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Abstract
The development of computers and the theory of doubly stochastic processes,
have led to a wide variety of applications of the hidden Markov models
(HMMs). Due to their computational efficiency, discrete HMMs are often
favoured. HMMs offer a flexible way of presenting events with temporal and
dynamical variations. Both of these matters are present in hand gestures, which
are of increasing interest in the research of human-computer interaction (HCI)
technologies. The exploitation of human-to-human communication modalities
has become actual in HCI applications. It is even expected, that the existing HCI
techniques become a bottleneck in the effective utilization of the available
information flow.

In this work it is given mathematically uniform presentation of the theory of
discrete hidden Markov models. Especially, three basic problems, scoring,
decoding and estimation, are considered. To solve these problems it is presented
forward and backward algorithms, Viterbi algorithm, and Baum-Welch
algorithms, respectively.

The second purpose of this work is to present an application of discrete HMMs
to recognize a collection of hand gestures from measured acceleration signals. In
pattern recognition terms, it is created an isolated user-dependent recognition
system. In the light of recognition results, the effect of several matters to the
optimality of the recognizer is analyzed.
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1 Introduction

1.1 Historical perspective

The roots of the theory of the hidden Markov models (HMMs) can be traced
to the 1950s, when statisticians were studying the problem of characteriz-
ing random processes for which the incomplete observations were avail-
able. Their approach was to model the problem as a ”doubly stochastic
process” in which the observed data were thought to be result of having
passed the ”hidden” process through a ”censor” that produced the ”ob-
served” process. The characterizing of the both processes was to be per-
formed using only the observed process. This led to the discovery of the
expectation-maximization (EM) algorithm, which is a general-purpose al-
gorithm for maximum likelihood estimation in a wide variety of situations,
known as incomplete-data problems. In the late 1960s and early 1970s,
Baum and his colleagues worked with the special type of probabilistic func-
tions of Markov chains, later known as hidden Markov models. As a result
of this, the forward-backward algorithm or the Baum-Welch reestimation
algorithm for the parameter estimation of the HMMs was revealed in a se-
ries of papers [4], [5], [6], [7], [8]. This algorithm can be seen as an early
version of the EM algorithm and it still is the basis of reestimation algo-
rithms used in the applications of the HMMs. [11][31]

The Baum-Welch algorithm offered an computationally effective solution
for the model parameter estimation or the training problem of HMMs. This,
together with the development of computers, has led to a wide variety of
practical applications of the HMMs. In the last two decades automatic
speech recognition (ASR) has been the major application area for HMMs.
A great deal of this work is due to Rabiner and his colleagues. Their classi-
cal works [36], [37], and [38] have made greatly known the basic theory of
HMMs and are referred also in other application fields. Recently, HMMs
have been applied to a variety of applications outside of speech recognition,
such as hand gesture [32] and handwriting recognition [12], pattern recog-
nition in molecular biology [3], fault-detection in dynamic systems [43],
and the modeling of error burst characteristics of communication channels
[46].
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1.2 Motivation of hand gesture recognition

With the massive influx of computers in everyday life, human-computer
interaction (HCI), has become an increasingly important part of our daily
lives. It is widely believed that as the computing, communication, and
display technologies progress even further, the existing HCI techniques be-
come a bottleneck in the effective utilization of the available information
flow. In recent years, there has been an increasing interest in trying to intro-
duce human-to-human communication modalities into HCI. This includes
a class of techniques based on the hand gestures. Human hand gestures are
an expressive means of non-verbal interaction among people ranging from
simple pointing actions to the more complex ones expressing feelings and
allowing the human communication. The exploitation of the hand gestures
in HCI requires the means by which the gestures can be interpreted by com-
puters. This process includes reasonable measuring and modeling of hand
gestures. [34]

The HCI interpretation of gestures requires that dynamic and/or static con-
figurations of the human hand, be measurable by the machine. The most
conventional approaches to measure hand gestures have employed cyber-
gloves [23]. In recent years, the computer vision community has also shown
a lot of interest recently in the recognition of human actions and gestures.
This is strongly enlightened by the review of Pavlovic et al. [34]. Sequen-
tial images of hand gestures are used in [18], [24], [30] and [32]. Alter-
native approaches for hand gesture measurement have also been presented:
a mouse is used as a two-dimensional hand gesture input device in [49],
whereas accelerometers have been employed in [15], [41], and [47].

In previously mentioned systems for hand gesture recognition, the appli-
cations are directly related to HCI or at least to HCI in computer operated
systems:
- the presentation of words of sign language in [18],
- robot teleoperation and programming in [23] and [49],
- visually mediated control system to control an active teleconferencing
camera in [30],
- graphic editor system operated by hand gestures in [32],
- arm gesture recognition system as an alternative method of computer in-
put for people with severe speech and motor impairment in [15],

8



- and musical performance control and conducting recognition systems in
[41] and [47].

HMMs offer a flexible way of presenting events with temporal and dynam-
ical variations. These advantages have been employed in [23], [29], [32],
[49], and [47]. A modified HMM, called partly-hidden Markov model is
used in [18] to hand gesture recognition. Other kind of statistical methods
are applied in [30] and [41].

1.3 Pattern recognition concepts

The goal of pattern recognition (PR) is to classify objects into a number
of classes or categories. These objects may be images, signal waveforms
or any type of measurements that are to be classified, which are referred
as patterns. In recent decades there have happened rapid developments
in computer technology and automation in industrial processes, increasing
need for information handling and retrieval. These facts have changed PR
from a theoretical research area of statistics into the high edge of mod-
ern engineering applications and research. PR techniques have become an
important component of intelligent systems and are used for data prepro-
cessing and decision making.

Pattern recognition does not include only one approach. It is a broad col-
lection of often loosely related knowledge and techniques. This is clearly
illustrated by the large overlap of PR with other areas, such as: signal pro-
cessing and systems, artificial intelligence, neural modeling optimization/
estimation theory, automata theory, fuzzy sets, structural modeling and for-
mal languages. In the historical course, the two main approaches to PR
are the statistical (or decision theoretic) and the syntactic (or structural)
approaches. But the recent advances in the use of neural networks (NNs)
have created a third and remarkable approach to PR techniques. [42]

Nowadays, there exist a wide range of applications of PR techniques. As
an example, for machine vision systems PR is of great importance. Typ-
ical applications of machine vision system are met in the manufacturing
industry, for automated visual inspection or for automation in the assem-
bly line. In inspection, manufactured objects are classified into ”defect” or

9



”nondefect” classes according to the on line PR system analysis made from
images of objects captured by control cameras. In an assembly line, objects
are located and classified in one of a number of classes, which are known
in advance. Character recognition is also an classical area for PR appli-
cations in automation and information handling. For example, an optical
character recognition system (OCR) consists of a light source, a scan lens,
a document transport, and a detector. At the output of the light-sensitive
detector, light intensity variation is translated into ”numbers” and an im-
age array is formed. After this, the usage of image processing techniques
leads to line and character segmentation. Finally, the PR software recog-
nizes the characters, or in other words, classifies each character into correct
”letter”, ”number”, or ”punctuation” class. This gives major advances in
further electronic processing and storing recognized ASCII characters is
much more efficient than storing scanned document images. Other impor-
tant areas for PR applications are: image preprocessing, segmentation, and
analysis, seismic, analysis, radar signal classification/ analysis,face and
gesture recognition, speech recognition, fingerprint identification, hand-
writing analysis, electrocardiographic signal analysis and medical diag-
nosis. [26][42][44]

In the definition of PR, we presented the concept of pattern, the object of
classification. It is equally important to represent the concept of feature,
which in broad sense, means any extractable measurement used. Signal
intensities are examples of low-level features. Features may also be sym-
bolic, numerical, or both. A symbolic feature could be color, whereas mass,
measured in grams, is an example of a numeric feature. Features may also
result from a process of feature extraction.In feature extraction it is very
often decreased the dimension of the measurement vector with, for exam-
ple, principal component analysis (PCA) [44, pp. 184 - 189] of the data.
Feature extraction can also produce higher level entities computed from the
measurement vectors. The key in this process, is to select and to extract fea-
tures that are computationally feasible, lead good classification results and
possibly reduce the raw measurements into a manageable amount of infor-
mation without discarding essential information [42]. Feature extraction
is not an obligatory part of the PR system. In many cases, a considerable
amount of computation is dedicated to action, which is called preprocess-
ing. By this it is often meant filtering or transforming of the raw data to aid
computational feasibility and feature extraction and minimize noise. The
typical structure of a PR system is presented in Figure 1.

10
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Figure 1. A typical structure of a PR system.

Usually, there are available data that have been classified or described in
advance, which makes it possible to train the classifier or the descriptor.
This is known as supervised pattern recognition. Another type of PR tasks
for which training data, with known class labels, are not available. In this
case, we are given a set of feature vectors and the goal is to unravel the
similarities, and cluster, in some sense, similar vectors together. This is
called the unsupervised PR or clustering. Such tasks appear in many appli-
cations in social sciences and engineering, such as remote sensing, image
segmentation, and image and speech coding.

1.4 Scopes of the research

Previous sections have shown that, there has been a wide interest in ap-
plying the HMMs in different kind of pattern recognition problems. This
together with the demand of computational tractability have given a good
reason to set the focus of the methodological research on discrete HMMs.
There exist several practical works like [28] or [37], which give a good
insight in the theory of discrete HMMs from more engineering like per-
spective. The work of Timo Koski [20] gives quite wide but not so accurate
analysis of the theory of discrete HMMs in the context of computational
biology. At the same time he leaves open questions to work out by the
reader. The unavailability of the uniform presentation of the theory of dis-
crete HMMs and related algorithms with accuracy of satisfactory gives one
of the main scopes of this research:
- to collect a mathematically uniform and satisfactory presentation of the
theory of discrete hidden Markov models growing from the background of
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discrete Markov chains.
Discrete Markov chains are considered in Chapter 2, while discrete hidden
Markov models with related algorithms are presented in Chapter 3. The
principle of Bayes classification is considered in Chapter 4.

The importance of hand gesture recognition was enlightened previously. In
Chapter 5, it is presented an application of discrete HMMs to recognize a
collection of hand gestures from measured acceleration signals. All signals
corresponding to an individual gesture are segmented in advance, and the
measurements are collected from one person. Thus, in pattern recognition
terms, the created recognition system is called an isolated user-dependent
recognition system. The left-right type of HMM has the desirable ability of
modeling signals whose properties change over time in a successive man-
ner, like speech. The same fact is present in hand gestures, too. This is
practically verified in [23], [47], [32], and [49]. It is clear by these works,
that the topology of HMMs leaves no questions. In speech recognition, it
has been developed standard ways of parametrizing the acoustic signals,
LPC or cepstral analysis. This is not the case, in hand gesture recogni-
tion, especially with acceleration signals. Several succeeding parametriz-
ing methods have been proposed in, for example, [23], [47], [32], and [49]
for hand gesture recognition with HMMs. In [47] this has been performed
to the accelerometer data. The parametrization or feature extraction of the
measured signals lays the basis for the design of the HMM recognizer. Dif-
ferent feature space leads to different choices with vector quantization:
- codebook generation, and
- reasonable size of the codebook,
or with model parameters:
- number of states per model, and
- sufficient amount of training sequences.
All this is performed to create a reliable recognizer, in other words, a rec-
ognizer with recognition results high enough. In the light of the recognition
results, that are presented in Chapter 6, previously presented problems are
considered in Chapter 7. [37]
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2 Stochastic processes and discrete
Markov chains

2.1 Probabilistic prerequisites

One of the most important application of the probability, is as a measure
of randomness. By a classical random experiment, it is meant an experi-
ment, whose outcome is not known in advance but for which the set of all
possible individual outcomes is known. This set is called the sample space

. Individual outcomes are called sample points or elementary events. An
event, denoted by A, is a subset of a sample space 
. An event A is said
to occur, if the random experiment is performed and the observed outcome
x 2 A.

In the following, it is presented the essential concepts and theorems of prob-
ability calculus for this work. For the proofs of the theorems see [45].
[14][40]

Definition 1 A Æ-algebra F on set 
, is a set of all subsets on 
 satisfying
conditions
(1) 
 2 F ;

(2) A 2 F =) Ac 2 F;where Ac = 
� A;

(3) A1; A2; ::: 2 F =)
1S
n

An 2 F:

From conditions (2) and (3), it follows immediately that the empty set � =


c 2 A and thus the intersection
1T
n

An =

�
1S
n

Ac

n

�
c

2 F .

Definition 2 A probability measure P on the pair (
; F ) is a function P :

F �! [0;1[, satisfying following properties:
(1) P (A) � 0, for all A 2 F ;

(2) A \ B = � =) P (A [ B) = P (A) + P (B);

(3) P (
) = 1;

(4) B1 � B2 � ::: � Bn � ::: and
1T
n

Bn = � =) lim
n�!1

P (Bn) = 0.

The triple (
; F; P ) is called a probability space or a probability field.

13



Theorem 1 Let triple (
; F; P ) be a probability space. Then
(1) P (�) = 0;

(2) P (A) + P (Ac) = 1;

(3) P (A [B) = P (A) + P (B)� P (A \ B), for all A;B 2 F ;

(4) A � B =) P (A) � P (B), for all A;B 2 F .

Definition 3 Events A1; A2; ::: ; An on a probability space (
; F; P ) are
called independent, if the joint probability equals

P (Ai1
\ Ai2

\ ::: \ Aij
) = P (Ai1

) � P (Ai2
) � ::: � P (Aij

); (1)

for all 1 � i1 < i2 < ::: < ij � n and j = 2; 3; ::: ; n.

Definition 4 Let A and B be events on a probability space (
; F; P ). The
conditional probability of A, given B, is defined by

P (AjB) =
P (A \B)

P (B)
; (2)

if P (B) > 0.

Theorem 2 Let A, B and C be events on a probability space (
; F; P ). If
P (B) > 0, then P (A \ BjC) = P (AjB \ C)P (BjC):

Proof. By previous definition the conditional probability becomes

P (A \ Bj C) =
P (A \ B \ C)

P (C)

=
P (A \ (B \ C))

P (C)

=
P (AjB \ C)P (B \ C)

P (C)

=
P (AjB \ C)P (BjC)P (C)

P (C)

= P (AjB \ C)P (BjC):

Theorem 3 LetB1; B2; ::: ; Bn be events on a probability space (
; F; P ),

with Bi \ Bj = �, for all i 6= j, and
nS
i=1

Bi = 
. If the event A 2 F , then

14



the conditional probability equals

P (BijA) =
P (Bi)P (AjBi)

nP
k=1

P (Bk)P (AjBk)
; (3)

for all i 2 f1; 2; ::: ; ng.

ProbabilitiesP (Bi) are called a priori probabilities and probabilitiesP (BijA)

are called a posteriori probabilities, for all i = 1; 2; ::: ; n.

Definition 5 A random variable X on a probability space (
; F; P ) is a
function X : 
 �! R, satisfying f! 2 
j X(!) � xg 2 F , for all x 2 R.

Theorem 4 Let Xi; i = 1; 2; : : : ; n, be discrete random variables on a
probability space (
; F; P ): Then the linear combination

c1X1 + c2X2 + : : :+ cnXn

is a random variable on (
; F; P ), for all ci 2 R; i = 1; 2; : : : ; n.

Definition 6 A random variable X : 
 �! R on a probability space
(
; F; P ), is called discrete, if the set D = fxj P (X = x) > 0g consists
of either a finite set, say x1; x2; ::: ; xJ , or an infinite countable set, say
x1; x2; ::: ; and in addition the sum equals

X
xi2D

P (X = xi) = 1: (4)

Definition 7 A distribution fX of a discrete random variable X on proba-
bility space (
; F; P ), is defined by

fX(xi) = P (X = xi); (5)

for all xi 2 D = fxjP (X = x) > 0g.

Theorem 5 If fX is a distribution of a discrete random variableX : 
 �!

R, then
(1) fX(x) � 0, for all x 2 R and
fX(x) > 0, x 2 fx1; x2; ::: ; xn; :::g � R;

(2)
P

xi2D

fX(xi) = 1:
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Definition 8 Let X : 
 �! R be a discrete random variable on a prob-
ability space (
; F; P ). The expected value or mean of X , � = E(X), is
defined by

� = E(X) =
X
xi2D

xiP (X = xi); (6)

provided that the sum equalsX
xi2D

jxijP (X = xi) <1; (7)

where D = fxj P (X = x) > 0g.

Condition 7 is called the absolute convergence.

Theorem 6 (Linearity of the expected value) Let Xi; i = 1; 2;

: : : ; n, be discrete random variables on a probability space (
; F; P ); for
which the expected values equal �

i
= E(Xi); i = 1; 2; : : : ; n. Then the

expected value of the random variable c1X1 + c2X2 + : : :+ cnXn equals

E (c1X1 + c2X2 + : : :+ cnXn) = c1E (X1) + c2E(X2) + : : :+ cnE(Xn) ;

for all ci 2 R; i = 1; 2; : : : ; n.

Definition 9 Let X : 
 �! R be a discrete random variable on a proba-
bility space (
; F; P ). The conditional expectation of X; on the condition
A 2 F; P (A) > 0, is defined by

E(XjA) =
X
xi2D

xiP (X = xijA); (8)

provided that the sum equalsX
xi2D

jxijP (X = xijA) <1; (9)

where D = fxj P (X = x) > 0g.

By the linearity of expectation and previous definition, the linearity of the
conditional expectation is clear.

Definition 10 Let X : 
 �! R be a discrete random variable on a prob-
ability space (
; F; P ). The variance of X , Æ2 = V ar(X), is defined by

Æ2 = V ar(X) = E[(X � �)2] =
X
xi2D

(xi � �)P (X = xi); (10)

where � is the expected value of X and D = fxj P (X = x) > 0g.
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2.2 Markov chains

Markov process is named after A. A. Markov who introduced the concept in
1907 with a discrete time and finite number of states. The denumerable case
was launched by Kolmogorov in 1936, followed closely by Doeblin whose
contributions pervade all parts of the Markov theory. Markov chains have
been used a good deal in applied probability and statistics. In these appli-
cations one is generally looking for something considerably more specific
or rather more general. In the former category belong for example finite
chains and birth-and-death processes, whereas in the latter belong various
models involving a continuous state space subject to some discretization
such as queuing problems. [10]

Definition 11 A stochastic process with state space S is a sequence fXtgt2T
of random variablesXt 2 S defined on the same probability space (
; F; P ).

The set T is called the parameter set. It is customary to think of the index
t 2 T as representing time. Thus state Xt; t 2 T , is thought as the state of
the process at time t. If T is finite or countable, the process is said to be a
discrete-time or discrete parameter process.

Definition 12 A stochastic process fXtgt2T with state space S on a prob-
ability space (
; F; P ) is a Markov process, if for any set of n + 1 values
t1 < t2 < ::: < tn < tn+1; ti 2 T; i = 1; 2; ::: ; n + 1, and any set of
states fx1; x1; ::: ; xn+1g � S, the conditional probability equals

P (X(tn+1) = xn+1j X(t1) = x1; X(t2) = x2; ::: ; X(tn) = xn)

= P (X(tn+1) = xn+1j X(tn) = xn) : (11)

Condition 11 makes it clear that the future of the process depends only on
the present state and not upon the history of the process. In other words,
the history of the process is summarized in the present state.

Definition 13 A Markov process fXtgt2T with state space S on a proba-
bility space (
; F; P ) is called a Markov chain, if the state space S is finite
or countable, in other words discrete.

17



With respect to time and state space discontinuity or continuity, Markov
processes are classified to four types: discrete-time Markov chain, continu-
ous-time Markov chain, discrete-time Markov process, and continuous-ti-
me Markov process.

For now on, we are dealing with discrete-time Markov chains with finite
state space S. Thus, for simplicity, it is set the parameter set (or time) T =

N , and the state space S = f1; 2; ::: ; Jg, where J 2 Z+; J < 1. By
these assumptions, the discrete-time Markov chain is denoted by fXng

1

n=0.
Unless otherwise stated, all random variables are assumed to be discrete
and defined on the probability space (
; F; P ).

For a discrete-time Markov chain it is useful to think of the process as mak-
ing state transitions at times n � 1. The conditional Markov probabilities

pij = P (Xn+1 = jj Xn = i); n � 0; i; j 2 S (12)

are assumed to be independent of the time-instant n and they are called
stationary one-step transition probabilities. In the case, that this probability
is not defined, it is set pij = 0. Property 12 is also known as homogenousity
property and Markov chain satisfying this property is called a homogenous
Markov chain.

The probabilities pij are usually presented in matrix form

P = (pij)
J;J

i=1;j=1
(13)

or

P =

0
BBBB@
p11 p12 ::: p1J
p21 p22 ::: p2J
...

...
. . .

...
pJ1 pJ2 ::: pJJ

1
CCCCA : (14)

Matrix P is to be called a transition matrix. Row i of P is the conditional
probability distribution of Xn given that state Xn�1 = i. It is natural to
expect the following stochastic constraints to the matrix P :

pij � 0; (15)

JX
j=1

pij = 1; (16)
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for all i; j = 1; ::: ; J .

The discrete Markov chain fXng
1

n=0 starts in an initial state X0 2 S, and
makes a state transition at the next time step in the sequence. The probabil-
ities

�i(0) = P (X0 = i); i 2 S; (17)

are called the initial state probabilities and define the initial state distribu-
tion �(0) = (�1(0); �2(0); ::: ; �J(0)) of the Markov chain. It is natural a
demand, that the sum equals

JX
i=1

�i(0) = 1: (18)

By the definitions of transition matrix P and initial distribution �(0), it is
clear that for each Markov chain with stationary transition probabilities,
matrix P and vector �(0) are unequivocally defined.

Theorem 7 Let fXng
1

n=0 be a Markov chain with initial distribution�(0) =
(�1(0); �2(0); ::: ; �J(0)) and transition matrix P = (pij)

J;J

i=1;j=1
. Then,

the joint probability equals

P (X0 = j0; X1 = j1; :::; Xk�1 = jk�1; Xk = jk)

= P (X0 = j0)
kY
i=1

P (Xji
jXji�1

)

= �j0(0)
kY
i=1

pji�1ji: (19)

Proof. See [10, pp. 5 - 6].

Example 1 (Binary information source) A Markov information
source is a sequential mechanism for which the chance that a certain symbol
is produced depends upon the preceding symbol. If the symbols may get
two distinct values, for example 0 and 1, we talk about a binary Markov
source. If at some stage symbol 0 is produced, then at the next stage symbol
1 will be produced with probability p and symbol 0 will be produced with
probability 1�p. If a symbol 1 is produced, then at the next stage symbol 0
will be produced with probability q and 1 will be produced with probability
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Figure 2. A state diagram of a binary information source.

1�q. Assuming a two-state Markov chain, we have one state corresponding
the production of symbol 0 and another state corresponding to symbol 1.
For this Markov chain we get a transition matrix 

1� p p

q 1� q

!
: (20)

A Markov chain is usually illustrated by a state diagram showing the pos-
sible transitions between states. See Figure 2.

Example 2 (Repeaters) Binary digits 0 and 1 are transmitted over a se-
quential system of n repeaters with noise. Let the probability that a digit
entering the k:th repeater is remained unchanged, be p, and let the proba-
bility for the reverse case be 1 � p. These probabilities are assumed to be
the same for all repeaters. It is also assumed that all repeaters work inde-
pendently of each other during the transmission of digits. Let X0 denote
a digit that enters the first repeater and Xk; k = 1; ::: ; n be the digit that
leaves the k:th repeater. It can be shown that the sequence X0; X1; ::: ; Xn

satisfies the Markov property.

Proof. By the definition of conditional probability

P (Xk = jkjX0 = j0; X1 = j1; ::: ; Xk�1 = jk�1)

=
P (X0 = j0; X1 = j1; ::: ; Xk�1 = jk�1; Xk = jk)

P (X0 = j0; X1 = j1; ::: ; Xk�1 = jk�1)
(21)

Since X0 = j0, the sequence of states j1; ::: ; jk�1; can be recovered from
the sequence of differences j1 � j0; ::: ; jk�1 � jk�2. Thus

P (X0 = j0; X1 = j1; ::: ; Xk�1 = jk�1)
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= P (X0 = j0; X1 �X0 = j1 � j0; ::: ; Xk�1 �Xk�2 = jk�1 � jk�2) :

By the assumption of the independence of the repeaters the differenceXk�

Xk�1 is independent of the difference Xh �Xh�1; h 6= k. Hence

P (X0 = j0; X1 �X0 = j1 � j0; ::: ; Xk�1 �Xk�2 = jk�1 � jk�2)

= P (X0 = j0)
k�1Y
i=1

P (Xi �Xi�1 = ji � ji�1)

and similarly

P (X0 = j0; X1 = j1; ::: ; Xk�1 = jk�1; Xk = jk)

= P (X0 = j0)
kY
i=1

P (Xi �Xi�1 = ji � ji�1):

By equation 21

P (Xk = jkjX0 = j0; X1 = j1; ::: ; Xk�1 = jk�1) = P (Xk�Xk�1 = jk�jk�1):

However,

P (Xk�Xk�1 = jk�jk�1) =

(
p ; if jk � jk�1 = 0

1� p ; if jk � jk�1 = 1 or jk � jk�1 = �1:

Also,

P (Xk = jkjXk�1 = jk�1) =

(
p ; if jk � jk�1 = 0

1� p ; if jk � jk�1 = 1 or jk � jk�1 = �1:

Thus,

P (Xk = jkjX0 = j0; X1 = j1; ::: ; Xk�1 = jk�1) = P (Xk = jkjXk�1 = jk�1):

Theorem 8 Let fXng
1

n=0 be a Markov chain. Then, conditional on, Xm =

i; m � 0; the sequence fXm+ng
1

n=0, is a Markov chain with initial state
distribution Æi = fÆijjj 2 Sg and transition matrix P , where Æ ij; i; j =

1; 2; ::: ; J; is the Kronecker delta. In addition, the sequence fXm+ng
1

n=0

is independent of the states X0; X1; ::: ; Xm.
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Proof. See [33, pp. 3 - 4].

Previous theorem shows, that given a Markov chain, a new chain with the
same transition matrix is generated in every individual discrete time instant.

Following the definition of initial distribution �(0), it is defined the state
distribution �(n), for state Xn; n � 1, as follows,

�(n) = (P (Xn = 1); P (Xn = 2); ::: ; P (Xn = J)); n � 1: (22)

Theorem 9 Let fXng
1

n=0 be a Markov chain. Then, for all integers n � 0,
the state distribution equals

�(n) = �(0)P n: (23)

Proof. See [33, pp. 3 - 4].

Corollary 10 For the distribution of state Xn, it holds

�(n) = �(n� 1)P; n � 1: (24)

Proof. Equation 23 implies, that

�(1) = �(0)P 1 = �(0)P: (25)

From assumption
�(k) = �(k � 1)P; k > 1; (26)

and equation 23, it follows, that

�(k + 1) = �(0)P k+1

= �(0)P kP

= �(k)P: (27)

Thus, the state distribution equals

�(n) = �(n� 1)P; n � 1: (28)
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Theorem 11 Let fXng
1

n=0 be a Markov chain. Then for all integersm; n �
0, the conditional probability equals

P (Xm+n = jj Xm = i) = P (Xn = jj X0 = i) = pij(n); i; j 2 S: (29)

Proof. See [33, pp. 3 - 4].

The conditional probabilities

pij(n) = P (Xm+n = jj Xm = i); m; n � 0; (30)

are called the n-step transition probabilities from state i to state j. These
probabilities are usually presented in a matrix form, as follows

P (n) = (pij(n))
J;J

i=1;j=1
; n � 0: (31)

For integer n = 0, it is set

pij(0) =

(
1; if i = j

0; if i 6= j
= Æij; i; j = 1; 2; ::: ; J: (32)

Corresponding matrix becomes

P (0) = (Æij)
J;J

i=1;j=1 =

0
BBBB@

1 0 ::: 0

0 1 ::: 0
...

...
. . .

...
0 0 ::: 1

1
CCCCA = I; (33)

which is the identity matrix.

Theorem 12 (Chapman-Kolmogorov equations) If fXng
1

n=0 is a Markov
chain, then

pij(n + 1) =
NX
k=1

pik(n)pkj(1); (34)

pij(m+ n) =
NX
k=1

pik(m)pkj(n); (35)

for all m; n � 0, and i; j 2 S:
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Proof. See [10, pp. 8 - 9].

Using matrix formalism, the equations 34 and 35 can be presented as fol-
lows

P (n+ 1) = P (n)P ; (36)

P (m+ n) = P (m)P (n); (37)

for all m; n � 0.

Theorem 13 The n-step transition matrix equals

P (n) = P n; (38)

for all n � 0.

Proof. Definition 33 implies, that

P (0) = I = P 0 (39)

and from equation 36 it follows

P (1) = P (0 + 1) = P (0)P = IP = P 1: (40)

Assumption
P (k) = P k; k > 1; (41)

and equation 36 imply, that

P (k + 1) = P (k)P = P kP = P k+1: (42)

Thus for all n � 0, the n-step transition matrix equals

P (n) = P n: (43)

Corollary 14 The Chapman-Kolmogorov equation can be written as

P (n+ 1) = P n+1 = P nP ; (44)

P (m+ n) = Pm+n = PmP n: (45)
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Example 3 We consider the situation in Example 2, where the transition
matrix equals

P =

 
0:65 0:35

0:35 0:65

!
:

It is to find the probability that a zero bit that is entered at the first stage
is received as a zero bit by the fifth stage. The problem can be understood
in the terms of n-step probabilities. It is actually asked the five-step prob-
ability p00(5). According to Theorem 13, the five-step probability matrix
equals

P (5) = P 5

=

 
0:5012 0:4988

0:4988 0:5012

!
:

Thus, the probability, that a zero bit will be transmitted through five stages
as a zero is

p00(5) = 0:5012:

[1, p. 223]

Definition 14 A Markov chain fXng
1

n=0 is said to be stationary, if the
probability

P (Xn = j) = �j; (46)

for all n � 0 and j 2 S.

In other words, for a stationary Markov chain, the probability of being in a
state, is independent on the discrete time instant. Probabilities � j, j 2 S,
define an invariant distribution for transition matrix P as follows,

� = (�1; �2; ::: ; �J); (47)

if condition P (X0 = j) = �j implies that P (X1 = j) = �j .

Theorem 15 Let fXng
1

n=0 be a Markov chain with transition matrix P .
The distribution � = (�1; �2; ::: ; �J) is an invariant distribution if and
only if

�P = P; (48)
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with the restrictions
JX
j=1

�j = 1; (49)

�j � 0: (50)

Proof. Assume, that � is an invariant distribution. Then conditions 49 and
50 are clearly satisfied. Because � is an invariant distribution, there holds
equation �(0) = �(1) = �. Thus equation 28 implies � = �P .

Assume now, that the distribution � satisfies the conditions 49 and 50. Let
the initial distribution be denoted �(0) = �. Thus, the equation 28 implies

�(1) = �(0)P = �P = �; (51)

which means that � is an invariant distribution.

Example 4 Suppose a telecommunication system, with three possible mes-
sages 1; 2; and 3, is a Markov chain with transition matrix

P =

0
B@

0:6 0:2 0:2

0:2 0:5 0:3

0:1 0:2 0:7

1
CA ;

and initial distribution �(0) = (0:5; 0:2; 0:3). According to Theorem
15, to find the invariant distribution � = (�1; �2; �3) it is to solve the
following system of equations:(

� = �P

�1 + �2 + �3 = 1(
(P T � I)�T = 0

�1 + �2 + �3 = 18>>><
>>>:

8><
>:
0
B@

0:6 0:2 0:1

0:2 0:5 0:2

0:2 0:3 0:7

1
CA�

0
B@

1 0 0

0 1 0

0 0 1

1
CA
9>=
>;
0
B@
�1
�2
�3

1
CA =

0
B@

0

0

0

1
CA

�1 + �2 + �3 = 18>>><
>>>:

0
B@
�0:4 0:2 0:1

0:2 �0:5 0:2

0:2 0:3 �0:3

1
CA
0
B@
�1
�2
�3

1
CA =

0
B@

0

0

0

1
CA

�1 + �2 + �3 = 1
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8>>><
>>>:
�0:4�1 + 0:2�2 + 0:1�3 = 0

0:2�1 � 0:5�2 + 0:2�3 = 0

0:2�1 + 0:3�2 � 0:3�3 = 0

�1 + �2 + �3 = 1

;

for which the solution equals � = (0:285714; 0:457143; 0:257143).

Theorem 16 Let fXng
1

n=0 be a Markov chain with initial distribution �(0)
and transition matrix P . Suppose that � is the invariant distribution, then
fXm+ng

1

n=0 is also a Markov chain with initial distribution �(0) and tran-
sition matrix P .

Proof. See [33, p. 33].

Theorem 17 Let fXng
1

n=0 be a Markov chain with finite state space S.
Suppose for some state i 2 S, that n-step probability

pij(n)! �j; n!1; (52)

for all states j 2 S. Then � = (�1; �2; ::: ; �J) is an invariant distribu-
tion.

Proof. See [33, p. 33].

The result of the previous theorem serves to indicate a relationship between
invariant distributions and n-step transition probabilities.

Definition 15 (Ergodicity) A Markov chain fXng
1

n=0 is said to be ergodic,
if there exists a probability distribution e = (e1; e2; ::: ; eJ) on the state
space S such that the state distribution

�(n)! e; n!1; (53)

for any initial distribution �(0).

According to the definition of a limit, the distribution e must be unique.
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Theorem 18 Let fXng
1

n=0 be an Markov chain with initial distribution
�(0) and transition matrix P: If

�(n)! e; n!1; (54)

where e = (e1; e2; ::: ; eJ) is a probability distribution. Then e is an
invariant distribution.

Proof. Equations 28 and 54 imply

e = lim
n!1

�(n) = lim
n!1

�(n+ 1) =

= lim
n!1

(�(n)P ) =

�
lim
n!1

�(n)

�
P = eP:

The interchange of order taking matrix multiplication and limit is permis-
sible, since the state space S is assumed to be finite.

Previous theorem shows the identity between the limiting distribution and
the invariant distribution for an ergodic Markov chain. On the other hand,
it states that an ergodic Markov chain becomes asymptotically stationary.

Theorem 19 Let fXng
1

n=0 be an Markov chain. If for all pairs of states
i; j 2 S, the transition probabilities satisfy the following

pij > 0; (55)

then for all states j 2 S the limit

lim
n!1

pij(n) = �j; (56)

exists and is independent of state i 2 S.

Proof. See [22].

Theorem 20 Let fXng
1

n=0 be an Markov chain. If for all pairs of states
i; j 2 S, the transition probabilities satisfy the following

pij > 0; (57)

then the limit
lim
n!1

�(n) = �; (58)

exists for any initial distribution �(0).
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Proof. Equation 23 gives

�(n) = �(0)P n;

for any initial distribution �(0). This can be expressed as

P (Xn = j) =
JX

k=1

pkj(n)P (X0 = k): (59)

From this it follows

lim
n!1

P (Xn = j) = lim
n!1

 
JX

k=1

pkj(n)P (X0 = k)

!

=
JX

k=1

lim
n!1

pkj(n)P (X0 = k): (60)

By assumption 57 and previous theorem equation 60 becomes

JX
k=1

lim
n!1

pkj(n)P (X0 = k) =
JX

k=1

�jP (X0 = k)

= �j

JX
k=1

�k(0) = 1:

Thus, a sufficient condition for a Markov chain with a finite state space to
be ergodic, is the condition pij > 0, for all states i; j 2 S.

Example 5 It is considered the binary information source in Example 1.
It is also assumed that the transition probabilities satisfy p; q > 0. The
transition matrix P is clearly positive, thus Theorems 17 and 19 imply, that
the invariant distribution � is any row of the following limit

lim
n!1

P (n):

To remind, the transition matrix equals

P =

 
1� p p

q 1� q

!
:
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By Theorem 10 the (n+1)-step transition matrix becomes

P (n+ 1) = P (n)P

=

 
p11(n) p12(n)

p21(n) p22(n)

! 
1� p p

q 1� q

!

=

 
p11(n)(1� p) + p12(n)q p11(n)p + p12(n)(1� q)

p21(n)(1� p) + p22(n)q p21(n)p + p22(n)(1� q)

!
:

Since pi1(n) + pi2(n) = 1; i = 1; 2; it is possible to eliminate pi2(n); i =
1; 2; resulting

P (n+ 1) =

 
p11(n+ 1) p12(n + 1)

p21(n+ 1) p22(n + 1)

!

=

 
p11(n)(1� p� q) + q p+ p12(n)(1� p� q)

p21(n)(1� p� q) + q p+ p22(n)(1� p� q)

!
:

Thus, for state 1, it is got two recurrence relations8><
>:
p11(n+ 1) = p11(n)(1� p� q) + q

p12(n+ 1) = p+ p12(n)(1� p� q)

= p12(n)(1� p� q) + p

It is shown in [33, p. 57], that both of these recurrence relations have unique
solutions of the form(

p11(n) =
q

p+q
+ A(1� p� q)n

p12(n) =
p

p+q
+B(1� p� q)n

;

where A and B are constants. Now, since the sum p+ q < 2, it follows that
the absolute value 0 < j1� p� qj = j1� (p+ q)j < 1. By this we get

p11(n) =
q

p+ q
+ A(1� p� q)n !

q

p+ q
; n!1;

and
p12(n) =

p

p+ q
+B(1� p� q)n !

p

p+ q
; n!1:

Thus the invariant distribution equals � = ( q

p+q
; p

p+q
).

Definition 16 Let fXng
1

n=0 be a Markov chain. State j 2 S is said to be
reachable from state i 2 S, if the n-step transition probability p ij(n) > 0,
for some integer n � 0.
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Definition 17 A Markov chain fXng
1

n=0 is said to be irreducible, if for all
pairs of states i; j 2 S, the state j is reachable from state i.

Example 6 We suppose a Markov chain with three states has the transition
matrix

P =

0
B@

0 0:7 0:3

0:3 0 0:7

1 0 0

1
CA :

It is found out, whether this Markov chain is irreducible. According to Def-
initions 16 and 17, we should find out whether there exist an integer n � 0

such that for all pairs of states i; j 2 S, the n-step transition probabil-
ity pij(n) > 0. By Theorem 13 this is done exploring the powers of the
transition matrix P :

P 2 =

0
B@

0:51 0 0:49

0:70 0:21 0:09

0 0:70 0:30

1
CA ;

P 3 =

0
B@

0:490 0:357 0:153

0:153 0:490 0:357

0:510 0 0:490

1
CA ;

and

P 4 =

0
B@

0:2601 0:3430 0:3969

0:5040 0:1071 0:3889

0:4900 0:3570 0:1530

1
CA :

Matrix P 4 is clearly positive and therefore, a transition can be made be-
tween any two states in four steps. [1, pp. 224 - 225]

Definition 18 Let fXng
1

n=0 be a Markov chain. States j 2 S and i 2 S,
are said to communicate, if i is reachable from j and j is reachable from i.
This is indicated by writing i$ j.

Definition 19 Let fXng
1

n=0 be a Markov chain. The first return time to the
state j is defined by

Tr = min fn > 0j Xn = jg ; (61)

conditional on, X0 = i.
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The probability for the first return time to state j equals

fjj(n) = P (X1 6= j; X2 6= j; ::: Xn 6= jj X0 = j): (62)

The probability of ever returning to state j is given by

fj = P (Xn = j; n > 0j X0 = j) =
1X
n=1

fjj(n): (63)

If fj < 1, then state j is called transient. In other words, the chain will
eventually leave the transient state without ever returning to it. If fj = 1,
then state j is called recurrent. The mean recurrence time or the mean
return time of state j is defined as the expected time of return

mj = E(Trj X0 = j) =
1X
n=1

nfjj(n): (64)

If mj = 1, then state j is said to be recurrent null. If mj <1, then state
j is said to be positive recurrent.

Definition 20 Let fXng
1

n=0 be a Markov chain. If there exists a state j 2
S, such that the transition probability equals pjj = 1, it is said that state j
is absorbing.

If the Markov chain enters an absorbing state, it never leaves it.

Definition 21 Let fXng
1

n=0 be a Markov chain and j 2 S an absorbing
state. The time to absorption is defined as

Ta = min fnj Xn = jg : (65)

If there is only one absorbing state for the Markov chain, it is possible to
renumber the states, so that the absorbing state becomes J . Let the expected
value for the time to absorption, on the conditional X0 = i, be denoted by

ki = E(Taj X0 = i): (66)

Shortly said, ki is referred to as the expected absorption time.
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Theorem 21 Let fXng
1

n=0 be a Markov chain with state space
S = f1; 2; ::: ; Jg, where state J is the only absorbing state. For each
non-absorbing state i, the expected absorption time ki is an element of the
vector

k = (k1; k2; ::: ; kJ�1);

where k is the minimal non-negative solution to the system of linear equa-
tions 8<

:
kJ = 0

ki = 1+
P
j 6=J

pijkj : (67)

Proof. See [33, p. 17].

Example 7 It is considered a left-right Markov chain having J states and
transition matrix

P =

0
BBBBBBB@

p q 0 � � � 0 0

0 p q � � � 0 0
...

. . .
...

...
0 0 0 � � � p q

0 0 0 � � � 0 1

1
CCCCCCCA
;

where p+ q = 1; p; q > 0. It is computed the expected time to absorption
given, that X0 = 1. State J is here the only absorbing state. It follows from
Theorem 21, that the expected absorption time ki; i 6= J , is a result of
finding the minimal non-negative solution to the following system of linear
equations

8>>>><
>>>>:

k1 = 1 + p11k1 + p12k2 + :::+ p1(J�1)kJ�1
k2 = 1 + p21k1 + p22k2 + :::+ p2(J�1)kJ�1

...
kJ�1 = 1 + p(J�1)1k1 + p(J�1)2k2 + ::: + p(J�1)(J�1)kJ�18>>>>>>><

>>>>>>>:

k1 = 1 + pk1 + qk2
k2 = 1 + pk2 + qk3

...
kJ�2 = 1 + pkJ�2 + qkJ�1
kJ�1 = 1 + pkJ�1

:
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Now, solving the last equation results

kJ�1 =
1

1� p
=

1

q
:

Applying this to the second last equation gives

kJ�2 = 1 + pkJ�2 + qkJ�1

= 1 + pkJ�2 + 1

,

kJ�2 =
2

q
:

Continuing the process gives

kJ�(J�1) = k1 = 1 + pk1 + qkJ�(J�2)

= 1 + pk1 + J � 2

,

k1 =
J � 1

q
:

Thus the expected time to absorption given, that X0 = 1, equals

k1 =
J � 1

q
:
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3 Discrete hidden Markov models

3.1 Formal definition and three basic problems

A hidden Markov model (HMM) is a stochastic process generated by two
interrelated probabilistic mechanisms. At discrete instants of time, the pro-
cess is assumed to be in some state and an observation is generated by
the random function corresponding to the current state. The underlying
Markov chain then changes states according to its probability matrix. The
observer sees only the output of the random functions associated with each
state and cannot directly observe the states of the underlying Markov chain.
This makes the Markov chain hidden. In the following, it is given the more
formal definition of an HMM. In the formulation of this chapter, it has been
followed the exemplar of [20].

Definition 22 A hidden Markov model is a parameter triple � = (A; B; �(0)),
with following characterizations:
(I) (Hidden Markov Chain) A Markov chain fXng

1

n=0 with a finite state
space S = f1; 2; ::: ; Jg ; stationary transition matrix

A = (aij)
J;J

i=1;j=1
; (68)

and initial distribution

�(0) = (�1(0); �2(0); ::: �J(0)): (69)

(II) (Observable Random Process) A random process fYng
1

n=0, with finite
state space O = (O1; O2; ::: ; OK). The processes fXng

1

n=0 and fYng
1

n=0

are related by the following conditional probabilities

bj(Ok) = P (Yn = OkjXn = j); n � 0: (70)

These probabilities are usually presented in the following matrix form

B = fbj(Ok)g
J;K

j=1;k=1
;

which is called the emission probability matrix. This matrix satisfies the
natural stochastic constraints

bj(Ok) � 0; (71)
KX
k=1

bj(Ok) = 1: (72)
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(III) (Conditional Independence) For any sequence of statesX0 = j0; X1 =

j1; ::: ; Xn = jn; the conditional probability of the observation sequence
Y = (o1; o2; ::: ; on) ; ol 2 O; l = 1; 2; : : : ; n; equals

P (Y0 = o0; Y1 = o1; ::: ; Yn = onjX0 = j0; X1 = j1; ::: ; Xn = jn; �)

=
nY
l=0

bjl(ol): (73)

It should be noted here, that with the notation ol, it is meant an observation
at time instant l, where ol 2 O.

Theorem 22 Let the triple � = (A; B; �(0)) be an HMM. For an obser-
vation sequence Y = (o1; o2; ::: ; on) the conditional probability equals

P (Oj �) =
nX

j0=1

� � �

nX
jn=1

P (Y; Xj �);

where

P (Y; Xj�)

= �j0(0)
nY
l=0

bjl(ol)
nY
l=1

ajl�1jl;

and X = (X0 = j0; X1 = j1; ::: ; Xn = jn) is a state sequence.

Proof. By Theorems 2 and 7, and condition 73 the joint probability becomes

P (Y; Xj�) = P (Y jX; �)P (Xj�)

=
nY
l=0

bjl(ol) �j0(0)
nY
l=1

ajl�1jl:

By rearrangement the last expression becomes

P (Y; Xj �) = �j0(0) bj0(o0)
nY
l=1

ajl�1jl bjl(ol):
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Now, by summing over all possible paths of state sequence the joint proba-
bility becomes

P (Y j �) =
JX

j0=1

� � �

JX
jn=1

P (Y; Xj �)

=
JX

j0=1

� � �

JX
jn=1

�j0(0) bj0(o0)
nY
l=1

ajl�1jl bjl(ol):

It is possible to see an HMM as a ”probabilistic mechanism” generating
observation sequences. The algorithm for this generation process, using
random number generator whose output is uniform on the interval [0; 1] ;
can be found in [25]. This algorithm is now presented here assuming an
HMM with parameter set � = (A; B; �(0)):

HMM Generator of Observations

(1) Partition the unit interval proportionally to the components of the initial
distribution �(0). Generate a random number and select a start state, X0;

according to the subinterval in which the number falls. Set time t = 1.
(2) Partition the unit interval proportionally to the components of ith row of
the emission probability matrix B. Generate a random number and select
an observation, ot; according to the subinterval in which the number falls.
(3) Partition the unit interval proportionally to the components of ith row
of the transition matrix A. Generate a random number and select the next
state, Xt; according to the subinterval in which the number falls.
(4) Increment time t by unit. If t � T , repeat steps (2)-(4), otherwise stop.

As a result of this algorithm an observation sequence Y = (o1; o2; :::

; oT ); assuming an HMM � = (A; B; �(0)); is generated.

For an HMM to be used in real-world applications, there exist three basic
problems of interest to be solved. These problems are introduced according
to the presentations in, for example, [36]:

(1) The Evaluation Problem.
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Given the observation sequence Y = (o1; o2; ::: ; oT ) and model � =

(A; B;

�(0)); it is to compute the probability of the observation sequence P (Y j �).

(2) The Decoding Problem.
Given the observation sequence Y = (o1; o2; ::: ; oT ) and the model � =

(A; B; �(0)); it is to find a state sequence X = (X1 = j1; ::: ; XT = jT ),
that is optimal in some meaningful sense.

(3) The Estimation Problem or Training Problem.
Given the observation sequence Y = (o1; o2; ::: ; oT ) ; it is to find the
parameters � = (A; B; �(0)) to maximize the probability P (Y j �).

The evaluation problem is already solved straightforwardly, according to
Theorem 22. Since the summation is performed over Jn+1 possible se-
quences, the total complexity becomes of the order 2(n+1)Jn+1 operations.
This makes an overwhelming problem as the length of the observation se-
quence grows. For this problem, it is presented the forward-backward pro-
cedure as a reasonable solution in the sequel.

There exist several ways to define the criteria of optimality in the decod-
ing problem. In practice, the most often used criteria, is to find the state
sequence j�0 ; j

�

1 ; ::: ; j
�

n
, that maximizes the probability

P (X0 = j0; X1 = j1; ::: ; Xn = jn; Y0 = o0; Y1 = o1; ::: ; Yn = onj �);

for a given observation sequence Y = (o1; o2; ::: ; oT ) : This is due to
the fact that, this calculation can be implemented by the Viterbi algorithm,
presented in the sequel.

There exist several ways of solving the estimation problem, also:

(1) Maximum likelihood method. In this method it is defined the optimal
model parameters as follows

^

�ML= argmax
�

P (Y j �): (74)

The computation of
^

�ML is done by using the Baum-Welch algorithm,
which is of fundamental and historical importance in the application of
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HMMs. [7]

(2) Minimum discrimination information method. This method is based
on minimization of a suitable Kullback distance and is developed in [13].

(3)Smooth learning algorithms. This technique is developed in [3] and
makes use of the gradient descent.

(4)Viterbi training. In this method it is tried to find the model parameters �
so as to maximize the parameter

V �(�) = max
all state sequences X

P (X; Y j �);

which is known from the problem of finding the optimal state sequence.
This method has been developed in [17] under the name of segmental k-
means algorithm.

3.2 Auxiliary properties of the conditional
distributions

For the exact mathematical analysis of the three basic problems of the hid-
den Markov modeling, it is presented, in the following, additional proper-
ties of the conditional distributions present in HMM. These properties are
given as theorems, for which the proofs are available in [28, pp. 202 - 206].
For simplicity, it is used the following notation

P (Ym = om; ::: ; YN = oN j Xn = jn; ::: ; XN = jN )

= P (Ym; ::: ; YN j Xn; ::: ; XN):

It is assumed silently the HMM � = (A; B; �(0)); which is omitted in the
expressions. The following three theorems show that the probability of a
finite length observation sequence emitted from an HMM, conditional on a
state sequence, depends only on a subsequence of the state sequence.

Theorem 23 For all integers n and m; 0 � n � m � N; the conditional
probability equals

P (Ym; ::: ; YN j Xn; ::: ; XN) = P (Ym; ::: ; YN j Xm; ::: ; XN):
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Theorem 24 For all integers n = 0; : : : ; N � 1 the conditional proba-
bility equals

P (Yn+1; ::: ; YN j X0; ::: ; XN) = P (Yn+1; ::: ; YN j Xn):

Theorem 25 For all integers n = 0; : : : ; N the conditional probability
equals

P (Y0; ::: ; Ynj X0; ::: ; XN) = P (Y0; ::: ; Ynj X0; ::: ; Xn):

The following three factorization theorems highlight the renewal properties
of the HMM.

Theorem 26 For all integers n = 0; : : : ; N the conditional probability
equals

P (Y0; ::: ; Ynj Xn) = P (Y0; ::: ; Ynj Xn)P (Yn+1; ::: ; YN j Xn):

The conditional probability P (Yn+1; ::: ; YN j Xn) is called the backward
variable, which is the probability of the emitted subsequence from time
n + 1 to the end N , on the condition, that the hidden Markov chain is in
state Xn at time n. Next two theorems are essential to find the recursion for
the computation of the backward variable.

Theorem 27 For all integers n = 0; : : : ; N the conditional probability
equals

P (Yn; ::: ; YN j Xn) = P (Ynj Xn)P (Yn+1; ::: ; YN j Xn):

Theorem 28 For all integers n and m; 0 � n � m � N; the conditional
probability equals

P (Ym; ::: ; YN j Xn; ::: ; Xm) = P (Ym; ::: ; YN j Xm):

The conditional probability P (Y0; ::: ; Yn; Xn) is called the forward
variable, which is the simultaneous probability of the emitted subsequence
up to time n � N and of the hidden Markov chain to be in state Xn at time
n. The last theorem is useful in finding the properties of this variable.

Theorem 29 For all integers n = 0; : : : ; N � 1 the conditional proba-
bility equals

P (Y0; ::: ; YN j Xn; Xn+1) = P (Y0; ::: ; YN j Xn)P (Yn+1; ::: ; YN j Xn+1):
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3.3 Evaluation problem and forward-backward
algorithm

The fundamental work [7] of Baum and Petrie created the computational
possibilities for the effective applications of HMMs. In [7] it is presented a
computationally effective solution to the evaluation or scoring problem for
HMM. This algorithm is called the forward-backward algorithm, which in
formal sense, is derived from the seven previous theorems presented. It is
again assumed silently the HMM � = (A; B; �(0)); which is omitted in
the expressions. The evolution of the forward-backward algorithm is based
on the utilization of the forward and backward variables defined previously.
In the sequel, the forward variable is denoted by

�n(j) = P (Y0 = o0; ::: ; Yn = on; Xn = j); 0 � n � N

and the backward variable is denoted by

�
n
(j) = P (Yn+1 = on+1; ::: ; YN = oN jXn = j); 0 � n � N:

For convenience, it is chosen �
N
(j) = 1; 8 j:

Theorem 30 For an observation sequence Y = (Y0 = o0; ::: ; YN = oN),
the joint probability equals

P (Y0 = o0; ::: ; Yn = on) =
JX
j=1

�n(j)�n(j):

Proof. By Theorem 2, the conditional probability equals

P (Y0 = o0; ::: ; Yn = on; Xn = j)

= P (Xn = j)P (Y0 = o0; ::: ; Yn = onj Xn = j): (75)

By Theorem 26 the right hand side this equation is factorized as follows

P (Xn = j)P (Y0 = o0; ::: ; Yn = onj Xn = j)

= P (Xn = j)P (Y0 = o0; ::: ; Yn = onj Xn = j) �

�P (Yn+1 = on+1; ::: ; YN = oN j Xn = j)

= P (Y0 = o0; ::: ; Yn = on; Xn = j) �

�P (Yn+1 = on+1; ::: ; YN = oN j Xn = j)

= �n(j)�n(j): (76)
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Now, we get

P (Y0 = o0; ::: ; Yn = oN) =
JX
j=1

P (Y0 = o0; ::: ; Yn = on; Xn = j)

=
JX
j=1

�n(j)�n(j):

Theorem 31 Let Y = (Y0 = o0; ::: ; YN = oN), be an observation se-
quence produced by an HMM. The forward variables �n(j) = P (Y0 =

o0; : : : ; Yn = on; Xn = j); 0 � n � N; j = 1; : : : ; J , result from the
following recursion process:

Initialization:
�0(j) = �j(0)bj(o0); j = 1; : : : ; J:

Recursion:

�n+1(j) =

"
JX
i=1

�n(i)aij

#
bj(on+1); 0 � n � N; j = 1; : : : ; J: (77)

Proof. By definition 2 the forward probability equals

�0(j) = P (Y0 = o0; X0 = j) = P (Y0 = o0j X0 = j)P (X0 = j)

= �j(0)bj(o0);

j = 1; : : : ; J: This makes the initialization sensible. Let the state j 2
f1; : : : ; Jg ; and n � 0; be arbitrary. By Theorem 29 and Definition 2,
the forward variable becomes

�n+1(j) = P (Y0 = o0; ::: ; Yn+1 = on+1; Xn+1 = j)

=
JX
i=1

P (Y0 = o0; ::: ; Yn+1 = on+1; Xn = i; Xn+1 = j)

=
JX
i=1

P (Xn = i; Xn+1 = j) �

�P (Y0 = o0; ::: ; Yn+1 = on+1j Xn = i; Xn+1 = j)
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=
JX
i=1

P (Xn = i; Xn+1 = j) �

�P (Y0 = o0; ::: ; Yn = onj Xn = i) �

�P (Yn+1 = on+1j Xn+1 = j): (78)

Again, by the definition of conditional probability, we get

P (Xn = i; Xn+1 = j)P (Yn+1 = on+1j Xn+1 = j)

= P (Xn+1 = jj Xn = i)P (Xn = i)P (Yn+1 = on+1j Xn+1 = j)

= aijbj(on+1)P (Xn = i): (79)

Since

P (Y0 = o0; ::: ; Yn = onj Xn = i)P (Xn = i)

= P (Y0 = o0; ::: ; Yn = on; Xn = i)

= �n(j);

then by equations 78 and 79 we get

�n+1(j) =
JX
i=1

P (Xn = i; Xn+1 = j)P (Y0 = o0; : : : ; Yn = onj Xn = i) �

�P (Yn+1 = on+1jXn+1 = j)

=
JX
i=1

�n(j)aijbj(on+1)

=

"
JX
i=1

�n(j)aij

#
bj(on+1):

A trellis structure for the recursive calculation of the forward variables is
presented in Figure 3. [37]

Theorem 32 Let Y = (Y0 = o0; ::: ; YN = oN), be an observation se-
quence produced by an HMM. The backward variables �

n
(j) = P (Yn+1 =

on+1; : : : ; YN = oN j Xn = j); 0 � n � N; j = 1; : : : ; J , result from
the following recursion process:

Initialization:
�
N
(j) = 1; j = 1; : : : ; J:
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Figure 3. Illustration of the sequence of operations needed for the compu-
tation of the forward variables.

Recursion:

�
n
(j) =

JX
i=1

bi(on+1)�n+1(i)aji; 0 � n � N; j = 1; : : : ; J; (80)

where n = N � 1; N � 2; : : : ; 0; and j = 1; : : : ; J:

Proof. Let n 2 fN � 1; N � 2; : : : ; 0g ; and j 2 f1; : : : ; Jg be arbi-
trary. By Definition 2 and Theorem 2 the backward probability becomes

�
n
(j) = P (Yn+1 = on+1; : : : ; YN = oN j Xn = j)

=
JX
i=1

P (Yn+1 = on+1; : : : ; YN = oN ; Xn+1 = ij Xn = j)

=
JX
i=1

P (Yn+1 = on+1; : : : ; YN = oN j Xn = j; Xn+1 = i)

P (Xn = j)
�

�P (Xn = j; Xn+1 = i):

By Theorems 28 and 27 the conditional probability becomes

P (Yn+1 = on+1; : : : ; YN = oN j Xn = j; Xn+1 = i)

= P (Yn+1 = on+1; : : : ; YN = oN j Xn+1 = i)

= P (Yn+1 = on+1j Xn+1 = i) �

�P (Yn+2 = on+2; : : : ; YN = oN j Xn+1 = i): (81)
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Figure 4. Illustration of the sequence of the operations needed for the com-
putation of the backward variable.

It was stated in the previous theorem, that the transition probability equals

aji =
P (Xn = j; Xn+1 = i)

P (Xn = j)
:

Now, by this and equation 81, the backward variable becomes

�
n
(j) =

JX
i=1

P (Yn+1 = on+1j Xn+1 = i) �

�P (Yn+2 = on+2; : : : ; YN = oN j Xn+1 = i)aji

=
JX
i=1

bi(on+1)�n+1(i)aji:

A trellis structure for the recursive calculation of the backward variables is
presented in Figure 4. [37]

Both forward and backward procedures are clearly of complexity J2T ,
which shows, that the needed amount of calculations grows linearly with
the number of observations. Forward and backward procedures offer an ef-
fective way of solving the evaluation problem according to Theorem 30 as
follows

P (Y0 = o0; ::: ; Yn = on) =
JX
j=1

�n(j)�n(j):
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This holds for arbitrary n 2 f0; 1; : : : ; Ng : In speech recognition, the
often used solution for the evaluation problem is choosing n = N :

P (Y0 = o0; ::: ; Yn = on) =
JX
j=1

�N(j)�N (j)

=
JX
j=1

�N (j);

by the convention �
N
(j) = 1: [37]

3.4 Decoding with smoothing and the Viterbi
algorithm

Unlike the scoring problem, there exist several possible ways of solving the
problem of finding the ”optimal” state sequence associated with the given
observation sequence Y . It is possible to define the ”optimality” criteria in
many ways. The smoothing method chooses the states that are individually
most likely at each time instant, while the Viterbi algorithm tries to find the
single best state sequence X to maximize the likelihood P (Xj Y ). The
latter method is based on dynamic programming methods and it was first
presented in [48].

Definition 23 Let Y = (Y0 = o0; ::: ; YN = oN ), be an observation

sequence produced by an HMM. The smoothing probability
^

� (nj N); n �

N; is defined by
^

�j (nj N) = P (XN = jj Y0 = o0; ::: ; YN = oN); (82)

where j = 1; 2; : : : ; J and 0 � n � N:

The smoothing probability can be seen as an a posteriori variable con-
taining all probabilistic information the state Xn, given an observation se-
quence Y = (Y0 = o0; ::: ; YN = oN).

Theorem 33 Let Y = (Y0 = o0; ::: ; YN = oN), be an observation
sequence produced by an HMM. Thus, the smoothing probability equals

^

�j (nj N) =
�n(j)�n(j)
JP
j=1

�n(j)�n(j)

;
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where �n(j) and �
n
(j) are the forward and backward variables corre-

sponding to the observation sequence Y:

Proof. By the definition of the conditional probability, the smoothing prob-
ability becomes

^

�j (nj N) = P (Xn = jj Y0 = o0; ::: ; YN = oN)

=
P (Y0 = o0; ::: ; YN = oN ; Xn = j)

P (Y0 = o0; ::: ; YN = oN )

=
P (Y0 = o0; ::: ; YN = oN ; XN = j)

P (Y0 = o0; ::: ; YN = oN)
:

By equations 75 and 76, the joint probability equals

P (Y0 = o0; ::: ; YN = oN ; XN = j) = �n(j)�n(j):

Now, by Theorem 30, the smoothing becomes

^

�j (nj N) =
P (Y0 = o0; ::: ; YN = oN ; XN = j)

P (Y0 = o0; ::: ; YN = oN)

=
�n(j)�n(j)
JP
j=1

�n(j)�n(j)

:

Given an observation sequence Y = (Y0 = o0; ::: ; YN = oN) and an
HMM, the decoding problem could be solved, by finding the optimal state
j�(n); such that

j�(n) = arg max
1�j�J

^

� (nj N); (83)

for all time instants n = 0; 1; : : : ; N: The problem, that this solution
produces, is since the rule works by taking into account the state at an
instant. This can produce a nonvalid state sequence, if there are present
forbidden state transitions in the hidden Markov chain.

Another way in solving the decoding or alignment problem, is to find the
state sequence X = (X0 = j0; ::: ; XN = jN ) that maximizes the joint
probability

P (Y0 = o0; ::: ; YN = oN ; X0 = j0; ::: ; XN = jN );
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given the observation sequence Y = (Y0 = o0; ::: ; YN = oN) and an
HMM. For an partial observation sequence and a subsequence of states it is
used following notations

Y (n) = (Y0 = o0; ::: ; Yn = on);

and
X(n) = (X0 = j0; ::: ; Xn = jn):

Given an observation sequence Y = (Y0 = o0; ::: ; YN = oN) and an
HMM, the best score variable Æn(j) is defined by

Æn(j) = max
j0;:::;jn�1

P (Y (n); X0 = j0; ::: ; Xn = j); 0 � n � N:

Let the subsequenceX (n) of states ending at state j be denoted byX (n)
j
: The

best score variable Æn(j) is the highest joint probability of a subsequence
X

(n)
j

of states, and corresponding partial observation sequence Y (n).

Theorem 34 (Bellman’s Optimality Principle) Let Y = (Y0 = o0; :::

; YN = oN ), be an observation sequence produced by an HMM. The best
score variables Æn(j); 0 � n � N; j = 1; : : : ; J , result from the follow-
ing recursion process:

Initialization:
Æ0(j) = �j(0)bj(o0)

Recursion:
Æn(j) =

�
max
i=1;:::;J

Æn�1(i)aij

�
bj(on);

where n = 1; : : : ; N; and j = 1; : : : ; J:

Proof. Let integer n = 0 and state j 2 f1; : : : ; Jg be arbitrary. By the
definitions of conditional probability we get

Æ0(j) = P (Y0 = o0; X0 = j)

= P (Y0 = o0j X0 = j)P (X0 = j)

= �j(0)bj(o0):
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Now, by the definition of conditional probability, conditional independence,
and the Markov property the joint probability becomes

P (Y (n); X
(n)
j

)

= P (Y (n)
j X

(n)
j

)P (X
(n)
j

)

= P (Ynj Xn = j)
n�1Y
k=1

P (Ykj Xk)P (Xn = jj X(n�1))P (X(n�1))

= P (Ynj Xn = j)P (Xn = jj Xn�1)
n�1Y
k=1

P (Ykj Xk)P (X(n�1))

= bj(on)ajn�1;j P (Y (n�1)
j X(n�1))P (X(n�1))

= bj(on)ajn�1;j P (Y (n�1); X(n�1)):

By this and the definition of the score variable we get

Æn(j) = max
j0;:::;jn�1

P (Y (n); X0 = j0; ::: ; Xn = j)

= bj(on) max
j0;:::;jn�1

ajn�1;j P (Y (n�1); X(n�1)): (84)

For each state Xn = j, it is to find the transition from every state Xn�1 =

i 2 S, to maximize the product

ajn�1;j P (Y (n�1); X(n�1))

= ajn�1;j P (Y (n�1); X0 = j0; ::: ; Xn�1 = jn�1):

It is possible, that there exist several possible paths of states to stateXn�1 =

i: To do the maximization, for each state Xn�1 = i, the special sub-
sequence of states leading to state i giving maximum to the probability
P (Y (n�1); X0 = j0; ::: ; Xn�1 = i); has to be chosen. This results the
best score variable Æn�1(i): Now, by equation 84 the best score variable
becomes

Æn(j) = bj(on+1) max
j0;:::;jn�1

ajn�1;j P (Y (n�1); X(n�1))

=

�
max

j=1;:::;J
aijÆn�1(i)

�
bj(on):
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For each state the j at time n, the state at time n� 1, giving the maximum
probability max

i=1;:::;J
aijÆn�1(i) is denoted by  

n
(j): To get the optimal state

sequence that maximizes the joint probability

P (Y0 = o0; ::: ; YN = oN ; X0 = j0; ::: ; XN = jN );

at each time instant n = 0; 1; ::: ; N; variable  
n�1(j) = j�

n�1 is recorded.
At the last stage, the state giving the biggest best score variable is the last
state in the optimal state sequence.

By the previous theorem the complete procedure, called the Viterbi algo-
rithm, for solving the decoding problem can be formalized as follows:

The Viterbi Algorithm

Initialization:

Æ0(j) = �j(0)bj(o0);

 0(j) = 0;

where j = 1; : : : ; J:

Recursion:

Æn(j) =

�
max
i=1;:::;J

Æn�1(i)aij

�
bj(on);

 
n
(j) = arg max

i=1;:::;J
aijÆn�1(i);

where n = 0; : : : ; N; and j = 1; : : : ; J:

Termination:

P � = max
i=1;:::;J

ÆN(i);

j�(N) = arg max
i=1;:::;J

ÆN (i):

Best Path Construction:

j�(n) =  
n+1(j

�(n+ 1)); n = N � 1; N � 2; : : : ; 0:
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The Viterbi algorithm is similar, despite the backtracking steps, in imple-
mentation to the forward-backward algorithms. Though, a maximization
over previous states is used in place of the summing procedure. By taking
logarithms of the model parameters, the Viterbi algorithm can be imple-
mented without need for any multiplications:

The Log-Viterbi Algorithm

Preprocessing:

�

�j (0) = log�j(0);
�

bj (on) = log bj(on);
�

aij = log aij;

where n = 0; : : : ; N; and i; j = 1; : : : ; J:

Initialization:

�

Æ0 (j) =
�

�j (0)+
�

bj (o0);
�

 0 (j) = 0;

where j = 1; : : : ; J:

Recursion:

�

Æn+1 (j) =

�
max
i=1;:::;J

�

Æn�1 (i)+
�

aij

�
+

�

bj (on+1);

�

 
n
(j) = arg max

i=1;:::;J

�
�

Æn�1 (i)+
�

aij

�
;

where n = 0; : : : ; N; and i; j = 1; : : : ; J:

Termination:

�

P
�

= max
i=1;:::;J

�

ÆN (i);

j�(N) = arg max
i=1;:::;J

�

ÆN (i):
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Figure 5. Trellis diagram for the Viterbi algorithm.

Best Path Construction:

j�(n) =  
n+1(j

�(n+ 1)); n = N � 1; N � 2; : : : ; 1:

Previous algorithm follows the presentation in [38, p. 340]. The calculation
for this alternative implementation is on the order of N 2T additions added
to calculations needed for the preprocessing. The preprocessing needs to be
performed once and saved, thus its cost is odd for most systems. The com-
putation is efficiently implemented by a trellis structure, which is illustrated
in Figure 5. [38, p. 340]

The log-Viterbi algorithm handles automatically the problem of small counts,
namely the small probabilities. The same problem is faced within the for-
ward and backward algorithms. In the following example, the needed algo-
rithms are implemented using MATLAB.

Example 8 It is given two discrete 3-state HMMs �1 = (A1; B1; �1(0))

and �2 = (A2; B2; �2(0)); with the following stochastic parameters:

A1 =

0
B@

0:3 0:7 0

0 0:6 0:4

0 0 1

1
CA ; A2 =

0
B@

0:5 0:5 0

0 0:3 0:7

0 0 1

1
CA ;

B1 =

 
0:1 0:4 0:7

0:9 0:6 0:3

!
; B2 =

 
0:8 0:35 0:1

0:2 0:65 0:9

!
;

and
�1(0) =

�
1; 0; 0

�
; �2(0) =

�
1; 0; 0

�
:
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Let the observable process have the state space O = f1; 2g : These HMMs
are called left-right HMMs due to the left-right topology of the underlying
Markov chain. Using the HMM generator of observations algorithm, it is
now generated two observation sequences Y�1 and Y�2 of 20 observations:

Y�1 = (2; 2; 2; 1; 1; 2; 2; 1; 1; 1)

Y�2 = (1; 1; 2; 2; 2; 1; 1; 2; 2; 2)

During the generation process, it is possible to record the ”real” state se-
quences corresponding to the observation sequences:

X�1
= (1; 1; 1; 2; 2; 3; 3; 3; 3; 3)

X�2
= (1; 2; 3; 3; 3; 3; 3; 3; 3; 3)

As a result of the forward algorithm, we get conditional probabilities, that
give a measure for a given model to produce a given observation sequence.
Due to small numerical value of these probabilities, it is more often pre-
sented the corresponding log-probabilities,

logP (Y�1j�1) = �5:4647;

logP (Y�1j�2) = �11:8636;

logP (Y�2j�1) = �7:8953;

and
logP (Y�2j�2) = �6:3437:

Using the log-Viterbi algorithm, it is possible to get the most probable
state sequences and corresponding log-probabilities for given observation
sequence and model:

logP (Y�1 ; X
�

Y�1
;�1
j�1) = �7:1021;

X�

Y�1
;�1

= (1; 2; 2; 3; 3; 3; 3; 3; 3; 3);

logP (Y�1 ; X
�

Y�1
;�2
j�2) = �14:9190;

X�

Y�1
;�2

= (1; 2; 3; 3; 3; 3; 3; 3; 3; 3)

logP (Y�2; ; X
�

Y�2
;�1
j�1) = �11:8821;

X�

Y�2
;�1

= (1; 2; 2; 2; 2; 3; 3; 3; 3; 3)

and

logP (Y�2 ; X
�

Y�2
;�2
j�2) = �7:5601

X�

Y�2
;�2

= (1; 2; 3; 3; 3; 3; 3; 3; 3; 3)
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It is clearly seen, that the Viterbi algorithm gives parallel results with the
forward algorithm. The basic difference is only, that in Viterbi algorithm,
it is presumed the optimal state path.

3.5 Parameter estimation and Baum-Welch
algorithm

The third, and undeniably the most challenging, problem of HMMs is to
determine a method to adjust the model parameters � = (A; B; �(0)) to
satisfy a certain optimization criterion. There exist no known way to ana-
lytically solve for the parameter set that maximizes the probability of the
observation sequence in a closed form. It is, however, possible to choose
the parameter triple � = (A; B; �(0)) such that, given an observation
sequence Y; the likelihood P (Y; �) is locally maximized. Sequence Y is
called the training sequence. Here, this maximization is performed using
iterative procedure such as the Baum-Welch method, which is also known
as the maximum likelihood (ML) method. [7]

It is now presented an auxiliary function, that tries to involve an estimate of
the missing information about the state sequence present in HMM.

Given an HMM � = (A; B; �(0)) and an observation sequence Y =

(Y0 = o0; ::: ; YN = oN), let the set of all possible state sequences be
denoted by

T =
n
X = (X0 = j0; ::: ; XN = jN ) 2 S

N+1
j P (Xj �) > 0

o
;

and let the size of T be denoted by tT . Now, the set T can be enumerated
as follows

T =
n
Xs 2 S

N+1
j P (Xsj �) > 0; s = 1; 2; ::: ; tT

o
:

The joint probability of the observation sequence Y and the possible state
sequence Xs 2 T , on the conditional �; is denoted by

us = P (Y; Xsj �); s = 1; 2; ::: ; tT :

For any other model ��, it is set

vs = P (Y; Xsj �
�); s = 1; 2; ::: ; tT :
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It should be noted, that the probability vs might equal to zero, since the
state paths Xs 2 T are concerned with respect to the model �:

For further considerations, it is done the following assumption of absolute
continuity: given an observation sequence Y = (Y0 = o0; ::: ; YN = oN);

let the corresponding state sequence X = (X0 = j0; ::: ; XN = jN) 2

SN+1 satisfy the condition

P (Y; Xj �) = 0:

Then, conditioned on the model �� = (A�; B�; ��(0)), the joint probabil-
ity equals

P (Y; Xj ��) = 0:

Lemma 35 Let us; s = 1; 2; : : : ; tT be positive real numbers, and let

us; s = 1; 2; : : : ; tT ; be nonnegative real numbers such that
tTP
s=1

vs > 0.

Then it follows that

ln

tTP
s=1

vs

tTP
s=1

us

�

tTP
s=1

(us ln vs � us lnus)

tTP
s=1

us

:

Proof. See [25] and [39].

Theorem 36 Let the state sequence X 2 T . Under the assumption of
absolute continuity the loglikelihood ratio satisfies the condition

ln
P (Y; Xj ��)

P (Y; Xj �)
�
Q(�; ��)�Q(�; �)

P (Y; Xj �)
; (85)

where the function Q is defined by

Q(�; ��) = Q(�; ��j Y ) =
tTX
s=1

us ln vs;

and

Q(�; �) = Q(�; �j Y ) =
tTX
s=1

us lnus:
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Proof. Concerning all possible state sequences in T , the probability of the
observation sequence, conditioned on model �, becomes

P (Y j �) =
tTX
s=1

P (Y; Xsj �)

=
tTX
s=1

us:

In the same way, under the assumption of absolute continuity and condi-
tioned on the model ��, the probability equals

P (Y j �) =
tTX
s=1

P (Y; Xsj �
�)

=
tTX
s=1

vs:

Now, by Lemma 35 we get,

ln
P (Y; Xj ��)

P (Y; Xj �)
= ln

tTP
s=1

vs

tTP
s=1

us

�

tTP
s=1

(us ln vs � us lnus)

tTP
s=1

us

=
Q(�; ��)�Q(�; �)

P (Y; Xj �)
:

If it is possible to find a model �� such that the right-hand side of the equa-
tion 85 is positive, then by Theorem 36 it is found a better model for the
observation sequence Y , in the sense of higher likelihood. The function
Q(�; ��) is often called the quasiloglikelihood function. By Theorem 36,
the largest guaranteed improvement is a result of maximizing the quasilog-
likelihood function with respect to ��. If for a model �� there exists a state
sequence X such, that vs = 0, then it is set Q(�; ��) = �1. This kind
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of model will not be a candidate for improvement of likelihood. Model �
is called the current model , whereas model �� is called the reestimated
model.

For further developments, it is used following notations:

nij(Xs) = the number of transitions in the state path Xs 2 T

from state i to state j;

mjk(Xs) = the number of times the symbol Ok is emitted in the

state path Xs 2 T:

The indicator function for the initial state j0 in state sequence Xs 2 T is
defined by

rj(Xs) =

(
1; if j0 = j

0; if j0 6= j
:

Theorem 37 For an observation sequence Y = (Y0 = o0; ::: ; YN = oN),
the quasiloglikelihood function equals

Q(�; ��) =
JX
j=1

ej ln�
�

j
(0)+

JX
j=1

KX
k=1

djk ln b
�

j
(Ok)+

JX
j=1

JX
i=1

cij ln a
�

ij
;

where

ej =
tTX
s=1

usrj(Xs);

cij =
tTX
s=1

usnij(Xs);

and

djk =
tTX
s=1

usmjk(Xs):

Proof. Let Xs 2 T be arbitrary. By Theorem 22, conditioned on the reesti-
mated model ��, the joint probability becomes

vs = P (Y; Xsj �
�)

= ��
j0
(0)

NY
l=0

b�
jl
(ol)

NY
l=1

a�
jl�1jl

:
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Taking logarithm of both sides results

ln vs = ln��
j
(0)+

NX
l=0

ln b�
jl
(ol)+

NX
l=1

ln a�
jl�1jl

:

Using this result and regrouping of terms in the summations according to
the state transitions and emitted symbols, the quasiloglikelihood function
becomes

Q(�; ��) = Q(�; ��j Y ) =
tTX
s=1

us ln vs

=
tTX
s=1

us �

�

2
4 JX
j=1

rj(Xs) ln�
�

j
(0)+

JX
j=1

KX
k=1

mjk(Xs) ln b
�

j
(Ok)+

JX
j=1

JX
i=1

nij(Xs) ln a
�

ij

3
5

=
JX
j=1

"
tTX
s=1

usrj(Xs)

#
ln��

j
(0)+

JX
j=1

KX
k=1

"
tTX
s=1

usmjk(Xs)

#
ln b�

j
(Ok) +

+
JX
j=1

JX
i=1

"
tTX
s=1

usnij(Xs)

#
ln a�

ij
:

Now, by using notations

ej =
tTX
s=1

usrj(Xs);

cij =
tTX
s=1

usnij(Xs);

and

djk =
tTX
s=1

usmjk(Xs);

implies that

Q(�; ��) =
JX
j=1

ej ln�
�

j
(0)+

JX
j=1

KX
k=1

djk ln b
�

j
(Ok)+

JX
j=1

JX
i=1

cij ln a
�

ij
:
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The quasiloglikelihood function Q(�; ��) may be seen as a sum of finite
number expressions separated in the optimization variables. It is now pos-
sible to write this optimization problem as follows:

�(x) =
MX
i=1

ci lnxi = max!; ci > 0;

subject to the constraint
MX
i=1

xi = 1:

Lemma 38 If ci > 0; i = 1; 2; : : : ; M; then subject to the constraint

MX
i=1

xi = 1;

the function

�(x) =
MX
i=1

ci lnxi

attains its unique global maximum when

xi =
ci

MP
i=1

ci

:

Proof. See [25].

Now, Lemma 38 and Theorem 37 imply the following result.

Corollary 39 The quasiloglikelihood function Q(�; ��) is maximized, if
the reestimated model �� is chosen using

��
j
(0) =

ej
JP
j=1

ej

; (86)

b�
j
(Ok) =

djk
KP
k=1

djk

; (87)
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and
a�
ij
=

cij
JP
j=1

cij

; (88)

where i; j = 1; 2; : : : ; J and k = 1; 2; : : : ; K.

Since each state path Xs 2 T begins from some state, then summing over
state space S results

JX
j=1

rj(Xs) = 1:

By this, it is got
JX
j=1

ej =
JX
j=1

tTX
s=1

usrj(Xs)

=
tTX
s=1

us

JX
j=1

rj(Xs)

=
tTX
s=1

us =
tTX
s=1

P (Y; Xsj �)

= P (Y j �): (89)

Summing over the state space O results
KX
k=1

mjk(Xs) = nj(Xs);

which equals the number of times the state path Xs visits state j: Since

us = P (Y; Xsj�) = P (XsjY; �)P (Y j�);

the sum
KX
k=1

djk =
tTX
s=1

us

KX
k=1

mjk(Xs) =
tTX
s=1

usnj(Xs) = nj (90)

is proportional to the expected number of visits to state j, given the emitted
sequence Y and the model �. By the help of equations 89 and 90, the
estimation formulas 86 - 88 can be written

��
j
(0) =

ej

P (Y j �)
; (91)

b�
j
(Ok) =

djk

nj
; (92)
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and
a�
ij
=

cij
JP
j=1

cij

; (93)

where i; j = 1; 2; : : : ; J and k = 1; 2; : : : ; K. It is easily seen, that
equations 91 - 93 satisfy the natural stochastic constraints, which are de-
manded of an HMM. This confirms, that equations 91 - 93 give a new
well-defined model �� = (A�; B�; ��(0)).

3.6 Reestimates in forward and backward variables

The Baum-Welch algorithm is essentially exploiting the forward and back-
ward variables for the estimation problem. To show that this is possible, it is
first presented the reestimation formulas 91 - 93 in smoothing probabilities

^

�j (njN) = P (Xn = jjY0 = o0; ::: ; YN = oN); (94)

where j = 1; 2; : : : ; J and 0 � n � N: In addition, it is used a new
smoothing transition probability

^

�ij (njN) = P (Xn = j; Xn+1 = jjY0 = o0; ::: ; YN = oN); (95)

where j = 1; 2; : : : ; J and 0 � n � N � 1: By the Definition 95, it is
immediately seen the result of the following lemma.

Lemma 40 The smoothing probability equals

^

�j (njN) =
JX
j=1

^

�ij (njN); (96)

for all j = 1; 2; : : : ; J and 0 � n � N � 1:

Theorem 41 Under the current model �, the initial state probability equals

��
i
=
^

�i (0jN);

for all i = 1; 2; : : : ; J .
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Proof. Let i = 1; 2; : : : ; J and n = 0; 1; : : : ; N � 1 be arbitrary. It is
first defined an indicator function

Ii j(n) =

(
1; if Xn = i; Xn+1 = j

0; otherwise

i; j = 1; 2; : : : ; J; 0 � n � N � 1. By the definition of conditional
expectation of a discrete random variable the conditional expectation equals

E [Ii j(n)jY ] = P (Xn = j; Xn+1 = jjY )

=
^

�ij (njN):

Thus, by Lemma 40 and linearity of conditional expectation, the smoothing
probability becomes

^

�i (njN) =
JX
j=1

E [Ii j(n)jY ]

= E [Zi(n)jY ] ;

where

Zi(n) =
JX
j=1

Ii j(n):

The generic outcome of the random variable Zi(n) is the number of times
a state path visits state i at time instant n. It is thus clear, that the smooth-
ing probability

^

�i (njN) may be interpreted as the expected number of
times the state i is visited at time n by the state paths of the underlying
Markov chain, given the observation sequence Y and model �. The ran-
dom variable Zi(n) may be described using the set of possible states T =n
Xs 2 S

N+1j P (Xsj �) > 0; s = 1; 2; ::: ; tT
o

, by defining for each state
sequence Xs a new random variable

zi(n; s) =
JX
j=1

Ii j(n):

By this the random variable equals

Zi(n) =
tTX
s=1

zi(n; s):

62



The linearity of expectation, definitions of expectation and conditional prob-
ability imply

E [Zi(n)jY ] = E

"
tTX
s=1

zi(n; s)jY

#
=

tTX
s=1

E [zi(n; s)jY ]

=
tTX
s=1

zi(n; s)P (XsjY ) =
tTX
s=1

zi(n; s)
P (Xs; Y )

P (Y )

=
1

P (Y )

tTX
s=1

zi(n; s) us = C
tTX
s=1

zi(n; s) us: (97)

Setting n = 0, gives

^

�i (0jN) =

tTP
s=1

zi(0; s) us

P (Y )
=

tTP
s=1

ri(Xs) us

P (Y )

=
ei

P (Y )
= ��

i
;

for all i = 1; 2; : : : ; J and n = 0; 1; : : : ; N � 1.

It was stated below, that the smoothing probability
^

�i (njN) may be inter-
preted as the expected number of times the state i is visited at time n among
the allowed state paths of the hidden Markov chain, given the observation
sequence Y and model �. Thus the reestimate ��

i
=
^

�i (0jN) may be inter-
preted as the expected frequency of starting at state i given the observation
sequence Y and model �.

Theorem 42 Under the current model �, the conditional probability equals

b�
j
(Ok) =

NP
n=0

I(n; Ok)
^

�j (njN)

NP
n=0

^

�j (njN)

;

where I(n; Ok) =

(
1; if Yn = Ok

0; otherwise
; for all n = 0; 1; : : : ; N; and

k = 1; 2; : : : ; K.
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Proof. Let j = 1; 2; : : : ; J and k = 1; 2; : : : ; K be arbitrary. Consider
the following indicator function

Ij(n; Ok) =

(
1; if Xn = j; Yn = Ok

0; otherwise
:

This can be written as the product

Ij(n; Ok) = Ij(n) I(n; Ok); (98)

where

Ij(n) =

(
1; if Xn = j

0; otherwise
:

Using equation 98 and the fact, that each observation Ok is included in the
observation sequence Y , the sum equals

NX
n=0

P (Xn = j; Yn = OkjY ) =
NX
n=0

E [Ij(n; Ok)jY ]

=
NX
n=0

E [Ij(n) I(n; Ok)jY ]

=
NX
n=0

I(n; Ok)E [Ij(n) jY ]

=
NX
n=0

I(n; Ok)P (Xn = jjY )

=
NX
n=0

I(n; Ok)
^

�i (njN) (99)

Again, the random variable
NP
n=0

Ij(n; Ok) may be described using the set

of possible state sequences

T =
n
Xs 2 S

N+1
j P (Xsj �) > 0; s = 1; 2; ::: ; tT

o
;

by defining for each state sequence Xs a new random variable

zj(s; Ok) =
NX
n=0

I
j
(n; Ok):
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Considering the whole set T; the indicator function becomes

NX
n=0

I
j
(n; Ok) =

tTX
s=1

zj(s; Ok):

Thus

NX
n=0

P (Xn = j; Yn = OkjY ) =
NX
n=0

E [Ij(n; Ok)jY ]

= E

"
NX
n=0

I
j
(n; Ok)jY

#
= E

"
tTX
s=1

zj(s; Ok)jY

#

=
tTX
s=1

E [zj(s; Ok)jY ] =
tTX
s=1

zj(s; Ok)P (XsjY )

=
tTX
s=1

zj(s; Ok)
P (Xs; Y )

P (Y )
=

1

P (Y )

tTX
s=1

zj(s; Ok)P (Xs; Y )

= C
tTX
s=1

mjk(Xs) us = C djk: (100)

Now by summing over times n = 0; 1; : : : ; N; and equations 90 and 97
result the following

NX
n=0

^

�j (njN) =
NX
n=0

E [Zj(n)jY ] =
NX
n=0

C
tTX
s=1

zj(n; s) us

= C
tTX
s=1

NX
n=0

zj(n; s) us = C
tTX
s=1

nj(s) us

= C nj: (101)

Using equations 100 and 101 gives the required result.

The practical interpretation of the reestimate probability b�
j
(Ok) can be done

by the property of the smoothing probability
^

�j (njN). Summing over
times n = 0; 1; : : : ; N; the reestimate b�

j
(Ok) may be seen as a ratio of the

expected number of visits in state j and emitting the symbol Ok, and the
expected number of transitions from state j, both expectations conditioned
on the observation sequence Y and model �.
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Theorem 43 Under the current model �, the transition probability equals

a�
ij
=

N�1P
n=0

^

�ij (njN)

N�1P
n=0

^

�i (njN)

;

for all i; j = 1; 2; : : : ; J:

Proof. Let i; j = 1; 2; : : : ; J be arbitrary. It is first defined an indicator
function

I(n; i; j) =

(
1; if Xn = i; Xn+1 = j

0; otherwise
; n = 0; 1; : : : ; N � 1:

Definitions of conditional expectation and smoothing transition probability
give

E [I(n; i; j)jY ] = P (Xn = i; Xn+1 = jjY )

=
^

�ij (njN):

By the linearity of expectation, the sum equals

N�1X
n=0

^

�ij (njN) =
N�1X
n=0

E [I(n; i; j)jY ] = E

"
N�1X
n=0

I(n; i; j)jY

#
:

For each state sequence Xs, it is defined a random variable

z(n; s; i; j) = I(n; i; j):

This, linearity of expectation and definition of conditional probability imply

N�1X
n=0

^

�ij (njN) =
N�1X
n=0

E [I(n; i; j)jY ] =
N�1X
n=0

E

"
tTX
s=1

z(n; s; i; j)jY

#

=
N�1X
n=0

tTX
s=1

E [z(n; s; i; j)jY ]

=
N�1X
n=0

tTX
s=1

z(n; s; i; j)P (XsjY )

=
1

P (Y )

tTX
s=1

P (Xs; Y )
N�1X
n=0

z(n; s; i; j)

= C
tTX
s=1

us nij(s) = C cij: (102)
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By, Lemma 40 the sum equals

N�1X
n=0

^

�i (njN) =
N�1X
n=0

JX
j=1

^

�ij (njN)

=
JX
j=1

N�1X
n=0

^

�ij (njN)

=
JX
j=1

C cij = C
JX
j=1

cij: (103)

Now, equations 102, 103 give the required result.

It was seen in Theorem 41, that the smoothing transition probability
^

�ij
(njN) equals the expected number of making transitions from state i to
state j at time n, conditioned on the observation sequence Y and model �.
Additionally, the characterization of the smoothing probability

^

�i (njN)

together with summing over times n = 0; 1; : : : N � 1, gives the interpre-
tation of the reestimate probability a�

ij
as the ratio of the expected number

of transitions from state i to state j and the expected number of transitions
from state i, both expectations conditioned on the observation sequence Y
and model �.

To present the reestimation formulas in computationally effective form with
forward and backward variables, the smoothing probabilities have to be
written in terms of the forward and backward variables.

Lemma 44 Under the current model �, for the given observation sequence
Y the sum of smoothing transition probabilities equals

N�1X
n=0

^

�ij (njN) =

N�1P
n=0

�n(i) aij bj(on+1) �n+1(j)

P (Y )
:

Proof. Let i; j = 1; 2; : : : ; J be arbitrary. By the definitions of smoothing
and conditional probabilities, the sum of smoothing transition probabilities
equals

N�1X
n=0

^

�ij (njN) =
N�1X
n=0

P (Xn = i; Xn+1 = jjY )
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=
N�1X
n=0

P (Xn = i; Xn+1 = j; Y )

P (Y )

=
1

P (Y )

N�1X
n=0

P (Y jXn = i; Xn+1 = j)P (Xn = i; Xn+1 = j)

= C
N�1X
n=0

P (Y jXn = i; Xn+1 = j)P (Xn+1 = jjXn = i)P (Xn = i)

= C
N�1X
n=0

P (Y jXn = i; Xn+1 = j) aij P (Xn = i): (104)

But Theorems 23, 27 and definitions of forward and backward variables
imply, that

P (Y jXn = i; Xn+1 = j)

= P (Y0 = o0; ::: ; Yn = onj Xn = i) �

�P (Yn+1 = on+1; ::: ; YN = oN j Xn+1 = j)

= P (Y0 = o0; ::: ; Yn = onj Xn = i)P (Yn+1 = on+1j Xn+1 = j) �

�P (Yn+2 = on+2; ::: ; YN = oN j Xn+1 = j)

= �n(i) bj(on+1) �n+1(j): (105)

Thus, using equations 104 and 105 imply, that

N�1X
n=0

^

�ij (njN) =

N�1P
n=0

�n(i) aij bj(on+1) �n+1(j)

P (Y )
:

Finally, Theorems 41 - 43 and Lemma 44 imply the following corollary.

Corollary 45 (Baum-Welch Reestimation Formulas) Under the model � =

(A; B; �(0)), and given an observation sequence Y; a new reestimate model
is defined by the following equations:

1. For j = 1; 2; : : : ; J , the initial state probability equals

��
j
=
�0(i) �0(j)

P (Y )
: (106)

68



2. For i; j = 1; 2; : : : ; J , and k = 1; 2; : : : ; K, the emission proba-
bility equals

b�
j
(Ok) =

NP
n=0

I(n; Ok)�n(j) �n(j)

NP
n=0

�n(j) �n(j)

: (107)

3. For i; j = 1; 2; : : : ; J , the transition probability equals

a�
ij
=

N�1P
n=0

�n(i) aij bj(on+1)�n+1(j)

N�1P
n=0

�n(i) �n(i)

: (108)

It is now shown, that the Baum-Welch reestimation formulas 106 - 108
maximize the quasiloglikelihoodQ(�; ��), given a current model � and an
observation sequence Y: The Baum-Welch algorithm is clearly an iterative
method. If the current model � is set to �(k); and the reestimate model ��

is set to �(k+1); then the equations 106 - 108 may be written in one formula
as

�(k+1) = �(�(k)); k = 0; 1; 2; : : : (109)

It is said that the B-W algorithm has converged, if

�� = �(��):

Then model �� is called a fixed point of � . In the analysis of this iteration
process, it is to find how the fixed points of the algorithm �� = �(��) are
related to finding the maximum likelihood

^

�ML= arg max
�

P (Y j�) = arg max
�

L(�):

Theorem 46 For every HMM �, it holds

L(�(�)) � L(�);

with equality , if and only if � is a critical point of L(�), or equivalently is
a fixed point of � .
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Proof. See [7].

Previous theorem says, that each B-W iteration improves the model strictly
in terms of the likelihood, unless a critical point, or equivalently a fixed
point, is met. It should be pointed out, that this confirms the iteration ends
to a local maximum, only. The final result of this reestimation procedure is
an ML estimate of the HMM. In practical situation, it is often needed the
knowledge of strict improvement, only. Then, the estimation process is cut
after some predefined amount of iterations.

3.7 Implementation issues for HMMs

3.7.1 Scaling

From the foregoing presentations, one may easily think, that the problems
of hidden Markov modeling can be solved by straightforward translation of
the formulas into computer programs. Any of the methods applied for the
classification or the estimation problem, require evaluation of the forward
variable �n(i) and the backward variable �

n
(i); n = 1; 2; : : : ; N; i =

1; 2; : : : ; J: From the recursive formulas for these quantities, 77 and 80,
it can be seen, that as N ! 1; both �N(i) ! 0, and �1(i) ! 0 in an
exponential fashion. For enough largeN , this fact will lead to the underflow
on any real computer, if equations 77 and 80 are evaluated directly. [25]

There has been found a simple method for scaling these computations so
that the underflow is avoided. The principle of this scaling procedure is
based on multiplying each forward variable �n(i) and backward variable
�
n
(i) by scaling coefficient, that is independent of state i. At the end of

computation, the total effect of the scaling is removed. The discussions in
[38] show, that a reasonable scaling procedure is to compute both �n(i) and
�
n
(i) according to formulas 77 and 80, and then multiply both of them with

the same scaling coefficient

cn =
1

JP
i=1

�n(i)

:
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At each time instant n = 0; 1; : : : ; N , this results the scaled variables8<
:

^

�n (i) = cn �n(i)
^

�
n
(i) = cn �n(i)

; i = 1; 2; : : : ; J;

which are then used as the forward and backward variables in formulas 77
and 80 at the next time instant n+1: It is shown in [38], that the total effect
of this kind of scaling is completely cancelled, when these scaled variables
are applied to the reestimation formulas 106 - 108.

3.7.2 Multiple observation sequences

It the following, it is concentrated on the left-right HMMs, that are the
main interest of the experimental part of this work. In a left-right HMM,
the hidden states proceed from state 1 at time instant n = 0, to state J , at
time instant n = N; in a sequential manner. This imposes constraints on
the transition matrix A, and the initial state distribution �(0). The transient
nature of the hidden states allows only a small number of observations for
any state until to the transition to a successor state. One way to solve this
problem, is to use multiple observation sequences.

Let the set of R observation sequences be denoted as

Y =
n
Y 1; Y 2; : : : ; Y R

o
;

where
Y r =

n
Y r

1 = or1; Y
r

2 = or2; : : : ; Y
r

Nr
= or

Nr

o
;

and
or
j
2 fO1; O2; : : : ; OKg ;

r = 1; 2; : : : ; R; j = 1; 2; : : : ; Nr. It is assumed, that each observation
sequence is independent of every other observation sequence. The goal of
the estimation, is to find the model �, to maximize the probability

P (Y j�) =
RY
r=1

P (Y r
j�) =

RY
r=1

Pr:

For a left-right HMM the initial state distribution is fixed by the fact, that the
underlying hidden Markov chain is always forced to start at state 1. This
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makes the reestimation of the initial state distribution unnecessary. Each
numerator and denominator of the reestimation formulas 107 - 108 repre-
sents an average number of some event related to to the given observation
sequence Y and current model �: Accordingly, it makes sense simply to
sum these events over all observation sequences. By this consideration, the
modified reestimation formulas are of form:

For i; j = 1; 2; : : : ; J , and k = 1; 2; : : : ; K, the emission probability
equals

b�
j
(Ok) =

RP
r=1

1
Pr

NP
n=0

I(n; Ok)�n(j) �n(j)

RP
r=1

1
Pr

NP
n=0

�n(j) �n(j)

: (110)

For i; j = 1; 2; : : : ; J , the transition probability equals

a�
ij
=

RP
r=1

1
Pr

N�1P
n=0

�n(i) aij bj(on+1)�n+1(j)

RP
r=1

1
Pr

N�1P
n=0

�n(i) �n(i)

: (111)

Again, the use of scaled forward and backward variables are cancelled ex-
actly. [38, pp. 369 - 370]
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4 Bayes classification and
context-dependency

The statistical nature of the generated features in a PR system are due to
the statistical variation of patterns as well as noise in the measuring sen-
sors. Adopting this, gives a reason to design classifiers that classify an
unknown pattern in the most probable of the possible classes. Given a
classification task of M classes C1; C2; : : : ; CM , and an unknown pattern,
presented by a feature vector x, it is formed theM conditional probabilities
P (Cij x); i = 1; 2; : : : ; M;which are referred to as a posteriori probabili-
ties. Each of these probabilities represents the probability, that the unknown
pattern, presented by a feature vector x, belongs to the respective class Ci.
The problem of classification is now to find the maximum probability for
the most probable class or, equivalently the maximum of an appropriately
defined function of the conditional probabilities. The unknown pattern is
then classified to the class corresponding to this maximum.

Let us focus on the two-class case. It is assumed, that the patterns to be
classified, belong to two classes, denoted by C1 and C2. For the future,
it is made an assumption, that the a priori probabilities P (C i); i = 1; 2

are known. This assumption makes sense, because even if these proba-
bilities are not known, it is possible to estimate them from the available
training vectors. Also, the class-conditional probability density functions
p(xjCi); i = 1; 2 are are assumed to be known. These functions describe
the distribution of feature vectors in each of the two classes. If they are
not known, they can be estimated from the available training data, also.
The probability density function p(xjCi) is sometimes called the likeli-
hood function of the class Ci with respect to pattern x. In this work, it is
considered the feature vectors, that get only discrete values. In this case,
the density function p(xjCi) is denoted by P (xjCi): Now, using the Bayes
rule presented in equation 3 makes it possible to compute the conditional
probabilities P (Cij x) as follows

P (Cij x) =
P (Ci)P (xjCi)

P (x)

=
P (Ci)P (xjCi)
2P

k=1
P (Ck)P (xjCk)

:
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Thus, the Bayes classification rule can be stated as:

- if P (C1j x) > P (C2j x); x is classified to class C1,

- if P (C2j x) > P (C1j x); x is classified to class C2.

In the case of equality, the pattern may be assigned to either of the classes.
The probability density function P (x) is same for all classes and may be
cancelled in the decision process. Furthermore, if the a priori probabilities
P (Ci) are equal, the Bayes classification rule can formulated as

- if P (xjC1) > P (xjC2); x is classified to class C1,

- if P (xjC2) > P (xjC1); x is classified to class C2

It may happen that the probabilistic quantities used to the classification are
numerically small. To handle this problem, it is more practical to use the
logarithms of these probabilities.

In a classification task with M classes, C1; C2; : : : ; CM , an unknown pat-
tern, presented by a feature vector x, is assigned to class Ci, if

P (xjCi) > P (xjCj);

for all j 6= i, or equivalently, if

logP (xjCi) > logP (xjCj);

for all j 6= i.

So far, it has been introduced the principle of Bayes classification in a
case where each pattern is characterized as one feature vector, and no rela-
tions between the various classes exist. This kind of situation is called the
context-free classification. The idea of hidden Markov models is to deal
with whole sequences of information, in other words, sequences of fea-
ture vectors. At the same time, it is done an assumption, that successive
feature vectors are not independent. This is clear by the Markov prop-
erty of the underlying hidden Markov chain. Under such an assumption,
classifying each feature vector separately from the others has obviously no
sense. Now, the classification of a single feature vector depends on its own
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value, on the values of the other feature vectors, and on the existing re-
lations among the various classes. By this description it is reasonable to
call this kind of classification as context-dependent classification. Typical
situations of context-dependency appear in applications such as image pro-
cessing, communications, and speech recognition. The mutual information
residing within successive feature vectors requires the classification task to
be performed using all vectors simultaneously and to be arranged in the
same sequence in which they were observed in the experiments. This gives
a reason to refer to the feature vectors as successive observations producing
an observation sequence.

In the following it is assumed, that each reference HMM will be treated
as a distinct class. Let those classes be �1; �2; : : : ; �M . The sequence
of observations Y is a result of emissions, due to the transitions among
the different states of the respective models. Given a sequence of N + 1

observations Y = (Y0 = o0; ::: ; YN = oN); resulting from an unknown
pattern, it is to decide to which class the sequence belongs. The Bayesian
classifier finds the class ��, for which

�� = arg max
�i

P (�ijY ):

For equiprobable reference models or classes this is equivalent to

�� = arg max
�i

P (Y j�i);

or
�� = arg max

�i

(logP (Y j�i)) :

The computation of the required probabilities for the classification or recog-
nition is straightforwardly solved by forward and backward algorithms. An
alternative and very often used approach to perform the classification is to
use the Viterbi algorithm. According to this method, for a given observa-
tion sequence Y the most probable state sequence X �

i
is computed against

each reference model �i for which

X�

i
= arg max

all X

P (Y; Xj�i):

In the sense of Bayes classification the unknown pattern is then classified
to model ��; for which

�� = arg max
�i

P (Y; X�

i
j�i);
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or by the log-Viterbi algorithm

�� = arg max
�i

logP (Y; X�

i
j�i):

This principle of classification is applied in the HMM recognition system
of this work. [44, pp. 13 - 17, 307 - 321]

Classical way of presenting classification results in an M class classifica-
tion task, is to use a confusion table. A confusion table may be seen as a
matrix

(xij)
M;M

i=1; j=1
;

where an element equals

xij = the number of objects; that are

known to belong to class i; and are

classified to class j:

Diagonal elements of the confusion table give the numbers of correct clas-
sifications, whereas nondiagonal elements give the numbers of misclassifi-
cations.
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Figure 6. An illustration of the modified unistroke alphabets. (Center of
action marked with a spot)

5 HMM recognition system

5.1 Measurements

Second purpose of this work is to show that discrete HMMs, can be used to
construct a reliable offline hand gesture recognition system. For one person,
it was given a tilted board with a fixed and marked center of action. Hold-
ing a penlike device in his right hand the person makes predefined gestures
around the marked point, always beginning and ending at this same point.
Between separate repeatings of the same gesture, the movement of the hand
is stopped for a while. The gestures are modified from the unistroke alpha-
bets which are used in PDAs for text entry. The set of gestures is illustrated
in Figure 6. Every gesture was repeated 140 times, consisting of 90 training
examples and 50 test examples. [16, pp. 59 - 60]

Acceleration of the penlike device in three orthogonal directions is mea-
sured with a 3-dimensional accelerometer system. The system consists of
one 2-D and one 1-D accelerometer, which are attached to the handheld de-
vice. The accelerometers are manufactured by Analog Devices and their
type is ADXL202. The analog signal from the accelerometers is A/D-
converted and sampled with 80 Hz frequency, with National Instruments
DaqCard 1200 measurement board which is connected to a PC-CARD slot
in a laptop PC. The measurement program that stores the digitized accel-
eration signals in the disk is programmed in LabView which is a graphical
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programming environment from National Instruments. The quality of the
signals can be checked visually with the measurement program before start-
ing the recording.

5.2 Preprocessing

After sampling and digitation, collected acceleration signals are moved to
MATLAB (version 5.3) environment for further processing. Each compo-
nent of the three dimensional acceleration signals are filtered with fourth-
order lowpass Butterworth filter with the 3 dB cut-off frequency of 4 Hz.
The filtered signals are segmented automatically into separate 3-dimensional
acceleration segments corresponding to individual examples of the ges-
tures. The automation is simply based on the fact, that the hand move-
ment was stopped between separate examples of gestures. One example of
a gesture is referred to as a sample. This process of segmentation gives the
reason to call the recognition system as an isolated recognition system.

5.3 Feature extraction

The effects of feature extraction was explained in section 1.4. In this work,
it is used two ways of generating features from 3-dimensional acceleration
signals. Each sample may be seen as a sequence of 3-dimensional acceler-
ation vectors. This sequence is converted to a corresponding sequence of
feature vectors in the following two ways:

Feature 1. The three dimensional acceleration signal is resampled taking
every fifth sample point. This results a 3-dimensional feature vector repre-
senting the signal level fluctuation during a gesture.

Feature 2. A sample is devided into successive windows with overlap of
50 %. This is illustrated in Figure 7. In a window for each component of
acceleration it is calculated three parameters:

Parameter 1: sample mean,
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Figure 7. Two successive windows in one sample corresponding to alphabet
p.

Parameter 2: difference between maximum and minimum signal values
and,

Parameter 3: sample standard deviation.

This process results a 9-dimensional feature vector.

After feature extraction, it is performed the normalisation of all feature
vectors to have 0 sample mean and 1 sample variance with respect to each
component. The normalization parameters are calculated using the training
set. With sample standard deviation it is meant the square root of the sample
variance. For the definitions of sample mean, and sample variance, it is
referred to [21, p. 1216]. The whole process for data preprocessing and
feature extraction is illustrated in Figure 8.
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Figure 8. Block diagram of preprocessing and feature extraction of accel-
eration signals in MATLAB environment.
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5.4 Vector quantization

Unsupervised learning or clustering techniques are widely used methods
in pattern recognition and neural networks for exploratory data analysis.
These methods are often used to understand the spatial structure of the data
samples and/or to reduce the computational costs of designing a classi-
fier. A common goal of unsupervised learning algorithms is to distribute a
certain number of reference vectors in a possibly high dimensional space
according to some quality criteria. This is often called vector quantization
(VQ). The typical VQ-problem is defined as follows: Given a finite data set
S = fx1; x2; : : : ; xNg ; xi 2 Rd, where xi are independently and identi-
cally distributed according to some probability distribution p(x), find a set
of reference vectors A = fc1; c2; : : : ; cmg ; ci 2 Rd; such that a given
distortion measure E(p(x); A) is minimized. A typical application is, for
example, to compress a set of vectors for transmission purpose with vector
quantization. This can be achieved with VQ, which minimizes the expected
quantization error

E(p(x); A) =
mX
i=1

Z
Si

kx� cik
2
p(x)dx; (112)

by positioning the ci, where Si =
n
x 2 Rdj i = argminj2f1;2;:::;mg kx� cik

o
is the Voronoi region of a vector ci and k�k denotes the Euclidean distance.
In practice, the only knowledge about the distribution p(x) is the data set
S. Thus, it is possible to minimize only

E(S; A) =
mX
i=1

X
x2Si

kx� cik
2
; (113)

where now Si =
n
x 2 Sj i = argminj2f1;2;:::;mg kx� cik

o
: [9]

Different algorithms have been suggested to find the appropriate reference
vectors ci when their number m is given, for example k-means and LBG
algorithms in [44] and [27]. Both methods assume, that the number of ref-
erence vectors is a priori given. The ”right” number of clusters m remains
an open question. This problem is considered, for example, in [9]. In this
work, the iterative k-means algorithm is used to perform the vector quanti-
zation task. The procedure of this algorithm is given in the following:

81



k-Means Algorithm

Initialization: Arbitrarily choose m vectors as the initial set of code words
in the codebook A = fc1; c2; : : : ; cmg :

Nearest -Neighbour Search:
For i = 1; 2; : : : N ,
- Determine the closest representative, say cj; for training vector xi 2 S:
- Set variable b(i) = j.
EndfForg

Centroid Update:
For j = 1; 2; : : : m,
- Determine cj as the arithmetic mean of the vectors xi 2 S with b(i) = j.
EndfForg :

Iteration: Until no change in cj’s occurs between two successive iterations.

It was stated above, that the number of clusters has to be known in advance.
Though given the liberty to initialize the codebook arbitrarily, it is known
in practice, that this algorithm is highly sensitive to this factor. In this
work, the Kohonen’s self organizing map (SOM) is used to perform the
initialization. The SOM is a widely used neural unsupervised clustering
method and it gives a flexible method to use the training vectors themselves
to initialize the codebook [19]. Here, the k-Means algorithm is allowed to
make 100 iteration, at most.

After codebook generation we have a collection of reference vectors, which
are assumed to be the representatives of the feature space S: These vectors
are indexed by the integer set 0; 1; : : : ; m � 1, where m is the size of the
codebook. For each input feature vector, the vector quantizer then finds
the nearest reference vector, in Euclidean sense, from the codebook. After
this the corresponding 1-dimensional index of the codebook becomes the
”symbolic” representative of the multidimensional feature vector.
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Figure 9. An illustration of a 4-state Bakis model.

Table 1. State number combinations.

Gesture Comb. 1 Comb. 2 Comb. 3 Comb. 4
a 2 1 4 7
h, l 3 1 4 7
p, x 4 1 4 7
w,z 5 1 4 7

5.5 Choice of the model parameters

In section 1.4, the left-right topology was stated unanimously as the most
natural choice for the topology of HMMs in the isolated hand gesture recog-
nition. In example 7, it was presented a certain type of left-right Markov
chain. In this work, it is used the Bakis type of topology of the underly-
ing Markov chain. In a Bakis model state transitions to state itself, to the
following and second following states are possible. This is illustrated in
Figure 9.

For the consideration of the state number effects the number of states was
varied in two ways:

1. more states for a more complicated gesture,

2. equal number of states for all models.

These ideas are tested with the combinations of the state numbers shown in
Table 1.

The reasonability of the selection of the same amount of states for all mod-
els is confirmed in the works [23], [47] and [49]. In the first two works it
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Figure 10. Block diagram of an isolated hand gesture HMM recognizer.

was used 5-state Bakis HMMs and in the third work, it was used 6-state
Bakis models.

The size of the codebook implicitly orders the dimensionality of the state
space of the observable process of a discrete HMM. Thus, the variation of
the codebook size is equivalent to varying the number of possible obser-
vation symbols. The codebook size was given values 16, 32, 64, and 128.
Once the feature extraction was performed, all 90 samples for each gesture
were used to generate the codebook. The effects of varying the number of
training sequences per model were investigated using 1, 5, 10, 20, 30, 50,
70, or 90 samples per model in the model estimation phase. For the testing
of the recognition system it was used 50 samples per gesture. The overall
structure of the used HMM recognizer is illustrated in Figure 10.

5.6 Implementation

The HMM recognition system was created offline in the MATLAB 5.3 en-
vironment. Preprocessing of the data was performed using ordinary func-
tions available in MATLAB and Signal Processing and Statistics Toolboxes.
The initialization of the codebook from a given training data was performed
with the functions of the SOM toolbox, which is freely available in the Web.
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A software package for Baum-Welch parameter estimation and Viterbi al-
gorithm was implemented in a project on speech recognition with C++-
language. As compiled programs, these algorithms were applied in the
MATLAB environment, as well. [35]
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6 Results

For fixed codebook sizes and four different state number combinations, it
is presented recognition results (%) versus the number of used training se-
quences in Figures 11 - 18. Corresponding numerical values of the recog-
nition rates are presented in Tables 2 - 9. The distributions of correct and
false classifications for selected HMM recognizers are presented in confu-
sion Tables 10 - 17.
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Figure 11. Recognition results (%) versus number of training sequences
using codebook of size 16, four different state number combinations and
feature 1.
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Figure 12. Recognition results (%) versus number of training sequences
using codebook of size 32, four different state number combinations and
feature 1.
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Figure 13. Recognition results (%) versus number of training sequences
using codebook of size 64, four different state number combinations and
feature 1.
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Figure 14. Recognition results (%) versus number of training sequences
using codebook of size 128, four different state number combinations and
feature 1.
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Figure 15. Recognition results (%) versus number of training sequences
using codebook of size 16, four different state number combinations and
feature 2.
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Figure 16. Recognition results (%) versus number of training sequences
using codebook of size 32, four different state number combinations and
feature 2.
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Figure 17. Recognition results (%) versus number of training sequences
using codebook of size 64, four different state number combinations and
feature 2.
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Figure 18. Recognition results (%) versus number of training sequences
using codebook of size 128, four different state number combinations and
feature 1.

Table 2. Total recognition results (%) using feature 1 and codebook of size
16. (Nsc = state number combination, Nts = number of training sequences)

NscnNts 1 5 10 20 30 50 70 90

1 75.7 79.7 88.9 90.0 88.6 92.0 93.4 98.6
2 71.1 81.4 84.6 84.0 83.7 89.7 89.4 96.0
3 75.4 78.3 90.0 89.4 88.3 92.3 93.7 98.6
4 68.8 74.9 91.1 91.4 91.4 94.3 97.1 99.1
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Table 3. Total recognition results (%) using feature 1 and codebook of size
32. (Nsc = state number combination, Nts = number of training sequences)

NscnNts 1 5 10 20 30 50 70 90

1 43.4 68.6 78.6 80.6 81.1 93.4 93.4 97.7
2 39.7 78.3 73.7 81.1 78.6 90.3 91.7 98.6
3 45.4 67.4 78.6 80.6 82.0 93.4 93.4 94.9
4 46.0 75.4 81.4 82.0 84.0 94.6 94.0 95.1

Table 4. Total recognition results (%) using feature 1 and codebook of size
64. (Nsc = state number combination, Nts = number of training sequences)

NscnNts 1 5 10 20 30 50 70 90

1 41.1 68.3 65.4 68.6 69.7 84.9 89.4 96.9
2 39.4 63.1 65.1 69.7 70.0 87.7 88.6 96.0
3 40.8 66.0 63.7 68.6 70.0 85.1 86.6 96.6
4 49.4 67.1 66.3 70.3 71.4 86.3 88.6 96.3

Table 5. Total recognition results (%) using feature 1 and codebook of
size 128. (Nsc = state number combination, Nts = number of training se-
quences)

NscnNts 1 5 10 20 30 50 70 90

1 34.9 53.7 60.3 72.3 74.6 90.6 93.4 95.7
2 35.1 51.4 56.0 72.3 73.7 90.3 92.3 96.0
3 30.0 52.9 59.4 71.7 73.7 88.9 92.6 94.0
4 33.7 54.6 62.0 72.3 74.0 91.4 92.9 94.6

Table 6. Total recognition results (%) using feature 2 and codebook of size
16. (Nsc = state number combination, Nts = number of training sequences)

NscnNts 1 5 10 20 30 50 70 90

1 79.7 85.1 89.1 90.3 90.6 92.6 92.6 92.9
2 61.7 64.9 79.1 86.0 86.6 90.0 86.9 86.0
3 79.4 85.4 81.1 83.1 88.6 92.3 92.9 94.3
4 82.3 94.0 92.6 90.6 91.4 94.0 94.3 94.9
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Table 7. Total recognition results (%) using feature 2 and codebook of size
32. (Nsc = state number combination, Nts = number of training sequences)

NscnNts 1 5 10 20 30 50 70 90

1 82.9 95.7 94.6 97.1 97.1 100 100 99.7
2 80.0 96.3 96.0 96.0 96.3 99.1 99.4 99.1
3 82.9 97.1 97.1 97.7 98.0 100 100 99.7
4 85.1 98.6 98.6 100 100 100 100 100

Table 8. Total recognition results (%) using feature 2 and codebook of size
64. (Nsc = state number combination, Nts = number of training sequences)

NscnNts 1 5 10 20 30 50 70 90

1 85.4 94.3 95.7 94.3 96.9 100 100 100
2 70.3 90.0 86.9 92.0 93.1 99.1 100 100
3 81.7 93.7 94.6 97.4 97.4 100 100 100
4 82.9 98.3 98.3 98.6 98.9 100 100 100

Table 9. Total recognition results (%) using feature 2 and codebook of
size 128. (Nsc = state number combination, Nts = number of training se-
quences)

NscnNts 1 5 10 20 30 50 70 90

1 83.7 92.3 94.6 99.4 99.4 90.6 100 100
2 63.1 89.1 91.4 98.9 99.1 90.3 99.1 99.7
3 75.7 92.3 95.1 98.9 99.4 88.9 100 100
4 88.3 92.0 94.0 99.4 99.7 91.4 99.7 100
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Table 10. Confusion table of an HMM recognizer using feature 1, 50 train-
ing sequences and codebook of size 16.

47 0 0 2 1 0 0
0 50 0 0 0 0 0
0 0 50 0 0 0 0
0 0 0 50 0 0 0
0 0 3 0 34 13 0
0 0 0 0 0 50 0
0 0 0 0 0 1 49

Table 11. Confusion table of an HMM recognizer using feature 1, 90 train-
ing sequences and codebook of size 16.

49 0 0 1 0 0 0
0 48 0 0 2 0 0
0 0 50 0 0 0 0
0 0 0 50 0 0 0
0 0 0 0 50 0 0
0 0 0 0 0 50 0
0 0 0 0 0 0 50

Table 12. Confusion table of an HMM recognizer using feature 1, 50 train-
ing sequences and codebook of size 32.

32 0 0 16 0 0 2
0 50 0 0 0 0 0
0 0 49 0 0 0 1
0 0 0 50 0 0 0
0 0 0 0 50 0 0
0 0 0 0 0 50 0
0 0 0 0 0 0 50
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Table 13. Confusion table of an HMM recognizer using feature 1, 90 train-
ing sequences and codebook of size 32.

35 0 0 14 0 0 1
0 50 0 0 0 0 0
0 0 48 0 0 1 1
0 0 0 50 0 0 0
0 5 0 0 45 0 0
0 0 0 0 0 50 0
0 0 0 0 0 0 50

Table 14. Confusion table of an HMM recognizer using feature 2, 5 training
sequences and codebook of size 32.

50 0 0 0 0 0 0
0 50 0 0 0 0 0
0 0 50 0 0 0 0
0 0 0 50 0 0 0
0 5 0 0 45 0 0
0 0 0 0 0 50 0
0 0 0 0 0 0 50

Table 15. Confusion table of an HMM recognizer using feature 2, 90 train-
ing sequences and codebook of size 32.

50 0 0 0 0 0 0
0 50 0 0 0 0 0
0 0 50 0 0 0 0
0 0 0 50 0 0 0
0 0 0 0 50 0 0
0 0 0 0 0 50 0
0 0 0 0 0 0 50
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Table 16. Confusion table of an HMM recognizer using feature 2, 5 training
sequences and codebook of size 64.

50 0 0 0 0 0 0
0 45 1 0 4 0 0
0 0 50 0 0 0 0
0 0 0 50 0 0 0
0 5 0 0 45 0 0
0 0 0 0 0 50 0
0 0 1 0 0 0 49

Table 17. Confusion table of an HMM recognizer using feature 2, 90 train-
ing sequences and codebook of size 64.

50 0 0 0 0 0 0
0 50 0 0 0 0 0
0 0 50 0 0 0 0
0 0 0 50 0 0 0
0 0 0 0 50 0 0
0 0 0 0 0 50 0
0 0 0 0 0 0 50
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7 Conclusions

The theoretical considerations in chapters 2 and 3 show the sound foun-
dation of discrete HMMs. Mathematically simple structure of discrete
Markov chains is adopted as a part of an HMM. Hidden Markov models
give two useful possibilities of thinking its mathematical structure. One is
the doubly stochastic mathematical structure consisting of the underlying
hidden Markov chain and the observable process tied to the states of the
hidden Markov chain. This illustrates the mechanism of creating an indi-
vidual observation and by this way a whole sequence of observations from
an HMM. From this point of view, it is found computationally feasible algo-
rithms for the application of discrete HMMs: forward-backward algorithm
for scoring, Viterbi algorithm for decoding and Baum-Welch algorithm for
model parameter estimation. From more statistical point of view, HMMs
may be seen as piecewise stationary processes, where each state transition
leads to an output process of statistically fixed distribution of discrete sym-
bols. Thus, modeling a signal with an HMM, assumes, that signal may be
approximated as pieces with statistically unchangable properties in discrete
time. Successive repetitions or returns to these pieces are restricted by the
topology of the underlying Markov chain. A special type of the HMMs are
the left-right HMMs. This type of HMMs are used to model signals whose
properties change over time in a successive manner. The considerations of
chapter 1 show, that this type of assumption is relevant with hand gestures.

For the study of hand gesture recognition it was created an isolated user-
dependent hand gesture recognition system based on discrete hidden Markov
models and Viterbi algorithm. A seven class classification problem was
considered in this PR system, each class representing a predefined hand
gesture. The three dimensional acceleration signal parametrisation with
two different ways was tested in this system. Classification results in Ta-
bles 2 - 5 show , that by using feature 1, it is possible to create an HMM
recognizer with recognition rate of at most 99.1 %. Feature 2 gives higher
recognition rates, even of 100 %. This is illustrated by Figures 15 - 18. Fea-
ture 1 describes a hand gesture as a three dimensional signal, whose signal
levels chance in a successive manner. These acceleration signal levels de-
scribe spatial orientation and acceleration of the input device. Feature 2
exploits the computation of more sophisticated entities of the acceleration
signals. Parameter 1 represents the three dimensional signal level fluctua-
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tion describing spatial orientation and and acceleration of the input device
during the gesture. Parameters 2 and 3 reflect the dynamical changes during
the hand gesture.

Codebook generation is an inevitable process, when discrete HMMs are
used. A continuous multidimensional feature vector is converted into a
discrete symbol, in this case, into a codebook index. The codebook was
initialized with SOM clustering algorithm and further improved by the k-
Means algorithm, since no automatic initialisation is included in k-Means
algorithm. Figures 11 - 18, show that the need for bigger size of codebook
grows when the dimensionality of the feature space grows. Codebook of
size 16 was found the best among the chosen codebook sizes for feature
1, whereas codebooks sizes of 32 and 64 were found the best among the
chosen codebook sizes for feature 2. These facts are can be seen in Figures
11 - 18. When HMMs are used, it is possible to think that two gestures are
described as sequences of exactly same codebook vectors, but in different
order. This kind of situation is created, when a small amount of clusters
are expected to represent the feature space. This is not the optimal case. It
is hoped for the codebook to have as many separate classes of vectors as
possible for each gesture. The effect of too small codebook is clearly seen,
in Figure 15, when feature 2 is used. On the other hand, the increment
of the codebook size leads to a finer division of the feature space. This
gives a possibility to describe the statistical variations of the gestures in
more detail. Two feature vector sequences of the same gesture may be
described as same vector sequences in a smaller codebook, whereas the
increment of the codebook size, may split the two sequences into two partly
separate sequences of codebook vectors. Consequently, the need of training
sequences is increased to get a reliable knowledge of the statistical variation
of the gestures in the chosen feature space.

In this work it was tested two ideas of selecting the number of states. The
first idea was to give heuristically more states to a more complicated ges-
ture, whereas the second idea was to give the same amount of states for
all models. Giving all models the maximum seven states gave the most
reliable recognizers within the chosen state number combinations and best
codebook sizes. This is illustrated in Figures 11, 16 - 17. Giving more
states to more complicated gestures was found a reasonable choice for the
state number, also. It should be noted, that the definition of the complexity
of a hand gesture is quite subjective a matter and not necessarily correct
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with respect to the selected feature space. This kind of choice, may anyway
be reasonable by the fact, that some gestures are short in time, whereas
others may last twice the time. Giving a gesture more than or nearly the
same amount of states as its length is as a sequence of feature vectors, is
irrational. Keeping this in mind, the same amount of states for all mod-
els, pushes a shorter gesture ”go through” its states more quickly than the
longer lasting gesture. One extreme was to give one state for all models.
This is equivalent to look for the distribution of the symbols of the train-
ing sequences in the codebook. Tables 2 - 9 show, that results are good in
this case. Though, the recognition rates grow slowly as a function of the
amount of used training sequences. The good results may be explained by
the small set of classes.

During the parameter estimation of the HMM models, it is ”shown” a col-
lection of training sequences to the models. It is natural an assumption
to expect better recognition results from an HMM recognizer, after having
used more training sequences. This tendency is mainly observed in Figures
11 - 18 for both features. Though, the increment of the training sequences
does not mean automatical improvement of the recognition results. Ob-
served declines reflect the statistical variations of the training set, which
can be seen in Figures 11 - 13 and 15 - 18. Less amount of training se-
quences sometimes model better the test set, than the incremental training
set. The overall tendency shows greater reliability of the classifier, when
the amount of training sequences is increased, anyway. The improvement
of the recognizer is more slowly, when feature 1 is used. Mean while a fast
improvement of the recognizer is seen, when feature 2 is used. This can
be seen in Figures 16 - 17. It is also seen, that once radically good recog-
nition results are achieved using feature 2, they are also maintained, when
the ”experience” of the models is increased. This reflects, that feature 2 has
more essential properties of the gestures, than gesture 1. Thus, gestures are
well separated in the feature space generated by feature 2.

In above text, it is considered the total recognition rates of the HMM recog-
nizers. Confusion Tables 10 - 17 are giving some examples, how the correct
and false classifications are distributed in the seven classes. Tables 10 - 11
show, that classification errors may be due small amount of gestures, while
the rest are purely classified. In Tables 10, 12 - 13, the first gesture is the
main responsible for misclassifications. This is not notible, when feature
2 is used. Gesture 1 is the simplest and shortest in time. Therefore, the
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relative representation of the feature vectors corresponding to gesture 1 is
smaller than others. As a direct result of this, the relative representation for
gesture 1 becomes smaller in the codebook, than for other gestures. Feature
1 is seen to be more sensitive to this temporal fact than feature 2.
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