that quality in a
predictable, repeatable fashion.
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3.3.3.2 Impact Evaluation

There are differences in the evaluation of the scenarios' effects on the considered
architecture. The identified differences in the impact evaluation are:

•  SAAM: Evaluates the effect of a scenario by investigating which
architectural elements are effected by that scenario. The cost of the
modifications associated with each indirect scenario is estimated by listing
the components and the connectors that are affected and counting the
number of changes.

•  ALPSM: The effort needed to implement the scenario is predicted by
estimating the size of the components and the extent to which they are
effected.

•  SAAMCS: Defines and uses a measurement instrument to express the effect
of scenarios. The instrument indicates the impact of a scenario, whether
multiple owners are involved and whether it leads to versions conflicts.

•  SAAMER: A classification and generalization of the architectural elements
facilitates the estimation of cost or effort required for changes to be made.
The required changes specified in scenarios and domain experts’
experiences suggest how the system could support each of the objectives or
the risk levels for the systems evolution or reuse across applications.

•  SBAR: The evaluation can be performed in a complete or statistical manner.
The optimality of a quality attribute could be obtained using the former
approach and the fulfillment of a quality attribute could be obtained using
the latter one.

3.3.4 Methods evolution

A special case of qualitative and quantitative progress could be observed in
ATAM. Considering the uses of scenarios, ATAM is based on SAAM. Unlike
SAAM, which focuses on the architectural modifiability evaluation, ATAM
focuses on finding tradeoff points in the architecture from the perspective of
quality requirements on the product. In addition, ATAM prescribes formal or
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informal analytic models for assessing the quality attributes of the system, but
relies on the existence of such techniques for the quality attributes relevant to
each case. In the case of a specific analysis of modifiability, ATAM builds an
informal model like SAAM with inspection and review methods. Scenario
interactions are interpreted as sensitivity points.

3.3.5 The reusability of the existing knowledge

Similarities at a coarse-grained level could also be identified between ATAM
and ESAAMI. Both methods are based on SAAM. Considering the reusability of
the existing knowledge, ATAM uses ABASes and ESAMI proposes packages of
analysis templates and reusable architectures. However, when we talk about
systematization of information there is no possible comparison. ESAAMI allows
making available domain-respective architecture specific experience in an
intuitive form, while ATAM is anchored in a very well structured knowledge
base of quality attributes communities and architectural styles. ABASes provide
a set of pre-packages of analyses and questions including known solutions to
commonly recurring problems and known difficulties in employing those
solutions. ATAM is based on a set of materials that describe many of the
evaluation artifacts, like ABASes, a set of quality attribute-specific questions
that aid the evaluator in probing an architecture and a set of questions that aid
the analyst in gathering the information needed to build an analytic model of the
quality.

We could also identify progress in individual attribute analysis techniques. For
example, the generalization of the RMA technique in order to support future
product evolution with the minimum possible effort is a new refinement
direction defined in [3] dealing with family products. This issue could be
considered and a reusable knowledge base could be adapted to these
improvements.
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4. PLA analysis strategy

The advantages of adopting a product line approach are, as described in chapter
1, decreased development and maintenance cost and time to market, and
increased software quality. This chapter suggests a practical solution for the
product line architecture development founded on an analysis of the software
quality attributes. The beginning part is an introduction to the PLA analysis
strategy. The remainder of the chapter focuses on the PLA analysis when the
evolution of product line is considered. We will propose a measurement
instrument, which determines if a new product should be added to an existent
product line, and which components should be added to the domain architecture
framework and which parts should be product-specific.

4.1 Introduction to the PLA analysis strategy

Product line architecture and reusable software components are suitable
approaches for software systems, which are often re-engineered from existent
ones [21]. From this point of view embedded systems are good examples.
Although there are some similarities between embedded systems regarding
quality attributes, there are also differences. If a quality attribute is important to
one product line domain it does not necessarily mean it is important to another
one. For example, availability is very important to switching systems, but
generally it is not of the maximum level of priority. Power consumption and
weight are features that may cause restrictions in the case of wireless products.
In addition, the weight changes when different types of software that may exist
in a product, are considered. Performance requirements, such as latency and
throughput, have the highest value for digital signal processing software. An
important quality is the cost, which is caused by the code size and data storage
capacity.  In order to be able to define a list of priorities of quality attributes, the
embedded systems domain should be very well delimited. A practical approach
is to define an appropriate domain based on the scope of the products, and
analyze what is variable and common among the characteristics of all products
in the line. The functionality and quality characteristics of the domain are
important capabilities to be considered.
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The domain analysis is important for the evolution of a software product line.
Establishing the priorities among domain quality attributes is not enough if we
are thinking about the architecture, which is one of the core assets shared by the
product group. From this point of view the structural quality attributes such as
modifiability, reusability, adaptability, portability etc. should be considered and
a second list with these and their priorities could consequently be organized.

There is a common opinion among the researchers that the development process
for a product line architecture is different from the one for one product. Practices
areas essential to the development of a single product line architecture include
software architecture design, representation, analysis, implementation in
conformance with the specification, and traceability with requirements. In
product line approach, additional areas like generic and flexible software
architectures, reusable components design and development, traceability with
common and variable requirements in the group of products, are considered.

PLA is mainly a design when the product line is initiated based on the existing
products and evolves as long as new products are added to the line. Figure 20
describes the context of PLA analysis strategy, which considers the process of
initiation and evolution of a PLA. A PLA analysis strategy takes account of the
assessment process of the two lists of quality attributes.
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Figure 20. The context of PLA analysis strategy.

4.2 The measurement instrument

The measurement instrument is defined by a taxonomy for quality attributes,
which is organized with respect to three main elements (Figure 22):

•  The priority in a domain or PLA list. The presence of this element in the
taxonomy is necessary due to the costs required by an analysis method at the
architectural level.

•  Architecture views, which are relevant for the specific quality attribute.

•  Appropriate methods to be applied for quality attribute analysis.
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Figure 22. The main elements of a quality attribute taxonomy.

The priorities of the quality attributes in a domain are established based on the
experts' knowledge and stakeholders' objectives (Figure 24). Quality function
deployment (QFD) [23] is a suitable technique to show the relational strengths
from stakeholders' objectives and architectural objectives to quality attributes.

Figure 24. The role of QFD in establishing quality attributes priorities.

The list of priorities is important for the evaluation process, which considers an
appropriate analysis method for each quality attribute.  At this moment various
architecture analysis methods such as scenario-based architecture analysis
(SAAM), architecture tradeoff analysis (ATAM), or scenario-based architecture
re-engineering (SBAR), are available. Our study about the existent state-of-art
research in the domain reveals that the methods are distinguished taking into
account the included evaluation techniques (qualitative or questioning, like
scenarios; quantitative or measuring, like metrics, etc.), the number of
considered quality attributes and their interaction for tradeoff decisions, the
stakeholders’ involvement, and how detailed the architecture design is at the
moment when the method is applied to the architecture-based development
process. Figure 26 exemplifies the most appropriate methods for analyzing
several quality attributes.

Experts' knowledge Stakeholders' objective Architectural objective

Quality attributes priorities

QUALITY FUNCTION DEPLOYMENT
(QFD)

Quality attribute
taxonomy

•  Priority in list

•  Architecture view

•  Analysis method
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Figure 26. An example of quality attributes and the appropriate analysis
methods.

An important issue in PLA assessment, which can be confirmed by the
experience of the companies that are working in this area, is listening to the
stakeholders. A product line environment requires new roles that take part in the
analyzing process. These are product line architect, builder of generic (core)
assets, builder of product from generic assets, product line maintainer and
marketer/founder of the product line.

4.3 The evaluation procedure

The measurement instrument is applied on the architecture of a new product.
The quality attribute with the first priority in a list is first analyzed with respect
to the appropriate architecture view and appropriate method. If the results of the
analysis are not acceptable, then the new components of a product should not be
added to the PLA nor the new product to the product line. Otherwise the next
quality attribute from the list is analyzed in isolation and then by considering the
interaction with the first one. The process is repeated for all the attributes in the
list. If the obtained results are acceptable, the new components of the new
product should be added to the PLA and the product to the product line. The
steps of the evaluation procedure could be described in the following pseudo-
code:

Architecture Analysis Methods

•  SAAM: modifiability.
•  ATAM: multiple attributes

interactions (performance,
reliability, security, etc).

•  ALPSM: maintainability.
•  SBAR: reusability,

maintainability.
•  ...
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Initialization
counter := the number of the quality attributes in the domain list;
1. The quality attribute with the first priority is analyzed with respect to the

appropriate architecture view and appropriate method.
2. If the results of the analysis are not acceptable the new components of a

product should  not be added to the PLA.
3. Else

 counter:=counter-1;
 repeat // repeat for all the attributes in the list 

the next quality attribute from the list is analyzed
as in the fist step in isolation;
considering the interaction with the previous ones;
if the results are poor
break ;
else
counter:=counter-1;

  until (counter=0)  // end repeat
4. If (counter=0) // all attributes of the list and the obtained results

are good the new product is added to the PL.

In the case of quality attributes with the same priority they should be analyzed in
isolation and also considering the interactions between them. In order to decide
for the PLA core development and maintenance, this procedure could also be
improved and refined.  From this point of view, the other list of priorities should
also be considered. In this case a special attention should be paid to the
collections of components in the architecture of a new product that are critical
for achieving a particular quality attribute, or architectural elements to which
multiple quality attributes are sensitive.  A deeper level of architecture analysis
could influence the decision for adding new components to the PLA.
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5. PLA analysis method

The potential risk of PL development is minimized if the interactions of quality
attributes are considered in the analysis method [41]. Not only modifiability, but
also other structural or run-time quality attributes are important to the PL
software development. However, reusability and modifiability are the main
quality drivers for the PLA design. The analysis of these two quality attributes
could be combined with other run-time quality requirements (performance,
reliability, security, etc.) of the PL domain.

In the previous chapter we discussed the PLA analysis strategy and introduced,
in general terms, a measurement instrument and a procedure to apply this
instrument. The content of this chapter focuses on the specific reusability and
modifiability properties of PLA. At the end, we will describe a method which
could be applied for a PLA analysis.

5.1 Reusability and modifiability considerations

5.1.1 Reusability

In [20], the reusability in software architecture development is divided into two
categories. It is considered that reusability has two major aspects − software
development with reuse and software development for reuse. The with reuse
aspect requires the construction of software architecture that allows 'plug-in'
prefabricated structures and code components. The system is composed of
existing components by adapting them to the needs and implementing 'glue'
components to connect them. If the for reuse aspect is considered, the produced
components are potentially reusable in future projects as part of the current
software development. Parts of the software system under development are taken
and reused in other systems without any modification.

Software reuse can be classified as fine-grained reuse, which reuses only a small
amount of code segments at the programming level, and coarse-grained reuse,
which reuses design concepts and/or a large amount of codes. Promoting the
granularity of reuse is important, when increasing the scale of software reuse. A
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coarse-grained reuse at the architecture level could be separated in technologies
and domain knowledge.

Reusable entities in software architectural technologies can be divided into
several categories, such as architectural style, architectural representation,
architectural pattern, etc. [8, 20, 25].

The reusability of the existing knowledge includes packages of analysis
templates associated with reusable architectures [40, 54]. The architecture-
specific experience must be structured in a knowledge base to provide a set of
pre-packages analyses and questions including known solutions to commonly
recurring problems and known difficulties in employing those solutions. A PLA
analysis knowledge base should be organized in three important sets:

•  A set of materials that describe many of the evaluation artifacts,

•  A set of quality attribute-specific questions that aid the evaluator in probing
a product architecture,

•  A set of questions that aid the analyst in gathering the information needed to
build an analytic model of the quality attribute.

5.1.2 Modifiability

Modifiability is one of the important structural requirements for a PLA.
According to [8], modifiability is the ability to make changes quickly and cost
effectively. Modifications to a system can be categorized into:

•  Extensibility, which is  the ability to acquire new features,

•  Deleting unwanted capabilities, to simplify the functionality of an existing
application,

•  Portability, for adapting to new operating environments, and

•  Restructuring, which means rationalizing system services, modularizing,
creating reusable components.
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On the other hand, each of these categories could be analyzed standalone, if its
identity has been identified in a set of well-defined sub-characteristics, possibly
in a quality model form.

5.2 Method description

Scenario-based assessment is particularly appropriate for qualities related to
software development, which are specific to product line architectures [26].
Software qualities such as maintainability, reusability, modifiability, adaptability
and portability can be expressed very naturally through change scenarios.
However, scenario-based evaluation depends on the objectivity and creativity of
the analyst who defines and executes them. In [1], the use of scenarios for
evaluating architectures is recommended as one of the best industrial practices.
Our strategy is based on the SAAM, but improved through the introduction of
guidelines for PLA analysis. Our method considers product line specific
techniques such as commonality analysis, which systematically models the
required similarities and differences among PL members. The analysis method
consists of five important steps, which are:

•  deriving change categories from the problem domain,

•  scenario identification,

•  PLA description,

•  evaluation of the effect of the scenarios on the architecture elements, and

•  scenario interaction.

Next chapters describe each step in detail.
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5.2.1 Deriving change categories from the problem domain

The first step consists of defining several categories of changes derived from the
problem domain of the PL.

Figure 28 presents five categories of the change scenarios derived from the
problem domain of the spectrometer controller PL system used as an example in
this research.

Figure 28. Deriving change categories from problem domain.

It may be possible that a change scenario related to one of these categories
requires other changes in the other categories. It is recommended to follow this
approach in the scenario development activity. The approach operates when the
problem domain is organized so that it is easy to identify the main sources for
the addition of subsequent features in the domain. An exemplification is detailed
in the next section.

5.2.2 Scenario identification

The second step of the method consists of the identification of the scenarios. In
this activity we distinguish possible changes that may happen in the life of the
PL based on the derived categories. Scenarios should illustrate the kinds of
anticipated changes that will be made to the PLA due to the PL scope.

A common problem of the scenario development activity is when to stop
generating scenarios. Possible solutions could be suggested:
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•  The set of scenarios is complete, when the addition of a new scenario no
longer perturbs the design.

•  Try to identify a complete set of scenarios - but this is generally impossible.

•  Delimit a representative set of scenarios, which has the weak point in how to
define which is the representative set. This solution is based only on the
creativity and subjectivity of the analyst, or it requires a domain knowledge
base organized in the three important sets characterized previously.

•  Consider various criteria for the relevant scenarios. For example, scenarios
which may be complex to realize. A two-dimensional framework plan
(categories of complex scenarios, sources of changes) may help identify
complicated scenarios.

•  Try to apply a procedure for identification. For example, a two-steps
procedure, where in the first step a coverage guarantee is obtained. The
scenarios are identified and clustered, based on the objectives and domain
experts’ knowledge, and the coverage is checked against the objectives of
the stakeholder, architecture and quality. The second step validates the
balance of scenarios with respect to the objective, based on a Quality
Function Deployment (QFD) technique [58].

•  Use a set of standard quality attribute-specific questions to ensure proper
coverage of an attribute by the scenarios. The boundary conditions should be
covered. A standard set of quality-specific questions allows the possibility of
extracting the information needed to analyze that quality in a predictable,
repeatable fashion.

If it is considered that the architecture is a good one, it is not necessary to
generate scenarios to verify the functional requirements. Otherwise these should
also be considered when verifying functionality. For analyzing the modifiability
we must look for possible changes in the problem domain defined by the product
requirements. Most of the anticipated changes characterize the product line
variability that the PLA must harmonize.
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5.2.3 Description of the PLA

Another required activity is the description of the PLA.  This activity is
considered the third step, but it could be performed in parallel with the previous
one. The method is applied to analyze the conceptual view or a more detailed
functional representation of the architecture, when not all the necessary
structures have been designed and the architectural representation may not
include some concrete domain requirements.

A specific of the PLA architecture is that it contains abstractions of the problem
domain but also concrete components, which could be common or variants of
different family products. PLA combine the generics of the domain with the
concreteness of each product and one of its views must reflect the diversity and
the range of this diversity.

The minimum of required views for a PLA representation is:

•  A conceptual view considered as being a functional decomposition of the
PLA into subsystems. The relationships between components are based on
pass-to control, pass-to data or uses.

•  A more detailed functional description, where the main objects are packages,
components, ports, and protocols. Components, protocols and connectors
distributed in abstract or concrete packages are defined for understanding
and describing PLA based on features of the problem domain. The
relationships are association, specialization, generalization, etc. Considering
the dynamic aspect, statechart diagrams and message-sequence charts
(MSC) are also part of this view.

•  A diversity view, the particular PLA view as it has been introduced
previously based on the research experiences on the case study.

For a common level of understanding, a small and simple lexicon could be used
in describing structures.
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5.2.4 Evaluate the effect of the scenarios on the architecture
elements

The evaluation of the scenarios' effects on the analyzed PLA view may consider
several issues. We can identify some of these in the following enumeration:

•  A classification and generalization of the architectural elements facilitates
the estimation of cost or effort required for changes to be made. Determine if
the influenced architectural elements are members of abstract or concrete
PLA packages.

•  The effect of a scenario is estimated by investigating which architectural
elements are affected by that scenario. The cost of the modifications
associated with each change scenario is predicted by listing the components
and the connectors that are affected and counting the number of changes.

•  The evaluation can be performed in a complete manner, if the set of
identified scenarios is complete. If all scenarios are executed without
problems, the quality attribute of the architecture is optimal.

•  The evaluation can be performed in a statistical manner, if a representative
set of scenarios has been considered. The ratio between scenarios that the
architecture can succeed with and scenarios not succeeded with well by the
architecture provides an indication of how well the architecture fulfills the
software quality requirements.

In case the analysis is performed at a time when PL has been already developed
and multiple releases exist, it is possible to define and use a measurement
instrument to express the effect of scenarios. The instrument must indicate not
only the impact of a scenario considering both the flexibility in space (multiple
variants in products) and time (multiple versions of variants), but also whether
multiple owners are involved. The analysis of flexibility in time could indicate
whether it leads to versions conflicts.

The objective of the evaluation is to get a prediction of the quality of the PLA
with respect to the anticipated variability in functional or non-functional
characteristics of this product line.
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5.2.5 Scenario interaction

The result of the effects evaluation may represent the input for this last step
where scenario interaction is revealed. The activity is to determine which
scenarios interact, meaning that they affect the same component. High
interaction of unrelated scenarios could indicate a poor separation of concerns.
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6. Case study

Earlier in this report, we have discussed theoretical aspects related to software
product lines and architecture assessment. An analysis strategy for product line
architectures is very hard to discuss at an abstract level. Instead, one needs a
concrete example of a product line initiated in a revolutionary approach in
software development. In this chapter we will present a case study of a product
line architecture that will be used throughout the rest of the chapters. In the
beginning, this chapter introduces the scope of the concrete software product
line. The products that are planned to be part of the product line need to exhibit
sufficient commonality and it should be possible to handle the variability in a
structured fashion. In order to describe the product line architecture, we will first
present a brief analysis of the common and variable features of the product
members. The last part exemplifies the available views of the product line
architecture representation.

6.1 Scope of the product line

Our case study is a PLA representation of scientific on-board silicon X-ray array
(SIXA) spectrometer control software [43].

SIXA is a multi-element X-ray photon counting spectrometer. It consists of 19
discrete hexagonally-arranged circular elements and specific domain hardware
architecture. The SIXA measurement activity consists in the observations of
time-resolved X-ray spectra for a variety of astronomical objects.

The instrument is programmed and operates using a set of commands sent from
the ground station to the satellite. The role of a software spectrometer controller
is to control the following measurement modes:

•  Energy Spectrum (EGY), which consists of three energy-spectrum observing
modes: Energy-Spectrum Mode (ESM), Window Counting Mode (WCM),
and Time-Interval Mode (TIM).

•  SEC, which consists of three single event characterization observing modes:
SEC1, SEC2, and SEC3.
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Each measurement mode could be controlled individually. A coordinated control
of the analog electronics is required when both measurement modes are on.

A striking similarity among the requirements of each measurement controller
makes the initiation and development of a PL possible. The PL domain is
structured in packages of features based on the requirements specification. The
common and variable aspects of features are mapped onto common or specific
packages. In order to initiate the PLA we consider the first software product
members to be the following:

•  EGYController, which includes specific features of a standalone control of
EGY measurement mode;

•  SECController, which includes specific features of a standalone control of
SEC measurement mode;

•  SECwithEGYController, which includes specific features of coordinated
control.

6.2 Analysis of the commonalities and variabilities of the
PL requirements

A brief analysis of the commonalities and variabilities of the PL requirements is
synthesized in Table 6.
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Table 6. Common and variable features of the spectrometer controller PL.

Common Features - Hardware Platform:

•  DPU: M68000 processor (8MHz, 1 wait state), VME-bus architecture.

•  4MBytes SRAM for program variables and storing spectra.

•  128 kbytes EEPROM for saving program.

•  64kbytes for parameters.

•  SRAM and EEPROM error corrected: single bit SRAM errors are hardware

corrected, double bit errors and single bit EEPROM are indicated to software.

•  opto-coupled serial links to a ground support equipment (EGSE).

•  satellite interface unit  (SIU).

•  Analog control, analog electronics, detectors.

•  Watch dog timer (WDT) to prevent the processor from causing damage to the

instrument if it breaks out of control.

Variable features

EGY

Controller

SECController SECWithEGYController

- 1. A 40 Mbyte (or perhaps bigger)

hard disk to store scientific data.

For reliability reasons there are

two hard disks (Conner CP2040)

with their own SCSI bus.

2. WDT function for SEC DPU to

enable the software to continue

observations from the next target

after an error and maintain data

on hard disk that was stored there

before the error.

3. Hard disk fault tolerance.

1. If SEC is on it has control

over the analog boards,

otherwise EGY DPU has

control;

2. Duplicate HW elements:

•  DPU,

•  VME  buses (one bus for

each DPU),

•  2 independent duplicated

interfaces to the data

transfer bus of the satellite

(A1, A2, B1, B2),

•  2 SIU and

•  1 EGSE
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Table 4. Common and variable features of the spectrometer controller PL
continues.

Common Features - HW/SW Interfaces

•  SIU interface contains a special dual port buffer memory for the transmitted and

received messages. It generates 1 Hz SYNC pulse interrupts from the space craft

clock.

•  SRG-bus interface defines the messages between SIXA and the ground. It is used

for routing several logical data flows. It has two separate buses.

•  A BIUS sends ground commands to SIXA through SRG-bus.

•  Housekeeping data.

•  SRG-bus control commands could be sent individual or broadcasted.

•  Science data transmission from science data files to ground.

•  READ_Memory file structure depends on the EEPROM structure. The coding

data types in ESM/SEC/READ_Memory files are specified.

•  Parametrized common features:

1. File structure is function of  (file_id, file_header, number of target data blocks).

2. File_header contains: (file header length=423 words, calibration data,

measurement programs).

3. Calibration data (76 words) contains ((slope, offset) for each of the 19
detectors, number of targets).

4. Measurement progam (23 words) contains  ([target (coordinates, number)],
[status bits (SEC1,2,3, TIM,WCM,ESM)], [(start, end) time],  number of
events, exposure time, sampling time, T1, T2, [window 1,2 (low , high)]).
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Table 4. Common and variable features of the spectrometer controller PL
continues.

Variable features – HW/SW Interfaces

EGYController SECController SECwithEGY

Controller

•  Target data in ESM file

contains

ESM,WCM,TIM

spectra for each

repetition.

•  Number of spectra =

number of repetition*

number of modes

selected.

•  ESM and WCM spectra

lengths depend on the

detectors number (19

respectively 7).

•  The number of the

events of the

measurement

program is

significant for SEC

only.

•  Target data in SEC

file -  maximum

SEC spectrum size

is less than 4

Mbytes.

•  Contains two separate

bus groups - group A

(EGY) and group B

(SEC).

•  BIUS duplicates

ground commands to

both DPUs

•  Broadcasting order:

A1, A2 ,B1, B2; 200

microseconds' delay

between transmissions

Common Features - Ground commands

•  Ground commands are divided into regular, service, and special.

•  A PARAM command determines the mode of SIXA operation for each target

and contains measurement programs of up to 6 targets. If more targets will be

observed then multiple PARAMs are needed.

•  The number of  targets, which can be observed during one observation period is

equals to SIXA_MAX_NUMBER_OF_TARGETS.
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Table 4. Common and variable features of the spectrometer controller PL
continues.

Variable Features – Ground commands

EGY

Controller

SECController SECwithEGYController

- Add:

•  SetDiskFull - a new

command in service

commands (abnormal

situation) group,

•  A new parameter related

to disk in

ChangeParameter

command,

•  Tests for disk in

StartDiagnosis

command and

•  Hard disk diagnostics

report in housekeeping

data structure.

Considers:

•  StartDiagnosis ground command

is for only one DPU_id.

•  BIUS multiplies (double) a start

calibration command.

•  In order to preserve the

consistency of data both DPUs

have the same detector

parameters and measurement

table parameters.

Add

•  DPU-id field to WriteMemory

command.

Identify

•  SEC or EGY in HK report.

Common Features - Functional modes:

Essentially the same state behavior.

•  Common to EGY and SEC: The initialization of energy window parameters in

WCM and SEC_2 for detector elements depends on the detectors number.

Finish EGY or SEC modes:

•  FOT command given by BIUS.

•  An exceptional condition is fulfilled (ERB, BAT, ECO, SFI, BGC).
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Table 4. Common and variable features of the spectrometer controller PL
continues.

Variable Features – Functional modes

EGYController SECController SECwithEGYController

1. ESM,WCM AND

TIM modes.

2. Measurement

function

•  Calculate exposure

time (ET) for

ESM, WCM and

TIM.

•  The SIXA crystal

influences the

accuracy of ET.

3. Finish EGY:

•  last repetition is

completed (full

spectra collected

for all  modes).

1. SEC1, SEC2 OR

SEC3 mode.

2. Add TestDisk to the

power_up tests and

modify

POWER_UP_TEST_T

IME

3. Diagnostic function

in STANBY state is

completed with hard

disk specific tests.

4. Measurement

function

•  Calculate the

sampling time

(ST) of the

window counters

•  The SIXA crystal

influences the

accuracy of ET.

5. Finish SEC:

•  event limit is

reached

•  T2-time of the last

SEC repetition

expires.

1. Modify TEST_SRG

bus_interf in power up tests

suite.

2. Housekeeping function: The

interface from the processors to

the analog control is such that

the SEC DPU can read the

voltage and current values if

both DPUs are powered.

Therefore the EGY DPU will set

the voltages and currents to zero

in its HK-reports when both

DPUs are on. If only EGY is on

then it will report voltages and

currents normally.

3. Measurement function

•  two SIXA crystals

4. Start: a SEC-mode starts

simultaneously with the energy

(ESM; WCM and TIM) modes

for a target.
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Table 4. Common and variable features of the spectrometer controller PL
continues.

Common - Performance

1. SRG-bus response times to all control commands is 200 microseconds.

2. Maximum average Event arrival rate from detector rate is 10 000ev/sec. The SEC1

mode is critical - the absolute limit is 100 000ev/sec.

3. Memory refreshment cycle due to errors due to galactic cosmic rays. For

HM62256 (32kb) has been estimated 15er/device-day. Three devices are needed for

one word. Consequently the average is less than 2 errors/hour/32 kwords. A

refreshment Cycle of 1 hour for the memory is adequate.

4. Time of a self test is 1 minute or 15 (acc.to specialists)

5. Resource requirements: program code may not exceed 64k, max 32k of

parameters.

Variable Features

EGYController SECController SECwithEGYController

- It must be possible to read

science data from the disk and

send it to the SRG-bus

simultaneously with the

specified SRG bus science data

rate of 800 kb/sec.

The reunion of EGY and

SEC.
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Table 4. Common and variable features of the spectrometer controller PL
continues.

Common Features - Safety

Safety requirements detail those precautions necessary to prevent the on board software from
causing damage to SIXA experiment or to its environment.

•  Guarding against faulty operator inputs: CPAR and WMEM commands may cause
damage if they include erroneous values. Therefore some checks for these commands are
necessary. Checks for CPAR include parameter number, value and index. Checks for
WMEM refer that the checksum is correct.

•  Guarding against excessive power consumption: the latching relays on TCU consume
power excessively if the length of the AON or AOFF pulse significantly exceeds 10
milliseconds.

•  SW must limit the length of AON/AOFF pulse from a DPU to
LATCHING_RELAY_CONTROL_ TIME.

•  For safety AON and AOFF bits must be cleared in a startup program.

•  SW must give an AOFF pulse after a power up reset.

•  Guarding against unintentional EEPROM programming. - processor breaks out of control
due to a SEU. There is a hardware protection before programming of a word. A
EEPROM-programming SW function must be designed so that before each EEPROM
write, it checks that a WMEM command has really been issued.

•  Guarding against detector overheating. There is a HW protection. SW monitors the
detector voltage and shuts high voltage off, if temperature rises.

•  Guarding against constant SRG-bus reservation by a constant long transmission. A watch
dog timer expiration will generate a reset that initializes SIU by HW.

•  Guarding detector against high voltage. SIXA detector may be destroyed if high voltage is
switched on when detector temperature is above
SIXA_DETECTOR_MAX_TEMPERATURE. There is a HW protection circuit.

•  For maximum security, the SW monitors the detector temperatures and does not try
to switch HV on in case the temperature is above this limit.

•  Two delays ANALOG_ON_TO_HV_ON and HV_OFF_TO_ANALOG_OFF.

•  Delay ECO command to switching power off is HV_OFF_TO_ANALOG_OFF.

If watch dog timer expires and resets SIXA during observation when both analog electronics

and HV are on. SW sequence after power up: switch HV off; wait

HV_OFF_TO_ANALOG_OFF time, switch analog off.
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Table 4. Common and variable features of the spectrometer controller PL
continues.

Common Features - Reliability

Represent software features for ensuring a reliable operation of SIXA in presence of
HW faults and errors in HW operation.

•  WDT: A HW reset caused by WD is determined by SW by reading a flip flop,
which is set due to this reset.

•  Memory fault tolerance.

•  EEPROM: exception vector table, startup program, program copies,
parameter copies, runtime EEPROM fault tolerance.

•  RAM: storage area, runtime RAM fault tolerance.

•  SRG-bus fault tolerance: two busses for each DPU: A1,A2, B1, B2.

•  Hard disk: 2 HD and 4Mb RAM.

•  High voltage source fault tolerance: two sources.

The first step for a PLA design is the definition of the product line domain. The
domain should be stable. A possible method adopted for establishing domain
delimitation is FORM. This method is based on defining and clustering products
features (i.e. capability, operating environment, domain technology and
implementation technique features) based on domain requirements. The result is
a features tree, which is a useful input for the next step in software development,
the architecture design. In the FORM method, features are structured in four
categories:

•  capability features, which represent high level behaviors of the software, like
services, operation and non-functional features;

•  operating environment, which represents environment-specific information
that is used for defining computational function in the domain; includes
hardware and software related features.

•  domain technology, which represents computational functions in the domain
specifically for the way of implementing services and operations.
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•  implementation techniques, are similar to domain technology, but are more
generic and may be used in other domains.

Various relations exist among these features, such as generalization,
aggregation, utilization, and mutual dependency. Features themselves could be
mandatory, optional and alternative.

The resulting features model is very complex. Clarifying the domain boundaries
and standardizing domain technology must take place before this modeling
process.

6.3 PLA representation

PLA design is represented by different views, which have to be considered in the
analysis of its main structural qualities. Among these the conceptual view and
detailed functional decomposition view could be enumerated. These are
described in the next sections. We also introduce a diversity view, from the
necessity to represent the common and variable elements of different product
members in a unitary structure.

6.3.1 Conceptual view of the PLA

Figure 30 shows the conceptual view of the spectrometer controller PLA. This
view is the result of a functional-based decomposition and it includes relations
between different functional modules of the PL.  The architectural components
are large, functional (domain) entities, and the connectors are “uses”,
“command” or ”passes-data-to” relations.  This structure is useful for
understanding the interactions between entities in the problem space, for
planning functionality and for understanding the domain perspective, and hence
thereafter, the possibilities for creating a product line.
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Figure 30. Conceptual view of the spectrometer PL.

The architectural elements are:

1. Measurement Controller Subsystem (MCS) which has the main role in
controlling acquisition and dumping science data. It requires services
provided by other components of the system.

2. Housekeeping (HK) forms the housekeeping reports and sends them to a
command interface, when requested by command from the command
interface subsystem. It uses services provided by PMS.
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3. Command Interface Subsystem (CIS) hides the hardware buses' interfaces
from the rest of the software. It delivers a command from the interfaces to
the appropriate subsystem and routes the response to the command to the
interface from which the command originated.

4. On-board clock (OBC) maintains an on-board clock used for time-stamping
spectra in data files. It includes services for timing the start/stop of spectra
and targets. It also provides other timing related services.

5. Memory Management Subsystem (MMS) provides services for handling the
storage RAM, program and parameter EEPROM areas, memory refreshment
and memory error exception.

6. Parameter Management Subsystem (PMS) provides services for initiating,
changing and reading the on-board parameters in EEPROM.

7. Start-up program (StartUp) implements the power up and watchdog timer
start-up functionalities.

8. Communication buffer management (BUFMAN) provides services for
allocating/deallocating transmit buffers.

9. CPU-specific services (CPU) provide highly optimized high speed assembly
language services (high speed word copy, interrupt enable/disable).

10. Hardware encapsulation modules provide low-level services for controlling
specific hardware (analog electronics, watchdog timer).

The operating system (OS) forms its own subsystem, which has not been
included in the list because it is totally application independent. OS has been
encapsulated to provide an easy change of the operating system if necessary.

6.3.2 Detailed functional decomposition structure

In a detailed functional decomposition structure the main elements are packages,
components, ports, and protocols.  The static relations between components are
association, specialization, generalization, etc. Considering the dynamic
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relations, statechart diagrams and message-sequence charts (MSC) are also part
of this view.

The detailed design of the conceptual view of the measurement controller
component is presented in Figure 32. In this view abstract components of the
PLA are included.

•  The MeasurementControl component, which is responsible for starting and
stopping the operating mode for data acquisition according to the commands
received from the command interface and according to the events generated
in other parts of the software.

•  DataAcquisitionControl component collects events (science data) to the
spectra data file during the observation of a target. The component includes
as well as hides data acquisition details.

•  Data File Management provides interfaces for storing science data -
opening/closing/writing the data files, hiding data storing details. The
component also provides interfaces for controlling the transmission of the
stored data to a command interface.
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Figure 32. The detailed functional decomposition of the abstract components of
PLA.

6.3.3 The diversity view of PLA

The diversity view of a PLA is introduced from the necessity to represent the
common and variable elements of different product members in one view. This
view is the one which makes the difference between PLA and the architecture of
one product. This view must describe the stability of the PL domain, because the
architecture is one of the reusable assets of the PL.

Generally, the boundary of the PLA must be defined before the beginning of the
activity of its detailed design. We can identify an inclusion relation between
domain architecture, product line architecture and a single product architecture.
A product line architecture is included in a domain architecture and includes
single product architecture. From this point of view a PLA must represent part of
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the abstract features of the domain, but it should also be easy to identify the
concrete features of the architecture of one PL member in its views.

The diversity view of a PLA for the design of an on-board X-ray spectrometer
control software is presented in Figure 34. This view associates the generic with
the concrete. Looking top-down, AbstractSpectrometerFeatures encapsulated in
the measurement component are decomposed in three abstract components:
MeasurementControlDataAcquisitionControl, and DataManagement.

Figure 34. PLA Diversity view.

In each component, abstract features of the corresponding subdomains are
collected, which are subsets of the Measurement domain abstract features. For
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each product, which is a member of the family, each of the three abstract
components is specialized in a concrete component. For example,
MeasurementControl is specialized in StandAloneControl and
CoordinatedControl, DataAcquisitionControl is specialized in
EGY_DataAcquisitionControl and SEC_DataAcquisitionControl, and
DataManagement is specialized in EGY_DataManagement and
SEC_DataManagement.

The diagram includes the uses relation which is directed from products to
concrete components, providing, in this way, the information on the reusability
of each component. The same information could also be represented in tabular
form, as in Table 8. The products of the group are vertically distributed and the
components are dispersed horizontally. Each cell tij of the table is marked if
product Pi uses component Cj. For example, two products, EGYController and
SECController, use the StandAloneControl component.

Table 8. Reusability of the concrete components in a PLA.

Component→

Product↓

Stand

Alone

Control

Coordi-

nated

Control

EGY_Data

Acquisition

Control

SEC_Data

Acquisition

Control

EGY_Data

Manage-

ment

SEC_Data

Manage-

ment

EGY_Controller x x x

SEC_Controller x x x

SECwithEGY

Controller

x x x x
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7. Experiences from spectrometer
controller PLA analysis

In the previous chapter we introduced our concrete example of a product line
initiated in a revolutionary approach in software development. Regarding the
PLA assessment, we studied and discussed many aspects at an abstract level. In
this chapter we will discuss our experiences of theoretical thinking on the case
study introduced previously. From a practitioner point of view, the PLA analysis
strategy for reusability and modifiability will be exemplified in detail. Finally,
we will conclude with the results of our practice.

7.1 Reusability strategy

One important benefit from the PL approach is reusability. A reuse-based
software development process requires specific methods adapted for this
context. It is well known that a method is considered as a predefined and
organized collection of techniques and a set of rules which state by whom, in
what order, and in what way the techniques are used to achieve some objectives.
Rules are also included in the technique. However, here they define how the
representation of the system is derived and handled using a conceptual structure
and a related notation. Software reuse could be approached from the
composition perspective. A component could be unrestricted to a code
component, but it could also be some other artifact, such as software schema or
software architecture. In software development other reusable elements could
also be seen: domain models, and analysis and design documents.

Reusability is a difficult property to assess. This quality attribute could be seen
as a balance between generality and specifics and is the main driver for product
line development. First, the architecture and its components should be general
because they should be applied in other similar situations. Secondly, the
architecture should provide concrete functionality that supplies a considerable
advantage when reused.

To evaluate this attribute in the case of one software product, scenarios are the
only approach for the analysis. In this regard, typical reuse situations in a
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domain are depicted in a set of scenarios. The concentration on a specific set of
software products and on specific reuse scenarios allows eliciting information
about the flexibility of software architecture and its constraints. The architecture
is analyzed with respect to each scenario and the result assigns the effect to a
measure, which could be expressed as unchanged, slightly changed, and new
components. Also, the effect of a scenario could be the ratio of components
reused as-is and the total number of components.

The product architecture is analyzed by asking the typical question for
reusability: ‘How much of the software can be reused?’ in the context of each
reuse scenario. The effect on the architecture is evaluated in a statistical manner.
This means that every scenario is assigned a quote number of affected
components in the scenario, divided by the total number of components in the
current architecture. The result should be as close as possible to one (as many of
the components as possible should be reusable as-is).

A product line needs a strategic method. The method must not simply consider
the reusability of a single product and then re-engineer its architecture for each
other product. It is also recognized that better results are obtained if one quality
attribute is not analyzed in isolation, but its interactions with other quality
attributes are considered instead. Furthermore, a product line concept brings
along new aspects like commonality and variability, and their interaction should
be considered, too.

Considering the aspect of time, we can identify two important parts in the life
cycle of a PL. One is the initiation moment of the PLA and the other is its
evolution. PLA is initiated from a set of existing product features and the
variability in space is thereby present. The other one is the evolution, where
variability in space is multiplied by the variability in time.

Our strategy could be applied for the initiation of a PLA. The technique is based
on the abstract features of all the considered products. To achieve both precision
and abstractness, we will specify the reusability aspects in terms of groups. A
reusability with reuse is a commonality held uniformly across the given group of
the products of the PL. A reusability for reuse is a variability true of only some
members of the PL. In our opinion, the reusability aspects are associated with
the commonality and variability analysis method SCV [22].
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The rules are similar to factoring algebra. The common factor in a set of two
formulas (x+y)2 and (x2+y)(x+y) is (x+y). The remainder, (x+y) and (x2+y), are
variables. If we introduce a small change, such as replacing a minus with a plus
in the first equation, then x+y is no longer the common factor. Also, if the
equations are rewritten as x3+x2y+xy+y2 and x(x-y)+y(y+3x), they are
algebraically equivalent, but the commonality and variability are much harder to
identify. By extracting the common features we obtain abstractions based on the
composition principle and the remaining parts (the one from parenthesis) are the
variable aspects.

In a PLA, both aspects of reusability are present. The diversity view of PLA
presents the ‘with reuse’ aspect in the concrete components used by each of the
product members. In the diversity view diagram, the number of the ‘uses’
relations associated to one concrete component measures the degree of
reusability in the PL of that component. For example, the degree of reusability
for the SEC_DataAcquisition component is 2 and for the Coordinated_Control
component, 1.

The with-reuse aspect of reusability is described in the PLA by the abstract
features of the PLA. The abstract features encapsulated in three main abstract
components MeasurementController, DataManagement and DataAcquisition, are
completely reused in all the product membersThe PLA diversity view contains
both aspects regarding reusability encapsulated in components. From the point
of view of other reusable assets, which could be represented by an architecture
view, the organization in packages of features could be a possible solution.
Figure 36 describes the mapping of product features into packages and the
relations between packages for the spectrometer controller PL.

The AbstractSpectrometerFeatures package has the highest degree of reusability
but also the highest degree of dependability. The abstract features depend on the
commonality between EGY and SEC features. A change in the problem domain
of one of the three products is mostly reflected in the degree of reusability of the
abstract domain features.

.
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Figure 36. Mapping the product features into packages.

7.2 Modifiability strategy

7.2.1 Change scenarios for spectrometer controller software PL

1:  Receive the target coordinates from a STAR TRACKER (ST).

Effect on the architecture: The target coordinates received from a ST will
overwrite the coordinates given previously with the COORD-ground command
that contains the pre-planned (intended) coordinates. This scenario requires a
new protocol for the Measurement Control component to interface with the ST.
The protocol is included in the abstract features package, because it is a common
feature of the two concrete components; StandAloneControl and
CoordinatedControl.

Result: Modify one component in the detailed functional decomposition view.
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2: Change  SIXA parameters (i.e. change the number of detectors).

Effect on the architecture: This is a hardware modification scenario, which is
reflected in the CPAR command of the ground interface. The measurement
control subsystem uses the service on a parameter management subsystem
(PMS). This scenario requires modification in PMS − in this way the
measurement control subsystem is decoupled from any changes in the hardware-
specific domain.

Result: Modify one component in the conceptual view.

3: Change the number of EEPROM banks.

Effect on the architecture: This is a hardware-specific change scenario. The
program code is stored in the EEPROM memory, which is organized into 4
banks. The Read memory (RMEM) command contains the information
representation of the physical EEPROM addresses. The measurement control
subsystem is decoupled from the memory organization by a startup subsystem,
which has the role of executing the RMEM command.

Result: Modify one component in the conceptual view.

4: Add a hard disk for a SEC product.

Effect on the architecture: The SEC_controller and SECwithEGY_controller
contain a HD for data storage. This change scenario requires a lot of changes at
the architectural level, most of them related to the DataManagement component.
A detailed description of this scenario analysis is contained in the next section.

Result: Multiple changes in detailed functional decomposition, localized in the
SECFeatures.

5: Change the generator polynomial  (from CCITT polynomial) for 16 bit CRC
sum of errors handlers.

Effect on the architecture: A memory management subsystem (MMS) consists
of service functions for managing the storage RAM and EEPROM. It also
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includes a state for refreshing RAM and the memory error exception handlers
(double and single bit).

Result: Modification in one component in the conceptual view.

6: Add a new command – SetDiskFull – in the service commands group of
ground interface.

Effect on the architecture:  The command is specific to the software
configuration with the hard disk. It is supposed that the DiskManagement
component is already added. The measurement control component has the role
of interpreting this new command and starting the required action. This scenario
requires the addition of a new signal to the controller commands protocol and
data management protocol. A new transition states transition in the
DataFileManagement component.

 Result: Changes in the detailed decomposition view.

7: Specific hardware configuration (hard disk capacity or RAM capacity)
changes.

Effect on the architecture: If the capacity of the hard disk or the amount of fault-
free RAM in use for SEC spectrum storage is changed, then the calculation of
the SEC event limit used in SEC1 and SEC2 modes is changed.

Result: This scenario requires no change at the architecture level.

8: The type of hard disk is changed.

Effect on the architecture: The hard disk used in the implementation is a CP2040
disk. This scenario is applicable for the software products with SECFeatures
included. Reading data from the disk during dumping is time-critical because the
average SRG-bus speed of 744kbit/sec must be maintained. The DISK driver
must be optimized so that it makes maximum use of the internal 16 kbyte
internal cache of CP2040.

Result: Modify one component in the conceptual view.
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9: How is the control of analog electronics changed on behalf of several
spectrometers?

Effect on the architecture: In case of several spectrometers, only one of them
takes control over the analog electronics. This feature is included in the
CoordinatedControl component.

Result: Modification of one component in the detailed functional decomposition.

10: How is the architecture affected when the operation mode is changed?

The operation modes of different products are one of the variabilities of the
PLA. This is encapsulated into DataAcquisition and DataFileManagement
Components. The variability is expressed in Table 10.
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Table 10. Architectural changes in the detailed functional decomposition.

Components

PL members

DataAcquisition DataFile

Management

Protocols

EGY products

consider three

simultaneous

operation

modes: ESM,

WCM, and

TIM

Behavior:

EGY_DataAcquisition is

specialized in behavior to

handle full spectra

collection for all operation

modes. The acquisition is

finished when the last

repetition is completed

Structure: add a new port

savedEGYData

Structure: add a

new port

savedEGYData

Add a new

protocol to the

EGY features

package:

savedEGYData

SEC products

can operate in

one of these

three modes:

SEC1, SEC2,

SEC3

Behavior:

SEC_DataAcquisition

collects spectra data

continuously based on a

sampling time.

Must check if the buffers

are full.

Structure: add a new port

savedSECData

Structure: add a

new port

savedSECData

Add a new

protocol to the

SEC features

package:

savedSECData

Figures 20 and 21 describe the specialization in the behavior of the components
to handle the variability in functionality of the product members of the PLA.
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Figure 38. Statechart diagram of the SEC_DataAcquisition concrete component.

Figure 39. Statechart diagram of the EGY_DataAcquisition concrete
component.
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Effect on the architecture: The measurement control component is decoupled
from the operation mode of different products, which is encapsulated into the
DataAcquisition component.

Result: No change to the PLA – abstract concrete or features of measurement
control.

11: How is the average SRG-bus speed of 744kbit/sec on reading data from disk,
which is time-critical, maintained?

Alternative solutions:

1. Change the HD: Use Fast disk: Optimal disk interleaving factor and storing
the data file in sequential sectors on the disk.

2. Send filler blocks to the bus while waiting for the disk – a sufficient number
of filler blocks could be reserved in the vector word sent in advance to
BIUS.

3. Use a busy bit of SRG-bus.

4. Optimize disk driver – If the disk drive has been changed, the software has
to be tuned separately for the new disk.

Result: Not applicable to the available views.

12: Change the CPU.

Effect on the architecture: CPU-specific services provide highly optimized high
speed assembly language services (high speed word copy, interrupt
enable/disable, etc.). The services are not applicable at the level of description.

Result: Not applicable to the available views.
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7.2.2 A summary of the analysis PLA for modifiability

We defined twelve change scenarios for different categories of changes. The
effect of the scenarios and the required PLA view are summarized in Table 7.

Table 12. A summary of the PLA analysis for modifiability.

Category Scenario PLA view Effect

General-purpose

hardware

changes

12. Change the
CPU

Not applicable No change

2. Change SIXA

parameters.

Conceptual view 1 component

3. Change the

number of

EEPROM banks.

Conceptual view 1component

4. Add a hard disk

for a SEC product.

Detailed functional

decomposition

Localized to SEC

features

7. Specific

hardware

configuration

changes.

Not available No change.

Domain-specific

hardware

changes

8. The type of hard

disk is changed

Conceptual view 1 component

Changes in

technology

5. Change the

generator

polynomial

Conceptual view 1component
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Table 7. A summary of the PLA analysis for modifiability continues.

10. Change

operation mode

Detailed functional

decomposition

Localized at the

concrete

components of

PLA

6. Add a new

command

Detailed functional

decomposition

Localized at the

concrete

components of

PLA

Changes in

functionality

9. Multiple

spectrometers

analog electronics

control

Detailed functional

decomposition

Localized in

Coordinated

Control

Change in non-

functional

requirements

11. How is the

average transmit

speed maintained?

Not applicable to

available views

Localized in the
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7.2.3 Detailed analysis of scenario categories related to hard disk

The hard disk is a specific feature of the SEC_Controller spectrometer product.
Two scenarios could be considered in the category of hardware changes: the
addition of the hard disk and the change of the type of hard disk.

7.2.3.1 The addition of the hard disk scenario analysis

In the embedded systems domain to which the spectrometer controller belongs,
there is a tight relation between hardware and software, and changes in the
hardware context influence most of the architectural decisions (Figure 40).
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Figure 40. Adding new features in the problem domain together with the HD.
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domain. This is the parameter for the SEC_Controller products. Figure 22
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the domain. The domain features are divided into four categories: capability,
operating environment, domain technology, and implementation techniques.
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•  A non-functional requirement for maximization of speed in reading data in
the capability category,

•  Buffering for data storage in the domain technology category,

•  Storage of data in RAM at successive locations in the implementation
technology category.

Most of these features could not be represented in the conceptual view of the
architecture. The representation diagrams only contain components and
connections between these components together with their external properties.
The realization view should consider these new features.

From the conceptual viewpoint, all these new features must be mapped in the
SEC_Controller package to different diagrams of components. The addition of
the hard disk requires:

•  Adding a DiskManagement component in data management,

•  Adding a new protocol,  DiskControl, for the connection between
SEC_File_Management and Disk_Management components,

•  Addition of a new signal in the ControllerCommands: SetDiskFull – a new
command in service commands (abnormal situation) group, and

•  A new transition in the MeasurementControl state diagram.
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Figure 42. Specialization of the DataManagement in SECFeatures and
EGYFeatures packages.

Figures 23 and 24 describe the specialization of DataManagement components
for the products, which include SECFeatures or EGY features. For EGY
products, the data management component encapsulates only the
FileManagement component, which uses a saved_EGYData protocol. The
SECData Management component encapsulates two components,
SEC_FileManagement and DiskManagement. These components use
saved_SECData and ControlDisk protocols.

SEC _DataManagement
<<Capsule>>

( from SEC Features)

Disk Management
<<Capsule>>

( from SEC Features)

Disk C ontro l
<<Protoco l>>

(from SECFeatur es)

SEC_F ileManagement
<<C apsule>>

(from SEC Featur es)

sav ed_SECData
<<Protoco l>>

(from SEC Featur es)

 /  sEC _FileManagement /  sEC _FileManagement  /  d iskManagement /  d iskManagement

uses uses uses

EGY_DataManagement
<<C apsule>>

(from EGYFeatures)

EGY_F ileManagement
<<C apsule>>

(fr om EGYFeatur es)

sav ed_EGYData
<<Protoco l>>

(fr om EGYFeatur es)

 / eGY_F ileManagement / eGY_F ileManagement

uses



109

Figure 43. The structure diagram of the SEC_DataManagement component.

7.2.3.2 The change of the type of hard disk.

In the interface with hardware, the description of the architecture must include
the mechanism of mapping virtual information which is used in software to
physical hardware. It is the role of a hardware abstraction layer to perform this
operation.

Figure 44 describes the general mechanism of decoupling software from
hardware. The component whose interface must handle the variability aspects of
hardware elements is decoupled from this variability by introducing a hardware
abstraction layer.

Figure 44. Decoupling of a software component from hardware.
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This mechanism was applied for the case of adding the hard disk. A disk driver
component, a part of the hardware abstraction layer, has been introduced
simultaneously with the hard disk. The change of the hard disk type is localizing
in this component.

7.3 Summary of the PLA analysis strategy

The PLA of the spectrometer controller has been represented by three main
views:

•  A conceptual view, considered a functional decomposition of the PLA into
subsystems. The relationships between components are based on pass
control and pass data or uses.

•  A more detailed functional description, where the main objects are packages,
components, ports, and protocols. The relationships are association,
specialization, generalization, etc. Considering the dynamic aspect statechart
diagrams and message-sequence charts (MSC) are also part of this view.

•  A diversity view as we introduced for the reusability consideration.

A good architecture design must provide localization of changes. Most of the
changes required by scenarios were applied to one component, which indicates a
decoupling of concerns. The most important change was the addition of the hard
disk, one variable point among PL members. This scenario required changes to
the concrete components common to products which require this feature.

By structuring the PLA in abstract components which encapsulate common
features of the PL members and concrete components, which in turn represents
the specialization of the variable features, the effects of the change scenarios are
minimized and localized.

For the moment, only scenarios could be used in the PLA analysis for
modifiability. One problem with the scenario-based analysis is that the result and
the expressiveness of the analysis are dependent on the selection of the scenarios
and their relevance for identifying critical assumptions and weaknesses in the
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architecture. There is no fixed minimum number of scenarios whose evaluation
guarantees that the analysis is meaningful. According to this, we tried to use five
categories of possible changes in general hardware, specific hardware,
functionality, non-functional requirements and software technology. A helpful
strategy in scenario elicitation is the analysis of commonality and variability.
This is not a part of the architecture analysis method, but it is considered a pre-
condition of it.  One aim of the analysis should be to show how flexible a PLA is
in order to handle the anticipated changes provided by the variability of the
products. Another aim is to analyze which is the potential of the PLA to be
adapted to changes in common features.

The change scenarios did not affect the PLA diversity view. This view confirms
the stability of the PLA in the domain, delimited by the considered product
members. The diversity view of the PLA is useful for a reusability analysis, but
it is not recommended for modifiability. The results of the analysis depend not
only on the views of the architecture, but also on the level of detail of the
component descriptions. By using only the conceptual view, the effects of the
change scenarios are reduced.  On the detailed functional decomposition view,
which has been developed with the help of a CASE tool, the effect is more
relevant. The interaction of unrelated scenarios is lower and reveals a good
separation of concerns when the functional decomposition is detailed.
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8. Conclusions and future work

In this research report we have discussed our work related to the product line
architecture analysis. During the chapters, we have presented our original
contributions in developing this significant and, in the same time, very new
research domain. In order to be able to discuss an analysis strategy for a product
line architecture, it is a considerable advantage to have a good knowledge of the
state of art and practice in the software architecture domain. One of our
contributions is to extract the main concepts which are common to any software
architectures and to present what is additional and specific for a product line
approach in software development. We have also gathered together and
discussed, for the first time to our knowledge, several important architecture
analysis methods. The survey study represented was a very important step for
defining a theoretical and general available PLA analysis strategy. In practice we
simplified our analysis approach and the last part of this report has focused on
our experiences with the product line architecture analysis of the spectrometer
controller PL.

8.1 Conclusions related to software architecture analysis
methods

The survey study has shown the real level of the research at this moment, in this
domain, by presenting and discussing eight of the most representative
architecture analysis methods.  The work in this domain is in progress and future
improvements are expected. There are also some unsolved problems and open
questions. Future research work for improvement and refinement of the
architecture analysis methods is therefore needed.

8.1.1 Progress identification and methods improvement techniques

8.1.1.1 Progress in risk assessment

The purpose of the evaluation is to analyze the architecture to identify potential
risks by predicting the quality of the system before it has been built. Related to
the potential risk identification, the reflections of this general goal have been
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distinguished in all the studied methods. In this sense the uses of change
scenarios and scenario interaction reveal a potential problem area of the
architecture. The degree of modification captured when evaluating a system’s
response to a scenario represents a measured risk. Complexity of scenarios is
also an important factor for risk assessment. The required changes and domain
experts’ experiences represent another modality of suggestion of how the system
could support the risk levels for evolution or reuse. The chances of surfacing
decisions at risk are optimized by using exploratory scenarios. The potential risk
is also minimized by analyzing attribute interactions. Iterative methods promote
an analysis of multiple resolutions as a means of minimizing the risk at an
acceptable level of time and effort. Areas of high risk are analyzed more
profoundly (simulated, modeled or prototyped) than the rest of the architecture.
Each level of analysis helps to determine where to analyze more deeply in the
next iteration.

8.1.1.2 A possible combination of methods

Looking at the existent analysis techniques the possibility to combine a coarse-
grained and broad technique with a fine level one would provide an improved
result, but the costs of time and effort would also be increased. Scenario-based
analysis techniques can be combined with a specific analysis technique for
quality attributes. For example, a scenario may identify a critical path of
execution which can then be examined in detail using a real-time analysis
method like RMA, or other analysis techniques for scrutinizing any dynamic
properties of an application.

8.1.1.3 Metrics − more precise techniques in evaluating attributes in
terms of architectures

Most of the researchers in the domain consider metrics to be more precise
techniques in evaluating attributes in terms of architecture [36, 52]. Metrics
specification must contain the selected measure for a quality attribute, a
measurement scale and a set of methods for measurement. Two approaches
could be identified: to adapt existing metrics [10] or to define new ones [24].
The adaptation of object-oriented metrics which were validated to be good
predictors of software maintenance [49] is required because the metrics suite
uses data that can only be collected from the source code, and at the architecture
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level no prototype or source exists. Considering the other approach, GQM [7] is
a good technique to define new metrics following a certain reasoning process.
The main activities of GQM are: to define a goal in terms of purpose,
perspective and environment, to establish the questions that indicate the
attributes related to the goal, and to answer each question. The purpose is related
to the software architecture evaluation, indication and comparison, and the end
product quality prediction. The perspective depends on the aims of the
assessment and it is closely related to the role of the evaluation staff, which can
be that of a developer, user, management, or maintainer. There are two suitable
environments: the software architecture representation considered as an
intermediate design product or as an end product itself.

8.1.2 Existing problems and future work

8.1.2.1 Scenarios and quality attributes naming problems

One problem with the scenario-based analysis is that the result and the
expressiveness of the analysis are dependent on the selection of the scenarios
and their relevance to identifying critical assumptions and weaknesses of the
architecture. There is no fixed minimum number of the scenarios the evaluation
of which guarantees that the analysis is meaningful. According to this, the
definition of a set of complex scenarios and a two-dimensional framework is a
solution, but a future study of the completeness of this set and of the relative
importance of each of the cells in the framework is needed. The idea to use an
instrument which should include all aspects relevant to the complexity of
changes, is original and useful, but the measures should be comparable to make
the interpretation of the results possible.

Future studies are needed to investigate how domain knowledge and the degree
of expertise affect the coverage of the selected scenarios. In the same direction,
quality attributes prediction methods could be improved by studying their
sensitivities for different variations of the inputs and how significant the used
assumptions parameters are for the results. For example, how sensitive is
ALPSM to the representative sample of the maintenance scenario profile, or how
significant is the size estimation for the results.
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An examination of the existent methods reveals a lack of understanding of
quality attributes in the software engineering community at this moment. The
same interpretation but with different attribute names could be identified for
flexibility [48] which has the same meaning with modifiability in [34] or
maintainability in [11].

8.1.2.2 Future work for methods improvement and refining

Until now SAAM has been the only method which has appeared in a book [8].
This is a confirmation of its maturity. SAAM has been used for different quality
attributes like modifiability, performance, availability, and security. It has also
been applied in several domains. This is another validation of its completeness.
The others are still young and are undergoing refinement and improvement.
Future work is needed to evaluate the effects of their various usages and to make
a method repeatable of repositories of scenarios, screening and elicitation
questions (ATAM). In this respect, ABASes and qualitative analysis heuristics
are building up. Building a handbook of ABASes requires collection,
documentation and testing of many examples of problems, quality attributes
measures, stimuli and parameters.

The extension of the reengineering method for more non-functional
requirements and the application of the method in more industrial case studies
are the main future objectives of SBAR. The authors of this method consider it
important to obtain a reasonable balance between the different quality
requirements in the top-level architectural design. A small taxonomy is defined
for performance and modifiability, and eight design guidelines are formulated.
Each guideline is associated with a quality requirement in the taxonomy. Future
work is desired to extent these guidelines to other quality requirements.

A stronger methodical integration in the development process is also required.
ESAAMI needs to provide a complete support for the reuse-based and
architecture-driven development approaches. Integrating the technique into
reuse-based and architecture-centric development process should provide a
refinement of the method.

Future research work is needed to develop systematic ways of bridging other
quality requirements of the PL domain to the PLA.  Several progressive steps
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have been identified in research papers for the analysis of the architecture at the
one product level in quality attributes interaction analysis for optimizing the
design decisions [16, 6].

8.2 Closing words

This report identifies and demonstrates a method for the analysis of a PLA of a
product line initialized in a revolutionary approach. The analysis strategy based
on scenarios could be considered mature enough to verify PLA against
anticipated changes in the requirements of various product members. Also, the
diversity view introduced for reusability considerations indicates, in a structured
form, the reusability degree of each component for each product in the PLA.
This view is a stable element for the PLA in the domain.

Our experience shows that the PLA analysis method should be applied
iteratively while the PLA design becomes more detailed. The purpose of the
evaluation is to analyze the architecture to identify potential risks by predicting
the quality of the PL before it has been built. Iterative methods promote analysis
of multiple resolutions as a means of minimizing the risk at acceptable levels of
time and effort. Areas of high risk are analyzed more profoundly (simulated,
modeled or prototyped) than the rest of the architecture. Each level of analysis
helps determine where to analyze more deeply in the next iteration.

The case study also requires performance, safety and reliability for each product.
These quality requirements are common features for all products, but other PL
domains could include variability in these aspects. These variable features must
be considered from the PLA design perspective in order to minimize the risk that
the final software products do not conform to these quality attributes. For PLA
evaluation, these aspects are still an open question. It is important to estimate
what is the degree of reuse of a PLA and what are the reusable assets when the
variability of these run-time qualities is considered.
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