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Abstract
The role of software architecture has changed. The use of modern software
technologies and practices enables turning the focus of system development to
the quality aspects of software instead of functional properties. Architecture
addresses the quality issues of software and, therefore, it must be developed and
documented properly. In particular, there is a need for high level architectural
descriptions. The top down nature of software architecture design induces this
need.

In this report we introduce a quality-driven architecture design and analysis
(QADA) method. Quality-driven is about utilizing architectural styles and
patterns as a means of designing high-quality architectures. QADA takes a
revolutionary approach to the initiation process of a new product line. That is,
the development of a complete product-line architecture and a set of components
before developing the first product in a new domain. QADA considers
architecture on two levels of abstraction: conceptual and concrete. Design
produces architectural descriptions at both abstraction levels from three
viewpoints: structural, behavior and deployment. The structural viewpoint is
concerned with composition of software components, whereas the behavior
viewpoint takes the behavioral architecture aspects under consideration. The
deployment viewpoint refers to embedding and allocation of software
components to various computing environments. Quality of architecture on both
levels of abstraction is analyzed in the corresponding analysis phases.

Because software architectural design is difficult to discuss merely at an abstract
level, the QADA method is tested with a case study of a distributed service
platform. The platform embodies a layered service architecture, thereby
providing a variety of services for its users. The upper layer of services, i.e. the
system services of the platform is mobile, enabling spontaneous networking.
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Preface
The research discussed in this report was carried out as a result of the PLANA
project during the year 2001 at VTT Electronics. PLANA, Product Line
Architecture Design and Analysis Methods, is a part of the PLA programme.
The PLA (Product Line Architectures) programme is a self-funded strategic
research programme of VTT Electronics. The aim of the PLA programme is to
create and intensify the knowledge of software architectures and assets
management required in the development of product lines. PLA design and
analysis methods and techniques, as well as architectural concepts for secure and
mobile applications, are the key issues.

The driving forces behind the development of a product line architecture are
reusability and modifiability. An essential question is which architectural views
and descriptions are needed, for whom and how long they have to be maintained.
The open problem is how to take better advantage of architectural concepts to
analyze a software product line for quality attributes in a systematic way. It is
also important to estimate how reusable the product line architecture is in
relation to anticipated changes and verify that the quality requirements of the
domain have been addressed in the product line architecture design.

The main objectives of the PLANA project are to develop a design method for
product line architectures, to develop analysis methods for product line
architectures of middleware and system infrastructure services, and create new
national and international co-operation in product line architecture research.

The results of this study have been carried out in close co-operation between the
equal co-authors. Mari Matinlassi has studied the practical case study according
to the guidance of Eila Niemelä. The development of the design method has
required the work and experience of both. Liliana Dobrica has mostly developed
the analysis method. However, Eila Niemelä and Mari Matinlassi have
contributed to her work by providing the architectural descriptions to be
analyzed and also commented on the documents produced by Liliana Dobrica.

Oulu, Finland, January 2002

Mari Matinlassi Eila Niemelä Liliana Dobrica
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1. Introduction
Software architecture is the fundamental organization of software embodied in
its components, their relationships to each other and to the computing
environment [28]. Software architecture also includes the principles guiding its
design and evolution, and therefore, it has a strong influence over the life cycle
of a system.

In the past, hardware engulfed the other aspects of a system, and especially
quality attributes like modifiability, interoperability and reusability were
sacrificed first in the course of system development. Today, software-intensive
systems are pervasive. The increasing complexity and size of software, as well
as the cost of software development and more mature software technologies,
have changed the role of software architecture.

Software architecture can be considered as a reusable element solving the
problem of how to bridge the gap between requirements and code. The process
of filling this gap requires one to consider the two major relationships between
these three elements. Firstly, how to turn the requirements into the form of an
architecture, and secondly, how again to turn the architecture into
implementations.

The FORM method [35] presents a solution for the transformation of
requirements into an architecture style. However, software systems need more
than one style to follow. Architecture styles and design patterns are applied as
driving factors in [9] but mapping requirements for the software architecture are
quite vague. UML with the strength of earlier widely applied object oriented
methods [33, 54, 56] gives it benefits as a unified modeling language [55].
However, its superiority as an architectural description language is debatable.

The COMET method [24] concerns architectural design as a part of the
application design. Designing the system architecture is the third and final phase
of the method. The first phase is requirements modeling with use cases, and the
second one is analysis modeling, which contains developing the static and
dynamic class and object models. However, software architecture design cannot
be considered as a phase in a design process started with use cases. Quality
oriented items i.e. styles and patterns have to be considered as very important
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when building architectures, because they act as drivers in the selection of
architectural structures and act with the whole design process, from the
requirement specification down to the implementation and product maintenance.

Some of published architectural design methods concentrate on different views
of architecture. Inside this group there is a great number of different views and
ways to describe the architectural documentation of views in use. The first of
these view-oriented methods was the 4+1 developed by Krutchen [38]. After
this, several others have approached the zoo of architectural viewpoints. For
instance, Jaaksi et al. introduced their 3+1 method in 1999 [32] and Hofmeister
et al. used all in four views to describe architecture [27].

It is obvious that none of these methods alone is comprehensive enough to cover
the design of software architectures for systems of a different size on various
domains, or provide an explicit means to create architectural descriptions for
these systems. Instead, the need for different architectural views and
architectural documents is highly dependent on the two issues: system size and
software domain e.g. the application domain, middleware service domain and
infrastructure service domain.

Design and use of software architectures are closely related to software quality,
e.g. reliability, performance and modifiability. A software product line consists
of a product-line architecture and a set of reusable components that are designed
for incorporation into the product-line architecture [12]. In addition to the quality
that is achieved by adopting a quality-driven architecture design, there are
additional reasons to adopt the product-line approach, namely decreased
development and maintenance costs and shorter time-to-market.

Some of the issues with a software product line are related to the process of
initiation and how to deal with its evolution process. Considering the initiation, a
software product-line does not appear accidentally, but requires a conscious and
explicit effort from the organization interested in using the product-line
approach. Basically, one can identify two relevant dimensions with respect to the
initiation process. The organization may take an evolutionary or a revolutionary
approach to the initiation process. In each dimension the product-line initiation
can be applied to an existing line of products or to a new product-line that the
organization intends to use. Each case has an associated risk level and benefits.
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For instance, in general, the revolutionary approach involves more risk, but
higher returns compared to the evolutionary approach. The revolutionary
approach to a new product-line means that product-line architecture and
components are developed to match the requirements of all expected product line
members, before developing the first product in a new domain.

There is an opinion that considers that product-line architectures should differ
from single product architectures in that they provide solutions specific to the
product members that build the domain [26]. In this sense, architectural
modeling for product lines should go beyond defining simple connectors and
components for the architectural views employed.

It is as important to check the architecture against quality requirements in order
to achieve quality attributes, as is the design of architecture. Checking is about
analyzing and evaluating the architecture. The aim of analyzing the architecture
is to predict the quality of a software system before it has been built, and not to
establish precise estimates about the principal effects of the architecture. In
evaluation the architecture is compared with another architectural candidate or
with requirements set for products, in order to minimize risks and prove that
requirements have been addressed in the design. Instead, an analysis brings out
opinions whether the architecture is proper and what are its possible weaknesses.
Opinions are based on evaluation results.

The research in the PLA domain is at the outset, because software product-line
architecture has came into the scene recently. In the case of single software
products architecture analysis methods are mature enough and the most
representative have been presented and compared in a survey [20]. However,
when considering the analysis methods of software product-line architecture the
work in [18], where a strategy for analyzing product-line architectures is
introduced should be mentioned.

This report introduces a quality-driven architecture design and quality analysis
(QADA) method that provides a systematic way to transform functional and
quality requirements into software architecture. The method also utilizes styles
and patterns as a guide to carry out quality requirements in architectural
descriptions with a documented design rationale. The use of the QADA method
is adapted for a commercial CASE tool, RoseRT [51], and demonstrated with a
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case study. The case study concerns the revolutionary initiation of a new product
line of distributed service platforms in spontaneous networking systems.
Revolutionary initiation of a new product line means the development of a
complete product-line architecture and set of components before developing the
first product in the new domain [12]. At the end, we will summarize our
experiences on the use of the method for designing and analyzing the
architecture of the case study.
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2. Background
This section defines the main terminology related to the QADA method. It also
introduces concepts that are linked to quality and quality analysis of software
architectures and presents a comparison of three architectural design methods
based on architectural views.

2.1 Main terminology

A method is a description of how to conduct a process [37]. A process is an
activity which takes place over time and which has a precise aim regarding the
result to be achieved. The method description defines and organizes a collection
of techniques and a set of rules that establishes how to conduct an activity. The
set of rules of the method states by whom, in what order, and in what way the
techniques are used to accomplish the method objective.

Design rationale is a set of design principles and rules. Design rationale also
provides the reasoning why these principles and rules have been defined and
possible consequences if they are neglected.

Software architecture is defined as the structure or structures of the system,
which consists of software components, the externally visible properties of those
components and the relationships among them [9]. Software architecture also
includes the principles and guides that control the design and evolution in time
[49, 58].

Software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only [60].

Software product line is a group of products sharing a common, managed set of
features that satisfies the specific needs of a selected market [9]. Software
products are instances of the software product line.

Revolutionary initiation approach of a new product line means development of a
complete product-line architecture and set of components before developing the
first product in the new domain [12].
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Product-line architecture (PLA) is adaptable architecture that is applied to the
product members of a product line and from which the software architecture of
each product member can be derived. PLA is software architecture and a set of
reusable components shared by a family of products [9].

Architectural view is a representation of a whole system from the perspective of
a related set of concerns [28].

Viewpoint is a specification of the conventions for constructing and using an
architectural view. A pattern or a template used to develop individual views, by
establishing the purposes and audience for a view, and the techniques for its
creation and analysis [28].

Architecture style defines a class of architectures and is an abstraction for a set
of architectures that meet it. A style is determined by a set of component types, a
topological layout of the components, a set of semantic constraints and a set of
connectors [9].

Architecture pattern expresses fundamental structural schema for software
systems, which are applied for high-level system subdivisions, distribution,
interaction and adaptation [15]. When the schema is strictly described and
commonly available, it is a pattern.

Design pattern describes a recurring structure of communicating components,
which solves a general design problem in a particular context [23]. Design
patterns are micro architectures and do not guarantee a good overall architecture.

Mandatory feature is a feature that must always be included in a product of a
product family [46, 35].

Optional feature is a specific feature that is contained in one product of product
line, but not in another [4, 46, 35].

The architecture provides a placeholder in which one of several alternatives can
be inserted. Alternative feature cannot coexist with other alternative features [4,
46, 35].
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Middleware is software that is located between applications and the network
layer, and is independent of operating systems. Middleware hides the
distribution from applications.

Service is the capability of an entity (the server) to perform, upon the request of
another entity (the client), an act that can be perceived and exploited by the
client.

Service architecture is the architecture of applications and middleware. It is a set
of concepts and principles for the specification, design, implementation and
management of software services [61].

Customer value analysis seeks to quantify qualities that affect a customer’s
decision to buy a particular product. Below, the term value denotes the product’s
perceived overall benefit relative to its cost [21].

2.2 Quality attributes and quality model

A quality attribute is a non-functional characteristic of a component or a system,
such as integrability, modifiability, reliability or availability. A software quality
is defined in IEEE 1061 [29] and it represents the degree to which software
possesses a desired combination of attributes. Another standard, ISO/IEC Draft
9126-1 [31], defines a software quality model. According to this model, there are
six categories of characteristics (functionality, reliability, usability, efficiency,
maintainability and portability) which are further divided into sub-
characteristics. These are defined by means of externally observable features for
each software system. In order to ensure its general application, the standard
does not determine what these attributes are, nor how they can be related to the
sub-characteristics.

An investigation into the literature has shown that a large number of definitions
of quality attributes exist that are related to similar abilities of a software system.
Quality attributes are defined in [18] and, for example, the definitions for
maintainability, flexibility and modifiability are:
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Maintainability is a set of attributes that have a bearing on the effort needed
to make specified modifications [31]. Modifications may include corrections,
improvements or adaptations of software to changes in environment, and in
requirements and functional specification.

Modifiability is the ability to make changes quickly and cost-effectively [9].
Modifications to a system can be categorized as extensibility (the ability to
acquire new features), deleting unwanted capabilities (to simplify the
functionality of an existing application) portability (adapting to new
operating environments) or restructuring (rationalizing system services,
modularizing, creating reusable components).

Maintainability is the ease with which a software system or component can
be modified to correct faults, improve performance or other attributes, or
adapt to a changed environment [30].

Flexibility is the ease with which a system or component can be modified for
use in applications or environments other than those for which it was
specifically designed [30].

Although different in wording, the definitions are almost identical in their
semantics. The limitation of these definitions with respect to the purpose of
analyzing software architectures is that their scope is too broad. The scope has to
be narrowed, based on the relevant context.

2.3 Design methods based on architectural views

Architectural views have been the basis for a number of design methods during
the last few years. The first of them was the method of 4+1 views to software
architecture [38]. The four main views used in this method are logical, process,
physical and development view. The logical view describes an object model. The
process view describes the design’s concurrency and synchronization aspect.
The physical view describes the mapping of the software onto the hardware
reflecting the distributed aspect of the system. The development view describes
the software’s static organization in its development environment. The ‘+1’ view
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is a use-case view consisting of scenarios that are used to illustrate the four
views.

In [32], a slightly modified version of the 4+1 method is suggested and ends up
with the 3+1 views necessary to describe the software architecture. The views in
the 3+1 method are the logical, runtime and development view, plus the scenario
view. The logical view illustrates the high level partitioning of the system into
application products and applications. The run-time view specifies all the
executable components of the system, while the development view specifies the
components that are developed independently. The scenario view illustrates the
collaboration of these components in different usage situations. The 3+1 method
applies the Unified Modeling Language (UML) as an architectural description
language.

In addition to the methods introduced above, [27] defines four views that are the
conceptual, module, execution and code view. Conceptual view describes the
system in terms of its major design elements and the relationships among them.
Execution view addresses the dynamic structural issues e.g. allocation of
software in distributed systems and synchronization aspects on architectural
level. The main purpose of the module view is the decomposition of the system
to modules and the partitioning of software modules into layers. The code view
provides the organization of the source code into object code, libraries and
binaries. The four views are based on observations done in practice on various
domains e.g. image and signal processing systems, a real-time operating system,
communication systems etc.

Table 1 illustrates the similarities between the views that are defined in the three
methods introduced above. The method of the four views [27] is defined in great
detail and is therefore used as the bases for the comparison. The artifacts of the
four-view method and their architectural descriptions are introduced briefly in
the columns on the left. The columns on the right describe the view defined in
other methods (the 4+1 and the 3+1) that best corresponds to the description of
the view.

Table 1 uses the first letter or two first letters of each view as an abbreviation of
the view, e.g. C for the conceptual view, Ph for the physical view and Pr for the
process view.
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Table 1. A comparison between the views defined in the three methods.

The four views
The view and its
descriptions

Architectural artifacts
4+1 3+1

C. Conceptual configuration UML Class Diagram L. L.
C. Port or role protocol ROOM protocol declaration
C. Component or connector
behavior

Natural language description or
UML State Diagram

L.

C. Interactions among
components

UML Sequence Diagram

M. Conceptual-module view
correspondence

Table D.

M. Subsystem and module
decomposition

UML Class Diagram D. D.

M. Module use-dependencies UML Class Diagram

M. Layer use-dependencies,
modules assigned to layers

UML Class Diagram D. D.

M. Summary of module
relations

Table

E. Execution configuration UML Class Diagram Pr.&D. R.&D.
E. Execution configuration
mapped to hardware devices

UML Deployment Diagram Ph. R.

E. Dynamic behavior of
configuration, or transition
between configurations

UML Sequence Diagram

E. Description of runtime
entities (host type, replication
and assigned modules)

Table or
UML Class Diagram

R.

Code. Description of
components in code
architecture view, their
organization and their
dependencies

UML Component Diagrams or
tables

D. D.



21

In addition to the artifacts mentioned in Table 1, the execution view provides two
artifacts that are not supported by the 4+1 or 3+1 methods:

• Description of runtime instances (including resource allocation) in the form
of a table.

• Communication protocols described with a natural language description, a
UML Sequence Diagram or State Diagram.

Above and beyond, the code view also considers the following artifacts that are
not mentioned in Table 1 and are not supported by the 4+1 or 3+1 methods:

• Module view, source component correspondence i.e. tracing dependency
that is described with tables.

• Runtime entity, executable correspondence i.e. instantiation dependency that
is described with tables.

• Descriptions of build procedures described with tool-specific representations
(for example, make-files).

• Description of release schedules for modules and corresponding component
versions that are described with tables.

• Configuration management views for developers described with tool-
specific representations.

As descerned from Table 1, the method of 3+1 architectural views does not
consider the behavior of components at an architectural level. Instead, the
behavior design is part of the detailed design. The scenarios in +1 view are used
to describe the behavior at the architectural level.

Despite the fact these methods mentioned above are capable and exhaustive in
their own way, none of them concerns the product line approach to the
architectural design.
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2.4 Analysis at the architecture level

A classification of the analysis techniques available at the architecture level is
defined in two important research reports [1, 10]. Here it is sufficient can be to
identify two basic classes of techniques, questioning and measuring. The first
class, consisting of questioning techniques, generates qualitative questions to be
asked of an architecture, and it can be applied to evaluate an architecture for any
given quality. This class includes scenarios, questionnaires and checklists.

Measuring techniques, that represent the second class, suggest quantitative
measurements to be made on an architecture. They are used to answer specific
questions and address specific software qualities and, therefore, they are not as
broadly applicable as questioning techniques. This class includes metrics,
simulations, prototypes and experiences. Metrics are quantitative interpretations
that are placed on a particular observable measurement of the architecture, such
as fan in/fan out of the components.

Generality, level-of-detail and the design phase may define a framework of
comparison for possible evaluation techniques. Regarding generality, the
techniques could be general (questionnaire), domain-specific (checklists,
prototype) or system-specific (scenarios). The level of detail (coarse-grained,
medium or fine) indicates how much information about the architecture is
required to perform the evaluation. There are three phases of interest in
architecture evaluation: early, middle and post-deployment. The early phase
evaluation occurs after the initial high-level architectural decisions
(questionnaire, prototype), the middle phase occurs at any point after some
elaboration of the architecture design (scenarios, checklists), and post-
deployment occurs after the system has been completely designed, implemented
and deployed. During the last stage, both the architecture and the implementation
exist and an evaluation of whether the architecture matches the implementation
can be done.

The essential rules for analyzing software architecture to determine if it exhibits
certain quality attributes are described in [7]. These rules provide a context for
existing evaluation techniques. One of the first main rules is the identification of
the contract between the system and the environment. Conforming to this rule,
scenarios represent a form of expressing the expectations and the obligations of
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the system, and this technique defines what needs to be confirmed by the
analysis.

In terms of quantitative and qualitative aspects, both classes of techniques are
needed for evaluating architectures. Various analyzing models expressed in
formal methods are included in quantitative techniques. Qualitative techniques
illustrate software architecture evaluations using scenarios. A description of the
changes that are needed for each scenario represents a qualitative method of
evaluation. From this perspective, scenarios are rough, qualitative evaluations of
architecture. Scenarios are necessary but not sufficient to predict and control
quality attributes, and they have to be supplemented with other evaluation
techniques, and particularly quantitative interpretations. For example, including
questions about quality indicators in the scenarios enriches the architecture
evaluation. Quantitative interpretations of scenario evaluations could be: ranking
between the effects of scenarios i.e. a five level scale, or an absolute statement,
which estimates the size of modifications or different metrics, such as lines of
code, function points or object points.

2.5 Scenarios

Most of the architecture analysis methods use scenarios.  The usage of scenarios
is motivated by the consensus it brings to understanding what a particular
software quality really means. Scenarios are a good way of synthesizing
individual interpretations of a software quality into a common view. This view is
more concrete than the general definition of software quality [30], and it also
incorporates the specifics of a system to be developed, i.e. it is more context-
sensitive.

Scenarios are a postulated set of use situations or modifications of the system. In
analyzing a system, it is important that all stakeholders relevant to that system
(operator, system designer, modifier, system administrator and others depending
on the domain) are considered, since design decisions may be made to
accommodate any of these stakeholders. Scenarios are typically one sentence
long and could be more appropriately called vignettes. The modifications
reflected in scenarios could be:
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• a change as to how one or more components perform an assigned activity,

• the addition of a component to perform some activity,

• the addition of a connection between existing components, or

• a combination of these factors.

The development of scenarios is based on the system requirements that are
reflected in the architecture. Scenarios have to be sufficiently concrete to ensure
the expressiveness of the analysis. In this regard, it was demonstrated that it does
not seem to be possible to assess the reusability of an architecture in general.
That is, to depict typical reuse situations for applications in a respective domain
in a set of scenarios [41]. Concentrating on a specific set of applications and
specific reuse scenarios allows the eliciting of information on the flexibility of
software architecture and its constraints.

In creating and organizing scenarios, the concept of involved organization or
stakeholder related to the system is defined. Examples of such organizations
include the following:

• The organization responsible for executing the software: the end user;

• The organization responsible for managing the data repositories used by the
system: the system administrator;

• The organization responsible for modifying the runtime functions of the
system: the developer;

• The organization responsible for approving new requirements for the system.

Each stakeholder may express a set of quality goals for the system.

The terminology and concepts presented earlier form a terminological
framework for the discussion of the quality-driven architecture design and
quality analysis method that will be presented in the next chapter.
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3. Overview of the QADA method
When designing software architectures it is not feasible to begin with the
bottom-up style, because it expects one to consider the system in detail. Instead
one needs to use a top-down approach to the issue [12]. A conflicting practice of
architectural documentation today is that it does not support top-level
architectural descriptions. Lower level documentation does not reflect all the
thoughts the architect had in mind in the early phase of the design.
Documentation is important because, in most cases, the adapter of the
architecture, e.g. a software integrator or administrator, are not its creators. With
high level architectural descriptions available it is easier for the adapters of the
architecture to use a top down approach when getting familiar with the structures
and activities in a system.

The QADA method includes architectural design and quality analysis. Design
and analysis are closely associated and appear in turn in architecture
development (Figure 1). Architecture design is divided into conceptual and
concrete levels of abstraction in order to create high architectural descriptions
and analyze architecture quality also in the early phase of the design.
Architecture analysis measures the quality of software architecture with
scenario-based analysis methods and evaluates the architecture candidates by
comparing them or comparing a candidate against the quality attributes set in the
requirements engineering.

Requirements engineering captures and analyzes the technical properties and the
context of the system. Conceptual architecture design [5] phase models and
documents the structure, behavior and deployment of the system at an abstract
level. Conceptual quality analysis is firstly about analyzing an architecture
candidate (i.e. styles and patterns) against quality attributes that are relevant at
this abstract level and secondly evaluating architecture candidates. The concrete
architecture design phase defines system structure, behavior and deployment in
more detail using the architectural descriptions produced in conceptual design as
input. Quality of the concrete architecture is assessed again by the architectural
quality analysis [18, 19] and evaluation and thereafter, the needed changes are
updated to architectural models.
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System requirement 
specification

Conceptual 
architecture design

Architecture 
quality analysis

Concrete
architecture design

System requirement 
analysis

1.

2.

3.

4.

5.

Requirement engineering

Architecture design & analysis

Figure 1. QADA method main phases.

The QADA method considers that the architecture should be described with
multiple views (Figure 2). During design and analysis, architecture views evolve
from the conceptual level description to a more concrete level. A quality-driven
design and analysis method may involve views which are concerned with:

• The decomposition, in a structural view, of the functionality that the
products need to support. At a conceptual level this view is useful for
understanding the interactions between entities in the problem space,
planning functionality and understanding the domain variability and, hence
thereafter, the possibilities of initiating a product-line. At a concrete level the
elements from which the system is built could be crucial for understanding
the maintainability, modifiability, reusability and portability of the system
[cf. 18].

• Behavior view that is important in order to understand performance but, also
reliability and security.

• Deployment view, including central processing units, memory, buses,
networks and input/output devices. Quality attributes relevant to this view
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include availability, capacity and bandwidth as well as performance,
reliability and security.

MULTIPLE VIEWS

ARCHITECTURE
DESCRIPTION

Structural
view

Behavior
view

Deployment
view

commonalties
variabilities

adaptability
reusability
portability

performance
reliability
security

availability
capacity
bandwith

Concrete

DESIGN ANALYSIS

Conceptual

Figure 2. Quality-driven architecture design and analysis.

Maintainability is a quality attribute related to the structural view, the behavior
view and the development vie. The last is not considered here.

3.1 Requirements engineering

Requirements engineering considered here is an interface between the
requirements engineering and architectural design. In requirements engineering
the technical properties and the context of the system are defined. An important
issue is also to analyze the meaning of technical properties for architecture
design and scope product line of the system.

Technical properties are functional and non-functional requirements described
by a textual list of properties. The context model defines the hardware and
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software interfaces of the system and a set of constraints, in the form of
standards, rules set by laws, or quality requirements.

Figure 3 shows the architectural descriptions of the requirements engineering
phase.

Requirements engineering

Design rationale

Document including
text, tables, context model etc.

Architectural Descriptions

Figure 3. QADA method’s requirements engineering phase.

3.2 Conceptual architecture design

The conceptual software architecture provides the organization of functionality
and quality responsibilities into conceptual elements i.e. components and their
relationships, collaboration between components and allocation of components
to hardware.

The different aspects of conceptual software architecture are represented with
three architecture views [27, 32, 38]: structural view, behavior view and
deployment view, which are described more detailed in sections 5.1, 5.2 and 5.3.
A view is defined to be a representation of a whole system from the perspective
of a related set of concerns [28]. Every view produces its specific architectural
descriptions forming the main part of the documentation of the architecture
(Figure 4).
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Requirement
engineering Deployment

view
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view
Structural

view

Conceptual architecture design

Design rationale

Document
-text
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- context
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Architectural Descriptions

Table
of NFRs

Decomposition 
model

List of 
functional

responsibilities Collaboration
model

Table of
deployment 

units

Allocation
model

Figure 4. Design phases and architectural descriptions of the conceptual
architecture.

The first view describes the structural viewpoint: software components that
compose the system and their relationships. Hierarchical structure is illustrated
in a decomposition model, which is built up by clustering functional
responsibilities and selecting architectural styles addressed to certain selected
non-functional requirements (NFR).

The behavior view specifies the system from the viewpoint of dynamic actions
of, and within, a system, the kinds of actions the system produces and also
participates in their ordering and synchronization. The system behavior is
described with a collaboration model.

The third view, the deployment view, clusters conceptual components into
deployment units and describes allocation of those units into physical computing
nodes. A table of units of deployment and an allocation model describe the
allowed allocations of units. The necessity for a unit in a system is presented in
this view.

Design rationale is a set of design principles and rules. Design rationale also
provides the reasoning why these principles and rules have been defined and
possible consequences if they are neglected. Design rationale is related to an
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architectural description and can explain, for example, why a certain standard
has been selected or describe the selected architectural styles with their
preferences.

3.3 Conceptual architecture analysis

In a product-line context, each software product member possesses a desired
combination of quality attributes that define domain quality model. The quality
model of a product-line domain must include the variability and commonality
among the quality requirements and the architecture model should conform to
these aspects. Product-line architecture includes commonality and variability
indicating what can be common and different among the product members of a
product line, respectively.

Conceptual product-line architecture shows the results of the earliest design
decisions about a software system. Taking good decisions could lead to reduce
costs and risks.

Conceptual architecture analysis focuses on becoming aware of the available and
required information to do the analysis, and then to collect and compile it.
Currently three categories of information are being addressed: stakeholder,
architecture and quality. In the future, the information categories may be
extended. This information is gathered in a knowledge base.

The first phase of product-line architecture analysis method in a revolutionary
initiation approach is described in Figure 5. The product-line requirements
define not only the product-line scope, but also represent the analysis input to
create a knowledge base of the requirements’ taxonomy.



31

create

Product line requirements

Product line scope
Taxonomy of
requirements

Knowledge
base

define analyze

Figure 5. First phase of conceptual architecture analysis.

Syntactic architectural notations should be well understood by the parties
involved in the analysis. The result of an architecture evaluation process depends
on how well the description is made. This phase focuses on specific software
architecture analysis and the generation of artifacts to do the analysis. Examples
of artifacts include: domain models (which help in comparing competing
architectures within the same functional area); relevant architectural views;
architectural styles; environmental assumptions and constraints; and trade-off
rationale.

The role of a knowledge base is to allow the evaluation of collections of
architecture styles and patterns in terms of both quality factors and concerns, and
anticipation of their use. A ”pre-score” of architectural patterns is feasible in
order to gain a sense of their relative suitability to meet the particular quality
requirements of a system. In addition to evaluating individual patterns, it is
necessary to evaluate compositions of patterns that might be used in the
architecture. Identifying patterns that do not compose well (the result is difficult
to analyze, or the quality factors of the result are in conflict with each other)
should steer a designer away from “difficult” architectures towards those made
of well-behaving compositions of patterns.

The knowledge base built in this way helps to move from the notion of
architectural styles toward the ability to reason (whether quantitatively or
qualitatively) based on quality attribute-specific models. The goals of having a
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knowledge base are to make architectural design more routine and more
predictable, to have a standard set of attribute-based analysis questions, and to
tighten the link between design and analysis.

The reusability of existing knowledge includes packages of analysis templates
associated with reusable conceptual architectures. The architecture-specific
experience must be structured in a knowledge base so as to provide a set of pre-
packages analyses and questions including known solutions to commonly
recurring problems and known difficulties in employing those solutions. A PLA
analysis knowledge base should be organized in three important sets:

• A set of materials that describe many of the evaluation artifacts,

• A set of quality attribute-specific questions that aid the evaluator in probing
a product architecture,

• A set of questions that aid the analyst in gathering the information needed to
build an analytic model of the quality attribute.

After this phase, activities of concrete architecture design and the second phase
of architecture analysis are performed.

3.4 Concrete architecture design

The concrete software architecture provides the hierarchical containment of
concrete software components and definition of communication protocols used
between components. The behavior of each component is described in detail and
finally components are allocated to hardware resources, i.e. processors.

These different aspects of concrete software architecture are represented with
three similarly named architecture views as in conceptual architecture: structural
view, behavior view and deployment view. In this concrete approach to
architecture, every view produces its architectural descriptions (Figure 6).

Architectural styles selected for the conceptual architecture are now
complemented by design patterns [23]. These micro architectural elements [15]
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guide designers of components in greater detail to implement the components
and services compatible with the architecture. Appropriate design patterns are
recorded as the design rationale of the concrete architecture.

The first concrete view takes the decomposition model from the conceptual
architecture as input and describes the structural viewpoint by means of refining
components and interfaces between them. The hierarchical structure is illustrated
in structure diagrams, which are built up with respect to refined non-functional
requirements.

The concrete behavior view specifies the behavior of each component. The
concrete system behavior is described with component state diagrams and
message sequence charts.

Conceptual 
architecture Deployment viewBehavior viewStructural view

Concrete architecture design

Design rationale

Architectural Descriptions

Protocols

Capsules

Ports

Capsules, 
protocols

Processor

Hierarchical 
structure diagrams

communicate
through

using

Deployment
diagram

Component

State
diagrams, MSCs

refers to
is 

allocated
 inCapsule

behavior

in signals

out signals

Capsule
behavior

out signals

Figure 6. Design phases and architectural descriptions of the concrete
architecture.

The third concrete view creates executable software components that refer to
concrete architectural components, i.e. to capsules and also to protocols.
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Software component instances can be allocated to hardware and illustrate this
kind of deployment in a system level diagram.

The modeling elements and diagrams mentioned above mainly follow the
Unified Modeling Language specification version 1.3 [55]. Structural modeling
elements supporting component-based development and run-time architectures
are mandatory requirements for UML version 2.0 [62]. A suggestion for a
possible notation for component-based software development is introduced in
[57].

3.5 Concrete architecture analysis

Concrete architecture analysis focuses on drivers for architectural development.
In this phase recommendations are made, “hot spots” in the architecture (areas of
high predicted complexity, large numbers of changes, performance bottlenecks,
etc.) are located and strategies for their mitigation are enumerated, common
reference models are identified. It is important that this phase ties back to the
stakeholders’ values, as they are the drivers of the analysis in the first place.
Stakeholders' values measure their commitment to the product line architecture.

Scenario-based assessment is particularly appropriate for qualities related to
software development, which are specific to product-line architectures. Software
qualities such as maintainability, reusability, modifiability, adaptability and
portability can be expressed very naturally through change scenarios.  However,
scenario-based evaluation depends on the objectivity and creativity of the analyst
who defines and executes them. Still, the use of scenarios for evaluating
architectures is recommended as one of the best industrial practices.

This phase is based on SAAM [9], but improved through the introduction of a
knowledge base for product-line architecture design and analysis and categories
of scenarios. The knowledge base is attached to the product-line scope in form
of requirements’ taxonomy. The analysis phase considers product line specific
techniques such as commonality analysis, which systematically models the
required similarities and differences among product line members. It is also
considered that the product-line architecture contains the common components
of the architectures of the product members and takes variabilities as possible
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changes of this. The goal is to establish how adaptable the product-line
architecture to the expected changes related to this taxonomy is.

The analysis method consists of five important steps (Figure 7), which are:
deriving of change categories from the product line scope, product-line
architecture description, scenarios identification, evaluation of the effect of the
scenarios on the architecture elements and scenario interaction.

Derive change categories from
the product line scope

Product line
architecture
description

Scenario
identification

Evaluate the effect of
scenarios

Scenario interaction

Product line scope Knowledge base

Figure 7. Inputs and activities of architecture quality analysis (AQA).

The main inputs of the method are the product-line scope and product-line
architecture. The first step is to derive change categories based on the product-
line scope. Then, in parallel, the description of the product-line architecture and
scenarios identification are performed. The simultaneity of these steps permits
deciding what view should be considered for an elicited scenario. Scenarios
effects evaluation and scenario interaction are the last two steps performed
sequentially.
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4. Requirements engineering
The purpose of requirements engineering here is to link the requirements
engineering phase of the development life cycle and the software architectural
design. Requirements engineering considered here, identifies the driving ideas of
the system and the technical properties on which the system is to be designed.
Detailed functional requirements are to be clustered in the conceptual
architecture design phase of the method. Requirements engineering for a product
line architecture is done in steps, which are:

• Requirements specification

• Requirement analysis

• Defining context

• Scoping the product line

These steps of requirements engineering are described next.

4.1 Requirement specification

First, the system is defined in the form of main requirements. These
requirements are specified on high level for the whole system. Requirements i.e.
technical properties of the system equal the main quality and/or functional goals
this future system has to provide. Technical properties identified in this early
phase of architecture design drive the design process and are described in textual
form.

In addition to functional and/or non-functional requirements, the system
constraints should be defined in this phase. Constraints mean here specific
standards or rules set by laws that constrict the development process of software
architecture. In addition to the standards and rules set by laws some quality
attributes may also restrict the design of the architecture and should be taken into
account in this early phase.
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The next step is to analyze what do the technical properties and constraints
actually mean, and how do they affect the design of the software architecture.

4.2 Requirement analysis

Requirement analysis step is to analyze the technical requirements, i.e. properties
and constraints, defined in the requirement specification step by refining the
effect of each requirement on the architecture and determining the possible
prerequisites.

By prerequisites it is meant that requirements often depend on each other and in
order to fulfill one property, the system might need to meet some other
requirements.

4.3 Defining context

While capturing the technical properties of the system it is important to
document the context i.e. the interfaces to the environment. The system, its
environment and interfaces between these two are defined in this phase with a
context model. The context model represents the system and its environment
drawn up with freely formed notation.

System context usually represents a high level view to the issue, but the
abstraction level can be specifically defined for each case. It should be kept in
mind that the purpose of this phase is to describe the system as a whole in its
environment, not to decompose the system into subsystems, yet. System context
may include e.g. location of the system in its environment and/or a rough
distribution of the system in the case of a distributed environment.

4.4 Scoping the product line

Before starting the development of a product line, a company has to consider
various issues in order to get an understanding of whether a product line is
appropriate for different technologies and businesses [47]. In order to help make
decisions about product-line scope, an evaluation that considers an appropriate
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value metric is needed. The analysis of architectural qualities may be driven with
scenarios that identify which changes are most valuable to a customer and
quantifies the expected return on making that change. Since it is developing a
common architecture for a family of products, the goal is to design an
architecture that encompasses all the product-line members’ common features,
but which can be easily adapted to produce any member of the family. This
means that addressing the variations among members should require no change,
or very little change to the common architecture.

An important stakeholder in product-line scope analysis is the customer. A
customer value analysis approach is similar to the quality function deployment
method (QFD) [25] in seeking to reconcile customer needs with product design.
It differs in that, it seeks to measure more directly and accurately the customer’s
perception of total delivered value, hence what the customer will actually pay for
the product. Second, it directly measures the difference between an
organization’s internal perception of customer value and the customer’s actual
perception. This provides a basis for aligning a company internal view of
delivered value with market realities.

The idea is to provide a common framework and metric for making decisions
those bring together business issues and product issue. To do so a value metric
that makes sense in all these contexts is required. A value metric is applied to
help make decisions about product-line scope. The foci are on:

• Measuring the relative benefit of including or excluding capabilities from a
product-line’s scope.

• Making cost/benefit decisions about adopting product-line solutions.

• Applying product-line technologies (e.g. building a compiler for a product
line).

• Developing a particular product-line.

The purpose of the PL scope evaluation is both to assess the quality of a given
architectural design relative to the design goals and to quantify that measure of
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quality so it can meaningfully compare different designs. This could be done
using the results of domain suitability (see Figure 8).

 1. Domain Suitability
Analysis

 1.1. Scope domain

 1.2. Economic analysis

 1.3. Customer value analysis (CVA)

2. Commonality Analysis
2.1. Identify commonalties and
variabilities

2.2. Refine CVA

Figure 8. Using customer value in defining the scope of product line.

Domain suitability. The activities are domain scope, economic analysis and
customer value analysis (CVA).

• Domain scope considers the creating of a preliminary definition of the
product-line in terms of commonalties and variabilities.

• Economic analysis is concerned with the building of an economic model of
the product’s cost/return using the company’s current software products and
their product-line; these models may be used to determine the expected
return from adopting a product-line approach.

• Customer value analysis (CVA) is performed to help establish the relative
value of the possible variations in the potential scope of the product line. In
this context, change scenarios can be constructed based on how the product
is expected to evolve to meet customer needs. CVA results are used both to
identify which changes are most important (valuable) and to quantify the
expected return on making the change.

Commonality analysis. This activity has the goal to identify and document the
commonalties and variabilities characterizing the software product-line. Also,
the CVA is refined by developing value metrics based on the more detailed
definition of expected variations. This aligns the customer value data with the
product-line requirements that will drive a domain engineering phase.
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5. Conceptual architecture design
Conceptual software architecture provides the organization of functionality and
quality responsibilities to conceptual structural components, collaboration
between components and allocation of components to hardware.

These different aspects of conceptual software architecture are represented with
three architecture views: structural, behavior and deployment view, which are
next described in detail.

5.1 Conceptual structural view

Conceptual structural view is next described by means of architectural elements,
language and design steps. Architectural elements are created and used in
architectural descriptions of structural view. Language provides something
concrete to describe the elements represented and design steps refer to activities
that are carried out during the development of conceptual structural architecture.

5.1.1 Architectural elements

The conceptual structural view is used to record the architectural elements:
conceptual structural components, conceptual structural relationships between
components and responsibilities these elements have in the system (Table 2).

Conceptual structural components divide the system into functional blocks.
These elements can either be classified with a <<system>>, <<subsystem>> or a
<<leaf>> stereotype label. At the top level, the system is decomposed into
subsystems and at the next level, the conceptual subsystems are decomposed into
conceptual leaf components. At the end of the decomposing process, conceptual
leaf components are the smallest blocks used on the conceptual architecture
level.

The conceptual components of the higher level form a clustered set of functional
properties and are therefore called subsystems. In order to reach high quality
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software architecture these components on the subsystem level should have a
low coupling among each other.

Table 2. Conceptual structural design elements, types and responsibilities.

Element Types of an element Responsibilities of an element

Conceptual
structural
component

System component

Subsystem component

Leaf component

Conceptual
structural
relationship

Passes-data-to

Passes-control-to

Uses

What it has to do?

How it does it?

Why? (Design Rationale)

Coupling is an ordinal scale describing the degree of interdependence between
architectural components. Low coupling means that if one component of a
program is changed, it requires changes to be made to as few other components
as possible in the system [59].

Conceptual leaf components on the lower hierarchical level perform smaller
groups of functional requirements inside the subsystem. The components inside
one subsystem, instead of two subsystems, should have a high coupling with
each other.

Conceptual components have conceptual relationships between each other.
Relationships are abstracted interfaces between components, describing if an
element passes control or data to, or has uses dependency with another
component.

Passing control means, that one component controls a given aspect of the
system. The control component receives its inputs from the external environment
and generates outputs to the external environment, without any human
intervention [24]. By an external component here is meant the environment of
the component i.e. other components or subsystems. A control component is
often state-dependent. In some cases, some input data might be gathered by
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some other component(s) and used by this component. Alternatively, this
component might provide some data for use by other subsystems.

Passing data means, that one component inputs data to another component, but
is still able to continue processing without waiting for a reply or a return value.
The situation is opposite when talking about uses relationships, where a
component has a kind of subcontract with the component it uses. The user
component asks another component to process some data for it and is forced to
wait for the return value.

The responsibilities of the element define its role within the system.
Responsibilities include both functional and quality requirements and should
answer the questions ‘how’ and ‘why’ besides the simple, common question
‘what’.

5.1.2 Conceptual structural language

This section provides a suggestion for a conceptual structural language. That is,
a concrete means of describing the elements represented earlier i.e. conceptual
structural components and relationships. Figure 9 shows how conceptual
components can be described using graphical language.

«leaf»
component_name

<<system>> component_name

<<subsystem>> component_name

Figure 9. A description for conceptual components.

The aggregation level of each component is highlighted with a stereotype label.
Containment is represented by placing components on the lower aggregation
level inside the components on the higher aggregation level. That is, for instance,
a package symbol inside the rectangle that represents a subsystem.
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Conceptual structural relationships can be described as shown in Figure 10.
Different types of relationships are identified with stereotypes.

«control»

«data»

«uses»

Figure 10. A description for conceptual relationships.

A relationship arrow can connect components placed on different or on the same
aggregation level. This depends on system size and complexity. For instance, in
small and not so complex systems, a relationship arrow can appear between two
leaf components, meanwhile describing large systems, two subsystem
components are connected with a relationship arrow.

More complex situations are easier to figure out, if a leaf component is
connected to the subsystem representing that the leaf component has a
relationship (e.g. passes data to) with every leaf component in that subsystem
(Figure 11).

«leaf»
componentC

«leaf»
componentD

«leaf»
componentE

<<subsystem>> componentA

<<subsystem>> componentB

«relationship type»

«relationship type»

«relationship type»

Figure 11. Usage of conceptual structural relationship.
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5.1.3 Design steps of conceptual structural view

The design of the conceptual structural view is iterative and can be described
with a triangle including three steps, which are done with respect to constraints
set in the requirements engineering, as shown in Figure 12. Thick arrows
represent the inputs for design steps and the block arrows represent interaction
between the design steps.

3. Decomposition model:
•subsystem components

•leaf components
•conceptual relationships

1. Component functional
responsibilities:

•What?
•How?
•Why?

2. Component 
non-functional
responsibilities:

•How?
•Why?

Constraints set in 
requirement engineering:

•standards
•rules set by laws 

•etc.

Figure 12. Design steps of the conceptual structural view.

The three design steps that result in the conceptual structural architecture are
discussed next.

Step 1: Define functional responsibilities

In this, the system functionality is captured as a textual responsibility list.
Because requirements may not be fully known independently of a solution, in the
beginning the textual list of system responsibilities is a sketch of planned
functionality. This list is processed forward and requirements may change
frequently, especially when a new system  is under development.
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The purpose of a responsibility list is to capture system functionality at an
abstract level and encapsulate functional properties into groups. It is unlikely
that designing a structural view does not require iterations to optimize the
composition. During the iterations (done always through steps 2 and 3, defined
later in this report) the list gets more shape. Use of text processing effects helps
to outline the list and brings out the sub-lists.

The technical properties of a system, defined in the requirements engineering
phase, have also to be considered here. The results of the requirements
engineering phase are taken into account when defining the functional
responsibilities of a system. Functional responsibilities answer the questions
‘what’, ‘how’ and ‘why’. The first two questions come to an end in a structural
model with selected architectural styles, while ‘why’ gets its form as recorded
design principles and rules, i.e. design rationale.

Step 2: Define quality responsibilities

Quality responsibilities are derived from the non-functional requirements by
answering the question ‘how fast’, ‘how often’, etc. Constraints set in the
requirements engineering phase have impact an on defining these responsi-
bilities. Checking the balance between functional and quality responsibilities is
essential in order to find out conflicting responsibilities.

Non-functional responsibilities are listed in a table and categorized according to
quality attributes. A single quality attribute may have several non-functional
responsibilities included.

This phase tries to encapsulate the quality requirements as a responsibility of one
conceptual component or at least some restricted part of the architecture. This
leads to applying a specific architectural style (selected in Step 3) with respect to
a desired quality attribute in that component.

Step 3: Cluster responsibilities to components and subsystems

The structural architecture encloses conceptual subsystem components, leaf
components and their conceptual relationships. In addition, variability points
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specified at the conceptual level and architectural styles used are illustrated in
diagrams.

The final third step in the structural design is to group responsibilities to
conceptual components. In addition, the quality attributes drive the selection of
architectural styles and thus affect the forming of the system architecture.

Different architecture styles [9], architectural patterns [10] or mechanisms, are
addressed to certain selected quality attributes. In practice, these qualities are not
exclusive. A software product has to meet the requirements of various kinds of
quality attributes at the same time and this leads unavoidably to the use of
heterogeneous architectural styles. Heterogeneity means that different styles are
used for parts of the system in a beneficial way.

Table 3 provides some of the commonly used architectural patterns and what
quality attributes they help to achieve [10].

Table 3. Sets of architectural patterns.

Performance Modifiability Security
Load balancing Data router Encryption

Priority assignment Data repository Integrity

Fixed priority scheduling Virtual machine Firewalls

Cyclic Executive scheduling Interpreter Mirroring of databases

Client-Server Audit trail

Availability Testability Usability
Ping/Echo Monitors Separation of command from data

Voting Backdoor Separation of data from the view of that data

Recovery blocks Open APIs Replication of commands

Atomic
transactions

Recording

Checkpoints Explicit models for Task, User, System



47

5.2 Conceptual behavior view

The conceptual behavior view is next described by means of architectural
elements, language and design steps. Architectural elements are created and used
in architectural descriptions of behavior view. The language provides something
concrete to describe the elements represented and design steps refer to activities
that are carried out during the development of conceptual behavior.

5.2.1 Architectural elements

The conceptual behavior view is used to specify the behavior of a system on a
high abstraction level. Behavior is recorded by defining conceptual behavior
elements: components and relationships and the responsibilities these elements
have in the system (Table 4).

Table 4. Conceptual behavior design elements.

Element Types of an element Responsibilities of an element

Conceptual
behavior
component

Service component

Conceptual
behavior
relationship

Ordered sequence of
actions

What it has to do?

How it does it?

Why? (Design Rationale)

Conceptual behavior components i.e. service components are derived from
conceptual structural components. Service component is equal either to a
subsystem component or to a leaf component defined in the conceptual structural
view. Selection depends on the size and complexity of the system under
development.

Service components have behavior relationships between each other. Behavior
relationships are ordered sequences of actions among a set of service
components.
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Naturally, the number of action sequences in a complex system is infinite and
thereafter only the most essential sequences of actions are considered here.
Essential sequences of actions are called collaboration scenarios and each
collaboration scenario has a set of services related to it.

5.2.2 Conceptual behavior language

This sub section introduces a language for the conceptual behavior of an
architecture, i.e. a concrete means of describing the entities represented earlier
i.e. service components and ordered sequences of actions. Figure 13 illustrates a
graphical representation of conceptual behavior components i.e. services.

Service component A Service component B

1. description of
an action

Figure 13. A description for conceptual behavior elements and ordered sequence
of actions.

Ordered sequences of actions are represented with textual descriptions of actions
that are suitably numbered. Direction of an action is shown with an arrow. To
describe collaboration scenarios that are related to the user interface, an actor
called e.g. “user application” may be useful.

5.2.3 Design steps of conceptual behavior view

The design of the behavior view can be described with three steps, which are
started with functional responsibilities as input, as shown in Figure 14.
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Component functional responsibilities
•What?
•How?

1. Collaboration scenarios
•What?

2. Service sets
•Who?

3. Collaboration diagrams
•service sets

•ordered sequences of actions

Figure 14. Design steps of the conceptual behavior view.

The three design steps that result in a collaboration model are discussed below.

Step 1: Select collaboration scenarios

Here, the system abstract behavior is ascertained by deriving special
collaboration scenarios from the functional requirements of the system. These
scenarios are the most essential sequences of actions in the system.

The purpose of collaboration scenarios is to be an intermediate phase in the
design, quid the architects in the design process of the behavior view and finally
produce collaboration diagrams (Step 3). Collaboration scenarios are
documented in the form of a table, but they are not included in the final
architectural documentation i.e. architectural descriptions, as collaboration
diagrams are.
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Step 2: Identify service sets

In this step, special service sets related to collaboration scenarios are identified
by answering the question 'which services are participants in this scenario'.
Service sets are collected in a table with collaboration scenario descriptions.

Step 3: Create collaboration model

The collaboration model is an aggregate of collaboration diagrams. Each
collaboration diagram represents one collaboration scenario graphically. In
earlier design steps the service components were identified and essential
collaboration scenarios selected from an infinite number of action sequences. In
this final step the question 'in what order are actions done in each scenario' is
answered and drawn into a set of collaboration diagrams.

5.3 Conceptual deployment view

The conceptual deployment view is described next by means of architectural
elements, language and design steps. Architectural elements are created and used
in architectural descriptions of deployment view. The language provides
something concrete to describe the elements represented and design steps refer to
activities that are carried out during the development of the conceptual
deployment view.

5.3.1 Architectural elements

The deployment view is used to identify the distribution of hardware nodes in
the system, group conceptual components to units of deployment and specify
possible allocation of deployment units in computing units (Table 5).

The system hardware is described by means of distributed computing units
called deployment nodes. Each deployment node is a platform for various
services. Combination of services in different deployment nodes may vary and
thereafter, conceptual leaf components are clustered into units of deployment.
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A deployment unit is composed of one or more conceptual leaf components.
Clustering is done according to mutual requirement relationships between
components. In other words, a unit of deployment is atomic in the deployment
process i.e. it cannot be split and deployed on more than one node.

Table 5. Conceptual deployment design elements.

Element Types of an element Responsibilities of an element

Deployment
node

(Various, depends on
system)

Unit of
deployment

Mandatory

Alternative

Optional

Conceptual
deployment
relationship

Is-allocated-to

What it has to do?

How it does it?

Why? (Design Rationale)

Each unit of deployment represents one of three alternative types. These types
are mandatory, alternative and optional [35, 46]. Mandatory units are the basic
building blocks of the software. These units are always included in a system.
Alternative units cannot concurrently exist in the system i.e. there is a mutual
exclusion relationship between these units. Optional type means that the unit is
not essential for the system functionality, but may be included in order to reach
optional functionality and variability.

Allocation relationships are recognized between deployment nodes and units of
deployment. The allocation relationship represents which services will be
deployed in which distributed nodes/devices.

5.3.2 Conceptual deployment language

This section defines how to describe deployment nodes, different types of units
of deployment and allocation relationships in a conceptual deployment view.
Deployment units are rectangles that are differentiated with fills and line
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patterns. A hardware node is a rectangle with heavy line weight and connections
between nodes can be represented with two-headed arrows. Placing deployment
unit rectangles inside the node rectangles represents allocation relationships.

= optional unit of
deployment

= mandatory unit of
deployment

= alternative unit of
deployment

= node

= node connection

Figure 15. A description for conceptual deployment view.

5.3.3 Design steps of conceptual deployment view

The design of the deployment view can be described with three steps, which are
started with leaf components as input, as shown in Figure 16.

Conceptual
leaf components

1. Units of deployment
•mutual relationships?

2. Deployment 
nodes

•Where?

3. Allocation model
•nodes

•deployment units

Figure 16. Design steps of conceptual deployment view.

The three design steps that result in an allocation model are as follows.
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Step 1: Cluster leaf components to units of deployment

The aim of the first design step is to cluster leaf components into atomic
deployment units. Clustering is done mainly by identifying mutual relationships
between leaf components but a single leaf component may also compose a
deployment unit. Leaf components that require each other in order to function
properly build up a deployment unit. A deployment unit has to be small enough
to reach atomicity in the allocation process.

The types of deployment units are defined either according to system variability
or with respect to leaf component relationships. For example, mandatory and
optional types are often defined based on variability. Mandatory units of
deployment form the basis for services in one node and optional deployment
units represent additional services.

In addition to mandatory and optional deployment units there may exist
deployment units of an alternative type. The alternative type often represents a
mutual exclusion relationship between two or more leaf components in separate
units of deployment (Figure 17).

A

C

B

E

D

requires

excludes

requires

requires

Alternative units 
of deployment

A

C

B

E

D

requiresrequires

requires

excludes

Figure 17. Clustering leaf components according to mutual relationships.
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Step 2: Identify deployment nodes

In this step the deployment nodes are identified. A definition for a node in a
system is considered. A definition might be, for instance, a device with multiple
processors, a device with single processor or just a processor in an undefined
gadget. Is there a distributed environment in question and what are the
associations between nodes? The multiplicity of nodes has also to be taken into
account. Node definition is equal to the type of node.

Step3: Allocate deployment units to nodes

In the following, deployment units are allocated to nodes and represented in the
form of an allocation model. Figure 18 illustrates the concept of allocation. An
allocation model describes the types of deployment units graphically and
provides a coarse- grained sketch of the system hardware.

Deployment
node

Deployment
node

Deployment
node

network

Unit of deployment

1…n

allocation

Leaf
component

1…n

Unit of deployment

Leaf
component

Figure 18. Allocation of deployment units into nodes.
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6. Quality analysis of the conceptual
architecture

In quality analysis of the conceptual architecture, commonalty analysis (see
Figure 8) started in the scoping of the product line is continued by focusing on
the way variability and quality are addressed in the conceptual architecture.
Among the specific points that deserve special attention are the kinds of
variation which can be covered by the architecture and properties that are
preserved for all variants of an architecture, stability of component interfaces
with respect to evolution in products. Variation points and product-line patterns
are the main interests in the variability analysis that is continued by analysing the
architectural styles and patterns selected for the product-line architecture.

6.1 Variability analysis and representation

In the context of software product line modeling variability is essential for
building a flexible architecture. It is possible to anticipate some common and
variable aspects in the requirements of different product members and to
construct a product member in such a way that it facilitates this type of
variability and it considers strategic reuse. A product-line architecture is based
on a family of similar products, so it includes the complete specification of those
parts that are common to all products. However the points where products differ
from each other must be represented, in order to prepare the product-line
architecture for configuration. Showing variability explicitly concentrates the
places where product specific adaptations have to be made, and ensures that
structures that need not be changed are preserved. It should be noted that, when
talking about variability in respect to product-line architectures, one must
distinguish between variability in the domain that is resolved at a derivation time
and variability in single derived product architectures that are evaluated at
runtime. In this context the focus is on the representation of domain (i.e.
derivation time) variability, as solutions for modeling runtime variability are
already available in the form of design patterns.
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It is still a challenge to create malleable software architecture [53], even if the
problem is quite old [48]. Representation of variability inside a PLA has been
done in the following ways:

1. Variability appears implicitly [44];

2. Variability is abstracted in the object-oriented class structure [34];

3. Variability is performed during domain engineering using Scope, Variability
and Commonality (CSV) analysis [16];

4. Variability is represented by using a hot spots in frameworks [50, 22];

5. Variability is represented using patterns [42, 39];

6. Variability is represented by the means of under-specification (leaving
everything that varies unspecified), provisions (letting one select among
possible variants) and patterns (structuring the architecture for easy
adaptation).

Variability is modeled on the domain architecture level and is finally resolved by
derivation of a specific product. Variation in product-line architecture could be
managed in the two ways identified in [17] as following: variation point
description and product-line patterns. In treating the variability issue it is
important to clearly separate three main concerns:

1. Expression of what can vary in the product-line architecture (the implied
assets) and how it can vary (description of all kind of variants).

2. Explicit signalization of places in the model (hotspot) where variation can
occur (variation point). Each variation point is considered as an elementary
entity (it is not decomposable in sub entities) and is self-contained (all
needed information to choose a variant locally is provided). If this point is
not identified, teams will have to adapt or alter the assets in ways that may
not have been anticipated, leading to product line erosion.

3. The decision to take when facing variants selection (the decision model).
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Variation points are exhibited using a hot spot in a UML class or package
diagram. It is relatively easy to describe the variability point in UML models.
The major difficulty consists in describing the decision model.

A solution for product-line patterns is to integrate under-specification into
variability. This means that abstract components are leaf nodes that define the
interfaces for product-specific additions. Consequently, abstract components
represent points in the product-line architecture that must be further specialized
by configuration or extended by product-specific parts, whereas concrete
components denote commonalties in the domain. The meaning of concrete and
abstract in this context should not be confused with the meaning of concrete and
abstract in object-oriented programming. In this pattern context, “concrete”
components just mean parts that are completely specified and “abstract”
components mean parts where things have been left open. Nevertheless, abstract
components can be instantiated, but must be further specified if they are to be
implemented.

6.2 Architecture analysis at the conceptual level

This section introduces quality attribute-based methodology and architectural
styles and patterns violations analysis.

6.2.1 Quality attribute-based methodology

In addition to variability analysis, the activity in this step is based on the
structured relation between the software quality attributes of a system and the
system architecture. In order to apply an unifying approach for reasoning the
multiple software we assume that the properties of critical systems and the
best methods to develop them already exist and concern different
schools/opinions/traditions (e.g. performance – from the tradition of hard real-
time systems and capacity planning).

Quality analysis method at the conceptual level is based on a generic taxonomy
of attributes and connections between the attributes [7]. At the conceptual level,
the quality attribute taxonomy identifies:
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• concerns – the quality requirements by which the attributes of the PLA are
judged, specified and measured (i.e. throughput for performance,
observation interval, etc);

• attribute-specific factor – properties of the architectural styles and patterns
and environment that have an impact on the concerns  (i.e. separation,
replication, resource sharing, faults);

• methods – how the concerns are addressed; analysis and synthesis processes
during the development of the system (e.g. the QADA method, formal
methods, fault tolerance methods), users' guide and training.

The investigation of the relationships between quality attributes and software
architectures leads to an attribute-based methodology for evaluating software
architecture.

The structural view, the behavioral view and deployment view are the
descriptions the analysis is based on. A mapping between the functional
requirements and subsystems or components provides a structural view that
supports traceability analysis, especially if there is any modification to be made
to the system. Two different representations may be considered for the mapping.
One shows the mapping of the system’s main functional and non-functional
requirements or features to subsystems and components, whereas the other
demonstrates the mapping of components to features. The conceptual
components involved are linked back to those shown in a structural view. The
first representation helps locate all components involved for a particular
functional requirement. The book-keeping effort in creating and maintaining
such view, and the links between them, is crucial for supporting analysis.
Humans can not be expected to keep all the details in their heads, all the time.

A behavioral view represented by collaboration diagrams is perceived as a
dynamic aspect that it is important to understand the system before a reuse
occurrence. In addition, the behavior view also supports maintainability as a
system evolves. For instance, if modifications are made, the structural
architectural representations may stay the same, but some of the system’s
behaviors may be modified. The modification of behaviors should be, but
typically can not be, explicitly represented by structural architectural views.
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Another example is that if personnel changes or the architect leaves, there may
be different interpretations for the structural view by other designers or new
employees.

The deployment view is also incorporated for this conceptual analysis although
the main objective focuses on the reuse and adaptability perspective. The
deployment view is the description of allocation, and sets constraints that have
an impact on quality requirements, i.e. concerns.

Based on the architecture descriptions, during this phase we use the taxonomy of
quality requirements to identify architectural styles and pattern violations.

6.2.2 Architectural styles and patterns violations analysis

An architecture can be classified into more than one style and an architecture
allows coexistence of multiple styles. The primary purposes of the style or
pattern is to impose an overall structural interpretation on a software system or
subsystem for consistency checking, and to support the human to human
communications of the software. The identification of an architectural style helps
focus on critical features such as the control mechanism of a style, the
communication mechanism between components, and the integrability of new
components, or the modifiability of existing components.

In addition, the analysis can support a decision-making process in choosing an
appropriate style for the product-line or trade-off analysis. The appropriate style
can then be reused for the product-line domain, even if the architecture itself is
evaluated to be risky to be directly reused for a product. For large systems where
multiple styles may exist, analysis of styles interoperability is important. Styles
interoperability is directly related to system integrity and maintainability. It is
important to identify and analyze how one particular style communicates with
other styles.

This activity deals with the components or links that are missing or are not
represented properly, and the control or communication mechanisms that violate
the policy of the identified architectural style. The architectural style may only
reveal an “idealized” or “as-intended” software architecture initially developed
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by a group of software designers. This activity, on the other hand, recovers the
“as-built” aspect of an architecture supported by the behavior representations.

Some reasons for the violations could be legacy systems, modifications for
performance, understandability, and discrepancies in the levels of abstraction.
The violations must be explicitly documented to reduce potential problems
caused by ambiguity or inconsistency. The documentation can also support
system maintainability. Architectural violations are as important as normal
architectural features and must be identified before reuse occurrence to reduce
unnecessary maintenance effort.
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7. Concrete architecture design
Concrete software architecture refines conceptual structural components and
their relationships. Also collaboration between components is described in more
detail and detailed lower level components are allocated to hardware.

These different aspects of concrete software architecture are represented with
three similarly named architecture views as in the conceptual level of
abstraction: structural view, behavior view and deployment view. These views
are next described in detail.

7.1 Concrete structural view

Concrete structural view is discussed below. It is described by means of
architectural elements, language and design steps. Architectural elements are
created and used in architectural descriptions of the structural view. Language is
a way to describe the elements represented and design steps refer to activities
that are carried out during the development of concrete structural architecture.

7.1.1 Architectural elements

The concrete structural view is used to record concrete architectural elements:
capsules, ports and protocols (Table 6).

Capsules are the fundamental modeling elements of real-time systems [52, 57,
51]. A capsule represents independent flows of control in a system. Messages are
the sole means of communication between capsules and they are sent and
received through ports.

Capsules represent the system with hierarchical aggregations of capsules. The
upper level capsule contains lower level capsules and is therefore often called a
container capsule. The uppermost container capsule is called a top capsule.
Capsules that compose a top capsule, are labeled with <<subsystem>>
stereotype to represent subsystem capsules and capsules on the next aggregation
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level are component1 capsules, component2 capsules on the next level etc.,
although three composition levels are deep enough in most cases.

Table 6. Concrete architecture design elements.

Element Type of
an element

Roles of
an element
type

Visibility Responsibilities
of an element

Capsule Top capsule

Subsystem
capsule

component1
capsule

component2
capsule

Fixed

Optional

Plug-in

– What?

Why?

Port Wired

Non-wired

In

Out

Public

Protected

What protocol is
used?

Connector – – – Which ports does
it connect?

Protocol Binary protocol Base

Conjugate

– What messages
are exchanged in
this protocol?

Capsule roles represent a specification of the type of capsules that can occupy a
particular position in a capsule's structure. Capsule roles are strongly owned by
the container capsule, and cannot exist independently of the container capsule. A
capsule's structural decomposition usually includes a network of collaborating
capsule roles joined by connectors. Capsule roles are classified into three
categories: fixed, plug-in and optional capsule roles. Capsule roles reflect
component types in conceptual architecture.

Fixed – By default, capsule roles are fixed, meaning that they are created
automatically when their containing capsule is created, and are destroyed when
the container is destroyed.
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Plug-in – The structure of a capsule may contain plug-in capsule roles. These
are, in effect, placeholders for capsule roles that are filled in dynamically. Plug-
in roles can be defined as substitutable components in architecture.

Optional – Some capsule roles in the structure may not be created at the same
time as their containing capsule. Instead, they may be created subsequently,
when and if necessary, by the state machine of the capsule. Optional capsule
roles can be destroyed before the container is destroyed and these roles can be
defined as substitutable components in the architecture.

Capsules do not support visibility and their responsibilities are captured
similarly as for conceptual structural components by answering the questions
‘what’, ‘why’ and ‘how’. ‘Why’ denotes the design rationale and ‘how’ is
mapped to variability i.e. to the role capsule represents.

Ports are objects whose purpose is to send and receive messages to and from
capsule instances. They are owned by the capsule instance in the sense that they
are created along with the capsule and destroyed when the capsule is destroyed.

Wired ports must be connected with a connector to other ports in order to send
messages. Non-wired ports are used to model dynamic communication channels.
These ports do not have to be connected with connectors to other ports. A
connector is a concrete structural relationship between capsules.

Port role represents the direction of messages exchanged through a port. A port
is a participant in a communication relationship and can play two alternative
roles, in or out. Both types of signals are always exchanged, in-signals and out-
signals, through a port and this does not depend on the role port is playing. The
first message delivered through a port determines the role of a port.

Ports can also be classified according to the visibility of their support. Public
ports are ports that are part of a capsules interface and may be visible both from
outside the capsule and inside. Protected ports are used to connect capsules to
contained capsule roles. These ports are not visible from the outside of a capsule,
since they are not part of the capsule’s interface.
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The responsibility of a port is to deliver messages of a certain defined protocol.
An in port plays a base protocol role and correspondingly an out port plays a
conjugate role in a binary protocol.

A protocol is a contractual agreement defining the valid types of messages that
can be exchanged between the participants in the protocol. A binary protocol is a
set of messages exchanged between two participants. A binary protocol needs
only a base role to define all the messages that are exchanged in a protocol. The
other role, called the conjugate, can be derived from the base role simply by
inverting the incoming and outgoing message sets. This inversion operation is
known as conjugation.

7.1.2 Concrete structural language

The language represented next is a possible suggestion for a concrete structural
language. The concrete structural language, based on the ROOM method [56],
described below is supported by Rose-RT [51]. It provides a concrete means of
describing the elements represented earlier.

A capsule structure is shown as a box with a heavy border, which represents the
capsule's boundary. Capsule types representing the aggregation level of a capsule
are illustrated with stereotypes in front of the capsule name (Figure 19).

<<subsystem>> 
capsule_name

Capsule interface 
(i.e. port)

Capsule boundary

Figure 19. A capsule.
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Capsule roles are shown inside the boundary as composite parts. The graphical
notation of capsule roles is shown in Figure 20.

     Fixed                     Optional                 Plug-in

Figure 20. Capsule role classification.

Figure 21 shows a language for describing ports.

In-port Out-port

Public port in capsule Protected port in capsule

Wired port Non-wired port

Figure 21. A language for port elements.

Every port has a name and it is shown in a concrete structure diagram. In
addition to port name some significant information is related to the port and it is
also shown in the structure diagram. Firstly, the visibility of the port is assigned
with  + and # symbols (+ for public and # for protected port). After the visibility
symbol is a place for the name of the port and then the name of the protocol in
use.
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Connectors are described as solid lines connecting ports in structure diagrams as
shown in Figure 22.

connector

Figure 22. A connector between two capsule ports.

7.1.3 Concrete structural design steps

Concrete structural design conforms to a model of three parallel design steps as
shown in Figure 23. Concrete design refines the decomposition model built in
conceptual architecture design by decomposing it to the lower aggregation
levels.

3. Hierarchical
structural diagram:

•capsules
•ports

•protocols

1. Functional
responsibilities:

•What?
•How?
•Why?

2. Design patterns

Decomposition model Architectural styles

Figure 23. Design steps of the concrete structural view.
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Architectural styles selected in the conceptual design phase are input for
selecting design patterns as a means of fulfilling non-functional responsibilities.
Finally, design patterns and more concrete functional responsibilities take the
form of a concrete, hierarchical structure diagram with capsules and ports. These
steps are next described individually.

Step 1: Refine functional responsibilities

In this section, the system functionality is refined. The functional responsibilities
of each leaf component are expanded in order to create smaller, contained
architectural components. Because this step is done parallel with steps two and
three, refined functional responsibilities are documented directly to the structural
diagram in form of capsule documentation.

Step 2: Select design patterns

Architectural styles selected for the conceptual architecture are now
complemented by design patterns [23] that utilize several styles. There is no
explicit mapping between styles and patterns and this is why selection of design
patterns has to be based mostly on the practical experience of an architect.

Step 3: Build a hierarchical structural diagram

The concrete structural diagram refines the architectural structure defined in the
conceptual structural view. That is, the concrete top-level structural diagram
mainly follows the same structure as defined in the conceptual design. Table 7
shows the comparison of architectural elements used in the conceptual and
concrete structural views. As seen, a concrete structural view starts the
refinement of conceptual elements at the leaf component level and continues
decomposing on as many levels as necessary.

The main refinement from a conceptual decomposition model to a concrete top-
level structural diagram is that protocols are defined. In the decomposition
model there exist only conceptual relationships, but in the concrete diagram the
protocols, i.e. exact signals exchanged through ports are defined as a refinement
of relationships. For a signal there are defined its direction, parameters and
return values.
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Table 7. Comparing conceptual and concrete structural elements.

Conceptual structural view Concrete structural view

Element Description Element Description

System
component

Square

Subsystem
component

Square

Leaf
component

UML package Subsystem
capsule

<<subsystem>> capsule

level 1 capsule <<component1>>
capsule

level 2 capsule <<component2>>
capsule

Conceptual
relationship

stereotyped UML
dependency arrow

concrete
interface

ports, connectors,
protocols

Capsules themselves remain only as dummy structural components. The
composition of each subsystem level capsule is defined in similar structural
diagrams at lower architectural levels in the hierarchy.

7.2 Concrete behavior view

The design of the concrete behavior view is next described in three sections.
Firstly, the architectural elements used in design are introduced. Secondly, a
suggestion for a modeling language of these elements is described and thirdly,
how architectural elements are utilized to build up behavior diagrams. The
behavior diagram is build up with the following ordered design steps.

7.2.1 Architectural elements

The concrete behavior view is used to model the behavior of a system on a quite
detailed level of abstraction. Concrete behavior design elements i.e. components
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and their relationships that are used in concrete behavior design are defined in
Table 8.

Table 8. Concrete behavior design elements.

Element Name Type of element Responsibilities of an
element

Concrete
behavior
component

Interaction
instance of a
capsule

See Table 6 How does this capsule
behave, when a message
arrives?

Concrete
behavior
relationship

Interaction
message

Asynchronous
message

Synchronous
message

Call message

What protocol signal
corresponds to this
message?

From which port?

To what port?

Interaction instance of a capsule conforms to a run-time instance of a capsule
representing a certain service. Capsule instance types and roles are presented in
Table 6, but those types and roles do not have a great impact when describing
behavior inside a capsule or between a set of capsule instances. Behavior inside
a capsule instance conforms to the responsibilities of a capsule instance and is
represented in the form of a state diagram.

An interaction is a pattern of communication among objects at run-time. A
sequence diagram is used to show this interaction from the perspective of
showing the explicit ordering messages. Sequence diagrams are used to show
specific communication scenarios of collaboration.

A message is the specification of a communication between capsule instances
that convey information with the expectation that activity will occur upon
receipt.

There are up to three types of messages exchanged between capsule instances.
Synchronous send messages, asynchronous send messages and call messages.
Send messages can be mapped to the control and data relationships in the
conceptual behavior view and call messages can be mapped to the conceptual
uses relationships.
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Synchronous send messages are sent from an instance to another. These types of
messages block the sender from waiting for a return (like a function call). This
corresponds to the ‘invoke’ operation.

Asynchronous send messages differ from synchronous send messages in that
they do not block the sender from continuing its process.

Call message is used between two instances. Call messages are like function
calls, so the sender is blocked from waiting for a return.

7.2.2 Concrete behavior language

This section describes how concrete behavior is described using the UML. In
addition to the concrete structural language, Rose-RT [51] supports the concrete
behavior language discussed below.

The behavior of a capsule instance is described with a state diagram. A state
diagram is a directed graph of states connected by transitions. A state diagram
describes the life history of instances of a given capsule. A state machine
contains exactly one initial state and initial transition, one top state, one or more
states, choice points, and the state transitions between them (see Figure 42).

A sequence diagram is used to show the interaction between capsule instances in
the form of explicit ordered messages. Similarly to collaboration diagrams in the
conceptual behavior view, the sequence diagrams in the concrete behavior view
are used to show specific communication scenarios of collaboration.

A message instance is shown as a line from the lifeline of one object to the
lifeline of another. In the case of a message sent by an object to itself, the arrow
may start and finish on the same lifeline. The arrow is named with the name of
the message. The arrowhead of the message can be shown in different ways to
convey the different types of message communication (see Figure 43).
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7.2.3 Design steps of concrete behavior view

The design of the concrete behavior view is very simple, including only two
iterative steps as shown in Figure 24. The first one is to define the inner behavior
of capsules that are identified and structured in the concrete structural view. The
second one is to refine conceptual collaboration scenarios for capsule
interactions i.e. sequence diagrams.

Capsules defined in 
conrete structural 

view

1. Capsule 
inner behavior

2. Capsule 
interactions

Conceptual 
collaboration

scenarios

Figure 24. Design steps of concrete behavior view.

At the end of concrete behavior view design, the system behavior is represented
through state machines and message sequence charts. The design steps are next
described in detail.

Step 1: Define inner behavior of capsules

In this step, the puzzle, what happens inside the capsule is to be solved (Figure
25). The solution is modeled with a state machine that is always associated with
a capsule.

What is known in advance and taken as the input for this step, are the in-signals
and out-signals defined in the concrete structural view. It has to be figured out,
what states are needed, which signals trigger the state transformations and what
are the concrete actions attached to states and transformations.
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?
InSignals

OutSignals

capsule

ports

Figure 25. Capsule inner behavior is to be defined.

States may also contain sub-diagrams, or other state machines that represent
different hierarchical state levels. The receipt of a signal event triggers the
capsule's state transformations. When a capsule receives a message from another
capsule, a signal is generated and some response by the capsule is usually
required.

Step 2: Refine collaboration scenarios as capsule interactions

In this, collaboration scenarios identified in the conceptual behavior view are
refined in forms of message sequence charts. Message sequence charts are
defined for these specific scenarios’ illustrating the message sequences between
concrete architectural components i.e. capsules in the system.

It is very likely that protocol signals identified in structural design are not
complete. Possible gaps are found out in behavior design.

7.3 Concrete Deployment View

Architectural elements, language and design steps are next described for the
concrete deployment view. Architectural element modeling is concretized with
the concrete deployment language and used in architectural descriptions of the
concrete deployment view. Design is done with the following design steps that
are defined in 7.3.3.
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7.3.1 Architectural elements

The concrete deployment view is used to record the following architectural
elements: concrete deployment hardware and software components, relationships
between hardware components and relationships between software and hardware
components (Table 9).

Concrete hardware components represent physical devices, more specifically, a
computational resource having memory and processing capability. Hardware
components may represent either type: node or device. Component instances
reside and run on concrete hardware components. Use hardware components to
model the topology of the hardware on which your system executes.

Software components are used to model the physical elements that may reside on
a hardware component, such as executables, libraries, source files, and
documents. The deployment software component, therefore, represents the
physical packaging of the logical elements, such as capsules and protocols.

Table 9. Concrete deployment design elements.

Element Type of an element Responsibilities of an
element

Concrete deployment
hardware component

Node
Device

Concrete deployment
software component

Component

Concrete deployment
hardware relationship

Connection

Concrete hardware-
software deployment
relationship

Allocation

What it has to do?

How it does it?

Why? (Design rationale)

The most common relationship between hardware components is an association.
In the context of deployment, an association represents a physical connection
between hardware components.

The other relationship that is concerned in the concrete deployment view is the
relationship between software and hardware i.e. allocation. The allocation
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relationship presents which software component instances will run on which
hardware components.

7.3.2 Concrete deployment language

This sub section describes how concrete deployment is described using the
Unified Modeling Language UML.

The deployment of concrete software component instances to hardware is
described with a deployment diagram. It provides a basis for understanding the
physical distribution of the run-time processes across a set of processing nodes.
Nodes/devices may contain component instances, which indicate that the
component runs on the node/device. A deployment diagram is a graph of
nodes/devices connected by a communication association called a connection
(see Figure 44).

7.3.3 Design steps of concrete deployment view

The design on the concrete deployment view includes the three steps shown in
Figure 26. Concurrency of all steps is allowed. That is, the ordering of steps is
relaxed and not strictly ordered.

The concrete deployment view considers deployment nodes that are defined in
the conceptual level and concrete structural elements as input for this design
phase. Inputs and steps together result in a deployment diagram. Steps are next
defined in more detail.

Step 1: Package capsules and protocols to components

In the context of concrete deployment, a component represents the physical
packaging of the logical elements, such as capsules and protocols. A concrete
component can have instances and specific component instances can be assigned
to nodes (Figure 27). The mapping from capsules to components may be one-to-
one or one component may include several capsules and also refer to the
communication protocols used between those capsules.
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Conceptual deployment
nodes

2. Deployment nodes 1. Components

Capsules, protocols

3. Deployment diagram

Are 
packaged to

Figure 26. Design steps of the concrete deployment view.

Component

Logical element

Component instance

Node

Is assigned to

has

Figure 27. A component in the context of concrete deployment.
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Step 2: Define deployment nodes

Nodes are used to model the topology of the hardware on which a system
executes. The most common relationship between nodes is an association. In the
context of deployment an association represents a physical connection between
nodes. Concrete deployment nodes may be equal to conceptual deployment
nodes or they may be refined or modified.

Step 3: Build up a deployment diagram

The final result of the concrete deployment view is a deployment diagram that is
finally built up utilizing the hardware and software components defined earlier.

Figure 27 graphically illustrates how the deployment diagram is built. Logical
elements e.g. capsules are packaged into components (Step 1) and after that
component instances are allocated to nodes forming a deployment diagram.
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8. Quality analysis of the concrete
architecture

This section describes how the quality analysis of the concrete architecture can
be done with quality analysis that is based on customer value analysis and with
scenario-based quality analysis.

8.1 Quality analysis based on customer value analysis

One of the purposes of the architecture evaluation is both to assess the quality of
a given architectural design relative to the design goals, and to quantify the
measure of quality so that different designs can be meaningfully compared.
Domain architecture analysis (Figure 28) could be done using the results of
domain suitability and commonality analysis performed during product line
scope (see Figure 8).

3. Domain Architecture
Analysis

Product-line
Architecture

Product
Product

Product
Model a software product Build product-line instance Product

3.1. Design domain architecture

3.2. Architectural quality
analysis (AQA)

Figure 28. Product line architecture analysis integrated in domain architecture
analysis.

Customer value analysis results may be used both to identify which changes are
most important and to quantify the expected return on making the change. The
change scenarios are used against the current architecture to determine the
expected cost of evolving a product without using a product line approach. It can
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then assess the costs and benefits of each approach based on the value of the
product changes the customer wants and the costs of making such changes under
each development paradigm.

As it is described in Figure 28, architecture analysis is integrated in the domain
modeling activities that have the result of product-line architecture and software
products based on the developed product-line architecture. Here is considered a
compositional approach to domain modeling in which a common, reusable
architecture for the product line is developed. The generation of various
members of the product-line can be done using adaptable, parameterized
components (e.g. as in the CelsiusTech architectural case study [9]). As part of
the domain modeling activity, the architecture must be evaluated against its
quality requirements. In particular, a detailed, quantitative evaluation of how
well the architecture instantiates the commonalties and accommodates the
variabilities that characterize the product-line is desired.

A detailed and quantitative analysis is developed by:

• Creating scenarios based on the results of commonality analysis and

• Evaluating them based on the results of CVA and an analysis of the cost and
benefit associated with potential variations in the scope of the family.

One or more scenarios are created for each commonality and each variability
point. The cost and effort of the evaluation can be adjusted by using the value
metrics to order the possible variabilities according to relative value and creating
scenarios only for those variations above some threshold value.

The scenarios are tested against the architecture using qualified personnel to
determine whether and to what extent the candidate architecture must be
changed to accommodate each scenario. Where accommodating a scenario
would require a change in the architecture, the expected cost to make that change
is estimated. In general, scenarios developed from the commonalties should
result in no architectural changes. Scenarios developed from variabilities within
the product line scope should result in changes that can be accommodated by the
variability mechanism (e.g. parameterizing a module or substituting one module
for another).
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Overall evaluation of the architecture is carried out using customer value data to
assign weights to scenarios and scenario interactions. This weighting can be used
to evaluate one candidate architectural design against another.

8.2 Scenario-based quality analysis of the concrete
architecture

In order to assess the quality of a concrete architecture we use the software
architecture analysis method only because, due to the revolutionary initiation
approach, we are not able to perform customer value analysis (this can be done
when the first version of the new concept is ready). As stated above this is a
scenario-based method that consists of formulating a number of scenarios and
evaluating the effect of each of them on the architecture. A scenario is a
description of an expected use of a specific product line.

Generally, an analysis method can be developed to compare two or more
candidate architectures or to assess the quality of a single architecture. Our
analysis method is used to assess the quality of a single architecture, namely
product-line architecture, that represents the commonalties and encapsulates
variabilities of product-line members. The steps of the method are introduced
next.

Step 1: Derive change categories based on product-line scope

Two categories of change are depicted in Figure 29. The first category contains
scenarios that are related to the technical requirements of the platform. Scenarios
of this category explore the applicability of the PLA in situations with various
technical requirements. The second category of scenarios concentrates on
context or environment identification and is evaluated with scenarios that
simulate changes in the technical environment.
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Figure 29. Derived change categories.

Step 2: Scenarios identification

The second step of the method consists of the scenario's identification. In this
activity we distinguish possible changes that may happen in the life of the PL
based on the derived categories. Scenarios should illustrate the kinds of
anticipated changes that will be made to the PLA due to the PL scope. For
example, from changes in technical environment (the quality requirement of
portability) we can derive the following scenario:

What happens when another network protocol is to be used?

By formulating a number of these scenarios, we can make portability tangible,
because they capture what we actually want to achieve with portability.

A common problem of the scenario identification activity is when to stop
generating scenarios. Possible solutions could be suggested:

• The set of scenarios is complete when the addition of a new scenario no
longer perturbs the design.

• Try to identify a complete set of scenarios, but this is generally impossible.

• Delimit a representative set of scenarios, which has the weak point in how to
define which is the representative set. This solution is based only on the
creativity and subjectivity of the analyst, or it requires a domain knowledge
base organized in the three important sets characterized previously.
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• Consider various criteria for the relevant scenarios. For example, scenarios
which are possibly complex to realize. A two-dimensional framework plan
(categories of complex scenarios, sources of changes) may help identify
complicated scenarios.

• Try to apply a procedure for identification. For example, a two-step
procedure, where in the first step, a coverage guarantee is obtained. The
scenarios are identified and clustered, based on the objectives and domain
experts’ knowledge, and the coverage is checked against the objectives of
the stakeholder, architecture and quality. The second step validates the
balance of scenarios with respect to the objective, based on a Quality
Function Deployment (QFD) technique [58]. The decision to distinguish
more scenarios is made based on comparison against 1 (one) of a calculated
imbalance factor for each quality attribute.

• Use a set of standard quality attribute-specific questions to ensure the proper
coverage of an attribute by the scenarios. The boundary conditions should be
covered. A standard set of quality-specific questions allows the possibility of
extracting the information needed to analyze that quality in a predictable,
repeatable fashion.

We assume that the architecture is a good one and it is not necessary to generate
scenarios to verify the functional requirements. Otherwise these should also be
considered when verifying functionality.

Step 3: Description of the PLA

Another required activity is the description of the PLA.  This activity is
considered the third step, but it could be performed in parallel with the previous
one. The method is applied to analyze the architecture, when not all the
necessary structures have been designed and the architectural representation
might not include some concrete domain requirements.

A specific of PL architecture is that it contains abstractions of the problem
domain but also concrete components, which could be common or variants of
different family products. PLA combine the generics of the domain with the
concreteness of each product and its views must reflect the diversity and the
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range of this diversity through mandatory, optional and alternative
representations. The minimum of required views for a PLA representation are
considered from the QAD method.

Step 4: Evaluate the effect of the scenarios on the architecture elements

The evaluation of the scenarios effects on the analyzed PLA view may consider
several issues. We can identify some of these in the following enumeration:

• A classification and generalization of the architectural elements facilitates
the estimation of cost or effort required for changes to be made. Determine if
the architectural elements influenced are members of abstract or concrete
PLA packages.

• The effect of a scenario is estimated by investigating which architectural
elements are affected by that scenario. The cost of the modifications
associated with each change scenario is predicted by listing the components
and the connectors that are affected and counting the number of changes.

• The evaluation can be performed in a complete manner, if the set of
identified scenarios is complete. If all scenarios are executed without
problems, the quality attribute of the architecture is optimal.

• The evaluation can be performed in a statistical manner, if a representative
set of scenarios has been considered. The ratio between scenarios that the
architecture can succeed with and scenarios not succeeded with well by the
architecture provides an indication of how well the architecture fulfills the
software quality requirements.

• In case the analysis is performed at a time when PL has been already
developed and multiple releases exist, it is possible to define and use a
measurement instrument to express the effect of scenarios. The instrument
must indicate, not only the impact of a scenario considering both the
flexibility in space (multiple variants in products) and time (multiple
versions of variants), but also whether multiple owners are involved. The
analysis of flexibility in time could indicate whether it leads to version
conflicts.
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The objective of evaluation is to get a prediction of the quality of the PLA with
respect to the anticipated variability in functional or non-functional
characteristics of this product line.

To evaluate the effect of these scenarios on the architecture, we classify the
effect of a scenario into four discrete levels:

• At the first level, no changes are necessary, which means that the scenario is
already supported by the architecture.

• At the second level, just one component of the architecture needs to be
changed. At this level, we have true locality of change.

• At the third level more than one component is affected, but no new
components are added or existing ones deleted. This means that the structure
of the architecture remains intact.

• At the fourth level architectural changes are inevitable, because new
components are necessary or existing ones become obsolete.

It is clear that one should seek to keep the level of effect as low as possible.

When we return to our example scenario, we see that this scenario necessitates a
change in the CommunicationService component. Thus, this scenario has a level
two effect. This means that we have locality of change for this scenario and that
the architecture is portable with respect to the network protocol used.

Step 5: Scenario interaction

The result of the effects evaluation may represent the input for this last step
where the scenario interaction is revealed. The activity is to determine which
scenarios interact, meaning that they affect the same component. High
interaction of unrelated scenarios could indicate a poor separation of concerns.
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9. Guidance to apply the QADA method
From the method user’s point of view, the guidance is an essential part of the
method. Here, a case study is used as guidance to apply the QADA method. The
case study is a revolutionary initiation of a new product line for distributed
service platforms (DiSeP). Revolutionary initiation of a new product line means
development of a complete product-line architecture and set of components
before developing the first product in a new domain [12].

9.1 Domain vocabulary of the case study

Modern distributed systems are software-intensive systems that embody service
architecture, thereby providing a variety of services for their users. The ‘service’
and ‘user’ terms are overloaded, and therefore, it is essential to define the
elements of service architecture and their meanings. The QADA method applied
here for the conceptual and concrete architecture of a distributed service
platform uses the following concepts as basic elements of service architecture.

By a platform we mean here an implementation of a distribution platform,
formed by executing modules in a networked environment. The modules are
built by following the architecture of the platform.

A module is considered here as an independent program running in a restricted
processing environment as in a centralized operating system, in a device or in a
virtual machine. A device is an independent electronic entity with processing
capability and the ability to store and transfer data.

The module consists of at least two parts: The first part, which takes care of the
interoperability between the modules by executing the operations of the platform
and the second part that consumes the benefits of the platform, as a user or as an
application service. A user is an entity that utilizes the services provided by a
module. An entity may be, for example, an operationally restricted entity of an
application, a device or a user interface.

A service is an abstract sequence of operations that may include storing,
processing, retrieval, deletion, comparison and classification of new or existing
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data. The use of a service either leads to the success of a desired operation or to a
failure. There are three kinds of services considered here: basic system services,
system services and application services.

Basic system services are a default pack of services and are produced by the
platform. System services are also produced by the platform with the difference
that system services utilize the basic system services. System services can be
operated by the applications through special interfaces. The last group into
which the services are classified, is the application services group, which is
separate from the platform. Application services are distributed over the different
modules of a network by using the platform.

By the term a network here is meant an aggregate of two or more modules and
connections between them. A connection is the ability to transfer information
from a module to another. In a connection, the receiver of the information is
always capable of resolving the way to reach the sender and connections are
maintained internally by the modules following the needs of the platform.

9.2 Requirements engineering

The requirements engineering phase of DiSeP follows. This phase defines the
context and includes the requirements specification and the requirements
analysis.

9.2.1 Defining context

The purpose of the DiSeP is to make software components in a networked
environment interact spontaneously. In the DiSeP, the software components are
various kinds of services that are either a part of the platform or a part of the
application that utilizes the platform (Figure 30). Interaction denotes that
distributed parts of the platform or an application provide services, and/or use
services that are provided by somebody else.

The configuration of the network e.g. the number of modules in Figure 30 or the
range of the available services, may change dynamically. The main goal is to
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maintain the interoperability despite the dynamic nature of the network and the
differences in the hardware or in the software implementation.

 

User (application)
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Figure 30. A network consisting of a distribution platform and its context.

The interoperability is reached by defining certain essential services (i.e. services
that are called system services) mobile. A mobile service means that the current
state and the data contents of a service can be transferred from one module to
another. Thus the service in question becomes passive in the first module and
active in the another module.

9.2.2 Requirement specification

Technical properties i.e. the main goals in the system development are:

1. Platform implementation independence. Independence of implementation
languages between modules is provided by  eXtended Markup Language XML
technology [14] as a universal communication means.
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2. Distribution transparency. The network is able to resist dynamic changes in
the configuration of the network of interconnected modules or in the physical
communication links between different devices.

3. Mobility of system services. System services are not centralized in one
location, but any of the units can act as a system service provider.

9.2.3 Requirement analysis

The first technical property denotes independence of implementation languages
and the use of a universal communication manner between modules, i.e.
portability. The second property denotes the ability to resist dynamic changes in
the configuration of a network of interconnected modules or in the physical
communication links between different devices.

The third property means that system services are not centralized in one location,
but any of the modules can act as a system service provider.

Distribution
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Configuration

Network

Failure Syntax

Semantic

Execution

Location

Access Naming

Replication

Persistence

A B B is a pre-requisite for implementation of A
Legend

Figure 31. Prerequisites for fulfilling distribution transparency.
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The last two means distribution transparency [2], i.e. transparency of the
network topology, services and migration (Figure 31) that can be considered as
the adaptability of the platform at the architectural level.

9.3 Designing conceptual architecture

The conceptual architecture of the case study is designed next using the three
architectural views and design steps defined for each view. The next sections
also provide a window into the architectural documentation of a distributed
service platform.

9.3.1 Conceptual structural view

When considering the structural viewpoint of the service architecture, we started
with the first step: defining the functional responsibilities for the platform. This
design phase was iterative with other two steps: defining the non-functional
responsibilities and decomposing the system. The final results are shown on the
next few pages. These figures present the completed documentation of this view.

Step 1: Define functional responsibilities

The lists of functional responsibilities are introduced next. Figure 33 illustrates
the functional responsibilities of the platform user interface. The user interface is
divided into four interface components that will take the form of the conceptual
leaf components and subsystems in Figure 35. Every one of these components
provides the user with the possibility to utilize different services which are
located in a local module or in the distributed modules of the platform.

Figure 32 shows the functional responsibilities for a subsystem component
"system services". This subsystem consists of two conceptual leaf components:
Lease service and Directory service. These system services are accessed through
the four interfaces described in Figure 33.

Both the services have two interfaces, which implement the different roles the
user application may express. For example, the user application may access the
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directory service in two different roles: as an application service user or as an
application service provider.

System services (subsystem component)
Produce services that are not autonomous but activated by the autonomous parts of 
the platform

Lease service (leaf component)
Utilise lease management between two independent units or other logical 
elements:

Accept and host leases of lease grantors
Grant leases of lease grantors for lease users
Take care of lease renewals for any leased system resource
Keep track of lease renewals for any shared and leased resource

Directory service (leaf component)
Provide a directory service interface to the distributed data storage

Register and unregister service proxies
Keep track on registered services
Search for requested services
Send a requested proxy for the user

Figure 32. Functional responsibilities of the "system services" subsystem.

System service user interface (subsystem component)
Provide interface for services that are directly accessible by the user

Application service user (leaf component)
Allow users to use application services through a directory service interface:

Allow application to search for suitable services
Allow application to fetch a service proxy

Application service provider (leaf component)
Allow users to provide application services through a directory service interface:

Allow application to create an appropriate service proxy
Allow application to register the service proxy to a directory service
Allow application to unregister the service proxy from the directory service

Lease user (leaf component)
Allow user to (re)negotiate for a lease with the provider of the desired service
Lease grantor (leaf component)
Allow user to grant lease(s) of provided service(s)

Figure 33. Functional responsibilities of the ”user interface” subsystem.

The last subsystem contains the basic system services, which perform all the
functions (Figure 34) that are essential for a properly working distribution
platform. The “Basic system services” subsystem produces controlling,
advertising, messaging, data distributing, observing and data transferring
services. Components inside the “basic system services” subsystem serve each
other or the system services on the upper layer of the platform module.



90

Basic system services (subsystem component)
Produce services that operate autonomously

Control service (subsystem component)
Control services

Control service (leaf component)
Monitor the state of the network
Activate system services
Track that the need for redundant data copies is satisfied
Negotiate about the copying, transferring or deleting the data if necessary
Interpreter service (leaf component)

Location services (subsystem component)
Data distributing service (leaf component)
Contribute to the operation of a distributed data storage

Maintain, track and create  connections to other units in order to share data
Redundantly copy data between different units in order to improve robustness
and fault tolerance of the system
Allow data to be stored in local resources

Location service (leaf component)
Locate a system service provider

Listen for beacon signals and keep track of the system service providers 
through them
Hide the sender address of incoming advertisements

Announce the availability of the system services
Send beacon signals about the location and the state of the system 
service provider

Messaging service (component)
Provide messaging services

Create a mailbox through which the internal services of the system may 
communicate with each other in an asynchronous manner
Receive and host mailbox messages until they are fetched (by system 
services)
Act as an outbox for all (both mailbox and direct) messages

Observing service (component)
Route direct messages from the network to registered listeners
Forward mailbox messages to Messaging Service
Data transfer service (component)

Act as a data producer of the observing service
Comprise an up-to-date list of data transfer blocks in other units
Communicate with data transfer blocks in other units

Receive data from sending Data Transfer Block (DTB) and pass it to 
the observing service
Send data from the messaging service to the receiving DTBs (in other 
units)

Figure 34. Functional responsibilities of "basic system services" subsystem.
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Step 2: Define quality responsibilities

In addition to the functional responsibilities the non-functional quality
responsibilities have also to be defined. Functional responsibilities are listed in
Table 10. Responsibilities are categorized according to quality attributes. This
phase does not try to define quality requirements for the whole system but to
encapsulate each requirement as a responsibility of a restricted part of the
architecture in order to localize the styles that will be selected in Step 3. Passive
components related to adaptability in Table 10 refer to dynamic architecture
structure specific for the case study.

Table 10. The table of non-functional responsibilities (NFRs) of the system.

Quality
attribute

Requirement Who/How?

availability System services are always active in
one of the units in the network.

Services are activated and shut down
under control.

Control Service

reliability The content of the data (storage) is
granted to be same in every replicate.
Even after a failure of hardware or
software around the system.

Data Storing
Service

adaptability Distributed platform can be used as a
platform for applications running in
diverse end point devices.

Architecture
contains both
optional and passive
components

portability Platform supports diverse network
protocols.

Communication
Services

extensibility Components (at least system services
and some components inside
Communication services) may be
added or changed after platform
execution has commenced.

Components obey
certain policies,
conventions, and
protocols (design
rationale) to ensure
interoperability
among updated or
added components.
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Static architecture is present in the code and can only change during
development, whereas the dynamic architecture is the result of executing this
code and can change once execution has started [13]. Change can be stimulated
for instance by time or by user interactions. Optional components turn to passive
or active while moving from static dimension of architecture into dynamic ones.

Step 3: Cluster responsibilities to components and subsystems

The conceptual structural view includes conceptual subsystems and leaf
components. Grouping responsibilities in a textual list (Step 1) mainly forms
these design elements. In addition, the quality attributes defined in step 2 drive
the selection of architectural styles and thus affect the forming of the system
architecture.

Table 11 contains four styles used in the platform. A layered style, like all styles,
reflects a division of the software into units. Each layer represents a collection of
software that together provides a cohesive set of services [3]. Other software can
utilize these services without knowing how those services are implemented. A
layered style achieves the qualities of portability, mobility and adaptability,
because if the layering is pure, e.g. porting the system involves only the re-
implementation of the portability layer. Layers also support limiting adaptation,
required due to changes, to the part of software responsible for the new
properties of systems.

The main characteristic of the blackboard style is that shared data is in the
blackboard, i.e. in memory, and the world outside (clients) responds to changes
in the blackboard. A blackboard is an active blackboard if it sends notifications
to subscribers when data of interest changes. The blackboard style achieves the
qualities of reliability and availability. Reliability is achieved through data
replicas. Because the clients are independent of each other and the data store is
independent of the clients, new clients can be easily added i.e. the system is
scalable.

The third style, implicit invocation, means that objects announce (i.e. publish)
events via multicast and these events invoke the associated procedures in
subscribers. This style supports availability and extensibility.
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In the object-oriented architectural style objects provide interfaces to access
services and services are invoked by calling interface methods [9], though
services can be easily modified supporting modifiability. And if and when the
interface methods are known, the objects utilizing services through methods can
be easily added i.e. means scalability.

Table 11. Styles, design rationale and quality attributes supported by styles.

Style Design rationale Quality attribute

Layering A layer provides a coherent
scope for modification caused
by heterogeneous devices and
communication manners.

Portability, mobility
adaptability

Data oriented
repository:
blackboard

Data is distributed but must be
considered as a block because of
consistency requirement.

Reliability, scalability

Implicit
invocation

The structure of a dynamic
distributed system is non-stable.
This style provides a means to
manage continuously changing
component states.

Availability, extensibility

Object-
oriented

The use of this style in service
architectures is obvious but
restricted.

Support for reuse through
generalization.

Modifiability, scalability

A decomposition model showing the hierarchical structure and conceptual
relationships between components is seen in Figure 35.

Basic system services, which are here considered to be location, control and
communication services are produced by the platform. System services are also
produced by the platform with the difference that system services are utilizing
the basic system services. System services are operated by the applications
through interfaces and through these system services, applications can distribute
application services over different modules in a network.
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Lease Grantor
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Application Service Provider
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Application Service User

«leaf»
Directory Service
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Lease Service
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Control Service
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<<subsystem>>
Location services

<<subsystem>>
System services

<<subsystem>>
Control services
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Communication services

«data» «data»

«data»

«data»
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«data»
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«control»

«control»

«control»
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Figure 35. Conceptual structural model of the service platform.
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9.3.2 Conceptual behavior view

Below, the behavior view of service architecture is designed following the three
steps defined for this view. The first and the second step are introduced in
parallel by courtesy of the final document that is the common result of both
steps. Step 3 creates a collaboration model based on the results achieved in steps
one and two.

Steps 1 and 2: Select collaboration scenarios and identify service sets

Abstract descriptions of collaboration i.e. collaboration scenarios are shown in
Table 12 and Table 13. Scenarios are derived from functional responsibilities
and aimed to cover the main co-operation situations between the user
applications and the system and also inside the system. The main using scenarios
and service sets related to them, are scenarios from one to four in Table 12.
These scenarios describe the situations when a user application accesses the
services through interfaces. In addition to the scenario descriptions, the
components participating in these scenarios are also specified. Mentioning the
component in parenthesis means that the necessity of the component in question
is dependent on the current state and structure of the dynamic platform
architecture.

Table 12. Collaboration scenarios when using the service platform.

Scenarios: Services participating the scenario(s)
in question

1. Application searches for suitable
services

2. Application fetches a service proxy

Application service user
Lease user
Lease service
Directory service
Data distributing service
(Communication services)

3. Application registers the service proxy
to a directory service

4. Application unregisters the service
proxy from the directory service

Application service provider
Lease user
Lease grantor
Lease service
Directory service
Data distributing service
(Communication services)
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In addition to these scenarios, there are still a few important collaboration cases
occurring among the autonomous parts of the platform. These scenarios and
service sets are specified in Table 13.

Table 13. Collaboration scenarios among autonomous parts of the platform.

Scenarios: Services participating the scenario(s)
in question

5. Controlling service activates system
services

6. Controlling service deactivates system
services

Synchronous messaging service
Controlling service
Lease service
Directory service

7. Advertising service creates an ad and
broadcasts it.

Synchronous messaging service
Data Distributing Service

Step 3: Create collaboration model

Textual descriptions lead to graphical collaboration descriptions when drawn up
into diagrams. Each scenario is illustrated as a collaboration diagram
representing an ordered sequence of actions, which is a refined collaboration
scenario, and the service components related to that sequence. As an example,
Figure 36 shows a collaboration diagram for one scenario. This scenario
describes the situation where the controlling service activates system services
(Lease Service and Directory Service).
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Synchronous Messaging
Service

Interpreter Service

Control ServiceDirectory Service

3.Routes message to a
registered listener

4. Activates a service

Lease Service

2.Passes data to the
Interpreter service

1.Receives data from DTS
in other module

5. Registers
leases
for use

6. Gets ready to receive
service requests

6. Gets ready to receive
service requests

Figure 36. Collaboration diagram for the scenario "Controlling service
activates system services".

9.3.3 Conceptual deployment view

The deployment view of the conceptual architecture is done with the three steps
described next. At first, leaf components are clustered to units of deployment.
Secondly, computing nodes in the system are identified. The third step is to
combine deployment nodes and units of deployment with allocation
relationships.

Step 1: Cluster leaf components to units of deployment

Conceptual components are grouped into units of deployment according to the
mutual requirement relationships between components. Figure 37 shows how
and why three components included in the "application service provider"
deployment unit have a mutual requirement relationship with each other.
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Application service provider Lease Grantor

Lease user

Design Rationale:
Application service provider

component requires Lease Grantor
component, because providing

application services always requires
an ability to register leases for

those services.

Design Rationale:
Application service provider

component requires Lease User
component, because access to

the directory service is lease based

requires

requires

Figure 37. Mutual requirement relationship between leaf components inside the
”Application Service Provider” unit of deployment.

Other units of deployment are constructed similarly, always respecting the
mutual relationships between components. The final clustering is shown in Table
14.

Table 14. Grouping conceptual components into units of deployment.

Leaf components Unit of Deployment Type

Synchronous messaging
service

Control service

Data Distributing service

Interpreter service

Location service

Basic system services Mandatory

Directory service

Lease service

System services Optional

Application service user

Lease user

Application service user Optional

Lease Grantor

Application service provider

Application service provider Optional
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Table 15 provides the design rationale for clustering leaf components to units of
deployment and selecting types for created deployment units.

Table 15. Design rationale for clustering units of deployment.

Unit of
Deployment

Design Rationale

Basic system
services

These services form the basis of the platform and are
therefore needed in every deployment node.

System services This unit is also needed in every deployment node, but
is separated to its own deployment unit, because these
services are active only in one node in the network at a
time.

Application service
user

This specific deployment unit is needed if an
application uses services of other applications.

Application service
provider

This specific deployment unit is needed if an
application has services to provide for other
applications.

Step 2: Identify deployment nodes

A deployment node is defined to be a device with single processor. Nodes may
differ in processing capacity and they connect to each other spontaneously
building up a network. In a spontaneous network, services provided by various
applications come and go. Services present are registered in a special unit of
deployment that is mandatory in each node, but is dynamically activated only in
one node at the time.

Step 3: Allocate deployment units to nodes

Figure 38 depicts the logical alternatives to allocate deployment units of the
service platform to physical nodes in the network.

Basic system services and system services are mandatory units of deployment in
the platform with the difference that system services have a dynamic nature. A
dynamic nature is illustrated with a special fill pattern.
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service user
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Figure 38. Enabled conceptual subsystem deployment.

9.4 Analyzing conceptual architecture

Analysis of the conceptual architecture focuses on variability analysis and
identifying architectural styles and pattern violations, and therefore, control and
communication mechanisms are under inspection.

9.4.1 Variability analysis and representation

Variability could be incorporated in each view of the architecture. For example,
the structural view describes the components and their interconnection from the
static point of view. On the conceptual level the variability could be expressed
by showing what is variable or by using specific relations and notations
(aggregation, specialization, etc.) of the modeling language (UML for example).
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The usage of packages is a solution to express the diversity of specific
subsystems and component models.

For the moment, in the architecture two variability points are included (see
Figure 39), but others are implicit or unspecified. The upper level services inside
the SystemService represent one of the variable points. In one of the product
members there are two services: Lease Service and Directory Service that always
come together. In other (future) products there also might be Security Service,
Transaction Service, etc.

System  Services
<<subsystem >>

D irectory Service
<<conceptual com ponent>>

(from  System  Services)

Lease Service
<<conceptual com ponent>>

(from  S ystem  Services)

Transaction Service
<<conceptual com ponent>>

(from  System  Services)

Security Service
<<conceptual com ponent>>

(from  System  Services)

Com m unication Services
<<subsystem >>

Asynchr M ess Service
<<conceptual com ponent>>

(from  Com m unication Services)

Synchr M ess Service
<<conceptual com ponent>>

(from  Com m unication Services)

Variability
point

Variability
point

Figure 39. Variability points specified in the structural view of the architecture.
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A second point of variability is in the lowest layer of the platform, inside the
subsystem CommunicationServices. The communication could be performed
either using SynchronousMessagingService or AsynchronousMessagingService.

9.4.2 Architectural styles and patterns violations analysis

We assume that at the conceptual level the attribute based methodology should
be based on routine and predictability. Thus we have already defined and made it
possible to extend a standard set of important attribute based analysis questions
associated with each style.

Table 16 exemplifies the important features of the blackboard style for
conceptual analysis. For instance, the blackboard’s communication mechanism
requires a single point of contact between the central Control Service unit and
the other cooperative components, but the architecture that follows the style, in
fact, has multiple points of contact under certain circumstances.

Table 16. Features to focus on the analysis of the blackboard style.

Feature Questions

Control/

registration
mechanism

When the blackboard wants to send a message to some
units does it broadcasts the message to all units or simply
sends the message to the registered units?

Does the model support independent control or broadcast
control?

Is the control single threaded or multithreaded?

Is the message control, data or both?

Communication
mechanism

Is there a specific point of contact or multiple points of
contact between the blackboard and the other units?

Violations Are there any links that violate the control or
communication policy?

Integrability and
modifiability

If new components are added to the system, will they be
integrated into the blackboard the same way as existing
components?
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Layer architecture style has also been considered for conceptual architecture
design and Figure 40 presents these conceptual layers and the relations between
them.

Com m unication
<<Layer>>

D ata D istribution
<<Layer>>

Location
<<Layer>>

Service
<<Layer>>

U ser Interface
<<Layer>>

usesuses

usesuses

usesuses

usesusesusesuses

usesuses

Figure 40. Conceptual architecture layers.

For the moment no violations of architecture styles or patterns have been
determined. The accuracy of the analysis at this level depends on the question set
and cooperation with domain experts.

9.5 Designing the concrete architecture

Concrete architecture descriptions of the case study are introduced next and
design is illustrated using the three architectural views and design steps defined
for each view. Architectural views are similar to conceptual views with the
difference that they provide more lower level details of the system.
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9.5.1 Concrete structural view

The design steps included to the concrete structural view design of the case study
are discussed below.

Step 1: Refine functional responsibilities

In the case study, steps 1 and 3 were combined so that refined functional
responsibilities were documented as a part of the structural diagrams. A separate
document including capsule functional responsibilities and design rationale was
then generated from the tool.

Step 2: Select design patterns

Table 17 shows as an example, how selected design patterns are documented in
the DiSeP case study. The design pattern observer participates in the realization
of three styles: implicit invocation, object oriented and blackboard style.

Table 17. Realizing styles through patterns.

Pattern Used times in the case
study

Participates in the
realization of a style

Observer 3 Implicit invocation

Object-oriented

Blackboard

Step 3: Build a hierarchical structural diagram

The structural diagram of DiSeP includes several diagrams. Figure 41 illustrates
a structure diagram for the subsystem capsule "system services" as an example.
Services inside this capsule represent the optional capsule type whereas the
container capsule is a fixed one.
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Figure 41. Structure diagram for the capsule "system services".

9.5.2 Concrete behavior view

The concrete behavior of the case study system is modeled and documented with
state diagrams and message sequence charts. Next the design steps are discussed
individually.

Step 1: Define the inner behavior of capsules

Figure 42 represents the inner behavior of the capsule “System service
provider”. The capsule "System services" is initialized to achieve the "ready"
state when the platform is executed. The optional contained capsules
"LeaseService" and "DirectoryService" are not yet instantiated. Signals for
activating and deactivating optional capsules come from the "Control" capsule.
Service requests from the user application are handled in a choice point. If
optional services are already instantiated, the request is fulfilled locally, but if
optional services are shut down, the request is forwarded to the module where
services are active (location data is managed by location service).
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Ready

ifActive

forwardRequest

fullfillRequest

wakeUp_or_shut Down

requestFromUser

True

Initial

done
False

commandFromControl
commandFromControl

requestFromUser

done

ifActive

requestFromUser

True

Initial

done
False

commandFromControl
commandFromControl

requestFromUser

done

Figure 42. The top-level state diagram of the capsule "system services".

Step 2: Refine collaboration scenarios as capsule interactions

Another way to describe the behavior of a system, in addition to the behavior of
individual capsules, is the interaction between a group of capsules. An
interaction is a pattern of communication among capsules at runtime. Figure 43
shows concrete collaboration between capsules in a scenario that activates
optional capsules. The same scenario is represented at the conceptual level in
Figure 36.

An advertisement is received (1.1.1 notifyObservers) to capsule "Control"
through capsules "ReceiveMethod" (1. incomingMessage) and "Communication-
Manager" (1.1 XMLdataIn). The advertisement contains information that makes
the control decide to activate the services in this module (1.1.1.1.1 and 1.1.1.1.2
invokeService). After being invoked, these services prepare to serve (1.1.1.1.2.1.
registerLease and 2. addObserver).

state symbol
choice point transition
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 / receiveMethodR1
 : ReceiveMethod

 / communicationManager
 : CommunicationManager

 / directoryService
 : DirectoryService

 / leaseServiceR1
 : LeaseService

 / activator
 : Control

 / systemServiceProviderR1
 : SystemServiceProvider

1:  : incomingMessage1:  : incomingMessage

1.1:  : XMLdataIn1.1:  : XMLdataIn 1.1.1:  : notifyObservers1.1.1:  : notifyObservers1.1.1.1:  : activateService1.1.1.1:  : activateService
1.1.1.1.1:  : invokeService1.1.1.1.1:  : invokeService

1.1.1.1.1.1: 1.1.1.1.1.1: 
1.1.1.1.2:  : invokeService1.1.1.1.2:  : invokeService

1.1.1.1.2.1:  : registerLease1.1.1.1.2.1:  : registerLease

1.1.1.1.2.1.1: 1.1.1.1.2.1.1: 
1.1.1.1.2.2: 1.1.1.1.2.2: 

2:  : addObserver2:  : addObserver

2.1: 2.1: 
2:  : addObserver2:  : addObserver

2.1: 2.1: 

Figure 43. Sequence diagram for the scenario "activate system services".

9.5.3 Concrete deployment view

This section provides the design steps performed during the design of the DiSeP
case study and presents a deployment diagram as a result.

Step 1: Package capsules and protocols to components

Packaging capsules to components was one-to-one mapping in the case study.
Communication protocols related to each capsule were added by the tool in the
packaging phase.

Step 2: Define deployment nodes

Deployment nodes defined for the concrete deployment view do not differ from
those defined for the conceptual view. An issue that is refined, is the description
language that decomposes conceptual node to a device and a processor.
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Step 3: Build up a deployment diagram

The case platform has a dynamic architecture in a spontaneous network. This
means e.g. that a platform that takes the role of system service provider is
elected and that the number of available communication methods in the platform
varies. These reasons lead to the situation that the configuration of DiSeP varies
between different processors. For these reasons, it was difficult to build up a
complete deployment diagram for DiSeP. Instead of a complete diagram, Figure
44 shows an example network consisting of two devices with single processors.

Figure 44. Concrete deployment view for the system with two devices.

DiseP executed in ProcessorA is in the role of a system service provider by
executing system services (SystemServiceProviderComponentInstance). It also
has three different communication methods (i.e. receive method – send method
pairs) to communicate with a platform allocated to ProcessorC.



109

9.6 Analyzing the concrete architecture

The first model of the concrete product line architecture in the domain has been
designed. Figure 45 describes the fine-grain external context of the distributed
services platform identifying the main external actors. This fine-grain context is
important in analysis as much as the other architecture views because it reveals
other new external actors that can interact with a new possible product member.

DISTRIBUTED
SERVICES

PLATFORM

New External Actors

 / applicationServiceProvider
 : ApplicationServiceProvider

 / applicationServiceUser
 : ApplicationServiceU ser

 / leaseG rantor
 : LeaseG rantor

 / leaseU ser
 : LeaseU ser

 / netw ork
 : N etw ork

 / diSeP
 : D iSeP

 / transactionM anager
 : TransactionM anager

 / transactionParticipant
 : TransactionParticipant

Figure 45. External actors of the product-line architecture.

In the structural view shown in Figure 46 the abstract components of the
architecture are included. All the architectural elements are subsystems that are
common to all product members. The system services provided, contained in the
SystemServiceProvider subsystem, are activated by a Control subsystem.
The system services provided communicate with the other subsystems,
DataDistribution subsystem, LocationServices subsystem and Communication-
Services subsystem.
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Figure 46. Structural view of architecture subsystems.

For the moment, in the architecture two variability points are included (see
Figure 39), but others are implicit or unspecified. The upper level services inside
the SystemServiceProvider represent one of the variable points. In one of the
product members there are two services: Lease Service and Directory Service
that always come together. In other (future) products there might also be
Security Service, Transaction Service, etc.

9.6.1 Adaptability analysis

We define the adaptability as the flexibility of a software product to incorporate
changes in the technical requirements. The scenarios simulate the use of the
distributed service platform architecture in situations with diverse technical
requirements. The architecture is usable in a situation when the scenario has an
impact of level three or lower. The results of these scenarios are summarized in
Table 18.
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Scenario 1. Which changes are needed when the architecture is to be
used for  secure systems?

We assume that for secure systems a number of things are necessary. First, each
service user/provider/grantor action should be authenticated and it should be
possible to grant different levels of access to users (no access, read-only, full
control, etc.). This is already supported by the distributed service platform
architecture, so it is unaffected. Second, the communication between
components should be encrypted. Encrypted communication is not yet present in
the architecture, but it could be added by changing one component –
communication service. Finally, access to services should be prohibited for
unsecured units. This means that the location service manager should be changed
so that it inspects the network address of clients. The conclusion is that using the
architecture for secure systems necessitates changes in a number of existing
components and, therefore, this scenario has a level three impact.

Scenario 2. Which changes are needed when the architecture is to be
used for real-time systems?

The distinguishing features of real-time systems are deadlines and
synchronization between the different parts of a system [40]. These features are
partially supported by the DiSeP PLA considering the variability included in the
CommunicationServices subsystem represented by an optional asynchronous
messaging component. This component is not needed in the current product
where communication is synchronous only. The asynchronous messaging
component could be left out for the current product and added if the architecture
is to be used in real-time systems.

However, deadlines could be enforced by introducing something like a deadline
manager into the control layer which makes sure that a system responds within a
certain period. Similarly, synchronization could be added by introducing a
synchronization manager that makes sure that the different parts of the
distributed platform operate in harmony. In addition, the division of the platform
into layers is perhaps not usable for real-time systems. So, the impact of this
scenario is architectural and it is classified as level four.
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Scenario 3. Which changes are needed when the architecture is to be
used for ultra-reliable systems?

In ultra-reliable systems both software and hardware are often replicated [43].
This redundancy makes sure that the system remains in working order after one
or more services have failed. This is a significant challenge because there are
many different types of faults that can occur in a distributed platform.

PLA reliability is taken into account from the redundancy point of view: Thus,
all data in the system has redundancy as a parameter. Data distribution manager
fulfills this requested redundancy by negotiating with other data distribution
managers in the network and saving replicas of data into other data storage. Also
all the service proxies and other service related information is replicated. If
system services functionality fails for some reason, it is still possible to recover
by finding the important data from the network and activating the system
services in some other unit.

In addition, these systems could use voting, which means that the same operation
is performed by two or more elements, and the end result of the operation is
some kind of weighted average of the results of individual elements. Both
redundancy and voting could be addressed by modifying one or more
components that encapsulate the access to the other services. This needs
modification of more than one component and, therefore, the impact of this
scenario is classified as level three.

Scenario 4. Which changes are needed when another type of interface is
considered for a service user/provider/grantor?

The user of DiSeP is an application that uses this platform to deliver application
services to other applications. User interface components consist of interface
method calls.

To make the DiSeP services accessible from another type of interface, the
platform user interface components should be adapted. Because the lower layers
are independent of the platform user interface, they are unaffected by changes in
the platform user interface layer. The components of this layer are the only



113

components affected and thus the impact of this scenario is classified as level
three.

Scenario 5. Which changes are needed when the architecture is used for
a system that uses workflow management?

The distributed service platform already has a control service that controls which
services may be performed (activate/deactivate) in a certain situation. This
component could be enhanced to support true workflow management. Since the
control service is the only component affected, the impact of this scenario is
level two.

Scenario 6. Which changes are needed when the architecture is used for
a system that uses mobile computing?

Mobility is a requirement of PLA. For the moment system services are just
activated and deactivated, not actually moved. The data contents of these
services are distributed in the network as replicas. The distributed service
platform already has a directory service as a mobility-enabled naming service
that gives global visibility to all authorized clients.

In order to support mobile computing a mobility services layer should be added
above the system services. This layer has to contain a virtual resource
management service component and other component services for the user,
virtual environment and mobile virtual terminal [11]. Since a new layer should
be added, the impact of this scenario is level four.

As expected, we see in Table 18 that the architecture is not directly usable in
every situation. Using it for real-time or ultra-reliable systems necessitates major
changes to the architecture. In the other situations, the architecture is usable, but
some changes are necessary. When the distributed services platform architecture
is used in an actual situation, more scenarios are probably needed to evaluate
whether the right services are identified to encapsulate the expected changes to
the technical requirements. In Table 18 the following legend has been used:  – =
unaffected, + = needs to changed, O = one component affected, M = more
components affected.
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Table 18. Summary of the scenarios for technical requirements adaptability.

Distributed services
platform

Impact
level

Scenario

Architecture Components
1
2
3
4
5
6

–
+
+
–
–
+

M
M
M
M
O
M

3
4
3
3
2
4

The revolutionary approach to initiate a PL is a highly iterative process. This
analysis drives us to the conclusion that first a concrete disserted functionality
should be designed and then pay attention to this quality attribute.

9.6.2 Portability analysis

Portability is another important quality requirement that is placed in the technical
environment category. At first sight, portability and adaptability very much look
alike, but they are not the same. Portability is the ease with which a system can
be adapted to changes in the technical environment and adaptability is the ease
with which a system can be adapted to changes in the technical requirements.
The scenarios in this category explore the effect of changes in the technical
environment.

Scenario 1. Which changes are needed when another end point device is
used?

The architecture contains both optional and passive components, so the
architecture requires no changes.
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Scenario 2. Which changes are needed when another network protocol is
used?

Another network protocol would require changes in the CommunicationService
component.

In Table 19, we observe that changes in the technical environment affect very
few components of the DiSeP architecture. We notice that the platform actually
encapsulates access to the environment. However, there may be potential
changes in the technical environment, not mentioned here, that have an impact
above level two. In Table 19 the legend is as follows: – = unaffected, + = needs
to changed, O = one component affected, M = more components affected.

Table 19. Summary of the scenarios for portability.

DiSeP architectureScenario

Architecture Components

Imp. Level

1

2

–

–

–

O

1

2
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10. Experiences of the use of the QADA
method

This section discusses the experiences of the use of the QADA method.
Experiences in design and analysis i.e. in Quality-driven Architecture Design
(QAD) and Architecture Quality Analysis (AQA) are concerned individually.

Tool support is closely related to any method, but it is obvious that no
commercial tool alone supports the quality architecture design method [8].
Instead, two different tools were used when applying the QADA method in
practice: RoseRT [51] and Visio [45]. In addition to these tools, a text editor
with text processing effects (tabs, bolding, italic etc.) and the possibility to create
and edit tables is needed. The appendix A describes the configuration and use of
the tools.

10.1 The QAD method

We started by studying the ability of existing design methods to describe the
characteristics of software architecture. The three methods, with four, 4+1 and
3+1 views, have differences in the naming of views, their descriptions and
notations. However, none of these methods concerns the product line
architecture development. In most cases, UML is used as a modeling language
but also tables, natural languages and other modeling languages are
appropriated. Therefore, we drew the conclusion that simplicity, consistence and
understandability are the key issues of most importance in a method applicable
for the development of product line architectures.

For simplicity, three viewpoints and two separate abstraction levels were
defined. Three viewpoints were the minimum that was needed in the case study.
However, development view for work allocation, third-party components and
assets management is required in practice. Separation of abstraction levels makes
a clear distinction between the issues described at the conceptual level and the
matters considered in the concrete architecture development. In practice, the real
problem is that the decisions that should be made at the component level are
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already defined in the conceptual architecture and therefore, architectural
descriptions are confusing and difficult to understand.

Transformation of systems requirements to architecture and the use of the same
viewpoints in the conceptual and concrete architecture assist in providing
consistence between views. Traceability of systems properties is also possible
due to mapping tables between the requirements and responsibilities of
conceptual components. A recorded design rationale assists in understanding the
comparisons, evaluations and decisions made during the development.

On the basis of the case study done with the QAD method, we see it as having
several advantages. The method provides a systematic way to transform
functional and quality requirements to software architecture and it also guides
how to document the architecture. As a quality driven method, the QAD utilizes
architectural styles and patterns as a guide to carry out quality requirements in
architectural descriptions.

QAD supports the product line architectures through documentation of
variability and it is especially aimed at service architectures, which are
considerably raising their necessity. In addition to these, the QAD method
provides systematic progression steps, it is simple to learn and applicable to
existing modeling tools.

Despite the fact that the QAD method has several advantages, there are still
several issues to improve. Because the method is new, it has to be validated with
several industrial case studies. Case studies should cover different kinds of
service architectures, e.g. wireless services, value-added services and ubiquitous
computing.  Thus, new viewpoints have to be defined, especially for the
stakeholders defined in business models but also for the varied end-users of
ubiquitous computing systems. The deployment view, especially in service
architectures, seems to have an importance we could not have anticipated in this
early phase of the method development.

Smooth linkage between the design and analysis of software architecture also
needs further studies in order to provide a toolbox with a comprehensive set of
analysis methods for all quality attributes. Further, the selection of architectural
styles would be easier with a repository of styles supporting individual quality
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attributes. Design rationale is an equally important issue and the description of
the design rationale must be unified through the design process.

In addition to these, QAD should support the linking of the architectural views
with the development process and assets management. This support could be
implemented by adding a separate development view to the QAD method.

Because QAD is the first version of the design method, the purpose of the
method engineering was not to define an explicit method language. This is why
experimental notations were used in addition to UML. However, strictly defined
extensions for UML are needed.

10.2 The AQA method

Considering the quality analysis at the conceptual level, it is important to
examine the relationship between architectural views and architectural styles, as
the architectural style is also considered to have an impact on the quality
attributes of the system. However, there is little research that examines this
relationship. In this way, the result of the examination has to respond to
questions such as: (1) which architectural view the architectural style is focused
on, (2) what specific quality attributes the style is considered to support, and (3)
what kind of assumptions are made about context or environment.

The quality analysis of the concrete architecture permits obtaining better results
that could improve the design.

This report represents the first step toward providing guidelines in the domain of
middleware services. PLA of the distributed service platform is in the first form
of a software development cycle and we tried to model it by the means of
applying a revolutionary approach for PL initiation. The development of the
distributed servicesplatform PLA is an iterative process, as is the analysis. One
of the goals of the analysis of an early design of PLA is relevant for the product-
line features uncovered. In the concrete architecture we analyzed adaptability
and portability, as development quality attributes using a scenario-based method
similar to SAAM. We consider that is very important to consider economic
aspects in the analysis. We couldn’t apply a method based on customer value
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analysis, due to the novelty of the domain concept on the market and the lack of
an economic data model. Also we couldn’t identify related studies in the
literature for the product-line architecture analysis methods in the domain of
middleware services.
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11. Conclusions
In this report we introduced and demonstrated a systematic method where
quality analysis is associated with the quality design in an iterative improvement
of the product line architecture when the software product-line is initiated in a
revolutionary style. Our practical experience shows that the proposed method
promotes design and analysis at multiple resolutions as a means of minimizing
risk with acceptable levels of time and effort.

Thus, considering the design issues, three viewpoints of software architecture at
two abstraction levels have been defined. Furthermore, suggestions on
documenting these views with models and diagrams are introduced. To make
these views and models useful in a systematic way, tool support is needed and
hence the method experimented with existing tools for a distributed service
architecture case study.

In order to fulfill the quality requirements that have been set for a software
product-line, a strong consideration of architectural viewpoints in the software
development is required. Also, in order to reach quality attributes with
architectural structures, the use of architectural styles and patterns is needed.

In addition to quality requirements, software architecture has to answer to the
functional demands defined by the customers and end-users. Placing heavy
attention on how to implement functional requirements in a concrete meaning is
not a solution to this issue. Instead a top down approach i.e. an abstract
viewpoint above the concrete structures and activities is needed.

The quality analysis method for both conceptual and concrete architecture
descriptions applies only questioning techniques. The product line architecture
must not only conform to the quality requirements of each product line member,
but it must also be generic and adaptable to the whole product line domain. It is
important to know how reusable and flexible to anticipated changes the product-
line architecture is, such as to maximize the reusability and to minimize possible
changes in the functionality required by various product members.

Assuming that the benefits and drawbacks of each architecture style in relation
to quality attributes are already known, the analysis of conceptual descriptions
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has the objective to check architecture styles and violations of the standard
patterns. Also, the role of the architecture analysis at the conceptual level is to
provide a knowledge base for the domain architecture so as to perform a more
comprehensive analysis of quality attributes at the concrete level description.
Thus, the experts’ knowledge can be better structured and used in a more
systematic way to generate scenarios associated with the most important quality
attribute of the domain.

Concrete architecture descriptions permit more relevant and accurate scenario-
based analysis method results for the development of non-functional quality
attributes such as reusability and adaptability.

Utilizing the architectural constructs mentioned during our report, the QADA
method provides an explicit and quality-driven link between software
requirements and architecture. The open problem of a product line architecture
design and analysis method is how to take better advantage of architectural
concepts to analyze the software product line for quality attributes in a
systematic way. It is also very important to identify potential risks and to verify
that the quality requirements of the PL domain have been addressed in the PLA
design.

In future research we want to further validate our QADA method, whether the
identified views at the conceptual and concrete architecture levels capture all
relevant information needed for the quality-driven software product-line
development. Other additional views are needed and the extent to which the set
of needed views depends on the product-line domain concerned or the list of
quality attributes analyzed.

In addition, our aim is to refine the semantics of the views used and to define the
requirements of the extensions needed in standard UML from each viewpoint of
the QADA method.
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Appendix A: Tools used in the QADA
method

In this appendix we discuss how the tools were used in applying the QADA
method in practice. The tools were a text processing tool, and conceptual and
concrete architecture design tools.

Text processing tool

A text editor is needed in the early phase to enumerate and cluster the
responsibilities of a system. Experiences in using a simple textual list as a means
of recording system responsibilities were encouraging. This working method
seems to be useful and simple not only for creating, but especially in updating
and managing responsibilities. Because the list of responsibilities is used along
with the structural model to illustrate the main functions of the static
components, it is essential that a list contain only up-to-date information. If
updating an architectural description is this easy, there is a low threshold to do it.
Moreover, a list of quality attributes assists architecture analysis by identifying
meaningful targets and defining the scope for the analysis.

Comparing the initial list in Figure 1 with the completed list illustrated in three
parts in Figure 33, Figure 32 and Figure 34 shows the evolution of the
responsibilities during the design process. In Figure 1, the system responsibilities
are more inaccurate and decomposed in a different way than in the final version.
This early clustering of functionality really has an affect on the final architecture.
The evolution of lists included at least five different versions between the draft
and the completed version.
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Use system services:
Locate a system service provider

Listen for beacon signals and keep track of the system service providers 
through them

Distribute data over distributed data storage:
Allow application to use application services through a directory service 
interface:

Allow application to search for suitable services
Allow application to fetch a service proxy

Allow application to provide application services through a directory service 
interface:

Allow application to create an appropriate service proxy
Create a unique service number for the proxy

Allow application to register the service proxy to a directory service
Allow application to unregister the service proxy from the directory 
service

Utilize lease management between two independent elements:
Take care of lease renewals for any leased system resource
Keep track of lease renewals for any shared and leased resouce

Perform and track transactions to reach synchronized operations between elements:
Prepare, start and abort transactions

Provide system services: (System service units)
Announce the availability of the system services

Send beacon signals about the location and the operational state of the system
service provider

Contribute to the operation of a distributed data storage
Allow data to be stored in local resources
Track that the need for redundant data copies is satisfied
Negotiate about the copying, transferring or deleting the data if necessary

Provide a directory service interface to the distributed data storage
Register, unregister, search and fetch for services

Contribute to producing a lease service interface
Accept and host leases of lease grantors
Grant leases of lease grantors for lease users

Provide a transaction service interface
Monitor the state of the network:

Figure 1. Functional list of responsibilities, the first draft.

Conceptual architecture design tool

The visual business language tool Visio, and especially its UML stencils, is used
at the abstract level to document the conceptual structure (an example in Figure
11) and behavior (an example in Figure 12). The conceptual deployment model
(an example available in Figure 13) is drawn up with basic Visio drawing
shapes. Visio provides a flexible means to use UML elements with different
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basic shapes, which is an important feature when making abstract drafts of
software architecture.

Figure 2. UML stencil for static structure modeling in Visio2000.

Figure 2 illustrates the user interface of the Visio and also shows, which
modeling and drawing elements are used in the modeling of the conceptual
structural view. Similarly the UML collaboration stencil is used to model the
conceptual behavior by the means of collaboration scenarios. Collaboration
stencil of Visio is configured to meet the requirements of conceptual behavior
modeling by adding the “Actor” modeling element from the use case stencil. All
the needed modeling elements needed are shown in Figure 3.

Figure 3. UML stencil for behavior modeling in Visio2000.

Visio elements used in conceptual
structural view modeling.
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Design rationale for modeling elements is recorded in a separate
“Documentation” tab, which is located in the View->Status bar window.

Concrete architecture design tool

The concrete architecture is modeled with the RoseRT CASE tool. It supports
structure diagrams with capsules and ports and also state, sequence and
deployment diagrams (example models available in Figures 15–18). Capsule
stereotypes help to illustrate the decomposition level of components.

Configuration of the RoseRT

Modeling the concrete architecture with Rose RealTime is more fluent after the
few configuration steps described below.

1. Model framework selection

The model framework selection is done according to the desired programming
language of the executable model. The model framework is selected every time a
new model is created. The supported frameworks are:

• Empty

• RTC

• RTC++ and

• RTJava

In this case study the RTJava framework was used, which means that the code
generated for the executable model is in the Java programming language.

The second configuration step after model framework selection is the tool user
interface configuration, which is done through selecting the view options,
customizing the diagram toolbars and filtering the model browser.
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2. Selecting the view options

The view options are selected to be as in Figure 4, from left to right

• View Browser(s), yes, makes Model view browser visible

• View Description, yes, shows Documentation on the bottom of the window

• View Output, yes/no, required only if generating executable models

Figure 4. RoseRT user interface.

3. Customizing the toolbars

After selecting the view options, the diagram toolbars are customized. Clicking
the toolbar with the right button of mouse activates the customizing window. In
order to customize the diagram toolbar you have to have a diagram in question
open and active. Figure 5 shows, which tools are required in the structural view
design of the concrete architecture.

View option buttons

Model browser

Documentation window

Output window
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Figure 5. Customizing the structure diagram toolbar.

In addition to the structure diagram toolbar, the state diagrams and the message
sequence chart toolbars have also to be customized. This is shown in Figure 6,
Figure 7 and Figure 8.

Figure 6. Customizing the state diagram toolbar.
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Figure 7. Customizing the MSC toolbar.

Figure 8. Customizing the deployment diagram toolbar.

4. Filtering the Model Browser

The Model Browser is filtered by deselecting packages, diagrams and model
elements that are not used in your model. In this case it mainly means the Use
Case View and diagrams and elements related to it (Figure 9).
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Figure 9. Filtering model browser.

After configuration of the workspace, it is saved and the model can be opened
with workspace. This avoids reconfiguring the tool workspace every time.

Advantages and disadvantages

The version of the Rose RealTime case tool used was 6.3.112.0. The tool has
several advantages as an architectural design tool, but also improvements are
required in a few of these features. These pros and contrast for the tool are next
discussed in more detail. “+” means for an advantage and “–“ for a disadvantage.

Documentation

+ The documentation window enables the user to add comments directly to
every individual modeling element i.e. capsule, port, protocol.
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+ It is possible to generate a Word-document including component names and
attached comments as a documentation of the system. There is also a possibility
to add the attributes, operations and their descriptions.

– The possibility to "generate document for selected parts of the model" does not
work properly. After selection, the generated document is discovered to be
empty.

– The option to edit the order of the elements introduced in the document is
disabled. This leads the generated document always to contain some unwanted
information in an unexpected order and therefore requires manual processing
afterwards.

Modeling elements and diagrams

+ Structural modeling elements supporting component-based development are
represented in the tool in the form of capsules and ports. In addition to structural
component-based elements, the behavior modeling is supported through state
machines and message sequence diagrams. The tool also supports the allocation
models of software components.

– Debugging the behavior of components worked properly only after a fix patch.

Variability support

+ Support for optional and plug-in capsule roles

+ Optional and plug-in capsules can be defined as substitutable i.e. alternative
properties.

– Substitutability is not shown in graphical notation.

Workload allocation

+ After the definition of the concrete structure of the top capsule, the subsystem
level capsules can be distributed in the work team and processed forward
individually.
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– Due to the iterative nature of the architecture design, the architecture team still
needs to be in close co-operation after work allocation.

Model management

+ Capsule stereotypes like <<subsystem>> or <<component>> help in managing
the hierarchical containment within capsules.

– It is not possible to categorize structural and behavior models in separate
folders as QAD categorizes these models in separate views. Instead, behavior is
always attached to an individual component.

– Stereotypes disabled the model-debugging feature

– Instead of hierarchical listing, which obviously would be the most logical and
simplest way to do it, the ordering of components in the model browser window
is done in an alphabetical order.

Quality of support

+ Technical support is quick, effective and always willing to serve.

– Complete Java tutorials are not available

Maturity

+ This tool has been developed since mid 1990. First as a tool called ObjectTime
and later with the name Rose RealTime for Windows.

– The first version including a Java generator was launched in December 2000.
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