444 VTT PUBLICATIONS

Jarkko Holappa

Security threatsand requirements
for Java-based applicationsinthe
networ ked homeenvironment

V I I TECHNICAL RESEARCH CENTRE OF FINLAND ESPOO 2001

VTT PUBLICATIONS 444

Security threats and requirements for
Java-based applications in the
networked home environment

Jarkko Holappa
VTT Electronics

TECHNICAL RESEARCH CENTRE OF FINLAND
ESPOO 2001

ISBN 951-38-5865-0 (soft back ed.)
ISSN 1235-0621 (soft back ed.)

ISBN 951-38-5866—9 (URL:http://www.inf.vtt.fi/pdf/)
ISSN 1455-0857 (URL:http://www.inf.vtt.fi/pdf/)

Copyright © Valtion teknillinen tutkimuskeskus (VTT) 2001

JULKAISIJA — UTGIVARE - PUBLISHER

Valtion teknillinen tutkimuskeskus (VTT), Vuorimichentie 5, PL 2000, 02044 VTT
puh. vaihde (09) 4561, faksi (09) 456 4374

Statens tekniska forskningscentral (VTT), Bergsmansvégen 5, PB 2000, 02044 VTT
tel. viixel (09) 4561, fax (09) 456 4374

Technical Research Centre of Finland (VTT), Vuorimiehentie 5, P.O.Box 2000, FIN-02044 VTT, Finland
phone internat. + 358 9 4561, fax + 358 9 456 4374

VTT Elektroniikka, Sulautetut ohjelmistot, Kaitovéyld 1, PL 1100, 90571 OULU
puh. vaihde (08) 551 2111, faksi (08) 551 2320

VTT Elektronik, Inbyggd programvara, Kaitoviyli 1, PB 1100, 90571 ULEABORG
tel. viixel (08) 551 2111, fax (08) 551 2320

VTT Electronics, Embedded Software, Kaitovéyla 1, P.O.Box 1100, FIN-90571 OULU, Finland
phone internat. + 358 8 551 2111, fax + 358 8 551 2320

Technical editing Maini Manninen

Otamedia Oy, Espoo 2001

Holappa, Jarkko. Security threats and requirements for Java-based applications in the networked
home environment. Espoo 2001. Technical Research Centre of Finland, VTT Publications 444.
116 p.

Keywords public key infrastructure, security policy, Java, distributed software, protection
profile

Abstract

This work presents the networked home environment from the security point of
view. Threats, technologies and the special characteristics of the users are
examined. 'Common Criteria' is used in this thesis as a security evaluation
criterion to construct a protection profile for the software distribution platform of
a networked home environment. 'Protection profile' describes the target of the
evaluation - the networked home environment and its security environment,
along with access control and information flow policies. This environment sets
the context for the security requirements that are established as a result of this
thesis to counter the threats that are also identified in the protection profile as a
part of the security environment.

Java is a relatively promising platform for the networked software because of its
security model, which has evolved since the first versions of Java. Java’s
application programming interfaces provide support for widely used
cryptographic techniques and public key infrastructure frameworks, including
the X.509 authentication framework. Java’s security features are applied to the
software distribution platform developed at VTT Electronics. The security
framework for the platform is developed and presented in this work.

'Home', as a distributed computing environment, presents many new issues when
compared to typical corporate office networks. Users are very heterogeneous and
their needs differ from one to another. The requirements specification must be
done with care, and by using knowledge of the system and existing security
techniques to develop a system that provides adequate confidentiality, integrity
and availability for its users.

Preface

The work done on this thesis was carried out in the ITEA VHE project, which is
part of a large EU programme called EUREKA. The estimated budget for ITEA
(Information Technology for European Advancement) is 3.2 billion euros -
20,000 person years - and it focuses on strengthening European software
technology competence.

I would like to express my deepest gratitude to Mr. Hannu Rytild and Research
professor Fila Niemeld, from VTT Electronics, for their guidance, not only
during the thesis but also throughout the time I have worked at VIT Electronics,
and also to Professor Juha Roning from the University of Oulu, who worked as
the supervisor, for guiding me through the writing process. My second
supervisor, Professor Tino Pyssysalo, also deserves my appreciation. I am
grateful to reviewers of this publication, Lic. Tech. Kimmo Takanen from LM
Ericsson and Professor Veikko Seppinen from University of Oulu, who
provided me with valuable advices to the world of scientific writing.

Special thanks to Mr. Rauli Kaksonen from VTT Electronics for his security-
aware comments and pointers.

Last, but not least, I would like to thank my friends, near and far, and my family
for filling my student days with all the good things.

Oulu, 29th August 2001

Jarkko Holappa

Contents

ADSIIACT ..ttt ettt et et ettt e e tr e e e be e e abeesebee e raeeeans 3
PrETaCE ..ot 4
LSt OF SYMDOIS...c.eeiiiieiieiieiieitesee ettt e e et e esaaesseessaesnne e 7
L. INErOAUCHION. ...ttt ettt ettt ettt eeenens 9
2. Security TEChNOIOZIEScccveeiiiiiiiieieece e e 12
2.1 Introduction and terminologYcccueevvieriiieeiiireciee et 12
2.2 Security threats in a networked environment............c.ccecceveevenerceneenens 14
2.2.1 Impersonating a USEr OF SYSLCIMcveeerureerreeerreesreeereeesereesnnens 15
2.2.2 EaVESATOPPING ..ecvveeerreieeiieriieriiesresreereeseeseesseesseessnesssesssessenns 16
2.2.3 Denial Of SEIVICE ...cueeivieriieriieiieiie ettt 17
2.2.4 PaCKet TEPIAY ..vvvevieiieiieciecie ettt 19
2.2.5 Packet modificationccoceeruieiieniiiiieieeeeeeee e 19
2.3 General guidelines for designing trusted computer systems................... 21

2.3.1 Department of Defense Trusted Computer System Evaluation
(035 115) o T IO OSSR PRUPPR 21
2.3.2 Trusted Network Interpretation of the TCSEC........................... 23

2.3.3 Common Criteria for Information Technology Security

Evaluationoocoiiiiiiiii e 23
2.4 Cryptographic protocols and algorithms.............cccecvevvverierciencrieneeieenne, 27
2.5 Data security: Three areas of CONCEIM.........ccceeeeveieriieeieeeiie e 32
2.5.1 Confidentiality........cccecverieerieerierierieeieereeeesieesieeseesenesenesnneens 33
2.5.2 INEEEIILY teevveeeiieeeeieeeiteerteeetee ettt e ereeete e esebeesbaeestaeesssaeeneseessseens 34
2.5.3 AVAILADILItY ..oocvieiiieiecieeeeceee e 35
2.6 Authentication and authorization of @ USercecceeveenienieniiiiieeen 36
2.6.1 X.509 Authentication SEIVICE.........cccverreerververrerrenreereerseeneeens 36
2.6.2 Secure socket layer (SSL) and transport layer security (TLS)...47
2.7 AUAILING ..ottt sttt e e seteesseessaesseeesnesnseeans 49
3. Java Technology and SECUIILYcccueeriierciieeiiiecieeciee et e 50
3.1 INtrOAUCTION. ... ettt 50
3.2 The Java virtual Machineccccvevvereirnciieiieriieneesee e 51
3.2.1 Life cycle of the Java virtual machine...........c.ccocceeviiiniiennnnnns 51
3.2.2 The architecture of the Java virtual machine............cc.ceveveeens 52
3.3 Java’s built-in security model.........ccccoocveiiiiiieiiiiriieee e 54

3.3.1 Evolution of the sandbox model...........cccccuueeeeeeeeeeeeeeene 55

3.3.2 Secure class loading and verificationccocceveveecieecieerieeniens 58

3.3.3. JVM's responsibility in Java SECUritycccceevieeecrieenveenneenns 63

3.3.4 The Security MANAZETcceeeverreerieerrerrerreereesreesseesseesnensnenns 64

3.3.5 The protection domain and access control mechanism 64

3.4 Security management in JAVAccceveveeeiieniereenee e sre e eieeseee e 66
3.4.1 Code signing and authentication.............cccceeeeeieeenirenieeecneeenenenn. 66

3.4.2 JDK's security-related toolS.........ccevvverrieciiecieieierie e 67

4. Middleware protection profile for the networked home environment............ 69
4.1. Protection Profile (PP) OVErviewccccvevciiieviieniie et 69
4.2. Target of evaluation (TOE) description..........c.cccuereveerieerieerieereesnennenns 69
4.3. TOE Security ENVIrONMENtcccceeveveeiiiieriieeiieeniee e esveeeveeeivee e 71
4.3.1. ASSUMPLIONS ...eevvvieereeiieieesieeiiestresresreeseeseesseesseesseessnesssessseans 72

4.3.2. TRICALS c..eeutieeieeeie ettt ettt sttt 72

4.3.3 SecUrity POLICIES ...eccveerieeriierieerieeieeieeteeieeieeseeeseeeseeeseressseeseeens 74

4.4, SeCUIItY ODJECHIVES ...ccvvieciiieiiieeieeeiee e erreeeteeesreeerreesereeeaeeeseseeeens 75
4.5. Security REqUITEMENTS........cccveevieiieiieiierieree et ere e e eieesee e eee 77
AUditable EVENL.....coc.iiiiiiiiiiieieee e 79

4.6. RAtIONALEcoiitiiiieiiiie e 88
4.6.1 Security objective rationaleccceeeeeeerieeiiieenieeciee e 88

4.7.2 Security functional requirement rationalec.cceeevverieenenns 89

5. LONTONEXTG Distribution platformccccceeceeveeniieniienieeieeseeieeeeen. 97
5.1 Introduction to LONTONEXTG environmentcccceeeeveeeeueeennneens 97

5.2 EXAMPIE SEIVICE ...ueeiviirerieiieiieiiesiiesieestesre e eve e e e e seaesenessneesseesseenns 100

5.3 Security framework of the SysStemcccccovviiviiiriiiniineerieeeeeee 101

6. DISCUSSIONeiutietieieie ettt ettt ettt e sht e st e et e bt e bt e sbeesatesateeaeeneeens 105
6.1 USET TOLES ..ttt st 106

6.2 Functional requirements and security policy definition........................ 107

6.3 Java as the implementation platformcccceeeeiieniieniieiiie e, 109

6.4 Characteristics of PKI-based security SErvices..........ccovevrrvverivercvrenennn 110

7. CONCIUSIONS ...ttt ettt 112
RETOICINCES ...t ettt et e earee s 114

List of symbols

3Gpp™ 3" Generation Partnership Project

AES Advanced Encryption Standard

API Application Programming Interface

CA Certification Authority

CC Common Criteria

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CSRC Computer Security Resource Center

CRL Certificate Revocation List

CTCPEC Canadian Trusted Computer Product Evaluation
Criteria

DES Digital Encryption Standard

DoD Department of Defense

DSA Digital Signature Algorithm

EAL Evaluation Assurance Level

GSM Global System for Mobile Communications

IDEA International Data Encryption Algorithm

1IEC International Electrotechnical Commission

IETF Internet Engineering Task Force

1P Internet Protocol

ISO The International Organization for Standardization

ITSEC European Information Technology Security
Evaluation Criteria

ITU International Telecommunications Union

JAR Java ARchive

JDK Java Development Kit

JVM Java Virtual Machine

LON Local Operating Network

MAC Message Authentication Code

MT Mobile Terminal

NCSC National Computer Security Center

NIST National Institute of Standards and Technology

NSA National Security Agency

NTCB Network Trusted Computing Base

(ON] Operating System

OSI Open Systems Interconnection

PDA Personal Digital Assistant

PP Protection Profile

RC4, RC5 Rivest Cipher (encryption algorithms)

RMI Remote Method Invocation

RSA Rivest, Shamir and Adleman (encryption
algorithm)

S/MIME Secure/Multipurpose Internet Mail Extension

SET Secure Electronic Transaction

SHA Secure Hash Algorithm

SPI Service Provider Interface

SSL Secure Socket Layer

ST Security Target

TCB Trusted Computing Base

TCP Transmission Control Protocol

TCSEC Trusted Computer System Evaluation Criteria

TNI The Trusted Network Interpretation

TOE Target Of Evaluation

TSC TSF Scope of Control

TSF TOE Security Function

TSL Transport Layer Security

TSP TOE security policy

Ul User Interface

UML Unified Modelling Language

VHE Virtual Home Environment

X.509 Authentication Framework, ITU-T
recommendation

1. Introduction

The evolution of information technology impacts not only on our working habits
but also on our everyday life at home. Many daily routines can be done remotely
by using, for example, a computer with a network connection to make on-line
payments and purchases from a web store. In addition to these, many visions of
intelligent homes of the future have been presented. Such a home has household
appliances (e.g. sauna stove, refrigerator and heating system) that are connected
so that the homeowner can operate them remotely, using, for example, a mobile
terminal as a user interface.

The home environment consists of those appliances that are networked to enable
flexible use. The diversity of the underlying network technologies is substantial,
including many wireless and wired networks. The home also presents a fairly
novel environment for the software developer because the diversity of users and
their capabilities, including children, adults and elderly people, is broad. Taking
this into account, ease of use is an essential requirement.

Ease, location and transparent use of household appliances, along with multiple
user interfaces, terminals and network connections, raises many scenarios with
regard to serious security threats that must be investigated and solved in order to
devise a reliable and secure home environment without sacrificing the
convenience of the home. The diversity of services leads to different emphases
in security requirements because the characteristics of transferred information
varies from one service to another. Confidentiality and integrity of information
is crucial when the service is, for example, an electronic commerce application
or on-line payment system. Using appliances (i.e. services that appliances
provide) with a mobile terminal from a car or somewhere else outside the
network appoints, for its part, new requirements for information availability and
quality, including security requirements.

A great amount of software is being developed using pre-made components, and
those components must be able to communicate with each other in a secure way
without exceeding their authority - i.e. following access control policies
enforced by the system. In a networked environment these components are also
mobile: they move within the network carrying out the tasks they were aimed at.
Here, the integrity and authenticity of the mobile code is essential. In other

words, it is vital that the code is not tampered with while being transferred and
also that the code is coming from a benevolent source.

Use of the service must be restricted to authorized users (‘user' denotes both
software components and humans) only and the authenticity of the user must be
verified in a reliable way before granting user access to services located in the
home network. Without ensuring the user’s authenticity (to a service or to the
network) many threatening scenarios can occur - for example, an ignorant
neighbour living just behind the wall could register to the wrong wireless
network and turn the wrong sauna stove on. In addition to this, numerous
intentional attacks must be prevented.

This thesis concentrates on the security requirements brought by a networked
home environment. Some of the most commonly used techniques and protocols
are presented to give an overview of networked security and the threats they are
meant to combat. The security requirements for a networked home environment
are constructed by examining the threats and objectives of such an environment
in more detail. The Protection Profile for the networked home environment
constructed in this work describes the networked home environment, its user
roles and security domains, as well as security threats and objectives.

Before gathering these subjects, four questions can be raised to shape the
research problem behind this work:

1. What is the security environment that the home network presents?

2. Is it possible to form a shared security policy or policies for all types of
services?

3. Who are users of the system and what are their roles?

4. What are the most important security requirements that most services of the
distribution platform require and, thus, are able to share?

Functional requirements are then derived from these system characteristics to

find answers to the above questions. In addition, the protection profile defines
the access control and information flow policies developed in this work. In

10

Chapter 5, the protection profile is applied to Java implementation of the
distribution platform developed at VTT Electronics for the use of home
middleware research.

11

2. Security Technologies

2.1 Introduction and terminology

The Merriam-Webster dictionary [1, p. 2053] defines security as "the quality or
state of being secure" or "freedom from danger". While being the most general
definitions of security, they also apply to computer system security. Security can
be roughly divided into three areas of concern, which must be satisfied in order
to consider a computer system as safe:

1. Confidentiality,
2. Integrity,
3. Availability.

This holds true for simple systems as well as more complex, distributed and
networked systems. This chapter will focus on the requirements of a secure
computer system, especially in a networked environment. The special
characteristics of a networked environment will be examined and, equally,
general guidelines for designing trusted computer systems will be presented.
Common Criteria for information technology security evaluation [2] will be
presented in more detail. Finally, three security areas of concern will be studied,
reviewing the most common cryptographic techniques and algorithms used in
the implementation of an adequate level of security.

The Glossary of Computer Security Terms [3] gives exact definitions for most
terms used in this document. These terms are described in Table 1.

12

Table 1. Definition of terms.

Term

Definition

Access Control

"The process of limiting access to the resources of a system
only to authorized programs, processes, or other systems (in
a network. Synonymous with controlled access and limited
access."

Attack

"The act of trying to bypass security controls on a system.
An attack may be active, resulting in the alteration of data;
or passive, resulting in the release of data. Note: The fact
that an attack is made does not necessarily mean that it will
succeed. The degree of success depends on the vulnerability
of the system or activity and the effectiveness of existing
countermeasures."

Authenticate

"(1) To verify the identity of a user, device, or other entity
in a computer system, often as a prerequisite to allowing
access to resources in a system.

(2) To verify the integrity of data that have been stored,
transmitted, or otherwise exposed to possible unauthorized
modification."

Authorization

"The granting of access rights to a user, program, or
process."

Availability of
data

"The state when data are in the place needed by the user, at
the time the user needs them, and in the form needed by the
user."

Confidentiality

"The concept of holding sensitive data in confidence,

limited to an appropriate set of individuals or

organizations."

Cryptography

"The principles, means and methods for rendering

information unintelligible, and for restoring encrypted
information to intelligible form."

Data integrity

"The property that data meet an a priori expectation of
quality."

Data security

"The protection of data from unauthorized (accidental or
intentional) modification, destruction, or disclosure."

13

"Any action or series of actions that prevent any part of a
system from functioning in accordance with its intended
Denial of Service | purpose. This includes any action that causes unauthorized
destruction, modification, or delay of service. Synonymous
with interdiction."

Protocol "A set of rules and formats, semantic and syntactic, that
rotoco
permits entities to exchange information."

"An attempt to gain access to a system by posing as an
Spoofing authorized user. Synonymous with impersonating,
masquerading or mimicking."

"An unauthorized modification that alters the proper
Tampering functioning of an equipment or system in a manner that
degrades the security or functionality it provides."

"Any circumstance or event with the potential to cause
Threat harm to a system in the form of destruction, disclosure,
modification of data, and/or denial of service."

2.2 Security threats in a networked environment

Maintaining security is relatively easy with a standalone system, but when it is
connected to a public network, many kinds of security threats will come up. In
this case, 'public network' can generally be understood as a network with many
users, possibly containing untrusted parts. The term 'untrusted part' refers to
untrusted (unknown) users and unreliable transfer media. This discussion is valid
in many kinds of networks, including the Internet, public telephone network and
many kinds of wireless networks. Transmission errors, error detection and error
correction fall outside the scope of this discussion because they are not
considered a deliberate attempt to cause defects in data transfer. Figure 1 depicts
a successful data transmission situation where no defects, active or passive,
occur. The five most common threats can be pointed out [5, pp. 79-83] in a
networked environment as follows:

1. Impersonating a user or system
2. Eavesdropping

3. Denial of service

14

4. Packet replay

5. Packet modification.

What is common to these threats is that they are all active attempts to harm
security in the system and get, modify or destroy classified information. Each of
them is now examined in more detail.

Packet #1
"abcde"

Sender »| Receiver

Figure 1. Successful data transmission.

2.2.1 Impersonating a user or system

The most common way of identifying a user is to use account names and
passwords, or, for example, biometric checks [5]. To a malicious user, security
holes in these identification practises offer ways of impersonating a legally
authorized user of the system. The most reliable identification methods use
biometric checks, or, for example, physical keys, and these are less likely to
become misused. Networked systems enable many new possibilities for
impersonating, compared to standalone systems [5]:

¢ A malicious user can have access to a wide range of systems over a large
geographic area.

e Numerous methods for guessing passwords are available, from "through trial
and error" to monitoring activity of the system and electronic eavesdropping.
Monitoring activity of the system and impersonating a user is used when
such attack is less likely to be detected.

15

'Impersonating' is described in Figure 2, where the malicious user acts as a legal
receiver for the packet and steals it. The destined receiver does not get a copy of
this packet.

Packet #1
"abcde"

Sender »| Receiver

Figure 2. Impersonating a user or system.

2.2.2 Eavesdropping

The motive for eavesdropping is to gain sensitive information (user accounts,
passwords, and data). Eavesdropping is depicted in Figure 3. Eavesdropping can
be carried out [5] using wiretapping, by radio (especially wireless networks) and
via auxiliary ports on terminals. Eavesdropping is also possible using network-
monitoring software that keeps track of the packets sent over the network. When
network traffic is not encrypted, eavesdropping offers a very powerful means for
a malicious user to gather the information necessary to get access to the desired
system. It is also quite difficult to detect a malicious user in the act of
eavesdropping. Very often, eavesdropping offers an easy route to system
resources and, thereby, leads to other critical security violations, such as the
denial of service attacks.

16

Receiver

Packet #1
"abcde"

Receiver

&

Figure 3. Eavesdropping.

2.2.3 Denial of Service

Networked, multi-user and multi-tasking systems are exposed to denial of
service attacks [5]. 'Denial of service' can be considered as both intentional and
unintentional attacks on a system's availability [6, pp. 159—170]. The denial of
service attack, which is always intentional, is carried out by taking up shared
resources to the extent that other users become unable to use the system, or
degrading a resource so that it is less valuable to users. Shared resources are
comprised of other processes, shared files, disk space, percentage of CPU,
modems, etc. The Denial of service attacks can be divided into five categories,
as follows [6]:

1. Destruction
Process degration
Storage degration

Process shutdown

A

System shutdown.

These types are described in Figure 4, which also shows the general procedure
of the denial service attack. The malicious user starts the denial of service attack

17

by exploiting vulnerabilities and then either obtains unauthorized access to
system resources (processes, etc) or uses processes in an unauthorized way. The
attack is completed by using some means of destroying files or degrading system
resources to cause the shutdown of a process or a system.

Systems must be protected against denial of service attacks without denying the
access of legitimate users. However, this condition is very often hard to satisfy.

Restricting access to critical system resources will cut down the possibility of
denial of service attacks [6].

Corruption
of
information
Disclosure
of
information
Theft
of
service
Denial
of
service
Destruction Process Storage Process System
degration degration shutdown shutdown
- files (all/individual) - multiple processes - disks - commands - commands
- users - CPU overload - software bug - software bug
- hosts - network application
- networks - network service

Figure 4. The general procedure of denial of service attack.

18

2.2.4 Packet replay

If a malicious user needs to obtain authentication sequences, he can use packet
replay to record and re-transmit the packet to the network, described in Figure 5.
With this procedure, the intruder is able to replay an authentication sequence to
gain access to the system. Packet replay can be detected using packet time
stamping and packet sequenc counting [5], but it is relatively hard to prevent.

Packet #1
"abcde"

Receiver

Figure 5. Packet replay.

2.2.5 Packet modification

In addition to the most obvious definition of the term (depicted in Figure 6a),
packet modification can also be considered as destruction of information (Figure
6b). Packet modification always requires interception and represents a
significant integrity threat for data transmission [5]. However, this threat can be
detected using encryption and secure hash codes (message digest) to ensure the
validity of information. These issues are examined in more detail in Chapter 2.4.

One special case of packet modification is fabrication, in which the malicious
user creates counterfeit packets for the receiver (Figure 6¢.). From the receiver's
point of view, this can also be considered as impersonation due to the malicious
user acting as a legitimate sender of the packet.

19

Receiver

Packet #1 Packet #n
"abcde" "VWXYZ

Figure 6a. Packet modification.

‘\ Receiver

Packet #1
"abcde"

Figure 6b. Packet destruction.

Receiver

Packet #n
"VWXyz

Figure 6¢. Packet fabrication.

20

2.3 General guidelines for designing trusted computer
systems

This Chapter deals with security evaluation criteria and gives an overview of the
three major criteria: The Orange Book [7], The Red Book [8] and The Common
Criteria [2].

2.3.1 Department of Defense Trusted Computer System Evaluation
Criteria

The history of Trusted Computer Security Evaluation Criteria (TCSEC, The
Orange Book) goes back to 1967, when work towards security evaluation
guidelines started. The Orange Book was the first widely accepted evaluation
criteria. This guideline was directed towards governmental - i.e. national -
security, but the authors also intended to create a more general document for
security evaluation. The Orange Book is meant to provide [9, pp. 79-83]:

e A measurement for a user to evaluate the degree of the trust that can be
placed in a computer security system,

e Guidance for manufacturers of computer security systems and a basis for
specifying security requirements in acquisition specifications.

Security evaluation focuses on the security-relevant part of the system, which
TCSEC refers to as the Trusted Computing Base (TCB). The access control
policies of TCSEC are taken from the Bell-LaPadula model - i.e. discretionary
access control and mandatory access control based on a lattice of security labels,
which represents the security level of an object. The Bell-LaPadula model is
presented in Chapter 2.5.1. From a basic definition of security, the Orange Book
derives the following six fundamental security requirements [7]:

1. Security Policy: access control policies expressed in terms of subjects and
objects.

2. Marking of objects: access control labels associated with objects specify the
sensitivity of objects.

21

3. ldentification of subjects: individual subjects must be identified and
authenticated

4. Accountability: Audit information must be selectively kept and protected.

5. Assurance: Operational assurance (security architecture issues) and lifecycle
assurance (design methodology, testing and configuration management).

6. Continuous protection: Security mechanisms must be continuously protected
against tampering and/or unauthorized changes.

The Orange book uses these requirements to define four security divisions and
seven security classes. The four divisions and their classes are:

1. D Minimal protection

2. C Discretionary protection (’need to know’)

e C1 Discretionary security protection: Co-operating users process data at
the same level of integrity.

e C2 Controlled access protection: Users are individually accountable for
their actions via discretionary access control at the granularity of a
single user.

3. B Mandatory protection (based on labels)
e Bl Labelled security protection: Each subject and object has labels,

constructed from hierarchical classification levels.

e B2 Sructured protection: Increased assurance mainly by adding
requirements to the design of the system.

e B3 Security domains: A security administrator is supported; trusted
recovery after a failure must be facilitated.

4. A Verified protection
o Al Verified design: Functionally equal to B3. Achieves the highest
assurance level through the use of formal specification of policy and

system. Requires consistency proofs between model and formal top
level specification.

22

2.3.2 Trusted Network Interpretation of the TCSEC

The Trusted Network Interpretation (TNI, The Red Book) addresses network
security with the concepts and terminology introduced in the Orange Book. The
Red Book has to address issues that are not present in the Orange Book - for
example, new security problems that arise due to:

e The vulnerability of the communication paths.

e Concurrent and asynchronous operation of the network components.

There are some considerable limitations on the TNI - for example, only
centralised networks (single trusted systems) with single accreditation authority,
policy and network trusted computing base (NTCB) are considered by the Red
Book [9]. Keeping this in mind, the Red Book should be treated as a link
between the Orange Book and new criteria, like Common Criteria, which have
been proposed in later years.

2.3.3 Common Criteria for Information Technology Security
Evaluation

The Common Criteria (CC) is result of efforts to develop criteria for evaluating
IT security that are widely used within the international community. It is an
alignment and development of a number of source criteria: the European, US
and Canadian criteria (ITSEC, TCSEC and CTCPEC respectively) [2]. The CC
is intended to resolve the conceptual and technical differences between the
source criteria and is a contribution to the development of an international
standard. The security framework of Common Criteria uses the hierarchical
framework of security concepts and terminology depicted in Figure 7.

Common Criteria, the current version of which is version 2.1, has three parts.
Each part, and its purpose and three interested parties, are briefly presented in

Table 2. To fully understand Table 2, some key concepts of CC must be defined:

e The Target of Evaluation (TOE)

TOE presents that part of the system which is subject to evaluation.

23

Security Target (ST)

ST contains the IT security objectives and requirements of a specific
identified TOE - i.e. the IT product - and defines the functional and assurance
measures to meet the stated requirements.

Protection Profile (PP)

PP defines a set of requirements and objectives in an implementation-
independent way for a category of products or systems which meet similar
consumer needs for security (for example, Firewall-PP). A PP is intended to
be reusable and has been developed to support the definition of functional
standards and as an aid to formulating acquisition specifications. Chapter 4
presents the functiona protection profile for a networked home environment
distribution platform, applying the Protection Profile defined in CC version 2.1.

Security environment:
Laws, organisational security policies, customs i.e. context in wich
the TOE is intended to be used.

L

Security objectives
A statement intent to counter the identified threats.

L

TOE security requirements
Refinements of the security objects into a set of security
requirements.

L

TOE security specifications
Define an proposed implementation for the TOE.

L

TOE implementation
The realisation of a TOE based on its security functional
requirements and specification.

Figure 7. The hierarchical framework of Common Criteria.

24

Table 2. Three parts of the Common Criteria.

Consumers Developers Evaluators
Part 1: For background For background For background
Introduction information and information, and information and
and General reference reference for the reference
M odel purposes development of purposes.
requirements and Guidance

formulating
security
specifications of
TOEs

structure for PPs
and STs

Part 2:Security | For guidance and | For reference when | Mandatory
Functional reference when interpreting statement of
Requirements formulating statements of evaluation
statements of functional criteria when
requirements for | requirements and determining
security functions | formulating whether TOE
functional effectively
specifications of meets claimed
TOEs security
functions
Part 3: For guidance For reference when | Mandatory
Security wher.l determining | interpreting stateme‘nt of
Assur ance required levels of | statements of ev'alu.atlon
Requir ements assurance assurance Cl‘ltel‘la.V\{hel’l
requirements and determining the
determining assurance of
assurance TOEs and when
approaches of evaluating PPs
TOEs and STs

25

Functional and assurance requirements

CC describes the functional component classes for expressing the security
requirements within PPs and STs. These requirements describe the desired
security behaviour expected of a TOE and are intended to meet the security
objectives stated in a PP or ST, as well as counter threats in the assumed
operating environment of a TOE and cover any organisational security policies.
CC Version 2.1 (part 2) describes following classes [2]:

e C(Class FAU: Security Audit

e (lass FCO: Communication

e C(Class FCS: Cryptographic support
e Class FDP: User data protection

e (lass FIA: Identification and authentication
e C(Class FMT: Security management
e C(Class FPR: Privacy

e (lass FPT: Protection of TSF

e Class FRU: Resource utilisation

e C(lass FTA: TOE Access

e Class FTP: Trusted path/channels

Each of these classes is further divided into functional families. For example, the
family Cryptographic key operation can be found in Class FCS. This is further
divided into various functional requirements, such as Cryptographic key
generation and Cryptographic key destruction.

Assurance requirements are described in CC part 3 [2], and they are similarly
divided into classes and families, like functional requirements. From these
families, CC constructs a set of Evaluation assurance levels (EAL). These
assurance levels provide backward compatibility to earlier source criteria - e.g.
to TCSEC. The CC describes seven assurance levels. Their comparability to
assurance levels of TCSEC is presented in Table 3. The additional assurance
level EALO is added to present comparability to TCSEC's level D.

26

Table 3. Correlation between CC's and TCSEC's assurance levels.

Common Criteria TCSEC

EALO: D: Minimal protection

EAL1: functionally tested

C1 Discretionary security

EAL2: structurally tested .
protection

EAL3: methodically tested and checked C2 Controlled access protection

EAL4: methodically designed, tested and B1 Labelled security protection
reviewed

EALS: semi-formally designed and tested B2 Structured protection

EALG6: semi-formally verified design and B3 Security domains
tested

EALT7: formally verified design and tested | Al Verified design

2.4 Cryptographic protocols and algorithms

The mathematics underlying present cryptographic techniques can be very
complex, and in this text is only described when it is necessary for
understanding the algorithm and cryptography protocol. More exact proofs of
the mathematical basis can be found from references [10], [12].

A protocol is defined to have a sequence of steps, from start to finish. Every
participant must know the protocol and agree to follow it. Each step of the
protocol must be well defined and there must be a specified action for every
possible situation. A cryptographic protocol is simply a protocol that uses
cryptography. Cryptographic protocols make it possible to transfer data via
untrusted public networks. The protocol can be arbitrated, adjudicated or self-
enforcing. The difference between an arbitrated and an adjudicated protocol is
that in an adjudicated protocol a neutral third party is used only when there is a
dispute between the participants. This can be considered a special circumstance
where the arbitrator and adjudicator are both disinterested and trusted third
parties. 'Disinterested’ means that the third party has no malicious interest in the
protocol and has no allegiance to any of the parties involved. A self-enforcing

27

protocol requires no arbitration and there cannot be any disagreements between
the parties. All ill-defined intents are detected [10, pp. 21-31].

Cryptographic protocols provide mechanisms to identify and authenticate data
transmission participants and make sure that only these legitimate participants
can share confident information. Before sending, data is encrypted in order to
achieve privacy between the participants.

Cryptographic algorithms are mathematical functions used for encryption and
decryption. The security of restricted algorithmis based on keeping the way that
the algorithm works a secret. Restricted algorithms are not adequate for large
groups of users because every time a user leaves the group the algorithm must be
changed to maintain privacy within the group. This is solved by using keys for
encryption and decryption. A key is chosen from a large number of possible
values. This range of values is called keyspace. Keys used for encryption and
decryption can be the same or different, depending on the algorithm. All security
in key-based algorithms is based in the keys, not the algorithm. Knowing the
algorithm is of no use in decrypting the secret unless the malicious user knows
the right key.

Symmetric algorithms (also called secret-key algorithms, single-key algorithms
or one-key algorithms) are algorithms where the encryption key can be
calculated from the decryption key and vice versa. This requires that the sender
and receiver agree on a key before establishing a secure communication link.
When the key is revealed, security is lost and the participants must agree on a
new key. Two categories of symmetric algorithms can be defined: stream
algorithms (or stream ciphers), which operate on the plain text a single bit at a
time, and block algorithms (or block ciphers) which operate on the plain text in a
group of bits (block size can be, for example, 64 bits, large enough to prevent
analysis and small enough to be workable). Although fast, symmetrical
algorithms have problems that must be taken into consideration:

1. Key distribution must be done in secret. If a key is revealed, security is
compromised.

28

2. If every pair of users in a network has a separate key, the total number of
keys increases rapidly as the number of users increases. A network of n users
requires N(N-1)/2 keys.

The most-used and best-known symmetrical cryptography algorithm is Data
Encryption Sandard (DES). It has been the world-wide standard for over 20
years. DES encrypts data in 64-bit blocks. Key length is often expressed as a 64-
bit number, but key length is 56 bits because every eighth bit is used for parity
checking. All security is based on keys and in DES there are numbers that are
considered weak keys, but they can be easily avoided [10, pp. 265-283]. Weak
keys usually introduce some kind of symmetry (key is entirely Os or one half is
1s and the other Os, for example). A list of weak keys consists of 64 keys and the
odds on picking a weak key from a keyspace size of 72 057 594 037 927 936
possible keys is negligible. In the near future, DES is to be replaced with a new
standard, Advanced Encryption Standard (AES), which specifies the algorithm
which must implement block cipher symmetric key cryptography and must
support block sizes of 128-bits and key sizes of 128-, 192-, and 256-bits. NIST
(National Institute of Standards and Technology) has selected Rijndael as the
proposed AES algorithm. Other symmetrical algorithms are IDEA, RC4, RC5
and Blowfish [11, pp. 24-26]

Public key algorithms (also called asymmetric algorithms) use different keys for
encryption and decryption and the decryption key cannot be calculated from the
encryption key (at least, in a reasonable time). The encryption key can be made
public. An untrusted third party can use the encryption key to encrypt the
message, but only a specific person with the right decryption key can decrypt the
message. The encryption key is often called a public key and the decryption key
is called a private key (or secret key). In digital signatures, the message is
encrypted using a private key and decrypted with a public key.

RSA algorithm's mathematical basis is presented here on a general level, without
proof, to gain more understanding of public key algorithms. RSA was developed
by three people - Rivest, Shamir and Adleman - after whom it is named. RSA is
suitable for both encryption and digital signatures. RSA is based on the use of
two keys, public and private. Security lies in the difficulty involved in factoring
large numbers. Both of the keys are the function of a pair of large prime

29

numbers. Two large random primes, p and ¢, must be chosen to generate two
keys. The product of these primes is then computed:

n=pq 6]

The encryption key, €, is then chosen randomly so that e and (p-1)(g-1) are
relatively prime. The decryption key, d, is obtained from the following equation:

ed =Imod(p—-1)(q-1)
(2)
< d=e"mod[(p-1)(q-1)]

The numbers d and n are also relatively prime. The numbers e and n are the
public key and the number d is private key. Two primes, p and ¢, are no longer
needed after key generation and they should be discarded, but never revealed
[10, pp. 466-474].

For message encryption, the message is divided into numerical blocks smaller
than n. That means if both p and q are four-digit primes, n will have just under
eight digits and each message block m should be just under eight-digits long.
The encrypted message is composed of a similarly sized message block ¢ of
about the same length. The encryption formula is:

c. =m°modn (3)

Decryption is computed for each encrypted block C;:

m =c” modn (4)

M essage Authentication and digital signature

Message authentication is a procedure for ensuring that the received message
came from the claimed source and has not been altered en route. Verification of
sequencing and timeliness is also possible. A digital signature is a technique for
countering repudiation by source or destination. The authentication mechanism

30

must provide a means of producing an authenticator, usually a numerical value -
i.e. function - of the message and a protocol to verify authenticity.

The authenticator can be produced with the following functions [12, pp. 237—
2491:

o Message encryption
The entire message is encrypted and the resulting cipher text is used as the
authenticator.

e Message authentication code (MAC)
A secret key and a public function of the message are used to procedure
fixed-length value that serves as the authenticator.

e Hash function
A public function that maps a message of arbitrary length to a fixed-length
hash value that is used as the authenticator.

Message authentication code (MAC, cryptographic checksum) is a fixed-size
block of data that is appended to a message. Two communicating parties, A and
B, share a common secret key and when A sends a message to B, it calculates
the MAC as a function of the message M and the key Cy:

MAC =C, (M) (5)

The message and MAC are then transmitted to B and B is able to perform the
same calculation using the same secret key. This newly generated MAC is
compared to the received MAC. If the secrecy of the key is not compromised
and the received MAC is equal to the calculated MAC, the message's
authenticity is ensured [12].

The hash function, also called message digest, is public, there is no secrecy as to
how it is generated. The security of the hash function lies in its one-way nature:
it is easy to generate a hash code from the message but it is very hard to generate
a message that hashes to the desired value. It is also collision free, which means
that it is hard to generate two messages with the same hash value [10, pp 30-31].
Well-known one-way hash functions are MD5, with a hash length of 128 bytes
(MD stands for message digest), and SHA, with a hash length of 160 bytes
(secure hash algorithm). Because both of them are based on MD4, SHA can be

31

considered more secure. In addition to that, SHA is not known to be vulnerable
to cryptoanalytic attacks.

Digital signature is a secure hash code that the signer has calculated. It is usually
calculated using some asymmetric algorithm [11, p. 35]. The requirements for a
good signature are [10, pp 34-37]:

—

The signature is authentic and deliberately signed by the alleged signer.
2. Thesdignature is non-forgeable, i.e. no one elseis able to makeit or changeit.

3. The signature is not reusable and is part of the document. Therefore, it is not
possible to move the signature to another document

4. The signed document is unchangeable. After the document has been signed,
it cannot be changed.

5. The signature cannot be repudiated, i.e. the signer cannot deny that it has
been signed by him.

Generally speaking, asymmetric algorithms meet these requirements. Examples
of public key algorithms are RSA and DSA (digital signature algorithm). In RSA
either public key or private key can be used for encryption. If a message is
encrypted using the private key, the output of the calculation is digital signature.
In DSA there are separate algorithms for digital signatures and they cannot be
used for encryption.

2.5 Data security: Three areas of concern

As discussed in Chapter 2.1, the computer system must be reliable, integrated
and available for users. How these areas are emphasised depends on the system.
An air traffic control system, for example, does not need high confidentiality but
availability of service and integrity can be crucial in order to avoid serious
accidents [13, pp 19-31]. Most of the security techniques are based on existing
standards and cryptography. There is no strict grouping of technologies into
specific areas of concern, such as confidentiality, but, in most cases, the
technologies are presented under the heading they are most attached to.

32

2.5.1 Confidentiality

Confidentidity denotes protection of data from unauthorized access [13].
Cryptographic protocols, encryption and authorization mechanisms are ways of
avoiding the most common confidentiaity threats that were discussed in Chapter 2.2:

e Impersonation
e Eavesdropping

e Packet modification.

Confidentiality models describe the actions that must be taken to ensure the
confidentiality of information. The most widely used model is the Bell-LaPadula
model, which defines the relationships between objects (files, programs and
systems) and subjects (users and processes that cause information to flow
between objects). Thereby, the relationship denotes "the subject's assigned level
of access or privilege and the object's level of sensitivity" [13]. Subjects can
access objects to read, or read and write information. The lattice principle of the
Bell LaPadula model specifies that subjects are allowed to:

e write access to objects at the same or higher level as the subject
e read access to objects at the same or lower level as the subject

e read and write access to objects only at the same level as the subject.

This model ensures that the subject is not able to write information at a higher
level into a lower classified object and prevents the subject from giving higher
classified information to a lower classified subject. Consequently, in this kind of
flow model information at a given security level flows only to an equal or higher
level.

Another widely used model is the access control model, which organises a
system into objects (target of actions), subjects (actors, i.e. persons or programs
doing the action) and operations (process of the interaction). A set of rules is
used to define which operations can be performed on an object by which subject.
In addition to the flow model, this model ensures not only confidentiality but
also the integrity of information as well [13].

33

Confidentiality models can be implemented with trusted computer system
evaluation criteria (Orange and Red book) and Common Criteria, which are
discussed in more detail in Chapter 2.3.

2.5.2 Integrity

Integrity signifies protection of data from unauthorized access and modification,
as well as maintenance of data in the state that users expect [13]. Access
controlling is a very essential part of maintaining integrity. Thereby, users
should be able to access only those resources needed to perform their tasks
(Need-to-Know access). Other principles for establishing integrity policies are
separation of duties (no single user has control of a transaction from beginning
to end) and rotation of duties (a periodic changing of job assignments to avoid
the possibility of the user controlling the complete transaction) [13].

Integrity models help to describe what has to be done in order to accomplish the
integrity policy. Different models address different ways of achieving three
goals of integrity [13]:

1. Preventing unauthorized users from making modifications to data or

programs

2. Preventing authorized users from making improper or unauthorized
modifications

3. Maintaining internal and external consistency of data and programs.

The National Computer Security Center Report [14] describes five integrity

models, viz.:

1. Biba

2. Goguen-Meseguer
3. Sutherland

4. Clark-Wilson

5. Brewer-Nash.

34

Biba's model is similar to the Bell LaPadula model for confidentiality; the
Sutherland model focuses on the problem of interference; and the Clark-Wilson
on the well-formed transactions and separation of duties. The Brewer-Nash
model, for its part, concentrates on the implementation of the dynamically
changing access authorizations. More of these can be found in Reference [14].

The Goguen-Meseguer model provides an approach to secure systems that is
based on automaton theory and domain separation. Goguen-Meseguer provides a
strict distinction between the security policy and security models. Thereby, the
security policy denotes the security requirements on a given system and the
security model is abstraction of the system itself [14]. In this model security
policy is based on the concept of non-interference, where "one group of users,
using a certain set of commands, is non-interfering with another group of users if
what the first group does with those commands has no effect on what the second
group of users can see." Non-interference is achieved by separating users into
different domains. Domain is defined as "the set of objects that a user has the
ability to access" [14].

2.5.3 Availability

Availability of the computer system means that it is accessible to legitimate
users when they need it. Degration of availability is usually caused by denial of
service attacks or loss of physical computer data processing capabilities caused
by natural disaster, human actions and hardware or software failures - which are
probably more common [13]. Maintaining availability consists mostly of
physical, technical and administrative issues. Physical issues include access
control (in the physical sense of the term — locked doors, etc.) and environmental
issues (temperature control and fire and water control mechanisms). Technical
issues, for their part, consist of fault-tolerance computing (hardware redundancy
and disk mirroring). Administrative issues are access control policies and user
training, etc. [13].

35

2.6 Authentication and authorization of a user

The authentication of a user answers the question "who are you?". In the case of
public key cryptography, this question is answered by providing the questioner
with an appropriate key or certificate as proof of the legitimacy of a user. Once
the user is properly and reliably identified, the next question is what the user is
allowed to do and what resources the user is allowed to access. Authorization
answers these questions and grants access rights to the user, as defined in 2.1.
Authorization can be implemented in many ways. The Java platform's
protection-domain-based solution is presented in Chapter 3. As an example of
authentication, the X.509 authentication service is presented next in more detail.

2.6.1 X.509 Authentication Service

X.509 is an ITU-T recommendation and is part of the X.500 series of
recommendations that define a directory service [12, pp. 341-350]. Directory, in
this case, is defined as a server or distributed set of servers that maintains a
database of information about users. This information consists of mapping from
user name to network address, and other attributes and information about users.

X.509 prescribes a framework for taking care of authentication services by the
X.500 directory to its users. The directory can work as a repository of public key
certificates. The certificate consists of the public key of a user and is signed with
the private key of a trusted certification authority (CA). The X.509 certificate
format is used, for example, in S/MIME (Secure/Multipurpose Internet Mail
Extension), IP Security and SSL/TLS (Secure Socket Layer/Transport Layer
Security), and SET (Secure Electronic Transaction). X.509 is based on the use of
public-key cryptography and digital signatures and does not mandate use of any
specific algorithm. However, it does recommend the use of RSA. Neither does
the standard dictate a specific hash algorithm in a digital signature scheme,
although use of the hash function is assumed.

Certificates

The most important feature of the X.509 scheme is the public-key certificate
associated with each user. Certificates are assumed to be created by some trusted

36

CA and placed in the directory by the CA or by the user. The directory server
provides an easily accessible location for users to obtain certificates, thus it is
not responsible for the creation of public keys or for the certification function.
Figure 8 depicts the general format of a certificate. It includes the following
parts:

1. Version: Differentiates among successive versions of the certificate formats,
the default version being version 1. The value of the version must be version
2, if the Initiator Unique Identifier or Subject Unique Identifier is present.
The version must be version 3 if one or more extensions are present.

2. Serial Number: An integer value that is unambiguously associated with this
certificate and is unique within the issuing CA.

3. Sgnature algorithm identifier: Algorithm used to sign this certificate,
together with associated parameters. This field has little utility because the
same information is repeated in the Sgnature field.

4. Issuer Name: X.500 name of the CA that has created and signed the
certificate.

5. Period of validity: This field includes the first and last date on which the
certificate is valid.

6. Subject name: The name of the user to whom this certificate refers. In other
words, this certificate certifies the public key of the subject who holds the
corresponding private key.

7. Subject’s public-key information: Public key of the subject and identifier of
the algorithm for which this key is to be used, plus associated parameters.

8. Issuer unique identifier: If the X.500 name of the CA has been reused for

different entities, this optional bit string field is used to uniquely identify the
issuing CA.

37

9. Subject unique identifier: If the X.500 name of the subject has been reused
for different entities, this optional bit string field is used to uniquely identify
the subject.

10. Extensions: A set of one or more extension fields.

11. Signature: Covers all the other fields of the certificate, including the hash
code of other fields encrypted with the CA’s private key. This field also
includes the signature algorithm identifier.

The X.509 standard [15] uses the following notation to define a certificate:

CA<<A>>=CA{V, SN, AL, CA, Ta, A, Ap},

where
Y<<X>> = the certificate of user X issued by CA Y
Y {I} = the signing of I by Y, which consists of I with an encrypted

hash code appended.
The CA signs the certificate with its secret key. If a user knows the

corresponding public key, the user can verify that the certificate signed by the
CA is valid.

38

A A A
Version
Certificate
serial number
Signature Algorithm
algorithm
identifier Parameters
—
c
Issuer name a9
o S
> D
g ™
Period Not before s
of validity Not after -%
>
Subject name
Subject's Algorithms
public-key
info Parameters
Key v

Issuer unique identifier

Subject unique identifier

Extensions
Y

Algorithms 0

c

Re]

Signature Parameters %
>

Encrypted ©

Figure 8. X.509 Certificate format.
Figure 9 shows an example of a real certificate from a trusted certification

authority. It includes all the mandatory fields defined above that are valid for
version 1.

39

Version: V1
Subject: OU=VeriSign Trust Network, OU="(c) 1998 VeriSign, Inc. - For authorized use only",
OU=Class 2 Public Primary Certification Authority - G2, O="VeriSign, Inc.", C=US
Signature Algorithm: SHA1withRSA, OID = 1.2.840.113549.1.1.5

Key: com.sun.rsajca.JSA_RSAPublicKey@34a74b

Validity: From: Mon May 18 03:00:00 GMT+03:00 1998,
To: Sat May 19 02:59:59 GMT+03:00 2018

Issuer: OU= VeriSign Trust Network, OU="(c) 1998 VeriSign, Inc. - For authorized use only", OU=Class 2
Public Primary Certification Authority - G2, O="VeriSign, Inc.", C=US

SerialNumber: 1f42285f 3c880f8e 3c89b384 b3ablflc
Algorithm: SHA1withRSA

Signature:
0000: 11 45 AB A4 7TFF1E373 20 CABD EEDFF58723 .E....S #
0010: 91 3D 8D AC 47 45 1A DE 6D DB 54 21 CE OE 83 OE .=..GE..m.T!....
0020: F8 DC E5 43 D5 EB 2E 61 91 23 E2 72003455 F7 ...C...a#.r.4U.
0030: C4 CF1133 DD C1E422 235C505319F864E7 ..3.."#\PS..d.
0040: F7 09 OF 4551 A0 57 2B DFBC 2266 FE 3170 7B ..EQ.W+.."f.1p.
0050: 25 3A0F C58A7TEC3BB 7201 CCFO0BD 4D 5281 %....... r...MR.
0060: A4 1B 58 58 53 D5 53 3A F5 OE 6A DA E9 AF C4 E1 .XXS.S..,.....
0070: 58 F3 42 6F 54 62 47 AC 3194 D1 0D CE EF 1D 31 X.BoThG.1...... 1

Figure 9. X.509 Certificate.

Obtaining a User’s certificate

A certificate generated by a CA has the following characteristics:

e Any user that knows the public key of the CA can recover the certified user's
public key.

e Only CA can modify the certificate without detection, so it can be
considered tamper proof.

Being non-forgeable, certificates can be placed in a directory without the need
for special protection. There is a common trust in the CA if all users subscribe to
the same CA and all user certificates can be placed in the directory that is
accessible to all users. In addition to that, users can send their certificates
directly to other users. When user B has A’s certificate, B can be confident that
the message it encrypts with A’s public key will be safe from eavesdropping and
that the message signed with A’s private key cannot be modified without
detection.

40

If there is a large community of users (e.g. the Internet), it is not possible for all
users to subscribe to the same CA. Each participating user must have a copy of
the CA’s own public key to verify signatures, because it is the CA that signs the
certificates. The CA’s public key must be given to each user in such way that the
integrity and authenticity of the key is not compromised. It is more practical to
have a number of CAs, each of which provides its public key to some smaller
group of users.

Let us assume that user A has obtained the certificate from CA X; and B has
obtained the certificate from CA X,. If A does not unambiguously know the
public key of X,, B’s certificate is useless to user A because it cannot verify and,
therefore, trust it, even though B’s certificate is readable to A. If the two CAs
have securely exchanged their own public keys, A is able to obtain B’s public
key using the following procedure:

A obtains the certificate of X, signed by X;. Knowing X;’s public key, A is able
to get X,’s public key from its certificate and verify it using X,’s signature on
the certificate. Next, A obtains the certificate of B signed by X, and is able to

verify it and securely obtain B’s public key because A has a trusted copy of X;’s
public key.

In the notation of X.509, this chain of certificates which A has used to obtain B’s
public key is expressed as:

X <<Xp>>X,<>
Similarly, B can obtain A’s public key with the reverse chain:
Xo<<X >> X <<A>>

An arbitrarily long path of CAs can be followed to produce a chain. A chain
with n elements is expressed as:

X <<Kp>>Xo<<X>>, . X<>

It is assumed that each pair of CAs in the chain (X;, Xj+;) must have created
certificates for each other. Every certificate of CAs by CAs needs to be in the

41

directory and the users must know how they are linked in order to follow a path
to another user’s public key certificate. In X.509's suggestion, CAs are arranged
in a hierarchy to make straightforward navigation possible. Figure 10 depicts a
CA hierarchy where associated boxes indicate certificates that are maintained in
the directory for each CA entry. For each CA there are two types of certificates
included in its directory entry:

Forward certificates: Certificates of X generated by other CAs.

Reverse certificates: Certificates generated by X that are the certificates of other
CAs.

V<<W>>
W<<V>>

Y<<Z>>
Z<<Y>>
Z<<X>>

W<<X>>
X<<W>>
X<<Z>>

X<<C>> X<<A>> Z<>

Figure 10. Example of X.509 hierarchy.

42

In this case, user A can obtain the following certificates from the directory to
establish a certification path to B:

X<KW>>W<KV>> V<Y >> Y <<Z>>7<>

When A has acquired all these certificates, it can unwrap the certification path in
sequence in order to recover a trusted copy of B’s public key.

Certificaterevocation

One of the certificate's mandatory fields is its period of validity. In a normal
situation a new certificate is issued just before the expiration of the old one.
There are also situations when it is desirable to revoke a certificate before it
expires:

1. The user's private key is assumed to be compromised.

2. The user is no longer certified by this CA.

3. The CA's certificate is assumed to be compromised.

Every CA must have a list of all revoked, but not expired, certificates issued by
the corresponding CA, which must be posted on the directory. These certificates
include both those issued to users and those issued to other CAs. Figure 11
shows the general format X.509 of a certificate revocation list (CRL).

43

Signature
algorithm
identifier

Revoked certificate

Revoked certificate

Signature

Figure 11. X.509 Certificate revocation list format.

The issuer signs each CRL and, among the other fields depicted in Figure 11,
includes an entry for each revoked certificate. One entry consists of the serial
number of the certificate and its revocation date. The serial number is sufficient
information for identifying the certificate because it is unique within the CA.

The user must determine whether or not the certificate has been revoked. One
possible way is to check the directory every time a certificate is received, but,
because this is time consuming (and possibly expensive), it is more practical for
the user to maintain a local copy - i.e. cache - of certificates and lists of revoked

certificates.

Algorithm

Parameters

Issuer name

This update date

Next update date

User certificate serial #

Revocation date

User certificate serial #

Revocation date

Algorithms

Parameters

Encrypted

44

Strong Authentication

X.509 describes three authentication procedures - which take advantage of the
approach to authentication just presented - that make use of public key
signatures. It is assumed that the two participating users know each other’s
public key. The public key can be obtained either from the directory or directly
from the initial message from each side. In Figure 12 three authentication
procedures are presented in a way X.509 describes them.

A{tA,rA,B, sgnData, Bp[encData]}

(a) One-way authentication

A{tA rA,B, sgnData, Bp[encData]}

B{tB, rB, A, rA, sgnData,
Ap[encData]}

(b) Two-way authentication

A{tA,rA,B, sgnData, Bp[encData]}

B{tB, rB, A, rA, sgnData, Ap[encData]}
<
<

A{rB, B}

(c) Three-way authentication

Figure 12. X.509 Authentication procedures.

45

One-way authentication involves a single transfer of information from one user
(A) to another (B) and establishes the following:

1. The identity of A and that the message was actually generated by A.
2. The identity of B and that the message was intended to be sent to B.

3. The integrity and originality (not having been sent two or more times) of the
authentication message.

A sends the following message to B:

B—A, A{tA,rA,B, sgnData, Bp[encData]}, where

th = timestamp
™ = non-repeating number
sgnData = digital signature (optional)
Bp[encData] = session key (encDate) for B, encrypted with
B’s public
key (Bp)

The timestamp congists of one or two dates: the generation date of the token
(optional) and the expiry date. Thisis used to prevent delayed delivery of messages.
The nonce r* is used to detect attacks that threaten the integrity (replay attacks and
forgery). This value must be unigque within the expiration date of the message so B
can store the nonce until it expires and rgect any new messages with the same
nonce. This message is signed with A’s public key. For authentication purposes
only, the message is used smply to present credentials to B. The message can dso
convey information (sgnData) which is within the scope of the signature to
guarantee its authenticity and integrity. In addition to this, the message can used to
transfer a session key to B, which is encrypted with B’ s public key.

Two-way authentication establishes the following three elements in addition to
the three defined in one-way authentication:

1. Theauthentication message was generated by B and wasintended to be sent to A
2. The integrity and originality of the reply

3. The mutual secrecy part of the messages (optional).

46

In the two-way authentication scheme both parties are able to verify each other.
The reply message includes the nonce from A to validate the reply. In addition to
that, it includes the timestamp and nonce generated by B. As in one-way
authentication, the message may include signed additional information and a
session key encrypted with A's public key.

Three-way authentication includes a final message from A to B which contains a
signed copy of the nonce r°. Both nonces are echoed by the other side.
Therefore, each side can check the returned nonce to detect replay attacks. This
approach was chosen to avoid the need of synchronised clocks.

2.6.2 Secure socket layer (SSL) and transport layer security (TLS)

SSL was originally developed by Netscape and is widely accepted as the
authentication and encryption mechanism for communication between client and
server. The Internet Engineering Task Force (IETF) standard called Transport
Layer Security [16] is based on SSL and is very close to SSL version 3.0 [17].
This discussion is based on SSL version 3.0. SSL is two layers of protocols, as
depicted in Figure 13.

HTTP FTP SMTP
SSL/TSL
TCP
IP
SSL Handshake SSL Change SSL Alert
protocol Cipher Protocol Protocol

SSL Record Protocol

Figure 13. SS_ protocol stack.

47

SSL record protocol provides basic security services to higher layer protocols:
the handshake protocol, the change cipher spec protocol and the alert protocol,
of which the handshake protocol is examined in more detail. These protocols are
mainly used in the management of SSL [12, pp. 444—457]. Two important terms,
the SSL Connection and the SSL Session, are defined as follows:

1. Connection is a transport that provides a suitable type of service. In SSL's
case, connections are peer-to-peer relationships. Every connection is
associated with one session.

2. Session is an association between a client and a server and is created with
handshake protocol. Sessions define a set of cryptographic parameters that
can be shared among multiple connections to avoid expensive negotiation of
new security parameters for each connection.

Between two participants there can be multiple secure connections and,
practically, one session, although multiple simultaneous sessions are possible.

The most complex part of SSL is the handshake protocol, which allows the
server and client to authenticate each other and negotiate security parameters
(encryption and message authentication code (MAC) algorithm and
cryptographic keys). This protocol is used before any application data is
transmitted [12]. The handshake protocol action is depicted in Figure 14, where
optional messages are presented in lines of dots and dashes.

Client_hello and server hello establish security capabilities, including protocol
version, session ID, cipher suite, compression method and initial random
numbers. Next, the server may send an optional certificate, mandatory key
exchange and, optionally, request a client certificate. If the server sends a
request, the client sends its certificate. The client then sends key exchange and
optional certificate verification. After this, cipher suites are changed and finish
messages sent to end the handshake protocol. At this point, the handshake is
done and client and server are ready to change application layer data.

48

o]
=
=

=

Server

client_hello()

server_hello()

LY ____]

certificate()

server_hello_done()

Aggggllggfggfggfggﬂgggggﬁ44444‘

i
I
i
I
i
I
i
I
i
I
i
I
i
I
i
I
i
I
i
I
i
I
i
I
i
I
i

U I NN S

certificate()

client_key_exchange()

certificate_verify()

change_chiper_spec()

finished()

change_chiper_spec()

finished()

R 44«AAAAJLAJLAAAA}AAJLA;

TTTTTATTRT T TTTrOTrOTT T T T

Figure 14. Handshake protocol action.
2.7 Auditing

Audition and audit records are foundational tools for intrusion detection. Audit
records can be gathered by using two different schemes [12, pp. 492-501]:

1. Native audit records: Audit collection is done by the operating system and
no additional software is needed.

2. Detection-specific audit records: External collection facility that collects
information needed by the intrusion detection system. The advantage over
native audit records is that the audit trail only contains the necessary
information and in a more convenient form, but there is overlap if the
operating system itself has auditing capabilities.

49

3. Java Technology and security

3.1 Introduction

Java was originally known as "Oak" and was developed by Sun Microsystems to
meet the needs of embedded consumer electronic applications at the beginning
of 1990. Java is a general-purpose object-oriented programming language and,
from the start, has been designed to address the special characteristics of
networked software, including multiple host architectures and secure delivery of
software components [18, pp. 61-91], [19]. These issues are mainly solved by
means of Java Bytecode and the Java virtual machine, later referred to as JVM.
Therefore, Java is not only programming language but also a complete software
platform, including application programming interface (API) and virtual
machine. Under the Java platform lies an operating system and hardware, thus
the Java platform is not a replacement for an operating system but hides the
operating system from the application. The Java platform (runtime environment)
and compilation environment is described in Figure 15. Different parts of the
Figure are described in following chapters.

Java Class
Libraries

Class Loader

bytecode verifier

X

A A
Just-in-
Time
compiler

Java
Interpreter

¥

Java Bytecode
moves locally
or through
network

Runtime system ‘

Java Virtual Machine

Y

Bytecode

‘ Operating System ‘
(.class)

!

‘ Hardware ‘

Runtime environment

compile-time environment
P (Java Platform)

Figure 15. Java's runtime environment and compilation environment.

50

3.2 The Java virtual machine

Generally speaking, the Java virtual machine can denote three different things
[20, pp. 134-190]:

1. The abstract specification
2. A concrete implementation

3. A runtime instance.

The abstract specification is a concept of the Java virtual machine, and is defined
in Reference [18]. Concrete implementation exists on many platforms and can
be either complete software implementation of the abstract specification or a
combination of software and hardware. A runtime instance of concrete
implementation hosts a single running Java application. The Java virtual
machine is an essential part of the Java platform because, for its part, it provides
solutions to many features of Java that are considered to be Java’s advantage
over previous programming languages. JVM is responsible not only for Java’s
hardware- and operating system independence - but also for protecting users
from running malicious code. These security issues include code-checking
mechanisms at many levels. JVM is an abstract computing machine and what is
similar to real computing machines is that it has an instruction set and is able to
manipulate various memory areas at runtime. JVM does not make any
presumptions of the wunderlying hardware, operating systems or even
implementation technology. This makes possible, for example, implementation
of JVM directly into a silicon chip. JVM does not deal directly with Java
language but rather with a particular binary format - class file format - which
contains JVM instructions (i.e. bytecode), symbol table and other ancillary
information. To endure a certain level of security, JVM emphasizes strong
format and structural constraints, both in a code and in a bytecode.

3.2.1 Life cycle of the Java virtual machine
The runtime instance of the JVM runs a Java application. Therefore, when a Java

application starts, a new runtime instance is born and when the application
completes, the runtime instance dies. In other words, each application runs

51

inside its own virtual machine. The Java version of the 'Hello World' application,
a typical first programming example, is presented next. Virtual machine starts
running its application by invoking main() method, which is defined as public,
static and must return void and accept one string array as a parameter.

cl ass Hel | oWor | dApp
public static void main(String[] args)

Systemout.println("Hello Wrld!");

}
}

After the Java source is saved to file (correct form of file name is
ClassNamejava) and compiled in bytecode, it can be executed in the Java
virtual machine. In Sun Microsystem's Java Development Kit (JDK) compiling
is done at command line by typing: javac HelloWorldApp.java and the virtual
machine is executed by typing: java HelloWorldApp (optional arguments are
typed after the class name).

There are two kind of threads inside JVM: daemon and non-daemon. The
daemon thread is usually a thread used by JVM itself - for example, thread that
performs garbage collection is a daemon thread. However, the application can
mark any of the threads it creates as a daemon thread. The initial thread of the
application - in other words, the main()-thread - is a non-daemon thread. A
runtime instance of virtual machine continues its execution as long as any non-
daemon thread is running. When all non-daemon threads are terminated, the Java
application stops its execution and, at the same time, the runtime instance of
virtual machine is terminated. In HelloWorldApp, main-method does not
generate any other threads, which means that when main-method has done its
work and exits, the application's only non-daemon thread is terminated.

3.2.2 The architecture of the Java virtual machine
The Java virtual machine specification [18] describes the abstract inner
architecture of abstract JVM in terms of subsystems, memory areas, data types

and instructions. These components prescribe less inner architecture of concrete
implementations than define the strictly external behaviour of implementations.

52

Figure 16 depicts a block diagram of JVM architecture with the major
subsystems and memory areas defined in the specification.

Each JVM has a class loader - which is responsible for loading types (classes
and interfaces) - and execution engine - the mechanism responsible for executing
the instructions contained in loaded classes. When JVM runs a program it
requires memory to store bytecode and other information extracted from classes,
objects the program initiates, parameters, return values from methods, local
variables and intermediate results of calculations. The JVM organizes the
memory it needs into several runtime data areas. Specification of runtime areas
is very abstract and, therefore, gives the designer freedom to decide the
structural details of implementations.

Class
class
. :> loader
files
subsystem
method heap Java pc native
area stacks registers method
Class Class thread 3 thread 1 stacks
—
thread 2 thread 3
‘ stack frame ‘ thread 3
Runtime data areas
. native ;
execution method native
engine interf method
interface libraries

Figure 16. Inner architecture of the Java virtual machine.

53

Some of the runtime data areas are shared among all threads and others are
unique to individual threads of an application. These per-threaded data areas are
created when a new thread is created and destroyed when the thread exists [20].
Every new thread gets its own PC register (program counter) and Java stack. A
thread cannot access the PC register or Java stack of another thread. The value of
the PC register indicates the next instruction to execute when a thread is
executing a Java method (not a native method). A Java stack stores the state of
the Java method invocation for the thread. The state of method invocation
comprises its local variables, the parameters with which it was invoked, its
possible return value and the intermediate computation results. Correspondingly,
the state of native method invocations are stored in native method stack in an
implementation-dependent way, and, possibly, in registers or other
implementation-dependent memory areas as well. Each runtime instance of JVM
has one method area and one heap. All threads running inside JVM share these
two areas. The method area is for type information parsed from loaded class
files. Objects that the program initiates during execution are placed onto the
heap. The Java stack comprises stack frames that contain the state of one Java
method invocation. JVM pushes a new frame onto the thread's stack when it
invokes a method. When the method completes, JVM pops and discards the
frame for that method. The JVM does not have registers but the instruction set
uses the Java stack to store intermediate values. The reason for this approach is
to keep the instruction set compact and to ease implementation of computer
architectures with few general purpose registers, as well as to facilitate the code
optimization work done by just-in-time and dynamic compilers that operate at
runtime in some virtual machine implementations.

3.3 Java’s built-in security model

The Java platform emphasizes the networked environment and offers solutions
to many issues that originate from network-oriented software. One of the major
issues in networked software is security, which is also covered by Java with the
extensive built-in security model which has evolved along with the Java
platform. Java’s security model is one of the main reasons why it is considerable
technology for networked environments. Java makes it possible to download
software components across the network and execute them locally. In most cases
downloading of new classes and other software components is automatic and

54

does not need any interaction with the user [21]. Without any security, this offers
a very easy way of distributing hostile code. The main focus of Java’s security
model is to protect end-users from malicious programs coming from untrusted
sources across the network.

3.3.1 Evolution of the sandbox model
JDK 1.0 (Original sandbox model)
The original sandbox model, depicted in Figure 17, offered a very restricted
environment for executing untrusted code downloaded from an open network. In
Figure 17, local trusted code can get full privileges to the system resources (e.g.
file system) but untrusted code (i.e. applet) from the network gets only restricted

access to the system resources defined by the sandbox. Access control is taken
care of by the security manager.

Local Remote
code code

JVM full access Sandb tricted
{0 resources andbox restricted access

Security Manager

System Resources

Figure 17. Original sandbox model of Java version 1.0.

55

The sandbox prohibits many activities, including the following [20, pp. 41-44]:

e Reading or writing to the local disk.

e Making a network connection to any hosts except the host from which the
applet came.

e (Creating a new process.

e Loading a new dynamic library.
JDK 1.1

JDK 1.1 provided the new concept of a "signed applet". A digitally signed applet
is treated like a trusted local code and gets full access to the system resources if
the signature key is recognized as trusted by the system that receives the applet.
Unsigned applets are executed in the sandbox. Signed applets are delivered
along with the respective signatures in signed JAR-files (Java ARchive). This
concept is depicted in Figure 18.

Remote
code
Local Trusted
code signed
code

%ﬁ

JVM full access ﬁ 4,&)
® Sandbox restricted access

to resources

Security Manager

System Resources

Figure 18. Sandbox model of Java version 1.1.

56

JDK 1.2

JDK 1.2 offers many improvements over the earlier security model. All code,
local or remote, can now be subject to a security policy which defines a set of
privileges for the code (remote/local, signed/unsigned) to be executed.
Permissions are granted to code sources which are composed of a codebase URL
from which the code was loaded and a set of signers that guarantee the code.
Permissions can be configured by the user or system administrator.
Configuration is made with a security policy file, which contains any number of
permission grant entries. The default policy file looks like the following:

grant codeBase "file: ${java. home}/lib/ext/"

{
b

perm ssion java.security. Al Perm ssion;

To limit the privileges, the policy file needs to be modified. After deleting the
default grant entry, a new one can be entered for one or more of the following
limited permissions:

j ava. awt . AWIPer i ssi on

java.io. FilePerm ssion

j ava. net. Net Per nmi ssi on
java.util.PropertyPerm ssion
java.lang.refl ect. Refl ect Perm ssi on
java. |l ang. Runti mePer m ssi on

java. security. SecurityPernission
java.io. Serializabl ePermni ssion

j ava. net. Socket Per mi ssi on

Each permission defines the privilege granted to a particular resource - such as
read and write to a specified file or directory, or connect to a given host and port.

The runtime system organises the code into individual domains. Each domain
handles a set of classes which have the same set of permissions. A domain can
be configured to be same as a sandbox, so applets can be still executed in a
restricted environment if the user or system administrator wishes to do so. By
default, applications are executed without restrictions, but, optionally, security
policies can be defined. The domains presented in Figure 19 have more
privileges than the sandbox but less than local applications.

57

Security
Policy

Local or
remote code

JVM full access @ Domain Sandbox restricted
to resources % access

®<:

Security Manager

System Resources

Trust increases
«——

| |

completely completely
trusted untrusted

Figure 19. Domain-based security model of Java version 1.2.

3.3.2 Secure class loading and verification

The class loader brings the code into the JVM. The class loader architecture has
three ways of contributing to Java's security model [20, pp. 45-59]:

1. Preventing malicious code from interfering with benevolent code.
2. Guarding the borders of the trusted class libraries.

3. Placing code into categories (protection domains) that decide which actions
the code is able to take.

The class loader architecture uses separate name spaces for classes loaded by
different class loaders in order to prevent malicious code from interfering with
considerate code. A name space is set of unique names - one for each class.
Once the class loader has loaded a class named WOIf into a particular name
space, it cannot load a different class with the same name to that same name
space. However, multiple WoIf classes can be loaded into a Java virtual machine
because it is possible to create multiple name spaces inside a Java application by
creating multiple class loaders.

58

Name spaces are important from a security point of view because they form a
shield between classes loaded with different class loaders and, therefore,
different name spaces. Inside the JVM, classes in the same name space can
interact with each other without restriction, but classes in different name spaces
cannot even detect each other's presence without a mechanism that distinctly
allows interaction between them. Figure 20 depicts an example of two types with
the same name. In this case, WoIf can be loaded to different name spaces.

Name space 1 Name space 2

1

Bear

W olf \
. Wolf ﬁ

Class
loader Type data in the
1 method area

Figure 20. Two class |oaders with separate hame spaces.

Every name in a name space is associated with the type data in the method area
that defines the type with that name. Figure 21 shows arrows from the names in
the name spaces to the types in the method area that define the corresponding type.
The class loader on the left, which is shown dark grey, has loaded the two dark
grey types named Wolf and Lynx. Class loader 1, which is shown light grey, has
loaded the two light grey types named Bear and Wolf. Because of the nature of
name spaces, when the Bear class mentions the Wolf class, it refers to the dark
grey Wolf - the Wolf loaded in the same name space. It has no way of knowing
that the other Wolf, which is sitting in the same virtual machine, even exists.

59

Trusted packages can be loaded with a different class loader than untrusted
packages and, thus, the class loader architecture guards the borders of the trusted
libraries. Java version 1.2 uses the so-called parent delegation model for class
loading. In this model each loader (except the bootstrap class loader) has a
parent class loader, to which a particular class loader delegates its job by asking
its parent to load the type. The parent then delegates the job to its parent. This
process continues all the way up to the bootstrap class loader, which is the last
class loader in the delegation chain. If a class loader's parent is able to load the
type, the class loader returns that type, otherwise the class loader tries to load the
type itself. Figure 21 shows the parent-child delegation model, where, at the
other end of the chain, is the bootstrap class loader which is responsible for
loading only the class files of core Java API that are needed to "bootstrap" the
JVM and are considered as most trusted. This class loader is always present in
JVM and, in addition to the bootstrap class loader, at least one user-defined class
loader exists. User-defined class loaders are responsible for class files for the
application, class files for installed or downloaded standard extensions, class
files found from class path, etc. All these class loaders are connected in one
chain of parent-child relationships.

Bootstrap class loader

7

Standard extensions class loader

Class path class loader

User-defined class loader

Figure 21. A class loader delegation chain.

60

This delegation chain makes it possible for the class loader architecture to
protect trusted libraries because the bootstrap class loader is always able to
attempt to load types before the standard extensions class loader, which is able
to attempt to load types before the class path class loader, which is able to
attempt to load types before the user-defined class loader and so on. This
prevents the mobile code attempting to download a type across the network with
same name as something in the Java API. In other words, it is not possible to
download a class file for java.lang.Integer across the network as long as it exists
in the local Java API because it will be loaded locally by the bootstrap loader.
Untrusted codes cannot replace trusted classes with their own versions.

Another threatening scenario is when an untrusted code tries to add new type
into a trusted package. Let us assume that a user-defined class loader manages to
download and define a type named java.lang.Outlaw. Java allows classes within
the same package to grant each other special privileges that are not enabled
outside the package. Because the new type java.lang.Outlaw, by its name,
declares itself to be a part of the Java API, the first assumption is that it will get
the same privileges as the rest of the types that belong to the java.lang package.
However, this is prevented by using separate name spaces for different class
loaders, as defined earlier. The user-defined class loader, which is used for
downloading the java.lang.Outlaw, has a distinct name space from the bootstrap
class loader that locally loads the trusted javalang package. Therefore,
java.lang.Outlaw is not able to see any of the trusted types in the locally loaded
java.lang package and vice versa. They do not belong to same runtime package,
which is defined as the set of types that are loaded with the same class loader [20].

In addition to providing separate name spaces for classes and protecting the
borders of trusted libraries, class loaders place each loaded class into a
protection domain, which defines, as described earlier, what permissions the
code is going to be given as it runs.

Theclassfile verifier
The purpose of the class file verifier is to ensure that class files have a proper
internal structure and are consistent with each other. A problematic class file

causes the class file verifier to throw an exception. The main reason for
verifying class files after loading is that JVM does not know how the particular

61

class file was generated and, as a consequence, there must be a technique for
detecting the possibility of an ill-bred class file. The class file verifier has a
rather large impact on program robustness because not only intentionally
dangerous class files but also class files that are generated with a buggy compiler
are detected.

The class file verifier's operation is four-pronged:

1. Structural checks on the classfile

The internal structure of the class file is checked to make sure it is safe to
parse. (for example every class file must start with the same four bytes,
"magic number", 0xCAFEBABE)

2. Semantic checks on the type data

The verifier ensures that individual components are well-formed instances of
their type of component. This is done without looking at the bytecodes. In
addition, in this phase it also checks that the class itself fits the specifications
of the Java programming language.

3. Bytecode verification

The bytecode streams that represent Java methods are comprised of a series
of one-byte instructions called opcodes, each of which may be followed by
one or more operands. The JVM performs a data-flow analysis of each
method, ensuring that all method and local variable accesses and
invocations are done using values of appropriate types and arguments.

4. Verification of symbolic references

Pass four is part of the process of dynamic linking of a class file. A class
filecontains symbolic references to other classes and their fields and
methods, and dynamic linking is the process of resolving these links into
direct references. During the resolution, the JVM finds the class being
referenced - loading it, if necessary - and replaces the symbolic reference
with a direct reference. Pass four ensures that the reference is valid.

62

3.3.3. JVM's responsibility in Java security

JVM has many built-in security mechanisms that are a vital part of Java's
robustness and security. From a security point of view, the most important
features of JVM are [20, pp 59-61]:

e type-safe reference casting

e structured memory access (no pointer arithmetic)
e automatic garbage collection

e array bounds checking

e checking references for null.

Each of these features enhances security by minimizing the possibility of
executing a corrupted code. In addition to JVM's internal architecture, that is
specified quite abstractly, the unspecified manner of runtime memory areas also
increases security. A Java class itself does not appoint any specific memory
addresses but, when loading the class file, JVM decides where in its internal
memory to put bytecode and associated data it parses from the class file. Thus a
malicious user cannot look at the bytecode and predict where in the memory the
data representing the class will be kept. In addition to that, it is not possible to
gather any information about the memory layout of the JVM just by reading the
virtual machine specification because these issues are left to the JVM's
implementers.

Besides the features described above, JVM supports exceptions for error
handling. This structured error handling mechanism contributes to security
because when security violation (or other error situation) occurs, instead of
crashing the program, the JVM can throw an exception or error - which may kill
the offending thread but, in most cases, should not crash the whole system.

What must be recalled is that all the security features defined above are only
valid when dealing with bytecodes written in Java and compiled with a well-
designed Java compiler. When a Java program calls a hative method - a method
written with non-Java language - Java's security model is useless. The security
model for native methods is simple: the native method must be trustworthy

63

before it is called. This approach is traditionally used with all binary, non-
interpretable code. Basically, when binary code is accepted it gets full access to
the system resources within the restrictions declared for the current user by an
underlying operating system.

3.3.4 The security manager

While the class loader, class file verifier and safety features built into Java are
intended to enhance the internal integrity of the JVM instance and application it
is running, the security manager acts as a central point for access control. The
security manager works within a running JVM and controls access to external
resources. It defines the outer boundaries of the sandbox and, because it is
customizable, a custom security policy can be defined for the application. The
Java API supports the custom security policy by asking the security manager for
permission before it takes any action that can be considered as unsafe. Asking
for permission is done by invoking check methods on the security manager
object - for example, the checkWrite() method determines whether or not a
thread is allowed to write to a specified file. Use of these methods defines the
custom security policy of the application. Prior to Java version 1.2 these check
methods were the only way of establishing a custom security policy because
java.lang.SecurityManager was an abstract class and had to be implemented - in
other words, the developer had to write his own security manager by subclassing
the abstract SecurityManager class. While providing flexibility, this
customizability of the security manager is a potential security threat because
writing an own security manager is a difficult task and includes many pitfalls
that can lead to security holes at runtime [20, pp. 62—68]. Version 1.2 introduced
concrete implementation of the SecurityManager class and allows the developer
to define a custom policy in an ASCII file instead of in a code. The policy file
was presented in Chapter 3.3.1.

3.3.5 The protection domain and access control mechanism
A domain, as defined earlier, is a set of objects that are accessible to a principal -

i.e. an entity in a computer system to which authorizations are granted — and,
therefore, Java's sandbox is, in a sense, a protection domain with a fixed

64

boundary [22]. Permissions are not granted to classes and objects directly but
they belong to protection domains to which permissions are granted. This is
depicted in Figure 22. The protection domain is defined with a policy file, the
structure of which is defined in 3.3.1. The class loader gets information about
the signer and the codebase from the policy file and creates a CodeSource
object.

grant codebase "http://www.vtt.fi",

{

permission java.io.FilePermission "foo.txt",
"read";

b

Wolf.class Protection domain 1

grant codebase "/home/jho",

{

permission java.util.PropertyPermission
"java.home", "read";

permission java.util.PropertyPermission
"user.home", "read";

permission java.io.FilePermission "foo.txt",
“read”;

h

Lynx.class

Protection domain 2

Fox.class

Figure 22. Mapping a classto a protection domain.

The access controller is responsible for enforcing the default security policy
mechanism that uses stack inspection to determine whether potentially unsecure
action should be permitted. The class java.security.AccessController provides
this functionality and is not an object but a collection of static methods wrapped
to one class. The method checkPermission that was mentioned earlier is a
member of the AccessController class. This is the most important because of its
responsibility for deciding whether the particular action is allowed or not. If
permission is granted, checkPermission() simply returns without a return value,
but if permission is denied, an AccessControllerException is thrown. Java’s
default security manager always calls the access controller’s checkPermission()
method and, therefore, the access controller is practically responsible for every
threatening action that is taken. The access controller's checkPermission()
method ensures that every stack frame has permission to perform a threatening
action. Figure 23 illustrates how every stack frame is indirectly associated with
each set of permissions. The stack is inspected from top to bottom and when the
access controller encounters a frame without permission, an exception is thrown.

65

Protection domain
with set of permissions

Class

Method

Stack frame

Figure 23. Associating stack frame to set of permissions.

3.4 Security management in Java
3.4.1 Code signing and authentication

An important part of Java’s security model is the support for authentication
(since Java 1.1). Authentication allows the developer to establish multiple
security policies by making a sandbox that has different privileges, depending
upon who has signed the code. Thus more trust enables more privileges to the
application. Authentication, as defined in Chapter 2.1, allows the receiver to
verify that the code has come from a trusted source and that the class file itself
has not been altered by some malicious third party.

Java’s authentication is based on public key infrastructure and is described in
more detail (along with hash codes and digital signatures) in Chapter 2.4. Each
file, class file or associated data file must be placed into a JAR file, which is a
platform-independent file format that collects multiple files into one. This makes
downloading of applet and associated files more efficient than loading files one
by one. Since Java 1.2, JDK has had a tool called jarsigner that is used to sign
the entire JAR file. The signing and authentication processes are depicted in
Figure 24. First, jarsigner generates a hash code of the contents of the JAR file.
Second, the resulting hash will be signed using the developer’s private key.
Finally, the outcome of the process - the encrypted hash code, i.e. digital

66

signature - is added to the JAR file. Anyone receiving this signed JAR file can
authenticate it, ensuring that it has not been altered en route to the receiver and
that it really was signed by the claimed developer (the latter is possible only if
the sender and the receiver share the same certification authority). Signing and
authentication in JDK1.2 are done with the same tool, jarsigner.

JAR file
calculate

one-way
hash

JAR file

unencrypted
class files
and
data files

calculate
one-way
hash

unencrypted
class files
and
data files

compare

calculated
hash
for
decrypted equality
hash

N

signed hash

sign hash
with private
key

private key

decrypt
hash with
public key

public key

Figure 24. Digitally signing and authenticating a JAR file.

3.4.2 JDK's security-related tools

The Java development kit has three useful tools that help to set security policies,
and manage keys and applications: keytool for key and certificate management,
jarsigner for generating signatures as described above and policytool for the
creation and modification of policy files.

Keytool is a command line tool that enables users to manage their keypairs and
certificates that are stored in keystore. Sun Microsystems provides built-in
implementation of keystore named JKS. Each key is protected with a password -
as is the entire keystore's integrity. JKS keystore supports multiple keypair
generation and digital signature algorithms via service provider interface (SPI).
The default keypair generation algorithm is DSA and with that signature
algorithm is SHA1withDSA. If the keypair generation algorithm is RSA, the
signature algorithm is MD5withRSA by default.

67

Keytool handles X.509 certificates versions 1, 2 and 3 and is able to generate
certificate signing requests which are sent to the certification authorities for
signing. The certification authority returns the issued certificate (or chain of
certificates), which is then imported to a keystore.

Jarsigner is atool for signing Java archive files. Signing and authenticating the
jar file is described in the previous chapter. Jarsigner uses key and certificate
information from a specified keystore. The signed jar contains a copy of the
certificate for the public key corresponding to the private key used for signing.
Furthermore, Jarsigner is capable of verifying signed jar files. With asigned jar
fileit is possible to assign different privileges to applications that are signed with
different keys.

The policy tool is a graphical tool for specifying, generating, editing, exporting
or importing a security policy without need to know about the syntax of the
policy file. A used keystore can be defined to find the information specified in
the SgnedBy part of a policy file. Figure 25 illustrates a screenshot from the
policy tool with the policy entry window opened. In the policy entry window it
is possible to create new policies, or modify existing ones, by defining the
codebase and signer and adding, editing or removing permissions.

Sy e R

Ll I B

e e Ferwwan | Bl Pemisan | Gsswees dnrvmnnn

BT NI | I i ST L L A L
BT L PP e AL P, el cleleis e

torw| e

Figure 25. Screenshot from the policy tool.

68

4. Middleware protection profile for the
networked home environment

4.1. Protection Profile (PP) Overview

The middleware protection profile was constructed in this work. This defines the
minimum functional security requirements for middlewares used in a home
environment where multiple computing platforms and physical networks, both
wireless and wired, exist and handle information which can partly be defined as
sensitive. The protection profile presented here adopts some terminology and
notation from certified protection profiles (e.g. Controlled Access Protection
Profile [23]). The home network is connected to a public network (i.e. the
Internet) via a secure gateway. The middleware of this PPs scope is capable of
advertising and registering new services, and authenticating and authorizing
users - which, in this system, can be considered as humans or services that use
other services in the virtual home environment (VHE). It is important to note
that ITEA's [24] definition of VHE differs notably from 3GPP's (3 Generation
Partnership Project) definition - which specifies VHE to be "a concept for
personal service environment portability across network boundaries and between
terminals." [25]. In the sense of the ITEA project, VHE is defined as a
networked platform for home appliances allowing plug-and-play communication
and shared communications between in-home appliances and external services
supporting mobile and stationery terminals with a variety of user interfaces.

4.2. Target of evaluation (TOE) description

The purpose of the middleware is to advertise and provide services in a reliable
and secure way, both from the in-home network and from public networks via
proper authentication. The middleware hides the underlying operating system,
physical network and transport media from the application and provides security
services to it. The home network is dynamic in the sense that clients can register
with the network and unregister from it at any time.

69

The middleware defined in the ITEA-VHE project allows users to do the
following tasks:

1. Build a home network by just switching them on and, optionally, plugging
them into a wired network

2. Control in-home appliances with various terminals having different kinds of
user interfaces

3. Access networked home appliances from the outside world through public
networks

4. Personalize in-home and external services.

The main concepts of the VHE are described in Figure 26, which also depicts the
boundaries of the in-home network and public networks. Users of the TOE
consist of human users and applications or services that have registered (or are
attempting to register) themselves with the network. A mobile phone or other
client that the human user utilizes to access registered services can also be
considered users of the VHE whether they provides service(s) or not. The VHE
client is identified and authenticated and its resources (CPU, keypad, and screen)
are examined to provide the appropriate user interface (UI) for accessing the
desired service. Users are able to use appropriate services remotely over
untrusted public networks. Users are also able to download applications and
install services to the network. A service can be updated, removed and installed
remotely by the service provider. The service provider can be, for example, the
local cable television channel distributor from whom the home owner buys
watching time for a limited period and, when the contract expires, the service
stops and it is removed from the services list. The service provider can only
perform administrative actions on the service it has provided and, therefore,
owns.

70

/Public network \ mn-home network

VHE Devices

External Services lllumination

VHE Middleware Services Home network
Cable TV

r Occupancy control

Application Server

Email o

— Hi-fi set

Directory Service Home network <

Fax

™ TV set

Distribution Service

WWW Services .
/| Door locking
-
N /,
Media Gateway " ,/
\ \\ L
%, | Home network ”
>
’
,l
4
4
Internet P4 N
’ .
4 N\,
4 N,
l’ \\
Y2 N,
e VHE Terminal .
\ /’ CiiEE ‘\ Wired connection
_-r] Mobile Terminal H PC };- PDA Wirelffi_cgimecrion
- -
T~ -
Public Telecom ~ = 1=

networks

AN

Figure 26. Key concepts of the Virtual Home Environment.

4.3. TOE Security Environment

The middleware must provide some basic security functionality, including user
authentication and authorization and encryption of any sensitive information that
is sent to the public network. From the application developer’s point of view, the
security service must be transparent and authentication of new services must be
invisible to the human user if possible. The middleware security manager is
responsible for the authentication and authorization of any new downloaded
service. If it comes from a trusted source (for example, from the network
operator), it gains more privileges than an unknown application from an
untrusted source. Users are attached to security domains and all users within the
same domain have an equal set of privileges. The security manager can
optionally generate audit logs of appropriate security-related events in the
system and these logs are only readable by the authorized user.

71

4.3.1. Assumptions

From the security environment’s point of view, it can be assumed that the
underlying network is properly configured. Also, the reliability and availability
of the network are out of security system’s scope and are handled by the
directory service and underlying infrastructure. Furthermore, it can be assumed
that each service and user can be distinguished from the others by using multiple
alternative mechanisms.

Very few assumptions regarding the users and their behaviour can be made. An
in-home network does not necessarily have a skilled system administrator and
the average user is not aware of good security practices and is capable of errors
that can lead to compromised security. Therefore, it must be assumed that the
more complicated the security system and its administration, the more likely it
will be bypassed and left unused if possible. However, it is assumed that users
cannot access system resources without proper authorization and all information
that flows to and from the public network must pass through the security
manager. The security manager is also an arbitrator when making a connection
with another client or service in a local in-home network. The authorized
administrator of each service can perform administrative actions by accessing
the system locally or remotely.

4.3.2. Threats

The threats discussed here are addressed either by the TOE or the environment.
The threat agents are either unauthorized persons or external IT entities not
authorized to use the TOE itself. Unauthorized use of the system can be either
unintentional or an active attempt to harm security. The threats are listed in
Table 4.

72

Table 4. Security threats to the system.

Threat Explanation

T.NOAUTH Attempt to bypass the security of the system by an
unauthorized person.

T.REPEAT Authentication data may be guessed by an unauthorized user
repeatedly to gain access to the system.

T.REPLAY An unauthorized user may use valid authentication and
identification data to gain access to the system.

T.ASPOOF An unauthorized user from an external network may attempt
to disguise authentication data by spoofing the source
address.

T.MEDIAT An unauthorized user may send illegal data through the
system, which results in the exploitation of resources in the
network.

T.PROCOM An unauthorized person may be able to view and/or modify
security-related information that is sent over the network
(between a remotely located authorized administrator and
system).

T.AUDACC An attacker may escape detection because of a lack of audit
record reviews.

T.SELFPRO Modification of critical system security configuration data by
an unauthorized user.

T.AUDFUL An unauthorized person may destroy the audit records or

prevent the recording of future records - for example, by
exhausting the audit storage capacity (denial of service).

73

4.3.3 Security policies
Access control policy:

Controlled access protection policy [7] is where every individual user is
accountable for its actions. Users have to identify themselves and their identity
must be authenticated. Audit trails of security-relevant events, described in
Table 6, must be kept. Every user belongs to an appropriate security domain that
grants access rights to the user on a need-to-know basis. A separate domain for
security-related actions exists.

I nformation flow policy:
User roles at a general level:

e Home-network administrator
e Service administrator

e Service end-user.

The home-network administrator has the most privileges in the system, so that
he is able to perform administrative actions on all services, unlike the service
administrator, who is only able to work within the scope of the service and
access to other services is granted on a need-to-know basis. The end-user's rights
are also restricted to one service by default and no administrative actions can be
performed by the end-user. Additional access rights are also granted on a need-
to-know basis. The information flow of the TOE is illustrated in Figure 27. A
discretionary information flow is mediated by the distribution platform and all
data transmission to and from public networks is likely to be encrypted.

74

Distribution platform (In-home network)

Service A domain

Service
A

info

Service A Administrator

rmation flow{}

Service A end-user

=

discretionary

information flo

discretionary

information flo

Service B domain

Service B Administrator <)Z:>

information flow Service
~ B

Service B end-user <;:“>

I

discretionary
information flow

discretionary
information flow

Public networks

Figure 27. Information flow of the TOE.

4.4. Security Objectives

This section defines the security objectives of the TOE security functions (TSF)
and its supporting environment.

75

Table 5. Security objectives of the system.

Objective

Explanation

O.IDAUTH

The System must identify and authenticate the
claimed identity of all users before granting a user
access to the system. Untrusted users can get
restricted rights to use the system.

O.UDOMAIN

Users are divided into security domains based on
their roles on the system.

O.SELPRO

The system must be protected against unauthorized
users attempting to bypass, deactivate or tamper with
security functions.

O.ENCRYPTADM

The connection for remote administration of the
system and security-related system data should be
encrypted to ensure confidentiality.

O.ENCRYPTUSR

Remote access by a user can be encrypted if desired.

O.AUDREC

The system must provide the means to record audit
data associated with an individual user from selective
system events with authentic time stamps.

O.SECFUN

The TOE must provide functionality that enables an
authorized administrator to use the TOE security
functions and must ensure that only authorized
administrators are able to access that functionality.

O.MEDIAT

The TOE must mediate the flow of all information
between users on an internal network connected to
the TOE and users on an external network connected
to the TOE.

O.DATAINT

The origin and receipt of data, and the authenticity
and integrity of data can be optionally ensured via
digital signatures and message authentication codes.

O.SESSIONLMT

The number of concurrent sessions for the same user
must be limited to prevent misuse of resources.

76

4.5. Security Requirements

This chapter presents the functional security requirements divided into the
classes defined in Common Criteria version 2.1. At the end of the chapter, Table
7 summarizes these requirements.

Class FAU: Security audit

The audit class defines the requirements for gathering, analyzing and storing the
security audit data of security-related events. These collected audit records can
be used to examine possible security violations of the system. Each audit record
is associated with an individual user, as defined in the access control policy.
Secure audit storage is also present in this class to avoid unauthorized reading
and modification of audit trails. Each audit record has a reliable time stamp in
order to track when the auditable event took place. Every auditable event is
recognized here, based on the chosen level of audit data (minimal, basic or
detailed).

FAU GEN.1 Audit data generation

FAU GEN.1.1 - The TOE Security Function (TSF) shall
be able to generate an audit record of the following
auditable events:

1. Start-up and shutdown of the audit functions

2. All auditable events for the basic level of audit (all attempted
uses of the user security attribute administration functions and
basic identification of which user security attributes have
been modified)

FAU GEN.1.2 - The TSF shall, within each audit,
record at least the following information:

1. Date and time of the event, type of event, subject identity,
outcome (success or failure) of the event.

77

2. Each audit event type, based on the auditable event
definitions of the functional components included in the
PP/ST information specified in Table 6.

FAU GEN.2 User identity association

FAU SAR.1

FAU_STG.1

FAU GEN.2.1 - The TSF shall be able to associate each
auditable event with the identity of the user that caused
the event.

Audit review

FAU SAR.1.1. - The TSF shall provide [an authorized
administrator] with the capability to read [all audit trail data] from
the audit records.

FAU SAR.1.2. - The TSF shall provide the audit records in a
manner suitable for the user to interpret the information.

Protected audit trail storage

FAU STG.1.1. - The TSF shall protect the stored audit records
from unauthorized deletion.

FAU STG.1.2. - The TSF shall be able to prevent modifications
to the audit records.

78

Table 6. Auditable events.

Functional .
component Auditable event

FAU SAR.1 Reading of information from audit records.

FAU STG.4 | Actions taken due to audit storage failure.

FCO_NRO.1 | Identification of the information and destination, and a copy of
the evidence provided.

FCO_NRR.1 | Identification of the information and destination, and a copy of
the evidence provided.

FCS_COP.1 Any applicable cryptographic mode(s) of operation, subject
attributes and object attributes.

FDP_ACF.1 All requests to perform an operation on an object covered by
the SFP.

FDP_IFF.1 All decisions on request for information flow.

FDP_UCT.1 The identity of any unauthorized user or subject attempting to
use the data exchange mechanism.

FDP_UIT.1 The identity of any unauthorized user or subject attempting to
use the data exchange mechanism.

FIA AFL.1 The reaching of the threshold of unsuccessful authentication
attempts and the subsequent restoration to the normal state.

FIA UAU.1 All use of the authentication mechanism.

FIA UID.2 All use of the user identification mechanism, including the user
identity provided.

FIA_USB.1 Success and failure of binding of user security attributes to a
subject (e.g. success and failure to create subject).

FMT MOF.1 | All modifications in the behaviour of the functions in the TSF.

FMT MSA.1 | All modifications of the values of security attributes.

FMT MSA.3 | ¢ Modifications of the default setting of permissive or

restrictive rules.

e All modifications of the initial values of security attributes.

FMT MTD.1 | All modifications to values of TSF data

FMT SMR.1 | Modifications to the group of users that are part of a role.

FPT STM.1 Changes to the time

FTA MCS.1 | Rejection of a new session based on the limitation of multiple

concurrent sessions.

79

FAU STG.4 Prevention of audit data loss

FAU STG.4.1. - The TSF shall overwrite the oldest stored audit
records.

Class FCO: Communication

The class FCO concentrates on the security requirements of information
transportation, non-repudiation of the originator and receipt of transmitted
information - i.e. assurance of the identity of both data transmission parties.
Basically, non-repudiation means that the originator cannot deny having sent the
message nor can the receiver deny having received it. In most cases the identity
of the originator or receiver is the identity of the user who sent or received the
information.

FCO_NRO.1 Non-repudiation of origin

FCO_NRO.1.1. - The TSF shall be able to generate evidence of
origin for transmitted Service proxy at the request of the receiver.

FCO NRR.1 Non-repudiation of receipt

FCO NRR.1.1. - The TSF shall be able to generate evidence of
receipt for transmitted service proxy at the request of the

originator.

Class FCS: Cryptographic support

This class is used to implement cryptographic functions in the system. These
functions include identification, authentication and encrypted data transmission.
The FCS class comprises two classes: cryptographic key management
(FCS_CKM) and cryptographic operation (FCS_COP). FCS_CKM concentrates
on the management of keys while FCS COP takes care of cryptographic
functions - i.e. use of cryptographic keys. Cryptographic operation typically
denotes digital signature generation and verification, cryptographic checksum
generation and verification (message authentication), data encryption and
decryption.

80

FCS COP.1 Cryptographic operation

FCS COP.1.1. - The TSF shall perform decryption, encryption,
digital signatures and message authentication in accordance with
a specified cryptographic algorithm to be defined later, using
widely accepted standards and cryptographic key sizes of
appropriate length that meet the following: standard key lengths
accepted by cryptographic protocols (e.g. S3.)

Class FDP: User data protection

This class specifies requirements relating to protecting user data. FDP is used to
construct traditional access control models, e.g. the discretionary access control
and mandatory access control that were presented in Chapter 2.3.1. It specifies
the access control in terms of operations, which can be, for example,
“read/write” operations or more complex operations like “update the database”.
The access control policy is the policy that controls access to the information
container. The information flow policy controls access to the information itself,
independently of the container. The policies focus on satisfying system's
confidentiality, integrity and availability requirements. All objects should be
subjected to at least one security policy and the policies should not be in conflict
with each other.

FDP_ACC.1 Subset access control
FDP_ACC.1.1. - The TSF shall enforce the access control SFP

defined in Chapter 4.3.3 on all subjects acting on behalf of the
user within TSC.

FDP_ACEF.1 Security-attribute-based access control

FDP_ACF.1.1 - The TSF shall enforce the access control SEFP on
objects based on the following types of subject security attributes:

1. The user identity and domain membership(s) associated with
the subject

81

FDP_IFC.1

FDP_IFF.1

FDP UCT.1

FDP_UIT.1

2. Audit records associated with individual users

3. Other relevant security attributes.
Subset information flow control

FDP_IFC.1.1 - The TSF shall enforce the information flow
control SFP on all subjects acting on behalf of an authenticated
user, information and operations that caused controlled
information to flow to and from the controlled subjects covered by
SP.

Simple security attributes

FDP_IFF.1.1. - The TSF shall enforce the_control information
flow SFP based on the following types of subject and information
security attributes:

1. Presumed addresses of source subject and destination
subject.

2. Subject's security domain.

3. Other relevant security attributes.

Basic data exchange confidentiality

FDP UCT.1.1. - The TSF shall enforce the access control
SFP/control information flow SFP in order to transmit and
receive objects in a manner protected from unauthorized
disclosure.

Data exchange integrity

FDP UIT.1.1 - The TSF shall enforce the access control
SFP/control information flow SFP in order to transmit and
receive objects in a manner protected from modification, deletion,
insertion and replay errors.

82

Class FIA: Identification and authentication

One of the most important security requirements is the identification of the user
of the system. The FIA class specifies requirements not only for this but also for
verifying the claimed identity of the user. Identification and authentication is
required to associate users with appropriate security attributes, e.g. identity,
security domain and security role. Unsuccessful authentication attempt scenarios
are also met with this class.

FIA_AFL.1 Authentication failure handling
FIA AFL.1.1. - The TSF shall detect when a l|ater defined

number of unsuccessful authentication attempts occur related to
authorized TOE entity access.

FIA AFL.1.2 - When the defined number of unsuccessful
authentication attempts has been met or surpassed, the TSF shall
prevent the unauthenticated entity from successfully
authenticating until a later defined unit of time has passed.

FIA ATD.1 User attribute definition

FIA ATD.1.1. - The TSF shall maintain the following list of
security attributes belonging to an individual user:

1. Identity

2. Association of identity and authorized administrator role

3. Any other relevant security attribute

FIA_UAU.1 Timing of authentication
FIA UID.1.2. - The TSF shall require each user to be

successfully authenticated before allowing any other TSF-
mediated actions on behalf of that user.

83

FIA UID.1 Timing of identification

FIA UID.1.2. - The TSF shall require each user to be
successfully identified before allowing any other TSF-mediated
actions on behalf of that user.

FIA UID.2 User identification before any action

FIA UID.2.1. - The TSF shall require each user to be successfully
identified before allowing any other TSF-mediated actions on
behalf of that user.

FIA USB.1 User-subject binding

FIA USB.1.1. -The TSF shall associate the appropriate user
security attributes with subjects acting on behalf of that user.

Class FMT: Security management

The Class FMT is used to define requirements for the management of security
attributes in terms of users, subjects and objects. An example of such an attribute
is the user role. Management of these attributes can be assigned to an authorized
role that is responsible for security-related actions - e.g. reading and deleting the
audit trail. Security function management concentrates on access control and
authentication functions, and other user security characteristics.

FMT MOF.1 Management of security functions behaviour
FMT MSA.1 - The TSF shall enforce the access control SFP/

information flow SFP to restrict the ability to_enable and
disable the operation of TOE, audit functions, authentication

functions and security management functions.
FMT_MSA.1 Management of security attributes

FMT MSA.1 - The TSF shall enforce the access control SFP
information flow SFP to restrict the ability to modify and delete

84

the security attributes listed in FDP_IFF.1 to an authorized
administrator of the service.

FMT_MSA.3 Static attribute initialisation

FMT MSA.3.1. - The TSF shall enforce the_access control SFP/
information flow SFP to provide restrictive default values for
security attributes that are used to enforce the SFP.

FMT_MTD.1 Management of TSF data

FMT MTD.I1.1. - The TSF shall restrict the ability to modify and
delete the system clock and other system-related configuration

parameters.

FMT_SMR.1 Security roles

FMT_SMR.1.2. - The TSF shall be able to associate users with
roles.

Class FPT: Protection of TSF

This class has some duplicate components with class FDP but is more
concentrated on the protection of security-related functions, while FDP took care
of user data. This class includes the requirements for executing security-related
functions in separate domains, which ensures that the TSF has not been
subjected to tampering. Assignment of time stamps is included to enable audit
trails to achieve reliable audit records.

FPT _SEP.1 TSF domain separation

FPT SEP.1.2. - The TSF shall enforce separation between the
security domains of subjects in the TSC.

85

FPT STM.1 Reliable time stamps

FPT STM.1.1. - The TSF shall be able to provide reliable time
stamps for its own use.

Class FTA: TOE Access

The class FTA controls the user’s session, which is defined as the time between
the user identification/authentication and the moment when the user terminates
the session by de-allocating all related subjects. Session controlling includes the
requirements for limiting the number of sessions for the same user, which can be
set for one user domain or individual user.

FTA_MCS.1 Basic limitation on multiple concurrent sessions

FTA_MCS.1.1. - The TSF shall restrict the maximum number of
concurrent sessions that belong to the same user.

86

Table 7. Summary of functional security requirements.

Functional components

Audit data generation FAU GEN.1
User identity association FAU GEN.2
Audit review FAU SAR.1
Protected audit trail storage FAU STG.1
Prevention of audit data loss FAU STG.4
Selective proof of origin FCO_NRO.1
Selective proof of receipt FCO_NRR.1
Cryptographic operation FCS_COP.1
Subset access control FDP_ACC.1
Security-attribute-based control FDP_ACF.1
Subset information flow control FDP_IFC.1
Simple security attributes FDP_IFF.1
Basic data exchange confidentiality FDP _UCT.1
Data exchange integrity FDP_UIT.1
Authentication failure handling FIA AFL.1
User attribute definition FIA ATD.1
Timing of authentication FIA UAU.1
Timing of identification FIA UID.1
User identification before any action FIA UID.2
User-subject binding FIA _USB.1
Management of security functions behaviour FMT_MOF.1
Management of security attributes FMT MSA.1
Static attribute initialization FMT MSA.3
Management of TSF data FMT MTD.1
Security Roles FMT SMR.1
Domain separation FPT SEP.1
Reliable time stamps FPT STM.1
Basic limitation on multiple concurrent sessions FTA MCS.1

87

4.6. Rationale
4.6.1 Security objective rationale

This chapter presents the rationale of objectives and functional requirements,
and evidence mappings between threats and objectives, as well as between
objectives and requirements. The threats described in this protection profile are
meant to be faced with objectives and the corresponding functional
requirements. Thus, threats that have no direct solution with the functional
requirements presented in CC are omitted. The main reason for this is to
maintain consistency between threats, objectives and requirements to form a
complete and correct protection profile. One good example of unresolved threats
is a scenario where a malicious user tricks people into revealing a password or
other information needed for compromising a target system's security. This kind
of threat is almost impossible to prevent with technical solutions because it relies
on people's ignorance rather than the weakness of the system. Next, Table 8
shows how objectives meet the threats pointed out in Chapter 4.4.2, then the
motive for each requirement's existence is rationalized and, finally, dependencies
between the security functional requirements are presented.

Table 8. Mapping between threats and objectives.

Tl | > u| & Q =
El <| <| 0| <| 9| 2| &| 2
= <| al| @ ol ol ol 5| o
8l o| w| w| &| | | 2| @d| 2
SECURITY sl 2l x|l x| <| =2[a| <] <
OBJECTIVE = = = = — — — — — —
O.AUDREC X
O.DATAINT X | X X
O.ENCRYPTADM | X X X
O.ENCRYPTUSR X X X
O.IDAUTH X
O.MEDIAT X | X
O.SECFUN X | X | X X
O.SELPRO X X | X
O.SESSIONLMT X
O.UDOMAIN X X

88

4.7.2 Security functional requirement rationale
Audit data generation FAU_GEN.1

This component outlines what data must be included in audit records and what
event must be audited. It traces back to the following objective: O.AUDREC.

User identity association FAU_GEN.2

This component associates the user's identity with audit records to meet the
defined security policy associating audit records with an individual user. This
traces back to the following objective: O.AUDREC.

Audit review FAU_SAR.1

This component ensures that the audit trail is understandable and meets
following objective: O.AUDREC.

Protected audit trail storage FAU_STG.1

This component adds the requirement which states that the audit trail must
always be protected from tampering. Only the authorized administrator is
permitted to do anything to the audit trail. This traces back to the O.AUDREC
objective.

Prevention of audit data loss FAU_STG.4

This component makes certain that the audit trail does not become full and that
the oldest audit records will be overwritten so that resources will not be
compromised because of full audit trail storage. Furthermore, this component is
responsible for ensuring that no other auditable events than those defined in
FAU GEN.1 occur. This component helps to meet the following objectives:
O.SELPRO and O.SECFUN.

&9

Selective proof of origin FCO_NRO.1

This component ensures that receipt of a transmitted object can be verified. This
component traces back to the following objective: O.DATAINT.

Selective proof of receipt FCO_NRR.1

This component ensures that the origin of a transmitted object can be verified.
This component traces back to the following objective: O.DATAINT.

Cryptographic operation FCS COP.1

This component adds cryptographical functionality to a system to ensure that if
the TOE has to support remote administration, all traffic can be encrypted. It
also ensures that support for data integrity is ensured by using message
authentication codes and digital signatures. It traces back to the following
objectives: O.ENCRYPTADM, OENCRYPTUSR and O.DATAINT.

Subset access control FDP_ACC.1

This component accomplishes the use of a security policy in every action taken
in the system and specifies the scope of subjects, objects and operations under
control. The following objectives are met: O.SELPRO, O.UDOMAIN.
Security-attribute-based control FDP_ACF.1

This component specifies the rules of the security policy and traces back to the
following objectives: O.DOMAIN, O.SELPRO

Subset information flow control FDP_IFC.1

This component identifies the entities involved in the information control flow
SFP and helps to meet the following objective: O.MEDIAT.

90

Smple security attributes FDP_IFF.1

This component identifies the attributes of the users sending and receiving the
information in the SFP and, furthermore, the attributes of the information itself.
The policy is defined by stating the conditions under which information is
permitted to flow. This component traces back to, and helps to meet, the
following objective: O.MEDIAT

Basic data exchange confidentiality FDP_UCT.1

This component defines the requirement for ensuring confidentiality of user data
when it is transferred using an external channel between distinct TOEs. This
helps to aid the following objectives: O.ENCRYPTADM, O.ENCRYPTUSR.

Data exchange integrity FDP_UIT.1

This component provides integrity for user data in transit between the TSF and
another trusted IT product. At minimum, this means monitoring the data
integrity for modifications. This traces back to, and helps to meet, the following
objective: O.DATAINT

Authentication failure handling FIA_AFL.1

This component ensures that a user’s authentication failures are handled, so that
after a limited number of unsuccessful authentication attempts the user has to
wait a certain length of time before attempting to authenticate again. This helps
to meet the following objective: O.SELPRO

User attribute definition FIA_ATD.1

This component provides users with attributes to distinguish one user from

another and associate user-identities with roles chosen in FMT SMR.1. This
traces back to, and helps to meet, the following objective: O.IDAUTH

91

Timing of Authentication FIA_UAU.1

This component ensures that no security-related operations other than
1dentification are taken before authentication. This traces back to, and meets, the
following objectives: O.SECFUN and O.IDAUTH.

Timing of Identification FIA UID.1

This component ensures that no security-related operations are taken before
identification. This traces back to, and meets, the following objectives:
O.SECFUN and O.IDAUTH.

User identification before any action FIA_UID.2

This component ensures that before any operation can take place on behalf of a
user, the TOE idetifies the user’s identity. The following objective is met:
O.IDAUTH.

User-subject binding FIA USB.1

This component associates user security attributes with subjects acting on behalf
of the user after successful authentication. This traces back to, and helps to aid,
the following objectives: O.DOMAIN, O.IDAUTH, O.SELPRO

Management of security functions behaviour FMT_MOF.1

This component assures that the TSF restricts the ability to modify the behaviour
of security functions (e.g. audit trail management). This helps to meet the
following objective: O.SECFUN

Management of security attributes FMT_MSA.1

This component ensures that the TSF enforces the SFP to restrict unauthorized

modification of security attributes to authorized administrators. This helps to
meet the following objectives: O.MEDIAT, O.SECFUN, O.DOMAIN

92

Satic attribute initialization FMT_MSA.3

This component ensures that there is a default security policy for information
flow control security rules and this helps to meet the following objectives:
O.MEDIAT, O.SECFUN.

Management of TSF data FMT_MTD.1

This component ensures that only an authorized administrator is allowed to
modify and delete system-related configuration data and other security-related
information. This traces back to, and helps to meet, the following objective:
O.SECFUN

Security RolesFMT_SMR.1

Each FMT class component depends on this component and, therefore, this
requires the PP writer to choose the roles. This helps to meet the following
objective: O.SECFUN.

Domain separation FPT_SEP.1

This assures that the TSF has a domain of execution that is separate and cannot
be violated by unauthorized users. This helps to meet the following objective:
O.SECFUN.

Reliable time stamps FPT_STM.1

This component is needed by FAU_GEN.1 to gain reliable audit trails with the
correct time and date stamps. This traces back to, and helps to meet, the
following objective: O.AUDREC

Basic limitation on multiple concurrent sessions FTA_MCS.1

This ensures that one user cannot have an enormous number of concurrent
sessions open. This helps to meet the following objective: O.MEDIAT.

93

Table 9 depicts the mapping between the objectives and functional requirements
- that is, how the objectives are fulfilled within individual functional
requirements. For example, with the requirement Subset access control
(FDP_ACC.1), objectives related to users' security domain division and
protection against unauthorized use are met as defined earlier in this Chapter.

Table 10 depicts dependencies for functional requirements. Only directly
required dependency is shown; optional and indirect requirements are omitted. If
there is 'X' marked in the cell, it means that those two requirements are
dependent on each other - e.g. existence of the requirement Audit review
(FAU _SARI1) demands that Audit data generation (FAU GENI) also exists.
Each functional requirement is assigned a row and the X' in the cell denotes that
that column label component is required by the row label component. This table
proves that all dependencies are met and all obligatory requirements are present
in this profile.

Table 9. Mappings between objectives and functional requirements.

2 & =
g - e 2| z
AEIEIEEINEEEEE

Functional Requirement 3 2 é 4l & 2 E 212 d 5
S| c|o|c|E|3|c|c|d|s

Audit data FAU GEN.1 X

generation

User identity FAU GEN.2

association

Audit review FAU SARI X

Protected audit | FAU STG.1 X

trail storage

Prevention of FAU STG.4 x | x

audit data loss

Selective proof | FCO_NRO.1 X

of origin

Selective proof | FCO _NRR.1 X

of receipt

Cryptqgraphic FCS COP.1 x | x | x

operation

94

Subset access
control

FDP_ACC.1

Security-
attribute-based
control

FDP_ACF.1

Subset
information
flow control

FDP_IFC.1

Simple security
attributes

FDP_IFF.1

Basic data
exchange
confidentiality

FDP_UCT.1

Data exchange
integrity

FDP_UIT.1

Authentication
failure handling

FIA AFL.1

User attribute
definition

FIA ATD.1

Timing of
authentication

FIA UAU.1

Timing of
1dentification

FIA UID.1

User
identification
before any
action

FIA UID.2

User-subject
binding

FIA_USB.1

Management of
security
functions
behaviour

FMT MOF.1

Management of
security
attributes

FMT MSA.1

Static attribute
initialization

FMT MSAJ3

Management of
TSF data

FMT MTD.1

Security Roles

FMT SMR.1

95

on multiple
concurrent
sessions

Domain FPT SEP.1 X
separation

Reliable time FPT STM.1 X

stamps

Basic limitation | FTA MCS.1

Table 10. Security functional requirement dependency table.

FAU_GEN.1
FAU_GEN.2
FAU_SAR.1

FAU_STG.1

FAU_STG 4
FCO_NRO.1
FCO_NRR.1
FCS_COP.1
FDP_ACC.1
FDP_ACF.1

FDP_IFC.1

FDP_IFF.1

FDP_UCT.1

FDP_UIT.1

FIA_AFL.1

FIA_ATD.1

FIA_UAU.1

FIA_UID.1

FIA_UID.2

FIA_USB.1

FMT_MOF.1

FMT_MSA.1

FMT_MSA 3

FMT_MTD.1

FMT_SMR.1

FPT_SEP.1

FPT_STM.1

FTA_MCS.1

FAU_GEN

FAU_GEN

FAU_SAR.

FAU_STG.

X |] <

FAU_STG.

FCO_NRO

FCO NRR.

FCS_COP.

FDP_ACC.

FDP_ACF.

FDP_IFC.1

FDP_IFF.1

FDP_UCT.

FDP_UIT.1

FIA_AFL.1

FIA_ATD.

FIA_UAU.

FIA_UID.1

FIA_UID.2

FIA_USB.

FMT_MOF

FMT_MSA

FMT_MSA

FMT_MTD

X |] <

FMT_SMR

FPT_SEP.1

FPT_STM.

FTA_MCS.

96

5. LONTONEXTG Distribution platform
5.1 Introduction to LONTONEXTG environment

The software distribution platform examined here was a result of VIT’s research
project which aimed to develop a platform that supports the integration of home
appliances with an ubiquitous computing environment and enable the
development of home automation controlling services. This work developed a
security framework for this distribution platform to counter the security threats
identified in Chapter 4, along with the functional requirements. The distribution
concept itself does not require any particular technology but in the test phase
LON-automation and distribution concepts like Jini were observed. Some
requirements for the service provider were appointed:

e The service provider (for example, the electricity supplier) must produce
services so that the end-user is able to use them remotely - for example,
control the home's heating system while travelling by using compatible
terminal equipment.

e The service provider must programme the functions of the service using a
user interface and make the user interface accessible to the end-user. The
service provider is also responsible for setting user rights within its own
domain - i.e. the service's scope.

e Various types of services can be made and the service provider must always
have adequate knowledge about the target environment concerned.

Figure 28 illustrates the general structure of the system. The end-user is able to
browse the services using the directory service via terminal equipment. When
the desired service is found, the proxy of that service is downloaded to the end-
user's terminal. The proxy is the client part of the service software. The service
itself is usually a more complicated entity that is used via the proxy. In other
words, the proxy can be considered to be one view of a service and that view is
dependent on the terminal equipment's user interface and computing capabilities,
etc. The distributor server lies in the distribution platform, which is located in
the In-home network server and its purpose is to distribute and advertise the
services it maintains, and provide their proxies upon request. In the processing

97

platform all the services needed in the home environment are performed. The
processes are defined as being able to carry out their tasks independently and,
furthermore, must provide adequate interface to support the distribution._There
are various types of processes that can be performed:

e Controlling of entertainment equipment (TV, Video, etc.)
e Management of other electrical appliances (refrigerator, sauna stove, etc.)

e Controlling of intelligent system (automatic "away from home" mode)
The same process usually provides more than one view of the service, depending

on who is using it. The service administrator carries out different tasks than the
end-user and they thus need different user interfaces - i.e. views of the system.

98

18207

wiope|d Buissaooid

2 Axoid-

1 Axoud-
0 JawoIsNo
10§ SAVINIBS

X suoneoydde painquisia

A sul

X suoneaydde painquisia

A suonesydde painquisia

Axoid
@oueusUreWw-

Z Axoud jonuod-
T AX01d [0NU0D-

T T I T

Figure 28. Srructure of the system.

99

5.2 Example service

In this chapter an imaginary electricity supplier’s service is defined as a case
example to provide an understanding of a real application’s characteristics and
its security matters, and to observe the different aspects of the presented security
framework from the service’s point of view. With this service, the electricity
supplier is able to observe the homeowner's electricity consumption remotely,
without the need to visit the home to read the meter, and make use of this
information in charging for the use of the electricity. The homeowner is also
able to monitor the household’s electricity consumption and, in addition, is able
to report some fault conditions - for example, fuses that have blown - directly via
the homeowner's mobile phone or other terminal equipment. To make this
possible, the service must provide at least two kinds of user interfaces (Uls): one
to the electricity supplier and the other to the homeowner. A distinction between
the users must be made in order to provide the appropriate Ul to the user. In
addition to that, there are separate Uls depending on the terminal equipment in
question. This is depicted in Figure 29.

In above electricity supplier’s service there are various types of users:

e Service administrator: the authorized maintenance person from the
electricity supply company.

e Sarvice end-user: The homeowner who is interested in monitoring the
electricity consumption and wants to be informed of any fault condition in
the normal use of that electricity

e Service application developer: The trusted person who has signed the
service application with a private key that has been granted by a trusted CA
to present the identity of the electricity supply company.

The application developer does not use the program after it has been installed in
an electricity consumption meter. Any updates that might be made to the service
software are installed by the authorized service administrator. In other words, the
application developer is invisible to the homeowner because it interacts only
with the electricity supply company. The service administrator is responsible for
every maintenance activity in respect of the electricity meter, starting with

100

installing the meter. Most of the actions, despite the physica ingallation and
start-up of the service, can be done remotely. The end-user interaction with the
service is both remote and local - in other words, within the home network or from
apublic network outside the home.

=~

Administrator Ul for PC End-User

Administrator Ul for MT

<<provides>> PDA

Administrator Ul for PDA

/)
End-user Ul for PDA

End-user Ul for MT

Service

End-user Ul for PC

Figure 29. Providing user interface to terminal equipment.

5.3 Security framework of the system

The security framework of the distribution platform extends the distribution
concept with security services and security management enforcing the chosen
security policies and user domains. The distribution server itself can be started as
trusted to ensure the authenticity of the security services it manages. This is
illustrated in Figure 30. When the distribution server is started as trusted, it
authenticates the user, who is the administrator of the distribution server.
Checking the administrator’s certificate, which is defined as including the public
key associated with the user’s identity, does the authentication. The security
services associated with this trusted distribution service are digitally signed with

101

the administrator key - in other words, the administrator certifies the authenticity
of the security services. In this case, the security services denote the
authentication based on the X.509 certificates and key management services.
Some of these are only accessible by the administrator. Encrypted connections
with SSL are features of the secure distribution platform.

if steps
1-3 correct

Distributor server Distributof Server

4, starts as "trusted" enforcing
security policy verified by

2. provides
' credentials authenticated administrator

Security
if authentication failed

policy 1. certifies 3. verifies
: credentials
% or invalid security policy

Administrator \‘\

i 'S securi
policy
secure store

Figure 30. Starting distributor server as trusted.

The administrator’s certificate and security policy file are located in the secure
store, which is service-specific so that it is encrypted with the administrator's
public key. If a user tries to start the distributor server in trusted mode without
the proper policy or authentication, or the user fails, the appropriate exception is
thrown. The service's additional security policy must not exceed that assigned to
the distributor service. An example of Java's policy file for the service is the
following:

grant signedBy "ServiceAdm nistrator"”

{
perm ssion java. net. Socket Pernmi ssion "128.0.0. 1: 80",
"accept, connect, listen, resolve";
permi ssion java.io.FilePermssion "<<ALL FILES>>",
"read";
perni ssion java.security. SecurityPerm ssion "setPolicy";
b

102

Thus the degree of trust is decided by the signer defined in the policy file. If the
signer is unknown - i.e. the signer's public key or certificate does not exist in the
secure store - or if the service does not define the signer at all, the service is
considered as untrusted and the additional policies are neglected. This is also the
case when the signer defined in the policy file is unknown or non-existent. The
distributor server's default policy defines the degree of well-known signers' trust.

Figure 31 illustrates different user roles in the system. Service Provider, VHE
Service and Home server Operator are all special cases of end-user and all of
these roles expand the end-user’s operations within their own role-specific
operations. The home server operator is the administrator defined earlier - i.e.
the user who starts the distribution server for the service in question. This
service is delivered by the service provider who has the right to not only update
and install the service but also to start, stop and remove it. This is required in a
situation where, for example, the service to be installed is a paid service (e.g. an
extension to the electricity provider's service). The service provider is willing to
stop the service after the contract between the customer and the electricity
supply company expires. An example of a service update requirement could be
an online payment application. The service provider - in this case a bank - wants
to keep its service as secure as possible and thus wants to be able to update its
service and service proxy with new security patches or a more secure SSL client,
etc, without the end-user’s intervention. If a sufficiently skilled home server
operator exists, he may also want to be able to stop or completely remove
problematic services, install new ones downloaded from a network or update
services with new versions. A new VHE service looks up the service and
enforces the security policy dependant on the service’s trust. After listing these
requirements, it must kept in mind that the end-user’s most important
requirement is trouble-free and secure use of the service without thinking about
administrative issues - thus other roles are meant to help reach this requirement.
All user roles are capable of using the service within their own security domain.
This means that the service provider is able to perform administrative operations
only on the service it owns.

103

O

Use senice

multiple user domains
=> One security
profile/domain

~
~

-
> <4

End-user

ﬂ;%

VHE Senice Download SEMCe ome server Remove senvce Application
operator provider

-,

Update service

o O

Register to environment L . . .
Start distributor service start/stop sernvice Install Senice

Figure 31. User rolesin the system.

104

6. Discussion

This chapter analyzes the presented work against the research problems that
were described in the Introduction. Java as the implementation platform is
analysed from the security point of view.

Cryptographic protocols and secured network connections provide the means for
creating the secure in-home network. Security is never completely solved with
the cryptography, but it is a necessary part of it. Public key infrastructure and
mathematical algorithms, presented in this chapter, are widely used and accepted
technologies. The networked home environment is a computing environment
with many special characteristics and different kinds of applications with
different emphases on security requirements. For example, applications that
transfer personal data (social security numbers, etc.) require more confidentiality
and secure network connections than some other application that has no need for
sensitive data transfers across the network. Secure socket layer, described in
Chapter 2.6.2, is technology to establish a confident connection between a client
at home and a banking service somewhere in the network. The banking
application also needs a good authentication mechanism in order to avoid
malicious users making illegal money transfers, etc, and these requirements are
solved by using, for example, the X.509 certificates presented in Chapter 2.6.1.
The scope of users' access rights - i.e. authorization - must be covered by means
of user roles in the system. User roles in a networked home environment are
more complicated than in a “normal” office computing environment where, for
example, assumptions of skilled administrators are realistic.

Technology itself is not sufficiently adequate to solve security problems in the
system - implementation of security policies, services and procedures is also
important [4, pp. 79-83]. The security of the networked home environment starts
from defining requirements, good security policies and user roles. Good
software development practises, adequate documentation and quality processes
are also required when reaching the goal of the desired level of security.
Common Criteria is a good help when organising and defining the functional
and quality requirements of the system. This is discussed in Chapter 2.3.3. It also
provides a formal way in which to document threats, assumptions and system
requirements with a rationale for each requirement. Implementation of security
is made using the technologies presented in the following chapters to create a

105

system that provides the required confidentiality, integrity and availability.
Furthermore, the home network is connected to public networks and many
services are controlled by society with laws and regulations. Authentication can
be done using an electronic identification card issued by the government.
Technically speaking, it has taken on-board the certificate used for
authentication but more noteworthy is the fact that society officially emphasizes
securing networked transactions. The European Union is very visibly working to
come out with common European regulations concerning electronic commerce,
encryption standards and content transferred in networks. Society's action in
legal issues is required to create secure and trustworthy policies common to all
types of networks in the future and to gain users' acceptance of many networked
services to come.

6.1 User roles
In Chapter 5.3, four types of users were pointed out:

1. Service provider
VHE Service

Home server operator

Eal

End-user.

This derivation of all user roles from the end-user type enables the addition of
new user types, if needed, because all users share some common functionality
and, in addition, this enforces object-oriented thinking in the development phase.
In other words, user types 1-3 are all special cases of end-user as defined in
Chapter 5.3 and are extended from the end-user type, each adding its own
characteristic functionality and behaviour.

The home server operator is a somewhat vague user type and raises questions
that were not solved in this work. It is not physically defined who is able to act
as a home server operator but, after saying that, it must be emphasized that it has
administrative privileges to all services in the home network. Thus the home
server operator is able to start and stop all services if needed, and so on. If the
homeowner is skilled enough, it is likely that he will take responsibility for this

106

role but in practice this cannot be assumed. Another option is that the provider of
the set-top box, home computer or other computing platform that takes care of
the distribution services is the home server operator. In this case, the home
network is just another service that is maintained by the vendor. This melts the
service provider and home server operator into the one role and the homeowner
does not have to perform any administrative actions on the home network or its
services. It must be pointed out that in the last option the home service operator
is able to perform administrative actions only on the distribution service, not the
other services.

6.2 Functional requirements and security policy definition

Chapter 4 describes the security functional requirements for the networked home
environment in an implementation independent way. The form of the chapter
follows the Common Criteria standard. During the construction of this
protection profile, one tool, called CCToolbox (version 6.1¢€), was evaluated.
CCToolbox constructs the requirements defined in the CC by asking questions to
decide whether the requirement is needed or not. Some questions were quite
general : "Does the TSF manage cryptographic keys?", while others were
confusingly intricate. These questions were not considered to be helping the
thinking process during the requirements specification phase because answering
the questions can easily lead to absent-minded answering of questions.
Eventually, this introduces a long list of meaningless requirements. By
comparison, constructing the protection profile manually is an iterative process
where every requirement is carefully examined and rationalized. A system under
development must be familiar to the developer in order to be able to identify
threats to the system and to decide what the security framework is meant to protect
against. Table 11 depicts the advantages and disadvantages using CCToolbox and,
on the other hand, manual reasoning for the construction of the PP.

107

Table 11. Comparison between automated tool and manual reasoning.

CCToolbox

Manual reasoning

Advantages

e Automated tool for
generating the PP as an
output from user's inputs.

e Takes care of the PP's
consistency and
completeness.

e The writer has more freedom
to define the PP's structure
within the required parts of
the PP.

e The manual thinking process
evades meaningless
requirements and leads to a
more rationalized PP.

Disadvantages

e Hand-made changes to
generated PPs are difficult
to make.

e Using the tool without
basic knowledge about the
CC can lead to a list of
meaningless list of

e Needs more knowledge
about the Common Criteria
than the automated tool.

e The writer must be careful to
maintain consistency and
completeness, which
practically requires many

iterations during the
construction of the PP.

requirements.

e The end product of the
interview is heavily
dependent on how well the
questions are understood.
Generality of questions
can be a problem.

Chapter 4 also defined the access control and information flow policies common
to all services. It was done by exploiting the security models and general policies
defined in TCSEC. It is an absolute requirement for the distribution platform to
enforce common security policies to establish strict boundaries between the
services and to assure a safe and secure operation and controlled information
flow between the services. The services can define their own additional policies
and are enforced if the service's additional policy does not exceed the common
security policies. In other words, additional policies are restrictive by nature.
Policies are defined by emphasizing the system's user roles to add to the security
hierarchy of the user roles.

108

6.3 Java as the implementation platform

Java provides many advantages for implementing secure networked software. It
is the first programming language that has a security model and many APIs are
provided for creating authentication frameworks, encrypted connections and
cryptographic operations. Java provides relatively advanced tools for managing,
for example, different protection domains. This is a very important issue for
home environment as it is a combination of many protection domains and user
roles. Many applications must have access to some basic services of the
distribution platform and, in addition to that, some applications may need access
rights to other applications within the home network or outside the home. These
protection domains must be carefully examined in order to obtain reliable
security policies and strict boundaries between user roles and domains. An
example of this is the administrator of the application or service who must have
greater access rights than an end-user, but only within the service’s scope - i.e.
the protection domain where that service belongs. Java also gives good tools for
handling certificates and implement applications that use the secure socket
layers that were presented in Chapter 2.6.2.

Furthermore, it can be seen that, in the future, Java will be supported by many
application vendors. One good example of this is the Multimedia Home Platform
(MHP) that provides a generic interface to digital applications which are
enforced in digital media applications - i.e. digital television, set-top boxes and
so on. Up-to-date information about MHP can be found from Reference [26].

There is no bullet-proof solution to security and Java makes no exception. It
does have security problems, some of them because of the Java virtual machine
and others trace back to, for example, problems of public key infrastructure that
cannot be solved at the implementation phase.The idea of setting security
policies to applications is simple but, in practice, creating a consistent policy is a
rather difficult task and requires security expertise [21]. Questions like who can
be a trusted application developer, what roles are in the system and what kind of
policies users and applications of the system must enforce still have to be
answered - irrespective of the implementation platform and programming
language.

109

However, Java is evolving quite rapidly and the security model comes alongside
the Java platform. At the moment, Java can be seen as the most promising
platform for networked applications. Although competing technologies exist,
none of them integrate all the advantages of Java: platform independence, rather
good scalability and top-down security model.

6.4 Characteristics of PKl-based security services

The X.509 authentication framework presented in Chapter 2.6.1 is an example of
a public-key-infrastructure-based framework that uses certificates for
authentication of the user. X.509 is a widely accepted and used standard,
especially in the Internet world, and thus gives a common way for establishing
authentication. The Java platform supports the management of X.509 certificates
- in other words, it provides tools to generate, display, import and export X.509
certificates with keytool utility.

There are some fundamental problems with PKI that must be taken into
consideration when constructing, for example, PKI-based authentication services
or encrypted connections based on certificates. Because X.509 requires the
existence of a certification authority (CA) who is granted permission to issue
certificates to guarantee the customer's affability, it must be assumed that this
CA is trusted and is capable of storing its own private key securely. The
certificate includes a chain of public keys from issuer(s) that are considered as
trusted. If a malicious user can add his key to this chain, he can act as a legal
certificate issuer. It is also possible to entirely replace an issuer's real public key
with the evil one.

Another remarkable question is the use of multiple CAs. A certificate is made to
be unique within one CA - for example, it is possible to distinguish two
certificate owners with the same name - but this no longer holds with two or
more CAs and, furthermore, it is not reasonable to assume that the user knows
which CA the certificate is coming from. If the user does not notice where the
certificate came from, the user has no way of knowing who the another
participant in the communication is.

110

These problems are mostly caused by a lack of common established practices in
certification issuing and they are presumably to be around as long as CAs are
working as competing corporations, with varying levels of trust, and without any
kind of co-operation — such as cross-certification. After saying that, it must be
pointed out that PKIs - especially the X.509 framework - are quite widely used
and many services now and in the future — for example in third generation
mobile networks — are taking advantage of X.509 certificates, and that is likely
to lead to the evolution of well-designed certification authorities and co-
operation between them.

111

7. Conclusions

This thesis concentrated on the networked security issues in a networked home
environment. Security threats, technologies and typical user groups of a
networked home were examined. Java was inspected from the security point of
view as an implementation platform for networked applications and, as a case
example, a software distribution platform developed at VIT Electronics was
presented. In this work, the security framework for that distribution platform was
defined, starting from the requirements specification by using the Common
Criteria’s protection profile as a starting point for documentation of security
environment - i.e. threats, policies, users and requirements.

A networked home environment presents a special kind of computing
environment, with many differences compared to a typical office environment.
Home users, for example, represent a very heterogeneous group of users: skilled
computer users, elderly persons and children. Thus very few assumptions
concerning the user’s level of expertise can be made. Definition of security
functional requirements is possible only when the designer is familiar with the
system under development. Security threats must be pointed out because security
issues cannot be solved until there is knowledge of the threats that the security
framework is meant to answer.

Java presents a relatively promising environment for software developers to
come out with more secure networked software. Java’s application programming
interfaces enforce existing standards for cryptography and authentication
frameworks. In addition to this, Java’s internal security model is responsible for
various security checks inside the runtime environment — including, for example,
structural checks of the bytecode.

From the technical side, security threats are rather easy to answer with many
existing, mature and mathematically secure cryptographic techniques. Public key
infrastructure (PKI) provides a technical solution to ensuring the confidentiality
and integrity of the system. One example of such PKI presented in this thesis,
the X.509 authentication framework, is a widely accepted standard and is likely
to be used in the future as well. The home environment is very complex and is
connected to public networks, and this, along with different kinds of users,
presents many security issues that cannot be solved entirely by adding the latest

112

security technologies to the system. The need for common policies for user
authentication and a better organized hierarchy of certification authorities is
required to prevent the variety of certification authorities competing with diverse
trust.

113

[7]

References

Gove, P. (1961) Webster's Third New International Dictionary of the
English Language Unabridged. Springfield, Mass, Merriam-Webster.
2662 p.

Common Criteria version 2.1 (Part 1: Intro & General Model, Part 2:
Functional Requirements, Part 3: Assurance Requirements). ISO/IEC
15408. URL: http://www.commoncriteria.org (09.03.2001)

Glossary of Computer Security Terms (“Teal Green Book™) (1988).
National Computer Security Center, NCSC-TG-004. 52 p. URL:
http://www.radium.ncsc.mil/tpep/library/rainbow/index.html (09.03.2001)

Fournier, R. (1999) A Methodology for Client/Server and Web
Application Development. Prentice Hall, Inc. 648 p.

Security in open systems (1994). NIST Special publication 800-7, US
Department of Commerce. 300 p.

Howard, J.D. (1997) An Analysis of Security Incidents on the Internet
1989-1995. Carnegie Mellon University, 246 p.

Department of Defense Trusted Computer System Evaluation Criteria
(“Orange Book”) (1985). US Department of Defense standard, DoD
5200.28-std. 116 p. URL:
http://www.radium.ncsc.mil/tpep/library/rainbow/index.html (09.03.01)

Trusted Network Interpretation of the TCSEC (“Red Book™) (1987).
National Computer Security Center, NCSC-TG-005. 332 p. URL:
http://www.radium.ncsc.mil/tpep/library/rainbow/index.html (09.03.01)

Gollmann, D. (1999) Computer Security. John Wiley & Sons, Inc. 320 p.

Schneier, B. (1996). Applied Cryptography, Second Edition. John Wiley
& Sons, Inc. 758 p.

114

[18]

[19]

[20]

Kaksonen, R. (1997) Salaus ja varmennus sulautetuissa jirjestelmissa.
Diplomityd. Oulun Yliopisto, Séhkotekniikan osasto, Oulu.107 p .(In
Finnish)

Stallings, W. (1999) Cryptography and Network Security, Principles and
Practise, Second Edition. Prentice Hall, Inc. 569 p.

Krause, M. & Tipton, H. (1999) Handbook of Information Security
Management, Fourth edition. Auerbach Publications. 728 p.

Integrity in Automated Information Systems (1991) National Computer
Security Center Report 79-91.

Information Technology — Open System Interconnection — The Directory:
Authentication Framework (1993). Recommendation X.509. ISO/IEC
9594-8. 34 p.

Dierks, T. & Allen, C. (1999). The TLS Protocol, Version 1.0. RFC 2246.
IETF. URL: http://www.ietf.org/rfc/rfc2246.txt (23.03.01)

SSL Protocol Version 3.0 URL: http://home.netscape.com/eng/ssl3/ssl-
toc.html (02.01.2001)

Lindholm, T. & Yellin F. (1999). The Java Virtual Machine Specification,
Second edition. Addison Wesley, Inc. 473 p.

The Java Platform, A White Paper, Douglas Kramer, May 1996, Sun
Microsystems. URL : http://java.sun.com/docs/white/index.html (09.03.2001)

Venners, B. (1999) Inside the Java 2 Virtual Machine. McGraw-Hill, Inc.
703p.

Chen, E. Poison Java. IEEE Spectrum August 1999 (pp. 38—43)

115

[23]

[26]

Gong, L. & Schemers, R. Implementing Protection Domains in the Java™
Development Kit 1.2. In proceedings of the Internet Society Symp. on
Network and Distributed System Security, San Diego, CA, March 1998.
(pp-125-134)

Controlled Access Protection Profile (1999). Information Systems
Security ~ Organization, National Security ~ Agency. URL:
http://www.radium.ncsc.mil/tpep/library/protection_profiless CAPP-1.d.pdf
(09.03.2001)

ITEA. URL: http://www.itea-office.org (26.03.2001)

3G TR 21.905 Vocabulary for 3GPP Specifications (Release 4).Technical
Specification Group Services and System Aspects, 3" Generation
Partnership Project. URL: http://www.3gpp.org/ftp/Specs/2000-12/Rel-
4/21 series/ (09.03.2001)

What is MHP ?. URL: http://www.mhp.org/what is_mhp/overview.html
(09.03.2000)

116

ublished by Series title, number and

report code of publication

Vuorimiehentie 5, P.O.Box 2000, FIN-02044 VTT, Finland . .
\v’ I I Phone internat. +358 9 4561 VTT Publications 444
Fax +358 9 456 4374 VTT-PUBS—444

Author(s)

Holappa, Jarkko

Title

Security threats and requirementsfor Java-based
applicationsin the networ ked home environment

Abstract

This work presents the networked home environment from the security point of view.
Threats, technologies and the special characteristics of the users are examined.
'Common Criteria' is used in this thesis as a security evaluation criterion to construct a
protection profile for the software distribution platform of a networked home
environment. 'Protection profile' describes the target of the evaluation - the networked
home environment and its security environment, along with access control and
information flow policies. This environment sets the context for the security
requirements that are established as a result of this thesis to counter the threats that are
also identified in the protection profile as a part of the security environment.

Java is a relatively promising platform for the networked software because of its
security model, which has evolved since the first versions of Java. Java’s application
programming interfaces provide support for widely used cryptographic techniques and
public key infrastructure frameworks, including the X.509 authentication framework.
Java’s security features are applied to the software distribution platform developed at
VTT Electronics. The security framework for the platform is developed and presented
in this work.

'Home', as a distributed computing environment, presents many new issues when
compared to typical corporate office networks. Users are very heterogeneous and their
needs differ from one to another. The requirements specification must be done with
care, and by using knowledge of the system and existing security techniques to
develop a system that provides adequate confidentiality, integrity and availability for
its users.

Keywords

public key infrastructure, security policy, Java, distributed software, protection profile

Activity unit

VTT Electronics, Embedded Software, Kaitovéyléd 1, P.O.Box 1100, FIN-90571 OULU, Finland

ISBN Project number

951-38-5865-0 (soft back ed.)
951-38-5866—9 (URL:http://www.inf.vtt.fi/pdf/)

Date Language Pages Price
September 2001 English 116 p. B
Series title and ISSN Sold by
VTT Publications VTT Information Service
1235-0621 (soft back ed.) P.0.Box 2000, FIN-02044 VTT, Finland
1455-0849 (URL: http://www.inf.vtt.fi/pdf/) Phone internat. +358 9 456 4404
Fax +358 9 456 4374

	Abstract
	Preface
	Contents
	List of symbols
	1. Introduction
	2. Security Technologies
	2.1 Introduction and terminology
	2.2.1 Impersonating a user or system
	2.2.2 Eavesdropping
	2.2.3 Denial of Service
	2.2.4 Packet replay
	2.2.5 Packet modification

	2.3 General guidelines for designing trusted computer systems
	2.3.1 Department of Defense Trusted Computer System Evaluation Criteria
	2.3.2 Trusted Network Interpretation of the TCSEC
	2.3.3 Common Criteria for Information Technology Security Evaluation

	2.4 Cryptographic protocols and algorithms
	2.4 Cryptographic protocols and algorithms
	2.5 Data security: Three areas of concern
	2.5.1 Confidentiality
	2.5.2 Integrity
	2.5.3 Availability

	2.6 Authentication and authorization of a user
	2.6.1 X.509 Authentication Service
	2.6.2 Secure socket layer (SSL) and transport layer security (TLS)

	2.7 Auditing

	3. Java Technology and security
	3.1 Introduction
	3.2 The Java virtual machine
	3.2.1 Life cycle of the Java virtual machine
	3.2.2 The architecture of the Java virtual machine

	3.3 Java’s built-in security model
	3.3.1 Evolution of the sandbox model
	3.3.3. JVM's responsibility in Java security
	3.3.4 The security manager
	3.3.5 The protection domain and access control mechanism

	3.4 Security management in Java
	3.4.1 Code signing and authentication
	3.4.2 JDK's security-related tools

	4. Middleware protection profile for the networked home environment
	4.1. Protection Profile (PP) Overview
	4.2. Target of evaluation (TOE) description
	4.3. TOE Security Environment
	4.3.1. Assumptions
	4.3.2. Threats
	4.3.3 Security policies

	4.4. Security Objectives
	4.5. Security Requirements
	4.6. Rationale
	4.6.1 Security objective rationale
	4.7.2 Security functional requirement rationale

	5. LONTONEXTG Distribution platform
	5.1 Introduction to LONTONEXTG environment
	5.2 Example service
	5.3 Security framework of the system

	6. Discussion
	6.1 User roles
	6.2 Functional requirements and security policy definition
	6.3 Java as the implementation platform
	6.4 Characteristics of PKI-based security services

	7. Conclusions
	References

