
V T T P U B L I C A T I O N S

TECHNICAL RESEARCH CENTRE OF FINLAND ESPOO 2001

Markus Moilanen

Management framework of
distributed software objects and
components

4 4 2

V
TT PU

B
LIC

A
TIO

N
S 442

M
anagem

ent fram
ew
ork of distributed softw

are objects and com
ponents

M
arkus M

oilanen

Tätä julkaisua myy Denna publikation säljs av This publication is available from

VTT TIETOPALVELU VTT INFORMATIONSTJÄNST VTT INFORMATION SERVICE
PL 2000 PB 2000 P.O.Box 2000

02044 VTT 02044 VTT FIN–02044 VTT, Finland
Puh. (09) 456 4404 Tel. (09) 456 4404 Phone internat. + 358 9 456 4404
Faksi (09) 456 4374 Fax (09) 456 4374 Fax + 358 9 456 4374

The deployment of software applications without making any arrangements
beforehand in the target platform sets strict requirements for the management of the
applications and the management of the platform in which the application will be
executed. In this work, "objective quality thinking" concerning the work process has
been chosen to gain a solution for this problematic issue. In the work, the
management framework of the distributed applications is developed. The developed
management framework observes different dimensions of the management. The
dimensions are presented starting from the conceptual level ending to the explicit
design models. Lastly in the work, an example of how to apply the management to
an application is presented. The case considers an application which distributes itself
according to its associated distribution policy, and which is implemented for the
Internet environment in the Java programming language. The presented solution of
the management can be applied to any data objects, including passive objects. If
extended to its full design, the solution would be a starting point for a new software
management technology.

ISBN 951–38–5863–4 (soft back ed.) ISBN 951–38–5864–2 (URL: http://www.inf.vtt.fi/pdf/)
ISSN 1235–0621 (soft back ed.) ISSN 1455–0849 (URL: http://www.inf.vtt.fi/pdf/)

Author Markus Moilanen
Project M.Sc Thesis

Status Accepted
Appr

Title State diagram of the Management Server class
Vers 1.0 File MANAGEMENT_SERVER_v1.scd

Prosa 150-day student licence. For registered students only.

INITIALISING

CREATING_DIMENSIONS

DECODING_POLICY

do/_CREATING_POLICY_OBJECTS

application_:withPolicy
/** See Table 15 */
decision_table[5][5]:Decision
_to_support[5]:Dimension
_on_demand[5]:Policy
_on_init:ReturnCode
_on_decoding:ReturnCode
_on_policy:ReturnCode
_on_idle:ReturnCode
_dimension:Integer

IDLE

do/_HANDLING_MANAGEMENT_INFO

POLICYMAKING

do/_BUILDING_DECISION_TABLE

/_on_init:=createApplication(_from_UIN_:String)

[_on_init.isFAILED()]
/** An object is not identified or located */
/exit(_on_init.getSring())

[_on_init.isSUCCESS()]
/** The application_ object is initialised */
/[i:=0..4] _demand[i]=null

_dimension:=_dimension+1[_on_demand[_dimension]<>null]
/_to_support[_dimension]:=createDimensionServer(_on_demand[_dimension])

[_on_init.isINFOCODE()]
/** An object is identified, no policy, it can be started */
/execute(_on_init.getString())

[_on_decoding.isSUCCESS()]
/[i:=0..4] _to_support[i]=null
/_dimension=0

[_on_decoding.isFAILED()]
/exit(_on_decoding.getString()) /** Policy creation failed */

/exit(_on_idle.getString())

[_dimension>4]
/[i:=0..4,j:=0..4] decision_table[i][j]=null

[_on_policy.isSUCCESS()]
/application_.run()
/** Application has got command to run */

[_on_policy.isFAILED()]

/exit(_on_policy.getString())

VTT PUBLICATIONS 442

TECHNICAL RESEARCH CENTRE OF FINLAND
ESPOO 2001

Management framework of
distributed software objects and

components

Markus Moilanen
VTT Electronics

ISBN 951–38–5863–4 (soft back ed.)
ISSN 1235–0621 (soft back ed.)

ISBN 951–38–5864–2 (URL:http://www.inf.vtt.fi/pdf/)
ISSN 1455–0857 (URL:http://www.inf.vtt.fi/pdf/)

Copyright © Valtion teknillinen tutkimuskeskus (VTT) 2001

JULKAISIJA – UTGIVARE – PUBLISHER

Valtion teknillinen tutkimuskeskus (VTT), Vuorimiehentie 5, PL 2000, 02044 VTT
puh. vaihde (09) 4561, faksi (09) 456 4374

Statens tekniska forskningscentral (VTT), Bergsmansvägen 5, PB 2000, 02044 VTT
tel. växel (09) 4561, fax (09) 456 4374

Technical Research Centre of Finland (VTT), Vuorimiehentie 5, P.O.Box 2000, FIN–02044 VTT, Finland
phone internat. + 358 9 4561, fax + 358 9 456 4374

VTT Elektroniikka, Sulautetut ohjelmistot, Kaitoväylä 1, PL 1100, 90571 OULU
puh. vaihde (08) 551 2111, faksi (08) 551 2320

VTT Elektronik, Inbyggd programvara, Kaitoväylä 1, PB 1100, 90571 ULEÅBORG
tel. växel (08) 551 2111, fax (08) 551 2320

VTT Electronics, Embedded Software, Kaitoväylä 1, P.O.Box 1100, FIN–90571 OULU, Finland
phone internat. + 358 8 551 2111, fax + 358 8 551 2320

Technical editing Maini Manninen

Otamedia Oy, Espoo 2001

3

Moilanen, Markus. Management framework of distributed software objects and components.
Espoo 2001. Technical Research Centre of Finland, VTT Publications 442. 153 p. + app. 45 p.

Keywords software processes, software design, quality methods, requirement specifications,
conceptual planning, application layer, management layer, component
architecture, UML

Abstract
The deployment of software applications without making any arrangements
beforehand in the target platform sets strict requirements for the management of
the applications and the management of the platform in which the application
will be executed. In this work, "objective quality thinking" concerning the work
process has been chosen to gain a solution for this problematic issue. In the
work, the management framework of the distributed applications is developed.
Application software is understood to be any useful piece of software that can be
provided.

The developed management framework observes different dimensions of the
management. Dimension is such a feature group of the management that can be
implemented independently of other feature groups. These dimensions include
for example the advertisement of a component, distribution of a component,
resource management of a component, and security of a component. The
dimensions are presented starting from the conceptual level ending to the
explicit design models. These design models can be implemented for any
application-specific purpose by implementing the presented application
programming interfaces of the models. Lastly in the work, an example of how to
apply the management to an application is presented. The case considers an
application which distributes itself according to its associated distribution policy,
and which is implemented for the Internet environment in the Java programming
language.

The presented solution of the management can be applied to any data objects,
including passive objects. If extended to its full design, the solution would be a
starting point for a new software management technology.

4

Preface
The author has been studying the subject of this thesis during several projects at
the Technical Research Centre of Finland, department of Electronics (VTT
Electronics), since 1st June 1999. One of the projects, called DYRE, dealt with
the issue of "dynamic resource management". Another project, called EMU, and
particularly its sub-project, called LONTONEXTG, was named to "develop
some gateway-technology to assist the distribution of home-services". The
subject is also involved in the European-wide ITEA-project (http://www.itea-
office.org/), which is developing the technique for the virtual home environment.
The main result of these projects - considering the work of the author - was an
experimental distribution concept started to be developed for testing purposes.
The work is now continuing as a M.Sc. thesis and this makes it possible for the
author to finish the work without any restrictions from the formal project, and
with increasing creativity. The thesis is carried out under the organisation of
VTT Electronics (http://www.ele.vtt.fi). Personal contacts to the author can be
made by e-mail at mmoi@iki.fi.

I would like to thank Professor Tino Pyssysalo, who has been the supervisor of
this thesis, and Professor Juha Röning, the second examiner of this thesis, at the
University of Oulu. Prof. Pyssysalo supported me with valuable comments,
guidance, demands, and encouragement during this duty. I would also like to
thank Prof. Veikko Seppänen for his most valuable expert's survey report
concerning the document proposal before the final publication of the work.

Furthermore, I would like to express my deepest gratitude to Mr. Hannu Rytilä,
who represented the employer of this thesis, and Mr. Hannu Honka, from VTT
Electronics. They made my work possible by providing the working place, the
topical subject and time to study it, and the valuable advice, even when the result
of the work was unseen. Ms. Marjo Jussila, also from VTT Electronics, deserves
my gratitude because of her work of correcting my writing of English.

Finally, to all who may feel that they have contributed to the work - thank you
for the support.

Oulu, Finland, 30 May 2001 Markus Moilanen

5

Contents

Abstract ... 3

Preface .. 4

List of symbols.. 8

1. Introduction... 13
1.1 Approach ... 13
1.2 Research methods.. 15
1.3 Distributed software objects and components 19
1.4 Assumptions .. 20
1.5 Research problem .. 22

2. Requirements analysis .. 23
2.1 User's requirements as performance and excitement........................... 24
2.2 User's requirements as threshold ... 28

2.2.1 Theoretical user requirements ... 29
2.2.2 Standards ... 30
2.2.3 State-of-the-practice .. 42
2.2.4 Harvest of the user requirements as Threshold 55

2.3 Mini-concepts .. 57
2.4 Summary ... 60

3. Conceptual planning ... 62
3.1 QFD-analysis... 62
3.2 The concept ... 64

3.2.1 Client-server model ... 65
3.2.2 Layered structure... 65
3.2.3 Application with representatives... 66
3.2.4 Profiles for user and devices ... 66
3.2.5 Policies .. 66
3.2.6 Distribution transparency .. 67
3.2.7 Burden by request ... 67
3.2.8 Support for existing applications .. 67
3.2.9 Dimensions and their orthogonal position 68

6

3.2.10 Resource.. 68
3.2.11 Service... 69
3.2.12 Support for different component models 69

3.3 Summary ... 69

4. Architectural design.. 70
4.1 The client-server model ... 70
4.2 Resource .. 71
4.3 Distribution transparency .. 72
4.4 Dimensions .. 73

4.4.1 Advertisement ... 74
4.4.2 Distribution ... 74
4.4.3 Resource management .. 74
4.4.4 Security ... 75

4.5 Policies .. 75
4.6 Management model ... 76
4.7 Layers .. 76

4.7.1 Application layer and APIs ... 78
4.7.2 Management layer... 80

4.8 Architectural model ... 83
4.8.1 Architecture of the local system.. 83
4.8.2 Architecture of the distributed system 85
4.8.3 Behaviour model of the architecture 87

4.9 Summary ... 89

5. System design ... 90
5.1 Static models ... 91

5.1.1 Class diagram of a "Distributable" application 91
5.2 Dynamic models .. 95

5.2.1 State diagrams of the Management Server class 95
5.2.2 State machine of the Distribution Dimension Server class 97
5.2.3 State machine of the Management Client class....................... 98

5.3 Utility classes... 99
5.4 Summary ... 101

6. Implementation ... 103
6.1 Packages .. 104
6.2 Interfaces ... 105

7

6.3 Essentials of the Distribution demo... 117
6.3.1 Management Server .. 117
6.3.2 Management Client ... 121
6.3.3 Management Policy... 126

6.4 Summary ... 127

7. Discussion and further research.. 128
7.1 Answer to the research problem .. 128
7.2 Advantages of the solution .. 129
7.3 Subjective quality properties of the system....................................... 131
7.4 Weaknesses of the solution ... 133
7.5 Further research issues .. 133
7.6 An example of further design - the Resource management............... 135

7.6.1 Resources of the distributed systems 135
7.6.2 Class diagram of a "Resourceable" application 136
7.6.3 Class diagram of the Resource management dimension layer 137

7.7 Summary ... 139

8. Conclusions... 140

References... 148

Appendices
Appendix A: Source code listings

8

List of symbols
ANSA Advanced Network Systems Architecture

API Application Programming Interface

ASCII American Standard Code for Information Interchange

ASN.1 Abstract Syntax Notation, version 1

BAA Business Area Analysis

CCM CORBA Component Model

CLD Class Diagram

CORBA Common Object Request Broker Architecture

CPU Central Processing Unit

CSCW Computer Supported Co-operative Work(ing)

CSMA/CD Carrier-Sense Multiple Access with Collision Detection

COTS Commercial Off-The-Shelf component

DCE Distributed Computing Environment

DCOM Distributed Component Object Model

DDE Dynamic Data Exchange

DNS Domain Name Service

DOS Disk Operating System

9

EJB Enterprise JavaBeans

ETSI European Telecoms Standards Institute

FTP File Transfer Protocol

GPRS General Packet Radio Service

GSM Global System for Mobile Communications

HLDC High-Level Datalink Control

HTTP Hyper-Text Transfer Protocol

ICA Independent Computing Architecture

IEC International Electrotechnic Commission

IIOP Internet Inter-ORB Protocol

IP Internet Protocol

IPX/SPX Inter-network Packet Exchange protocol/Sequence Packet
Exchange - Novell protocol family for internetworking

ISDN Integrated Services Digital Network

ISO International Standards Organisation

ITU International Telecommunication Union

ITU-T The ITU Telecommunication Standardisation Sector (ITU-T) is one
of the three Sectors of the International Telecommunication Union
(ITU).

IXIT Implementation Extra Information for Testing

10

JDK Java Development Kit

JVM Java Virtual Machine

LDAP Lightweight Directory Access Protocol

MExE Mobile Station Application Execution Environment

MSD Message Sequence Diagram

MTS Microsoft Transaction Server

NetBEUI NetBIOS Extended User Interface

NetBIOS Network Basic Input Output System

OCX OLE custom controls

OLE Object Linking and Embedding

OMG Object Management Group

OO(A) Object-Oriented (Analysis)

ORB Object Request Broker

OS Operating System

OSF Open Software Foundation

OSGi Open Services Gateway initiative

OSI Open Systems Interconnection

PC Personal Computer

PDA Personal Digital Assistant

11

PDL Program Design Language

PLA Product Line Architecture

QFD Quality Function Deployment

OTS Off-The-Shelf component

QoS Quality of Service

R&D Research and Development

RDP Remote Desktop Protocol

RMI Remote Methods Invocation

RM-ODP Reference Model for Open Distributed Processing

ROBO Remote Office/Branch Office

RPC Remote Procedure Calling

SCD State Chart Diagram

SDK Software Developers Kit or Software Development Kit

SCM Software Configuration Management

SMG4 ETSI's GSM standards setting body, standardisation group for GSM
data

SMS Short Message Service

SMTP Simple Mail Transfer Protocol

SOAP Simple Object Access Protocol

12

SOHO Small Office/Home Office

T.120 ISO/ITU-T that describes a data protocols for multimedia
conferencing

TCP/IP Transmission Control Protocol/IP

TINA-C Telecommunication Information Networking Architecture -
Consortium

UID Unique IDentifier

UIN UnIque Name

UML Unified Modelling Language

UMTS Universal Mobile Telecommunications System

URI Universal Resource Identifier

URL Uniform Resource Locator, specialisation of the URI

WAP Wireless Application Protocol

WWW World Wide Web

X.21 The standard of ISO/ITU-T that describes a synchronous
communication at physical level

X.25 The standard of ISO/ITU-T that describes a packet transfer protocol
with virtual circuits

X.400 The standard of ISO/ITU-T that describes a mail service

X.500 The standard of ISO/ITU-T that describes a directory service

XML Extended Mark-up Language

13

1. Introduction
The assignment state of this work is to research and develop some concepts of
techniques to manage a piece of the application software to be executed on
distributed, maybe mobilised, software execution environment. The management
problem on a large scale exists because of the heterogeneous, maybe mobile,
executing platform and because of the users of today and in the near future. The
objective is to release users from solving the problems of technical nature, as is
the case today even with simple PC (Personal Computer).

Application software is understood to be any piece of software that can be
provided, from deploying one byte to deploying a mail service - large systems of
that kind are usually provided by deploying some component model.

As a result, there should be a framework for managing distributed applications in
their environment. The framework can be used when the research of distributed
software continues further concentrating to examine the fields of problems that
will exist with the upcoming wireless and mobile communication technology.
Furthermore, the result should contain the definitions of the APIs (Application
Programming Interfaces) - this is supposed to help in exploiting the result in
existing concepts of distributed application and operational systems as an
increment and complement.

A quality focus and the use of customer-oriented methods must be set as a basis
for the work

1.1 Approach

An end-user of the information technology lives in a world where he is required
to be almost an engineer to understand and deploy the different equipment and
related software surrounding the end-user. Even more, devices mentioned to be
used by the end-user are increasing rapidly so that before long, the end-user is
using some equipment or software at every turn. However, as a paradox,
technology itself seems to be engineered only for the technician. The described
situation has been led into by technicians, people who think about systems from
their own professional perspective, viewing the systems from inside. They have

14

made the end-user to carry the load and pay for its costs without asking how the
end-user feels.

In this work, the customer-oriented way of thinking has been chosen to achieve a
solution to the paradox. Firstly, we will agree with Bill Joy, one of the creators
and champions of Jini, who has stated, "Large successful systems start out as
small successful systems" [1]. This philosophy is part of the Jini motivation.
Secondly, the statement has been developed further here by promoting the next:
"If we will find out the requirements for the largest system, we will know which
the requirements for the smallest system might be - then we will simply develop
the management model for any piece of the software by deploying the
requirements found". Thirdly, the proper tools and methods for support will be
chosen to thoroughly help find out the user requirements, and furthermore,
proper tools and methods will be chosen to maintain the demands of the
requirements from beginning to end.

A quality focus is a very important factor in product development today [2, 3].
Working under "ISO9001-sertified" quality system (as is the case here) is not
enough; quality must be built into a product by using appropriate tools, methods
and processes [2]. The quality of the software product is twofold:

1. The fitness for use and the ability to meet the customer’s expectations.

2. Meeting Specifications and Requirements.

The first is something that can be called as objective quality, something that is
reached for. The second is something that appears in the real product, something
can be called as subjective quality, i.e. quality that must be built into the product
by a professional with respect for rules to support different subjective quality
properties of the software product. There are many categories of those properties
developed during the times, for example McCall's quality factors [4], or "ISO
9126 Quality Factors". Those factors will appear and will be mentioned at an
appropriate point as this process progresses.

15

1.2 Research methods

Figure 1 illustrates how the author sees the position of an individual and
organisation working on software production, as follows:

• Attempts will be made to satisfy customer needs that come from the market.

• However, only some of the possible offers are accepted by the market, only
few of them will continue to live.

• Are we working mostly for nothing?

• The answer is no because we can increase our competitiveness and
productivity using an advanced software process.

• Both get richer - the individual increases his tacit knowledge and
organisation increases its resources.

The situation with a scientific study in the area of software research is much the
same with the one of software production.

Iivari [5] defines three major categories of the research methods of information
systems: constructive (including conceptual and technical development),
nomothetic (including formal-mathematics analysis, experiments and field
studies), and idiographic (including cases and action research) ones. Iivari's
constructive research method can be compared to a software process because the
method supports a lifecycle of an artifact like software processes consistently do.
Järvinen et al. [6] categorise the research methods in the five major groups. One
of the suggested group, the constructive research, match on software processes
by its specification to implementation sequence.

The author suggests a process model in which the conceptual-analytical research
method is applied before the use of the constructive research method.

The Road Map depicted in Figure 2 gives ideas put in together. It is for
understanding the quality and productivity based working process used to solve
the research problem here.

16

Closed sector:
! subjective thinking
! monolithic (unbreakable)

solution is to be formed

IM
PL

EM
EN

TA
TI

O
N

Open solution:
! modularity
! abstractions
! reference models

Requirement analysis

Requirement specification

Open sector:
! objective thinking, openness
! generalisation of the problem
! software scope

Problem to solve:
! Software research
! Design of software products
! Assignment from industry

Market demands

Research problem

(c) 2000, Markus Moilanen

Supported by
teaching

programming
languages

Offers
Customer needs

Approach:
! examples, problem descriptions, scenarios
! requirements and specification lists by customers

Assignment

Supported by
teaching SW-
engineering

Preferred user requirements
Suggested concepts and ideas

Standardisation:
! Attend the process.
! ISO (de jure).
! Consortiums (de facto).
! OMG (de facto/de jure).
! State-of-the-practice.

+ increasing knowledge
of the individual
workers
+ increasing assessment
of organisation

Implementation

Design

Design model

Re-usable SW-objects and
components:
! CORBA.
! "In-house".
! OTS (Off-The-Shelf).
! Java Beans
! and other COTS

(Commercial OTS)
components.

+ co-working
+ increasing resources in the
house
+ "know-how" will remain
after the key-worker has left
the job

Concept
Architecture

IM
PL

EM
EN

TA
TI

O
N

+ quick solutions
+ cash flow
+ rising stock quotation

- key practices and
processes (if any) are not
developing
- quickly beaten by open
sector, because of its
increasing productivity

Software process models
SCM (Software Configuration Management)

SPM (Software Project Management)
SQA (Software Quality Assurance)

Figure 1. Processes of software production.

17

Research problem

Approach
Tools:
! texts and tables
Methods:
! customer-oriented
Process:
! scope the problem
! establish the tactics

Assignment

Requirements analysis
Tools:
! tables
Methods:
! Kano's model
Process:
! examine the preferred user

requirements
! study the theory
! looking for standards (de

jure, de facto)
! State-of-the-practice

! Suggested concepts and ideas
! Research problem

Conceptual planning
Tools:
! tables
Methods:
! QFD
Process:
! develop the tables of user

requirements and Mini-
concepts (see Table 1)

! build up a QFD/A1-matrix
! analyse the matrix

! Requirements specification
! Mini-concepts

Customers' needs

Architectural design
Tools:
! UML
Methods:
! object-oriented
Process:
! find abstractions and their

relations
! define interfaces
! define behaviour
! check against the concept

Concept

System design
Tools:
! UML
Methods:
! object-oriented
Process:
! find classes and their

relations
! define the behaviour of the

objects of the system
! check against the

requirements specification

Architectural model

Implementation
Tools:
! Java
Methods:
! object-oriented
Process:
! code and test
! check against the preferred

user requirements

Solution

Results

An offer
Market demands

Design model

Monolithic level

Operational level

Structured level

Conceptual level (c) 2001, Markus Moilanen

D
eg

re
e

of
 g

en
er

al
isa

tio
n

in
cr

ea
se

s

iteration steps

iteration steps

iteration steps

Figure 2. The Road Map.

The map first shows how the problem is generalised until the conceptual level is
reached and then how to build the solution upon the concept. The V-model test

18

pattern of software is imperceptible, too. Figure 2 also shows how iteration steps
can be applied over one level or even over many levels during R&D-phases. For
example, if working on the monolithic level, solutions can be checked only
against the user requirements of this level, namely the preferred user
requirements, but the necessary iteration steps can be extended to all levels
under the monolithic one.

Further, the conceptual level is the border between changing from asking “what
should we do” to answering to “how will we do it”. Again, with “what” the
objective quality is applied and with “how” the subjective quality
correspondingly.

Figure 2 also shows how the tools, methods and processes are used for this work
particularly:

• Tools to be used are textual and graphical tools for presentations, tables and
matrix-tools to organise knowledge and UML (Unified Modelling
Language) to model the solutions.

• Methods to be used are Kano Model to ascertain that all customer (user)
requirements are taken into consideration, and QFD (Quality Function
Deployment) [3, 7] to make sure that the requirements are also included in
the solution. The OO (Object-Oriented) method is used in all models and
programming.

• Processes express how the work flows and what are inputs and outputs
during the work progress. Overall the process model used in R&D (Research
and Development) is a spiral model [2], and it makes flexible iteration steps
possible.

When comparing the presented process framework to the one usually used with
UML, it appears that the Use-case analysis is not used. Even if the Use-case
analysis is a powerful tool with many, even abstract, problems, it does not fill
the role of easy-to-understand way to present our analysis of the purpose we
have. However, after the conceptual level has been reached, Use-case analysis
tools will be used to present the analysis of the more specific technical
requirements to be realised. The use of extended QFD-matrix is also possible -

19

choices will depend on the issue of whom the presentation is intended for, for
technicians or users.

1.3 Distributed software objects and components

Software objects that are based on different component models are building parts
of software applications. Objects might be distributed over a computer network.

According to Niemelä [8], the component framework of a distributed system
introduces two dimensions: tiers and elements. The three tiers of the component
framework define the subsystem in the first tier, integration platform in the
second tier, and the product family in the third tier. The tiers explain the domain,
technology, and business viewpoints of the frameworks, correspondingly. The
elements define the product features, software architecture, components and
their interaction mechanisms. The component framework can be depicted by
architecture styles, key-mechanisms, services and components of each tier. The
development of the component framework must be presented by the
development of the different reuse assets.

Another view of the component framework is presented by Gamma et al. [9]; the
design patterns are the basis of the development of reusable component-based
software. Design patterns describe simple and elegant solutions to specific
problems in object oriented software design. Design patterns capture solutions
that have developed and evolved over time.

A new term will be introduced in this thesis: a mini-concept. Mini-concepts are
techniques in the existing distributed systems by which the user requirements
have been demanded until this day. Mini-concepts express how those techniques
perform the job in practice. A mini-concept can be derived from a design
pattern, an architecture pattern, a key-mechanism, a design rule, or some other
feature that can be found under the development of the practical systems.
However, after the solution is formed, the patterns, mechanisms, and rules will
appear again.

20

1.4 Assumptions

Solving problems is a creative process. Many ideas may come up and many may
die during the process. However, some ideas may still succeed to defend their
justification to live. In this section, ideas and visions originating from the pre-
working phase are presented. The pre-work comprises 1) the author's work in the
DYRE project to develop his idea of the decomposing of the distributed
computing problem domain into the orthogonal group of services which
commonly exist with the distributable objects, and 2) the author's work in the
LONTONEXTG project [10] (in which the author worked as a project manager,
system analyst, and a main programmer) of designing the software for the home
service distribution platform. Some initial suggestions from the past projects are
listed in Table 1. The author's work in the DYRE project was originally intended
to be the pre-work phase for the forthcoming diploma thesis - this diploma thesis
- and hereby the thesis documents the DYRE project. This work thus starts with
the best ideas from the past projects, and then develops the ideas to become a
mature solution of the management of the services of the distributable objects.

Table 1. Initial suggestions of concepts and ideas.

No. Concept Note

1. Application program should be such that only the
part of an application that is absolutely needed to
present the application to the end-user, will be loaded
onto a memory of the end-user terminal device. This
loadable part of the application would work as a
bridge between itself and its user, the application
itself still being able to remain anywhere in the
network. The application itself could be as large as
necessary and be combined partially from some other
services in the network. End-user should see only the
part of the application that is necessary for using it,
and the user may pay only by usage.

This concept is
currently used at
least by Jini, [1]

and
Microsoft.NET
remoting [11]

techniques. The
representative

of an application
is called a

proxy.

The table continues.

21

 Continuing Table 1.
No. Concept Note

2. When loading it, it should be taken care of how to
configure and arrange resources for the application to
enable its working in the end-user terminal device. A
multiple allocation of resources can be avoided when
every individual service exists only once in some
specific interior.

Resource
management
functions are

almost
unsupported

today.

3. The application itself may maintain its function
group of security, advertisement, distribution and
other maintenance according to a predefined strategy
defined by the policy.

• Can these function groups be pointed to be
orthogonal compared to each another -
concerning dimensions of software objects?

• Can the existence of the dimensions of software
objects be proved by means of mini-concepts?

Some of these
features are
presented in
RM-ODP

(Reference
Model for Open

Distributed
Processing) by

its function
groups [12].

4. Applications programmers should program only the
application logic, not the support for distribution.

• Can the consequences of unstable distributed
environment really be masked out totally to offer
programmers to become isolated from the
difficulties of programming for distributed
environment?

• Can we assume that there should be a layer of
application level and the layer of management
level included in underlying systems?

RM-ODP's
distribution

transparencies
[12].

22

1.5 Research problem

A framework to manage the distributed use of a piece of computer software has
to be developed. It should be as follows:

• the user requirements must be examined,

• initial suggestions of concepts and ideas presented in Table 1 must be
evaluated, and if the dimensions can be proved to exist, and - as a
consequence - further management functions to be isolated, then the
functions must be developed further, this thereby leading to the
implementation of the system,

• the concept must be defined on the level of abstractions and further design
models so it can be realised for many purposes, for instance as a test
platform which is easy to understand and deploy,

• definitions for the APIs of the system must be defined, and

• eventually, a demo program for deploying the solution must be presented.

23

2. Requirements analysis
In this chapter, requirements analysis of the system will be carried out.
Requirements tell us what we have to demand from the viewpoint of customers.
When quality was defined in Section 1.1, it was found out that the quality of a
software product is twofold, including 1) the ability to meet the users'
expectations - objective quality was thereby discussed, 2) the ability to meet the
specifications and requirements - the subjective quality was thereby presented.
For the first item, user's expectations of the system will be considered, and for
the second item, the specifications and requirements that may concern the
distributed system will be clarified. The method to be used for the requirements
analysis is the Kano Model. By this, the aim is to combine the objective and
subjective quality requirements and thus provide the data for concept planning in
Chapter 3.

The Kano Model measures the level of satisfaction with a product against the
consumer perceptions of attribute performance. Kano argues that attributes can
be classified into three categories. Definitions may vary by the source, but the
meaning is the same. Definitions of the three categories mentioned are listed
below [13]:

• Performance characteristics exhibit a linear relationship between perceptions
of attribute performance and customer satisfaction. A strong performance on
these 'need' attributes enhances, while a weak performance reduces,
satisfaction with the product or service. Adding more attributes of this type
to a product will also raise customer satisfaction. Examples of performance
characteristics include the duration of rechargeable battery life of a cellular
telephone.

• Excitement characteristics are unexpected attributes that, when provided,
disproportionately generate high levels of customer enthusiasm and
satisfaction. When these 'nice-to-have' attributes are not available in a
product, it does not lead to customer dissatisfaction. Examples of excitement
characteristics include a CD player included as a standard piece of
equipment in an economy car.

24

• Threshold characteristics provide diminishing returns in terms of customer
satisfaction. These are essential or 'must' attributes of performance and do
not offer any real opportunity for product differentiation. Providing
threshold attributes and meeting customer expectations will do little to
enhance overall customer satisfaction, but removing them or performing
poorly on them will damage customer satisfaction. Examples of threshold
characteristics include timely delivery of a magazine subscription, and the
ever-present telephone dial tone.

User needs and nice-to-have requirements will be presented in Section 2.1. To
collect must-requirements, a study of theory, standards and comparable
techniques must be carried out. A set of practical systems will be examined to
find out what the requirements seen by the designers of every practical system
are, and to find out mini-concepts related of the system. This will be done in
Section 2.2. Mini-concepts will be presented in Section 2.3.

2.1 User's requirements as performance and excitement

In this section, BAA (Business Area Analysis) will be carried out. Consequently,
stakeholders and their preferred requirements for the system to be developed will
be found out. These requirements may be considered as the reason for
developing this particular system. At the same time, we will find out the
vocabulary being used with the comparable system that customers refer to.
When the end of the job with implementation has been reached, the software can
be validated against these preferred user requirements.

End-user

Today, from the viewpoint of the end-user of information technology - as an
ordinary consumer - a usual PC with the Internet connection capability used in
homes [14], and on the other hand, the movable, maybe pervasive, handheld or
virtual reality terminal in eye-classes meant for everyone in the future, which
exists in a visionary's mind or on the planning board, both actually demand the
same basic need expressed by the end-user - to enable access to the communion
with information society. The Internet-explosion at the beginning of the 90's
brought many new possibilities for end-users to communicate with each other

25

and to reach and use information services. The end-user could also start to
provide contents in the net by publishing WWW-pages (World Wide Web), and
to communicate globally on a personal level using e-mail. He was provided with
a huge global storage of all kinds of software and information services, but, as a
back impact, the security in using offered services was weakened dramatically.

Software

The concept of executable program mode (EXE) [15] was found to be weak
against all kinds of phenomena which were threatening its integrity. Examples of
these threats include viruses and unauthorised copy. Software viruses or some
other malfunctions or non-functioning of software can cause direct damage - no
software integrity is maintained automatically. Applications programs with
mammoth-illness are too big to be transferred over the network just to try to run
them once and then abandon them, because they have proved to be different
from what end-user thought they would be, or were behaving badly in other
ways, or even did not work at all whereby program is said to be incompatible
with hardware. It could be said that software does not maintain conformity
against changing environments. The EXE-mode is a remainder from the stone-
age of computer technology - programs are distributed by copying them as such
over the network and exactly the same copy of a program may be kept in many
different stores making the use of disk storage resource totally inefficient.
Software is not efficient and economic in using resources.

Maintenance

Software has usually provided a version for many different execution
environments, operating systems or device platforms. There can be different
versions offered even for exactly the same execution environment seemingly just
for fun, or with small improvements to their versions. It is the responsibility of
the maintenance person of an environment to keep different versions counted
and available. Updating software is an established practice in many enterprises
today - software itself does not maintain software consistency against version
changing.

26

Software industry

Investments in software found unpleasant afterwards are common.
Consequently, there is immorality in not following end-user licence agreements,
and global pirate manufacturers culture exists. This is directly decreasing the
productivity of software production and content providing - software does not
maintain licensing and authorising for them.

Society

It is common that people trade products and services. We like the situation when
products and services are advertised or offered to us, so we can make our choice
to get them after we have seen whether the product or service is such as we want
it to be. We can also lease the product, and with services, we like to pay only for
their use, for example, as we pay when we use dentistry services. The situation
with software products and information services should be the same as depicted
with usual consumables. Software products and information services may be
provided by content providers and service providers, as is the case today. These
software products and information services should be treated just like usual
consumables - according to the laws and rules set by society, and equally,
according to contracts between end-user and content or service providers. The
end-user should see himself surrounded by useful and profitable software
applications, which can be deployed just by understanding the business function
of a product - as we understand the function when we go e.g. to the dentist's. All
those applications should be provided with good maintenance and guarantees the
way we demand these on usual products.

The new approach

The technology to be used should have a self-configurability feature - products
should maintain themselves when used in different circumstances. The end-user
should not have to worry about whether the software used has to be updated, or
even whether the software and hardware resources in his terminal equipment are
updated and working - the technology must provide the maintenance without any
end-user intervention. The end-user should always have, even unknowingly,
updated software and even updated hardware support - this may also be a
question of contracts. Furthermore, does the end-user have to be bound to some

27

individual device to maximise the deployment of technology, as is the case with
our desktop computer today? This does not have to be the case; instead, the end-
user should be able to deploy the application with his personal preferred
configuration wherever he happens to be located and whatever device he
happens to use.

Let us take an example: the end-user would like to use his banking services for
checking the account balance - therefore he just takes some terminal equipment,
a public kiosk terminal, a cell phone or whatever compatible device happens to
be near, and will be able to reach and deploy the service wanted with personal
settings for the device type of the terminal and with personal settings for the
service used - this, moreover, with great security and usability.

Summary

In Table 2, the user requirements above are gathered together and then
developed for the table. Requirements are grouped according to the role of the
user behind the request. To follow requirements further, they are labelled as
PEx, where the x is the number of the item.

Table 2. List of preferred user requirements with reference label.

Role Need Lb.

End-user can easily reach and deploy a software product
or information service by using any compatible terminal
equipment, according to a contract.

PE1End-user

End-user gets his personal profiles for the equipment. PE2

End-user gets his personal profiles for a service. PE3

(continues)
End-user has data and access security maintained,
according to a contract.

PE4

The table continues.

28

Continuing Table 2.
Role Need Lb.

End-user
(continuing)

End-user will be provided a vision of the information
environment that offers easy-to-use, and even profitable
applications and services.

PE5

Society Software products or information services are
considered as usual consumables (e.g. in relation to
marketing regulations, product liability or data security).

PE6

Device
provider

Device provider can provide compatible terminal
equipment with maintenance according to a contract.

PE7

Service provider can provide rich applications types the
way end-users are provided with today, but in a
maintained mode.

PE8

Service provider can provide software products or
information services with maintenance according to a
contract.

PE9

Service
provider

Service provider can do business by trading software
products and information services with contracts.

PE10

Content
provider

Content provider can maintain the authorising and
licence information with provided software products or
information services according to a contract.

PE11

2.2 User's requirements as threshold

To clarify the specifications and requirements, which may concern the
distributed system, the theory, standards, and techniques used with practical
systems of the distributed computing area will be examined.

29

2.2.1 Theoretical user requirements

In this subsection the topic of the requirements for distributed system presented
in the theory will be addressed. Grouping of those requirements is presented as
well. Colouris et al. have analysed user requirements for practical distributed
systems [16]. They have placed requirements in three main groups (these do not
reflect any of Kano's groups). The requirements are combined in Table 3. With
the table, Kano's threshold requirements are beginning to be reached.

Table 3. Theoretical user requirements by Colouris et al.

Category Requirement Notes

The economy and convenience in
sharing hardware resources and
information.

Support for a new kind of
functionality of applications, such as
CSCW (Computer Supported Co-
operative Work).

Economy
and
convenience

Easy API for application
programmers.

Transition Adapt existing investments for
software and systems.

Adapt existing applications.

Functionality - what the
system should do for
users.

Migration

Adapt existing operating systems.

The table continues.

30

 Continuing Table 3.
Category Requirement Notes

The ability to accommodate short-
term changes e.g. failure, load or
replacement of a component.

Reconfigurability - the
need for a system to
accommodate changes
without causing
disruption to existing
service provision.

Reconfi-
gurability

The ability to accommodate medium-
to-long terms evolution of software,
hardware or infrastructure.

Performance A fast and consistent response to the
user's interaction and the impact of
communication, when it is presented
on the user's screen.

Reliability
and
availability

A measure of how small is the
likelihood of the system deviating
from behaving as it was designed to
do.

Quality of service - user
perception of a system.

Security Protection of users, data and systems
against unauthorised, maybe
malicious access.

2.2.2 Standards

There are two kinds of standards organisations: 1) international treaty-based
standards organisations whose task is to develop standards to enable
international trade - this include, most notably, ISO (International
Standardisation Organisation) and ITU-T (International Telecommunication
Union - Telecommunication standardisation sector), and 2) industrial consortia
to be formed to develop and promote particular standards. Also, there are
standards which have emerged from the market place through having achieved a

31

certain level of market penetration; examples include the "IBM-compatible"
personal computer and the Java programming environment.

Standards produced by recognised standards organisations are referred to as de
jure because their status is defined via treaties. In contrast, standards that emerge
from the market place are referred to as de facto standards. Standards produced
by consortia such as OMG (Object Management Group) are also classed as de
facto, because these consortia have no international status as standards
organisations.

A number of standardisation activities are addressing the issues of open
distributed processing. These are [12]:

• OSI (Open Systems Interconnection) reference model adopted by ISO is a
conceptual model for seven-layer protocol stack for inter-net working. The
OSI Reference Model was adopted in order to encourage the development of
protocol standards that would meet the requirements of open systems.

• RM-ODP [17] is a joint standardisation activity by both ISO and ITU-T. The
standard provides an object-oriented system specification methodology
based on the concept of viewpoints together with a vocabulary and grammar
for describing a distributed system from each viewpoint.

• CORBA (Common Object Request Broker Architecture) is a standardisation
activity promoted by OMG [18]. OMG is a non-profit organisation
sponsored by several of IT (Information Technology) and
telecommunications companies with the specific aim of promoting an open
object-oriented framework for distributed computing. The particular goal of
CORBA is to provide the mechanisms by which objects transparently
interact in a distributed environment.

• The Open Group' DCEs (Distributed Computing Environment) is a
standardisation activity sponsored by the Open Group. The Open Group, like
OMG, is a non-profit organisation sponsored by a number of IT and
telecommunications companies with the aim of promoting computing
standards. DCE is an operating system-independent and network-
independent software platform to achieve open distributed processing. In

32

contrast to RM-ODP and CORBA, DCE supports simple client-server
architecture - it does not support object-oriented abstractions. It is not
considered in this document.

When RM-ODP was developed in the ANSA-project (The Advanced Network
System Architecture Project) the results were concurrently implemented in the
FlexiNet project and in its extension for the mobile object computing - the
FollowMe project [19]. Another example of the specialisation of the
architectures above is the TINA (Telecommunication Information Networking
Architecture) which is currently being developed by the TINA consortium
(TINA-C) [20, 21] consisting of a number of leading telecommunications
companies. This architecture is based closely on RM-ODP, but with a
specialisation to meet the particular demands of the telecommunications
industry.

ISO/OSI Reference Model

The OSI Reference Model was adopted in order to encourage the development
of protocol standards that would meet the requirements of open systems. Layers
are explained in Table 4. The table is combined from the sources [2] and [22].
The last column shows the TCP/IP-protocol family interpretation of layers [23].
Borders between layers when compared with the pure OSI Reference Model and
TCP/IP-stack must be considered as a conceptual presentation.

Table 4. OSI protocol summary.

ExamplesLayer Description
OSI TCP/IP

Application
(7)

Protocols that are designed to meet the
communication requirements of

specific applications, often defining
the interface to a service.

X.400,
X.500

HTTP,
FTP,
Telnet

The table continues.

33

Continuing Table 4.
ExamplesLayer Description

OSI TCP/IP
Presentation

(6)
Protocols at this level transmit data in

a network representation that is
independent of the representations

used in individual computers, which
may differ. Encryption is also

performed in this layer, if required.

ASN.1,
encryption

ASCII

Session (5) At this level communication between
processes is established and error
recovery is performed. It is not

required for connectionless
communication.

RPC

Transport (4) This is the lowest level at which
messages (rather than packets) are

handled. Messages are addressed to
communication ports. The protocol in
this layer may be connection-oriented

or connectionless.

TCP,
UDP

Network (3) Transfers data packets between
computers in a specific network.

X.25 IP

Data link (2) Responsible for error-free transmission
of packets between computers which

are directly connected.

HLDC,
CSMA/CD

Physical (1) Circuits and hardware that drive the
network.

X.21

Shueu et al. [24] point out that it seems like everything that is not in the lower
six layers has been pushed into the application layer and suggests a modification

34

of OSI reference model for distributed information systems. The suggested
model is presented in Table 5.

Table 5. Possible modification of OSI reference model by Shueu et al.

OSI perspective Layer Information systems perspective

Ultimate user (end-user)

Information system levels Information and data services

Application

Presentation

User oriented

Session

Syntactic user interfacing

TransportEnd-to-end
connection
oriented Network

Data link
Point-to-point
link oriented

Physical

Network transport services

ISO/RM-ODP Reference Model

The aim of RM-ODP is to "enable the development of standards that allow the
benefits of distribution of information processing services to be realised in an
environment of heterogeneous IT resources and multiple organisational
domains". RM-ODP itself does not prescribe particular standards for open
distributed processing. Rather, it provides a framework (in terms of architectural
concepts and terminology) to enable specific standards to emerge. RM-ODP
should thus be considered a meta-standard for open distributed processing. It is
therefore essential in the definition of RM-ODP to be sufficiently generic to
enable a range of standards to be accommodated within this framework. The

35

main value of RM-ODP is thereby in providing a common set of concepts for
the broader field of open distributed processing. The interested reader can turn to
the specific literature for a more detailed introduction [12]. It is worth noting
that many of the ideas described below were developed initially in the ANSA
project [25]. This work also produced a prototype platform, ANSAware, as a
partial implementation of the ANSA architecture. Major concepts in RM-ODP
are:

• OO approach,

• viewpoints and viewpoint models,

• distribution transparency, and

• RM-ODP functions.

Object-oriented approach is adopted by RM-ODP for the specification of
distributed systems. The arguments in favour of this approach are summarised
below [12]:

• Encapsulation is the natural approach to developing distributed applications.

• Data abstraction provides a complete separation between specification and
implementation of objects, thus enabling design in terms of interfaces.

• The separation between specification and implementation also enables the
system to evolve naturally by allowing an object to be replaced by an
alternative implementation (as long as the interface remains the same).

• Object-oriented systems are completely extensible in that new classes and
objects can be added at any time.

• The concepts of implementation and interface inheritance support the reuse
of code and interfaces respectively.

• The concept of sub-typing provides flexibility in selecting services in a
distributed environment.

36

Viewpoints are used to partition a distributed system specification. RM-ODP
defines five viewpoints: the Enterprise, Information, Computational,
Engineering and Technology Viewpoints. Each viewpoint has a corresponding
viewpoint model and is a complete and self-contained description of the required
distributed system targeted towards a particular audience with the proper
terminology. Viewpoints are projections on to the underlying system. In Figure 3
[12] there is an illustration of the example of correspondence between the
computational viewpoint and the engineering viewpoint.

Node 2Node 1

Capsule Capsule

Channel

ClusterCluster
Basic

engineering
object

Basic
engineering

object

StubStub

Binder Binder

Protocol Protocol

Computational
object

Binding
object

Computational
object

Computational view
Engineering view

Nucleus Nucleus

Channel
controller

Figure 3. Example of correspondence between computational and engineering
viewpoints.

The viewpoints and models are given in Table 6 [12].

37

Table 6. RM-ODP viewpoints and models.

Viewpoint What does it address Modelling concepts

Enterprise Business concerns Contracts, agents, artefacts, roles
and so on.

Information Information,
information flows and
associated processes.

Objects, composite objects,
schemata (static, dynamic,

invariant)

Computational Logical partitioning of
distributed applications

Object, interface, environmental
contracts and so on.

Engineering Distributed
infrastructure to support

applications.

Stubs, binders, protocol objects,
nodes, capsules, clusters and so on.

Technology Technology
procurement and

installation.

Implementation, conformance
point, IXIT

Distribution transparency is the ability to mask out problems occurring in the
distributed environment. A high level of distribution transparency therefore
implies that the programmer does not need to be aware of the distributed nature
of the system. This can be highly beneficial because it reduce the complexity of
distributed programming. The approach in RM-ODP is to support selective
transparency whereby the programmer can elect a given level of transparency.
As mentioned above, the requirements for distribution transparency are
expressed in the Computational Model as part of the environmental contract.
The Engineering Model is then responsible for meeting the desired level of
transparency by employing the required number of transparency functions.

A summary of the distribution transparencies defined in RM-ODP is given in
Table 7 [12]. It should be noted that this list is not intended to be exhaustive;
further transparencies can therefore be introduced for particular application
domains.

38

Table 7. Distribution transparencies (Transp.) in RM-ODP.

Transp. Concern Effect

Access Means of access to
objects

To mask out differences in data
representation or invocation.

Location The physical location of
objects

To enable objects to be accessed by a
logical name.

Failure The failure of an object To mask out this failure from the
user through an appropriate recovery

scheme.

Migration The movement of
objects

To mask out the fact that an object
has moved.

Relocation The movement of
objects involved in
existing interactions

To mask out the fact that an object
has moved from the other interacting

objects.

Replication Maintaining replicas of
objects

To hide the mechanism required
maintaining consistency of replicas.

Persistence To maintain persistency
of data across
interactions

To mask out the mechanisms
required maintaining persistency of

data.

Transaction Maintaining consistency
of configurations of

objects

To hide the mechanisms required
maintaining consistency of

configurations.

39

RM-ODP functions fulfil a number of different purposes in RM-ODP. For
example, the standard defines a trading function to act as a broker for services in
the distributed environment. The trading function enables objects to make
interfaces available by exporting a service offer to the trader. An object wishing
to interact with a service interface must import the interface by specifying a set
of requirements in terms of service type and related constraints. This will be
matched against the available services and a suitable candidate selected. It needs
to be also noted that any number of traders can exist in a given distributed
system and these may be linked to allow access to services in different domains.
The complete set of functions defined in RM-ODP is summarised in Table 8 [12].

Table 8. Functions in RM-ODP.

Area Specific function Concern

Node
management

Manages resources of a node, including
threads and clocks.

Object
management

Check-pointing and deletion of objects

Cluster
management

Checkpoints, recovers, migrates,
deactivates or deletes clusters.

Management

Capsule
management

Creates instances, checkpoints or
deactivates associated clusters and deletes

capsules.

Coordination Event notification Records and makes available event
histories.

(continues)
Check-pointing
and recovery

Overall coordination for check pointing and
recovery of clusters.

The table continues.

40

Continuing Table 8.
Area Specific function Concern

Deactivation and
reactivation

Overall coordination for deactivation and
reactivation of clusters.

Groups Coordinates the interaction of objects in
multiparty binding.

Replication Coordinates interaction in a replica group.

Migration Coordinates the migration of clusters
between capsules.

Interface
reference tracking

Maintains information on interface
references.

Transaction Coordinates set of operations to ensure
visibility, recoverability and permanence.

Coordination
(continuing)

Storage Provides the storage for data.

Information
organisation

Supports querying and modification of
information schema and data.

Repository

Relocation Supports relocation transparency through a
relocator object.

Type repository Maintains a repository of type
specifications and relationships.

(continues)
Trading Supports advertising and discovery of

interfaces.

The table continues.

41

Continuing Table 8.
Area Specific function Concern

Repostitory
(continuing)

Access control Prevents unauthorised interaction on
interfaces.

Security audit Monitors and collects security information.

Authentication Confirms the identity of an object

Integrity Prevents unauthorised creation, alteration or
deletion of data.

Confidentiality Prevents unauthorised disclosure of
information.

Non-repudiation Prevents the denial of an object from
having participated in an interaction.

Security

Key management Manages cryptographic keys.

OMG/CORBA

CORBA [26, 27, 28] is OMG's open, vendor-independent architecture and
infrastructure that computer applications use to work together over networks.
Using the standard protocol IIOP (Internet Inter-ORB Protocol), a CORBA-
based program from any vendor, on almost any computer, operating system,
programming language, and network, can interoperate with a CORBA-based
program from the same or another vendor, on almost any other computer,
operating system, programming language, and network.

42

2.2.3 State-of-the-practice

In this subsection, the existing distribution concepts and techniques will be
discussed. The techniques covered here are restricted so that the selected
techniques will, as far as possible, represent all the techniques of the distributed
computing in all the categories in the market today. Only the techniques that are
most relevant for the purpose of this study will be concentrated on.

There is no perfect system on the market, and such may never come to exist.
Different concepts of the distributed services in the network 1) realise different
sets of the demanded requirements, 2) consider different sets of technical aspects
that different environments may set up, 3) still respect the subjective opinion of
the inventors or the developers of these techniques. Especially, an attempt will
be made to find out the user requirements behind the design of every particular
system and, on the other hand, the practical technical features by which the user
requirements have been demanded.

The UNIX X-Window system deploys very traditional fat-client/server
techniques. The Terminal Server solutions, which consider Citrix MultiFrame
and Microsoft Terminal Server, introduce the server-based computing
architecture model. Distributed application execution environments (also called
Application server) are represented by the Oracle Application Server [29]. It
introduces an Internet-based computing model. However, we do not include this
technique in our presentation here; instead, we do include the very new
technique of Microsoft.NET. The common feature between these techniques is
that the application can be extended to be used through network by an Internet-
browser such as Netscape Navigator or Internet Explorer.

The .NET-concept has adopted many features introduced by Jini before, but may
still add some extra value on the original concept of Jini. This is because of its
ability to enable the applications of the large and rich Microsoft software family
to inter-operate through distributed environments by distributing some part of
them. It is assumed here that the common features of Jini and .NET are the same
that will be needed in our solution as well. As an example of the common
features, the concept of proxy needs to be mentioned. Also, many applications
which are intended to be used to make group-work more efficient, i.e. CSCW-
software such as Lotus Notes or Microsoft Exchange, include many features by

43

which the user can distribute their own application, therefore these can be
considered to be application servers of some kind. The .NET-technique also
extends the Microsoft-application family with an ability to distribute some part
of them through network, and these distributed parts will exist embedded in an
Internet-browser window, as Java-applets do. The ASP (Active Server Page)
technique is used for this purpose. Furthermore, we would like to introduce two
more techniques: Mobile Station MExE (Application Execution Environment),
and OSGi (Open Services Gateway Initiative). These techniques are directed to
different sectors of the market, MExE for mobile terminal and OSGi to distribute
home services. OSGi resembles the solution introduced in the LONTONEXTG
student project [10].

Distributed software components and objects are the building parts of distributed
applications. Therefore, they must be made manageable. Someone may think
that the existing distributed object techniques, like CORBA, already provide the
answer to the specific research problem under scrutiny here. However, although
these objects are significant, they do not solve the management problem in
question.

UNIX's X-Window System

The standard protocol for graphically based UNIX-based applications is the X11
protocol [30]. The X-Window System environment is based on the typical
distributed processing model - client/server. A fundamental concept of the X-
Window System is the separation of processing the algorithm (X Client) from
the handling of user interactions on the display, keyboard, and mouse (X
Server). These are two different programs, which may run on the same physical
processor or on two different systems. If they are separated on distinct machines,
they require a communication link.

The X Server application, which typically resides on the client side, provides the
following functions:

• manages the output on the monitor,

• manages the keyboard and mouse input,

44

• manages the input/output queues,

• handles the communication between the X Server and the X Client,

• stores off-screen data, and

• downloads fonts.

The presentation of an X-Windows-based application is dependent on the X
Server. The X-Windows environment is more than just a network protocol; it’s
also an application development paradigm. Applications are developed using the
X-Windows toolkit, just as Windows-based applications are developed using the
Windows SDK (Software Development Kit). Because the X-Windows protocol
represents fat client architecture, the client requires a considerable amount of
processing power.

Server-based computing by Citrix

Citrix Systems, Inc. [31] has been developing thin-client architectures and
application servers. Two core technologies form the foundation for Citrix's
application server solutions: 1) ICA (Independent Computing Architecture),
which centralises all application processing on the server, delivering cost and
performance benefits through single-point application management, reduced
bandwidth requirements, support for virtually any platform or device, and
improved security, and 2) MultiWin, which allows multiple concurrent users to
log on and run applications in separate, protected Windows sessions from a
single server. Server-based computing is a model, in which 100% of
deployment, management, support and execution of applications are carried out
on a server. The model uses a multi-user operating system and a method for
distributing the presentation of an application's interface to a client device. With
server-based computing, client devices, whether "fat" or "thin", have instant
access to applications via the server. Applications are centrally managed and can
be accessed by users, without having to rewrite them.

Table 9 presents a list of some challenges that can be seen accomplished by
server-based computing [31]:

45

Table 9. Challenges of enterprise-wide application deployment.

Challenge Note

Management Managing and supporting users in a timely and cost-effective
manner.

Access Extending access to business critical applications to dispersed
users - regardless of connection, location or device.

Performance Ensuring exceptional application performance.

Security Providing tight security for enterprise level computing.

Microsoft Terminal Server

With Windows NT Server 4.0 operating system, Microsoft published a new
product - Windows-based Terminal Server (code-named Hydra) adds UNIX-like
multi-user capabilities and support for thin-client Windows-based Terminals to
the Windows NT Server 4.0 operating system [30]. MultiWin, the technology
licensed by Citrix to Microsoft to create the Terminal Server, enables multiple
users to simultaneously access applications running on a server.

Terminal Server environment is, by definition, a thin-client architecture where
all application processing occurs centrally on the server. Terminal Server
consists of three primary components, viz. of:

• the Windows NT Server multi-user core,

• the RDP (Remote Desktop Protocol), and

• the "super-thin" Windows-based client software.

Based on a multi-user server core that provides the ability to host multiple,
simultaneous client sessions on Windows NT Server, Terminal Server can
provide remote access to a 32-bit Windows NT–based desktop for a number of

46

Windows-based and non-Windows-based hardware. Standard Windows-based
applications do not need modification to run on the Terminal Server and almost
all Windows NT–based management infrastructure and technologies can be used
to manage the client desktops.

RDP is an essential component of the Terminal Server. It allows a super-thin
client to communicate with the Terminal Server over the network. This protocol
is based on the ITU T.120 protocol, an international-standard multichannel
conferencing protocol already an integral component of the Microsoft
NetMeeting conferencing software product. Encrypted sessions are also
supported in this protocol. Integrating the third-party add-on Citrix MetaFrame,
Terminal Server can be expanded to communicate to a variety of thin-client
devices. The ICA protocol stack can also be run on a traditional "fat client" or
even through ICA-enabled Web browsers. With this flexibility, organisations
can achieve a critical goal - to provide application access to any clients
regardless of their platform.

Microsotf.NET

Microsoft.NET remoting provides a framework that allows objects to interact
with one another across application domains. The framework provides a number
of services, including activation and lifetime support, as well as communication
channels responsible for transporting messages to and from remote applications.
Some details of these services have been combined in Table 10.

Formatters are used for encoding and decoding the messages before they are
transported by the channel. Applications can use binary encoding where
performance is critical, or XML (Extended Mark-up Language) encoding where
interoperability with other remoting frameworks is essential. All XML encoding
uses the SOAP (Simple Object Access Protocol) in transporting messages from
one application domain to the other. With SOAP, data stream is transported to
the target URI (Universal Resource Identifier) using the HTTP (HyperText
Transfer Protocol). The interested readers are encouraged to continue with the
source reference [11].

47

Table 10. Services of the .NET-framework.

Service Explanation

Remote
Objects

One of the main objectives of any remoting framework is to
provide the necessary infrastructure that hides the complexities of
calling methods on remote objects and returning results. Any
object outside the application domain of the caller should be
considered remote, even if the objects are executing on the same
machine.

Proxy
Objects

Proxy objects are created when a client activates a remote object.
The proxy object acts as a representative of the remote objects
and ensures that all calls made on the proxy are forwarded to the
correct remote object instance.

Channels Channels are used to transport messages to and from remote
objects. HTTP Channel transports messages to and from remote
objects using the SOAP protocol. All messages are passed through
the SOAP formatter, where the message is changed into XML and
serialised, and the required SOAP headers are added to the stream.
The binary formatter can also be specified, which results in a
binary data stream. TCP Channel uses a binary formatter to
serialise all messages to a binary stream and transporting the
stream to the target URI using the TCP protocol.

Activation The remoting framework supports server and client activation of
remote objects. Server activation is normally used when remote
objects are not required to maintain any state between method
calls. It is also used in cases where multiple clients call methods
on the same object instance and the object maintains state between
function calls. On the other hand, client-activated objects are
instantiated from the client, and the client manages the lifetime of
the remote object by using a lease-based system provided for that
purpose.

The table continues.

48

Continuing Table 10.
Service Explanation

Object
Lifetime

with
Leasing

Each application domain contains a lease manager that is
responsible for administrating leases in its domain. All leases are
examined periodically for expired lease times. Using leases to
manage the lifetime of remote objects is an alternative approach to
reference counting, which tends to be complex and inefficient
over unreliable network connections. Although one could argue
that the lifetime of a remote object is extended longer than
required, the reduction in network traffic devoted to reference
counting and pinging clients makes leasing a very attractive
solution.

MExE

MExE (Mobile Station Application Execution Environment) is a wireless
protocol that is designed to be incorporated into smart mobile phones [32, 33].
MExE:

• aim is to provide a comprehensive and standardised environment on mobile
phones for executing operator or service provider specific applications,

• is designed as a full application execution environment on the mobile
terminal,

• builds a Java Virtual Machine into the client mobile phone,

• is designed to be used to provide sophisticated intelligent customer menus
and also facilitate Intelligent Network services,

• plans to integrate mobile phone location services,

• supports a wide range of man-machine interfaces such as voice recognition,
icons and softkeys, and

49

• supports device profiles by defining the "classmark" properties of terminal
devices.

MExE shares several similarities with the WAP (Wireless Application Protocol)
[34] in that both protocols have been designed to work with a range of GSM
(Global System for Mobiles) mobile network services from SMS (Short
Message Service) to GPRS (General Packet Radio Service) and later with
UMTS (Universal Mobile Telecommunications System). Whereas WAP
incorporates some scripting, graphics, animation and text, MExE allows full
application programming. This necessitates the need for MExE to include a strict
security framework to prevent unauthorised remote access to the user's data.
Because programming and running Java applications requires significant
processing resources on the mobile client, it is primarily aimed at the next
generation of powerful smart telephones. On the other hand, MExE terminals
can also include today’s regular telephones, because MExE incorporates a
capability indication method called classmarks. MExE classmarks define the
MExE-related services that a particular terminal supports. There will be
classmarks that match and those that exceed WAP functionality. The MExE
mobile client can inform the MExE server of its classmark and therefore its
capabilities.

Development of the initial MExE protocols is being carried out in SMG4. SMG4
is the GSM standards setting body of the European Telecoms Standards Institute
(ETSI) [35], a standardisation group responsible for GSM data. Supporters of
this work include Motorola, Nokia, Lucent Technologies and Nortel (with the
concept Nortel Orbitor smart telephone in line with the MExE concept).

MExE will be available later than WAP because the processing power to run the
Java applications is not currently available in mobile terminals.

OSGi

The OSGi [36] is a Non-Profit corporation organised in the USA, and supported
by 60 companies worldwide. It defines a set of APIs and provides a sample
implementation of service gateway architecture. This services gateway is
inserted between the external network and internal network and devices. The
Services Gateway inserts a new value point into home networks that will

50

facilitate the development and deployment of a wide range of advanced network
based services. Service providers will be delivering just-in-time value added
services to this services gateway and this gateway will provide a service
distribution, integration and management point in a SOHO / ROBO (Small
Office/Home Office and Remote Office/Branch Office) or residence. OSGi is
targeted not only towards the residential gateway marketplace, but towards also
the SOHO/ROBO market.

Mixture of Distributable Objects

Re-usable software components and objects [37] are the key factor to increase
In-house resources of software houses (or enterprises) and as a consequence, add
productivity of the software production. There will be more and more
application software built by using existing software components with re-
usability in mind. These components may need modifications, and modifications
further increase resources.

There has been a development from simple re-usable software components to
building up component libraries for different purposes. Yet, these libraries are
developed so that an individual component in the library can be easily extracted
and then modified or customised to match the particular needs. Examples
include Java Beans and OCX-controls (Object Linking and Embedding - OLE
custom controls). On the top of this development hierarchy there stand the high
power development tools like JBuilder or Visual Basic. For the reader, the
source [38] includes the full collection of information needed to examine this
issue further.

After the copy and paste method to re-use components had been passed, the next
generation techniques were appearing. The software componentisation was
developed so that it was possible to combine applications from living software
objects, i.e. from objects that were initialised beforehand, and were already
working somewhere in the network. Their services only need to be used. The
services are known by some interface-techniques and we do not need to know
how the object actually produces the service. The term remote interface is used
in this context. It is possible to speak about server components - a distributed
object acts like a server. Examples include JavaRMI, CORBA and DCOM-
models. The source [39] includes an all-out comparison of these techniques.

51

Improvements of availability and usability to deploy these server components
have been made by collecting them together in containers. The container
structure assists in serving the objects. Examples include MTS (Microsoft
Transaction Server) and EJB (Enterprise JavaBeans). CORBA has been
supported in version 3 by the CCM (Corba Component Mode) [40], and it is
compatible with the EJB-model in such a way that CCM can deploy the Java
Beans. Arrangements of container structure can easily support different
transparency features such as transaction, relocation, failure and so on. However,
the access and location transparencies demand (so called network
transparencies) will not be fulfilled. It is possible to serve resources as they are
in a resource pool, making the resource pooling possible. The source [41]
includes a very detailed comparison of these container structures.

Still, there is the problem of how the different object models can inter-operate.
Some gateway arrangements do exist, like DCE/CORBA [42], which connects
the object-oriented world to the traditional client-server world.

In the distributed software environment, application programs become more and
more based on the components (or living objects). All problems that exist with
deployment of distributed objects will exist on the application level as well as on
the management level of software.

A new paradigm in Distributed Computing - Jini

Jini's ability to support spontaneously created, self-healing communities of
services is based around five key concepts. The concepts are presented in Table
11 [1].

To use a service, a person or a program locates it using the lookup service. The
service's object is copied from the lookup service to the requesting device where
it will be used. The lookup service acts as an intermediary to connect a client
looking for a service with that service. Once the connection is made, the lookup
service is not involved in any of the resulting interactions between that client and
that service.

52

Table 11. The five key concepts of Jini.

Concept Explain

Discovery Discovery is the process used to find communities on the
network and join them. Discovery is responsible for the
spontaneous community-building properties of the system.

Lookup Lookup fulfils the role of a directory service within each Jini
community, and provides facilities for searching and finding
services that are known within a community.

Leasing Leasing provides Jini's self-healing nature.

Remote
Events

Remote events are the paradigm Jini uses to allow services to
notify each other of changes in their state. Because lookup is a
service, it can use remote events to notify interested parties when
the set of services available to a community has changed.

Transactions Transactions are mechanism for allowing computations that may
involve multiple services to reach a "safe" state. Transaction
model helps guard against the failures in a distributed system,
helps address the concurrency problems posed by distributed
systems and provide services with a resilience to network
failures.

The Java programming language is the key to making Jini technology work.
Devices in a network employing Jini technologies are tied together using Java
RMI (Remote Method Invocation) [43]. The discovery and join protocols, as
well as the lookup service, depend on the ability to move Java objects, including
their code, between Java virtual machines. Jini's leasing and transaction
mechanism provide resilience in a dynamic networked environment.

53

The Jini design centre

The Jini design centre is the set of areas that the Jini designers felt were the most
important to focus on (Table 12) [1]. The table will be used when the presented
solution will be evaluated in Chapter 7.

Table 12. The Jini design centre.

Point Explanation

Simplicity Jini adds only a thin veneer on Java to allow devices and
services on the network to work with each other more easily. Jini
is about how services connect to one another - not about what
those services are or what they do or how they work. Jini
services can be written in a language other than Java; the only
requirement is that there exists, somewhere on the network, a bit
of code that is written in Java that can participate in the
mechanisms Jini uses to find other Jini devices and services.
Everything - even a device such as a scanner or printer or
telephone - is really a service. Hardware devices can be
understood in terms of the interfaces they present to the world.

Reliability Jini provides the infrastructure that allows the services to find
and use one another on a network. The concept of a name server
like the Internet's DNS (Domain Name Service) or the LDAP
(Lightweight Directory Access Protocol) or ISO's X.500
directory service protocol are usually considered to carry this
responsibility. The spontaneous networking abilities of Jini
mean that the configuration of the network can be changed
without involving system administrators, and the ability to take
advantage of devices previously unknown in a Jini community
means that there is no need for driver or software installation to
use a particular service (other than the installation of the core
Jini software itself, of course).

The table continues.

54

Continuing Table 12
Point Explanation

Scalability Groups of Jini services join in co-operating sets. In Jini, these
groups of services are called communities; all services in a
community are aware of each other and able to use each other.
Jini services band together to form communities. Jini addresses
scalability through federation. The size for a single Jini
community is about the size of a workgroup - the number of
printers, PDAs, cell telephones scanners, and other devices and
network services, needed by a group of people.

Device
agnosticism

Jini is agnostic with regard to devices. It means that Jini is
designed to support a variety of entities that can participate in a
Jini community. These "entities" may be devices, or software or
some combination of both; in fact, it is generally impossible for
the user of one of these things to know which it is. To use
something whether that something is hardware or software, only
the interface it presents must be understood. Jini does not require
that the device or service be written in or understands Java, all
that is required is that some Java-speaking device be willing to
act as a proxy on behalf of the Java-challenged device or service.

55

2.2.4 Harvest of the user requirements as Threshold

The user requirements to be set as Kano's threshold values are listed in Table 13.
The sources of every item are listed, too. To follow requirements further, they
are labelled as Trx, where the x is the number of the item.

Table 13. Threshold user requirements.

Category Requirement Notes Source Lb.

Access Extending access to
applic. to dispersed users

- regardless of connection,
location or device.

Table 10 Tr1

The economy and
convenience in sharing
hardware resources and

information.

Table 3 Tr2

Support for a new kind of
functionality of

applications (e.g. CSCW).

Table 3 Tr3

Economy
and
convenience

Easy API for application
programmers.

Table 3 Tr4

Transition Adapt existing
investments.

Table 3 Tr5

Adapt existing applic. Table 3 Tr6

Functionality -
what the system

should do for
users.

Migration

Adapt existing operating
systems.

Table 3 Tr7

The table continues.

56

Continuing Table 13.
Category Requirement Notes Source Lb.

The ability to
accommodate short-term
changes e.g. failure, load

or replacement of a
component.

Table 3 Tr8Reconfigur-
ability - the
need for a
system to

accommodate
changes without

causing
disruption to

existing service
provision.

Reconfigur-
ability

The ability to
accommodate medium-to-

long-term evolution of
sw, hw or infrastructure.

Table 3 Tr9

Management Managing and supporting
users in a timely and cost-

effective manner.

Table 10 Tr10

Ensuring exceptional
application performances.

Table 10 Tr11Performance

A fast and consistent
response to the user's

interactions.

Table 3 Tr12

Quality of
service - user

perception of a
system.

Reliability
and
availability

A measure of how small
is the likelihood of the
system deviating from

behaving as it was
designed to do.

Table 3 Tr13

Security

(continues) (continues)

Providing tight security
for enterprise level

computing.

Table 10 Tr14

The table continues.

57

Continuing Table 13.
Category Requirement Notes Source Lb.

Providing tight security
for enterprise level

computing.

Table 10 Tr14Quality of
service

(continuing)

Security
(continuing)

Protection of users, data
and systems against
unauthorised, maybe

malicious access.

Table 3 Tr15

2.3 Mini-concepts

Mini-concepts found are presented in Table 14. The source of every Mini-
concept is also presented. Mini-concepts are based on the study of standards in
Subsection 2.2.2 and State-of-the-practice in Subsection 2.2.3. Not all the Mini-
concepts have to be presented, some are pointed in order to establish the Big-
picture. The more there are Mini-concepts presented and handled later in QFD-
analysis, the more certain it is that the solution presented is correct one.
However, the number of the items in QFD-matrix is limited, for practical
reasons. The following presents the reference labels again.

Table 14. Some Mini-concepts (M-c) in realised distributed systems.

Mini-concept Source technique Lb.

Program logic is processed only on client-side Fat-client/server
computing

M-c 1

Program logic is processed only on server-side Server-based
computing

M-c 2

The table continues.

58

Continuing Table 14.
Mini-concept Source technique Lb.

Services join communities represented by the
directory service

Jini Join-protocol M-c 3

Directory services contain more directory
services banding up the federations

Jini Lookup service M-c 4

Directory service has a capability of
containing simple attributes

X.500 directory
service

M-c 5

Directory service has a capability of
containing a client program logic

Jini Lookup service M-c 6

Directory service has a capability of
containing a description of client program

logic

UPnP (not
included)

M-c 7

Server-side program logic and client-side
program logic can use different executable-

code modes

Jini, .NET M-c 8

Thin or super-thin client with event and user
screen transfer

Server-based
computing

M-c 9

Movable description of client-side program
logic

XML M-c 10

Movable object contains client-side program
logic with run-time attributes

Jini's proxy, the
proxy of the .NET

M-c 11

Program logic can be defined to run on client-
side or server-side at the programming time

ASP, Jini M-c 12

The table continues.

59

Continuing Table 14.
Mini-concept Source technique Lb.

Services form into communities Jini Discover-
protocol

M-c 13

Client-side program logic run-time condition
is to be initialised when application is starting

Jini's proxy,
Server-based
computing

M-c 14

Client-side program logic is secure against
modification

JVM M-c 15

Strategies to maintain resources can be set by
means of management policy

RM-ODP M-c 16

Application program logic can be programmed
without programming the support for

distribution of the code

RM-ODP
Distribution

transparency, .NET

M-c 17

The distribution transparency is arranged by a
binding object

RM-ODP's binding
objects

M-c 18

Different capabilities of terminal devices are
classified by the device profiles

MExE M-c 19

The flexible channel structure enables the
communication

RM-ODP, .NET M-c 20

The proxy object represents the application in
the distributed environment

Jini, .NET M-c 21

60

2.4 Summary

In the past chapter the requirements specification of the system was completed.
The Threshold attributes of the Kano's Model in the Requirements Specification
were thereby discussed. The Threshold requirements found are listed in Table
13, and they will be used accompanied by the Excitement and Performance
requirements of the users presented in Table 2 to drive the selection of the
system properties as the study progresses. By this, the system quality is ensured
before actually doing anything. Thereby, objective quality has been discussed.

Apart from the user requirements, there is the other group of requirements to
take into account - the requirements that are set by the existing technical
environment. Part of these technical requirements is due to the standardisation,
and part is due to the requirements of compatibility with the mainstream. The
standardisation factors of de jure and de facto have been introduced.
Furthermore, there are requirements wihch are a consequence of some technical
limitations that must be considered. The technical requirements will be
sharpened and defined further as the development of the system progresses, but
the requirements of the users will still drive the selection of the technical
features.

It was found out that the RM-ODP reference model is actually the only ISO-
standard in the area that must be taken into consideration. Still there are other
'standards' which are even stronger than RM-ODP. However, many of these
other de facto standards are built on RM-ODP or are of the same origin. RM-
ODP supports the view on the distributed system from five viewpoints (Table 6).
Every viewpoint represents the system in a complete form, but they are targeted
towards a particular audience. RM-ODP also defines a number of functions that
are necessary to support a comprehensive RM-ODP platform. This can be
considered to support the presented suggestion of the dimensions of functions
group in the distributed system. RM-ODP also suggests the arrangement of the
binding object (Figure 6) to hide the distributed environment, which is unstable
by nature, from the application programs, which must be made stable.

At the same time, OOA has been completed and many candidates of system
objects and classes especially with RM-ODP have been found. This is the

61

natural cause of the fact that RM-ODP is a reference standard for distributed
systems. The model is criticised of being too complex, but still it saved us from
'invent the wheel again' phenomenon. The results of the OOA will be deployed
in the design phase in Chapter 5.

Furthermore, the State-of-the-practice section has been dealt with. Its aim was to
find out the mini-concepts and the user requirements, not to compare the
presented techniques. This is according to the established tactic. The results were
carefully tabled to be used in the concept design in the next chapter. Many of the
examined things belong to the OOA analysis and they will be used when the
solution is to be realised in the later chapters. Mini-concepts were equally
covered. The user requirements in Table 2 and Table 13 and the mini-concepts
in Table 14 will be used in the next chapter as the data of the conceptual
planning of the system. As the development of the system progresses over the
design phase, the results will be checked against (and iterated over) this phase.

62

3. Conceptual planning
In this chapter, the conceptual solution is to be defined. As shown in the Road
Map, QFD-method is to be applied [3]. The QFD-method is a quality
management technique that translates the needs of the user into the technical
requirements for a product. QFD concentrates on maximising user satisfaction.
To accomplish this, QFD emphasises the understanding of what is valuable to
the user and subsequently, the deploying of these values throughout the
engineering process. When the method is applied, it does not matter how the
information about user requirements, and on the other hand, how the technical
requirements, both needed for the QFD-analysis, are reached – what matters is
that the information is available when the QFD-matrix is initiated.

The work for reaching the necessary information was described in the previous
chapters and the results of the user requirements are presented in Table 2 and
Table 13. Applying the QFD-method to the problem starts with preparing the
tables. First, user requirements from Table 1 and Table 13 will be combined
together, then they are put into the QFD/A1-matrix with the mini-concepts from
Table 14. Using only the A1-matrix to carry out the QFD-analysis is the most
common way to deploy the method, but there are extended possibilities available
with the method as well. However, what is intended is to support the
understandability of the solution. The QFD-method will be used to isolate the
best concepts, and by doing so, the problem is being generalised further. The
result of analysing the QFD-matrix is a concept of a product, and hereby
represents the deepest generalised level of an abstraction. The results of the
analysis (the concept) will be used in the next chapter when the solution will be
formed by presenting the architectural model of the system.

3.1 QFD-analysis

Because of too large tables, user requirements must be compressed. The
compression can be done only by decreasing or removing redundancy among the
requirements. Requirements in Table 2 and Table 13 are compressed as follows:
PE1 overrides Tr1, PE4 overrides Tr14 and Tr15, and PE8 overrides Tr3. The
result table is included in the QFD-matrix in Figure 4. The compression marks
are included as well.

63

Program logic is processed only on client-side M-c 1 3 © 2001, Markus Moilanen
Program logic is processed only on server-side M-c 2 3 3
Services join communities represented by the directory .. M-c 3 1 X Mapping of the resource management
Directory services contain more directory services .. M-c 4 1 1 associated features
Directory service has a capability of containing simple .. M-c 5 1 1 1 X Mapping of the distribution associated
Directory service has a capability of containing client .. M-c 6 2 features
Directory service has a capability of containing a descr.. M-c 7 2 2
Server-side program logic and client-side program .. M-c 8 3 3 3
Thin or super-thin client with event and user screen .. M-c 9 3 3 3 3 M-c = Mini-concept
Movable description of client-side program logic M-c10 2 2 2 PE = Preferred Excitement
Movable object contains client-side program logic .. M-c11 2 2 2 2 Tr = Treshold
Program logic can be defined to run on client-side or .. M-c12 3 3 3 3 3
Services form into communities M-c13 1 1 1 1
Client-side program logic run-time condition is to be .. M-c14 3 3 3 3 3 3
Client-side program logic is secure against modification M-c15 4
Strategies to maintain resources can be set by manage.. M-c16 3 3 3 3 3 3
Application program logic can be programmed .. M-c17 3 3 3 3 3 3 3
The distribution transparency is arranged by binding .. M-c18 3 3 3 3 3 3 3 3
Different capabilities of terminal devices are classified .. M-c19 3 3 3 3 3 3 3 3 3
The flexible channel structure enables the communication M-c20 3 3 3 3 3 3 3 3 3 3
The proxy object represents the application in the dist.. M-c21 2 2 2 2 2

Mini-concept

M
-c

 1

M
-c

 2

M
-c

 3

M
-c

 4

M
-c

 5

M
-c

 6

M
-c

 7

M
-c

 8

M
-c

 9

M
-c

10

M
-c

11

M
-c

12

M
-c

13

M
-c

14

M
-c

15

M
-c

16

M
-c

17

M
-c

18

M
-c

19

M
-c

20

M
-c

21

End-user can easily reach and deploy a software produ.. PE1 X X X X X X
End-user gets his/her/its personal profiles for the equi.. PE2 X
End-user gets his/her/its personal profiles for a service PE3 X
End-user has data and access security maintained .. PE4 X X
End-user will be provided a vision of the information .. PE5 X
Software products or information services are consid.. PE6 X
Device provider can provide compatible terminal equip.. PE7 X
Service provider can provide rich applications types .. PE8 X X
Service provider can provide software products or .. PE9 X
Service provider can do business by trading software .. PE10 X X X X X X
Content provider can maintain the authorising and .. PE11 X X
The economy and convenience in sharing hardware res.. Tr2 X X X X X X X X X X
Easy API for application programmers Tr4 X X X X
Adapt existing investments for software and systems Tr5 X X
Adapt existing applications Tr6 X X
Adapt existing operating systems Tr7 X
The ability to accommodate short-term changes .. Tr8 X X
The ability to accommodate medium-to-long terms .. Tr9 X
Managing and supporting users in a timely and cost.. Tr10 X X
Ensuring exceptional application performances Tr11 X X X X X
A fast and consistent response to the end-user's intera.. Tr12 X X
A measure of how small is the likelihood of the system .. Tr13 X

Concept

1 - Advertisement

2 - Distribution

3 - Resource management

4 - Security

R
ef

er
en

ce

la
be

l

User Requirements

Figure 4. The QFD-matrix.

64

3.2 The concept

The concept can be taken from Figure 4 by analysing the QFD-matrix. In this
section that analysis will be provided, and in the later subsections the findings
will be investigated further. Individual strong features of the concept can be seen
having many hits on the cross-reference field of the matrix (the field where the
rows of user requirement and columns of the Mini-concept cross each other.
These features are as follows:

• do not decide upon the client-server model until the very last moment,
maybe as late as at run time (M-c 1, M-c 2, M-c12),

• divide the system into two layers - one to provide the support for
applications, the other to provide support for maintenance (M-c17, M-c18),

• let the client (possibly called 'proxy') represent the application, so the client
can be built to be as fat or as thin as necessary - and make it movable. A
client should be able to contain the run time condition attributes of the
information of the place where it was initiated for the first time (M-c11, M-
c21),

• support user and device profiles to maintain the preferred settings of the end-
user (M-c16),

• support information for management policy with many different levels of
abstractions to maintain different viewpoints on distributed software (M-
c16),

• support the system of local- or distributed mode, apply the distribution
transparencies to hide the distributed mode from applications (M-c16, M-
c17, M-c21),

• do not require management support as a mandatory feature, let application
contain the information of whether full or partial management is needed in
every particular case (M-c17),

65

• support the old application mode (e.g. EXE-mode) by a voluntary extension
of management information to be added in the case the old application
modes would like to get management support (M-c16),

• isolate the dimensions introduced in Table 2,

• define the concept of resources, how they should be managed,

• define the concept of service, how they should be understood, and

• consider the functions provided by a working application as a service for
other entities of human or artificial origin.

3.2.1 Client-server model

It is justified to make the architecture of the client-server model [44, 45] as
flexible as possible. Any particular model should not be chosen, rather the model
should be able to choose differently depending on the application type and
prevailing conditions of the execution environment in every individual case of
the application use. The choice of model should aim at making the application's
performance as good as possible. It should be possible to balance the model
when programming, negotiating about its delivery, and even at run time when
run time conditions change. As a summary: we must support client-server
models of an ultra-thin or thin client, and fat client - each of them with multiple
clients, and furthermore, the model with the ability to be adjusted between these
models.

3.2.2 Layered structure

Dividing the system into two layers: one to support application modes and the
other to support management features of the system is justified. This was
assumed in Table 1 for the first time. Providing for the layer to be embedded in
the underlying platform system, and on the other hand, the layer for support
application modes to be run on the platform, should be an optional feature. The
result of this optional choice is called compatibility; existing applications can

66

continue their existence, but if the advanced application according to the new
concept presented here is planned to be used, a corresponding support must be
added to the underlying operating system. This is arguable by an example: if the
application contains information for maintaining its security (as it should be
according to the new concept), it must be made absolutely impossible to start the
application without any support for the management of the security. Otherwise,
there is no security.

3.2.3 Application with representatives

Applications should not be distributed as such. The economic choice is to
distribute some part of an application, which can represent the application for
users. This application model is used at least with the Jini-concept, and this
proxy-mode can be equally adopted as such. However, it must be remembered
that old applications models must be supported as well (e.g. EXE-mode), so the
using of the represented mode of the application (the proxy mode) must be made
an optional choice.

3.2.4 Profiles for user and devices

Profiles for the user’s personally preferred settings of configuration must be
supported. Different settings are necessary when the user uses, for example, the
same application with different terminal devices at different times. That means
that the profile must have branches for the used applications as well as for the
used devices, and have the user's preferred configuration for both.

3.2.5 Policies

Policies are the heart of the system. The policy of an application must contain all
information about how the application is expecting to be treated in every
particular execution environment and in the prevailing run time conditions. The
policy could consist of a hierarchy of different levels of definition. The policy
could be built to support different levels of the perception of the system, for
instance, reflecting the viewpoint defined in RM-ODP (see Table 6). This may

67

support the understanding and maintaining of the system between stakeholders.
The issue of the policy driven management has been studied but not realised
very far among the distributed systems. A further study of this issue will be left
for the extension of this thesis. However, a few sources are referred here: [46,
47, 48, 49].

3.2.6 Distribution transparency

Difficulties that will exist as a consequence of the unstable nature of distributed
execution environment should be hidden away from applications as well as from
the management. This can be achieved by setting the responsibility of handling
those difficulties to the special entities made for it. This kind of entity is called a
Binding object in RM-ODP.

3.2.7 Burden by request

If some particular application type does not need maintenance at all (except for
its policy that must always be maintained), or needs support just for some
limited features, then only the relevant maintenance processes should be started.
On the other hand, there may exist some execution platforms, which contain
support only for a limited subset of maintenance features. In that case, an
application should be able to work under the limited conditions as defined by its
policy information. An application should not be able to work if it is against the
term of the defined policy of the application.

3.2.8 Support for existing applications

Existing applications will be supported if they can express the information to
create the policy about how every particular application is expected to be treated.
This means that an application must contain its policy information. If an
application does not contain any policy, it can run as it did before. It should be
as follows: if an application contains information about policies, it must not be
able to start at all on the environment that does not support the policy
management feature.

68

3.2.9 Dimensions and their orthogonal position

In the correlation field of mini-concepts in Figure 4 (above the title Mini-
concept), we can see the correlating mini-concepts as they are analysed. Regions
of correlating concepts are separated by the numbers 1., 2., 3., and 4. These
regions may be labelled by the features they represent: 1. advertisement, 2.
distribution, 3. resource management, and 4. security. This is according to the
assumptions made in Table 1.

3.2.10 Resource

It is necessary to define the meaning of the concept of resource the way it is
considered. According to the sources [16], a resource is an abstraction. It is
something that can be deployed by allocating (reserving) some based on the
needs. In theory, resource signifies unlimited supply, as for example, the air we
are breathing. In practice, there is not any unlimited supply of resources that
software uses and therefore resources must be reserved and managed by the
clear rules. Reservation of a resource may be done, e.g. when an application
allocates some memory. There must be some entity that works as a gatekeeper
for a resource. The gatekeeper must know how much of the particular resource
has been reserved already, and whether the new reservation can be carried out
anymore. There are many references in literature of these kinds of gatekeeper
arrangements, for example [2] and [50]. The resource may be managed more or
less adequately. Management of the resources reserved successfully by an
application must be an optional feature to maintain the compatibility of the
systems. Management cannot be required as a regular feature, so it should be
made an optional choice. For keeping things simple, in the illustrations of the
architecture of the system, the resource has been presented as an instantiation of
a resource - an already successfully reserved share of some resource supply -
viz. "Resource Instance". An extended presentation of the resources - how they
really exist in software and hardware systems - we will have in Chapter 7.

69

3.2.11 Service

Similarly, to the definition of resource, the definition of service needs to be
made clear to be used here. A service should be understood to be something that
the entity called server provides. For example, we may say; "I am going to the
dentist's to get some treatment for my teeth". Service is an abstract definition the
way resource is. A service can be used only by using some instantiation of it.

3.2.12 Support for different component models

The model to be developed should be able to play the role of different
component models. 'Successful large systems are combined from small
successful systems', so application must be possible to be combined partially
from different foreign components and equally, our model must be able to be
part of foreign applications.

3.3 Summary

In this chapter, the concept of the system was defined. A conceptual solution
represents the most generalised level of the problem, and the results represent
the reusability of tacit human knowledge. In the entry, there were Table 2 and
Table 13 concerning the user requirements, and Table 14 concerning the mini-
concepts. The tables were mapped into QFD/A1-matrix in order to analyse them.
The result of the analysis was presented as textual descriptions. Defining the
conceptual solution from the QFD-table should not be considered as a piece of
routine job - it is a creative process that deploys all analyst experiences and tacit
knowledge from the problem domain - and thereby adds productivity and
clearness on the creating process. The thinking process becomes transparent,
repeatable and traceable, which are important features for making the definition
of the concept more understandable. Presenting the thinking process in the table
also supports the maturity levels of capabilities of the work process [51]. The
concept will be elaborated on in the next chapter by designing the architecture
based on the concept.

70

4. Architectural design
In this chapter, the concept that was defined in the previous chapter is to be
realised. Consequently, the issue "how we will do it" will be discussed. As
presented in the Road Map, an architectural solution is a realisation of a
conceptual solution. Because there are many possibilities to implement the
realisation from the same concepts, many justifications will be included during
the processing for maintaining an understanding of the choices that have been
made here.

Realisation of the concept is presented by means of the UML's [52, 53] abstract
classes, binary associations and interface definitions. Models and notations
recommended by UML be used as a minimum way, to make clear what is meant,
not to give an impression of a clever analyst. The recommendations of UML
encourage the use of different models, choosing only as many and as large as is
necessary to make things understandable. On the other hand, the presented
solution is intended to be a basis of the design model, so the model will be
accurate enough after iterations.

The architectural model presents how the entities of the system are connected,
and how they are interfacing with the world outside [54]. The result will be used
in Chapter 5 as a basis of the design model in as an open-ended way as the style
of UML provides for.

4.1 The client-server model

In Figure 5, the client-server schema - the balanced approach - used with the
system is presented. The client of the server component represents the server's
interface logic to its user. The application of the system is seen as a server who
is serving its clients. The application must always be represented by some object
that has a capability to intermediate between the application and its user
concerning the application functionality (program logic). The user can be a
human or an artificial entity, perhaps a group of people or another application.

71

ClientServer

Server Client

Lo
ad

 b
al

an
ce

Figure 5. Load balancing.

Allocation of the computational processing needed to run the application (as a
server) and its representative object as a client (later called proxy) totally on the
client side (as is the case in the fat-client client-server model), or on the server
side (as is the case in the server-based computing model), depends on the
application type and the run time environments that exist in every particular case
when the application is used. Examples include an application running on the
platform as in a mobile phone, or the platform as a very powerful desktop
computer or a network server. In other words, it should be possible to balance
the client-server model in many phases: in the programming time, when loading
to run, and even dynamically when run time conditions change while the
program is running.

4.2 Resource

Resources and how they are managed, are two different things. An application
program reserves (or allocates) an instance of some resource type for its use. The
reservations do not depend on whether the instances of resources are managed or
not. In a computer system, the resources must be guarded in some way by the
gatekeeper, as told in Subsection 3.2.10. The same feature must be provided by

72

the resource management system to be developed here, for any reservation of
resource (resource instance) that an application makes. Manageability of a
resource must be an optional feature - a programmer can make a choice whether
he uses the resources in managed or unmanaged mode. This is because not all
resources can be managed properly, at least at first. For example, Java class
libraries cannot support management before they are modified. On the other
hand, some applications may not need to be managed by including all their
objects. Applications today exist mostly without management features. The
choice must be made by the programmers of an application during the
programming time.

The optional choice of using manageable resource instance can be arranged by
interfaces. The interfaces may or may not be implemented by the programmers.
The interface for the manageability of resource reservation (allocation) may be
called "Manageable". More interfaces for a resource may be pointed out later. A
couple of good candidates worth mentioning are "Movable" and "Cacheable".

4.3 Distribution transparency

Extra difficulties that occur because of the unstable nature of distributed
environments can be hidden from the application programming and deploying
by the distribution transparency properties of the system.

The distribution transparencies also make it possible for the systems that speak
different languages, and run on different platforms, to communicate with each
other in an understandable way. The transparencies also make it possible to
deploy middle-ware techniques with the solution. Those techniques build a
bridge between the systems that do not know each other.

The distribution transparencies will be arranged by deploying binding objects as
illustrated in Figure 6. The binding objects must provide as many distribution
transparency properties as is wanted or is necessary. Some of the possible
transparencies are presented in Table 7, but more might be defined if there is any
need for them, as mentioned in RM-ODP. At least in the networked
environment, network transparency must be provided. Network transparency
contains access and location transparencies (see Table 7 or [16]). These

73

transparencies are necessary because the computational objects in the distributed
environment must be able to access each other regardless of their location in the
network. The computational object does not have to know where the other is
exactly located. However, every computational object must be presented by a
binding object by some unique name (UIN) or unique identifier (UID) extended
with addressing information for the distributed environment. These will be used
in the distributed environment to access computational objects. In addition to
that the binding object must be capable of setting the address of the
computational object, it must be capable of resolving the address of the
computational object. The computational object must implement only the UIN
name and/or UID, because these identifiers are needed only for distinguishing
the computational object.

Computational
object

Computational
object 1..1

0..1
Binding object

0..1

1..1

Figure 6. The Binding object.

4.4 Dimensions

The dimensions of the software object were introduced in Subsection 3.2.9 in
Chapter 3. Four dimensions were defined, but more are possible to exist. Support
for the dimensions can be arranged by defining the respective software object to
maintain each dimension. Maintaining a separate dimension should be an
optional feature. A correspondent process to support a separate dimension is to
be created only if it is required by the policy of an application (policies were
introduced in Subsection 3.2.5 in Chapter 3). To support a separate dimension in
an application program, a programmer has to implement only the corresponding
interfaces. The names of the interfaces are congruent with the correspondent
dimensions, and they will be presented in Table 15 in Section 4.7. The interfaces
also appear in the architecture models in Figure 12 and Figure 13.

74

4.4.1 Advertisement

The Advertisement dimension can maintain all the features that are necessary to
make the existence of a service and its availability known for the interested user
or for the public. Advertisement is maintained according to the corresponding
advertisement policy of an application.

4.4.2 Distribution

The Distribution dimension can maintain all the features which are necessary to
distribute or deliver everything that is needed to use the corresponding service in
a compatible terminal or in whatever compatible device the user may have.
Distribution is maintained according to the corresponding distribution policy of
an application.

4.4.3 Resource management

The Resource management dimension takes care of the management of the
instances of resources reserved by an application. Management follows the
resource management policy that is defined by the application.

Resources are something that the application layer reserves or needs in other
ways for its use. Application reserves and uses reserved resource instances not
depending on whether the resources are managed or not. The Representative
object and the Binding object must be defined as a resource as well. Instead, an
application is something that wraps the objects and defines some logical
behaviour of the system of software - this constitutes an application. Every
reserved or created object is an instance of resource. When an application
becomes an object (after initialising it), it becomes a service - because it can
offer some useful function for others in some interiors. The services are
represented by a proxy and can be used by other services or any entities.

A very simple application can exist only for making some of the resources
available, shareable and therefore usable for others in the distributed
environment, e.g. a printer becomes a printing service.

75

4.4.4 Security

The Security dimension can maintain all the features that are necessary to make
the use of service secure for the interested user. Security is maintained according
to the corresponding security policy of an application.

4.5 Policies

As mentioned in the concept definition in the previous chapter, policies are the
heart of the system. Policies will exist on two levels: on the level of the
description, and on the level of the object into which the information from the
description is realised for the working computer system. There must be a way to
express the information needed to create a policy object from the informal
description. At this phase of the development process, the way to do this will not
be defined, but one good candidate is XML. The policy may contain information
from different administration domains. An assembled example can be presented:
with a banking service it is necessary to maintain the policy information of the
service not just by the bank, but by the bank’s customer, who uses the service.
These administration domains may need to overlap (the example ends).

Here are definitions for the policies:

• Advertisement policy - defines how to maintain the Advertisement
dimension of a service.

• Distribution policy - defines how to maintain the Distribution dimension of a
service.

• Resource management policy - defines how to maintain the Resource
management dimension of a service.

• Security policy - defines how to maintain the Security dimension of a
service.

76

4.6 Management model

The commonly used management model is presented in Figure 7. All
Management decisions are based on the available Management information and
the defined Management policy. Management actions are committed to maintain
the "Manageable" resource instance. To reach the Management information and
to apply the Management action by the corresponding Management policy, the
Manageable and Policy interfaces must be known.

Policy

information

M
an

ag
em

en
t

in
fo

rm
ati

on

M
anagem

ent

actions

Management decisions

Resource instance

Manageable interface

Au th or Ma rku s M oi l a ne n
Pro j ec t M. Sc T h e si s

Sta tu s Dra ft
App r

T i t l e Sta t e di a gra m of t h e M a na ge m e n t Se rve r c l a ss
Ve rs 1. 0 Fi l e M ANAGE M E NT _ SE R VE R . sc d

Da t e 21 -1 2-2 00 0
T im e 09 :4 3:1 0

INITIALISING

CREATING_DIMENSIONS

DECODING_P OLICY

do/_CREATING_P OLICY_OBJECTS

IDLE

do/_HANDLING_MANAGEMENT_INFO

P OLICYMAKING

do/_BUILDING_DECISION_TABLE

Policy definions

Policy interface

Figure 7. The common management model.

4.7 Layers

By dividing the system into two layers, application layer and maintenance layer,
application can be isolated from the difficulties that are a consequence of an
unstable distributed execution environment itself. To support compatibility, a
demand to include the layers in the existing application modes and operating
systems must be made optional. In Table 15, all combinations that can exist are
presented.

77

Table 15. Combinations (Cb.) of management support.

Cb. Application with Policy

Is a no de-
mands

Advertise-
able

Distribut-
able

Resource-
able

Secure-
able

Mana-
gement

Works
stand-
alone

Works
stand-alone

*)

Works
stand-alone

*)

Works
stand-alone

*)

Works
stand-

alone *)

Adver-
tisement

Works
stand-
alone

Applic. is
advertised
according

to its policy

Works in
undistri-

buted mode
*)

Works with
unmanaged
resources *)

Works in
unsecured

mode *)

Distri-
bution

Works
stand-
alone

Works in
unadver-

tised mode
*)

Applic. is
distributed
according

to its policy

Works with
unmanaged
resources *)

Works in
unsecured

mode *)

Resour-
ce

Mana-
gement

Works
stand-
alone

Works in
unadver-

tised mode
*)

Works in
undistri-

buted mode
*)

Applic. is
managed

by its
resources
according

to its policy

Works in
unsecured

mode *)

M
an

ag
em

en
t l

ay
er

Security Works
stand-
alone

Works in
unadver-

tised
mode*)

Works in
undistri-

buted mode
*)

Works with
unmanaged
resources *)

Applic.
will be
secured

according
to its

policy

*) if allowed by the associated dimension policy branch of an application

78

The architectural model supports the free choice of combination and still
respects the demand for every dimension set by the policy of an application. The
burden that the system must carry will be minimised.

The need to fit up each layer with the support for some of the defined dimension
must made optional too, as already mentioned in Section 4.4, and the choice
must depend on the case of application type. Extra burden for execution
environments and applications by supporting unnecessary dimensions when they
are not really needed must not be forced to be added. However, applications
should be able to work even if there is no management support present for all the
dimensions in the platform, but only if working in such a way is allowed by the
policy of this particular application.

4.7.1 Application layer and APIs

In Figure 8, the supported application modes are presented. Figure 8 a) shows
the simplest mode available. The application stands alone still containing its
policy information. Figure 8 b) shows the application mode that is locally
represented by a proxy. The proxy knows how to interact with a user, and knows
the run time condition releasing the user from making any configuration settings
before starting the application. Figure 8 c) shows the application mode that can
be represented by multiple proxies at the same time. The corresponding
application logic to support multiple clients must be taken care of by the
application's programmer.

79

Represented
Application with

Policy

Represented
Application with

Policy
Proxy

Proxy
0..1

1..1
local link

represents

serves

0..n

1..1
multipart channel

represents

serves

b) The Proxy represents the Represented Application locally.

c) Several proxies may be served by the Represented Application simultaneously in
the distributed environment.

Application with
Policy

a) The Application with Policy stands alone.

Figure 8. Supported application modes.

Application layer is defined by representing the interfaces (API's) of 1) the
support for being with a policy, 2) the ability to be represented in the
environment, and 3) the support for the Dimensions.

Interfaces for being with a policy are:

• "withPolicy" - an application explicitly defines its policy.

Interfaces for the ability to be represented are:

• "Representable" - an application can deliver a part that represents its
functions for the application's user.

• "Proxyable" - an interface for Proxy-like deployment of objects in the
environment.

Interfaces for the Dimension support are:

80

• "Advertiseable" - an application holds the information to maintain its
advertisement in the environment.

• "Distributable" - an application holds the information to maintain the
distribution of its representative part to the users of the application.

• "Resourceable" - an application holds the information to maintain the
instance of resources that the application has been once allocated.

• "Securable" - an application holds the information about how its security
must be maintained.

Interfaces will be seen in the architecture schemata later in Figure 12 and Figure
13 in Section 4.8.

4.7.2 Management layer

Figure 9 shows how a management server is serving an application. The
application has a policy by which the management server can do the
application's maintenance.

Figure 10 shows how a management server manages an application and its
representative proxy locally. There is no distributed environment present.

Represented
Application with

Policy
Proxy

0..1

1..1
local link

represents

serves

1..1

0..1

local linkmanages
Management

Server
1..1

0..1

local link manages

Figure 9. Management Server manages "Application with Policy".

81

Represented
Application with

Policy
Proxy

0..n

1..1
multipart channel (application level)

represents

serves

1..1

0..1

local link
manages

Management
Server

1..1

0..1

local link
manages

is managed by

Management
Client0..n

1..1
multipart channel (management level)

is hosted by

hostes

Figure 10. Management Server manages the "RepresentedApplication" and its
Proxy using local links.

Figure 11 shows how a management server manages an application represented
with multiple proxies in a distributed environment.

Represented
Application with

Policy
Proxy

0..n

1..1
multipart channel (application level)

represents

serves

1..1

0..1

local link
manages

Management
Server

1..1

0..1

local link
manages

is managed by

Management
Client0..n

1..1
multipart channel (management level)

is hosted by

hosts

Figure 11. Management Server and its Clients manage the
"RepresentedApplication" and its Proxies using multipart (communication)

channels in the distributed environment.

The management supports the distributed proxies, but does not take care of the
application program logic when it has to serve its multiple clients.

Management layer is defined by representing the interfaces (API's) of 1) the
support for the deployment of the policy containing applications, on the different
platforms, 2) the support for maintaining the Dimensions, 3) the support for the
resource deployment, and 4) the support for the Distribution transparencies.

Interfaces for the deploying of the policy containing applications are:

82

• "Policy" - a template to build different policy-objects.

• "Management" - a server process has an ability to start an application and
build the policy-object according to the information that the application
holds.

• "Terminal" - a terminal object can start a new management server
component with the application that the management component will further
maintain. The terminal component can also maintain a group of created
management components.

• "TerminalDevice" - a terminal device-object possesses resources and the
terminal objects mentioned above.

Interfaces for maintaining the Dimensions are:

• "Dimension" - introduces the common properties of the dimensions, e.g. the
ability to communicate.

• "Advertisement" - a management layer has the ability to maintain the
Advertisement dimension by the given policy.

• "Distribution" - a management layer has the ability to maintain the
Distribution dimension by the given policy.

• "ResourceManagement" - a management layer has the ability to maintain the
Resource management dimension by the given policy.

• "Security" - a management layer has the ability to maintain the Security
dimension by the given policy.

Interfaces for the resource deployment are:

• "Manageable" - resources can be made optionally manageable.

• "Movable" - a resource can be made movable (from one place to the other).

83

• Additional interfaces might be defined as the system develops further.

Interfaces for the distribution transparency are:

• "NetworkTransparency" - defines access and location transparencies in the
distributed system.

• Additional distribution transparencies might be defined as the system
develops further.

The presented interfaces will appear in the architecture schemata later in Figure
12 and Figure 13.

4.8 Architectural model

An architectural model is combined by connecting the parts that represent a
concept [55, 56, 57, 58]. The parts are presented as abstracts. This is only to
name them. When connecting the parts, corresponding relationships of entities,
or objects, are considered. In addition to the architectural model illustrating how
a system is combined internally, the model also illustrates how the system
interacts with the rest of the world. The interaction points are presented with
abstract interface definitions.

The behaviour of the system on this level of abstraction will be presented by
means of the MSD (Message Sequence Diagram) in Subsection 4.8.3.

4.8.1 Architecture of the local system

In Figure 12, the Application has reserved Resources, which the Node (an
individual computer system) possesses. The Management Server has to maintain
the Resource instances following the Management Policy given by the
Application. For this, the Resource Management Dimension Server, 'Resourcer',
is to be created by the Management Server. After being created, the Resourcer
will start to maintain the Resource management dimension of the Application.

84

The Resourcer is created by the Management Server only if the Application has
any information that expresses the Resource Management Policy for the case.

0..1

1..1

Application

Server

End-user
Terminal

Client

Resource
Instance

Management
Policy1..1

1..1describes

belongs

Dimension
Server

0..4

1..1

follows0..4

0..n

<<interface>>
Advertiseable

<<interface>>
Distributable

<<interface>>
Resourceable

<<interface>>
Secureable

<<interface>>
Advertisement

<<interface>>
Distribution

<<interface>>
Resource

Management

<<interface>>
Security

0..1

1..1

owns

<<interface>>
Representable

<<interface>>
Manageable

<<interface>>
with Policy

Node

0..n

has

0..n

manages

0..n

<<interface>>
Terminal

1..1

<<interface>>
Management

<<interface>>
Proxyable

Application Programming Interfaces

<<interface>>
Terminal Device

<<interface>>
Policy

<<interface>>
Dimension

1..1 0..n

Figure 12. The architecture of the local system.

The Client is a resource and so it can be made optionally Manageable. The
Client can be made into an optional supporter of Proxy-like deployment of an
object by implementing the interface "Proxyable".

The Application must always implement the interface "withPolicy". If the
implementation is not found by the Management Server, the Application cannot
start at all with the support from the presented system. However, a common

85

application can start as it was originally intended to do, but that remains outside
the scope of this study.

An application can be made optionally resourceable by implementing the
interface "Resourceable". When implementing the interface "Resourceable", a
programmer is forced to write a proper management policy for that dimension as
well. Other dimensions are handled the same way. A programmer of an
application can support the management feature very easily just by defining a
proper management policy.

4.8.2 Architecture of the distributed system

In Figure 13, we can observe the nature of the distributed system. Several
concurrent clients may exist. Resources reserved from somewhere through the
distributed environment do not exist. This is simply because those resources are
served as services, already realised and maintained as shown by an example in
Subsection 4.4.3. Services are usable by any Applications, one or many
simultaneously, depending on the Management Policy of the Application. A
programmer of an Application does not have to worry about programming
support for the distribution, only define the proper management policy of how
the management layer has to maintain the Application. However, even though
the problems of the application management in the distributed environment are
the responsibility of the management layer, the programmer should take care of
the programming support for multi-user application mode itself when necessary.
Fortunately, the well-managed Binding objects in question can be used for the
communication. The problems usually exist with transactions, because multiple
users' request may appear simultaneously.

86

0..1

1..1

Application

Server

End-user
Terminal

Client

1..1 0..n

Resource
Instance

Management
Policy1..1

1..1describes

belongs

Dimension
Server

0..4

1..1

follows0..4

0..n

<<interface>>
Advertiseable

<<interface>>
Distributable

<<interface>>
Resourceable

<<interface>>
Secureable

<<interface>>
Advertisement

<<interface>>
Distribution

<<interface>>
Resource

Management

<<interface>>
Security

1..1
0..n

owns

<<interface>>
Representable

<<interface>>
Manageable

<<interface>>
with Policy

Node

0..n

has

0..n
0..n

reserves, manages

0..n

<<interface>>
Terminal

1..1

<<interface>>
Management

<<interface>>
Proxyable

Application Programming Interfaces

<<interface>>
Terminal Device

Binding Object

1..n

1..11..1

0..n

1..n
1..1

Management
Client

<<interface>>
Network

Transparency

<<interface>>
Movable

Network Server
owns

0..1

1..1

<<interface>>
Dimension

<<interface>>
Policy

Figure 13. The architecture of the distributed system.

It must be made clear that a single computer node can be seen both as a
distributed environment and as networked environment. The example includes
the Microsoft Windows environment or Linux. There are many possibilities to
deploy the distribution of the applications in such a way that has been presented
here. Concerning the Windows environment, the technique of DDE (Dynamic
Data Exchange), or the technique derived from it, e.g. OLE (Object Linking and
Embedding) can be deployed to produce the access and location transparencies.
Among other things, one useful service might be a printer share (see the example
in Subsection 4.4.3).

87

Further, Figure 13 shows how architecture supports distribution transparency.
Support is arranged by the Binding objects. These objects are software
components, which implement a selected set of distribution transparencies. In
the figure, an optionally selectable interface "NetworkTransparency" is shown,
but many more can certainly be defined. The Binding object is a Resource
Instance and so can be made optionally manageable.

The application layer is the same as it was with the local mode.

Differences between the local model (Figure 12) and the distributed model
(Figure 13) are:

• The Management Client, which is hosted by the Dimension Server. The link
needed for the client-server connection is arranged by the Binding object.

• Local links between the Application and its Client are replaced by the
Binding objects.

• The Resource instance can be made movable (from one location to another)
by implementing the interface "Movable".

• The system runs on two separate platforms, the Network Server and the
End-user Terminal. Both of them implement the interface "Terminal".

4.8.3 Behaviour model of the architecture

Figure 14 illustrates the behaviour of the components in the architecture
structures. An exact behaviour model cannot exist in this phase of the work.
However, the presented MSD expresses quite well, how the system will act. This
diagram presents only the case of the Distribution dimension being deployed.

88

:Proxyable

:Representable
Application
with Policy

:Management
Client

:Management
Server

[SUCCESS2] makeactive()

EXIT

:End-user
Terminal

"<_service_of_>"

Management

: Distribution
Dimension

Server

Management

Management

[COMPLETED] delete()

Dimension management

User interactions

create(_by_:Identity)
Policy management

[DISTRIBUTABLE] create()

:Network
Server

create(_from_UIN_:String)

create(_by_:Identity)

End-user create()

Service provider

"<_from_UIN_>"

:Proxyable:=getRepresentative(_for_identity)

[INTERRUPTED OR COMPLETED] delete()

INTERRUPTED

COMPLETED

QUERY_REPRESENTATIVE(_for_identity:Identity)

Management

Management

Management

[COMPLETED] unactivate()

[INTERRUPTED OR COMPLETED] COMPLETED

[SUCCESS] :Proxyable:=CONNECT(server_)

[SUCCESS2] DELIVERY_SUCCESSFUL(for_identity)

[:Proxyable] SUCCESS2:=reconstruct()

Application level communication

[:Proxyable] SUCCESS(server_:Identity)

create(_service_of_:Identity,_for_:Identity)

Figure 14. Behaviour model of the architecture when distributing the
representative of the application.

89

4.9 Summary

In this chapter, the architectural design was conducted. The basis of the design
was the conceptual model presented in Chapter 3. Two models were presented
one for a local environment and other for a distributed environment as an
extension of the local mode. It is worth mentioning that a single computer node
can be seen as a local environment as well as a distributed environment (what
the networked environment is by nature). For example, in the Microsoft
Windows it is possible to deploy dimensions between applications the way that
has been done by the technique derived from DDE.

The architectural models were presented by the abstractions of entities and
abstractions of interfaces to make it possible for the system to be equipped with
real functionality for every possible platform or operational system which may
exist.

It became clear that many different architectural models could be implemented
from the same conceptual model. The particular solution presented is a result of
several iteration steps over the conceptual planning as well as the levels above it.
In the first place, applicability of the architectural model has to be validated
against the conceptual model. The produced architectural model isolates the
programming support for the maintenance from the programming of the
application program logic. This feature is provided by the interfaces, which can
be implemented optionally.

The issue of how an application program reserves resources for its use was
illustrated. Furthermore, there was also an illustration of how the reservation of
the resources does not mean that the instances of resources will be managed.
Management support for the instance of resource was arranged by defining
corresponding interfaces, which was made optional. In addition, a presentation
of how to support a system working in the distributed environment by defining
an entity called a "Binding object" was provided. The Binding object provides
the transparency of distribution. The functions of interfaces, classes and their
hierarchy and other open questions will be defined in the next chapter when we
enter the design phase of the system.

90

5. System design
The architecture of the system has been designed in the previous chapter; next, it
will be realised as UML design models [59, 60]. The architecture was presented
utilising abstractions and interfaces introduced by UML. Referring to the Road
Map, the models in the Design phase reflect the Requirements analysis phase,
and thereby the models must be evaluated against the results of the phase. We
will turn to use the standards, design patterns and mini-concepts found during
the Requirements analysis phase and which were evaluated afterwards in the
Architectural design phase. To validate the Design model, we will pay attention
to the Requirements Specification.

Because the open-ended models are being used, the architecture and the design
model derived from it will match, at least after the iterations.

Due to the limited time and space resources of this work, the limitations of the
work must be defined - not all the design models will be presented, only the
abstraction of "Distributable and Representable Application with Policy", and
the corresponding management layer to support it. However, this limitation will
be compensated by presenting a full implementation of this application mode in
the rest of the chapters. It is worth pointing out that even the limited solutions
will be quite large.

The design model will be presented with great accuracy. Thereby the aim is at
supporting the deployment of the automatic implementation tools (code
generation) to function with the system in the future. Today, code generation
tools are shipped with most of the UML software. Of course, the code generation
tools can be used after the programming language and UML-tools specific
adaptation of the models.

In the design phase, the static and dynamic models must be presented. The static
model can be presented by utilising the UML Class Diagrams. To present the
dynamic model, there are many possible diagram types to deploy with UML:
Message Sequence Diagram, Collaboration Diagram, Activity Diagram, and
State Chart Diagram. From these, the SCD (State Chart Diagram) has been
chosen because of the aim at the deployment of the code generation feature of

91

the UML tools. Commonly, by SCDs, the dynamic behaviour of classes or the
dynamic behaviour of operations in classes can be presented.

In this case, the static model can be produced by expanding the interfaces of the
architectural models. The behaviour model of the architecture was presented in
Figure 14 in Chapter 4, and it gives us a manuscript of the dynamic of the
distribution-related classes in the system.

5.1 Static models

The static model of a Distributable Application and the corresponding
management layer to support the distribution will be presented. Any special
application will not be presented only the application model. The application-
specific program logic must be programmed when the corresponding application
is programmed. However, an example implementation of an application, the
"HelloWorldApplication", will be presented in Appendix A.

The distribution of an application is provided by distributing the part that will
represent the application in the environment. This part will be supported by the
"Interface Proxyable". The distribution follows the application-specific policy
and it is maintained by the management layer. The management layer is
described by presenting exact static and dynamic models as long as the models
can be presented without the environment, platform, and programming
language-specific implementations.

5.1.1 Class diagram of a "Distributable" application

When any specific application program is produced, the presented abstract
models must be implemented by implementing the interface functions and
constants. An example of the implementation will be offered in Chapter 6, as
already mentioned. In Figure 15, the necessary interfaces of a "Distributable"
application are published.

The explanations and comments of the interface operations will be found in the
source listing in Appendix A.

92

Application Client

1..1 0..nserves represents

Resource
Instance

0..n

Binding Object
1..n

1..1

links

communicates by

<<interface>> Distributable

+getDistributionPolicy() : InformationBranch

<<interface>> Representable

+getRepresentative(_for_ : Identity) : Proxyable

<<interface>> withPolicy

+getPolicy() : InformationRoot
+run()

+POLICY_SIGNATURE : String

<<interface>> Proxyable

+reConstruct() : Proxyable
+unActivate() : Boolean
+writeProxyable(_into_ : ObjectOutputStream) : ReturnCode
+readProxyable(_from_ : ObjectInputStream) : Boolean
+reActivate() : Boolean
+run()

<<interface>> NetworkTransparency

+sendConnectionless(_with_ : Message, _by_ : DatagramChannel)
+receiveConnectionless(_by_ : DatagramChannel, expected_size_ : Integer) : Message
+getMessage(_from_ : Datagram) : Message
+getDatagram(_for_ : Message) : Datagram
+getDatagramChannel(_for_ : Identity) : DatagramChannel
+getChannel(_to_ : Identity) : Channel
+getObjectOutputStream(_on_ : Channel) : ObjectOutputStream
+getObjectInputStream(_on_ : Channel) : ObjectInputStream
+getServerChannel(_for_ : Identity, door_ : Integer) : ServerChannel
+getAddress(_of_ : Identity) : Address
+setAddress(_for_ : Identity, _at_ : Address) : String
+setNameCacheEnry(name_cache_entry_str_ : String) : Identity
+listNameCache()
+loadNameCache(name_cache_file_name : String)
+saveNameCache(name_cache_file_name : String)

0..n

links

Figure 15. Class diagram of a "Distributable" application.

The diagram's ability to explain itself is trusted upon by the undersigned, but a
few clarifications will be provided, nevertheless. The interface "Network
Transparency" makes the "Binding Object" class provide the Location
Transparency, because a computational object can locate another computational
object only by being informed about the "Identity" of the other instead of the
actual physical address. The Identity is expressed in the system by a unique
name or/and unique identifier. The Network Transparency must have the ability
to resolve the Identity, therefore when the public function of "getAddress (_of_:
Identity): Address" will be implemented, the resolving feature must be taken
care of. For that, local names cache or/and a public name directory service must

93

be utilised. The ability of a computational object to inform of its identity to the
name service is one of the responsibilities of the Advertisement dimension of the
object. More information about the transparencies can be found in Section 4.3
and Table 7, and information about the Advertisement dimension can be found
in Section 4.4. The Access Transparency feature is supported as well, because
only the locally known data types can be used for the communication.

The interface "Proxyable" maintains the system's ability to handle the clients
during its life cycle in the distributed environment. The interface "withPolicy"
forces the static String attribute of "POLICY_SIGNATURE" to be included in
an application in the programming time - so the application will be recognised
and its policy will be maintained accordingly.

In the diagram, there are many new data types introduced which have not been
included before. Examples include e.g. "ReturnCode" and "Datagram". These
are utility classes of the system. How the utility classes will be implemented
depends on the environment for which they were intended, but the system must
know how they can be handled. The system's ability to handle them can be
provided by introducing the interfaces that the utility classes must implement. If
the utility types are transferred between the computer nodes in the distributed
environment, the Access Transparency takes care of the type transformation to
the local environment. The utility classes are introduced in Table 16.

The management layer exists only with the Application object. The components
presenting the management layer will not be initialised without some application
needing them to maintain its management. For every single application object,
there is a set of management objects. However, for one application there may
exist as many management client object sets as there are representatives of the
application distributed.

Figure 16 illustrates the management layer that corresponds to the application
mode presented in Figure 15. It is capable of distributing a "Proxyable" client of
the application. The interfaces to support the management are "Management",
"Policy", "Dimension", and "Distribution". The functions and constants to
support the state machines to model the dynamic behaviour of their
implementation will be presented.

94

The naming convention is perceivable, too. The usefulness of the naming
convention used will emerge as the study continues with the SCDs.

0..1

1..1

Application

Server

End-user
Terminal

Client

1..1 0..n

Resource
Instance

Management
Policy1..1

1..1descripes

belongs

Dimension
Server

0..4

1..1

follows0..4

0..n

<<interface>>
Distributable

1..1

0..n

owns

<<interface>>
Representable

<<interface>>
with Policy

0..n
0..n

1..1

<<interface>>
Proxyable

Binding Object

1..n

1..11..1

0..n

1..n
1..1

Management
Client

<<interface>>
Network

Transparency

Network Server
owns

0..1

1..1

<<interface>> Management

+createApplication(_from_UIN_ : String) : ReturnCode
+createManagementPolicy(_from_ : InformationRoot) : Policy
+createDimensionPolicy(_from_ : InformationBranch) : Policy
+createDimensionServer(_by_ : Policy) : Dimension
+handleManagementInfo(_from_ : ManagementAction) : ReturnCode
+getApplication() : withPolicy
+getManagementPolicy() : Policy
+commitManagementAction(_by_ : ManagementAction) : ReturnCode
+exit(_with_ : String)

+INITIALISING : Integer = 100
+DECODING_POLICY : Integer = 110
+_CREATING_POLICY_OBJECTS : Integer = 111
+CREATING_DIMENSIONS : Integer = 120
+POLICYMAKING : Integer = 130
+_BUILDING_DECISION_TABLE : int = 131
+IDLE : Integer = 140
+_HANDLING_MANAGEMENT_INFO : Integer = 141

<<interface>> Distribution

+acceptService(_entry_ : ManagementAction) : ReturnCode
+reachService(_of_ : Identity) : ReturnCode

+REACHING_PROXYABLE : Integer = 2100
+REACTIVATING_PROXYABLE : Integer = 2200
+UNACTIVATING_PROXYABLE : Integer = 2300
+RUNNING_PROXYABLE : Integer = 2400
+PROCLAIMING_ACTION : Integer = 2500

<<interface>> Policy

+<not defined in the document>()

<<interface>> Dimension

+dispatchMessage(message_ : Message) : Boolean
+sendMessage(_to_ : Identity, _with_ : ReturnCode) : Boolean
+initMessager(_for_ : Identity, bo_ : NetworkTransparency) : Boolean
+startListen() : Boolean
+handleAction(_action_ : ManagementAction) : boolean

+ROOT : Integer = 0
+ADVERTISEMENT : Integer = 1
+DISTRIBUTION : Integer = 2
+RESOURCE_MANAGEMENT : Integer = 4
+SECURITY : Integer = 8
+PROFILE_MANAGEMENT : Integer = 16
+INITIALISING : Integer = 200
+IDLING : Integer = 210
+UPLOADING_OBJECT : Integer = 220
+DOWNLOADING_OBJECT : Integer = 230

Figure 16. Class diagram for the Distribution management layer.

All the interfaces introduced before (in Figure 15) as well as the interfaces
introduced now, will stand, even the interfaces which will be introduced in the

95

future, are final as well. For the sake of clarity, the introduced interfaces are
listed here as an example: "NetworkTransparency", "withPolicy",
"Distributable", "Representable", and "Proxyable". The explanations and
comments of these interface operations will be found in the source listing in
Appendix A.

The interfaces, which are now expanded in Figure 16, will be commented also
on in the source code listing in Appendix A.

5.2 Dynamic models

The purpose of the dynamic models is to present the exact behaviour of the
system objects when they interact with each other. In accordance with the
chosen tactics in the beginning of this chapter, only the SCDs will be presented.
It must be notified that the dynamics of the application (the program logic) is
application-specific - this will not be discussed here, while the dynamics of the
objects on the management layer must be considered. A set of management
components will be left on the abstraction level; however, its dynamic behaviour
can still be illustrated. This can be done by utilising the functions and the
constants presented in the static models in Section 5.1. The model will be precise
as long as any programming language or local environment depended notation
will not have to be taken into consideration.

5.2.1 State diagrams of the Management Server class

Figure 18 illustrates an SCD for the class “Management Server”. SCD will be
deployed when the abstract class "Server" is realised by implementing the
interface "Management". The extended sub-state machines
"_CREATING_POLICY_OBJECTS", "_BUILDING_DECISION_TABLE",
and "_HANDLING_MANAGEMENT_INFO" will be presented by the code
listings in Chapter 6 when the system is implemented. The mini-specifications of
the utility classes are written in to Table 16. The implementation of the utility
classes (interfaces) as well as the functions (methods) bodies will be presented in
the implementation example in Chapter 6 as well.

96

Next, the basic principle of the main diagram of "MANAGEMENT_SERVER"
will be explained. Thereby the information about the application intended to be
started on the platform is passed as the string parameter of "_from_UIN". The
string parameter represents the application UIN (i.e. the name of the
application). The first operation of the management is to find out the
preconditions before offering management support for the application. This will
be done in the state "INITIALISING". If the application cannot be identified or
even located at all, the state fires the Fail-condition and exits. If the application
is identified to be one without the "POLICY_SIGNATURE", it does not concern
the system presented here and may accordingly be passed over. The third case is
that the application is identified as carrying the "POLICY_SIGNATURE", so its
management must be taken care of. The instance of the application was created
at this point. Next, the machine decodes the policy information that the
application expresses. First in the state "DECODING_POLICY", the instance of
the "Management Policy" object is created, then the "Dimension Policy" objects
are created in the sub-state machine "_CREATING_POLICY_OBJECTS". If
this fails, the machine exits, informing of an error. Created policy objects are
inserted in the array "_on_demand". Next, the "Dimension Server" objects,
which implement the corresponding dimension interfaces, will be created in the
state "CREATING_DIMENSIONS". The objects are inserted in the array
"_to_support". It must be notified that it is possible that the platform in question
cannot offer support for any, or some, of the dimensions that the application
policy demands. Whether the application can nevertheless be started will be
decided in the state "POLICYMAKING". The decisions are then marked into the
two-dimensional array of the "decision_table" in the sub-state
"_BUILDING_DECISION_TABLE". The policy may allow the execution even
with an insufficient support provided by the platform. However, the
management will exit, if the support reflecting the application policy cannot be
fulfilled. The "decision_table" contains the same information as Table 15 in
Chapter 4.7. The table contains the "Decision" types. The type is expressed by
the three truth-values of DEMANDS, SUPPORTED, and JUDGMENT (see
Section 5.3) according to the situation in hand. The one false JUDGMENT will
cause the system to exit, otherwise the machine will enter the state "IDLE" and
start to handle the management information in the sub-state
"_HANDLING_MANAGEMENT_INFO". The handling is mostly done by
routing the information among the dimension servers.

97

Author Markus Moilanen
Project M.Sc Thesis

Status Accepted
Appr

Title State diagram of the Management Server class
Vers 1.0 File MANAGEMENT_SERVER_v1.scd

Prosa 150-day student licence. For registered students only.

INITIALISING

CREATING_DIMENSIONS

DECODING_POLICY

do/_CREATING_POLICY_OBJECTS

application_:withPolicy
/** See Table 15 */
decision_table[5][5]:Decision
_to_support[5]:Dimension
_on_demand[5]:Policy
_on_init:ReturnCode
_on_decoding:ReturnCode
_on_policy:ReturnCode
_on_idle:ReturnCode
_dimension:Integer

IDLE

do/_HANDLING_MANAGEMENT_INFO

POLICYMAKING

do/_BUILDING_DECISION_TABLE

/_on_init:=createApplication(_from_UIN_:String)

[_on_init.isFAILED()]
/** An object is not identified or located */
/exit(_on_init.getSring())

[_on_init.isSUCCESS()]
/** The application_ object is initialised */
/[i:=0..4] _demand[i]=null

_dimension:=_dimension+1[_on_demand[_dimension]<>null]
/_to_support[_dimension]:=createDimensionServer(_on_demand[_dimension])

[_on_init.isINFOCODE()]
/** An object is identified, no policy, it can be started */
/execute(_on_init.getString())

[_on_decoding.isSUCCESS()]
/[i:=0..4] _to_support[i]=null
/_dimension=0

[_on_decoding.isFAILED()]
/exit(_on_decoding.getString()) /** Policy creation failed */

/exit(_on_idle.getString())

[_dimension>4]
/[i:=0..4,j:=0..4] decision_table[i][j]=null

[_on_policy.isSUCCESS()]
/application_.run()
/** Application has got command to run */

[_on_policy.isFAILED()]

/exit(_on_policy.getString())

Figure 17. State diagram of the Management Server class.

5.2.2 State machine of the Distribution Dimension Server class

The state machine in the Distribution Dimension Server takes care of
transferring the representative of the application object into the End-user
Terminal environment. The class Distribution Dimension Server is a realisation
of the abstract class of Dimension Server. The interface "Dimension" must
always be implemented by it. In this particular case, the class implements the
interface "Distribution", but in many other cases it would implement more
interfaces to support extra dimensions correspondingly. It is also possible to
support the scalability feature of the system in providing concurrent (or parallel)
Dimension Server instances.

There must be management client programs somewhere in the distributed
environment that may ask for the proxyable. They may send the communication
primitive "QUERY_REPRESENTATIVE", when they want to deploy the
service presented by the application. When Distribution Dimension Server
receives the primitive, it proclaims the action in the state of

98

"PROCLAIMING_ACTION" among the other dimensions, and when
permission is granted, it will enter the "UPLOADING_OBJECT" state. The
utility class ObjectUploader will do the actual job - it will do very much the
same as any usual file transfer protocol is expected to do. These will be
presented by the code listings in the Appendix A.

The system will not have to try to get messages through by repeating the
transmissions - the Binding Object will take care of all the communication. The
Binding Object that implements the "MessagingTransparency" as a sub set of the
"NetworkTransparency", will notify the end-user when the transmission is found
totally impossible - usually this may signify some fatal error in the network, e.g.
the network is totally lost. Also, it needs to be notified that the Dimension
Distribution Server does not see any difference between local and distributed
modes. To access another computational object, it just calls this by its Identity.
This is because of the Binding object that arranges the Distribution Transparency
and is thus able to resolve the Identity.

5.2.3 State machine of the Management Client class

In the distributed environment, the Management Client acts as a client in the
client-server system for the Distribution Dimension Server presented in
Subsection 5.2.2. When the client is started, it will try to contact the server side
and will ask for a proxyable by sending the message with the primitive
“QUERY_REPRESENTATIVE”. Then it will wait for the answer. When the
answer from the right Identity has been received, it will download a proxyable
by getting connected to the given service access point. As soon as the load
operation is committed, it will try to start the proxyable client program. The
associated states of “REACHING_PROXYABLE” and
“DOWNLOADING_OBJECT” will do the same job that the
"PROCLAIMING_ACTION" and “UPLOADING_OBJECT” do - this was
depicted in Subsection 5.2.2 - but representing, however, the client of the client-
server system. The state machines will be presented by the source code listings
in the Appendix A.

It must be notified that it is not guaranteed that there is the associated client code
(Java class in the Java environment) present in the client environment. The

99

proxyable represents only the living attributes of its associated client object, not
its executable code. Consequently, the systems support the minimalist way of
deploying applications. The situation is the same when the client program logic
(represented by the proxy) is transferred by deploying the XML or even HTML
scripts - they do not contain any target platform specific executable code, either.
One must distinguish the actual executable code from the descriptions of
interactions presented by the scripts mentioned. To be executed, the scripts must
be interpreted by a web browser. The problem of providing the client side with
the corresponding executable code resource is one of the duties that the
Resource Management Dimension must take care of. This kind of lack of
resources is congruent with the depicted situation that will exist with XML or
HTML scripts if the web browser program is not available in the environment.
This subject will be elaborated on in Chapter 7.

5.3 Utility classes

Classes that are deployed throughout the system are utility classes, and they will
eventually be placed in their own utility package. The implementation depends
on the target system to which the management layer is meant to be applied. The
utility classes are explained in Table 16.

Table 16. Utility classes.

Class Description

Address Defines the address of an entity in the distributed environment.
The address contains logical information to deliver mail into a
correct location, and it is extended with the Identity information
to pass the mail to the correct Identity. It is like an Internet-
address, extended with the port and the Identity information.

Channel Might be implemented as a TCP/IP's Socket in Java to present
the end-point for the connection-oriented data transfer.

The table continues.

100

Continuing Table 16.
Class Description

Datagram Might be implemented as a TCP/IP's connectionless message
presented by the DatagramPacket in Java (see Table 4).

Datagram
Channel

Might be implemented as the TCP/IP's DatagramSocket in Java
for the connectionless message transfer.

Decision Contains the truth-value types of the attributes "DEMANDS",
"SUPPORTS", and "JUDGMENT", and includes the
corresponding operations to handle the attributes.

Identity Defines the identity of an entity. Identity must be unique and it
may consist of the UIN part for the human friendly name, and
the UID part for the exact identifier for the machine origin users.

Information
Branch

A description from which the dimension associated policy-object
will be created.

Information
Root

A description from which the root policy -object will be created.
The implementation of this will not be presented in this thesis.

Management
Action

Will contain all the necessary information to handle the
transaction in the systems.

Message The logical information that the entities may exchange. The
information is represented by a String type.

ReturnCode The enumerated attribute type of "FAILED", "SUCCESS",
"INFOCODE", and the String-type attribute.

Server
Channel

Might be implemented as a TCP/IP's ServerSocket in Java to
present the service access point of the communication system for
the connection-oriented data transfer.

101

The utility classes in this phase of the product life cycle represent the base
classes of their class hierarchies, and classes that will exist in the future of this
product will descend from the base classes. However, classes will still work as
they were planned to work due to the polymorphism feature of the object model
deployment. On the other hand, any decision upon the implementations of the
utility classes will not be made, but naturally, some implementations of them
have to be written for the demos.

In addition to the presented utility classes that will become the interfaces, a few
more exist in the models. These are "Boolean", "Integer", "String", "Object",
"ObjectInputStream", and "ObjectOutputStream". These classes are so common
among the programming platform that there is no reason to adapt them by some
interface-definition in this phase. However, when the resource management
actions must take place, these classes will have to be specialised.

5.4 Summary

The system design phase is now completed. Many large diagrams and drawings
were produced with several iterations steps over the implementation (coding)
phase. Generally, it seems that there is no simple way to model the whole
program. To model the static existence of the system might be a little bit easier
than to model the dynamic behaviour (the program logic) - but still, the
modelling was worth striving for. This will be proved when the product
continues its existence - there is the graphic, easy to maintain, and the model
which presents the same system in every possible programming language, and
simultaneously, for every possible environment. With correct tools, the
necessary program code can be generated from the models for every purpose.
This will denote an even bigger advancement when the model is put under the
version control system - the version control can be extended to control the whole
product. The SCM (Software Configuration Management) tool to control
products can be integrated in the UML tool as well.

UML offers many alternate diagram types to model. Concerning the work
focussed in this thesis, the CLDs have been chosen for the static models and the
SCDs to model the dynamic behaviour of the classes. One good reason for this

102

choice was the fact that most of the UML tools use only these two diagram types
for the code generation.

The architecture model was realised as UML design models. Because the job of
designing a full system seemed to be outside the time and space resources of this
work, a decision upon the limitation of the job was made by deciding to realise
only one dimension of the four - the Distribution dimension. However, this
dimension was decided to be modelled to the end, including the implementation
phase as well.

Furthermore, there were many utility classes involved. These classes were
presented by means of the Mini-specifications. All the models and utility classes
will be implemented in the next chapter utilising the Java programming
language.

103

6. Implementation
In this chapter, the design models presented in the earlier chapter will be
implemented. The Java -programming language will be used [61, 62, 63].

The goal is to clarify the solution presented by the design models so that it can
easily be deployed when the solution is applied for different purposes in the
future. The fact is that it is not appropriate to bind the solution with any special
programming language. However, the Java programming language is commonly
used today instead of PDL (Program Design Language), especially with OOD.

The solution type is a framework, not an endproduct. When the framework is
applied to a special implementation of the management capability, a final
program code will be created.

The Java programming language offers a way to present the abstract methods
with the abstract classes. Thus the state machines could be modelled using this
approach, but a preference is made to use the example application to clarify the
functions of the state machines. Application programmers can then use the
example application as a template for their own implementations.

Java's "interface" definition could be used to define a new reference data type
[53]. The new reference type could be used as if it were an actual data type. The
type can be referred to, but it does nothing without its implementation. This is
quite appropriate for the purpose of this thesis - it is not necessary to define any
actual data types, still the principles of the solution can be explicitly
implemented. The same would have been provided by using the UML templates
[6] in order to use templates to present the abstract classes and data types;
nevertheless the former way was chosen for this work. The code will be
produced manually to achieve the best possible structure of the code. In addition,
the hierarchy of the applicable class library of software reflecting the UML
Packages will be presented.

There is a slight problem in using the Java interface "Serializable" considering
the distribution demo: serialising and de-serialising object serialises only the
non-static attributes of the objects - not the associated byte code resource. Even
this approach is convenient and commonly used by other languages, too; it will

104

corrupt the demo presentation unless the byte code resource is transferred to the
target environment before the actual object serialising. Normally, providing the
target platform with resources will be the responsibility of the resource
management, however, this feature included in the distribution service to
maintain proxies for the demo, will be provided here. It is worth of mentioning
here that Java RMI has the feature of transfer the byte code implemented as
default. However, RMI is not deployed here, but it could be deployed in the
future implementations of the presented solution.

In this chapter, only the essential parts and all the necessary descriptions of the
example application will be presented; the full program code is listed in the
Appendix A.

6.1 Packages

Figure 18 shows the package hierarchy of the system. Package
"fi.vtt.ele.management_framework.implementation" contains the interface
definitions of the design models presented earlier in their corresponding sub-
packages. In the implementation phase, package structures will be realised in a
form of class library.

In the figure, package "fi.vtt.ele.management_framework.implementation.
utility" is browsed open and associated names of classes are shown as an
example. It appears that there are three unmentioned classes presented:
Messager, ObjectDownloader and ObjectUploader. The classes will be
commented in Table 19. They represent classes of the kind which it is possibly
to build on the interfaces of the class library - even though they are actual
classes, they can be compiled with the library without any realisation of the
interfaces. The way we can provide the generic state machines in a platform
independent way - in the future, this is an important feature of the solution.
Applications can be simulated before the actual realisation of the interfaces, and
the realisations can be built simply for emulating the real world objects.

105

Figure 18. Package hierarchy of the Java classes of the system.

6.2 Interfaces

Interface definitions of the system are presented in this section. The Java
implementation of the interfaces is presented. The associated name of the
packages to compare to the class hierarchy illustrated in Figure 18 can be read
after the word "package" on the right column of Table 17. The source code
listing of the distribution demo in the Appendix A will not include the code
presented here - the demo program only uses this library. Thus, the demo reflects
the way the library will usually be deployed in practice. Table 17 introduces the
interfaces used on the application layer and it reflects the diagram in Figure 16.
The NetworkTransparency will also be used by the management layer. The
library is designed to be implemented also in using other programming
languages, such as C++ and Assembly. To realise the solution, the interfaces
must be implemented in a platform dependent way. As already mentioned, an
example implementation will be presented. Table 18 introduces the interfaces
used on the management layer and it reflects the diagram in Figure 16; and
finally, Table 19 introduces the interfaces in the utility package and it reflects
the definitions in Table 16. The whole library package can be compiled
independently from the platform - this works everywhere as long as the Java is
present. The package is commented further in the source code listings in the
Appendix A.

106

The library is designed to be implemented also in using other programming
languages, such as C++ and Assembly. To realise the solution, the interfaces
must be implemented in a platform dependent way. As already mentioned, an
example implementation will be presented.

Table 17. Interfaces of a "Distributable" application.

Interface Java implementation

withPolicy package fi.vtt.ele.management_framework.implementation
 .application_layer;
import
fi.vtt.ele.management_framework.implementation.utility.*;
public interface withPolicy
{
 public final static String
 POLICY_SIGNATURE = "WITH_POLICY";
 public InformationRoot getPolicy();
 public void run();
}

Distributable package fi.vtt.ele.management_framework.implementation
 .application_layer;
import
fi.vtt.ele.management_framework.implementation.utility.*;
public interface Distributable
{ public InformationBranch getDistributionPolicy(); }

Representable package fi.vtt.ele.management_framework.implementation
 .application_layer;
import
fi.vtt.ele.management_framework.implementation.utility.*;
public interface Representable
{
 public Proxyable getRepresentative(Identity _for_);
}

Proxyable package fi.vtt.ele.management_framework.implementation
 .application_layer;
import fi.vtt.ele.management_framework.implementation
 .utility.ReturnCode;
import java.io.ObjectOutputStream;
import java.io.ObjectInputStream;
public interface Proxyable
{
 public Proxyable reConstruct();
 public boolean unActivate();
 public boolean writeProxyable(ObjectOutputStream into_);
 public boolean readProxyable(ObjectInputStream from_);
 public boolean reActivate();
 public void run();
}

The table continues.

107

Continuing Table 17.
Interface Java implementation

Network
Transparency

package fi.vtt.ele.management_framework.implementation.
distribution_transparency;
import
fi.vtt.ele.management_framework.implementation.utility.*;
import java.io.ObjectOutputStream;
import java.io.ObjectInputStream;
public interface NetworkTransparency
{
 public void sendConnectionless
 (Message _with_, DatagramChannel by_);
 public Message receiveConnectionless
 (DatagramChannel _by_, int expected_size_);
 public Message getMessage(Datagram _from_);
 public Datagram getDatagram(Message _for_);
 public DatagramChannel getDatagramChannel
 (Identity _for_);
 public Channel getChannel(Identity _to_);
 public ObjectOutputStream getObjectOutputStream
 (Channel _on_);
 public ObjectInputStream getObjectInputStream
 (Channel _on_);
 public ServerChannel getServerChannel
 (Identity _for_, int door_);
 public Address getAddress(Identity _of_);
 public String setAddress(Identity _for_, Address _at_);
 public Identity setNameCacheEntry
 (String name_cache_entry_str);
 public void listNameCache();
 public void loadNameCache(String name_cache_file_name_);
 public void saveNameCache(String name_cache_file_name_);
}

Table 18. Interfaces of the management layer with the "Distribution" support.

Interface Java implementation

Policy /** This interface and its definitions is created only for
the test purpose. This is the place in where the policy
must be interpreted from XML-based descriptions of
InformationBranch and Information Root. */
package
fi.vtt.ele.management_framework.implementation.management.l
ayer; import
fi.vtt.ele.management_framework.implementation.utility.*;
public interface Policy extends InformationBranch
{ /*The interface InformationBranch will be implemented
 for the demo.*/ }

The table continues.

108

Continuing Table 18.
Interface Java implementation

Dimension package
fi.vtt.ele.management_framework.implementation.management_l
ayer;
import fi.vtt.ele.management_framework.implementation.
 distribution_transparency.NetworkTransparency;
import
fi.vtt.ele.management_framework.implementation.utility.*;
public interface Dimension
{ public final static int ROOT = 0;
 public final static int ADVERTISEMENT = 1;
 public final static int DISTRIBUTION = 2;
 public final static int RESOURCE_MANAGEMENT = 4;
 public final static int SECURITY = 8;
 public final static int PROFILE_MANAGEMENT = 16;
 public final static int INITIALISING = 200;
 public final static int IDLING = 300;
 public final static int UPLOADING_OBJECT = 400;
 public final static int DOWNLOADING_OBJECT = 500;
 public boolean dispatchMessage(Message message_);
 public boolean sendMessage(Identity _to_, ReturnCode
with);
 public boolean initMessager(Identity _for_,
 NetworkTransparency bo_);
 public boolean startListen();
 public boolean handleAction(ManagementAction _action_);
}

Distribution package
fi.vtt.ele.management_framework.implementation.management_l
ayer;
import
fi.vtt.ele.management_framework.implementation.utility.*;
public interface Distribution
{ public final static int REACHING_PROXYABLE = 2100;
 public final static int REACTIVATING_PROXYABLE = 2200;
 public final static int UNACTIVATING_PROXYABLE = 2300;
 public final static int RUNNING_PROXYABLE = 2400;
 public final static int PROCLAIMING_ACTION = 2500;
 public ReturnCode acceptService(ManagementAction
entry);
 public ReturnCode reachService(Identity _of_);
}

Management

(continues)

package fi.vtt.ele.management_framework.implementation
 .management_layer;
import fi.vtt.ele.management_framework.implementation
 .utility.*;
import fi.vtt.ele.management_framework.implementation
 .application_layer.withPolicy;

The table continues.

109

Continuing Table 18.
Interface Java implementation

Management
(continuing)

public interface Management
{
 public final static int INITIALISING = 100;
 public final static int DECODING_POLICY = 110;
 public final static int _CREATING_POLICY_OBJECTS = 111;
 public final static int CREATING_DIMENSIONS = 120;
 public final static int POLICYMAKING = 130;
 public final static int _BUILDING_DECISION_TABLE = 131;
 public final static int IDLE = 140;
 public final static int _HANDLING_MANAGEMENT_INFO = 141;
 public ReturnCode createApplication(String _from_UIN_);
 public Policy createManagementPolicy(InformationRoot
from);
 public Dimension createDimensionServer(Dimension _for_,
Policy _by_);
 public ReturnCode handleManagementInfo(ManagementAction
from);
 public ReturnCode commitManagementAction
 (Identity _on_, ManagementAction _with_);
 public withPolicy getApplication();
 public Policy getManagementPolicy();
 public void exit(String _with_);
}

Table 19. Interfaces and classes in the utility package.

Interface Java implementation

Address package
fi.vtt.ele.management_framework.implementation.utility;
public interface Address
{ public void setHost(String host_str_);
 public String getHost();
 public void setDoor(int door_);
 public int getDoor();
 public String to_String();
}

Channel package
fi.vtt.ele.management_framework.implementation.utility;
import java.io.InputStream;
import java.io.OutputStream;
public interface Channel
{ public InputStream getInputStream() throws Exception;
 public OutputStream getOutputStream() throws Exception;
 public void close();
}

The table continues.

110

Continuing Table 19.
Interface Java implementation

Datagram package
fi.vtt.ele.management_framework.implementation.utility;
public interface Datagram
{
 public String getContents();
 public void setContents(String contents_);
 public void setToAddress(Address to_address_);
 public void setFromAddress(Address from_address_);
 public Address getToAddress();
 public Address getFromAddress();
 public String to_String();
}

Datagram
Channel

package
fi.vtt.ele.management_framework.implementation.utility;
public interface DatagramChannel
{
 public void sendDatagram(Datagram datagram_)
 throws Exception;
 public Datagram receiveDatagram
 (int expected_size_) throws Exception;
 public void setTimeout(int timeout_) throws Exception;
 public int getDoor();
}

Decision package
fi.vtt.ele.management_framework.implementation.utility;
public interface Decision
{
 public boolean DEMANDS();
 public boolean SUPPORTS();
 public boolean JUDGMENT();
}

Identity package
fi.vtt.ele.management_framework.implementation.utility;
public interface Identity
{
 public void from_String(String identity_str_);
 public String to_String();
}

Information
Branch
(continues)

/**
 This interface and its definitions is created only for
 the test purpose. This is the place in where the
 descriptions of the policy must be developed as further
 study - might be XML-based.
*/
package
fi.vtt.ele.management_framework.implementation.utility;

The table continues.

111

Continuing Table 19.
Interface Java implementation

Information
Branch
(continuing)

public interface InformationBranch
{ /** The next definition is only for the demo -
definitions will be separated in the next version. */
 public int getDIMENSION();
/** The next definitions are ROOT-related - they will be
 separated in the next version. */
 public String getUIN();
 public String getUID();
/** The next definitions are DISTRIBUTION-related
 - they will be separated in the next version. */
 public int getPREFERRED_DOOR();
 public int getMAX_NUMBER_OF_REPRESENTATIVE_OUT();
}

Information
Root

package
fi.vtt.ele.management_framework.implementation.utility;
public interface InformationRoot
{
 /** Must be implemented. See Table 16 and the previous
 item.*/
}

Management
Action

package
fi.vtt.ele.management_framework.implementation.utility;
public interface ManagementAction extends Message
{
 public Message createMessage();
 public boolean adaptMessage(Message _message_);
 public int getIntvalue();
 public long getLongvalue();
 public Object getObject();
 public void setIntvalue(int intvalue_);
 public void setLongvalue(long longvalue_);
 public void setObject(Object object_);
}

Message package
fi.vtt.ele.management_framework.implementation.utility;
public interface Message extends ReturnCode
{
 public Identity getFromIdentity();
 public Identity getToIdentity();
 public void setToIdentity(Identity to_identity_);
 public void setFromIdentity(Identity from_identity_);
 public ReturnCode createReturnCode();
 public boolean swapIdentities();
 public boolean adaptReturnCode(ReturnCode returncode_);
}

The table continues.

112

Continuing Table 19
Interface Java implementation

Messager

(continues)

package
fi.vtt.ele.management_framework.implementation.utility;
import fi.vtt.ele.management_framework.implementation.

distribution_transparency.NetworkTransparency;
import
fi.vtt.ele.management_framework.implementation.management_l
ayer;
/** Utility class Messager is utility enabling
communication between Identities. It can be installed as a
thread or as usual instance. If installed as a thread, it
receives messages in a loop and will call the listener
introduced by the parameter listener. Listener must
dispatch the message to the correct Identity, or if the
message cannot be interpreted, return false.*/
public class Messager implements Runnable
{
 private Identity for_id = null;
 private NetworkTransparency bo = null;
 private Dimension listener = null;
 private DatagramChannel datagram_channel= null;
 private int receive_buffer_size = 512;
/**
 @param for_id_ will own the communication channel.
 @param bo_ is a binding object implementing
 the network transparency.
 @param listener_ is the object which implements
 the interface "Dimension". It must dispatch the messages.
*/
 public Messager(Identity for_id_, NetworkTransparency
 bo_, Dimension listener_) throws Exception
 {
 for_id = for_id_; bo = bo_; listener = listener_;
 datagram_channel = bo_.getDatagramChannel(for_id);
 }
 public synchronized void sendMessage
 (Message _with_) throws Exception
 {
 bo.sendConnectionless(_with_, datagram_channel);
 }
 public void setTIMEOUT(int timeout_)
 {
 try
 {
 datagram_channel.setTimeout(timeout_);
 } catch (Exception e) {/* do not care */}
 }
 public Message receiveMessage()
 {

The table continues.

113

Continuing Table 19.
Interface Java implementation

Messager
(continuing)

 try
 {
 Message message = bo.receiveConnectionless
 (datagram_channel, receive_buffer_size);
 if (listener != null)
 {listener.dispatchMessage(message);}
 return message;
 } catch (Exception e) { return null; }
 }
 public void run() {while (true) receiveMessage();}
}

Object
Downloader

(continues)

package
fi.vtt.ele.management_framework.implementation.utility;
import fi.vtt.ele.management_framework.implementation.
 management_layer.*;
import fi.vtt.ele.management_framework.implementation.
 distribution_transparency.NetworkTransparency;
import java.io.ObjectInputStream;
/**
 Utility class ObjectDownloader provides the system
capability
 of download objects. It is the other end of the object
transfer of
 the system.
*/
public class ObjectDownloader implements Runnable
{
 private ManagementAction entry = null;
 private Dimension dimension = null;
 private ObjectInputStream objectstream = null;
 private Channel channel = null;
/**
 @param entry is a record of a client action to take care.
 @param bo_ is a binding object implementing
 the network transparency.
 @param dimension is an object which is able
 to handle the return code.
*/
 public ObjectDownloader(ManagementAction entry_,
 NetworkTransparency bo_, Dimension dimension_) throws
Exception
 {
 entry = entry_;
 dimension = dimension_;
 channel = bo_.getChannel(entry_.getFromIdentity());
 objectstream = bo_.getObjectInputStream(channel);
 }

The table continues.

114

Continuing Table 19.
Interface Java implementation

Object
Downloader
(continuing)

/** downloadObject() -methods is called for do the actual
 work of download */
 public void downloadObject()
 {
 try
 {
 Object o = objectstream.readObject();
 entry.setObject(o);
 objectstream.close();
 channel.close();
 entry.setSUCCESS();
// Inform the dimension object about a successful download
and wait until it has handled the object.
 if (dimension != null) {if
 dimension.handleAction(entry)) return;}
 } catch (Exception e)
 {
 entry.setFAILED();
 if (dimension != null)
 {dimension.handleAction(entry); return;}
 }
 }
 /**The Runnable method*/
 public void run() { downloadObject(); }
}

Object
Uploader

(continues)

package
fi.vtt.ele.management_framework.implementation.utility;
import fi.vtt.ele.management_framework.implementation.
 distribution_transparency.NetworkTransparency;
import fi.vtt.ele.management_framework.implementation.
 management_layer.*;
import java.io.ObjectOutputStream;
/**
 Utility class ObjectUploader provides the system
 capability of delivering the necessory objects between
 the identities with its other end of ObjectDownloader.
 It is implementation independent and therefore
 compileable with its associated interface Dimension.
*/
public class ObjectUploader implements Runnable
{ private ManagementAction entry = null;
 private ServerChannel serverchannel = null;
 private Dimension dimension = null;
 private NetworkTransparency bo = null;
 /**
 @param entry_ is a client action which must be handled.

The table continues

115

Continuing Table 19.
Interface Java implementation

Object
Uploader
(continuing)

 @param bo_ is a binding object implementing
 the network transparency.
 @param dimension is the object which must handle
 the return code. */
 public ObjectUploader(ManagementAction entry_,
 NetworkTransparency bo_, Dimension dimension_)
 throws Exception
 {
 entry = entry_; bo = bo_; dimension = dimension_;
 serverchannel = bo_.getServerChannel
 (entry_.getToIdentity(), entry_.getIntvalue());
 }
 /**Method uploadObject carries out the sending of
 the data */
 public void uploadObject()
 {
 try
 { /** Waiting for the connect from
 the ObjectDownloader. */
 Channel channel = serverchannel.accept();
 ObjectOutputStream objectstream =
 bo.getObjectOutputStream(channel);
 objectstream.writeObject(entry.getObject());
 objectstream.flush();
 objectstream.close();
 entry.setSUCCESS();
 /**It is about time to inform the dimension about
 the work done.*/
 if (dimension != null) {dimension.handleAction(entry);}
 } catch (Exception e)
 { entry.setFAILED();
 if (dimension != null)
 dimension.handleAction(entry);}
 }
 }
 /**The Runnable method*/
 public void run() {uploadObject();}
}

Server
Channel

package
fi.vtt.ele.management_framework.implementation.utility;
public interface ServerChannel
{
 public Channel accept() throws Exception;
 public int getLocalDoor() throws Exception;
 public Address getLocalAddress() throws Exception;
 public void close() throws Exception;
}

The table continues.

116

Continuing Table 19.
Interface Java implementation

ReturnCode package
fi.vtt.ele.management_framework.implementation.utility;
public interface ReturnCode
{ public final static String query = "QUERY";
 public final static String maximum = "MAXIMUM";
 public final static String busy = "BUSY";
 public final static String granted = "GRANTED";
 public final static String denied = "DENIED";
 public final static
 String representative_proxy =
"REPRESENTATIVE_PROXY";
 public final static String class_byte_code_resource
 = "CLASS_BYTE_CODE_RESOURCE";
 public final static String failed = "FAILED";
 public final static String success = "SUCCESS";
 public final static String infocode = "INFOCODE";
 public boolean isQUERY();
 public boolean isMAXIMUM();
 public boolean isBUSY();
 public boolean isGRANTED();
 public boolean isDENIED();
 public void setQUERY();
 public void setMAXIMUM();
 public void setBUSY();
 public void setGRANTED();
 public void setDENIED();
 public boolean isREPRESENTATIVE_PROXY();
 public void setREPRESENTATIVE_PROXY();
 public boolean isCLASS_BYTE_CODE_RESOURCE();
 public void setCLASS_BYTE_CODE_RESOURCE();
 public boolean isSUCCESS();
 public boolean isFAILED();
 public boolean isINFOCODE();
 public void setSUCCESS();
 public void setFAILED();
 public void setINFOCODE();
 public String getPrefix();
 public String getBody();
 public String getCode();
 public void setPrefix(String prefix_);
 public void setBody(String body_);
 public void setCode(String code_);
 public String getString();
 public String to_String();
 public boolean from_String(String returncode_str_);
}

117

6.3 Essentials of the Distribution demo

The distribution demo consists of the management layer which is capable of
distributing an application, and a demo application which is "Distributable",
namely the HelloWorldApplication. It has a proxyable client, HelloWorldClient.
They are listed in Appendix A. The management layer for the demo includes the
ManagementServer that will be presented in Subsection 6.3.1 and Appendix A,
the DistributionDimensionServer and the ManagementPolicy which will be
presented in Subsection 6.3.3 and Appendix A. The system also needs the
management client software that is able to work on the client side, namely the
ManagementClient. It will be presented in Subsection 6.3.2. The Binding Object
which implements the Network Transparency in the TCP/IP network is needed
between the objects on server side and client side. It will be presented in
Appendix A only. With the class library presented in Section 6.1, and the
example implementation of the utility classes in Appendix A, the whole software
will be presented.

6.3.1 Management Server

The partial source code listing below presents the ManagementServer class. The
ManagementServer class implements interface "Management". The code
reflects, in a precise manner, the class model in Figure 16 and the dynamic
model in Figure 17 with its sub-state machines. The essentials of the
management features of the system are presented. The code will be commented
on in Appendix A.

import fi.vtt.ele.management_framework.implementation.management_layer.*;
import fi.vtt.ele.management_framework.implementation.application_layer.*;
import fi.vtt.ele.management_framework.implementation.utility.*;
import java.io.*;
class ManagementServer implements Management, Runnable
{
 public withPolicy application_ = null;
 public Decision decision_table[][] = new Decision[5][5];
 public Dimension _to_support[] = new Dimension[5];
 public Policy _on_demand[] = new Policy[5];
 public ReturnCode _on_init = null;
 public ReturnCode _on_decoding = null;
 public ReturnCode _on_policy = null;
 public ReturnCode _on_idle = null;
 public int _dimension = 0;

118

 private String _UIN_ = null;
 private String signature = null;
 public Policy management_policy = null;
 private int state = INITIALISING;
 private int sub_state = 0;
 /**@param _from_UIN_ is the application name to be started */
 public ManagementServer(String _from_UIN_) throws Exception
 {
 UIN = _from_UIN_;
 state=INITIALISING;
 _on_init = createApplication(_from_UIN_);
 if (_on_init.isFAILED()) {exit(_on_init.getString());}
 else if (_on_init.isINFOCODE()) {exit(_on_init.getString());}
 else if (_on_init.isSUCCESS())
 {
 for (int i=0;i<=4;i++) _on_demand[i]=null;
 state=DECODING_POLICY;_
 on_decoding = decodePolicies(application_);
 if (_on_decoding.isSUCCESS())
 {
 for (int i=0;i<=4;i++) _to_support[i]=null;
 _dimension=0;
 state = CREATING_DIMENSIONS;
 for (_dimension=0; _dimension <= 4; _dimension++)
 {
 if (_on_demand[_dimension]!=null)
 {
 _to_support[_dimension] =
 createDimensionServer(_on_demand[_dimension]);
 }
 }
 for (int i=0;i<=4;i++) for (int j=0;j<=4;j++)
 decision_table[i][j]=null;
 state=POLICYMAKING;
 _on_policy = policyMaking();
 printDecisiontable();
 if (_on_policy.isSUCCESS())
 {
 application_.run();
 state=IDLE;
 } else if (_on_policy.isFAILED())
 exit(_on_policy.getString());
 else exit(_on_policy.getString());
 } else if (_on_decoding.isFAILED())
 {exit(_on_decoding.getString());}
 else exit(_on_decoding.getString());
 }
 }

 public ReturnCode policyMaking()
 {
 ReturnCode ret = getReturnCode();
 try
 {
 for (int i=0;i<=4;i++)

119

 {
 for (int j=0;j<=4;j++)
 {
 if ((_on_demand[i]==null) && (_to_support[j] == null))
 decision_table[i][j] = new DecisionImplementation
 (false, false, false);
 if ((_on_demand[i]!=null) && (_to_support[j] == null))
 decision_table[i][j] = new DecisionImplementation
 (true, false, false);
 if ((_on_demand[i]==null) && (_to_support[j] != null))
 decision_table[i][j] = new DecisionImplementation
 (false, true, false);
 if ((_on_demand[i]!=null) && (_to_support[j] != null))
 decision_table[i][j] = new DecisionImplementation
 (true, true, true);
 }
 }
 ret.setSUCCESS();
 } catch (Exception e) {ret.setFAILED();
 ret.setBody("ManagementServer: -Policymaking failed.");}
 return ret;
 }

 public ReturnCode createApplication(String _from_UIN_)
 {
 ReturnCode ret = getReturnCode();
 Class check_ = null;
 try
 {
 File f = new File(_from_UIN_);
 } catch (NullPointerException e)
 { /** An object is not located */
 ret.setFAILED();
 ret.setBody(e.toString());
 return ret;
 }
 try
 {
 check_ = Class.forName(_from_UIN_);
 } catch (ClassNotFoundException f)
 { /** An object is not identified */
 ret.setFAILED();
 ret.setBody(f.toString());
 return (ReturnCode) ret;
 } /** An object is located and identified, but is it a one withPolicy?
*/
 try
 { /** Getting signature but not handling it in this version */
 application_ = (withPolicy)check_.newInstance();
 signature = application_.POLICY_SIGNATURE;
 ret.setSUCCESS();
 } catch (Exception g)
 { /** An object is not withPolicy */
 ret.setINFOCODE();
 ret.setBody(g.toString());

120

 }
 return (ReturnCode) ret;
 }
/*************** the snipped code ends here *****************/

Figure 19 presents the screenshot captured during the test run of the system. The
Management Server is started by expressing the name of the application. Then
the distribution service is started by the command of the Management Server
after the Management Server has resolved the policy. The distribution service
has configured the local name cache for the demo simultaneously informing of
the configuration - this particular service can be located at this particular
address. It has reached the necessary information about the name of the service
and the door at where the service will be available, from the application's
distribution policy. The Management Server has printed the decision table. The
table shows that the application is "Distributable" and the distribution service
have been started successfully. The management layer objects will output more
information about their states when the first client comes in.

Figure 19. A screenshot of executing the Management Server.

121

6.3.2 Management Client

The partial source code listing below presents the ManagementClient class. The
ManagementClient class implements the interfaces "Dimension" and
"Distribution". The code reflects the class model in Figure 16. The code will be
commented on in Appendix A.

import fi.vtt.ele.management_framework.implementation.management_layer.*;
import fi.vtt.ele.management_framework.implementation.application_layer.*;
import fi.vtt.ele.management_framework.implementation.utility.*;
import fi.vtt.ele.management_framework.implementation
.distribution_transparency.*;
public class ManagementClient implements Distribution, Dimension
{
 public Proxyable reconstructed = null;
 private int state = INITIALISING;
 private int REACHING_RESOURCE = 1000;
 private int dimensions = ROOT+DISTRIBUTION;
 private Identity client = null;
 private Identity service = null;
 private NetworkTransparency bo = null;
 private Messager messager = null;
 public ManagementClient(Identity service_, Identity client_)
 { service = service_;
 client = client_;
 try
 { bo = new TCPIPNetworkTransparencyBO();
System.out.println
("**");
System.out.println("Demo: Name Cache will be configured for the demo in
using ");
System.out.println("the default cachefile 'democache.txt' instead of the
use of");
System.out.println("a directory service - directory services are not
available. ");
 bo.loadNameCache("democache.txt");
 bo.listNameCache();
 bo.setAddress(client_, new AddressImplementation(null,0));
System.out.println
("**");
 if (initMessager(client_, bo))
 {
 state = REACHING_RESOURCE;
 if (reachService(service_).isSUCCESS())
 {
 while (state != REACHING_PROXYABLE) {Thread.yield();}
 }
 if (reachService(service_).isSUCCESS())
 {
 while (state != RUNNING_PROXYABLE) {Thread.yield();}
 reconstructed.run();

122

 }
 } else exit("ManagementClient: -The service '"+service.to_String()
 +"' could not be reached.");
 } catch (Exception e)
 {exit("ManagementClient: -Could not be installed.");}
 }
 public boolean initMessager(Identity _for_, NetworkTransparency bo_)
 { try
 {
 messager = new Messager(_for_, bo_, null);
 return true;
 } catch (Exception e) { return false; }
 }
 public boolean dispatchMessage(Message message_) { return false; }
 /** @param _action_ is a ManagementAction to handle. */
 public boolean handleAction(ManagementAction _action_)
 {
 if (state == DOWNLOADING_OBJECT)
 {
 if (_action_.isSUCCESS()) System.out.println("ManagementClient: "
 +"-ObjectDownloader informs that the operation was proceeded
 successfully.");
 if ((_action_.isSUCCESS())&&(_action_.isREPRESENTATIVE_PROXY()))
 {
 Proxyable p = (Proxyable)_action_.getObject();
 reconstructed = p.reConstruct();
 if (reconstructed == null) exit("ManagementClient: "
 +"-Representavive proxy cannot be reconstructed.");
 state = REACTIVATING_PROXYABLE;
 if (reconstructed.reActivate())
 {
 state = RUNNING_PROXYABLE;
 } else exit("ManagementClient: "
 +"-Representavive proxy cannot be reactivated.");
 } else
 if ((_action_.isSUCCESS())&&(_action_.isCLASS_BYTE_CODE_RESOURCE()))
 {
 DiskFile p = (DiskFile)_action_.getObject();
 if (!p.toDisk()) exit("ManagementClient: "
 +"-Class byte code resource cannot be installed.");
 state = REACHING_PROXYABLE;
 } else exit("ManagementClient: -Object cannot be downloaded.");
 return true;
 } else { return false;}
 }
 public ReturnCode reachService(Identity _of_)
 {
 ReturnCode sendquery = null;
 ManagementAction action = null;
 Message coming = null;
 try
 {
 sendquery = new ReturnCodeImplementation();
 } catch (Exception e) {exit("ManagementClient: -Could not create
object.");}

123

 if (state == REACHING_PROXYABLE)
 {
 sendquery.setQUERY();
 sendquery.setREPRESENTATIVE_PROXY();
 sendquery.setINFOCODE();
 if (sendMessage(_of_, sendquery))
 {
 messager.setTIMEOUT(10000);
 System.out.println("ManagementClient: "
 +"-Reaching for the service's proxy for no longer than 10 seconds ..");
 coming = messager.receiveMessage();
 messager.setTIMEOUT(0);
 if (coming.isGRANTED())
 {
 System.out.println("ManagementClient: "
 +"-Representative proxy is granted, starting downloader ..");
 try
 {
 action = new ManagementActionImplementation();
 action.adaptMessage(coming);
 Thread t = new Thread(new ObjectDownloader(action, bo, this));
 state = DOWNLOADING_OBJECT;
 t.start();
 action.setSUCCESS();
 return action.createReturnCode();
 } catch (Exception e) {return action.createReturnCode();}
 }
 } else if (coming.isDENIED()) { exit("ManagementClient: "
 +"-Representative proxy is denied by the server, quitting.");}
 else { exit("ManagementClient: -Cannot send a message.");}
 }
 if (state == REACHING_RESOURCE)
 {
 sendquery.setQUERY();
 sendquery.setCLASS_BYTE_CODE_RESOURCE();
 sendquery.setINFOCODE();
 if (sendMessage(_of_, sendquery))
 {
 messager.setTIMEOUT(10000);
 System.out.println("ManagementClient: -Reaching for the class
 byte code resource for no longer than 10 seconds ..");
 coming = messager.receiveMessage();
 messager.setTIMEOUT(0);
 if (coming.isGRANTED())
 {
 System.out.println("ManagementClient: "
 +"-Class byte code resource is granted, starting downloader ..");
 try
 {
 action = new ManagementActionImplementation();
 action.adaptMessage(coming);
 Thread t = new Thread(new ObjectDownloader(action, bo, this));
 state = DOWNLOADING_OBJECT;
 t.start();
 action.setSUCCESS();

124

 return action.createReturnCode();
 } catch (Exception e) {return action.createReturnCode();}
 }
 } else if (coming.isDENIED()) { exit("ManagementClient: "
 +"-Class byte code resource denied, quitting.");}
 else { exit("ManagementClient: -Cannot send message.");}
 }
 return action.createReturnCode();
 }
/*************** the snipped code ends here *****************/

Figure 20 presents the screenshot captured during the test run of the system.
Management Client was started and it had connected to the given application
(served by a management server object). The class code resource of the
representative proxy was required first and it was granted, then the
representative proxy object of the example application was required, and it was
granted, too. As soon as all the necessary data was reached, the representative
proxy object was started successfully.

Figure 20. A screenshot of executing the ManagementClient.

Figure 21 shows what happens on the server side during the interactions of
clients. It shows that the application object has been notified about the client's
identity. The application object cannot control the action directly, but through
the policy that the ManagementServer maintains. However, the application
object can distinguish individual clients.

125

It must be notified that the reaching byte code resource for the proxy object only,
is not usually sufficient - the proxy object may consist of many other application
specific classes and even may use another class library than what is currently
installed in the target platform - and the resource management dimension
services must therefore take place. This subject will be studied further in Chapter
7.

All accessing in the system is made only by giving identities of entities. In the
future version, the expression of the identity will be expanded also to carry the
less-friendly expression of UID like 'BE9CD630-A96B-11D3-81BC-
00902790ECE5' to distinguish identities properly.

Figure 21. A screenshot showing the ManagementServer command window after
two clients have been served.

Before use, the name cache must be configured accordingly, to express physical
addresses for the service identities - usually this kind of name service is provided
by a directory service in the distributed system. In the demo, the Management
Server configures the file "democache.txt" by which the target platform then
should be provided. For testing the system in one machine, it is not necessary to
pass the cache file anywhere. The file may be configured to contain information
for many services in different locations. The binding object that implements the
network transparency must take care of accessing the name service to maintain

126

its cache. However, the name cache is needed to make the resolving of the
names faster.

Usage of the client demo: 'java ManagementClient <service_UIN>
<client_UIN>, where the <service_UIN> is the service's unique name, e.g.
HelloWorldApplication and the <client_UIN> is the user's unique name, e.g.
Marcus. The application <service_UIN> must have been started with
management before using this client demo.

6.3.3 Management Policy

The snipped source code below presents the structure of the ManagementPolicy
class used in the demo. All policy definitions have been left open for further
development - this policy can maintain the policy that the example application
carries - and a more generic way to handle the policies must be developed in the
next version.

import fi.vtt.ele.management_framework.implementation.utility.*;
import fi.vtt.ele.management_framework.implementation.management_layer.*;
import fi.vtt.ele.management_framework.implementation.utility.*;
import fi.vtt.ele.management_framework.implementation.management_layer.*;
/** This class is created only for the test purpose. This is the place in
where the descriptions of the policy must be developed as a further
study.*/
public class ManagementPolicy implements Policy
{ public int DIMENSION = Dimension.ROOT;
 /** The next definitions are ROOT-related. */
 public String _UIN = null;
 /** UID can be produced by the common GUIDGEN-utility. */
 public String _UID = null;
 /** The next definitions are DISTRIBUTION-related. */
 public int PREFERRED_DOOR = 0;
 public int MAX_NUMBER_OF_REPRESENTATIVE_OUT = 0;
 public ManagementPolicy() throws Exception { }
 public ManagementPolicy(InformationBranch from_) throws Exception
 { DIMENSION = DIMENSION+from_.getDIMENSION();
 UID = from.getUID();
 UIN = from.getUIN();
 PREFERRED_DOOR = from_.getPREFERRED_DOOR();
 MAX_NUMBER_OF_REPRESENTATIVE_OUT =
getMAX_NUMBER_OF_REPRESENTATIVE_OUT();
 }
 public int getDIMENSION() { return DIMENSION; }
 public String getUIN() { return _UIN; }
 public String getUID() { return _UID; }

127

 public int getPREFERRED_DOOR() { return PREFERRED_DOOR; }
 public int getMAX_NUMBER_OF_REPRESENTATIVE_OUT()
 {
 return MAX_NUMBER_OF_REPRESENTATIVE_OUT;
 }
}

6.4 Summary

In this chapter, the implementation of the solution was presented in using the
Java programming language. The solution is not an endproduct, however,
therefore to achieve a presentation that is clear enough, the essentials of an
example application were presented. Programmers, who may implement the
applications of this framework in the future, can use the example as a template.
The goal was to make the solution explicitly clear. The applicable class library
was also presented, because the solution is meant to be deployed in deploying
the class library. There was a possibility to produce the results of the
implementation by using proper UML-tool software by deriving the design
models and then modifying them to use Java and eventually generate the
necessary piece of codes with the code generation tools shipped with the tool.
However, this was decided to be left as an initiative for further development.
Deployment of the presented solution can be done by producing applications
separately from the management layer. There can be a different management
layer implementation for different platforms. Any compatible application can
then deploy any of these management supports in terms of the management
policy of the application.

128

7. Discussion and further research
The following issues will be considered: 1) What is the answer to the research
problem? 2) Which advantages can be considered as achieved due to the
solution? 3) Which subjective quality properties the system can be observed to
support? 4) Which are weaknesses of the solution? 5) Which are further
development issues of the system? 6) Can an example of further design of the
system be provided?

7.1 Answer to the research problem

What is the answer to the research problem? Originally, the objectives were
concentrated on in Chapter 1, Subsection 1.5 by setting the research problem.
The answer is provided in Table 20.

Table 20. Answer to the research problem.

Problem Answer

The user requirements must
be examined.

The preferred user requirements
are listed in Table 2 and the
threshold user requirements are
listed in Table 13.

A
framework
to manage

the
distributed

use of a
piece of

computer
software has

to be
developed.

(continues)

Suggestions presented in
Table 1 must be evaluated,
and if the dimensions can be
proved to exist, and as a
consequence - further
management functions to be
isolated, then those functions
must be developed further,
this thereby leading to the
implementation.

Suggested ideas have been
found most relevant in
considering the problem. The
dimensions have been proved to
exist in Figure 4 by the
correlation analysis.

These factors were combined to
define the concept. The concept
is presented in Chapter 3.

The table continues.

129

Continuing Table 20.
Problem Answer

The framework must be
defined on the level of
abstractions and further
design models so it can be
realised for many purposes,
for instance as a test platform
that is easy to understand and
deploy.

The architecture diagrams in
Figure 12 and Figure 13
represent the abstractions of the
system. Organising the system
by layers and dimensions
presented in Table 15 supports
the understandability of the
system.

APIs of the system must be
defined.

Abstractions of the APIs are
presented in Table 15, and the
essential features of them are
realised in Figure 15 and Figure
16.

A
framework
to manage

the
distributed

use of a
piece of

computer
software has

to be
developed

(continuing).

A demo program for
deploying the solution must
be presented.

The ready-to-run demo has been
presented in the Appendix A.

7.2 Advantages of the solution

Which advantages can be considered as achieved due to the solution? The
highlights of the developed technical solution are:

• Computational objects and their possible representatives can be fully
managed in their environments.

• A computational object can be accessed only in using its unique identifier -
we do not have to care about where the objects actually are located - the
location transparency (as a sub set of the distribution transparency) takes
care of that responsibility.

130

• There can be different binding objects implementing the network
transparency for the different circumstances, and they can be made
manageable, too. The same computational objects will work everywhere
because all they have to know is the interface of the binding object - the
network transparency - and the interface will always stay the same. As a
further study, the author of this thesis would like to suggest the binding
object to be provided in using DDE, WAP, MExE, or Bluetooth when their
corresponding network transport layer and the name service capabilities are
deployed.

• A simulating development environment can be provided by realising the
interfaces only for emulating objects of the real world.

• Manageable binding objects can be instantiated for the application layer as
well - the application and its representative client can communicate in the
same way by using only the identities of the objects.

The introduced management framework can be deployed with any data objects,
whether these are passive or active (active data objects include program logic).
Every particular data object can be made manageable if they can express the
policy of how they are expecting to be managed. The policy definitions must be
made flexible, so the applications can be adapted for every individual case. This
issue will be further dealt with in Section 7.5.

The solution opens enormous possibilities to manage software objects in their
environment, whether they are distributed or not. It can be stated that all the
preferred user requirements introduced in Table 2 can be fulfilled. To justify this
statement, an example will clarify the matter: There was a requirement with the
label PE11. Indeed, with the solution, it is possible to provide a vision in which
the copying of data objects is explicitly managed. Making of copies can be
authorised, secured limited etc. These definitions may have been written in the
policy information of the application.

131

7.3 Subjective quality properties of the system

Which subjective quality properties the system can be observed to support?
Many of these properties were examined by means of the practical systems study
in Chapter 2. The solution is a framework and because the subjective quality
properties can exist only with a real product, many of these properties will be
seen only in the future with applications based on the solution.

There is a large category of different objectives and categorised requirements
connected with the RM-ODP standards Part1 [17], and there are the Threshold
requirements in Table 13. Many of these requirements cannot be seen yet, many
of them will be realised when there is realised solutions of the different
dimensions of the distributed system. However, to provide an estimation, a more
compact category from Colouris et al. [16] will be used together with another,
more practical category seen as the Jini design centre discussed in Table 12.
These will be evaluated against the solution, and the results will be presented in
Table 21. The source of every individual characteristic is mentioned.

Table 21. Estimation of the common key characteristics of the distributed system
existing in the solution.

Characteristic Estimation notes

Resource sharing
(Colouris et al.)

Maximal resource sharing will be reached. Every piece of
resource can be shared as a service for others. The device
that offers its service is represented by the proxy object,
which makes the deployment of the service easy.

Openness
(Colouris et al.)

The solution is open, because it is available in public. The
term of "openness" also considers the uniform inter-process
communication mechanism to access the shared resources,
and that the system can be constructed from heterogeneous
hardware and software, possibly from different vendors. In
the solution, these can be supported by implementing the
corresponding functions of the dimension interfaces.

The table continues.

132

Continuing Table 21.
Characteristic Estimation notes

Concurrency
(Colouris et al.)

Concurrent sessions of management clients are supported.
An application supported with its own set of management
objects can run concurrently even on the same platform. The
application object itself has to support its multiple
representatives and their concurrent actions.

Scalability
(Colouris et al.

and the Jini
design centre)

The system is scaleable. One dimension can also be divided
to be processed in more than one process. The selection will
be driven by the policy of the application. The advertisement
and the distribution dimensions of the solution together fulfil
the same scalability feature as Jini's lookup service does by
grouping the services into communities and the communities
further into federations.

Fault tolerance
(Colouris et al.)

With the implementation of the resource management
dimensions services and the failure transparency features,
the system will tolerate all kinds of faults.

Transparency
(Colouris et al.)

The local mode and the distributed mode of the solution
differ from each other only by distribution transp. support.

Simplicity (the
Jini design centre)

Minimal software is needed to be added on e.g. Java, as is
the case with Jini.

Reliability (the
Jini design centre)

The distribution transparency and the resource management
dimension services of the solution will add value on Jini's
reliability scheme.

Device
agnosticism (the

Jini design centre)

With Jini's proxy-like representatives, the solution fulfils the
same device agnosticism scheme as Jini does.

133

7.4 Weaknesses of the solution

Which are weaknesses of the solution? The full deployment of the solution
acquires an access to every data object for them to be checked by the
management layer. The state diagram of the management server class in Figure
18 represents the necessary checking protocol. To guarantee management, the
protocol checks the management requirements of an object, and allows or
disallows the execution according to the policy of an object.

It seems almost utopistic to expect that the checking protocol can be supported
among the providers of the operating systems on a necessary scale. An official
standardisation or a very large consortium is needed to support the solution. This
issue will be covered in Section 7.5.

7.5 Further research issues

Which are further development issues of the system? It has been said in the
research problem analysis that "the solution can be used when R&D of
distributed software continues further concentrating to examine the fields of
problems that will exist with the upcoming wireless and mobile communication
technology". Next, the initiatives of this R&D will be focussed on. The
initiatives are listed below:

• Develop the management policies that an application must carry - expressing
them is the essential factor of the system. They must be defined by a large
consortium to achieve full advantages of the solution.

• Develop the technique concerning how the management policies could be
formed, partially by the automatic operation between the systems, partially
by the manual operation between stakeholders, both according to their
associated management domains.

• Develop the generic and implementation independent management and
algorithms (some kind of protocols). They will be the bases from which the
management feature in new generations of implementation would be
derived.

134

• Develop the Advertisement dimension service to follow the advertisement
policy that the application object explicitly expresses.

• Develop the Security dimension service to follow the security policy that the
application object explicitly expresses.

• Develop the implementation of the distribution transparencies interfaces
further, e.g. for using the DDE-derived technique, or possibly, for using the
communication technique used in the wireless and mobile environments, e.g.
MExE, WAP, or Bluetooth (if the platform can communicate, the
distribution transparency could be mounted on it).

• Develop the Resource management dimension service to follow the resource
management policy that the application object explicitly expresses. This will
include at least developing:

• the manageable resource instance interface of "Manageable", and its
functions including:

• how to get the resource reservation tree,

• how to get the dependencies existing between the resource instances
- the dependency tree will be formed,

• how to get the resource management policy automatically, and

• how to apply the management action to the resource instance,

• the technique to adjust the load (load balancing) between the server and
the client,

• the techniques to cache the resource instances, and

• a resource management negotiation technique.

• Develop the profile management dimension service. The profile
management dimension does not exist in the models, but it is supported in

135

the class library. This new dimension should be added in the system in the
future versions.

• Apply the framework to the existing distributed objects and components.

• Apply the framework to the existing executable program modes.

• Transfer the models into an advanced UML-tool.

• Start the SCM-activities [64], e.g. the version control. The configuration
items in this thesis belong to the version 1.0.

• Start the PLA-associated activities (Product Line Architecture) to support
the product differentiation taking place in the future [65].

7.6 An example of further design - the Resource
management

Can an example of further design of the system be provided? During the process,
the development of the resource management dimension was also started. This
subject had to be left out of the design because of the time schedule and too
large a document. It was decided that the subject would be one of the further
research initiatives. Nevertheless, the results of this unfinished work will be
included here because they are considered significant.

The application mode which is "Resourceable" and the management layer,
which is capable to maintain it, will be presented. Only the static models will be
presented. They may have been modified heavily when the actual design of the
resource management takes place.

7.6.1 Resources of the distributed systems

An application uses the resources of its execution platform. The resources are
successfully allocated once, after the application has been started. The resources
outside the local execution platform do not exist because they are served as

136

services, being already managed on their original installation points. Only the
piece of software that replaces the abstract of "Application" in Figure 22, must
be managed here (with its possible representatives, of course). A situation in
which the resource instance might be lost totally or might go below the QoS
criteria set by the policy, must be invisible to the end-user as long as possible.
This is also one of the purposes of the distribution transparencies in the
distributed environment. There may exist a situation where a defined condition
can not be maintained, an example includes losing the network connection for a
long time (the time will be set by the policy) - then the malfunction is fatal, and
the end-user and associated representatives of the other roles involved must be
informed about the error.

7.6.2 Class diagram of a "Resourceable" application

Figure 22 illustrates the static design model of the application that can carry the
information about how it wants to be managed.

All interfaces presented earlier are still valid. The application can express its
requirements of the resource management by implementing the function of
"getResourceManagementPolicy ()" of the interface of "Resourceable". The
resources that the application has allocated successfully exist as "Resource
Instance". Every individual instance may or may not be "Manageable". The
manageable properties have usually been derived from the resource source, as is
the case with the OO-class libraries. The programmer of the application has to
make the choice whether to use manageable resources or not. When using
manageable resources, the programmer also defines the static management
policy at the programming time. The definitions consider the QoS requirements
as well. The individual resource instance can be dependent on the other resource
instances, which may or may not be manageable. A bundle of resource instances
can exist, and these can belong to the one policy that covers the whole bundle.

137

Application Client

1..1 0..nserves represents

Resource
Instance

0..n

Binding Object
1..n

1..1

links

communicates by

<<interface>> Resourceable

+getResourceManagementPolicy() : InformationBranch

0..n

links

<<interface>>
with Policy

<<interface>>
Distributable

<<interface>>
Representable

<<interface>>
Proxyable

<<interface>>
Network

Transparency

Resource
0..n

allocates

is used by

0..n is a share of
0..n

<<interface>>
Movable

<<interface>> Manageable

+getResourcePolicyInfo() : InformationSubBranch
+getResourceTreeInfo() : InformationSubBranch

Figure 22. Class model for a "Resourceable" application.

7.6.3 Class diagram of the Resource management dimension layer

Figure 23 illustrates the static design model of the management layer. All
interfaces presented earlier are still valid.

The resource management will be handled by the "Resource Management
Dimension Server" object assisted with the "Resource Management Client"
object. A need to move the resource instance from one place to another may
exist. Therefore, the "Resource Instance" object must be able to be made
"Movable". Only the software based resources can be moved, the physical
(hardware based) resources can not. However, the hardware-based resources are
usually used by a control interface, and the control interface can be made into a
remote control service and thereby can be available for other applications.

138

0..1

1..1

Application

Server

End-user
Terminal

Client

1..1 0..n

Resource
Instance

Management
Policy1..1

1..1describes

belongs

Dimension
Server

0..4

1..1

follows0..4

0..n

<<interface>>
Distributable

1..1
0..n

owns

<<interface>>
Representable

<<interface>>
with Policy

0..n
0..n

1..1

<<interface>>
Proxyable

Binding Object

1..n

1..11..1

0..n

1..n
1..1

Management
Client

<<interface>>
Network

Transparency

Network Server
owns

0..1

1..1

Resource

0..n is a share of

0..n <<interface>>
Manageable

<<interface>> Movable

+writeMovable(into_ : Datastream) : ReturnCode
+readMovable(from_ : Datastream) : ReturnCode

<<interface>>
Resourceable

<<interface>>
Manageable

0..n

<<interface>> ResourceManagement

+init(with_ : ResourceManagementPolicy = null) : ReturnCode
+handlePeerMsg(in_ : Message, from_ : Identity) : ReturnCode
+sendPeerMsg(out_ : Message, to_ : Identity) : ReturnCode
+putMovable(moved_ : Movable, to_ : Identity) : ReturnCode
+getMovable(from_ : Identity) : Movable

+RESOURCER_IDLING : int = 40
+INITILIASING_RESOURCER : int = 41
+REACHING_PEER : int = 42
+READING_MOVABLE : int = 43
+WRITING_MOVABLE : int = 44
+INSTALLING_MOVABLE : int = 45
+UNINSTALLING_MOVABLE : int = 46

<<interface>>
Policy

Figure 23. Class diagram of the management layer with the Resource
management support.

139

7.7 Summary

In this chapter the solution has been analysed carefully from different viewpoints
concerning the answer to the research problem, the advantages of the solution,
the subjective quality properties of the system, the weaknesses of the solution,
the further research issues, and the example of the further design.

The design of the system was started with setting the criteria for the objective
quality by examining the user requirements. Thus the goal was known, and
thereby it was possible to define the answer to the question "what should we
do?" The requirements together with the answer were used to drive the selection
of the choice concerning the different technical properties of the system during
the whole design process. Whether the original requirements will be realised in
the application based on the management framework solution here is an issue
that will be seen later on, but this may well happen.

At the beginning of the document, the subjective quality properties of a software
product were discussed. They were examined them and consequently, the system
was designed bearing the subjective quality factors in mind. Thus, the question
"how will we do it?" was answered. Now it needs to be discussed whether there
is any subjective quality present in the solution.

Because the solution takes the form of a framework, the usefulness of the
solution can be evaluated only by evaluating the applications the management of
which is based on the realisation of the framework. Still, it was possible to
evaluate whether the solution will be able to realise the objectives and have a set
of common design criteria for the distributed system achieved. It could be seen
that the objectives and the common criteria would be fulfilled, as this evaluation
is possible at this stage. It was found out that the weakness of the solution lies in
the need to standardise the management checking protocol. The state chart of the
Management Server object presents the necessary protocol in Figure 18.
However, even without any standardisation process, the solution will be useful
in the context of its original objectives.

Furthermore, a significant set of further research initiatives was presented.

140

8. Conclusions
When software products become a more and more important part of our
everyday life, the software products and information services should be treated
just like usual consumables - according to the laws and rules set by society, and
equally, according to contracts between end-users and content or service
providers. However, the way to trade software products and services differs from
these usual consumables - software business is mostly made in the global
communication network - the Internet. The way to include attributes of the
contracts between different stakeholders considering the software products must
be defined, and equally, the technique to guarantee the management of the
software application in the end-user's environment must be developed. In this
thesis, software application is understood to be any piece of software that can be
provided, from deploying one byte to deploying a mail service - large systems of
that kind are usually provided by deploying some component model. Because
the different component and object models are building parts of software
applications, the technique to be developed must be able to support them in
particular.

The technology to be used should have a self-configurability feature - products
should maintain themselves when used in different circumstances. The end-user
should not have to worry about whether the software used has to be updated, or
even whether the software and hardware resources in his terminal equipment are
updated and working - the technology must provide the maintenance without any
end-user intervention. The end-user should always have, even unknowingly,
updated software and even updated hardware support - this may also be a
question of contracts. Furthermore, does the end-user have to be bound to some
individual device to maximise the deployment of technology, as is the case with
our desktop computer today? This does not need to be the case; instead, the end-
user should be able to deploy the application with his personal preferred
configuration wherever he happens to be located and whatever device he
happens to use. Let us take an example: the end-user would like to use his
banking services for checking the account balance - therefore he just takes some
terminal equipment, a public kiosk terminal, a cell phone or whatever
compatible device happens to be near, and will be able to reach and deploy the
service wanted with personal settings for the device type of the terminal and
with personal settings for the service used - this, moreover, with great security

141

and usability. The analysis of the preferred user requirements the ways they can
be seen are listed below:

• End-user can easily reach and deploy a software product or
information service by using any compatible terminal
equipment according to a contract.

• End-user gets his personal profiles for the equipment.

• End-user gets his personal profiles for a service.

• End-user has data and access security maintained according to a
contract.

End-user:

• End-user will be provided a vision of the information
environment that offers easy-to-use, and even profitable
applications and services.

Society: • Software products or information services are considered as
usual consumables (e.g. in relation to marketing regulations,
product liability or data security).

Device
provider:

• Device provider can provide compatible terminal equipment
with maintenance according to a contract.

• Service provider can provide rich applications types the way
end-users are provided with today, but in a maintained mode.

• Service provider can provide software products or information
services with maintenance according to a contract.

Service
provider:

• Service provider can do business by trading software products
and information services with contracts.

142

Content
provider:

• Content provider can maintain the authorising and licence
information with provided software products or information
services according to a contract.

A software product must be able to include management policy - and the
underlying technique must be able to follow the policy, or back down if the
maintenance cannot be guaranteed in terms of the policy. The structure of the
policy must be defined the way that it considers different management domains
and the domains can intersect.

This thesis sets a framework for the management technique in the context
depicted above.

The problem has been approached by setting the definitions as follows:

• "Objective quality thinking - the system quality must be ensured before
actually doing anything".

• "If we will find out the requirements for the largest system, we will know
which the requirements for the smallest system might be - then we will
simply develop the management model for any piece of the software by
deploying the requirements found".

Moreover, to apply creative thinking to the process, some suggestions,
assumptions, and questions concerning the solution were made as follows:

143

Client-server
model:

• Application program should be such that only the part of an
application that is absolutely needed to present the
application to the end-user will be loaded onto a memory of
a terminal device. This loadable part of the application
would work as a bridge between itself and its user, the
application itself still being able to remain anywhere in the
network. The application itself could be as large as
necessary and be combined from some other services. End-
user should see only the part of the application that is
necessary for using it, and the user may pay only by usage.
This suggestion follows the idea of a proxy-object currently
used in the Jini and Microsoft.NET remoting concepts.

Resourcing: • When loading it, it should be taken care of how to configure
and arrange resources for the application to enable its
working in the end-user terminal device.

• A multiple allocation of resources can be avoided when
every individual service exists only once in some specific
interior.

Decompos-
ing:

• The application itself may in fact maintain its function group
of security, advertisement, distribution and other
maintenance according to a predefined strategy defined by
the policy.

• Can those function groups in the previous item be pointed to
be orthogonal compared to each another (concerning
dimensions of software objects)?

• Can we prove the existence of the dimensions of software
objects by exploring practical systems (introducing a new
term to define a shorter description of the phrase 'practical
technical feature' - a feature found in practical systems that
is a candidate function to be included in a dimension - it is
suggested to be called a Mini-concept)?

144

Layering: • Applications programmers should program only the
application logic, not the support for distribution or
management - can we assume that there should be a layer of
application level and the layer of management level included
in underlying systems?

Distributed
nature:

• Can the consequences of unstable distributed environment
really be masked out totally to offer programmers to become
isolated from the difficulties of programming for distributed
environment? With this, we suggest to use the distribution
transparencies introduced at least by the RM-ODP.

With the presented discussion in mind the system was began to develop. First,
the concept of the technique to be realised was defined. To define the concept,
the user requirements and the available technical features to be set to satisfy the
requirements were analysed by using the QFD-matrix. The user-requirements
were reached by deploying the Kano Model. To clarify the technical aspect -
presented by the mini-concepts - the thesis provides a discussion on the
techniques in the existing distributed system by which the user requirements
have been demanded in the real world until now.

The best concept is defined as follows:

• do not decide upon the client-server model until the very last moment,
maybe as late as in run time,

• divide the system into two layers - one to provide the support for
applications, the other to provide support for maintenance,

• let the client called 'proxy' represent the application, so the client can be
built to be as fat or as thin as necessary - and make it movable,

• support user and device profiles to maintain the preferred settings of the end-
user,

145

• support information for management policy with many different levels of
abstractions to maintain different viewpoints on distributed software,

• support the system of local- or distributed mode, apply the distribution
transparencies to hide the distributed mode from applications,

• support dimensions and their corresponding policies,

• do not require management support as a mandatory feature, let application
contain the information of whether full or partial management is needed in
every particular case,

• support the old application mode (e.g. EXE-mode) by a voluntary extension
of management information to be added in the case the old application
modes would like to get management support, and

• consider the functions provided by a working application as a service for
other entities of human or artificial origin.

The system architecture was developed based on the concept. The architecture
was then realised into the design model of the system. The UML modelling
technique was used. In utilising the UML, we reached a very important strategic
advance if considering the future of the solution. In addition to the number of
software products increasing, the demands toward the designers of software
increase, too. A software application must be produced faster and faster, in a
cheaper and cheaper manner, and still with more quality, to maintain, in the
future, the product's position in the market from a point of view of the software
business. By utilising the most advanced graphical tools, OO-methods and code
generation technique it will be possible to achieve this goal. During the
modelling phase, this thesis stayed on the abstract level of the solution. The
implementation was carried out on the level of abstraction too - the presented
APIs are abstractions. By this the ability of the management framework to be
adopted in different environments and realised in using different programming
techniques, is being supported. The class library to deploy the framework was
produced and fully presented - by this, the openness of the solution was
supported. When the solution is realised to take advantage of the management
features, the APIs will be implemented in using proper programming tools, and

146

supporting the different techniques in the underlying platforms and their
communication capabilities. To assist the realisations, the example realisation is
included in the thesis. The example realisation is as simple as possible still
illustrating the purpose and use of the system. The realisation is intended to be
associated to the research purpose.

In the chapter "Discussion and further research" this paper covered the issue of
whether the solution is fulfilling the objectives. This was found to be in view.
The introduced management framework can be deployed with any data objects,
whether these are passive or active (active data objects include program logic).
Every particular data object can be made manageable, if they can express the
policy of how they are expecting to be managed. The highlights of the developed
technical solution are:

• Computational objects and their possible representatives can be fully
managed in their environments.

• A computational object can be accessed only in using its unique identifier -
we do not have to care about where the objects are actually located - the
location transparency (as a sub set of the distribution transparency) takes
care of that responsibility.

• There can be different binding objects implementing the network
transparency for the different circumstances, and they can be made
manageable, too. The same computational objects will work everywhere
because they have to know only the interface of the binding object - the
network transparency - that will always stay the same.

• A simulating development environment can be provided by realising the
interfaces only for emulating objects of the real world.

• The manageable binding object can be instantiated for the application layer
as well - the application and its representative client can communicate in the
same way by using only the identities of the objects.

147

The main purpose of the solution might refer to when R&D of distributed
software continues further concentrating to examine the problematic issues that
will exist with the upcoming wireless and mobile communication technology.

The significant set of the further research initiatives was presented. The most
important initiatives are:

• to develop the management policies which an application must carry -
expressing them is the key factor of the system,

• to develop the generic and implementation independent management and
algorithms (some kind of protocols),

• to develop the resource management service to follow the resource
management policy that the application object explicitly expresses, and

• to develop the implementation of the distribution transparencies interfaces
further, e.g. for using the DDE-derived technique, or possibly, for using the
communication technique used in the wireless and mobile environments, e.g.
MExE, WAP, or Bluetooth.

To gain the management features support on a large scale, there is a heavy
obstacle standing in the way; to guarantee management, the management
protocol must check the management requirements of an object, and allow or
disallow the execution according to the policy of an object. It seems almost
utopistic to expect that the checking protocol can be supported among the
providers of the operating systems on a necessary scale. An official
standardisation or a very large consortium is needed to support the solution.
After all, if extended to its full design and after the official or unofficial
standardisation process, the solution would be a candidate for a whole new
software management technology. However, the solution will be useful in the
context of its original objectives.

I hope that at least some of the presented ideas and the research initiatives being
applied to the distributed systems and software in the future.

148

References
1. Edwards, K. 1999. Core JINI. Sun Microsystems Press. 832 p.

2. Pressman, R. 2000. Software Engineering, a practitioner's approach. 5th
Edition. Columbus, Ohio, USA. McGraw-Hill Companies. 840 p.

3. Day, R. 1993. Quality Function Deployment: Linking a Company with Its
Customers. Milwaukee, Wisconsin. ASQC Quality Press. 245 p.

4. McCall, J., Richards, P. & Walters, G. Factors in Software Quality. In: US
Rome Air Development Center Reports. NTIS AD/A-049 014, 015, 055. 1977.
(RADC TR-77369 vols I, II, III.)

5. Iivari, J. 1991. A paradigmatic analysis of contemporary schools of IS
development. European Journal of Information Systems 1, No 4. Pp. 249 - 272.

6. Järvinen, P. 1999. On Research Methods. Opinpaja Oy, Tampere, Finland.
129 p.

7. Akao, Y. 1990. Quality Function Deployment: Integrating Customer
Requirements into Product Design. Productivity Press, Cambridge, MA, USA.
387 p.

8. Niemelä, E. 1999. A component framework of a distributed control systems
family. Technical Research Centre of Finland, VTT Publications 402. 188 p. +
app. 68 p.

9. Gamma, E., Helm, R., Johnson, R. & Vlissides, J.O. 1994. Design patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Publishing
Company. 383 p.

10. Moilanen, M. 27.2.2001. The LONTONEXTG student project of University
of Oulu and VTT Electronics. URL: http://www.iki.fi/~mmoi/studyprojects/
tsproject/index.html.

11. Platt, D. 2001. Introducing Microsoft.NET. Microsoft Press. 240 p.

149

12. Blair, G. & Stefani, J.-B. 1997. Open Distributed Processing and
Multimedia. Addison-Wesley Publishing Company. 452 p.

13. Swan, J.E. 1988. Consumer satisfaction related to the disconfirmation of
expectations and product performance. Journal of Consumer Satisfaction,
Dissatisfaction, and Complaining Behaviour, 1. Pp. 40 - 47.

14. Norton, P. 1998. Peter Norton's Essential Concepts, 3rd edition. McGraw-
Hill Companies, Columbus, Ohio, USA. 242 p.

15. Norton, P. 1988. The New Peter Norton Programmers Guide to The IBM
PC&PS/2, 2nd edition. Microsoft Press. 511 p.

16. Colouris, G., Dollimore, J. & Kindberg, T. 1995. Distributed Systems,
Concepts and Design, 2nd edition. Addison-Wesley Publishing Company. 644 p.

17. ISO. 1995. ITU-T X.901 | ISO/IEC 10746-1 ODP Reference Model Part 1,
Overview.

18. OMG. 11.8.2000. Object Management Group Web-site. URL:
http://www.omg.org.

19. FAST. 9.10.2000. The FollowMe project page. URL:
http://hyperwave.fast.de/ followme.

20. TINA Consortium. 25.8.2000. TINA. URL: http://www.tinac.com/.

21. Lehmann, L., Cadorin, M. & Wuergler C. 1997. Service Creation on a TINA
Platform: An Experience Report. Proceedings of the Global Convergence of
Telecommunications and Distributed Object Computing (TINA '97).

22. Yarborough, W. 1998. Building Communication Networks with Distributed
Objects. McGraw-Hill Companies, Columbus, Ohio, USA. 212 p.

23. Black U. 1995. TCP/IP & Related Protocols, Second Edition. IEEE CS
Store. 400 p.

150

24. Shuey, R., Spooner, D. & Frieder, O. 1997. The Architecture of Distributed
Computer Systems: A Data Engineering Perspective on Information Systems.
Addison-Wesley Publishing Company. 401 p.

25. ANSA Project. 15.8.1998. Official Record of the ANSA Project. URL:
http://www.ansa.co.uk/.

26. Orfali, R. & Harkey, D. 1997. Instant CORBA. John Wiley & Sons. 313 p.

27. Mowbray, T. & Zahavi, R. 1995. The Essential CORBA: Systems
Integration Using Distributed Objects. John Wiley & Sons. 336 p.

28. Tari, Z. & Bukhres, O. 2001. Distributed Object Computing: A CORBA
Perspective. John Wiley & Sons. 416 p.

29. Oracle Technology Network. 29.8.2000. Oracle Application Server, white
paper. URL: http://otn.oracle.com/products/ias/techlisting.html.

30. Microsoft Corp. 26.7.2000. Windows NT Server Terminal Server Edition. .
URL: http://www.microsoft.com/ntserver/terminalserver/techdetails/.

31. Citrix Systems Inc. 1.8.2000. Citrix Server-based Computing White Paper.
URL: ftp://ftp.citrix.com/doclib/SBCWP.PDF, company info at URL:
http://www.citrix.com/.

32. 3GPP. 02.02.2001. Third Generation Partnership Project. URL:
http://www.3gpp.org/.

33. ETSI SMG4. 1999. Mobile Station Application Execution Environment
(MExE), Specification no. GSM 02.57.

34. WAP Forum. 22.8.2000. Wireless Application Protocol. URL:
http://www.wapforum.org/index.htm.

35. ETSI. 22.8.2000. The European Telecommunications Standards Institute.
URL: http://www.etsi.org/.

151

36. OSGi. 23.10.2000. Open Service Gateway initiative. URL:
http://www.osgi.org/index.html.

37. Brown, A.W. & Wallnau, K.C. 1998. The Current State of CBSE. IEEE
Software, Septemper/October 1998. Pp. 38 - 46.

38. Cetus Team. 11.8.2000. Cetus Links on Objects & Components. URL:
http://www.cetus-links.org/.

39. Gopalan, S. R. 23.8.2000. A Detailed Comparison of CORBA, DCOM and
Java/RMI. URL: http://www.execpc.com/~gopalan/misc/compare.html.

40. OMG. 23.8.2000. What's Coming in CORBA 3. URL:
http://www.omg.org/technology/corba/corba3releaseinfo.htm.

41. Gopalan, S. R. 23.8.2000. A Detailed Comparison of Enterprise JavaBeans
(EJB) & The Microsoft Transaction Server (MTS) Models. URL:
http://members.tripod.com/gsraj/misc/ejbmts/ejbmtscomp.html.

42. Distributed Systems Technology Centre. 23.8.2000. DCE/CORBA
Interworking Specification. URL: http://www.dstc.edu.au/Research/ Projects/
DceCORBA_Interworking/ interworking.html.

43. Java Consortium. 11.8.2000. Java Consortium's Web-site. URL:
http://java.sun.com.

44. Orfali, R. & Harkey, D. 1999. Client/Server Survival Guide, 3rd Edition.
John Wiley & Sons. 800 p.

45. Edwards, J. 1999. 3-Tier Server/Client at Work, Revised Edition. John Wiley
& Sons. 336 p.

46. Wies, R. 1995. Using a Classification of Management Policies for Policy
Specification and Policy Transformation, Proceedings of the IFIP/IEEE
International Symposium on Integrated Network Management, Santa Barbara,
CA, USA, May 1995.

152

47. Lupu, E. & Sloman, M. 1997. Conflict Analysis for Management Policies.
Proceedings of the 5th IFIP/IEEE International Symposium on Integrated
Network Management (IM'97).

48. Steenekamp, P.J & Roos, J. 1996. Implementation of Distributed Systems
Management Policies: A Framework for the Application of Intelligent Agent
Technology, Proceedings of The Second International Workshop on Systems
Management, Toronto, Canada", June 1996.

49. Damian, M. & Sloman, M. 1994. Specification of Management Policies. In
Proceedings of the Fifth IFIP/IEEE International Workshop on Distributed
Systems: Operations and Management (DSOM '94), Toulouse, France, October
1994.

50. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. & Lorenson, W. 1991.
Object-Oriented Modeling and Design. Prentice Hall. 500 p.

51. Paulk, M., Chrissis, M.B., Weber, C. & Perdue, J. 1997. The Capability
Maturity Model for Software, Version 2B. URL: http://www.sei.cmu.edu /pub
/cmm /v2 /cmm-v2-slides.pdf.

52. OMG. 29.6.2000. UML v. 1.3 specification. URL: http://www.omg.org/,
URL: http://www.rational.com/uml/resources/documentation/.

53. Cheesman, J. & Daniels, J. 2000. UML Components: A Simple Process for
Specifying Component-Based Software. Addison-Wesley Publishing Company.
208 p.

54. Schmidt, D.C. & Fayad, M.E, 1997. Lesson learned. Building Reusable OO
Frameworks for Distributed Software. Communications of the ACM. Vol. 40,
No. 10. Pp. 85 - 87.

55. Bosch, J. 2000. Design and Use of Software Architectures. Addison-Wesley
Publishing Company. 400 p.

56. Hofmeister, C., Nord, R. & Son, D. 1999. Applied Software Architecture.
Addison-Wesley Publishing Company. 432 p.

153

57. Bass, L., Clements, P., Kazman, R. & Bass, K. 1998. Software Architecture
in Practice (SEI Series in Software Engineering). Addison-Wesley Publishing
Company. 452 p.

58. Maier, M. & Rechtin, E. 2000. The Art of Systems Architecting, 2nd
Edition. CRC Press. 344 p.

59. Marshall, C. 1999. Enterprise Modeling with UML: Designing Successful
Software through Business Analysis. Addison-Wesley. 272 p.

60. Gomaa, H. 2000. Designing Concurrent, Distributed, and Real-Time
Applications with UML. Addison-Wesley Publishing Company. 785 p.

61. Kassem, N. 2000. Designing Enterprise Applications with the Java(tm) 2
Platform, Enterprise Edition. Addison-Wesley Publishing Company. 368 p.

62. Lea, D. 1999. Concurrent Programming in Java, Second Edition: Design
Principles and Patterns. Addison-Wesley Publishing Company. 432 p.

63. Harold, E.R. 2000. Java Network Programming. O'Reilly & Assoc. 731 p.

64. Taramaa, J. 1998. Practical development of software configuration
management for embedded systems. Technical Research Centre of Finland,
Espoo. VTT Publications 366. 147 p. + app. 110 p.

65. Weiss, D. & Lai, R. 1999. Software Product-Line Engineering. A family-
based Software Development Process. Addison-Wesley. 426 p.

A1

Appendix A: Source code listings

HelloWorldApplication

//===
// VTT Electronics Java Class Definition File
//
// Project: DIT_MMO
// Task: Management Framework of Distributed Software Objects
// and Components.
// Package:
// File: HelloWorldApplication.java
//
// Version: v.1.0
// Date: 07.02.2001
// Status: draft [] 10.05.2000 / Markus Moilanen (MMO)
// proposal [] 11.01.2001 / Markus Moilanen (MMO)
// accepted [X] 07.02.2001 / Supervisor of the thesis
//
//
// Version history:
//
// Version Date / Author Comment
// --
// 0.0 10.05.2000 / MMO File created
// 0.1 17.05.2000 / MMO First prototype
// 0.2 19.01.2001 / MMO Final implementation
//
// Copyright © 2001, VTT Electronics and the author
//
//
==
import fi.vtt.ele.management_framework.implementation.application_layer.*;
import fi.vtt.ele.management_framework.implementation.management_layer.*;
import fi.vtt.ele.management_framework.implementation.utility.*;
/**
 *<TABLE BORDER CELLPADDING=4 CELLSPACING=2 WIDTH=75%>
 * <TR><TH ALIGN=LEFT WIDTH=10%>Description</TH>
 * <TD>
 * This class HelloWorldApplication is a demo application implementing
 * the withPolicy, Representable, and Distributable interfaces.
 * It does not do very much, it can only release the representative proxy
 * and the application associated policy when they are required.
 * Even the demo application can release a multible proxy, but it does not
 * serve them further. To support the multible proxy actions in run time,
 * the communication between proxy and application must be built.
 * oFortunately, excellent binding objects of the solution can be
 * utilised. Extended features can be built on the skeleton of this demo
 * application class.
 * </TD>
 * <TR><TH ALIGN=LEFT>Version</TH>

A2

 * <TD>v1.0</TD>
 * <TR><TH ALIGN=LEFT>Date</TH>
 * <TD>07.02.2001</TD>
 * <TR><TH ALIGN=LEFT>Source</TH>
 * <TD>
 * HelloWorldApplication.java</TD>
 * <TR><TH ALIGN=LEFT>Author</TH>
 * <TD>Markus Moilanen (MMO)</TD>
 *</TABLE>
 * @version v.1.0 07.02.2001
 * @author Markus Moilanen,
 * www.iki.fi/~mmoi
 */
public class HelloWorldApplication implements withPolicy, Representable,
Distributable
{
 /**
 The method getRepresentantive creates and releases the proxy objects.
 The method can be defined as it is appropriate for every individual
 case; it must only provide the proxyable client object. The operation
 is automatically called by the disribution service.
 @param for_ is the identity of the client requiring the proxy.
 The identity can be used for taking the clients in the account, but
 not to control the clients and their rights in the distributed
 system - the ManagementServer will maintain the rights according to
 the application's policy (included later in this file).
 @return the proxyable client object.
 */
 public Proxyable getRepresentative(Identity for_)
 {
 System.out.println("\nApplication: -The representative proxy has
 been required by '"+for_.to_String()+"'");
 return new HelloWorldClient();
 }
 /**
 The method getDistributionPolicy releases the distribution policy
 of the application. The policy is defined in this file later on.
 @return the InformationBranch object.
 */
 public InformationBranch getDistributionPolicy()
 {
 HelloWorldApplicationInformationBranch b = new
 HelloWorldApplicationInformationBranch();
 return (InformationBranch) b;
 }
 /**
 The method run supports the Java threads. When the application is
 installed as a thread, the run method will be called by the start()
 and stop() operations of the environment to maintain the processes
 of the system. When the application is not installed as a thread,
 the run method should be called directly.
 */
 public void run()
 {
 System.out.print("Application: -HelloWorldApplication is running,

A3

 press Ctrl+C to quit ..");
 long t = System.currentTimeMillis();
 long wait = 5*1000;
 while (true)
 {
 while (System.currentTimeMillis() <= t+wait) {Thread.yield();}
 t = System.currentTimeMillis();
 System.out.print(".");
 }
 }
/**
 This inner class of the policy definitions of the application is created
 only for the test purpose. This is the place in which the descriptions
 of the policy must be developed as a further study - the definitions
 might be XML-based.
*/
 public class HelloWorldApplicationInformationBranch implements
InformationBranch
 {
 /** The next defin. is only for the demo - will be separated in
 the next version.*/
 public int DIMENSION = Dimension.DISTRIBUTION;
 /** The next definitions are ROOT-related - will be separated in
 the next version. */
 public String _UIN = "HelloWorldApplication";
 /** UID can be produced by the common GUIDGEN-utility. */
 public String _UID = "BE9CD630-A96B-11D3-81BC-00902790ECE5";
 /** The next def. are DISTRIBUTION-related - will be separated in
 the next version.*/
 public int PREFERRED_DOOR = 4777;
 public int MAX_NUMBER_OF_REPRESENTATIVE_OUT = 10;
 public int getDIMENSION() { return DIMENSION; }
 public String getUIN() { return _UIN; }
 public String getUID() { return _UID; }
 public int getPREFERRED_DOOR() { return PREFERRED_DOOR; }
 public int getMAX_NUMBER_OF_REPRESENTATIVE_OUT()
 { return MAX_NUMBER_OF_REPRESENTATIVE_OUT; }
 }
}

HelloWorldClient

// ===
// VTT Electronics Java Class Definition File
//
// Project: DIT_MMO
// Task: Management Framework of Distributed Software Objects
// and Components.
// Package:
// File: HelloWorldClient.java
//
// Version: v.1.0
// Date: 07.02.2001
// Status: draft [] 10.05.2000 / Markus Moilanen (MMO)

A4

// proposal [] 11.01.2001 / Markus Moilanen (MMO)
// accepted [X] 07.02.2001 / Supervisor of the thesis
//
//
// Version history:
//
// Version Date / Author Comment
// --
// 0.0 10.05.2000 / MMO File created
// 0.1 17.05.2000 / MMO First prototype
// 0.2 19.01.2001 / MMO Final implementation
//
// Copyright © 2001, VTT Electronics and the author
//
// ===
import
fi.vtt.ele.management_framework.implementation.application_layer.Proxyable
;
import fi.vtt.ele.management_framework.implementation.utility.ReturnCode;
import java.io.Serializable;
import java.io.ObjectOutputStream;
import java.io.ObjectInputStream;
/**
 *<TABLE BORDER CELLPADDING=4 CELLSPACING=2 WIDTH=75%>
 * <TR><TH ALIGN=LEFT WIDTH=10%>Description</TH>
 * <TD>
 * The HelloWorldClient class represents the client part of the
 * HelloWorldApplication class. It implements the Proxyable interface to
 * support the system, but also the Serializable and Cloneable interfaces
 * to support the Java language specific functions to serialise and de-
 * serialise objects. The class contains support to implement those Java
 * specific interfaces directly, but it is convenient to use them directly
 * from Java . A more sophisticated client for a more sophisticated
 * application can be built on this demo client skeleton.
 * </TD>
 * <TR><TH ALIGN=LEFT>Version</TH>
 * <TD>v1.0</TD>
 * <TR><TH ALIGN=LEFT>Date</TH>
 * <TD>07.02.2001</TD>
 * <TR><TH ALIGN=LEFT>Source</TH>
 * <TD>HelloWorldClient.java</TD>
 * <TR><TH ALIGN=LEFT>Author</TH>
 * <TD>Markus Moilanen (MMO)</TD>
 *</TABLE>
 * @version v.1.0 07.02.2001
 * @author Markus Moilanen,
 * www.iki.fi/~mmoi
 */
 public class HelloWorldClient implements Proxyable, Serializable,
Cloneable
{
 /**
 This is the default constructor. It must be provided to support
 the Java serialising functions.
 */

A5

 public HelloWorldClient() {};
 /**
 The method reConstruct must do everything which is necessory to build
 up the proxyable client object in the target environment. With the
 Java implementation, the serialised object must be cloned because the
 serialising channel owns the object after receiving it and the object
 will be killed with the channel as soon as the associated downloader
 thread is killed by the target system. The method is automatically
 called by the system immediately after the de-serialising of the
 object.
 @return the fully working Proxyable object.
 */
 public Proxyable reConstruct()
 {
 try
 {
 return (Proxyable)super.clone();
 } catch (Exception e) {return null;}
 }
 /**
 The method reActivate must be called to activate the run time
 operations which the proxy is intended to do in the target platform,
 e.g. start the associated threads or the communication. The method is
 automatically called by the distribution service on the client side.
 @return true if the object was reactivated successfully.
 */
 public boolean reActivate()
 {
 System.out.println("Proxyable: -Reactivated.");
 return true;
 }
 /**
 The method unActivate is an opposite operation to the reActivate. The
 method is automatically called by the distribution service on the
 server side before the serialising of the object.
 @return true if the unactivation was succesful.
 */
 public boolean unActivate()
 {
 return true;
 }
 /**
 The method writeProxyable and readProxyable are reserved to be used by
 other platforms than Java. The Java serialise and de-serialise already
 provides the same features.
 @return true if the operation was successful.
 */
 public boolean writeProxyable(ObjectOutputStream into_) { return true; }
 public boolean readProxyable(ObjectInputStream from_) { return true; }
 /**
 The method run supports the Java threads. When the application is
 installed as a thread, the run method will be called by the start()
 and stop() operations of the environment to maintain the processes of
 the system. When the application is not installed as a thread, the run
 method should be called directly.

A6

 */
 public void run()
 {
 System.out.print("Proxyable: -"+getClass().getName()+" is running,
 press Ctrl+C to quit ..");
 long t = System.currentTimeMillis();
 long wait = 5*1000;
 while (true)
 {
 while (System.currentTimeMillis() <= t+wait) {Thread.yield();}
 t = System.currentTimeMillis();
 System.out.print(".");
 }
 }
}

ManagementServer

// ===
// VTT Electronics Java Class Definition File
//
// Project: DIT_MMO
// Task: Management Framework of Distributed Software Objects
// and Components.
// Package:
// File: ManagementServer.java
//
// Version: v.1.0
// Date: 07.02.2001
// Status: draft [] 10.05.2000 / Markus Moilanen (MMO)
// proposal [] 11.01.2001 / Markus Moilanen (MMO)
// accepted [X] 07.02.2001 / Supervisor of the thesis
//
// Version history:
//
// Version Date / Author Comment
// --
// 0.0 10.05.2000 / MMO File created
// 0.1 17.05.2000 / MMO First prototype
// 0.2 19.01.2001 / MMO Final implementation
// 0.3 05.02.2001 / MMO The code is finished
//
// Copyright © 2001, VTT Electronics and the author
//
//==
import fi.vtt.ele.management_framework.implementation.management_layer.*;
import fi.vtt.ele.management_framework.implementation.application_layer.*;
import fi.vtt.ele.management_framework.implementation.utility.*;
import java.io.*;
/**
 *<TABLE BORDER CELLPADDING=4 CELLSPACING=2 WIDTH=75%>
 * <TR><TH ALIGN=LEFT WIDTH=10%>Description</TH>
 * <TD>
 * The ManagementServer class implements the Management interface. The

A7

 * class offers all the necessary methods to maintain the policy that the
 * application expresses. The name of the application is passed as
 * a parameter. The application's policy (if exists) will be interpreted
 * by the ManagementServerand associated services will be started
 * accordingly if possible. The class is descripted thoroughly
 * in Chapter 5, Subsection 5.2.1 of the thesis.
 * </TD>
 * <TR><TH ALIGN=LEFT>Version</TH>
 * <TD>v1.0</TD>
 * <TR><TH ALIGN=LEFT>Date</TH>
 * <TD>07.02.2001</TD>
 * <TR><TH ALIGN=LEFT>Source</TH>
 * <TD>ManagementServer.java</TD>
 * <TR><TH ALIGN=LEFT>Author</TH>
 * <TD>Markus Moilanen (MMO)</TD>
 *</TABLE>
 * @version v.1.0 07.02.2001
 * @author Markus Moilanen, <A
 * HREF="http://www.iki.fi/~mmoi">www.iki.fi/~mmoi
 */
class ManagementServer implements Management, Runnable
{
 public withPolicy application_ = null;
 public Decision decision_table[][] = new Decision[5][5];
 public Dimension _to_support[] = new Dimension[5];
 public Policy _on_demand[] = new Policy[5];
 public ReturnCode _on_init = null;
 public ReturnCode _on_decoding = null;
 public ReturnCode _on_policy = null;
 public ReturnCode _on_idle = null;
 public int _dimension = 0;
 private String _UIN_ = null;
 private String signature = null;
 public Policy management_policy = null;
 private int state = INITIALISING;
 private int sub_state = 0;
 /**
 This constructor is called by a End-user Terminal object. In the demo,
 the End-user Terminal object is a usual command window of the system.
 The command window shares the same JVM (Java Virtual Machine) with
 other command windows. If something goes wrong, the constructor
 exits.
 @param _from_UIN_ is the application name to be started.
 */
 public ManagementServer(String _from_UIN_) throws Exception
 {
 UIN = _from_UIN_;
 state=INITIALISING;
 _on_init = createApplication(_from_UIN_);
 if (_on_init.isFAILED()) {exit(_on_init.getString());}
 else if (_on_init.isINFOCODE()) {exit(_on_init.getString());}
 else if (_on_init.isSUCCESS())
 {
 for (int i=0;i<=4;i++) _on_demand[i]=null;
 state=DECODING_POLICY;

A8

 _on_decoding = decodePolicies(application_);
 if (_on_decoding.isSUCCESS())
 {
 for (int i=0;i<=4;i++) _to_support[i]=null;
 _dimension=0;
 state = CREATING_DIMENSIONS;
 for (_dimension=0; _dimension <= 4; _dimension++)
 {
 if (_on_demand[_dimension]!=null)
 {
 _to_support[_dimension] =
 createDimensionServer(_on_demand[_dimension]);
 }
 }
 for (int i=0;i<=4;i++) for (int j=0;j<=4;j++)
 decision_table[i][j]=null;
 state=POLICYMAKING;
 _on_policy = policyMaking();
 printDecisiontable();
 if (_on_policy.isSUCCESS())
 {
 application_.run();
 state=IDLE;
 } else if (_on_policy.isFAILED())
 exit(_on_policy.getString());
 else exit(_on_policy.getString());
 } else if (_on_decoding.isFAILED())
 {exit(_on_decoding.getString());}
 else exit(_on_decoding.getString());
 }
 }
 /**
 A private method printDecisiontable prints the decision table
 to illustrate the results of the method policyMaking.
 */
 private void printDecisiontable()
 {
 boolean s = false;
 System.out.println
("---");
 System.out.println("ManagementServer: -Decision table is resolved as
follows (see Table 15):");
 System.out.println
("---");
 System.out.println("\t \t \tAdv.\tDis.\tRes.\tSec.\tPro.\t");
 System.out.print("\t \t \t");
 for (int i=0;i<=4;i++)
 System.out.print(decision_table[i][0].DEMANDS()+"\t");
 System.out.print("\n");
 System.out.print("Advertisement\t");
 for (int i=0;i<=4;i++) if (decision_table[i][0].SUPPORTS())
 {s = true;}
 if (s) System.out.print("true\t"); else System.out.print("false\t");
 for (int i=0;i<=4;i++) if (decision_table[i][0].JUDGMENT())
 {System.out.print("true\t");}else System.out.print(" \t");

A9

 System.out.print("\n");s = false;
 System.out.print("Distribution\t");
 for (int i=0;i<=4;i++) if (decision_table[i][1].SUPPORTS())
 {s = true;}
 if (s) System.out.print("true\t"); else System.out.print("false\t");
 for (int i=0;i<=4;i++) if (decision_table[i][1].JUDGMENT())
 {System.out.print("true\t");} else System.out.print(" \t");
 System.out.print("\n");s = false;
 System.out.print("Resource manag.\t");
 for (int i=0;i<=4;i++) if (decision_table[i][2].SUPPORTS())
 {s = true;}
 if (s) System.out.print("true\t"); else System.out.print("false\t");
 for (int i=0;i<=4;i++) if (decision_table[i][2].JUDGMENT())
 {System.out.print("true\t");} else System.out.print(" \t");
 System.out.print("\n");
 System.out.print("Security \t");s = false;
 for (int i=0;i<=4;i++) if (decision_table[i][3].SUPPORTS())
 {s = true;}
 if (s) System.out.print("true\t"); else System.out.print("false\t");
 for (int i=0;i<=4;i++) if (decision_table[i][3].JUDGMENT())
 {System.out.print("true\t");} else System.out.print(" \t");
 System.out.print("\n");
 System.out.print("Profile manag.\t"); s = false;
 for (int i=0;i<=4;i++) if (decision_table[i][4].SUPPORTS())
 {s = true;}
 if (s) System.out.print("true\t"); else System.out.print("false\t");
 for (int i=0;i<=4;i++) if (decision_table[i][4].JUDGMENT())
 {System.out.print("true\t");} else System.out.print(" \t");
 System.out.print("\n");
 System.out.println
("---");
 }
 /**
 The policyMaking creates the policy to be followed during the
 ManagementServer object runs. It considers between the demands of the
 application and the possibilities of the local platform to carry the
 demanded features. The method will be developed further in
 the future versions.
 @return the ReturnCode object with SUCCESS if the operation
 was successful, otherwise returns with FAILED.
 */
 public ReturnCode policyMaking()
 {
 ReturnCode ret = getReturnCode();
 try
 {
 for (int i=0;i<=4;i++)
 {
 for (int j=0;j<=4;j++)
 {
 if ((_on_demand[i]==null) && (_to_support[j] == null))
 decision_table[i][j] = new DecisionImplementation(false, false, false);
 if ((_on_demand[i]!=null) && (_to_support[j] == null))
 decision_table[i][j] = new DecisionImplementation(true, false, false);
 if ((_on_demand[i]==null) && (_to_support[j] != null))

A10

 decision_table[i][j] = new DecisionImplementation(false, true, false);
 if ((_on_demand[i]!=null) && (_to_support[j] != null))
 decision_table[i][j] = new DecisionImplementation(true, true, true);
 }
 }
 ret.setSUCCESS();
 } catch (Exception e) {ret.setFAILED(); ret.setBody
 ("ManagementServer: -Policymaking failed.");}
 return ret;
 }
 /**
 The method decodePolicies decodes the policy which the application
 expresses by calling the method createDimensionPolicy. First it will
 try to cast the given application object to implement the different
 interfaces of the dimensions. If the casting operation is successful,
 it will try to reach the branch policy by calling the appropriate,
 known operation of the interface to reach the policy of the
 application object. This is an unstable operation which may fail as
 well as be successful depending on the application and the policies
 which it implements. Successfully defined branch policies will be put
 in the on_demand table from where they will be easily reached later.
 @return the ReturnCode object with SUCCESS if the decoding was
 successful, otherwise returs with FAILED.
 */
 private ReturnCode decodePolicies(withPolicy appl_)
 {
 ReturnCode ret = getReturnCode();
 ret.setFAILED();
 try
 {
 management_policy = createManagementPolicy(null);
 Distributable d = (Distributable)appl_;
 InformationBranch p = d.getDistributionPolicy();
 int dim = p.getDIMENSION();
 _on_demand[getIndex(dim)] =
 createDimensionPolicy(d.getDistributionPolicy());
 ret.setSUCCESS();
 } catch (Exception e) {}
 return ret;
 }
 /**
 The private method getIndex takes the "binary logarithm" from
 the constant which expresses the dimension (see the interface
 Dimension). This is needed when the dimensions are handled according
 to the policy branches of the corresponding dimensions.
 @param dim_ is a constant representing the dimension.
 */
 private int getIndex(int dim_) throws Exception
 {
 if ((dim_ > Dimension.PROFILE_MANAGEMENT)) throw
 new Exception("ManagementServer: -Dimension does not exist.");
 else
 {
 switch (dim_)
 {

A11

 case 1: return 0;
 case 2: return 1;
 case 4: return 2;
 case 8: return 3;
 case 16: return 4;
 default: throw new Exception
 ("ManagementServer: -Dimension does not exist.");
 }
 }
 }
 /**
 The method createDimensionPolicy creates the dimension policy object.
 In the future version, the policy will be parsed from the XML-source.
 This area is included in the issues of the further study.
 @param _from_ is the InformationBranch object by which the policy
 must be formed.
 @return the Policy object.
 */
 public Policy createDimensionPolicy(InformationBranch _from_)
 {
 try
 {
 Policy p = new ManagementPolicy(_from_);
 return p;
 } catch (Exception e) {return null;}
 }
 /**
 The method createDimensionServer creates the dimensions services
 according to the policy of the dimension. In this version, only
 the DistributionDimensionServer can be created, others return null.
 @param _by_ is the ploicy object by which the dimension must be
 installed.
 @return the Dimension object.
 */
 public Dimension createDimensionServer(Policy _by_)
 {
 if (_by_.getDIMENSION() == Dimension.ADVERTISEMENT) {return null;}
 else
 if (_by_.getDIMENSION() == Dimension.DISTRIBUTION)
 {
 return new DistributionDimensionServer(this, _by_);
 }
 if (_by_.getDIMENSION() == Dimension.RESOURCE_MANAGEMENT)
 {return null;}
 else
 if (_by_.getDIMENSION() == Dimension.SECURITY) {return null;}
 else return null;
 }
 /**
 The method createApplication creates and installs the application
 object if the application can express the policy. The method is
 explained thorouhgly in Chapter 5, Subsection 5.2.1 of the thesis.
 @param _from_UIN_ is the unique name of the application.
 @return the ReturnCode with SUCCESS if operation was successful,
 otherwise returns with FAILED.

A12

 */
 public ReturnCode createApplication(String _from_UIN_)
 {
 ReturnCode ret = getReturnCode();
 Class check_ = null;
 try
 {
 File f = new File(_from_UIN_);
 } catch (NullPointerException e)
 { /** An object is not located */
 ret.setFAILED();
 ret.setBody(e.toString());
 return ret;
 }
 try
 {
 check_ = Class.forName(_from_UIN_);
 } catch (ClassNotFoundException f)
 { /** An object is not identified */
 ret.setFAILED();
 ret.setBody(f.toString());
 return (ReturnCode) ret;
 }
 /** An object is located and identified, but is it a one withPolicy? */
 try
 {
 /** Getting signature but not handling it in this version */
 application_ = (withPolicy)check_.newInstance();
 signature = application_.POLICY_SIGNATURE;
 ret.setSUCCESS();
 } catch (Exception g)
 { /** An object is not withPolicy */
 ret.setINFOCODE();
 ret.setBody(g.toString());
 }
 return (ReturnCode) ret;
 }

 public Policy createManagementPolicy(InformationRoot _from_)
 {
 // parameter _from_ not used in this version
 try
 {
 return new ManagementPolicy();
 } catch (Exception e) {return null;}
 }
 /**
 The method handleManagementInfo handles the management information
 coming from different dimension services. In the demo version it
 grants all the operations, but in the further version it will maintain
 the dimension policies by some generic handlers to be developed.
 @param _from_ is a ManagementAction object coming from the calling
 dimension object.
 @return the ReturnCode object with SUCCESS if operation was
 successful, otherwise returns FAILED.

A13

 */
 public ReturnCode handleManagementInfo(ManagementAction _from_)
 {
 /** We will grant them all in the demo.*/
 from.setGRANTED();
 from.setSUCCESS();
 return _from_.createReturnCode();
 }
 /**
 The method commitManagementAction will proceed the operation needed
 to realise the policy on the Identity object. In the demo version,
 it does nothing.
 */
 public ReturnCode commitManagementAction(Identity _on_, ManagementAction
with)
 {
 return _with_.createReturnCode();
 }
 public withPolicy getApplication() {return application_;}
 public Policy getManagementPolicy() {return management_policy;}
 public void exit(String _with_)
 {
 System.out.println(_with_);
 System.exit(0);
 }

 public void run() { }

 public ReturnCode getReturnCode()
 {
 ReturnCode ret = null;
 try { return new ReturnCodeImplementation(); }
 catch (Exception e) {exit(e.toString());}
 return ret;
 }
 /** Main-function for start the testing. */
 public static void main(String[] args) throws Exception
 {
 System.setSecurityManager(null);
 ManagementServer server = new ManagementServer(args[0]);
 }
/***
 This inner class ManagementPolicy is created only for the test purpose.
 This is the place in where the descriptions of the policy must be
 developed as a further study - might be XML-based.
***/
 public class ManagementPolicy implements Policy
 { /** The class is presented in the Subsection 6.3.3. */ }

DistributionDimensionServer

//==
// VTT Electronics Java Class Definition File
//

A14

// Project: DIT_MMO
// Task: Management Framework of Distributed Software Objects
// and Components.
// Package:
// File: DistributionDimensionServer.java
// Version: v.1.0
// Date: 07.02.2001
// Status: draft [] 10.05.2000 / Markus Moilanen (MMO)
// proposal [] 11.01.2001 / Markus Moilanen (MMO)
// accepted [X] 07.02.2001 / Supervisor of the thesis
//
// Version history:
//
// Version Date / Author Comment
// --
// 0.0 10.05.2000 / MMO File created
// 0.1 17.05.2000 / MMO First prototype
// 0.2 19.01.2001 / MMO Final implementation
// 0.3 05.02.2001 / MMO Program is finished
//
// Copyright © 2001, VTT Electronics and the author
//==
import fi.vtt.ele.management_framework.implementation.management_layer.*;
import fi.vtt.ele.management_framework.implementation.application_layer.*;
import
fi.vtt.ele.management_framework.implementation.distribution_transparency.*
;
import fi.vtt.ele.management_framework.implementation.utility.*;
/**
 *<TABLE BORDER CELLPADDING=4 CELLSPACING=2 WIDTH=75%>
 * <TR><TH ALIGN=LEFT WIDTH=10%>Description</TH>
 * <TD>
 * The class DistributionDimensionServer implements the Distribution and
 * Dimension interfaces. All the methods are implemented the way the
 * mentioned interfaces demand.
 * </TD>
 * <TR><TH ALIGN=LEFT>Version</TH>
 * <TD>v1.0</TD>
 * <TR><TH ALIGN=LEFT>Date</TH>
 * <TD>07.02.2001</TD>
 * <TR><TH ALIGN=LEFT>Source</TH>
 * <TD>
 * DistributionDimensionServer.java</TD>
 * <TR><TH ALIGN=LEFT>Author</TH>
 * <TD>Markus Moilanen (MMO)</TD>
 *</TABLE>
 * @version v.1.0 07.02.2001
 * @author Markus Moilanen,
 * www.iki.fi/~mmoi
 */
public class DistributionDimensionServer implements Distribution,
Dimension
{
 private Management management_server = null;
 private Policy distribution_policy = null;

A15

 private Proxyable proxy = null;
 private int state = INITIALISING;
 /** Identity of the application which provides the service. */
 private Identity service = null;
 private NetworkTransparency bo = null;
 private Messager messager = null;
 private ObjectUploader ou = null;
 /**
 This constructor will initialise the disribution dimension server.
 @param server_ is the associated management server object representing
 the owner of this distribution server object.
 @param distribution policy_ is the policy object by which the
 distribution service must be maintained.
 */
 public DistributionDimensionServer(Management server_, Policy
distribution_policy_)
 {
 management_server = server_;
 distribution_policy = distribution_policy_;
 try
 {
 Address service_addr = new AddressImplementation
 (null,distribution_policy_.getPREFERRED_DOOR());
 service = new IdentityImplementation(distribution_policy_.getUIN());
 bo = new TCPIPNetworkTransparencyBO(); System.out.println
("**");
 System.out.println("Demo: Name Cache will be configured for the
 demo according to");
 System.out.println("the disribution policy that the application
 expresses ..");
 bo.setAddress(service, service_addr);
 bo.listNameCache();
 bo.saveNameCache("democache.txt");
 System.out.println(".. and the entries will be saved in the
 cachefile 'democache.txt'.");
 System.out.println("The file may be disributed as a replacement of
 a directory service.");
System.out.println
("**");
 if (initMessager(service,bo))
 {
 startListen();
 state = IDLING;
 System.out.println("Distribution: -Accepting clients ..");
 } else exit("Distribution: -Service could not be started.");
 } catch (Exception e) {exit("Distribution: -Service could not
 be initialised.");}
 }
 /**
 The initMessager method installs the Messager utility object.
 @param _for_ is the identity of the application object.
 @param bo_ is the binding object to use.
 @return true if the messager was initialised successfully.
 */
 public boolean initMessager(Identity _for_, NetworkTransparency bo_)

A16

 {
 try
 {
 messager = new Messager(_for_, bo_, this);
 } catch (Exception e) {return false;}
 return true;
 }
 /**
 The startListen method installs the Messager utility object installed
 in the method initMessager as a thread.
 @return true if a thread was initialised successfully.
 */
 public boolean startListen()
 {
 Thread mt = new Thread(messager);
 mt.start();
 return true;
 }
 /**
 The dispatchMessage is the operation which the Messager object will
 call when a message is received. It must pass the message to the
 message associated identity.
 @param message_ the received message.
 @return true if the message was handled here, false if the message
 must be handled by some other dispatcher.
 */
 public boolean dispatchMessage(Message message_)
 {
 ManagementAction access_entry = null;
 Identity temp_upload_identity = null;
 try
 {
 access_entry = new ManagementActionImplementation();
 access_entry.adaptMessage(message_);
 access_entry.setFAILED();

 if ((access_entry.isQUERY())
 && access_entry.isCLASS_BYTE_CODE_RESOURCE())
 {
 if (management_server != null)
 {
 withPolicy wp = management_server.getApplication();
 Representable da = (Representable)wp;
 proxy = da.getRepresentative(access_entry.getFromIdentity());
 String resname = proxy.getClass().getName()+".class";
 DiskFile res = new DiskFile(resname);
 access_entry.setObject(res);
 temp_upload_identity = new IdentityImplementation
 (service.to_String()+"_resourcing_for_"+
 message_.getFromIdentity().to_String());
 access_entry.setToIdentity(temp_upload_identity);
 if (management_server.handleManagementInfo
 (access_entry).isSUCCESS())
 {
 if (acceptService(access_entry).isSUCCESS())

A17

 {
 access_entry.swapIdentities();
 messager.sendMessage(access_entry.createMessage());
 }
 return true;
 }
 } else exit("Distribution:
 -Class byte code resource is not found.");
 }
 if ((access_entry.isQUERY())&&access_entry.isREPRESENTATIVE_PROXY())
 {
 if (management_server != null)
 {
 if (proxy == null)
 {
 withPolicy wp = management_server.getApplication();
 Representable da = (Representable)wp;
 proxy = da.getRepresentative(access_entry.getFromIdentity());
 }
 access_entry.setObject(proxy);
 temp_upload_identity = new IdentityImplementation
 (service.to_String() +"_distribution_for_"
 + message_.getFromIdentity().to_String());
 access_entry.setToIdentity(temp_upload_identity);
 if (management_server.handleManagementInfo
 (access_entry).isSUCCESS())
 {
 if (acceptService(access_entry).isSUCCESS())
 {
 access_entry.swapIdentities();
 messager.sendMessage(access_entry.createMessage());
 }
 return true;
 }
 } else exit("Distribution: -Representative proxy is not found.");
 }
 } catch (Exception e) {return true;}
 return false;
 }
 /**
 The sendMessage method sends message to the identity coded in
 the ReturnCode class. It adds the client identity in the
 message to be send to represent the sender.
 @param _to_ is the identity to whom the message is to be send.
 @param returncode_ contains the message's contents.
 @return true if the sending was successful, otherwise returns false.
 */
 public boolean sendMessage(Identity _to_, ReturnCode returncode_)
 {
 try
 {
 Message msg = new MessageImplementation(service, _to_, returncode_);
 messager.sendMessage(msg);
 return true;
 } catch (Exception e) {return false;}

A18

 }
 /**
 The handleAction method is the operation of which the ObjectDownloader
 and the ObjectUploader will call when they have completed their tasks.
 @param _action_ is the ManagementAction object which a loader has
 got as an instruction when it have been initialised.
 @return true if the action was handled here, else returns false
 meaning that the action must be handled by some other action handler.
 */
 public boolean handleAction(ManagementAction _action_)
 {
 if (_action_.isSUCCESS())
 {
 System.out.println("Distribution: -The client '"
 +_action_.getToIdentity().to_String()
 +"' is served successfully with the reply '"
 +_action_.createReturnCode().to_String()+"'.");
 return true; // returncode is handled
 } else
 {
 System.out.println("Distribution: -An action on the client '"
 +_action_.getToIdentity().to_String()+"' is failed with the reply '"
 +_action_.createReturnCode().to_String()+"'.");
 return true;
 }
 }
 /**
 The reachService method reaches the service given by the service
 identity. This method is deployed by a ManagementClient object.
 @param _of_ is the identity of the application object offering
 a service.
 @return ReturnCode object.
 */
 public ReturnCode reachService(Identity _of_) { return null; }
 /**
 The acceptService method starts the ObjectUploader objects to
 be executed as a thread.
 @param _entry_ is a ManagementAction object by which the upload
 operation must be proceeded.
 @return ReturnCode object.
 */
 public ReturnCode acceptService(ManagementAction _entry_)
 {
 entry.setFAILED();
 try
 {
 Thread t = new Thread(new ObjectUploader(_entry_, bo, this));
 t.start();
 entry.setSUCCESS();
 } catch (Exception e) {return _entry_.createReturnCode();}
 return _entry_.createReturnCode();
 }
 public void exit(String exit_msg_)
 {
 System.out.println(exit_msg_);

A19

 System.exit(1);
 }
}

ManagementClient

//==
// VTT Electronics Java Class Definition File
//
// Project: DIT_MMO
// Task: Management Framework of Distributed Software Objects
// and Components.
// Package:
// File: ManagementClient.java
//
// Version: v.1.0
// Date: 07.02.2001
// Status: draft [] 10.05.2000 / Markus Moilanen (MMO)
// proposal [] 11.01.2001 / Markus Moilanen (MMO)
// accepted [X] 07.02.2001 / Supervisor of the thesis
//
// Version history:
//
// Version Date / Author Comment
// --

// 0.0 10.05.2000 / MMO File created
// 0.1 17.05.2000 / MMO First prototype
// 0.2 19.01.2001 / MMO Final implementation
// 0.3 05.02.2001 / MMO The code is finished
//
// Copyright © 2001, VTT Electronics and the author
//
//==
import fi.vtt.ele.management_framework.implementation.management_layer.*;
import fi.vtt.ele.management_framework.implementation.application_layer.*;
import fi.vtt.ele.management_framework.implementation.utility.*;
import
fi.vtt.ele.management_framework.implementation.distribution_transparency.*
;
/**
 *<TABLE BORDER CELLPADDING=4 CELLSPACING=2 WIDTH=75%>
 * <TR><TH ALIGN=LEFT WIDTH=10%>Description</TH>
 * <TD>
 * The ManagementClient class implements the Distribution and Dimension
 * interfaces and thus can reach the ability to communicate and download
 * objects. The ManagementClient may implement all the dimensions at once
 * sor only the selected set of the dimensions. The realisation depends on
 * the possibilities which the target environment has, or which dimensions
 * have been selected to be enough for every individual target platform.
 * </TD>
 * <TR><TH ALIGN=LEFT>Version</TH>
 * <TD>v1.0</TD>
 * <TR><TH ALIGN=LEFT>Date</TH>

A20

 * <TD>07.02.2001</TD>
 * <TR><TH ALIGN=LEFT>Source</TH>
 * <TD>ManagementClient.java</TD>
 * <TR><TH ALIGN=LEFT>Author</TH>
 * <TD>Markus Moilanen (MMO)</TD>
 *</TABLE>
 * @version v.1.0 07.02.2001
 * @author Markus Moilanen,
 * www.iki.fi/~mmoi
 */
public class ManagementClient implements Distribution, Dimension
{
 public Proxyable reconstructed = null;
 private int state = INITIALISING;
 private int REACHING_RESOURCE = 1000;
 private int dimensions = ROOT+DISTRIBUTION;
 private Identity client = null;
 private Identity service = null;
 private NetworkTransparency bo = null;
 private Messager messager = null;
 /**
 This constructor initialises the ManagementClient class. End-user
 Terminal passes the identity of the service to be reached and the
 identity of the current user. The demo version needs the local name
 cache to be configured to contain the actual physical address of the
 service. The binding object will use the cache to resolve the address
 of the service identity.
 @param service_ is the identity of the service to be reached.
 @param clients_ is the identity of the current user.
 */
 public ManagementClient(Identity service_, Identity client_)
 {
 service = service_;
 client = client_;
 try
 {
 bo = new TCPIPNetworkTransparencyBO();
 System.out.println
("**");
System.out.println
("Demo: Name Cache will be configured for the demo in using ");
System.out.println
("the default cachefile 'democache.txt' instead of the use of ");
System.out.println
("a directory service - directory services are not available. ");
 bo.loadNameCache("democache.txt");
 bo.listNameCache();
 bo.setAddress(client_, new AddressImplementation(null,0));
 System.out.println
("**");
 if (initMessager(client_, bo))
 {
 state = REACHING_RESOURCE;
 if (reachService(service_).isSUCCESS())
 {

A21

 while (state != REACHING_PROXYABLE) {Thread.yield();}
 }
 if (reachService(service_).isSUCCESS())
 {
 while (state != RUNNING_PROXYABLE) {Thread.yield();}
 reconstructed.run();
 }
 } else exit("ManagementClient: -The service '"
 +service.to_String()+"' could not be reached.");
 } catch (Exception e) {exit
 ("ManagementClient: -Could not be installed.");}
 }
 /**
 The initMessager method installs the Messager utility object.
 @param _for_ is the identity of the client object.
 @param bo_ is the binding object to use.
 @return true if the messager was initialised successfully.
 */
 public boolean initMessager(Identity _for_, NetworkTransparency bo_)
 {
 try
 {
 messager = new Messager(_for_, bo_, null);
 return true;
 } catch (Exception e) { return false; }
 }
 /**
 The startListen method installs the Messager utility object installed
 in the method initMessager as a thread. Not used by this
 ManagementClient.
 @return true if a thread was initialised successfully.
 */
 public boolean startListen() {return true;}
 /**
 The dispatchMessage is the operation which the messager object will
 call when a message is received. It must pass the message to the
 message associated identity. Not used by this ManagementClient.
 @param message_ the received message. Not used by this
 ManagementClient.
 @return true if the message was handled here, false if the message
 must be handled by some other dispatcher.
 */
 public boolean dispatchMessage(Message message_) { return false; }
 /**
 The handleAction method is the operation which the ObjectDownloader
 and the ObjectUploader will call when they have completed their tasks.
 @param _action_ is the ManagementAction object that a loader has
 received as an instruction when it has been initialised.
 @return true if the action was handled here, else returns false
 meaning that the action must be handled by some other action handler.
 */
 public boolean handleAction(ManagementAction _action_)
 {
 if (state == DOWNLOADING_OBJECT)
 {

A22

 if (_action_.isSUCCESS()) System.out.println
 ("ManagementClient: -ObjectDownloader informs that
 the operation was proceeded successfully.");
 if ((_action_.isSUCCESS())&&(_action_.isREPRESENTATIVE_PROXY()))
 {
 Proxyable p = (Proxyable)_action_.getObject();
 reconstructed = p.reConstruct();
 if (reconstructed == null) exit
 ("ManagementClient: -Representavive proxy cannot be reconstructed.");
 state = REACTIVATING_PROXYABLE;
 if (reconstructed.reActivate())
 {
 state = RUNNING_PROXYABLE;
 } else exit
 ("ManagementClient: -Representavive proxy cannot be reactivated.");
 } else
 if ((_action_.isSUCCESS())&&(_action_.isCLASS_BYTE_CODE_RESOURCE()))
 {
 DiskFile p = (DiskFile)_action_.getObject();
 if (!p.toDisk()) exit
 ("ManagementClient: -Class byte code resource cannot be installed.");
 state = REACHING_PROXYABLE;
 } else exit("ManagementClient: -Object cannot be downloaded.");
 return true;
 } else { return false;}
 }
 /**
 The reachService method reaches the service given by
 the service identity.
 @param _of_ is the identity of the application object offering
 a service.
 @return ReturnCode object.
 */
 public ReturnCode reachService(Identity _of_)
 {
 ReturnCode sendquery = null;
 ManagementAction action = null;
 Message coming = null;
 try
 {
 sendquery = new ReturnCodeImplementation();
 } catch (Exception e) {exit
 ("ManagementClient: -Could not create object.");}
 if (state == REACHING_PROXYABLE)
 {
 sendquery.setQUERY();
 sendquery.setREPRESENTATIVE_PROXY();
 sendquery.setINFOCODE();
 if (sendMessage(_of_, sendquery))
 {
 messager.setTIMEOUT(10000);
 System.out.println("ManagementClient: -Reaching for the service's
 proxy for no longer than 10 seconds ..");
 coming = messager.receiveMessage();
 messager.setTIMEOUT(0);

A23

 if (coming.isGRANTED())
 {
 System.out.println("ManagementClient: -Representative proxy is
 granted, starting the downloader ..");
 try
 {
 action = new ManagementActionImplementation();
 action.adaptMessage(coming);
 Thread t = new Thread(new ObjectDownloader(action, bo, this));
 state = DOWNLOADING_OBJECT;
 t.start();
 action.setSUCCESS();
 return action.createReturnCode();
 } catch (Exception e) {return action.createReturnCode();}
 }
 } else if (coming.isDENIED()) { exit("ManagementClient:
 -Representative proxy is denied by the server, quitting.");}
 else { exit("ManagementClient: -Cannot send a message.");}
 }
 if (state == REACHING_RESOURCE)
 {
 sendquery.setQUERY();
 sendquery.setCLASS_BYTE_CODE_RESOURCE();
 sendquery.setINFOCODE();
 if (sendMessage(_of_, sendquery))
 {
 messager.setTIMEOUT(10000);
 System.out.println("ManagementClient: -Reaching for the class byte
 code resource for no longer than 10 seconds ..");
 coming = messager.receiveMessage();
 messager.setTIMEOUT(0);
 if (coming.isGRANTED())
 {
 System.out.println("ManagementClient:
 -Class byte code resource is granted, starting the downloader ..");
 try
 {
 action = new ManagementActionImplementation();
 action.adaptMessage(coming);
 Thread t = new Thread(new ObjectDownloader(action, bo, this));
 state = DOWNLOADING_OBJECT;
 t.start();
 action.setSUCCESS();
 return action.createReturnCode();
 } catch (Exception e) {return action.createReturnCode();}
 }
 } else if (coming.isDENIED()) { exit("ManagementClient:
 -Class byte code resource is denied by the server, quitting.");}
 else { exit("ManagementClient: -Cannot send message.");}
 }
 return action.createReturnCode();
 }
 /**
 The sendMessage method sends a message to the identity coded in
 the ReturnCode class. It adds the client identity in the

A24

 message to be sent to represent the sender.
 @param _to_ is the identity to whom the message is to be sent.
 @param returncode_ contains the message's contents.
 @return true if the sending was successful, otherwise returns false.
 */
 public boolean sendMessage(Identity _to_, ReturnCode returncode_)
 {
 try
 {
 Message msg = new MessageImplementation(client, _to_, returncode_);
 messager.sendMessage(msg);
 } catch (Exception e) {return false;}
 return true;
 }
 /**
 The acceptService method starts the ObjectUploader objects to
 be executed as a thread. Not used by this ManagementClient.
 @param _entry_ is a ManagementAction object with which the upload
 operation must be proceeded.
 @return ReturnCode object.
 */
 public ReturnCode acceptService(ManagementAction access_entry_)
 {return null;}
 public void exit(String exit_msg_)
 {
 System.out.println(exit_msg_);

System.out.println("**");
System.out.println("Demo: Name Cache at the end of the execution is:");
 try
 {
 bo.listNameCache();
 } catch (Exception e)
 {
 System.out.println(" Name Cache is not standing.");
 }

System.out.println("**");
System.exit(1);
 }
 /** Main-function is for start the class in command line. */
 public static void main(String[] args)
 {
 System.setSecurityManager(null);
 String usage_str =
 "Usage: 'java ManagementClient <service_UIN> <client_UIN>, where the"
+"<service_UIN> is the service's unique name, e.g. HelloWorldApplication "
+"and the <client_UIN> is the user's unique (and friendly) name, e.g. "
+"Marcus. The expression of the identity will be expanded in the future "
+"version also to carry the less-friendly expression like 'BE9CD630-A96B-"
+"11D3-81BC-00902790ECE5' to distinguish identities properly."
+"Before use, the name cache must be configured accordingly to express the
"
+"physical address of the service identities - usually this is provided "
+"by a directory service in a distributed system. By default, the name "

A25

+"cache will be configured to carry both addresses in the local host. "
+" You must start the application <service_UIN> with management before "
+" the use of this client - it will configure the name cache for the "
+"service. If the client is used through another subdirectory of the "
+"computer disk, the name cache file must be copied to the directory in "
+"which the ManagementClient is installed after the service has "
+"configured the file. This is simple because we do not have any "
+"directory service available for the demo.";
 if (args.length == 2)
 {
 if ((args[0]!=null)&&(args[1]!=null))
 {
 try
 {
 Identity service_identity = new IdentityImplementation(args[0]);
 Identity client_identity = new IdentityImplementation(args[1]);
 ManagementClient m = new ManagementClient
 (service_identity, client_identity);
 } catch (Exception e) {System.out.println(e.toString());}
 }
 }
 else System.out.println(usage_str);
 }
}

TCPIPNetworkTransparencyBindingObject

//==
// VTT Electronics Java Class Definition File
//
// Project: DIT_MMO
// Task: Management Framework of Distributed Software Objects
// and Components.
// Package:
// File: TCPIPNetworkTransparencyBO.java
//
// Version: v.1.0
// Date: 07.02.2001
// Status: draft [] 10.05.2000 / Markus Moilanen (MMO)
// proposal [] 11.01.2001 / Markus Moilanen (MMO)
// accepted [X] 07.02.2001 / Supervisor of the thesis
//
// Version history:
//
// Version Date / Author Comment
// --
// 0.0 10.05.2000 / MMO File created
// 0.1 17.05.2000 / MMO First prototype
// 0.2 19.01.2001 / MMO Final implementation
// 0.3 03.02.2001 / MMO The code is finished
//
// Copyright © 2001, VTT Electronics and the author
//==
import fi.vtt.ele.management_framework.implementation.management_layer.*;

A26

import fi.vtt.ele.management_framework.implementation.utility.*;
import
fi.vtt.ele.management_framework.implementation.distribution_transparency.*
;
import java.net.DatagramSocket;
import java.net.SocketException;
import java.net.DatagramPacket;
import java.net.InetAddress;
import java.net.Socket;
import java.net.ServerSocket;
import java.util.Vector;
import java.io.*;
import java.util.StringTokenizer;
/**
 *<TABLE BORDER CELLPADDING=4 CELLSPACING=2 WIDTH=75%>
 * <TR><TH ALIGN=LEFT WIDTH=10%>Description</TH>
 * <TD>
 * This class realises the operation defined by the NetworkTransparency
 * interface. It offers all the services which are usually required from
 * the layer under the application layer in the networked system. This
 * implementation is for the TCPIP-network, but certainly there are others
 * network type to be supported by different implementations in the
 * future, examples include DDE and the layer under the application layer
 * in the WAP or MExE protocol stack. Conveniently, the computational
 * objects always see the network as the same, no modifications are
 * required in the software when used in a different environment.
 * </TD>
 * <TR><TH ALIGN=LEFT>Version</TH>
 * <TD>v1.0</TD>
 * <TR><TH ALIGN=LEFT>Date</TH>
 * <TD>07.02.2001</TD>
 * <TR><TH ALIGN=LEFT>Source</TH>
 * <TD>
 * TCPIPNetworkTransparencyBO.java</TD>
 * <TR><TH ALIGN=LEFT>Author</TH>
 * <TD>Markus Moilanen (MMO)</TD>
 *</TABLE>
 * @version v.1.0 07.02.2001
 * @author Markus Moilanen,
 * www.iki.fi/~mmoi
 */
public class TCPIPNetworkTransparencyBO implements NetworkTransparency
{
 public NameCache name_cache = null;
 /**
 This constructor installs the network transparency class and
 initilises the name cache file as well.
 */
 public TCPIPNetworkTransparencyBO() throws Exception
 {
 name_cache = new NameCache();
 }
 /**
 The method senConnectionless sends the connectionless message in
 using the given DatagramChannel object.

A27

 @param _with_ is a Message object to be sent.
 @param _by_ is a DatagramChannel object to be used for sending
 the data.
 */
 public void sendConnectionless(Message _with_, DatagramChannel _by_)
 throws Exception
 {
 by.sendDatagram(getDatagram(_with_));
 }
 /**
 The method receiveConnectionless receives a message which may arrive
 in using the given DatagramChannel.
 @param _by_ is the DatagramChannel object to be used for receiving
 data.
 @param expected_size_ is the size of the expected size of the data
 of the coming message.
 @return the received data formatted as a Message object.
 */
 public Message receiveConnectionless(DatagramChannel _by_, int
expected_size_) throws Exception
 {
 Datagram d = _by_.receiveDatagram(expected_size_);
 // Maintain the name cache
 Message m = getMessage(d);
 String addr_str = setAddress(m.getFromIdentity(), d.getFromAddress());
 return m;
 }
 /**
 The method getMessage formats the contents of the given Datagram to
 the Message object.
 @param _from_ is the Datagram from which the Message is to be formed.
 @return a Message object.
 */
 public Message getMessage(Datagram _from_) throws Exception
 {
 return new MessageImplementation(_from_.getContents());
 }
 /**
 The method loadNameCache loads the name cache file from the given
 path.
 @param name_cache_file_name_ is the path extended with the file name
 expressed in the format of the underlying operating system from
 which the cache is to be loaded.
 */
 public void loadNameCache(String name_cache_file_name_) throws Exception
 {
 name_cache.loadList(name_cache_file_name_);
 }
 /**
 The method saveNameCache saves the current name cache of this network
 transparency object. The file can then be restored by the method
 loadNameCache. The information in the cache varies during the run of
 the system.
 @param name_cache_file_name_ is the path and the file name expressed
 in the format of the underlying operating system to which the cache

A28

 is to be saved.
 */
 public void saveNameCache(String name_cache_file_name_) throws Exception
 {
 name_cache.saveList(name_cache_file_name_);
 }
 /** The method listNameCache list the current cache entries of the
 name cache.*/
 public void listNameCache() throws Exception
 {
 name_cache.writeList();
 }
 /**
 The method getAddress returns the physical address of the
 given Identity currently held by the name cache. It may happen
 that the Address cannot be resolved; therefore a new name cache
 entry for the Identity must be set. This method can consult available
 name or directory services to reach the information for maintaining
 the address information. However, in the demo,
 this approach is not currently supported for practical reasons.
 @param _of_ is the Identity of whoose address is to be resolved.
 @return the Address object.
 */
 public Address getAddress(Identity _of_) throws Exception
 {
 Address addr = null;
 InetAddress iadr = null;
 try
 {
 addr = name_cache.getEntryByIdentity(_of_).getAddress();
 iadr = InetAddress.getByName(addr.getHost());
 } catch (Exception e)
 {
 throw new Exception("NetworkTransparency: -Address for the
 identity'" +_of_.to_String()
 +"' is not found or cannot be interpreted. Please, configure
 the cache properly.");
 }
 return addr;
 }
 /**
 The method setAddress sets the given Address for the given Identity
 in the name cache. If there is the cache entry for the given identity
 existing already, the entry will be updated according to the new
 entry.
 @param _for_ is the Address object to be associated with a new
 cache entry.
 @param _on_ is the Identity object to be associated with a new
 cache entry.
 @return a String object containíng the new cache entry formatted as
 a string.
 */
 public String setAddress(Identity _for_, Address _on_) throws Exception
 {
 if (_on_.getHost() == null)_on_.setHost

A29

 (InetAddress.getLocalHost().getHostAddress());
 NameCacheEntry e = new NameCacheEntry(_for_, _on_);
 name_cache.updateEntry(e);
 return e.to_String();
 }
 /**
 The method saveNameCacheEntry can create a new name cache entry
 by means of the given text string. If a cache entry for the given
 identity already exists, the entry will be updated by the new
 information.
 @param name_cache_entry_str_ is the String object containing
 information about the identity and the address in the following
 format: "identity@host:door".
 @return an Identity object holding the new and cached entry with the
 given information.
 */
 public Identity setNameCacheEntry(String name_cache_entry_str_) throws
Exception
 {
 NameCacheEntry entry = new NameCacheEntry(name_cache_entry_str_);
 name_cache.updateEntry(entry);
 return entry.getIdentity();
 }
 /**
 The method getNameCacheEntry returns the cache entry associated with
 the given Identity.
 @param _of_ is an Identity object to be located from the cache.
 @return the associated name cache entry.
 */
 public NameCacheEntry getNameCacheEntry(Identity _of_) throws Exception
 {
 NameCacheEntry entry = name_cache.getEntryByIdentity(_of_);
 return entry;
 }
 /**
 The method getDatagramChannel returns a new DatagramChannel object
 assigned for the given Identity. If the Identity does not have the
 proper address already, a new address will be created in using
 available information from the underlying system.
 @param identity_ is an Identity object for which a new
 DatagramChannel object
 is to be reserved. Here we can maintain a priority based
 reservation in the future versions.
 @return a new DatagramChannel object.
 */
 public DatagramChannel getDatagramChannel(Identity identity_) throws
Exception
 {
 NameCacheEntry e = null;
 try
 {
 e = getNameCacheEntry(identity_);
 } catch (Exception r)
 {
 // there was not a name cache entry for this identity, so,

A30

 // we will make one
 e = new NameCacheEntry(identity_.to_String() +"@"
 +InetAddress.getLocalHost().getHostName()+":0");
 name_cache.updateEntry(e);
 }
 int port_ = e.getAddress().getDoor();
 if (port_ == 0)
 {
 DatagramChannel ch = new DatagramChannelImplementation();
 e.getAddress().setDoor(ch.getDoor());
 return ch;
 } else return new DatagramChannelImplementation(port_);
 }
 /**
 The method getDatagram returns the DatagramObject which contains
 the information from the given Message object. The new Datagram
 object is ready to be sent in using the connectionless channel,
 because it contains all the information to deliver the Datagram to
 the right Identity.
 @param _for_ is a Message object by which the Datagram
 is to be formed.
 @return a new Datagram object ready to be sent.
 */
 public Datagram getDatagram(Message _for_) throws Exception
 {
 Address from_address = getAddress(_for_.getFromIdentity());
 Address to_address = getAddress(_for_.getToIdentity());
 return new DatagramImplementation
 (from_address, to_address, _for_.to_String());
 }
 /**
 The second method getDatagram does almost the same as the previous
 one, but only providing a Datagram object for receiving the data from
 the channel.
 @param expected_size is the expected size of the data to be received.
 @return a new Datagram object ready to store the coming data from the
 DatagramChannel.
 */
 public Datagram getDatagram(int expected_size_) throws Exception
 {
 return new DatagramImplementation(expected_size_);
 }
 /**
 The method getChannel returns the Channel object connected to the
 identity locating somewhere in the disributed environment - we do not
 even know the location before we will look for it from the name cache
 - just for curiosity.
 @param _to_ is the Identity of the other end of the transimission
 system, and to which the Channel is to be connected.
 @return a new Channel object ready to transfer data between
 two identities
 in using datastreams.
 */
 public Channel getChannel(Identity _to_) throws Exception
 {

A31

 Address to_address = getAddress(_to_);
 return new ChannelImplementation(to_address);
 }
 /**
 The method getServerChannel reserves a some kind of "loading door"
 for the given Identity to deliver the data. The address must be
 informed about to the identity who is supposed to receive the data.
 The identity can be
 checked in the future versions.
 @param _on_ is the identity who reserves the door.
 @param door_ is the door to be reserved. If the door_ is 0,
 a free door is to be pointed.
 @return a new ServerChannel object to be used for the data transfer
 by a Channel object in using datastreams.
 */
 public ServerChannel getServerChannel(Identity _on_, int door_) throws
Exception
 {
 ServerChannel server_channel = new ServerChannelImplementation(door_);
 // Maintain name cache
 setAddress(_on_,server_channel.getLocalAddress());
 return server_channel;
 }
 /** See the Sun's Java documentation */
 public ObjectOutputStream getObjectOutputStream(Channel _on_) throws
Exception
 {
 return new ObjectOutputStream(_on_.getOutputStream());
 }
 /** See the Sun's Java documentation */
 public ObjectInputStream getObjectInputStream(Channel _on_) throws
Exception
 {
 return new ObjectInputStream(_on_.getInputStream());
 }
}
/**
 Name Cache
***/
public class NameCache
{
 public String name_cache_file = null;
 private String default_name_cache_file = "namecache.txt";
 private Vector name_cache_list = null;
 public NameCache()
 {
 name_cache_file = default_name_cache_file;
 name_cache_list = new Vector(1,1);
 }
 public NameCache(String name_cache_file_)
 {
 name_cache_file = name_cache_file_;
 if (name_cache_file == null) name_cache_file =
 default_name_cache_file;
 name_cache_list = new Vector(1,1);

A32

 }
 /** @return name_cache_list count */
 public int getCount() { return name_cache_list.size(); }
 /**
 @param v_ is a NameCacheEntry-object to add to Vector
 */
 public void addEntry(NameCacheEntry v_) throws Exception
 {
 name_cache_list.addElement(v_);
 }
 /**
 @param v_ is a NameCacheEntry-object to add to Vector
 */
 public void updateEntry(NameCacheEntry v_) throws Exception
 {
 int i = searchIndexByIdentity(v_.getIdentity());
 if (i != -1)
 {
 name_cache_list.setElementAt(v_, i);
 } else name_cache_list.addElement(v_);
 }
 /**
 @param count_ is a index of a NameCacheEntry-object in Vector
 @return
 */
 public NameCacheEntry getEntryByCount(int count_) throws Exception
 {
 return (NameCacheEntry)name_cache_list.elementAt(count_);
 }
 public NameCacheEntry getEntryByIdentity(Identity identity_) throws
Exception
 {
 int i = searchIndexByIdentity(identity_);
 if (i != -1)
 {
 return (NameCacheEntry)name_cache_list.elementAt(i);
 }
 return null;
 }
 public boolean deleteEntryByIdentity(Identity identity_) throws
Exception
 {
 int i = searchIndexByIdentity(identity_);
 if (i != -1)
 {
 name_cache_list.removeElementAt(i);
 return true;
 }
 return false;
 }
 private int searchIndexByIdentity(Identity identity_) throws Exception
 {
 int size=getCount();
 int i = 0;
 int paluu = -1;

A33

 if (size == 0) return paluu;
 while (i < size)
 {
 NameCacheEntry e = (NameCacheEntry)name_cache_list.elementAt(i);
 String v = e.getIdentity().to_String();
 if (v.startsWith(identity_.to_String()))
 {
 paluu = i;
 return paluu;
 }
 i++;
 }
 return paluu;
 }
 public void writeList() throws Exception
 {
 String line = null;
 int i = 0;
 while(i < getCount())
 {
 NameCacheEntry e = (NameCacheEntry)name_cache_list.elementAt(i);
 System.out.println(e.to_String());
 i++;
 }
 }
 public void saveList(String name_cache_file_name_) throws Exception
 {
 String line = null;
 int i = 0;
 File file_ = new File(name_cache_file_name_);
 BufferedWriter bw = new BufferedWriter(new FileWriter(file_));
 while(i < getCount())
 {
 NameCacheEntry e = (NameCacheEntry)name_cache_list.elementAt(i);
 bw.write(e.to_String());
 bw.newLine();
 i++;
 }
 bw.flush();
 bw.close();
 }
 public void loadList(String name_cache_file_name_) throws Exception
 {
 String line = null;
 File file_ = new File(name_cache_file_name_);
 if (file_.canRead())
 {
 BufferedReader br = new BufferedReader(new FileReader(file_));
 while ((line = br.readLine()) != null)
 {
 NameCacheEntry e = new NameCacheEntry(line);
 name_cache_list.addElement(e);
 }
 br.close();
 } else

A34

 {
 throw new Exception("NetworkTransparency: -The name cache file
'"+name_cache_file_name_+"' cannot be opened.");
 }
 }
}
/***
 Name Cache Entry
***/
public class NameCacheEntry
{
 private Address address = null;
 private Identity identity = null;
 public String entry_string = "unknown@localhost:0";
 public NameCacheEntry(){};
 public NameCacheEntry(Identity identity_, Address address_) throws
Exception
 {
 identity = identity_;
 address = address_;
 }
 public NameCacheEntry(String entry_str_) throws Exception
 { from_String(entry_str_); }
 public void from_String(String row_) throws Exception
 {
 Object view_parameters = new StringTokenizer(row_, "@");
 String identity_str = ((StringTokenizer) view_parameters).nextToken();
 String address_str = ((StringTokenizer) view_parameters).nextToken();
 identity = new IdentityImplementation(identity_str);
 address = new AddressImplementation(address_str);
 }
 public Identity getIdentity() {return identity;}
 public Address getAddress() {return address;}
 /** @return String including fields as a text. */
 public String to_String() throws Exception {return
(identity.to_String()+"@"+address.to_String()); }
}

Utility package

//==
// VTT Electronics Java Class Definition File
//
// Project: DIT_MMO
// Task: Management Framework of Distributed Software Objects
// and Components.
// Package:
// File: Multible class definition files of the implementations of
// the utility package: AddressImplementation.java,
// ChannelImplementation.java, DatagramImplementation.java,
// DatagramChannelImplementation.java,
// DecisionImplementation.java,
// IdentityImplementation.java,
// ManagementActionImplementation.java,

A35

// MessageImplementation.java, ReturnCodeImplementation.java,
// ServerChannelImplementation.java, and DiskFile.java.
//
// Version: v.1.0
// Date: 07.02.2001
// Status: draft [] 10.05.2000 / Markus Moilanen (MMO)
// proposal [] 11.01.2001 / Markus Moilanen (MMO)
// accepted [X] 07.02.2001 / Supervisor of the thesis
//
// Version history:
// Version Date / Author Comment
// --
// 0.0 10.05.2000 / MMO File created
// 0.1 17.05.2000 / MMO First prototype
// 0.2 19.01.2001 / MMO Final implementation
// 0.3 03.02.2001 / MMO The code is finished
//
// Copyright © 2001, VTT Electronics and the author
//
//==
import fi.vtt.ele.management_framework.implementation.management_layer.*;
import fi.vtt.ele.management_framework.implementation.utility.*;
import
fi.vtt.ele.management_framework.implementation.distribution_transparency.*
;
import java.net.DatagramSocket;
import java.net.SocketException;
import java.net.DatagramPacket;
import java.net.InetAddress;
import java.net.Socket;
import java.net.ServerSocket;
import java.util.Vector;
import java.io.*;
import java.util.StringTokenizer;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.File;
/***
 Address implementation
***/
public class AddressImplementation implements Address
{
 private String host_str = null;
 private int door = 0;
 private String address_str = null;
 public AddressImplementation(String host_str_, int door_) throws
Exception
 {
 host_str = host_str_;
 door = door_;
 address_str = toString();
 }
 public AddressImplementation(String address_) throws Exception
 {

A36

 from_String(address_);
 }
 public AddressImplementation() throws Exception {}
 public void setHost(String host_str_) { host_str = host_str_; }
 public String getHost() { return host_str;}
 public void setDoor(int door_) { door = door_;}
 public int getDoor() {return door;}
 /** Wrap the information of this address to send by string */
 public String to_String() { return new String(host_str+':'+door); }
 /** Splits a string which was in the given string.
 @return true, if operation was succesful, else false.
 */
 private void from_String(String s) throws Exception
 {
 boolean ok = true;
 host_str = s.substring(0,s.indexOf(":"));
 String p = s.substring(s.indexOf(":")+1,s.length());
 try
 {
 Integer dummy = new Integer(p);
 door = dummy.intValue();
 } catch (NumberFormatException e) {ok = false;}
 address_str = host_str+':'+door;
 if (!ok) throw new Exception();
 }
}
/***
 Channel implementation
***/
public class ChannelImplementation implements Channel
{
 Socket socket = null;
 public ChannelImplementation(Address to_address_) throws Exception
 {
 socket = new Socket(InetAddress.getByName(to_address_.getHost()),
to_address_.getDoor(), true);
 }
 public ChannelImplementation(Socket socket_) throws Exception
 {
 socket = socket_;
 }
 public InputStream getInputStream() throws Exception
 {
 return socket.getInputStream();
 }
 public OutputStream getOutputStream() throws Exception
 {
 return socket.getOutputStream();
 }
 public void close()
 {
 try
 {
 socket.close();
 } catch (Exception e) {}

A37

 }
}
/***
 Datagram implementation
***/
public class DatagramImplementation implements Datagram
{
 private int default_receive_buffer_size = 512;
 private DatagramPacket packet = null;
 private byte[] buf;
 private Address from_address = null;
 private Address to_address = null;
 private String contents = null;
 /**
 Constructs a Datagram for receiving packets.
 @param size_ is the data buffer size for receive data.
 */
 public DatagramImplementation(int size_) throws Exception
 {
 if (size_ <= 0) size_ = default_receive_buffer_size;
 buf = new byte[size_];
 packet = new DatagramPacket(buf, buf.length);
 }
 /**
 Constructs a Datagram for sending datagram to the specified address
 with specified contents.
 @param from_address_ is the Address of the sender.
 @param to_address_ is the Address of the receiver.
 @param contents_ is the contents of the datagram.
 */
 public DatagramImplementation(Address from_address_, Address
to_address_, String contents_) throws Exception
 {
 from_address = from_address_;
 to_address = to_address_;
 contents = contents_;
 String s =
"<"+from_address.to_String()+"><"+to_address.to_String()+">"+contents;
 buf = new byte[s.length()];
 s.getBytes(0,s.length(),buf,0);
 packet = new DatagramPacket(buf, buf.length,
InetAddress.getByName(to_address_.getHost()),to_address_.getDoor());
 }
 public DatagramImplementation(DatagramPacket packet_) throws Exception
 {
 packet = packet_;
 deCodePacket();
 }
 public void deCodePacket() throws Exception
 {
 String s = new String(packet.getData(),0);
 String from_address_str_ = s.substring(1,s.indexOf(">"));
 from_address = new AddressImplementation(from_address_str_);
 String t = s.substring(s.indexOf(">")+1,s.length());
 String to_address_str_ = t.substring(1,t.indexOf(">"));

A38

 to_address = new AddressImplementation(to_address_str_);
 String c = t.substring(t.indexOf(">")+1,t.length());
 contents = c.trim();
 }
 public Address getFromAddress() {return from_address;}
 public Address getToAddress() {return to_address;}
 public String getContents() {return contents;}
 public void setToAddress(Address to_address_) {to_address =
(AddressImplementation)to_address_;}
 public void setFromAddress(Address from_address_) {from_address =
(AddressImplementation)from_address_;}
 public void setContents(String contents_) {contents = contents_;}
 public DatagramPacket getDatagramPacket() {return packet;}
 public String to_String(){return
"<"+from_address.to_String()+"><"+to_address.to_String()+">"+contents;}
}
/***
 DatagramChannel implementation
***/
public class DatagramChannelImplementation implements DatagramChannel
{
 private int port = 0;
 private DatagramSocket datagramsocket = null;
 public DatagramChannelImplementation() throws SocketException
 {
 datagramsocket = new DatagramSocket();
 port = datagramsocket.getLocalPort();
 }
 public DatagramChannelImplementation(int port_) throws SocketException
 {
 port = port_;
 datagramsocket = new DatagramSocket(port_);
 }
 public void sendDatagram(Datagram datagram_) throws Exception
 {
 DatagramImplementation p = (DatagramImplementation)datagram_;
 datagramsocket.send(p.getDatagramPacket());
 }
 public Datagram receiveDatagram(int expected_size_) throws Exception
 {
 DatagramImplementation d = new DatagramImplementation(expected_size_);
 datagramsocket.receive(d.getDatagramPacket());
 d.deCodePacket();
 return (Datagram)d;
 }
 public void setTimeout(int timeout_) throws Exception
 {
 datagramsocket.setSoTimeout(timeout_);
 }
 public int getDoor() {return port;}
}
/***
 Decision Implementation
***/
public class DecisionImplementation implements Decision

A39

{
 public boolean DEMANDS = false;
 public boolean SUPPORTS = false;
 public boolean JUDGMENT = false;
 public DecisionImplementation(boolean demands_, boolean supports_,
boolean judgment_) throws Exception
 {
 DEMANDS = demands_;
 SUPPORTS = supports_;
 JUDGMENT = judgment_;
 }
 public boolean DEMANDS() { return DEMANDS; }
 public boolean SUPPORTS() { return SUPPORTS; }
 public boolean JUDGMENT() { return JUDGMENT; }
}
/***
 Identity implementation
***/
public class IdentityImplementation implements Identity
{
 public String identity_str = null;

public IdentityImplementation(String identity_str_) throws
Exception
 {
 identity_str = identity_str_;
 }
 public IdentityImplementation(Identity identity_) throws Exception
 {
 identity_str = new String(identity_.to_String());
 }
 public void from_String(String identity_str_)
 {
 identity_str = identity_str_;
 }
 public String to_String() {return identity_str;}
}
/***
 Information Branch is implemented in the HelloWorldApplication class.
**
 Information Root is not implemented in the demo.
**
 ManagementAction implementation
***/
public class ManagementActionImplementation extends MessageImplementation
implements ManagementAction
{
 protected int intvalue = 0;
 protected long longvalue = 0;
 protected Object object = null;
 public ManagementActionImplementation() throws Exception {}
 public ManagementActionImplementation(int intvalue_, long longvalue_,
Object object_, Message message_) throws Exception
 {
 intvalue = intvalue_;
 longvalue = longvalue_;

A40

 object = object_;
 from_identity = message_.getFromIdentity();
 to_identity = message_.getToIdentity();
 prefix = message_.getPrefix();
 body = message_.getBody();
 code = message_.getCode();
 }
 public ManagementActionImplementation(String management_action_str_)
throws Exception
 {
 if (!from_String(management_action_str_)) throw new
Exception("Parameter cannot be interpreted.");
 }
 public void setIntvalue(int intvalue_) { intvalue = intvalue_; }
 public void setLongvalue(long longvalue_) { longvalue = longvalue_; }
 public void setObject(Object object_) { object = object_; }
 public boolean adaptMessage(Message message_)
 {
 try
 {
 from_identity = new
IdentityImplementation(message_.getFromIdentity());
 to_identity = new IdentityImplementation(message_.getToIdentity());
 adaptReturnCode(message_.getPrefix(), message_.getBody(),
message_.getCode());
 return true;
 } catch (Exception e) { return false; }
 }
 public int getIntvalue() {return intvalue;}
 public long getLongvalue() {return longvalue;}
 public Object getObject() {return object;}
 public Message createMessage() {return (Message)super;}
 /** The next method will be corrected in the next version. */
 public String to_String() {return
/*intvalue+"_"+longvalue_"+object.toString()+"_"+*/super.to_String();}
 public boolean from_String(String management_action_str_)
 {
 try
 { /* will be developed */
 super.from_String(management_action_str_);
 } catch (Exception e) {return false;}
 return true;
 }
}
/***
 Message implementation
***/
public class MessageImplementation extends ReturnCodeImplementation
implements Message
{
 protected Identity from_identity = null;
 protected Identity to_identity = null;
 public MessageImplementation() throws Exception {}
 public MessageImplementation(Identity from_identity_, Identity
to_identity_, ReturnCode returncode_) throws Exception

A41

 {
 from_identity = from_identity_;
 to_identity = to_identity_;
 prefix = returncode_.getPrefix();
 body = returncode_.getBody();
 code = returncode_.getCode();
 }
 public MessageImplementation(Identity from_identity_, Identity
to_identity_, String prefix_, String body_, String code_) throws Exception
 {
 from_identity = from_identity_;
 to_identity = to_identity_;
 prefix = prefix_;
 body = body;
 code = code_;
 }
 public MessageImplementation(String message_str_) throws Exception
 {
 if (!from_String(message_str_)) throw new Exception("Parameter cannot
be interpreted.");
 }
 public boolean adaptReturnCode(String prefix_, String body_, String
code_)
 {
 try
 {
 prefix = new String(prefix_);
 body = new String(body_);
 code = new String(code_);
 return true;
 } catch (Exception e) { return false; }
 }
 public boolean adaptReturnCode(ReturnCode returncode_)
 {
 try
 {
 prefix = new String(returncode_.getPrefix());
 body = new String(returncode_.getBody());
 code = new String(returncode_.getCode());
 return true;
 } catch (Exception e) { return false; }
 }
 public ReturnCode createReturnCode()
 {
 try
 {
 return new ReturnCodeImplementation(prefix, body, code);
 } catch (Exception e) {return null;}
 }
 public Identity getFromIdentity() {return (Identity)from_identity;}
 public Identity getToIdentity() {return (Identity)to_identity;}
 public void setToIdentity(Identity to_identity_) {to_identity =
(IdentityImplementation)to_identity_;}
 public void setFromIdentity(Identity from_identity_) {from_identity =
(IdentityImplementation)from_identity_;}

A42

 public String to_String() { return
"<"+from_identity.to_String()+"><"+to_identity.to_String()+">"+super.to_St
ring();}
 public boolean from_String(String message_str_)
 {
 try
 {
 String from_identity_str_ =
 message_str_.substring(1,message_str_.indexOf(">"));
 from_identity = new IdentityImplementation(from_identity_str_);
 String t = message_str_.substring
 (message_str_.indexOf(">")+1,message_str_.length());
 String to_identity_str_ = t.substring(1,t.indexOf(">"));
 to_identity = new IdentityImplementation(to_identity_str_);
 String c = t.substring(t.indexOf(">")+1,t.length());
 super.from_String(c);
 } catch (Exception e) {return false;}
 return true;
 }
 public boolean swapIdentities()
 {
 try
 {
 Identity temp = new IdentityImplementation(to_identity);
 to_identity = from_identity;
 from_identity = temp;
 return true;
 } catch (Exception e) {return false;}
 }
}
/***
 ReturnCode implementation
***/
public class ReturnCodeImplementation implements ReturnCode
{
 protected String prefix = null;
 protected String body = null;
 protected String code = null;
 protected String fix = "+";
 public ReturnCodeImplementation() throws Exception
 {
 setDENIED();
 body = "DEFAULT";
 setFAILED();
 }
 public ReturnCodeImplementation(ReturnCode returncode_) throws Exception
 {
 prefix = returncode_.getPrefix();
 body = returncode_.getBody();
 code = returncode_.getCode();
 }
 public ReturnCodeImplementation(String prefix_, String body_, String
code_) throws Exception
 {
 prefix = prefix_;

A43

 body = body_;
 code = code_;
 }
 public ReturnCodeImplementation(String returncode_str_) throws Exception
 {
 if (!from_String(returncode_str_)) throw new Exception("Parameter
cannot be interpreted.");
 }
 public boolean isQUERY()
 {
 if (prefix.compareTo(query)==0) return true; else return false;
 }
 public boolean isMAXIMUM()
 {
 if (prefix.compareTo(maximum)==0) return true; else return false;
 }
 public boolean isBUSY()
 {
 if (prefix.compareTo(busy)==0) return true; else return false;
 }
 public boolean isGRANTED()
 {
 if (prefix.compareTo(granted)==0) return true; else return false;
 }
 public boolean isDENIED()
 {
 if (prefix.compareTo(denied)==0) return true; else return false;
 }
 public void setQUERY() { prefix = query; }
 public void setMAXIMUM() { prefix = maximum; }
 public void setBUSY() { prefix = busy; }
 public void setGRANTED() { prefix = granted; }
 public void setDENIED() { prefix = denied; }
 public boolean isREPRESENTATIVE_PROXY()
 {
 if (body.compareTo(representative_proxy)==0) return true; else return
false;
 }
 public void setREPRESENTATIVE_PROXY() {body = representative_proxy;}

 public boolean isCLASS_BYTE_CODE_RESOURCE()
 {
 if (body.compareTo(class_byte_code_resource)==0) return true; else
return false;
 }
 public void setCLASS_BYTE_CODE_RESOURCE() {body =
class_byte_code_resource;}
 /** @return boolean true if the code_ is SUCCESS-code, else returns
false. */
 public boolean isSUCCESS()
 {
 if (code.compareTo(success)==0) return true; else return false;
 }
 public boolean isFAILED()
 {

A44

 if (code.compareTo(failed)==0) return true; else return false;
 }
 public boolean isINFOCODE()
 {
 if (code.compareTo(infocode)==0) return true; else return false;
 }
 public void setSUCCESS() { code = success; }
 public void setFAILED() { code = failed; }
 public void setINFOCODE() { code = infocode; }
 public String getString() { return to_String(); }
 public String getPrefix() { return prefix; }
 public String getBody() { return body; }
 public String getCode() { return code; }
 public void setPrefix(String prefix_) { prefix = prefix_;}
 public void setBody(String body_) { body = body_;}
 public void setCode(String code_) { code = code_;}
 public String to_String() { return prefix+fix+body+fix+code; }
 public boolean from_String(String returncode_str_)
 {
 try
 {
 StringTokenizer q = new StringTokenizer(returncode_str_,fix);
 prefix=q.nextToken();
 body=q.nextToken();
 code=q.nextToken();
 return true;
 } catch (Exception e) {return false;}
 }
}
/***
 ServerChannel implementation
***/
public class ServerChannelImplementation implements ServerChannel
{
 private ServerSocket server_socket = null;
 private int door = 0;
 private Socket socket = null;
 public ServerChannelImplementation(int door_) throws Exception
 {
 server_socket = new ServerSocket(door_);
 door = server_socket.getLocalPort();
 }
 public Channel accept() throws Exception
 {
 socket = server_socket.accept();
 return new ChannelImplementation(socket);
 }
 public int getLocalDoor() throws Exception { return door; }
 public Address getLocalAddress() throws Exception
 {
 String addr =
server_socket.getInetAddress().getLocalHost().getHostAddress();
 return new AddressImplementation(addr, door);
 }
 public void close() throws Exception

A45

 {
 server_socket.close();
 }
}
/***
 DiskFile
***/
public class DiskFile implements Serializable
{
 private byte[] databuffer = null;
 public String filename = null;
 public DiskFile() { }
 public DiskFile(String filename_) throws Exception
 {
 if (!fromDisk(filename_)) throw new Exception("File not found.");
 }
 public boolean fromDisk(String filename_)
 { filename = filename_;
 try
 {
 File readfile = new File(filename);
 FileInputStream file_reader = new FileInputStream(readfile);
 databuffer = new byte[(int)readfile.length()];
 int readbytes = file_reader.read(databuffer);
 file_reader.close(); return true;
 } catch (IOException e)
 {
 System.out.println("DiskFile, fromDisk: I/O error."); return false;
 }
 }
 public boolean toDisk()
 {
 try
 { FileOutputStream file_writer = new FileOutputStream(filename);
 file_writer.write(databuffer);
 file_writer.close();
 file_writer.flush();
 return true;
 } catch (IOException e)
 {
 System.out.println("DiskFile, toDisk: I/O error."); return false;
 }
 }
}

End of the document.

Published by

Vuorimiehentie 5, P.O.Box 2000, FIN–02044 VTT, Finland
Phone internat. +358 9 4561
Fax +358 9 456 4374

Series title, number and
report code of publication

VTT Publications 442
VTT–PUBS–442

Author
Moilanen, Markus

Title

Management framework of distributed software objects
and components

Abstract
The deployment of software applications without making any arrangements beforehand in the target
platform sets strict requirements for the management of the applications and the management of the
platform in which the application will be executed. In this work, "objective quality thinking" concerning
the work process has been chosen to gain a solution for this problematic issue. In the work, the
management framework of the distributed applications is developed. Application software is understood
to be any useful piece of software that can be provided.

The developed management framework observes different dimensions of the management. Dimension is
such a feature group of the management which can be implemented independently of other feature
groups. These dimensions include for example the advertisement of a component, distribution of a
component, resource management of a component, and security of a component. The dimensions are
presented starting from the conceptual level ending to the explicit design models. These design models
can be implemented for any application-specific purpose by implementing the presented application
programming interfaces of the models. Lastly in the work, an example of how to apply the management to
an application is presented. The case considers an application which distributes itself according to its
associated distribution policy, and which is implemented for the Internet environment in the Java
programming language.

The presented solution of the management can be applied to any data objects, including passive objects. If
extended to its full design, the solution would be a starting point for a whole new software management
technology.

Keywords
software processes, software design, quality methods, requirement specifications, conceptual planning,
application layer, management layer, component architecture, UML

Activity unit
VTT Electronics, Embedded Software, Kaitoväylä 1, P.O.Box 1100, FIN–90571 OULU, Finland

ISBN Project number
951–38–5863–4 (soft back ed.)
951–38– 5864–2 (URL:http://www.inf.vtt.fi/pdf/)

Date Language Pages Price
September 2001 English 153 p. + 45 app. C

Name of project Commissioned by

Series title and ISSN Sold by
VTT Publications
1235–0621 (soft back ed.)
1455–0849 (URL: http://www.inf.vtt.fi/pdf/)

VTT Information Service
P.O.Box 2000, FIN-02044 VTT, Finland
Phone internat. +358 9 456 4404
Fax +358 9 456 4374

VTT ELEKTRONIIKKA – VTT ELEKTRONIK – VTT ELECTRONICS
VTT PUBLICATIONS

293 Karioja, Pentti. Integrated optics for instrumentation applications. 1996. 44 p. + app. 65 p.
298 Ailisto, Heikki. CAD model-based planning and vision guidance for optical 3D co-ordinate

measurement. 1997. 70 p. + app. 63 p.
308 Huuskonen, Pertti J. Model-based explanation of plant knowledge. 1997. 173 p. + app. 59 p.
313 Heikkinen, Marko. A concurrent engineering process for embedded systems development.

1997. 93 p.
318 Latvakoski, Juhani. Integration test automation of embedded communication software.

1997. 98 p. + app. 28 p.
344 Soininen, Juha-Pekka, Huttunen, Tuomo, Saarikettu, Janne, Melakari, Klaus, Ong, Andy &

Tiensyrjä, Kari. InCo – An interactive codesign framework for real-time embedded systems.
1998. 206 p.

346 Seppänen, Veikko, Alajoutsijärvi, Kimmo & Kurki, Matti. Competence-based evolution of
contractual R&D relationships. 1998. 70 p.

347 Anttila, Tommi. A haptic rendering system for virtual handheld electronic products. 1998. 69 p.
355 Melakari, Klaus. A VHDL simulator in a co-verification environment. 1998. 91 p. + app. 6 p.
365 Taramaa, Jorma. Practical development of software configuration management for

embedded systems. 1998. 147 p. + app. 110 p.
370 Laitinen, Jyrki. Evaluation of imaging in automated visual web inspection. 1998. 93 p. +

app. 86 p.
373 Rantala, Juha. Sol-gel materials for photonic applications. 1998. 50 p. + app. 48 p.
375 Niemelä, Eila, Korpipää, Tomi & Tuominen, Arno. Embedded middleware: State of the art.

1999. 102 p. + app. 7 p.
382 Rauma, Tapio. Fuzzy modeling for industrial systems. 1999. 97 p. + app. 40 p.
392 Seppänen, Veikko, Alajoutsijärvi, Kimmo & Eriksson, Päivi. Projects or products: seeking

for the business logic of contract R&D. 1999. 110 p. + app. 104 p.
402 Niemelä, Eila. A component framework of a distributed control systems family. 1999. 188

p. + app. 68 p.
406 Korhonen, Jukka, Salmela, Mika & Kalaoja, Jarmo. The reuse of tests for configured

software products. 2000. 67 p.
407 Rusanen, Outi. Adhesives in micromechanical sensor packaging. 74 p. + app. 54 p.
409 Rahikkala, Tua. Towards virtual software configuration management. A case study. 2000.

110 p. + app. 57 p.
416 Mäkäräinen, Minna. Software change management processes in the development of

embedded software. 2000. 185 p. + app. 56 p.
423 Saloniemi, Heini. Electrodeposition of PbS, PbSe and PbTe thin films. 2000. 82 p. + app. 53 p.
426 Järvinen, Janne. Measurement based continuous assessment of software engineering

processes. 2000. 97 p. + app. 90 p.
427 Dobrica, Liliana & Niemelä, Eila. A strategy for analysing product line software

architectures. 2000. 124 p.
442 Moilanen, Markus. Management framework of distributed software objects and components.

2001. 153 p. + app. 45 p.

	Abstract
	Preface
	Contents
	List of symbols
	1. Introduction
	1.1 Approach
	1.2 Research methods
	1.3 Distributed software objects and components
	1.4 Assumptions
	1.5 Research problem

	2. Requirements analysis
	2.1 User's requirements as performance and excitement
	2.2 User's requirements as threshold
	2.2.1 Theoretical user requirements
	2.2.2 Standards
	2.2.3 State-of-the-practice
	2.2.4 Harvest of the user requirements as Threshold

	2.3 Mini-concepts
	2.4 Summary

	3. Conceptual planning
	3.1 QFD-analysis
	3.2 The concept
	3.2.1 Client-server model
	3.2.2 Layered structure
	3.2.3 Application with representatives
	3.2.4 Profiles for user and devices
	3.2.5 Policies
	3.2.6 Distribution transparency
	3.2.7 Burden by request
	3.2.8 Support for existing applications
	3.2.9 Dimensions and their orthogonal position
	3.2.10 Resource
	3.2.11 Service
	3.2.12 Support for different component models

	3.3 Summary

	4. Architectural design
	4.1 The client-server model
	4.2 Resource
	4.3 Distribution transparency
	4.4 Dimensions
	4.4.1 Advertisement
	4.4.2 Distribution
	4.4.3 Resource management
	4.4.4 Security

	4.5 Policies
	4.6 Management model
	4.7 Layers
	4.7.1 Application layer and APIs
	4.7.2 Management layer

	4.8 Architectural model
	4.8.1 Architecture of the local system
	4.8.2 Architecture of the distributed system
	4.8.3 Behaviour model of the architecture

	4.9 Summary

	5. System design
	5.1 Static models
	5.1.1 Class diagram of a "Distributable" application

	5.2 Dynamic models
	5.2.1 State diagrams of the Management Server class
	5.2.2 State machine of the Distribution Dimension Server class
	5.2.3 State machine of the Management Client class

	5.3 Utility classes
	5.4 Summary

	6. Implementation
	6.1 Packages
	6.2 Interfaces
	6.3 Essentials of the Distribution demo
	6.3.1 Management Server
	6.3.2 Management Client
	6.3.3 Management Policy

	6.4 Summary

	7. Discussion and further research
	7.1 Answer to the research problem
	7.2 Advantages of the solution
	7.3 Subjective quality properties of the system
	7.4 Weaknesses of the solution
	7.5 Further research issues
	7.6 An example of further design - the Resource management
	7.6.1 Resources of the distributed systems
	7.6.2 Class diagram of a "Resourceable" application
	7.6.3 Class diagram of the Resource management dimension layer

	7.7 Summary

	8. Conclusions
	References
	Appendix A: Source code listings

