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Abstract

This thesis work concentrates on the area of dispersed multi-phase flows
and, especially, to the problems encountered while solving their
governing equations numerically with a collocated Control Volume
Method (CVM). To allow flexible description of geometry all treatment is
expressed in a form suitable for local Body Fitted Coordinates (BFC) in a
multi-block structure. All work is related to conditions found in a
simplified fluidized bed reactor. The problems covered are the treatment
and efficiency of inter-phase coupling terms in sequential solution, the
exceeding of the bounds of validity of the shared pressure concept in
cases of high dispersed phase pressure and the conservation of mass in
momentum interpolation for rapidly changing source terms.

The efficiency of different inter-phase coupling algorithms is studied in
typical fluidized bed conditions, where the coupling of momentum
equations is moderate in most sections of the bed and where several
alternatives of different complexity exist. The interphase coupling
algorithms studied are the partially implicit treatment, the Partial
Elimination Algorithm (PEA) and the SImultaneous solution of Non-
linearly Coupled Equations (SINCE). In addition to these special
treatments of linearized coupling terms, the fundamental ideas of the
SINCE are applied also to the SIMPLE(C) type pressure correction
equation in the framework of the Inter- Phase Slip Algorithm (IPSA). The
resulting solution algorithm referred to as the InterPhase Slip Algorithm —
Coupled (IPSA-C) then incorporates interface couplings also into the
mass balancing shared pressure correction step of the solution.

It is shown that these advanced methods to treat interphase coupling terms
result in a faster convergence of momentum equations despite of the
increased number of computational operations required by the algorithms.
When solving the entire equation set, however, this improved solution
efficiency is mostly lost due to the poorly performing pressure correction
step in which volume fractions are assumed constant and the global mass
balancing is based on shared pressure. Improved pressure correction
algorithms utilizing separate fluid and dispersed phase pressures, the
Fluid Pressure in Source term (FPS) and the Equivalent Approximation of
Pressures (EAP), are then introduced. Further, an expanded Rhie-Chow
momentum interpolation scheme is derived which allows equal treatment
for all pressures. All the computations are carried out in the context of a
collocated multi-block control volume solver CFDS-FLOW3D.
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SYMBOLS

adjugate Jacobian matrix, area vector of cell face?

cell face area in computational space
cell centre coefficients of discretized equations

interface transfer coefficient of momentum

convection coefficient

diffusion tensor

covariant basis vectors
interfacial force density
interfacial source of momentum

total force per unit volume due to interface

momentum source other than gravity
total source term (used to collect contributions)

geometric diffusion tensor
gravitational vector

pressure correction coefficients
the total normal phasic mass flux
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interfacial source of mass
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number of dispersed phases

coefficient in extended Rhie-Chow method
normal vector of surface

pressure
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mass residual term
source term in discretized equation

m2
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kgm/s
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kg/nfs?

m

m/<

kg/s
kgm/$

kg/nvs

kg/nPs
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source term from deferred correction

(residual) source term

stress tensor

collision/contact stress of dispersed phase
kinetic stress of dispersed phase

particle-presence stress

kgm/s

N/mé
N/mé

N/mé
N/mé

turbulent momentum transfer (Reynolds stresse$\)/m2

viscous stresses of fluid
time

velocity vector
interfacial velocity

cell volume in computational space

weight factor for cell face interpolation

arc weight factor for cell centre gradients
weight factor for pressure correction method

phase function
special coordinate
j j andk coordinates in physical space

diffusivity of a scalar property

diffusivity tensor of a scalar property
volume fraction
material viscosity

eddy viscosity

average mean curvature of interfaces
density

surface tension coefficient

shear stress

general dependent variable

I, ] andk coordinates in computational space

generic integration operator
scalar product of vectors
vector product

dyadic product

N/

S
m/s

m/s

m’
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kg/ms
kgm/s

kg/ms
kg/ms
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subscripts
I

f
d
a, P

superscripts

~

AN

A

F

A

~F
u

g’ difference of operand at specified locations

difference of cell-based averages at respective times

cell-based average at tirhe

weighted linear interpolation to H between P and C

arc lengths between cell centres H and P m
deviations from mass-weighted phase average
contravariant component of a vector

constant part of a linear model for variable

first order coefficient of a linear model for varialsle
transpose of matrik

macroscopic ‘effective’ constitutive property

value of dependent variable from previous outer iteration
intermediate value at current iteration

new value at current iteration

interface of phases
fluid phase
dispersed phase
phase indexes

phase average
mass-weighted phase average
normal flux component
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1 INTRODUCTION

1.1 PROBLEM CONSIDERED

The field of multi-phase flow problems is a very wide field from stratified flows
to highly dispersed flows such as systems of aerosols. This diverseness quite often
requires modelling and solution approaches exploiting the special characteristics of
each sub-type. This thesis work concentrates on the area of dispersed flows and,
especially, to the problems encountered while solving them numerically with a col-
located Control Volume Method (CVM). A requirement set from the beginning
was that all treatment is expressed in a form suitable for flexible description of
geometry. Thereby, an approach was selected based on multi-block structure with
Body Fitted Coordinates (BFC) at each block. A simplified fluidized bed was set as
the special application to concentrate on. Although having this sub-type of multi-
phase flow problems in mind from the beginning, the selected method to derive the
conservation equations and the numerical method studied are general methods in
nature and they are also available to other types of multi-phase flow problems.

When considering the multi-fluid equations two properties of them are striking
and typical of multi-phase problems. The first is the large number of dependent
variables and the second is the inter-phase transfer of mass, momentum and energy
between the phases. It is just the latter property that actually makes multi-phase
problems more difficult to solve than single-phase problems. If the inter-phase
transfer is negligible the multi-phase problem reduces almost to solving many con-
servation equations of the same type than in single-phase flow. Therefore, it was
natural to start the work from the study of inter-phase coupling algorithms. The tar-
get application, a fluidized bed, is especially interesting in this aspect as most sec-
tions of both gas-particle and liquid-particle beds normally operate in conditions
where the inter-phase coupling can be stated to be ‘moderate’. However, there usu-
ally exist at least small spots in the bed area where the coupling is tight. Currently,
there is no information available on the required implicitness of inter-phase cou-
pling algorithms or what benefits in overall solution efficiency could be achieved
by a proper selection of them.

Deficiencies related to the customary solution algorithm applied in sequential
CVM methods for multi-fluid problems were also expected. A principal subject
here is the mass balancing pressure correction step of the interphase slip algorithm
(IPSA) in which the volume fraction is held constant and the mass balancing is
based on the adjustment of global mass by shared pressure gradient. In fluidized
beds the average of the normal component stresses of the dispersed phase, i.e., the
dispersed phase pressure, e.g., in connection of compaction of the bed at start-up,
corners of the bed and at heat transfer surfaces, is strongly dependent on the vol-
ume fraction and, consequently, this dependency should be taken into account in
the pressure correction step. The rising dispersed phase pressure also means that
the performance of a pressure correction algorithm based on shared pressure con-
cept will be poor if sufficient at all. Simple methods to reduce these problems, the
Fluid Pressure in Source term (FPS) and the Equivalent Approximation of Pres-
sures (EAP), are therefore presented.

In addition, the selected geometric description for the CVM method, the collo-
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cated local body fitted coordinate (BFC) system with multi-block capability,
requires some interpolation scheme to mimic a staggered grid arrangement. The
customary solution for collocated methods is to utilize the Rhie-Chow momentum
interpolation scheme. For rapid changes in source terms this interpolation method
fails to conserve mass, a severe deficiency for a CVM method utilizing iterative
solution. An improved Rhie-Chow interpolation method is therefore presented as
well as an extension to multiple pressures which is applicable both for the Rhie-
Chow interpolation method and its improved version.

1.2 BACKGROUND

Numerous different approaches to formulate conservation equations for dis-
persed multi-phase flows exist. Only the most recent method in the field, the lat-
tice-Boltzmann method ([2], [3]), avoids this complication by having its
foundation in the description at the molecular level and in the mutual interaction of
these entities. In other approaches, some kind of averaging is required. Reeks
([47], [48]) applied kinetic theory in the phase space while most of the others have
utilized regular space-time coordinates. The first derivation with volume averaging
was presented by Drew [19]. Another corner stone in the field, introducing time
averaging, is the more general publication of Ishii [31]. After first approaches
([11], [12]), the application of ensemble averaging has gained wide popularity
([20], [29], [30], [33]). This is in part a consequence of applying the kinetic theory
of dense gases [15] to derive the constitutive equations of the dispersed phases
([17], [6]). Especially in the context of fluidized beds, the special volume averag-
ing applied by Anderson & Jackson [4] has functioned as a basis for several flow
models, e.g, [45, 50]. The equations in this work are most closely related to the
mathematically formal treatment based on generalized functions by Drew [20].

Although the conservation equations can be derived by integrating the local
conservation equations of mass, momentum and energy together with their associ-
ated interface conservation equations, i.e., jump conditions, over representative
dimensions of either space, time or realizations of the system, all these methods
produce conservation equations of the same structure. The main difference is found
in the interpretation of the terms and in the content of the constitutive relations. By
a rigorous mathematical treatment these averaged equations, customarily known as
the multi-fluid equationsare an exact representation of the system. In reality, the
multi-fluid equations include several terms that depend on the microscopic local
variables or on the integrals over the inter-phase boundaries. These terms, e.g.,
stresses, diffusional fluxes, inter-phase transfers and pseudo-turbulent stresses, are
called constitutive terms and they have to be replaced by models which depend
only on averaged dynamic quantities or their derivatives. Discussions of general
constitutive requirements can be found, e.g., from [31] and [21]. It is just these
constitutive terms which bring in the typical problems related to solving the multi-
fluid equation set. As no generally valid constitutive models exist and as most of
them are quite crude approximations of reality, a multitude of different forms to
write multi-fluid equations have evolved.

Two fundamentally different approaches to solve dispersed multi-phase flows
have evolved in the past. Their conceptual difference lies in the treatment of the
dispersed phases, where one is based on Lagrangian tracking of computational par-
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ticles ([25], [23], [56]) and the other is based on the idea of interpenetrating con-
tinua and the Eulerian frame of reference, naulti-fluid model([19], [54], [31],

[12], [20]). The former is naturally suited to dilute flows and the latter meets its
theoretical justification better in denser flows [16]. However, numerous exceptions
to this simple classification can be found, e.g., the PALAS concept [8], the applica-
tion of kinetic theory in the phase space ([47], [48]) and the lattice Boltzmann
method ([2], [3]). Efforts to combine the advantages of both approaches have also
appeared [5]. Further, a variety of methods exist for the solution of the carrier
phase balance equations and, in the case of the multi-fluid approach, for the dis-
persed phase balance equations as well. Methods based on unstructured grids, i.e.,
FEM [28] and CVFEM [40], usually exploit the simultaneous solution of all bal-
ance equations. This is a consequence of the unstructured mesh which results in a
sparse coefficient matrix and, consequently, prevents the use of efficient iterative
solvers tailored for band matrixes. This approach avoids the difficulties related to
the numerical implementation of the inter-phase transfer terms but requires a huge
amount of run time computer memory. In contrast, Control Volume Methods
(CVM) built on structured grids use the sequential solution of balance equations in
combination with iterative solvers, which results in large savings in memory
requirement. The major disadvantage, as far as the multi-fluid approach is con-
cerned, is the difficulty to implicitly consider the couplings of balance equations.

The easiest and most natural way to treat the interphase coupling term corre-
sponds to considering it a linear source term, where the coefficient times the cur-
rent phase variable forms the first-order term and the coefficient times the other
phase variable acts as a constant term [55]. This method to treat the inter-phase
coupling terms corresponds to an implicit scheme for the first-order term and an
explicit scheme for the constant term, and it is referred as an partially implicit
treatment. A fully explicit scheme would exploit an existing value also for the cur-
rent phase variable. To enhance convergence in conditions of tight coupling more
implicit methods are needed [42]. In this work, the fully implicit Partial Elimina-
tion Algorithm (PEA) [52] and the semi-implicit Simultaneus solution of non-line-
arly coupled equations (SINCE) [37, 38], described in detail, are meant to cover
this requirement.

Two well-known sequential iterative solution algorithms for CVM approach in
multi-fluid conditions exist, i.e., the Interphase Slip Algorithm (IPSA) [51-53] and
the Implicit Multifield (IMF) method [26]. As having more implicit nature, the
IPSA method has been selected as the basis of the solution algorithm in this work.
The distinctive features of the IPSA are related to the mass balancing pressure cor-
rection step of the algorithm, in which the volume fractions are held constant and
the mass balancing is based on the adjustment of global mass by shared pressure
gradient. The average of the normal component stresses of the dispersed phase, i.e.,
the dispersed phase pressure, is sometimes strongly dependent on the volume frac-
tion and, consequently, this dependency should be taken into a count in the pres-
sure correction step. The special case here in mind is the compaction of a fluidized
bed below the state of minimum fluidization. As the porosity of the fluidized bed
reduces, the dispersed phase pressure steeply rises with the volume fraction and it
Is insufficient to use only the shared pressure for mass balancing. Two new meth-
ods to reduce these problems, the compressible and incompressible variants of the
Fluid Pressure in Source term (FPS) and the Equivalent Approximation of Pres-
sures (EAP), are introduced in this work.
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Because the constant parts of the linearized interphase coupling terms are cus-
tomarily treated as source terms, their information in a SIMPLE(C) type pressure
correction equation [18], a part of the IPSA method, is lost. To improve this solu-
tion step, a solution algorithm, referred to as the Interphase Slip Algorithm-Cou-
pled (IPSA-C), is given in this work. This method utilizes the same kind of
formalism as the SINCE to include the interphase coupling terms semi-implicitly
in the pressure correction equation.

In order to achieve adequate geometric flexibility in constructing the mesh, the
CVM used is based on collocated local body fitted coordinate (BFC) system with
multi-block capability. The essential feature of collocated methods is that the same
mesh is used for all dependent variables. As the staggered arrangement of mesh for
momentum equations is abandoned, some other means to avoid the decoupling of
pressure and velocity fields has to be used. The customary solution for collocated
methods is to utilize the Rhie-Chow momentum interpolation scheme [49] that
actually mimics the staggered grid arrangement. For rapid changes in the source
terms this interpolation method fails to conserve mass. A better behaving scheme
has been described in Appendix D. In addition, if the shared pressure concept is
abandoned and a proper treatment is given for the dispersed phase pressure the
Rhie-Chow interpolation method has to be expanded. An approach available inde-
pendently or with the improved Rhie-Chow scheme is given in this thesis work.

1.3 OUTLINE OF THIS WORK

By following the theme of the work, the material presented has been divided in
three conceptual parts: the theoretical and the mathematical basis, the inter-phase
coupling algorithms and further improvements of the solution method in order to
gain better overall efficiency.

The first part comprises chapter 2 in which the mathematically exact multi-fluid
equations are given in together with the related interfacial jump conditions. This is
made to lay out solid basis for the later discussions of the numerics. In addition, the
generalized form of multi-fluid equations for numerical solution are given and,
finally, discretized for collocated CVM solver. All the treatment in this part, as well
as in the other two parts, are carried out in a form applicable for local BFC grids.
This may complicate the following of the general idea but reveals better the
requirements and complications related to this geometric description.

The subject of the second part, the inter-phase coupling algorithms, are covered
in chapter 3 and in the related publication attached to Appendix E. The chapter 3
itself is only a short summary of the material discussed in the publication, which
includes a detailed description of the inter-phase coupling algorithms, i.e., the
explicit treatment, the partially implicit treatment, the semi-implicit SINCE algo-
rithm and the fully implicit PEA algorithm. Their efficiency were tested in a typi-
cal conditions found in gas-particle and liquid-particle fluidized beds. In addition,
the IPSA-C solution method is introduced. This solution method includes the inter-
phase coupling terms also into the pressure correction step in a semi-implicit man-
ner, and consequently, enhances the accuracy of the traditional IPSA solution
method.

The third part, i.e., chapter 4 and chapter 5, include improvements to the cus-
tomary IPSA solution method in order to achieve better overall solution efficiency
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and to avoid numerical problems typical for collocated CVM in fluidized bed con-
ditions. In chapter 4 the new multi-pressure algorithms, i.e., the Fluid Pressure in
Source term (FPS) and the Equivalent Approximation of Pressures (EAP), are
explained. The relation of these methods to the multi-fluid equations and to the
model equation for discretization is given in chapter 2 in context of the multi-fluid
balance equations and constitutive models. Finally, chapter 5 describes how the
multi-pressure concept can be included in the momentum interpolation in a way
which is consistent with the requirement of second-order accuracy for approxima-
tion of pressure gradient.
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2 MULTI-FLUID MODEL

The governing equations of the multi-fluid model are derived by integrating
local conservation equations of mass, momentum and energy, valid in each phase
separately, together with their associated interface conservation equations, i.e., the
jump conditions, over representative dimensions of space [19, 54], time [31] or
realizations of the system [12]. Each of these averaging methods produce govern-
ing equations of the same structure though the interpretation of the terms and the
operations required for the interfacial source terms are unique. A mathematically
formal treatment based on the generalized functions has been given by Drew [20].
This approach, followed below, has its origin in ensemble averaging.

Utilizing the notion] [0 for a generic integration process the phase average and
the mass-weighted phase average of a var@ble  can be defined as

— X o ~ X . pdO
a - and g = “E) . (1)
€q €4Pq

In equation (1p and& are the detailed piece-wise continuous functions of mate-
rial density and general dependent variable, whexXgas is the phase function indi-
cating the phase present at a specified location and time. Thus, the definkjpn of
IS
D - . . .
X (x,1) = O 1if xisin phaseg at timet )
0o otherwise.

It follows, that the average of phase function itself is the volume fraction of the
phase in question

g, = X O (3)

a

Based on these definitions, the governing equations of mass and momentum can
be written in the form:

2 (ea )+ 0+ (5 0, Up) = TIp(U= )], » DX, (4)

0 - - -~ ~ - — S
m(sqpquq)+D-(sag, Uy O Uy )=0ee, T, +€,0,9+F

+[puU(U-Yy)-T], * OX,0

®)

On the right side of equation (5%‘S stands for the momentum source caused by
other body forces than gravity. The two terms inside the angle brackets represent
the interfacial source terms of mass and momentum denoted by
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My = Op(U-Y)], * OX,0 and (6)

R = OpU(U-U)-TI, * OX,0 7)

The square brackets in these equations are used to express the limit process where
the interface is approached from the side of plase

[®P], = lim D(x,,t). (8)
X = X
In addition, the interfacial sourceMO'( aﬁgﬁ have to fulfil the interfacial

jump conditions of mass and momentum

Np
S M, =0 and (9)
a=1
Np
S F =F. (10)
a=1

In equation (1O)FTI Is the contribution to the total force per unit volume on the
mixture due to the interface, mainly originating from the spatial changes in the sur-
face tension, and\,  stands for the number of phases present. Without and
Fo(I , the equations (4) and (5) closely resemble the balance equations of single
phase flow.

2.1 CONSTITUTIVE EQUATIONS

A large number of studies and intuitive speculations about the constitutive mod-
els of the stress tensdgy ~ and about the interfacial soMg';es FO(I and have been
conducted, e.qg., [7, 11, 19, 20, 21, 29, 30, 31, 46]. In the following discussion, in
addition of the conventional treatments of Ishii [31] and Drew [20], the results of
the two consistent and mathematically rigorous control volume/control surface
approaches are referred, namely the volume averaging method of Prosperetti &
Jones [46] and the micromechanical ensemble averaging method of Hwang & Shen
[29, 30].

2.1.1 Stress tensor

In analogy with fluids, the stress tensor of each phase is normally divided into
isotropic and deviatoric components

T, =-Pl+T1,, (11)
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where the isotropic pan% , defined to be the mean of the trace of deformation
rate, is called the pressure. The stress tefisor  itself includes contributions from
several dn‘ferent mechanisms. For the fluid phase two contributions are realised,
Tf ande , corresponding to the viscous stresses and to the turbulent momentum
transfer (analogous to Reynolds stresses). For the dispersed phase, contributions
arise by the hydrodynamic forces at the control volume surface cutting dispersed
entities, the particle-presence_stré’%% [7, 29], by the random motion of the dis-
persed phase, the kinetic strésg (analogous to Reynolds stresses), and by the
coII|5|ons and contacts between the dispersed entities, the collision/contact stress
Td [32, 39]. These contributions are noted in short as

-T_f = -T_fv+ -T_ft and (12)

Ty = T Ty T (13)

2.1.2 Interfacial momentum source

The interfacial source of momentljtf’gpI , represented by equation (7), includes
two different participating mechanisms, namely the momentum transfer produced
by the phase change process and the force resulting from the existing stress on the
interfaces. It is customary to describe the former mechanism by defining the mac-
roscopic interfacial Ve|OCItqu as [20, 31]

M, Uy = OpU(U-U))], * OX,0 (14)

Commonly, the latter portion of the interfacial momentum soE&'ce is expressed
as [20, 31, 34]

HTY, + OX,0= P Og, +Fy, (15)

wherel%(I is the macroscopic interfacial mean pressure [1, 31] defined by

P Og, = B{P],0X,0 (16)

a a

and Fo(D denotes the interfacial force density
|
= OP-R 1, 0X, — [T, * OX,0 (17)

Equation (15) corresponds to the ‘current engineering practice’ as stated by Pros-
peretti & Jones [46]. Most of the published treatments and numerical simulations
are based on this definition which is referred asltiterfacial Mean Pressure
mode] IMP, in this text.

As stated by Prosperetti & Jones [46], the definition of the |nterfaC|aI mean
pressurel?,  given in equation (16) is restrictive in a way that theF;pma van-
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ishes in the case of a non-existent volume fraction gradient even for a varying pres-
sure distribution on the interfaces. This |ncon5|stency in the phasic momentum
balance may lead to non-physical results in cases V\Fgere is important. In the
mathematically rigorous treatments of Prosperetti & Jones [46] and Hwang & Shen
[29, 30], the definition (16) is avoided. Although using different averaging methods
and notions, both of these treatments come to parallel results, which are here refer-
enced with a common nanigrect Interfacial Force modeDIF.

According to DIF, the latter mechanism of the interfacial momentum source can
be expressed as

HT Y], » OX,0= g 00 T+ F =00 (g,T). (18)

In equation (18), the first term on the right side originates from a linear approxima-
tion of the continuous phase stress components in the scale of the dispersed phase.
The existence of this term is supported by the equation of motion for small rigid
particles derived by Maxey & Riley [41]. In their treatment this term arises from
the contribution of the undisturbed fluid flow. The second term in equation (18) is
the interfacial force densitlyo(D , a consequence of the disturbance to the fluid flow
caused by the particle, including the contributions from the hydrodynamic drag
force, the apparent mass force and the Basset history force. The last term results
from the stress field on locations of the control surface where it intersects the dis-
persed phase. A mathematically rigorous definition of the particle-presence stress
qu can be found from Batchelor [7] and Hwang & Shen [29].

2.2 MOMENTUM BALANCES

The momentum balances of the continuous and dispersed phases for the two
treatments of the interfacial transfer term are now obtained by inserting the defini-
tions (12)—(15) and (12)—(14), (18) in equation (5), respectively. Since a typical
dispersed multi-phase flow problem involves one continuous phase and several dis-
persed phases, these balance equations are written in a corresponding form. This is
achieved simply by including the phase interaction terms from all participating
phases. Details of the rearrangement and simplification of the stress terms are
given in Appendix A. Thus, the momentum balances for fiuid and for dispersed
phasesl , for the two different treatments, can be written as:

Interfacial Mean Pressure modeMP;

ait(sfbf'uf) +0¢ (gp,U OU) = —g0P + O (gT¢) + O v (gT7)

Ny (19)
+(Pf'—|5f)Dsf+M]'cU]'c+FT'— Z F; +Ffs+ &:prg and
=1
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a _ o~ _ o~ ~ _ _ _
5:(EaPgUy) + 0+ (8gPgly 0 Uy) = —gg00R + 0 (g4T)

(20)
+0e (Ed(Tkor Tdc)) + (Pdl —P,)Ogy + Mdl Udl + FdD + I:dSJr €409
Direct Interfacial Force modeDIF;
%(Efbfuf) +0e (Sfbfuf O Uf) = glle -T_fv"’ e (Efff[)
Ny (21)
I 1 | D Fp TV S =
+ MU +Fp — Z (Fg — DO« (ga(Tg —T))) + K + &g and
=1
0 -~ -~ ~ _ =V —k =c
m(sdpdud) + e (egpgUy 0 Uy) = g0 Ty + 0o (e4(Ty +Ty))
(22)

+ MdI UdI + FO? + Fds+ £4Pq0 -

If the relative velocities between the phases are not high, and if there exists no
appreciable dispersed phase expanS|on/contract|on it can be assumed that the pha-
sic pressure®,  and interfacial mean pressEyes in equations (19) and (20) are
equal in each phase [46]. Also, in the absence of surface tension the phasic pres-
suresk andy are almost equal [22]. These simplifications lead to the concept of
shared pressure, i.e., the pressure force realized in balance equation of each phase
Is the fluid pressure multiplied by the volume fraction of the respective phase.

By reverting to the treatments of Prosperetti & Jones [46] and Hwang & Shen
[29], it is realised that the term

O+ (gg(Tg = T;)) (23)

represents the forces created by the difference of the mean interfacial stress and the
mean fluid stress on those parts of the control surface mtersectlng the dispersed
phase. Accordingly, with the same limitations as when con&d%lngP _ above,
the term (23) can be neglected. The same is true also for the approx#paetl%n

Under these limitations the only difference between the IMP and DIF models is
found in the viscous stress terms. On the other hand, in turbulent particulate flows
the contribution from the tLteruIent momentum transfer is often much larger than
from the viscous stresség » T; and thus the difference between the models
becomes immaterial.

2.3 GENERALIZED FORMS

For numerical treatment, the balance equations (4), (19)—(22) are represented in
a generalized form in which all problem specific models are adapted. In this gener-
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alized form, the interfacial source terms are customarily linearized as [14, 24, 35]

Np
I . .

M, = Z (mgg —Mgg) and (24)
p=1
Np

F = S (MpaUg —Mag Ug) + Fy, Where (25)
B=1
Np

D ~ ~ D

R = Y Bap(Up —U)+ R (26)
B=1

In equation (26)(120(D is used to denote the constant term of the linearized interfa-

cial force density antll,  stands for the total number of phases. Consequently, the
multi-fluid balance equations of mass and momentum for a turbulent particulate

flow are often expressed as a straightforward extension of their single phase coun-
terparts as

Np

a _ -~ . .

a_t(sqpq)-l_ D. (Eqpquq) = Z (mBG_mGB) and (27)
p=1

o, - ~ o~ ~ ~
5iEaPath) + O (2q(Pa U 0 Uy =0 O,)

—_ ff ~ T —
= —&;UR + 0+ (&N (Al) ) +£4Pq9 28)
Np . . Np . .
+ 3 (MpaUp —MupU) + 5 Byg(Ug —Uy) +F,
B= B=

1 1

where the source terﬁ&T is used to collect different terms of that character
Ry = R+ Ry (29)

Here, the treatment of viscous stresses in the momentum equation (28) follows the
IMP-model as usual.

The generalized momentum balance has been written on the basis of a general
linear viscous fluid model, which is expressed as

_ ~ ~ T — 2 ~
T, = ng (00, +(00,) ) =P | +B12—§%Hj- u,l. (30)

In single phase flows, the constitutive model (30) is easily adapted to the general-
ized form of the momentum balance by defining the modified pressure
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R =R -fe-Snae G, (31)

which is used in place ¢} . This is in contrast with multi-phase flows, where the
appearance of the hydrodynamic pressure terms and other stress contributions dif-
fer from each other. In this case, the definition (31) provides no valid simplification
of the balance equations with either of the approaches, the IMP or the DIF. Thus, a
more suitable template for the momentum balance (28) is provided by

9, - ~ e . -
5i(EaPa ) + O+ (2q(PaU, 0 Uy —n'00,))

5 ffo VT 5e -
= —g,0R + 0+ (g, (OU,) ) —O(g,P) +€,0,9

(32)
N Np
. ~ . ~ ~ ~ T
> (MeaUg—mapUy) + 5 Bop(Up —U) +Fy
B =1 B =1
where the phasic pressu% in the definition of the modified pressure (31) is

associated with the other pressure like contributions than the mean fluid pressure
R . For the fluid phase, this modified pressure arises from the last term of the equa-
tion (31) and from the eddy viscosity hypothesis

T t n n
&T; X, P Uy O uqql

a=f

(33)

~ ~ T 2_ 2 ~
e 1 (OU+ (OU) ) - 5ok =300 Uil

where u; represents the deviations from the mass-weighted phase avqtfages,
denotes the eddy viscosity anﬁpl stands for the kinetic energy of the turbulent
fluctuations, respectively. The ‘turbulent pressure’ is identified as the second term
on the right side.

In the same way, additional ‘pressure’ contributions arise from the constitutive
equations for the kinetic and collisional momentum transfer of the dispersed
phases [27, 32, 39]. Since these contributions become considerable in some appli-
cations, e.g., in fluidized beds [13], they can not generally be neglected.

In numerical solution the momentum balance (32) is treated like three scalar
variables, each representing one Cartesian component of momentum, hy adapting
it to the corresponding balance equation of a generic dependent scalar veyiable

;. L .
a_t(ﬁq PuPa) + U e (g (P Ua®Pq — Ty Py ))
. ~ ) " o (34)
= ¥ (Moath =g @)+ 3 Bup(% =) +S.
B=1 p=1
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2.4 DISCRETIZED EQUATIONS

In order to facilitate the numerical solution of the macroscopic balance equa-
tions (27), (32) and (34) in a general 3D geometry using Body-Fitted Coordinates
(BFC) combined with the multi-block method, these equations are expressed in the
covariant tensor form [14, 36]. The coordinate system used in this context is the

local non-orthogonal coordinate systé# ¢, {) , referred to as the computational
space, obtained from the Cartesian coordinate sy§tesnz =, i.e., the physical
space, by the numerical curvilinear coordinate transformatin’) . Details of

the derivation are given in Appendix B.

Because there is no danger of confusion, the phase and_mass-weighted phase
average notations above the dependent variables,d.g., ®and , have been
omitted in the subsequent treatment in order to enhance the readability of the equa-
tions. Thus, the transformed balance equations in the computational space are

) Np
0 g i . .
gildEaPe) +—(Im) = 5 [I(Mge — Myp), (35)
aE B:l
a(|J|£ 0k + ) (fi ) = —e Al R 0 EE effArinAliaUamE
_ _— K —
ot a Pa Y aEI U, kaE Eanq |J| an B
i 0
- A:(a—éi(sq P) +13le,p,0 (36)
Np No
+ 3 13l(MeaUg = MagUy) + 3 131 Byp(Uy - Uy) +13IF, and
B=1 B=1
0 0 i
m(|‘J|£q pqcbq) +a—Ei(|¢a)
" v @37)
=Y Fl(Mpa®p —Map® ) + 5 NI Byp(Pg = P ) + VIS,

p=1 p=1

where|J| is the Jacobian determinant Ba) = AV (Figure 1(a)) represents
the adjugate Jacobian matrix (B‘% stands for the normal flux velocity compo-
nent (B21), and the total normal phasic fluﬂgﬁ IU, a'ggxd are defined as
specified in Appendix B.

In the process of the coordinate transformation, all the derivatives of the macro-
scopic balance equations (27), (32) and (34) in the physical space have been
expressed with the corresponding terms in the computational space, where the
transformed macroscopic balance equations (35), (36) and (37) are discretized.
This is done following the conservative finite-volume approach with collocated
dependent variables.
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Figure 1. (a) Area vectors on the faces of the finite-volume cell in the physical
space. (b) The notion of the neighbouring cell centres and cell faces in the compu-
tational space.

Integrating the generic balance equation (37) over a single finite-volume cell
(Figure 1(b)) in the computational space with the help of the Gauss law results in

a A
[ 571910 P ®)AV, + [ g+ n dA
Y A,

C

Np Np
. . |
= J’ > 13/ (Mp By — Myp®, )dV, +J’ )3 13 Byp (P — By )V, (38)
V,B=1 v, B=1
+ _[|J|Sadvc ,
\/

where\;, is the volume of the finite-volume cell in the computational space and
A is the surface of this cell. Up to the second-order accuracy, the edges of a rec-
tangular volumey,,  in the computational space are transformed into the physical
space as

(08, 3¢, 8C) — (0§ €y oG €y ¢ 9(3)) , (39)

wheree(i) are the covariant basis vectors (Appendix B). Accordingly, the compu-
tational space volumes and cell face areas are related to the physical space volumes
Ve and areas as

Ve = 06060C — [J[06€0GAL =\, 60 (40)

8¢ - ADscsr, 5557 - AP 8ES,  and 88dc - AP BESC . (41)
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Setting the lengths of the finite-volume cell edges in the computational space to be
unity 8¢ = o8¢ = 8¢ = 1, all the cells in the physical space are transformed into
cubes of unit volume and unit face areas in the computational space.

Based on the same type of integral balances as equation (38) and on relations
(40) and (41), the discretization of the macroscopic balance equations (35), (36)
and (37) can be formally represented as

SOET D210+
Np (42)
=3 {13[(Mgq — My@)}
B=1

[{IJI sqpq}J”A‘ ~1
At t

Kyt + At
{|‘J|£qpquq}} ~1 _u ~2 n ~3 e D ian D
— +[Igly + g g, = —08eAv— O
|: At t U d Us Udw 0 a aE| 0

. ALALOU, “+ AZALOU, ”+ ASA UL
S —_ € —_ S —_
arlq |J| aEJ | arlq |J| aEJ arla |J| aEJ .

s (43)
09 O
— DA (e PO T+ {13 £ Po 0} +1{13IF }
0 o¢ O
Np Np
. . k k
+ 3 {13(Mga Uy — Mapl )} + 5 {131 Bip(Ug'—Uy)} and
B =1 B =1
{1l py Py }qt+at - ~2 ~3
), e it a1+ e,
N, N, (44)
= 3 {13(Mga®g — Mup®,)} + {13 Byp(By = D)} +{ IS} -
B =1 B =1
In equations (42), (43) and (44), the notatfor} indicates that the operand is

integrated over the volume of the finite-volume cell in question. Because the com-
putational space cells are all of unit volume, the resulting mean value is directly
expressed on the unit-volume basis. Further, the nothtihp, ', expresses a dif-
ference between the values of the operand at specified locations (Figure 1(b)), e.g.,

A

g 1y = lg . (45)

_1t
u P d

The right-hand side notation implies that the operand is integrated over the respec-
tive face of the finite-volume cell. The result of this integration is directly on the
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unit-area basis. For the time derivative term, the corresponding no[al]ith’nAt
expresses the difference of cell-based volume averages at respective times

t+ At

[%]t :{%}t.'.At_{%}t' (46)

Thus, the total normal phasic quxe,if,au ILi,&k ela';p are represented as

[In]] = G h—co'( . (47)
k k
i oh i k ]k J % ] %
[yl = G, huq\h—ca\luq\l—Da‘h | +Dg| | (48)
og | og’|
Sioh i i @, ij 0P,
e, 1 = C“‘h¢“‘h_ca‘|¢“‘|_Dq’a 0 d| Pe ) (49)
0¢ h 0& |
El;h:u,IZd
where i =02;:;h=n,l=s
E3;h:e,lzw

indicates the pair of faces in question. Comparison between equations (B19) and
(47), (48) and (49) reveals that the phasic convection and diffusion coefficients
Cy » Dy andDg, are specified by the relations

CO'( ‘C = g, ‘cp“ ‘CA(I) . U“‘c = sq‘cpq‘cuq' o (50)
A
i AnAn| _ i
Pal, = %al Nal, T3 | = ®al.Nal .S e 1)
) AlA )
ij _ m™m| _ ij
! c fa o ‘CT - €al o |G e (52)
01:¢c=uy,d
) U
where i = [J2:c=n,s
53 c=ew

2.4.1 Profile assumptions

Because the discretization is done in the computational space, integrating an
operand over the finite-volume cell with a constant value results in
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Figure 2. Notations used in the context of discretization approximations. The inse
of the physical space reveals the weight factors.

{®}= DV, = O, = By, (53)

where D, Is the value of the operand at the centre of the cell.

Since the rest of the terms in equations (42), (43) and (44) express the flux of
the operand through the faces of the finite-volume cell, they are calculated as the
difference of the average value of the operand at the opposite faces of the cell as
indicated by equation (45). For the averaging, the real profile of the operand over
the face is approximated with a constant value located at the centre of the face.
This approximation is already reflected in the chosen form of the notation. Accord-
ingly, integration over the face leads to

[®dAg = @ AL = | = O, (54)
Ac

where®|_ is the value of the operand at the centre of the cell face.

2.4.2 Values on cell faces

To calculate the flux termBCD]g , the material properties and the values of the
dependent variables at the centres of the cell faces are needed. These values are
found by a weighted linear interpolation scheme from the cell centre values. The
weight factors used in this context are based on the distances between cell centres
and the corresponding cell faces in the physical space (Figure 2). The value on the
cell face is then given by
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APcC

Pl =@ = A-W)P + W, W = 57 (55)

where ¢ = (u,dnsew and C=(UDNSEW .

This scheme is second-order accurate in rectangular non-uniform meshes.

2.4.3 Gradients at cell centres

The source terms include the pressure gradients calculated at cell centres. In a
general case, other source terms involving gradients of dependent variables, e.g.,
the model used in the test case of this article, may also exist. These gradients are
approximated by the same type of weighted interpolation scheme as the one for
values on cell faces, but to enhance accuracy, the weight factors in this case are
based on arc lengths between the cell centres (Figure 2). Although calculating the
arc lengths is computationally expensive, the Rhie-Chow interpolation method
[49], used to provide the normal flux velocity componeldj,s on the cell faces,
necessitates the second-order accuracy also on the non-uniform curvilinear
meshes. Thus, by defining two weight factors, one on the positive side and the
other on the negative side of the cell centre in consideration, the gradient at the cell
centre is calculated as

2= W, (W - WG - W (56)
0X |5

in which the weight factors are defined to be

_ 1 n HP
Wi = THP ¥ nPL nPL

_ 1 n PL
W= SHp +npPL nHP"

Accordingly, the pressure gradient source term in the discretized momentum
equation (43) is not calculated on the computational space but directly from the
physical space gradient, as specified by equation (56). The relation between these
two forms of the pressure gradient source term is given in Appendix B by equation
(B25).

2.4.4 Gradients on cell faces

The total normal phasic fluxes (48) and (49) include gradients of the dependent
variable on the cell faces in their terms involved with diffusion fluxes. Further-
more, in the discretized momentum balance (43) those terms of the deformation
rate tensor not analogous with the viscous diffusion are classified as source terms
and also involve gradients of this type. These gradients are all discretized using
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central differences in the computational space. For the gradients normal to the cell
faces, the central difference method is applied as

J1;C=U,c=u
0P| _ I S _
—| T ®-® with i=02;C=Nc=n (57)
o] ES;C:E,c:e

In the case of cross-derivatives, i.e., derivatives on the plane of the cell face, the
gradients are approximated as the mean of the two central differences calculated at
the cell centres on both sides of the face in question. As an example, the cross-
derivatives on the cell faceare (Figure 2)

od 1

ac = Zl(q)N - &g + Py —Pys), (58)
u

od 1

Y = l_l((DE —(RN + (DUE _(DUW)' (59)
u

The other ten cross-derivatives on the remaining five faces are defined in an analo-
gous way.

The approximation of the cross-derivatives as in equations (58) and (59) con-
nects 18 neighbouring cells to the treatment of every finite-volume cell. To allow
the use of the standard linear equation system solvers, the treatment is reduced
back to the usual one involving only the eight neighbouring cells sharing a cell face
with the cell under consideration by the deferred correction approach, i.e., treating
the cross-derivatives as source terms by using values from the previous iteration for
the dependent variables in question. Thus, in addition to the terms related to the
gradients normal to the cell faces (the diagonal terms of the diffusion tensor), the
deferred correction approach results in the following additional source terms
expressing the effect of non-orthogonality

o' a1 o' dd 71"
s ={Dé§ 24D aza} { 2% 0 azq}
G d s (60)
0D o'p 1°
31 o 32 o
+|Dy —2+D ,
{ ®oog ™ GJ
wW

where *dbq denotes the value of the dependent variable from the previous iteration.

Following the details given above, the formally discretized macroscopic balance
equations (42), (43) and (44) can now be written in their final form. To enhance the
readability and to keep more physical nature in the discretized equations, they are
next given in a partly discretized form retaining most of the terms in their previous
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form. This practice should also aid in transferring the presented methods to
approaches using different discretization schemes. Thus the macroscopic balance
equations of the phasic mass, momentum and generic dependent scalar variables
are

Cal, = Cal,* Cal, = Cal * G, = Cul,

t + At
o " sa‘qu‘PVP (61)
B Nh‘PP At :
t
u,dnsew
udnsew ’ UDN,S E W )
K U = U
g an c G‘P “‘c
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GF} i 0 e
~ &, k‘Pa_Ei _A"‘Pa—zi(sapo‘) P+SG‘PDG‘P9VP
A AJ 0Uq AZA) au A AJ ou, (62)
+|g pofm X T P e B B PR
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* Z (th“‘Pq)B‘p_rh“B‘Pq)“‘P)VP * Z BO:B‘P((DB‘P_(DG‘P)VP
B=1 p=1

\. t + At
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+]%‘P¢G‘PVP+O%‘PVP+SCE_{ P Zt p }

t

In equations (62) and (63)1F0(T J% are the coefficient part %raTd 0% , the
constant part of the linearized total source term (29). Furthermore, the advection
terms have been treated using the hybrid differencing scheme, in which the central
differencing is utilized when the cell Peclet numbeg( = G,/ Dq, ) is below
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two and the upwind differencing, ignoring diffusion, is performed wheiPthie IS
greater than two. This scheme together with the deferred correction approach asso-
ciated with the gradients on the cell faces (60) guarantees the diagonal dominance
of the resulting coefficient matrix. For that reason hybrid differencing scheme
serves as the base method for which other more accurate schemes can be built upon
by the deferred correction approach [14, 36]. With hybrid differencing the matrix
coefficients can be written as

1;h=u
_ oo i 1ol O
aq,qh—maxEQ‘Cq‘h,Dq,q 0 2C°“h’ | Ez,h—n and (64)
03;h=e
4 L El, =d
_ L i 0, L - Sl =
a¢a|_maXE2‘qu’Dq’a |D+2C°“I’ ! Egill_s' (65)
g~ -

To save some space, the summations over the cells and the neighbouring cells
are simplified as

u,dnsew
gaq,q o gaq,ac and (66)
u,dnsew
U,D,N,S EW
> | Pl - D%, Pl (67)
c c, C

C

in the following treatment. The latter notation should be understood as a summa-
tion of a product term with two simultaneously changing indices.
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3 INTER-PHASE COUPLING ALGORITHMS

The characteristic feature of multi-fluid model equations is that the phasic bal-
ance equations (4) and (5) are coupled to the phasic balance equations of other
phases through the interfacial source terms of ng'{ss and momE&'num . For
numerical treatment, these terms are customarily linearized as given by equations
(24)—(26) and, correspondingly, appear in the discretized balance equations (61),
(62) and (63) in that form. As the coupling of phases becomes tighter, the impor-
tance of these interfacial sources grows and, accordingly, the time scale associated
with the interfacial transport decreases. Then, in sequential iterative solution meth-
ods, the treatment of the inter-phase coupling terms in the solution algorithm
becomes critical for both the efficiency and stability of the solver.

Four different possibilities exist to handle the linearized inter-phase coupling
terms, namely,

the explicit treatment

Np Np
Y Bap(® —B) = 3 Bygl @ -, (68)
p=1 p=1

the partially implicit treatment
Np Np
Z BGB(CDB -®) - Z qu( *(DB _(D;* ) (69)
p=1 p=1

the semi-implicit treatment
Np Np
S Bup(®-®) - Y Bup(®z —®,) and (70)
p=1 p=1

the fully implicit treatment
Np Np
S Bap(® —®) ~ Y Bop(® —®; ). (71)
B=1 B=1

In equations (68)—(71) the notation®, @, abgl denote the current esti-
mate, an intermediate estimate during an inner iteration and the new estimate of a
dependent variable of the phage . However, it should be remembered that the
fully implicit treatment can never be fully attained in sequential solvers, but the
term is understood as meaning a treatment where all information of a phasic bal-
ance equation, except source terms, is taken at the level of a new estimate. A true
fully implicit treatment would be approached by calculating new source terms at
every inner iteration cycle. Inter-phase coupling algorithms intended to mimic the
classification (68)—(71) have been studied by Karema & Lo [34], presented in the
Appendix E of this publication.

Customarily, the sequential iterative control volume solvers are based on the
SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) type [44] solution
algorithm utilizing a pressure correction step to conserve mass on cell basis at
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every outer iteration. An extension of the SIMPLE method to multi-phase flows,
called the IPSA (InterPhase Slip Algorithm) algorithm [51, 52, 53], was used by
Karema & Lo [34] in their study of inter-phase coupling algorithms. As the IPSA
algorithm neglects inter-phase coupling terms in its formulation, in order to
achieve a more accurate pressure correction step, an improved IPSA based solution
method, called the IPSA—C (InterPhase Slip Algorithm — Coupled) algorithm [10],
was also studied. With this solution algorithm, a semi-implicit treatment of inter-
phase coupling terms can be included into the solver.

The test cases, the gas-particle bed (A) and the liquid-particle bed (B), were
selected to represent typical but simplified problems in the area of fluidized bed
hydrodynamics and the constitutive models for inter-phase momentum transfer and
dispersed phase stresses were set as given by Boetilakd9]. There, to prevent
the dispersed phase from compacting to unreasonably high volume fractions, the
normal component of the dispersed phase stress is retained and modelled with a
simple Coulombic approach (see Eq. 69 in Appendix E). When the porosity of the
bed decreases below the state of minimum fluidizagjgn this model produces a
strong repulsive force to prevent bed compaction. In hydrodynamic terms this
reflects a condition in which the collision time scale reduces below the aerody-
namic time scale related to momentum transfer by phase interaction. Naturally, the
repulsive forcern is a strong function of fluid volume fractspn . All tests docu-
mented in Appendix E were based on the customary representation of multi-fluid
equations (27) and (28) and they were solved by IPSA or IPSA-C solution meth-
ods. Accordingly, the dispersed phase normal stress was implemented as a source
term with a zero first order term.

In both flow configurations A and B the semi-implicit SINCE method resulted
in about 5% and the fully implicit PEA method about 35% higher convergence rate
of phasic momentum equations, respectively. The most important reason for the
improvement can be found in the correctness of the few first approximates when a
new time step is entered. The effect of including interphase coupling terms into the
pressure correction scheme, the essence of the IPSA-C, is limited to the first few
time steps, and there is practically no improvement of the overall convergence rate.

When the time step of simulation is kept below the characteristic time scale of
interfacial transfer processes, the partially implicit treatment of coupling terms in
combination with the IPSA solution algorithm provides the most efficient
approach. This result is totally based on the smaller number of computational oper-
ations required by these simpler schemes. When a longer time step is required or
there is a spot in the solution domain involved with very small characteristic time
scales of interfacial coupling, the semi-implicit or fully implicit treatment of cou-
pling terms becomes necessary. Then the PEA method provides the best efficiency
for two-phase flows, providing a considerably better convergence with momentum
equations but being only slightly more laborious computationally than the partially
implicit treatment. In multi-phase flows the SINCE method provides the only
option for the partially implicit treatment. Its convergence rate with momentum
equations is only slightly better than with the partially implicit method though it is
computationally more involved. The IPSA-C is arguably the preferred solution
method for conditions where the interfacial coupling is tighter than in the flow con-
figurations studied, e.g., in bubbly air-water flows.

Studying mass residuals reveals that in practice the improvement in computa-
tional speed attained with implicit-like algorithms in solving momentum equations
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Is almost completely lost in the pressure correction step of the solution. This would
have been acceptable for the IPSA solution method as it neglects inter-phase cou-
pling terms in correcting the pressures but the existence of this problem also with
the IPSA-C method indicate that the convergence rate of solution is limited by
other factors. In addition, this problem is much more pronounced in gas-particle
bed than in liquid-particle bed and in both test cases it becames worse after some
initial period of integration time starting from the initial field. All these aspects
point towards a poorly performing pressure correction algorithm. After analysis it
was realized that the limiting factor in predicting the total mass balance and espe-
cially the mass balance of the dispersed phase was threefold. First, in cells where
the bed compaction was high, i.e., the porosity of the bed below the minimum flu-
idisation porositye,,; , the shared pressure, for which the mass balancing pressure
correction step is based on, is not adequate to prevent the bed compacting to an
unreasonably low porosity. Second, the characteristic feature of the IPSA solution
method to keep the volume fractions constant during pressure correction step hin-
ders the too high compaction to be realized and prevented. Third, as in the IPSA
the volume fractions are solved after momentum equations and pressure correction
equation, the large value of static pressure compared to dynamic pressure in fluid-
ized beds is not effectively countered, i.e., as long as cell-based imbalances are
governed by the velocity field, the enhanced convergence rate of momentum equa-
tions enters the mass balances. Apparently, the pressure correction step of the
multi-fluid solution method should be further improved by incorporating also the
pressure-like contributions of the dispersed phases, in addition to the shared pres-
sure, and by including a mechanism to take into account the strong dependency of
the solid pressure on volume fractions. Further, in the momentum equations the
pressure-like contributions should be treated equivalently with the shared pressure
gradient. These topics are covered in detail in chapter 4. In Figure 3 the problem-
atic areas of the gas-particle bed are seen to be located beneath and above the
obstacle at the centre line and below the bubble. Evidently, the flow field in the
vicinity of the obstacle has a dramatic effect on the development of the bubble and
its accurate prediction is necessary. In liquid-particle bed the problem of unphysi-
cally high compaction does not exist (Figure 4) and the main problem is in the third
item, namely considering volume fractions as constant during the pressure correc-
tion step.

Another type of difficulty present in the gas-particle bed but non-existent in the
liquid-particle bed, still related to mass balancing, is originating from the large dis-
crepancy of the source terms across sharp interfaces between the fluid and particles
in circumstances when the particle density is several orders of magnitude higher
than the fluid density. Then, the weighted linear interpolation applied to source
terms while carrying out the Rhie-Chow momentum interpolation is not accurate
enough resulting in mass imbalance in adjacent cells of the interface. This is real-
ised as the small wrinkles around the interface with finer mesh in Figure 3, i.e.,
sharper interface, and will ultimately lead to divergence of a control volume based
solver. For the liquid-particle bed the customary Rhie-Chow interpolation is still
adequate. A geometric interpolation procedure [43] for source terms in this
instance could have been used but as it does not necessarily conserve mass in non-
uniform curvilinear meshes a so-callesprovedRhie-Chow momentum interpo-
lation [14] was utilized. This method is briefly described in Appendix D. If the cus-
tomary representation of multi-fluid equations (27) and (28), where the apparent
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pressure term of the dispersed phase is modelled as a source term, is applied, this
method should also enhance stability of the solver in areas of high bed compaction.
In order to reach an equal order of approximation for the apparent pressure terms
as for the shared pressure, teeendedRhie-Chow momentum interpolation
derived in section 5 can be used instead of or in combination witimghreved
Rhie-Chow interpolation.
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4 MULTI-PRESSURE ALGORITHMS

In section 2.2 it was shown that the momentum balances of both the IMP and
DIF approaches simplify to the same form under certain restrictions. These restric-
tions necessitate that the dispersed phase entities are small compared to the length
scales of the mean fluid flow field, that the interfacial mean pressure can be
approximated with the phasic mean presiyre: P and that the fluid phase tur-
bulent stresses exceed considerably the viscous stresses. The resulting approximate
momentum balance was shown to be conveniently represented for numerical treat-
ment as the generalized form (32). The associated formally discretized momentum
balance was then given by equation (62), as discussed in sections 2.3 and 2.4,
respectively. Since in the equation (62), there are two pressure terms, one related
with the mean fluid pressufg@  and the other with the pressure like contributions
P originating from the other constitutive equations, in the frame of sequential
control volume methods (CVM) some extended pressure correction scheme is
required in order to solve this kind of equation set. These extended schemes are
next studied in the context of two different sequential solution strategies, called the
phase-sequential and the equation-sequential solution methods, respectively.

The main features of the treatment in this chapter follow closely the IPSA
method [51, 52, 53] and its implementation to the collocated multi-block control
volume solver, described by Karema & Lo [34]. The two distinctive features of this
method are related to the pressure correction step. The first neglects the contribu-
tion of the volumetric changes to the pressure, i.e., the phasic volume fractions are
held constant during this step. The second feature relates to the use of the shared
pressure concept in performing the pressure correction. While only one pressure is
defined, it is adjusted in a way which fulfils the total mass balance on element basis
at every outer iteration. Though allowing simple pressure correction algorithm and
control over the fulfilment of global mass conservatlon the IPSA type algorithms
become inefficient when the pressure like contnbutﬂ@ps grow in importance or
when they become strongly dependent on the phasic volume fractions.

In the subsequent treatment, these two distinctive features are partly abandoned.
For the fluid phase and for the incompressible treatment of the dispersed phases,
the first feature is still retained, but in the compressible treatment of the dispersed
phases, the contributions of the volume fractions on the pressure are not neglected.
Because the balance equations (62) involve multiple pressures, the second feature
can not be applied, and the pressure corrections are then based on the phasic mass
balances. In this context, it is important to notice that the naming convention for
the treatments of the dispersed phases originates from the analogous treatment of
single phase flows. Thus, the compressible treatment here implies that the material
densities are independent of pressure but the volume fractions are not.

There are two solution methods referred in this chapter, i.ephthge-sequen-
tial and theequation-sequentiadolution methods, which represent two alternative
approaches to construct a sequential CVM solver. Two versions of the extended
pressure correction scheme are explained, Fluid Pressure in Source term (FPS) and
Equivalent Approximation of Pressures (EAP). Both of these pressure correction
schemes can be applied in either of the solution methods. However, as the FPS is
naturally suited to the phase-sequential solution method and the EAP to the equa-
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tion-sequential solution method, they are discussed in connection with these solu-
tion methods.

4.1 PHASE-SEQUENTIAL SOLUTION METHOD AND FPS

The key feature of the phase-sequential solution method is found from the order
of balance equations solved. As seen from Figure 5, the solution proceeds domi-
nantly from phase to phase. This approach represents a natural extension of general
solvers originally designed for single phase flows. The major disadvantage of this
simple structure lies in the difficulty to implement efficient inter-phase coupling
algorithms, e.g., such as the PEA, the SINCE and the IPSA-C [34].

4.1.1 Treatment of fluid phase

The treatment starts from the discretized phasic momentum balance (62) written
for the fluid phase

P
k _ k _ i R
3 Uf‘P = Zaufk Uf‘c sf‘PAk‘P ; +suk,where (72)
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In the spirit of the pressure correction algorithm, the term associated with the mod-
ified pressure of fluid®’ has been classified as part of the sourcesferm . This is
justified by considering the importance of this term to be small compared to the
actual pressure gradient term in normal conditions. With this assumption, the treat-
ment resembles the customary IPSA method.

As shown in Appendix C, the connection between the fluid pressure corrections,
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Figure 5. Computational flow chart of phase-sequential solution method.

which obey the mass balance of fluid (61), and the phasic Cartesian velocity com-
ponents can be obtained on the basis of equation (72). The result can be written in

a compact form as
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The corresponding corrections to the phasic normal flux velocity components
are then found directly from equation (75) by utilizing the associated definition

35U, = ALUK. (78)

This results in the following relation between the fluid pressure corrections and the
phasic normal flux velocity components of fluid
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The corrections to the phasic normal flux velocity components produce also
new estimates for the phasic convection coefficients of the fluid (50). These can be
expressed as

o . . ~ i ~
Cf" = G +08C = gp; U; +p OUs . (81)

By inserting equation (81) to the mass balance of the fluid (61) the following bal-
ance equation for the corrections is obtained
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The substitution of the relation (81) to the mass balance (82) results in the balance
equation for the corrections of the phasic normal flux velocity components of fluid

S

~1 ~1 ~2 ~2
Ef‘upf‘uéuf U_Ef‘dpf‘déuf d+£f‘npf‘n6Uf n_sf‘spf‘séuf

(84)

+R,. =0 .

~3 ~3
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In the equation (84) the corrections of the phasic normal flux velocity compo-
nents are introduced on the cell faces necessitating the interpolation of these values
from the cell centres where they are originally determined, as seen from equation
(79). The adjugate Jacobian matAg'g is naturally defined on the cell face but the
coefficient hy must be interpolated. If the pressure correction gradients on the cell
faces are approximated with central differences on the computational space, equa-
tion (79) can be substituted to the fluid mass balance (84) to give corrections of the
fluid pressure fulfilling continuity

_ D
apf‘PéFHP = ZCan‘CBFHC+SPf—RW where (85)
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The termsa'fD in equation (85) denotes the cross-derivatives of the fluid pressure
corrections treated according to the deferred correction approach. With the formal
discretization notion it can be written as
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In equation (88)*6F} denotes the value of pressure correction from the previous
iteration.

4.1.2 Treatment of dispersed phases in FPS

In the phase-sequential solution scheme, the pressure correction of the fluid,
and consequently the updated fluid pressure, is solved before the momentum equa-
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tions of the dispersed phases are entered. By following the FPS treatment, the fluid
pressure gradient term in the momentum equations of the dispersed phases is con-
sidered as a known source term. Thus, the momentum equations can be expressed
as

k‘ = a Uk‘ —Ai‘ a—P‘;l +g°, , where (89)
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In equation (91) the fluid pressure gradient term locater bar has been denoted with
an asterisk superscript in order to emphasize that the fluid pressure is an updated
value fulfilling the mass balance of the fluid phase (61). In addition, the modified
pressure of the dispersed phase, defined in the equation (31), has been replaced
with an apparent pressure

P* = ¢ P°. (92)

By proceeding as with the fluid phase in section 4.1.1, the details of which are
given in Appendix C, the corrections to the phasic Cartesian velocity components
of the dispersed phase can be expressed in the form
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Again, by utilizing the associated definition (78), the corresponding corrections
to the phasic normal flux velocity components can be written as

a
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alp — alp aEJ ,
P
[ ]
I:Iij‘ Al gl = ° Ak‘PAk‘P K 97)
alp — k‘P GK‘P - kzl VP G‘P-

4.1.2.1 Incompressible model for dispersed phases

As the correction equations of the phasic Cartesian and normal flux velocities,
(93) and (96), closely resemble to the corresponding equations of the fluid phase,
(75) and (79), a fully analogous treatment for the dispersed phases apply. With the
help of the dispersed phase mass balance and the correction equations (93) and
(96), the pressure correction equation for the dispersed phases can be written as

a _ a D
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and the ternﬁpf is used to denote the cross-derivatives of the phasic apparent pres-
sure corrections, treated as for the fluid phase, with the deferred correction
approach

44



d'op2 o op2 0°5p2 FR -l
D 12 a 13 a 21 o 23 [0
= | Ef——+ E + | E +E
Spa { P ac P 14 } { P oF P 14 }
d s (101)
a 5P2 a'5P21°
31 [0 32 [0
+|E +E , where
{ ZFT: Iy } w
w
ij _ ~
EPG - Ea‘cpa‘CHor ¢’ (102)

4.1.2.2 Compressible model for dispersed phases

As stated at the beginning of chapter 4, the naming convention for the treat-
ments of the dispersed phases originates from the analogous treatment found in
single phase flows. Thus, the compressible treatment here implies that the material
densities are independent on pressure but the volume fractions are not. This
approach is desirable in conditions where the modified pressure depends strongly
on the phasic volume fractions, in which case the IPSA-like treatment, called as the
incompressible model here, would lead to poor performance of the solution algo-
rithm.

Consequently, by treating the dispersed phase as a pseudo-compressible fluid, in
which thesq(Paa) dependency is handled like fa€PR;) dependency in compress-
ible single phase flows, the corrections to the phasic normal flux velocity compo-
nents (96), satisfying the phasic continuity equation, produce the following
changes to the phasic convection coefficients (50)
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In equation (103), the second order term including changes to both variables has
been neglected.

Substitution of equation (103) to the mass balance of the dispersed phase (61)
results in the following balance equation
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whereR Is the phasic mass residual defined in equation (100). When writing
equation (104), the time dependent term has been divided into two parts consisting
of the time dependent pseudo-compressible term and the conventional time
dependent term as
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By denoting theea(Paa) dependency@s , the correction of the phasic volume
fractionde, can be expressed as
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Substitution of the definition (106) and the corrections of the phasic normal flux
velocity components (96) to the phasic mass balance (104) changes it into the form
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If the coefficient terms of the apparent pressure corrections and their gradients are
understood as the pseudo convection and diffusion coefficients,
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respectively, the apparent pressure correction equation (107) resembles closely the
form of the momentum equation (36) or, more accurately, the form of a generalized
balance equation (B12) for single phase flow [14, 34]. Thus, with the definitions
(108), the apparent pressure correction equation (107) can be written as
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In addition, the resulting phasic apparent pressure correction equation (109) is
fully analogous with the pressure correction scheme used for high-speed compress-
ible gas flows [14].

4.2 EQUATION-SEQUENTIAL SOLUTION METHOD AND EAP

A natural base for a solver originally designed for multi-phase problems is set
by the equation-sequential method. As shown on Figure 6, the main loop of the
solution proceeds in this case from one balance equation type to an other. For each
of these balance equations there is an inner loop consisting of sequential treatment
of the phases. This structure allows easy implementation of many inter-phase cou-
pling algorithms [34].

With the assumptions mentioned in section 4.1.1, the treatment of the fluid pres-
sure correction equation for the equation-sequential solution method is equivalent
with the treatment of the phase-sequential solution method derived there. Conse-
quently, only the treatment of dispersed phases is shown in this section.

4.2.1 Treatment of dispersed phases in EAP

By comparing Figures 5 and 6 it is clear that in both of the solution methods,
because of the sequential structure, the fluid pressure correction equation is solved
before the pressure corrections of the dispersed phases. Despite of being a known
term in the momentum balances of the dispersed phases, the fluid pressure gradient
term in the EAP approach is treated equivalently with the apparent pressure gradi-
ent term. Thus, the dispersed phase momentum equation in the EAP approach is
written as
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Figure 6. Computational flow chart of equation-sequential solution method.

where

Np Np

— : T

ank b - Zauch-i- Z mGB‘PVP + Z BGB‘PVP - JFG PVP
c B=1 p=1 (111)
Ea‘ por‘ VP
p Ylp
+T and
Alalay ™ AZalau™n
ﬁljk:seffmk_or._l_srleffmk_a‘
o ala |J| aEJ g ot |J| aEJ
s
3 a1 e Np
A_A;0U
eff " m™kY ~a . k
*| el T g +£G\ppa\ngP+BZ ol U |V (112)
w =1
k [l
- k T D %O“Pp“‘PU“‘pVPD
+ Z BGB‘PUB‘PVP + a PVP +Squ+ At
B=1

48



The treatment proceeds now in a fully analogous manner with the treatment of
the fluid phase given in section 4.1.1 and in Appendix C, including the definitions
of the new estimates (C2) and the approximation of values at the neighbouring
cells (C3). As a result of this treatment, the corrections of the phasic Cartesian
velocity components of the dispersed phase are related to the corrections of the
fluid pressure and apparent pressure of the dispersed phase as

K (8 5P° 05R
38Uy | = = Hy | G—2| +¢ ol (113)
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whereH;k‘P anmg‘P are coefficients defined by equations (94) and (95), respec-

tively. As previously, the corrections of the phasic normal flux velocity compo-
nents of the dispersed phase are obtained by utilizing the associated definition (78).
This results in
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4.2.1.1 Incompressible model for dispersed phases

As for the incompressible treatment of the dispersed phases with the FPS, the
derivation of the apparent pressure correction equations with the EAP resembles
closely to the derivation of the fluid pressure correction equations. By substituting
the new estimates of the phasic convection coefficients (81) of the dispersed phase
to the corresponding mass balance (61), and by utilizing equation (114), the appar-
ent pressure correction equation of the EAP approach can be written as
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where the coefficienta, ‘ are given by equations {9@). stands for
«p

the dispersed phase mass residual (100), as before. Similar to the treatment of the
fluid phase, the central difference approximation on the computational space has

been assumed for the pressure correction gradients of both phases while deriving
the apparent pressure correction equation (115). This equation can be rearranged
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into the form

ap
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where the source ter&? , related to the cross-derivatives of the apparent pressure
correction, is given by equation (101).
The apparent pressure correction equation (116) reverts to the corresponding

equation of the FPS approach with two additional source téngg, S%nd ,
originating from the fluid pressure gradient. These source terms are specified as

85qu = qu‘cap‘ (6R‘C_6R(‘P) and (117)
c, C e

d’dP. a’dp 1 d’dP. a’d5p1"

D 12 f 13 f 21 f 23 f
= | gB —=—+¢ —— | t|&E =t —
{“aac “aaz} {“aaz “GGZ}

d s (118)

O*BP O*BP €

31 f 32 f

+|e B ——+¢ B —m—m .
{ R 0¢ R 0cC }W

The origin of the source terﬁi;g)f is again in the cross-derivatives of the fluid pres-
sure corrections. There the coefﬁcieﬁﬁ is the same that is found from the defi-

nition of S,Ez in the FPS approach (101), and which is defined by equation (102).
If the grid in the physical space is nearly orthogonal, in the computational
space, the cross-derivatives included in the source téﬁzns S%nd are small

compared to the components normal of the cell faces. Adaptation of this simplifi-
cation, originally suggested by Rhie & Chow [49], the only difference between the

FPS and the EAP approaches is in the source $gsm

4.2.1.2 Compressible model for dispersed phases

By following the same naming convention as with the FPS, the term compressi-
bility here means that tr%(an) dependency of the dispersed phases is handled

similar to thep;(R) dependency in compressible single phase flows. Accordingly,

the derivation of the apparent pressure correction equation is fully analogous with
the treatment given for the compressible model with FPS. The only exception is
that with the EAP model the corrections to the phasic normal flux velocity compo-
nents are given by equation (114) instead of equation (96).

On these basis, the following apparent pressure correction equation, corre-
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sponding to equation (107), is obtained
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In equation (119)c, an& are defined by equations (106) and (100), respec-
tively. By utilizing the definitions of the phasic pseudo convection and diffusion
coefficients (108), equation (119) can be expanded to the form
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Again, by applying the central difference approximation on the computational
space to the gradients of the fluid pressure, the apparent pressure correction equa-
tion (120) can be transformed into the form

al [
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whereS;p andspa are the source terms related to the gradients of the fluid pres-
sure correctlons given by equations (117) and (118), respectively.
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The same remarks about the differences between the FPS and the EAP
approaches as with the incompressible model are also valid for the compressible
model. Clearly, under the approximation of Rhie & Chow [49] for the nearly
orthogonal grid, the only difference is found to be the sourcefﬁg,sqrp
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5 MOMENTUM INTERPOLATION

The principal difficulty, related to the otherwise beneficial collocated arrange-
ment of computational elements, is the need to interpolate the phasic Cartesian
velocity components from cell centres to cell faces, in order to calculate the phasic
convection coefficients (50). A simple weighted linear interpolation scheme [34]
would lead to the chequer-board oscillations in the phasic pressure field, a conse-
quence of the discretization approximation used for the pressure gradients. To
avoid this decoupling of adjacent cells, the Rhie-Chow momentum interpolation
scheme [49] imitating the staggered grid solution (Figure 7) is used.

5.1 EXTENDED MOMENTUM INTERPOLATION SCHEME

The Rhie-Chow momentum interpolation scheme has originally been intro-
duced for single phase flow, but a straightforward application to the multi-fluid
model equations can be achieved based on the shared pressure concept, described
In section 2.2. To achieve the same level of accuracy for both pressure gradient
terms in the momentum equations of the dispersed phases, the Rhie-Chow interpo-
lation scheme has to be extended by applying an analogous fourth order smoothing
scheme for the apparent pressure as for the hydrodynamic pressure. Thus, the
momentum balance of the dispersed phase is written in the form

P . 0P
U |+ Nk =] + €| Nak| = | = Mgl . where (122)
P Paz b P Paz b P
L L
M|, = DZa K qu‘ +s§k[}/aUk and (123)
P |:|C a U, c C o [] a |p
Al
N i‘ _ X (124)
orkP - aUk :
“ |p

The phasic Cartesian velocity components at the cell faces, i.e., the pseudo stag-
gered grid velocities, are found by interpolation of equation (122) from the adja-
cent cell centres to the staggered grid location as illustrated in Figure 7.

In the Rhie-Chow interpolation scheme, weighted linear interpolation is applied
to the source-like ternM, . This allows the left side of equation (122) to be
approximated with the same scheme. Accordingly, the momentum balance for the
iImaginary staggered cell can be expressed as
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Figure 7. Staggered cell locations for x-component (DU) velocity for a regula
non-uniform mesh. Grey circles denote staggered cell centres.

where the notatiod n }z
the cell centre$d = P and C
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stands for the weighted linear interpolation between
. If itis assumed that
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equation (125) can be simplified to the form
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As the pressure gradients in the pressure correction equation are calculated by cen-
tral differences, it is essential for the conservation of mass that the interpolations of
cell centre pressure gradients to the cell faces in equation (129) are calculated with
the weight factor equal to one half. In contrast, the pressure gradients at the cell
faces are approximated, as in the staggered solution method, with the difference
between the pressures on cell centres of adjacent control volumes.

The required phasic normal flux velocity components of the dispersed phases
are found with the help of the associated definition. This results in the following
expression
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As seen from the interpolation equation (130), only the diagonal components of the
pressure gradient terms are retained. This simplification is valid because the cross-
derivative terms cancel out when all the pressure gradients are calculated with the
central difference approximation.

In case of rapidly changing source terms, e.g., the buoyancy force on different
sides of a sharp interface, the weighted linear interpolation applied to source terms
while carrying out the Rhie-Chow momentum interpolation may not be accurate
enough resulting in mass imbalance in cells adjacent to the interface. This diffi-
culty can be relieved with a so-calledprovedRhie-Chow momentum interpola-
tion method described in Appendix D. TleatendedRhie-Chow momentum
interpolation derived above can be used instead of or in combination with the
improvedRhie-Chow interpolation.
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6 CONCLUSIONS

This thesis work concentrated on the problems encountered while solving dis-
persed multi-phase problems numerically with a collocated Control Volume
Method (CVM). The essential aspects were considered to be the treatment and effi-
ciency of inter-phase coupling terms in sequential solution, exceeding the bounds
of validity of the shared pressure concept in cases of high dispersed phase pressure
and the conservation of mass in momentum interpolation for rapidly changing
source terms. These aspects were studied only a special application in mind, i.e., a
fluidized gas-particle bed or a liquid-particle bed.

It would be intuitively expected that to have a sequential iterative solver con-
verge, the inter-phase coupling terms have to be treated fully implicitly when the
interfacial transfer coefficient becomes large. This has also been confirmed by
Oliveira and Issa [42]. The requirement of implicit treatment is connected to the
very short characteristic times of the interfacial transfer in these conditions and to
the nature of the iterative solution method itself. In typical fluidized bed condi-
tions, represented here by air-glass particle and water-glass particle flows, the char-
acteristic times of interfacial momentum transport by hydrodynamic phenomena in
most of the bed sections are not as small. However, there always exist conditions,
e.g., start-up of the bed, and locations in the bed, e.g., heat transfer surfaces, pipe
bundles and corners, where the inter-phase coupling between dispersed phases is
tight and the dispersed phase pressure is significant. Thus, the benefits of treating
inter-phase coupling terms in a partially implicit, semi-implicit or fully implicit
way and of including inter-phase coupling terms into the pressure correction
scheme were studied in these conditions.

In both flow configurations A and B the semi-implicit SINCE method resulted
in about 5% and the fully implicit PEA method about 35% higher convergence rate
of phasic momentum equations, respectively. The most important reason for the
improvement can be found in the correctness of the few first approximates when a
new time step is entered. The effect of including inter-phase coupling terms into
the pressure correction scheme, the essence of the IPSA-C, is limited to the first
few time steps, and there is practically no improvement of the overall convergence
rate. This can be attributed to the generally poor performance of the pressure cor-
rection step.

When the time step of simulation is kept well below the characteristic time scale
of interfacial transfer processes, the partially implicit treatment of coupling terms
in combination with the IPSA solution algorithm provides the most efficient
approach. This result is totally based on the smaller number of computational oper-
ations required by these simpler schemes. When a longer time step is required or
there is a region in the solution domain involved with very small characteristic time
scales of interfacial coupling, the semi-implicit or fully implicit treatment of cou-
pling terms becomes necessary. Then the PEA method provides the best efficiency
for two-phase flows, providing a considerably better convergence with momentum
equations but being only slightly more laborious computationally than the partially
implicit treatment. In multi-phase flows the SINCE method provides the only
option for the partially implicit treatment. Its convergence rate with momentum
equations is only slightly better than with the partially implicit method though it is
computationally more involved. However, a slight improvement of efficiency can
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be obtained by calculating new source terms at every inner iteration. The IPSA-C
method is arguably the preferred solution method for conditions where the interfa-
cial coupling is tighter than in the flow configurations studied, e.g., in bubbly air-
water flows, or if the pressure correction algorithm can be enhanced to give better
approximations in general.

To overcome the poor performance of the pressure correction step, the concept
of multi-pressure algorithms was introduced in chapter 4. Their usefulness should
be obvious but no test of their real functionality has been included. Especially
tempting are the compressible versions of the FPS and the EAP, as despite of con-
sidering the volume fraction also as a variable during the pressure correction step
they still reduce to the same treatment as in compressible single-phase flows.

A very crucial operation for the success of a collocated CVM utilizing iterative
solution is the conservation of mass in momentum interpolation, a part of the pres-
sure-correction step. The improved Rhie-Chow interpolation scheme presented in
Appendix D is known to be efficient in reducing the error in interpolation (CFDS-
FLOWR3D). If the shared pressure concept is abandoned and a proper treatment is
given for the dispersed phase pressure both the customary and the improved Rhie-
Chow interpolation method must be expanded. Thus an approach, referred to as the
extended Rhie-Chow interpolation, applicable to both momentum interpolation
schemes is presented.

Thus far the majority of the studies concerning numerical solution of multi-fluid
equations have concentrated on the special difficulties of these flows, i.e., the inter-
phase couplings, moving interfaces, strong non-linearity and the large number of
dependent variables. However, the development of constitutive models for dis-
persed multi-phase flows has revealed that in contrary to single phase flows the pri-
mary transfer mechanism of information does not operate only from large to small
flow scales but also in opposite direction. This is especially true in the case of flu-
idized beds. The consequence of the opposite transfer of information is that the
small scale phenomena are important in creation of the macro-scale structures and,
accordingly, they should be modelled and solved to adequate accuracy. Therefore,
reasonably accurate and predictive simulations will be computationally very inten-
sive and all progress in solution efficiency will be highly useful. Approaches such
as special multi-grid solution cycles, being efficient to transport information over
the spectrum of flow scales, should be utilized.

Another way to improve the transfer of information between different scales of
flow can be achieved by solving separate conservation equations for a selected
ranges of scales. In this approach, an additional difficulty in constituting the con-
servation equations as well as describing there mutual interactions will be faced.
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APPENDIX A

Interfacial Mean Pressure modéMP

Equation (5) together with the definitions (14) and (15) produce the following
balance equation of momentum

a _ o~ _ o~ ~ _ _
m(sqpquq)+D- (saanaD Uq) = Oe (g Ty) +€,P49
(A1)

#M Uy +Ry Oeg +F)+Fy

By extracting the pressure contribution from the first term on the right side of equa-
tion (Al), on the basis of the definition (11), and combining it with the fourth term
results in

~O(g,P,)+P D, = —,0P, +(P —P,)s,. (A2)

a a

For problems involved with the surface tension the relation between the interfacial
mean pressures can be written as

Pdl—PfI = OK, (A3)

where o is the surface tension coefficient and is the average mean curvature.
Further discussion on pressure approximations can be found, e.g., in [1]. Thus, by
taking into account the definitions of stresses (12) and (13), for particulate flows,
the momentum equations of fluid and dispersed phases can be written as given in
(19) and (20).

Direct Interfacial Force modeDIF

By combining equations (14) and (18) with equation (5) results in the momen-
tum equations for the fluid and dispersed phases of the form

SiER ) + 0 (grp U O W) = O (&T) +&p9
Ny (A4)
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By utilizing the definition (12) the viscous stress parts of the first term on the right
side and of the interfacial momentum source in equation (A4) can be expanded and
then subsequently simplified as

B=1
Ng
g0 T, +T, Dg;— Z (O (sBTfV) —TfVDsB)
B=1

(A6)
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N,
gde T, — y (@ (&6T¢)) -

With the result (A6) and with the definitions (12) and (13) the momentum balances
(A4) and (A5) can be written into the form of (21) and (22).

1. Drew, D. A. Mathematical modeling of two-phase flowan. Rev. Fluid
Mech, 1983. Vol. 15, pp. 261-291.
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APPENDIX B

The non-singular coordinate transformation mapping from a right-handed Car-
tesian frame in the physical spax'e: (XY 2 to a right-handed curvilinear
frame in the computational spaéé = (¢ 0 is determined by specifying the
Jacobian matrix of this transformation

oo

J = ml (B1)

J

Additional useful mathematical concepts in this context are the invcierse Jacobian
matrix JJ-' , the Jacobian determinadt  and the adjugate Jacobian Aatrix

3 =98 (B2)
ox’

9] = de(d) and (B3)

A= 133 (B4)

Every curvilinear framéi(x J') can be associated with two distinct frames of basis

vectors of which the first one is tangential to the coordinate clgyes and the
other one is normal to the coordinate surfagds . Their Cartesian components are
given by
_ 1k k _ i
eij = Ji and ej = J . (BS)

The area vectors of the surfaces of an elementary grid cell (FigureAf()a)) ,
l.e., the vectors pointing to the outward normal direction of a cell face with magni-
tude equal to the area of the face, are obtained as

(1) _ (2 _ 3 _
AV = €2) X €3)> A = €(3) X &) and A = €1) X €2 - (B6)

With the help of these area vectors the volume of an elementary grid,cell IS
then related to the Jacobian determinant as

(1 - . i i_ i
Ao ) = &) C € X €305 = Vpd; = [J[3;. (B7)

_Because the two frames of basis vectors defined by (B5) are dual to each other
(i) _ sl . . )
e’ g = 9;, equation (B7) can be written in the form

AD . ej = 1l e &) - (B8)
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In this way the contravariant frame of basis veces is related to the area vec-
tors A", which in turn are dependent on the covariant frame of basis vegfors

_ 1 ijk y
i _ AQ 3% Ch) €

e B9
3 3 (B9)
Thus the Carte5|an components of area ve@t& are determined by the adjugate
Jacobian matrid,  as
A =133 = A (B10)

As evident in the subsequent treatment, the necessary information to perform
the coordinate transformation includes only volumes and Cartesian components of
the area vectors of grid cells in the physical space. This information is completed
by calculating the Jacobian determinait and the adjugate Jacobian mﬁatrix
of the transformation.

Since separate balance equations for velocity components in the physical space
are used, these components are treated in essence like any other scalar dependent
variable® . Thus it is only necessary to transform the prototype equation (34) in
order to describe the method. Using tensorial notation, equation (34) in the physi-
cal space coordinates can be written as

06 0.0 )+ 0 b Ul -, 2ar
—(&,P - — —
at arFa "o aXIDGDG a "o o aXIDD
(B11)
Np Np
: . |
B =1 B =1
Equation (B11) can be simply rewritten as
0 0, i
aitaPa®a)* (lo) = S (812)

by defining the total phasic flukqi,q and the total phasic soﬂgce to be

Il = ¢ Ep oo —r. 2%H 4 (B13)
= - - an
[O% GD a~a o a a)(, B
Np Np
. . |
S = Y (Mpa® — Map®y) + Y B (=) +S,. (B14)
=1 B=1
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On the basis of the Gauss law, equation (B12) is equivalent to the conservation law
Iﬁqqubq dv, + II% * ndA;, = ISOTdVP , (B15)
A A, v,

where\}, is the volume of any physical space domainAand its surface.
According to tensor calculus, the covariant divergence of a vector is defined as

OeV = ii(|J|V'i), (B16)

NP

in which V is a generic vector and' its contravariant component. Instead of
using the contravariant component of a vector, it is more beneficial to utilize the
normal flux componenY' defined as

Vi= v = ivi= AvIi= AD. (B17)

With definitions (B16) and (B17), and on the basis of the information in equa-
tion (B15), the balance equation (B12) can be transformed to the computational
space coordinates

0 0 7
t(IEaPa®) il lo,) = NIS;, (B18)

in which Iq',a is the total normal phasic flux

Hoo i = e, tp U @ T gija¢“5
@, D, GD a~o "a a aEJD
(B19)
.0/ —[JJ 19% 5
=& — g —0.
GD a~-a "o a aEJD
For mass balances and fluxes the dependent vargble should be set equal to
one. y
In equation (B19)" is the inverse metric tensor
y o M, a)  AlA
gl = e gl = A 2A — mzm, (B20)
J] J]
which is used to raise the index of the covariant vegtdy /azi LAdyi”ud is the
normal flux velocity component
Uy = Ui = AV y,. (B21)
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The prototype conservation equation in the computational space (B18) has in
effect the same structure as the one in the physical space, equation (B12), with the
exception that the diffusivity,  has been replaced by the diffusivity tensor

rh=1g'r, = (B22)

The multiplier G" in equation (B22) containing only geometric information is
referred to as the geometric diffusion coefficient.

Following the structure of the prototype equation (B11), the macroscopic
momentum balance (32) is expressed in a tensorial form as

k
d k, o0 O 4 0U,
a—t(sqquq )+a_xi%£qg)auq Uy —Na aXi %

= —g,— +—E$qr|q%%+ ik(sql_?]e) +€,P,0 (B23)
O ox O ox
Np Np
+y (Mpa Uy — MapUy) + s Bap(Up — Uy) +Fy -
p=1 p=1
Accordingly, the first three terms on the right-hand side of equation (B23) are also

treated as source terms. Utilizing the Gauss law on a volume of the physical space
\, , the pressure gradient term can be put into the following form

—[e, 0P, » ndA, = —[¢e, 0P, dV, . (B24)
a a P a a P
A, A

Associating the volumé/,  with a differential control volume, the coordinate
transformation of the pressure gradient term can be given as

oP, _ 0P, 0P,
—|J|EGF = —|J|€qua—Ei = _Equa_Ei . (825)
X

The chain rule can be used to relate the derivatives in the physical space to the
derivatives in the computational space

d (B26)

This relation can be utilized to transform the second term on the right-hand side of
equation (B23) as follows
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APPENDIX C

In order to obtain the pressure correction equation for the fluid phase in the
frame of the phase-sequential solution method, the momentum equation of the
fluid is written in the form

Ufﬁ sf‘PAk‘ + s{:k . (C1)

A

PaE

Ufk‘p - Zank
P c,C

Such corrections to the fluid pressue are then introduced which produce new
. . .. K . .

estimates of the phasic velocitiglg obeying the fluid mass balance. These new

estimates are defined as a sum of the current value and the correction as

ul = uf+auk

"= P+3R. (C2)

In order to limit the interdependency of the cells in equation (C1), the velocity
corrections to the neighbours of the cell under consideration are discarded.
Accordingly, the velocities in the neighbouring cells are approximated as

k*

U, = o W B - W8 (C3)

f

where the weight factdr\{)C = 0 for the SIMPLE algorithm a,f%q =1 for the
SIMPLEC algorithm [1]. Substitution of equations (C2) and (C3) to equation (C1)
results in

K* _ K K* il
A pr P ZankCBJf‘ch Wpcan‘P_UfﬁpDD
c,C (C4)
i f 053 R
~ A Poel | Ef‘P kP 5 TR
€ |p 3

By expanding the terms on the right side, equation (C4) can be arranged into the
form

- Uk k i OR
Bﬂ"fk P_Wpczaufk CEUf ‘P - Zank CUf ‘c_ Ef‘PAk‘Pa_Ei

i (C5)

‘ _Ef‘P "‘

Paz

The first three terms on the right side equal to the corresponding side of equation
(C1) calculated with the current values of the fluid mean velocity. Substitution of

C1



that equation into equation (C5) gives

O O e K K
], e | T = A Ul e 2| U,
c, C - c, C (C6)
~ g | —!
i
P Paz b

With the help of the definition (C2) equation (C6) can be solved for the unknown
corrections to the phasic Cartesian velocity components of the fluid phase

k i 90K
= - _ , wnhere
38U Hiy h (C7)
P Paz'
P
A
; f k K
Ha, = Pvp ~hy, and (C8)
V
e, = : - (C9)
%fk . - Wpcz ank ]
cC

Equation (C7) provides now the desired relation between the fluid pressure correc-
tions and the phasic Cartesian velocity components of the fluid.

1. Van Doormal, J. P. and Raithby, G. D. Enhancements of the SIMPLE method
for predicting incompressible fluid flow&Numerical Heat Transferl984.
\ol. 7, pp. 147-163.
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APPENDIX D

The essential idea in the improved Rhie-Chow momentum interpolation scheme
Is that after proper treatment the source term is immersed in the pressure gradient
term, partly or completely. The advantage of this treatment is the smoother behav-
iour of this combined term as the source term alone. Although both the pressure
gradient term and the source term are multiplied by the volume fraction, they are
kept in this form as the volume fraction diminishes the strong variations of source
term.

At first, the part of the source term having rapid changes in it's value is sepa-
rated from the rest

R

SUG - SUR(;Imp_l_SUR;Base’ (D1)

R, Base

I ,
whereSJ P andg)
part of a customary source term. As in the discretized balance equation the source
termis in a linearized form, these terms include only the zero order terms whereas

the first order terms are combined to the current point coefﬁqﬁr}t . Next, all

are the part for improved treatment and the remaining

the extracted source terms, defined at cell centres, are interpolated to cell faces by a
weighted linear interpolation with a weight factor of one half. The covariant com-
ponents of these interpolated source terms are then calculated

"R, Imp |:| R |mp |j3 A
= o« = . D2
L le %ﬁJ ‘H 5: Al (D2)
In equation (D2) the notatiof ly }(F; stands for the weighted linear interpolation
between the cell centrés = P and C  aAd|A| IS a unit area vector of the cell

face between the current and neighbour cells. To obey the conservation laws these
cell face covariant components are used to define new cell centre source terms with
the help of the generalized Gauss law

—-R, Imp‘ ‘ AR Imp|

: (D3)

in which W, is the weight factor from cells faceo current cell centr®. In the
improved procedure the cell face source terms (D2) are combined to shared pres-
sure gradients at cell faces and the cell centre source terms (D3) are immersed to
cell centre pressure gradients. The momentum balance is now written in the form

- 'mp‘ D M ‘ where (D4)

Ak‘

Paz
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U A (05)

0
MO“P = Ezcauak
c,

P

By following the treatment in section 5.1 the momentum balance (D4) is interpo-
lated for the imaginary staggered cell resulting to

K 1 O it OR| rimp O
U, | + — | -
a ‘c aUk EEG‘C K caz' %ak CE
o e c
E 0 oR. Dg (bo)
k 1 [ f -R, Imp
= + — | -
EUO‘ ‘H ax EEG‘H k‘H 98! L HEE
O “IH H 0.

By defining the coefficient of pressure gradient term as for the extended Rhie-
Chow method, i.e.Nm'( by the equation (124), and with assumptions (127) and
(128) the improved Rhie-Chow momentum interpolation scheme can be stated as

q _ O O p0 i CCOWR| P oR| O
Ug| = OUq|, O +{ea| } Na, 0005 O-=| 0
c 0 M@ 0 [y COog' |, O og'| D on
O] UDEDR,Imp f ~R, Imp| U
—07a,| O UK« ‘ 0O-g« |0
U a HDC[[D ° H[J: o cd
A
Nork‘H = aUk : (D8)
¢ 1H

As before, the interpolation scheme for phasic normal flux velocity components is
obtained by applying the definition (B21)

P p
~ O~i| O pO~ii| O UWOR| ¥ or|O
o= 0, O +lea) 1 G\ngm—i 0-— 0
O Lt O g Uo¢ H DC 0& .
5 (D9)
L U1 R 1mp P ~R Imp| U
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) A Al
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