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Abstract
This thesis work concentrates on the area of dispersed multi-phase flows
and, especially, to the problems encountered while solving their
governing equations numerically with a collocated Control Volume
Method (CVM). To allow flexible description of geometry all treatment is
expressed in a form suitable for local Body Fitted Coordinates (BFC) in a
multi-block structure. All work is related to conditions found in a
simplified fluidized bed reactor. The problems covered are the treatment
and efficiency of inter-phase coupling terms in sequential solution, the
exceeding of the bounds of validity of the shared pressure concept in
cases of high dispersed phase pressure and the conservation of mass in
momentum interpolation for rapidly changing source terms.
The efficiency of different inter-phase coupling algorithms is studied in
typical fluidized bed conditions, where the coupling of momentum
equations is moderate in most sections of the bed and where several
alternatives of different complexity exist. The interphase coupling
algorithms studied are the partially implicit treatment, the Partial
Elimination Algorithm (PEA) and the SImultaneous solution of Non-
linearly Coupled Equations (SINCE). In addition to these special
treatments of linearized coupling terms, the fundamental ideas of the
SINCE are applied also to the SIMPLE(C) type pressure correction
equation in the framework of the Inter- Phase Slip Algorithm (IPSA). The
resulting solution algorithm referred to as the InterPhase Slip Algorithm �
Coupled (IPSA�C) then incorporates interface couplings also into the
mass balancing shared pressure correction step of the solution.
It is shown that these advanced methods to treat interphase coupling terms
result in a faster convergence of momentum equations despite of the
increased number of computational operations required by the algorithms.
When solving the entire equation set, however, this improved solution
efficiency is mostly lost due to the poorly performing pressure correction
step in which volume fractions are assumed constant and the global mass
balancing is based on shared pressure. Improved pressure correction
algorithms utilizing separate fluid and dispersed phase pressures, the
Fluid Pressure in Source term (FPS) and the Equivalent Approximation of
Pressures (EAP), are then introduced. Further, an expanded Rhie-Chow
momentum interpolation scheme is derived which allows equal treatment
for all pressures. All the computations are carried out in the context of a
collocated multi-block control volume solver CFDS-FLOW3D.
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SYMBOLS

adjugate Jacobian matrix, area vector of cell facem2

cell face area in computational space m2

, cell centre coefficients of discretized equations

interface transfer coefficient of momentum kg/m3s

convection coefficient kg/s

diffusion tensor kgm/s

covariant basis vectors

interfacial force density kg/m2s2

interfacial source of momentum kg/m2s2

total force per unit volume due to interface kg/m2s2

momentum source other than gravity kg/m2s2

total source term (used to collect contributions) kg/m2s2

geometric diffusion tensor m

g gravitational vector m/s2

, pressure correction coefficients

the total normal phasic mass flux kg/s

the total normal phasic momentum flux kgm/s2

Jacobian determinant

interfacial source of mass kg/m3s

source term in extended Rhie-Chow method

interfacial mass transfer from phase  to kg/m3s

number of phases

number of dispersed phases

coefficient in extended Rhie-Chow method

n normal vector of surface

P pressure N/m2

, apparent pressure N/m2

modified and effective pressure N/m2

interfacial mean pressure N/m2

mass residual term kg/s

S source term in discretized equation
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source term from deferred correction

(residual) source term kgm/s

T stress tensor N/m2

collision/contact stress of dispersed phase N/m2

kinetic stress of dispersed phase N/m2

particle-presence stress N/m2

turbulent momentum transfer (Reynolds stresses)N/m2

viscous stresses of fluid N/m2

t time s
U velocity vector m/s

interfacial velocity m/s

cell volume in computational space m3

weight factor for cell face interpolation

arc weight factor for cell centre gradients

weight factor for pressure correction method

phase function
x special coordinate m
x, y, z i, j and k coordinates in physical space m

diffusivity of a scalar property kg/ms

diffusivity tensor of a scalar property kgm/s

volume fraction

material viscosity kg/ms

eddy viscosity kg/ms

average mean curvature of interfaces m

density kg/m3

surface tension coefficient N/m

shear stress N/m2

general dependent variable

, , i, j and k coordinates in computational space m

generic integration operator

scalar product of vectors

vector product

dyadic product

S
D

s
Uα

k
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p
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t
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, difference of operand at specified locations

difference of cell-based averages at respective times

cell-based average at time t

weighted linear interpolation to H between P and C

arc lengths between cell centres H and P m

deviations from mass-weighted phase average

contravariant component of a vector

constant part of a linear model for variable F

first order coefficient of a linear model for variable F

transpose of matrix F

macroscopic ‘effective’ constitutive property

value of dependent variable from previous outer iteration

intermediate value at current iteration

new value at current iteration

subscripts
I interface of phases
f fluid phase
d dispersed phase

, phase indexes

superscripts
– phase average
~ mass-weighted phase average
^ normal flux component

F̂[ ]d
u

F̂
u

F̂
d

–

F[ ]t
t ∆∆t+

F{ }t
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{ }
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Φ*
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1  INTRODUCTION

1.1  PROBLEM CONSIDERED

The field of multi-phase flow problems is a very wide field from stratified flo
to highly dispersed flows such as systems of aerosols. This diverseness quite
requires modelling and solution approaches exploiting the special characteris
each sub-type. This thesis work concentrates on the area of dispersed flow
especially, to the problems encountered while solving them numerically with a
located Control Volume Method (CVM). A requirement set from the beginn
was that all treatment is expressed in a form suitable for flexible descriptio
geometry. Thereby, an approach was selected based on multi-block structur
Body Fitted Coordinates (BFC) at each block. A simplified fluidized bed was s
the special application to concentrate on. Although having this sub-type of m
phase flow problems in mind from the beginning, the selected method to deriv
conservation equations and the numerical method studied are general meth
nature and they are also available to other types of multi-phase flow problems

When considering the multi-fluid equations two properties of them are stri
and typical of multi-phase problems. The first is the large number of depen
variables and the second is the inter-phase transfer of mass, momentum and
between the phases. It is just the latter property that actually makes multi-
problems more difficult to solve than single-phase problems. If the inter-p
transfer is negligible the multi-phase problem reduces almost to solving many
servation equations of the same type than in single-phase flow. Therefore, 
natural to start the work from the study of inter-phase coupling algorithms. The
get application, a fluidized bed, is especially interesting in this aspect as mos
tions of both gas-particle and liquid-particle beds normally operate in condi
where the inter-phase coupling can be stated to be ‘moderate’. However, ther
ally exist at least small spots in the bed area where the coupling is tight. Curr
there is no information available on the required implicitness of inter-phase 
pling algorithms or what benefits in overall solution efficiency could be achie
by a proper selection of them.

Deficiencies related to the customary solution algorithm applied in seque
CVM methods for multi-fluid problems were also expected. A principal sub
here is the mass balancing pressure correction step of the interphase slip alg
(IPSA) in which the volume fraction is held constant and the mass balanci
based on the adjustment of global mass by shared pressure gradient. In flu
beds the average of the normal component stresses of the dispersed phase,
dispersed phase pressure, e.g., in connection of compaction of the bed at s
corners of the bed and at heat transfer surfaces, is strongly dependent on t
ume fraction and, consequently, this dependency should be taken into acco
the pressure correction step. The rising dispersed phase pressure also mea
the performance of a pressure correction algorithm based on shared pressu
cept will be poor if sufficient at all. Simple methods to reduce these problems
Fluid Pressure in Source term (FPS) and the Equivalent Approximation of 
sures (EAP), are therefore presented.

In addition, the selected geometric description for the CVM method, the c
11
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cated local body fitted coordinate (BFC) system with multi-block capabi
requires some interpolation scheme to mimic a staggered grid arrangemen
customary solution for collocated methods is to utilize the Rhie-Chow momen
interpolation scheme. For rapid changes in source terms this interpolation m
fails to conserve mass, a severe deficiency for a CVM method utilizing iter
solution. An improved Rhie-Chow interpolation method is therefore presente
well as an extension to multiple pressures which is applicable both for the R
Chow interpolation method and its improved version.

1.2  BACKGROUND

Numerous different approaches to formulate conservation equations for
persed multi-phase flows exist. Only the most recent method in the field, th
tice-Boltzmann method ([2], [3]), avoids this complication by having 
foundation in the description at the molecular level and in the mutual interactio
these entities. In other approaches, some kind of averaging is required. 
([47], [48]) applied kinetic theory in the phase space while most of the others 
utilized regular space-time coordinates. The first derivation with volume avera
was presented by Drew [19]. Another corner stone in the field, introducing 
averaging, is the more general publication of Ishii [31]. After first approac
([11], [12]), the application of ensemble averaging has gained wide popul
([20], [29], [30], [33]). This is in part a consequence of applying the kinetic the
of dense gases [15] to derive the constitutive equations of the dispersed p
([17], [6]). Especially in the context of fluidized beds, the special volume ave
ing applied by Anderson & Jackson [4] has functioned as a basis for severa
models, e.g, [45, 50]. The equations in this work are most closely related t
mathematically formal treatment based on generalized functions by Drew [20

Although the conservation equations can be derived by integrating the 
conservation equations of mass, momentum and energy together with their a
ated interface conservation equations, i.e., jump conditions, over represen
dimensions of either space, time or realizations of the system, all these me
produce conservation equations of the same structure. The main difference is
in the interpretation of the terms and in the content of the constitutive relation
a rigorous mathematical treatment these averaged equations, customarily kno
the multi-fluid equations, are an exact representation of the system. In reality,
multi-fluid equations include several terms that depend on the microscopic 
variables or on the integrals over the inter-phase boundaries. These terms
stresses, diffusional fluxes, inter-phase transfers and pseudo-turbulent stress
called constitutive terms and they have to be replaced by models which de
only on averaged dynamic quantities or their derivatives. Discussions of ge
constitutive requirements can be found, e.g., from [31] and [21]. It is just t
constitutive terms which bring in the typical problems related to solving the m
fluid equation set. As no generally valid constitutive models exist and as mo
them are quite crude approximations of reality, a multitude of different form
write multi-fluid equations have evolved.

Two fundamentally different approaches to solve dispersed multi-phase f
have evolved in the past. Their conceptual difference lies in the treatment o
dispersed phases, where one is based on Lagrangian tracking of computation
12
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ticles ([25], [23], [56]) and the other is based on the idea of interpenetrating 
tinua and the Eulerian frame of reference, i.e., multi-fluid model ([19], [54], [31],
[12], [20]). The former is naturally suited to dilute flows and the latter meets
theoretical justification better in denser flows [16]. However, numerous excep
to this simple classification can be found, e.g., the PALAS concept [8], the app
tion of kinetic theory in the phase space ([47], [48]) and the lattice Boltzm
method ([2], [3]). Efforts to combine the advantages of both approaches have
appeared [5]. Further, a variety of methods exist for the solution of the ca
phase balance equations and, in the case of the multi-fluid approach, for th
persed phase balance equations as well. Methods based on unstructured gri
FEM [28] and CVFEM [40], usually exploit the simultaneous solution of all b
ance equations. This is a consequence of the unstructured mesh which resu
sparse coefficient matrix and, consequently, prevents the use of efficient ite
solvers tailored for band matrixes. This approach avoids the difficulties relate
the numerical implementation of the inter-phase transfer terms but requires a
amount of run time computer memory. In contrast, Control Volume Meth
(CVM) built on structured grids use the sequential solution of balance equatio
combination with iterative solvers, which results in large savings in mem
requirement. The major disadvantage, as far as the multi-fluid approach is
cerned, is the difficulty to implicitly consider the couplings of balance equation

The easiest and most natural way to treat the interphase coupling term 
sponds to considering it a linear source term, where the coefficient times the
rent phase variable forms the first-order term and the coefficient times the 
phase variable acts as a constant term [55]. This method to treat the inter-
coupling terms corresponds to an implicit scheme for the first-order term an
explicit scheme for the constant term, and it is referred as an partially im
treatment. A fully explicit scheme would exploit an existing value also for the 
rent phase variable. To enhance convergence in conditions of tight coupling 
implicit methods are needed [42]. In this work, the fully implicit Partial Elimin
tion Algorithm (PEA) [52] and the semi-implicit Simultaneus solution of non-lin
arly coupled equations (SINCE) [37, 38], described in detail, are meant to c
this requirement.

Two well-known sequential iterative solution algorithms for CVM approach
multi-fluid conditions exist, i.e., the Interphase Slip Algorithm (IPSA) [51–53] a
the Implicit Multifield (IMF) method [26]. As having more implicit nature, th
IPSA method has been selected as the basis of the solution algorithm in this
The distinctive features of the IPSA are related to the mass balancing pressu
rection step of the algorithm, in which the volume fractions are held constan
the mass balancing is based on the adjustment of global mass by shared p
gradient. The average of the normal component stresses of the dispersed pha
the dispersed phase pressure, is sometimes strongly dependent on the volum
tion and, consequently, this dependency should be taken into a count in the
sure correction step. The special case here in mind is the compaction of a flu
bed below the state of minimum fluidization. As the porosity of the fluidized 
reduces, the dispersed phase pressure steeply rises with the volume fraction
is insufficient to use only the shared pressure for mass balancing. Two new 
ods to reduce these problems, the compressible and incompressible variants
Fluid Pressure in Source term (FPS) and the Equivalent Approximation of 
sures (EAP), are introduced in this work.
13
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Because the constant parts of the linearized interphase coupling terms ar
tomarily treated as source terms, their information in a SIMPLE(C) type pres
correction equation [18], a part of the IPSA method, is lost. To improve this s
tion step, a solution algorithm, referred to as the Interphase Slip Algorithm-C
pled (IPSA-C), is given in this work. This method utilizes the same kind
formalism as the SINCE to include the interphase coupling terms semi-impli
in the pressure correction equation.

In order to achieve adequate geometric flexibility in constructing the mesh
CVM used is based on collocated local body fitted coordinate (BFC) system
multi-block capability. The essential feature of collocated methods is that the 
mesh is used for all dependent variables. As the staggered arrangement of m
momentum equations is abandoned, some other means to avoid the decoup
pressure and velocity fields has to be used. The customary solution for collo
methods is to utilize the Rhie-Chow momentum interpolation scheme [49]
actually mimics the staggered grid arrangement. For rapid changes in the s
terms this interpolation method fails to conserve mass. A better behaving sc
has been described in Appendix D. In addition, if the shared pressure conc
abandoned and a proper treatment is given for the dispersed phase press
Rhie-Chow interpolation method has to be expanded. An approach available
pendently or with the improved Rhie-Chow scheme is given in this thesis wor

1.3  OUTLINE OF THIS WORK

By following the theme of the work, the material presented has been divid
three conceptual parts: the theoretical and the mathematical basis, the inter
coupling algorithms and further improvements of the solution method in ord
gain better overall efficiency.

The first part comprises chapter 2 in which the mathematically exact multi-
equations are given in together with the related interfacial jump conditions. Th
made to lay out solid basis for the later discussions of the numerics. In additio
generalized form of multi-fluid equations for numerical solution are given a
finally, discretized for collocated CVM solver. All the treatment in this part, as w
as in the other two parts, are carried out in a form applicable for local BFC g
This may complicate the following of the general idea but reveals better
requirements and complications related to this geometric description.

The subject of the second part, the inter-phase coupling algorithms, are co
in chapter 3 and in the related publication attached to Appendix E. The chap
itself is only a short summary of the material discussed in the publication, w
includes a detailed description of the inter-phase coupling algorithms, i.e.
explicit treatment, the partially implicit treatment, the semi-implicit SINCE alg
rithm and the fully implicit PEA algorithm. Their efficiency were tested in a ty
cal conditions found in gas-particle and liquid-particle fluidized beds. In addit
the IPSA-C solution method is introduced. This solution method includes the i
phase coupling terms also into the pressure correction step in a semi-implicit
ner, and consequently, enhances the accuracy of the traditional IPSA so
method.

The third part, i.e., chapter 4 and chapter 5, include improvements to the
tomary IPSA solution method in order to achieve better overall solution efficie
14
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and to avoid numerical problems typical for collocated CVM in fluidized bed c
ditions. In chapter 4 the new multi-pressure algorithms, i.e., the Fluid Pressu
Source term (FPS) and the Equivalent Approximation of Pressures (EAP)
explained. The relation of these methods to the multi-fluid equations and t
model equation for discretization is given in chapter 2 in context of the multi-f
balance equations and constitutive models. Finally, chapter 5 describes ho
multi-pressure concept can be included in the momentum interpolation in a
which is consistent with the requirement of second-order accuracy for approx
tion of pressure gradient.
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2  MULTI-FLUID MODEL

The governing equations of the multi-fluid model are derived by integra
local conservation equations of mass, momentum and energy, valid in each 
separately, together with their associated interface conservation equations, i.
jump conditions, over representative dimensions of space [19, 54], time [3
realizations of the system [12]. Each of these averaging methods produce g
ing equations of the same structure though the interpretation of the terms a
operations required for the interfacial source terms are unique. A mathemat
formal treatment based on the generalized functions has been given by Drew
This approach, followed below, has its origin in ensemble averaging.

Utilizing the notion  for a generic integration process the phase average
the mass-weighted phase average of a variable  can be defined as

and . (1)

In equation (1)  and  are the detailed piece-wise continuous functions of m
rial density and general dependent variable, whereas  is the phase functio
cating the phase present at a specified location and time. Thus, the definition 
is

(2)

It follows, that the average of phase function itself is the volume fraction of
phase in question

. (3)

Based on these definitions, the governing equations of mass and momentu
be written in the form:

, (4)

(5)

On the right side of equation (5),  stands for the momentum source caus
other body forces than gravity. The two terms inside the angle brackets rep
the interfacial source terms of mass and momentum denoted by

〈 〉
Φ

Φα
XαΦ〈 〉
εα

-----------------= Φ̃α
XαρΦ〈 〉

εαρα
--------------------=

ρ Φ
Xα

Xα

Xα x t,( ) 1 if x is in phase α at time t

0 otherwise.



=

εα Xα〈 〉=

t∂
∂ εα ρα( ) ∇ εα ρα Ũα( )•+ ρ U UI–( )[ ]α Xα∇•〈 〉=

t∂
∂ εα ρα Ũα( ) ∇ εα ρα Ũα Ũα⊗( )•+ ∇ εαTα• εα ρα g Fα

S
+ +=

ρU U UI–( ) T–[ ]α Xα∇•〈 〉 .+

Fα
S
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and (6)

. (7)

The square brackets in these equations are used to express the limit proces
the interface is approached from the side of phase 

. (8)

In addition, the interfacial sources  and  have to fulfil the interfac
jump conditions of mass and momentum

and (9)

. (10)

In equation (10),  is the contribution to the total force per unit volume on
mixture due to the interface, mainly originating from the spatial changes in the
face tension, and  stands for the number of phases present. Without 

, the equations (4) and (5) closely resemble the balance equations of 
phase flow.

2.1  CONSTITUTIVE EQUATIONS

A large number of studies and intuitive speculations about the constitutive 
els of the stress tensor  and about the interfacial sources  and  have
conducted, e.g., [7, 11, 19, 20, 21, 29, 30, 31, 46]. In the following discussio
addition of the conventional treatments of Ishii [31] and Drew [20], the result
the two consistent and mathematically rigorous control volume/control sur
approaches are referred, namely the volume averaging method of Prosper
Jones [46] and the micromechanical ensemble averaging method of Hwang &
[29, 30].

2.1.1  Stress tensor

In analogy with fluids, the stress tensor of each phase is normally divided
isotropic and deviatoric components

, (11)

Mα
I ρ U UI–( )[ ]α Xα∇•〈 〉=

Fα
I ρU U UI–( ) T–[ ]α Xα∇•〈 〉=

α

Φ[ ]α Φ xα t,( )
xα xI→

lim=

Mα
I

Fα
I

Mα
I

α 1=

NP

∑ 0=

Fα
I

α 1=

NP

∑ FT
I

=

FT
I

NP Mα
I

Fα
I

Tα Mα
I Fα

I

Tα Pα I– τα+=
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where the isotropic part , defined to be the mean of the trace of deform
rate, is called the pressure. The stress tensor  itself includes contributions
several different mechanisms. For the fluid phase two contributions are rea

 and , corresponding to the viscous stresses and to the turbulent mom
transfer (analogous to Reynolds stresses). For the dispersed phase, contri
arise by the hydrodynamic forces at the control volume surface cutting disp
entities, the particle-presence stress  [7, 29], by the random motion of the
persed phase, the kinetic stress  (analogous to Reynolds stresses), and
collisions and contacts between the dispersed entities, the collision/contact 

 [32, 39]. These contributions are noted in short as

and (12)

. (13)

2.1.2  Interfacial momentum source

The interfacial source of momentum , represented by equation (7), incl
two different participating mechanisms, namely the momentum transfer prod
by the phase change process and the force resulting from the existing stress
interfaces. It is customary to describe the former mechanism by defining the 
roscopic interfacial velocity  as [20, 31]

. (14)

Commonly, the latter portion of the interfacial momentum source  is expre
as [20, 31, 34]

, (15)

where  is the macroscopic interfacial mean pressure [1, 31] defined by 

, (16)

and  denotes the interfacial force density

. (17)

Equation (15) corresponds to the ‘current engineering practice’ as stated by
peretti & Jones [46]. Most of the published treatments and numerical simula
are based on this definition which is referred as the Interfacial Mean Pressure
model, IMP, in this text.

As stated by Prosperetti & Jones [46], the definition of the interfacial m
pressure  given in equation (16) is restrictive in a way that the term  

Pα
Tα

Tf
v

Tf
t

Td
p

Td
k

Td
c

Tf Tf
v

Tf
t

+=

Td Td
p

Td
k

Td
c

+ +=

Fα
I

Uα
I

Mα
I Uα

I ρU U UI–( )[ ]α Xα∇•〈 〉=

Fα
I

T v[ ]– α Xα∇•〈 〉 Pα
I εα∇ Fα

D
+=

Pα
I

Pα
I εα∇ P[ ]α– Xα∇〈 〉=

Fα
D

Fα
D

P Pα
I

–[ ]α Xα∇ τf
v[ ]α Xα∇•–〈 〉=

Pα
I

Pα
I εα∇
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ishes in the case of a non-existent volume fraction gradient even for a varying
sure distribution on the interfaces. This inconsistency in the phasic mome
balance may lead to non-physical results in cases where  is important. 
mathematically rigorous treatments of Prosperetti & Jones [46] and Hwang & 
[29, 30], the definition (16) is avoided. Although using different averaging meth
and notions, both of these treatments come to parallel results, which are here
enced with a common name Direct Interfacial Force model, DIF.

According to DIF, the latter mechanism of the interfacial momentum source
be expressed as

. (18)

In equation (18), the first term on the right side originates from a linear approx
tion of the continuous phase stress components in the scale of the dispersed
The existence of this term is supported by the equation of motion for small 
particles derived by Maxey & Riley [41]. In their treatment this term arises fr
the contribution of the undisturbed fluid flow. The second term in equation (1
the interfacial force density , a consequence of the disturbance to the fluid
caused by the particle, including the contributions from the hydrodynamic 
force, the apparent mass force and the Basset history force. The last term 
from the stress field on locations of the control surface where it intersects th
persed phase. A mathematically rigorous definition of the particle-presence 

 can be found from Batchelor [7] and Hwang & Shen [29].

2.2  MOMENTUM BALANCES

The momentum balances of the continuous and dispersed phases for th
treatments of the interfacial transfer term are now obtained by inserting the d
tions (12)–(15) and (12)–(14), (18) in equation (5), respectively. Since a ty
dispersed multi-phase flow problem involves one continuous phase and sever
persed phases, these balance equations are written in a corresponding form.
achieved simply by including the phase interaction terms from all participa
phases. Details of the rearrangement and simplification of the stress term
given in Appendix A. Thus, the momentum balances for fluid  and for dispe
phases , for the two different treatments, can be written as:

Interfacial Mean Pressure model, IMP;

(19)

Pα
I

T
v[ ]– α Xα∇•〈 〉 εα∇ Tf

v• Fα
D ∇ εαTα

p( )•–+=

Fα
D

Tα
p

f
d

t∂
∂ εfρf Ũf( ) ∇ εfρf Ũf Ũf⊗( )•+ εf Pf∇– ∇ εfτf

v( )• ∇ εfTf
t( )•+ +=

Pf
I

Pf–( ) εf∇ Mf
IUf

I FT
I Fβ

D

β 1=

Nd

∑– Ff
S εfρfg+ and+ + + +
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Direct Interfacial Force model, DIF;

(21)

(22)

If the relative velocities between the phases are not high, and if there exis
appreciable dispersed phase expansion/contraction, it can be assumed that t
sic pressures  and interfacial mean pressures  in equations (19) and (2
equal in each phase [46]. Also, in the absence of surface tension the phasi
sures  and  are almost equal [22]. These simplifications lead to the conc
shared pressure, i.e., the pressure force realized in balance equation of eac
is the fluid pressure multiplied by the volume fraction of the respective phase.

By reverting to the treatments of Prosperetti & Jones [46] and Hwang & S
[29], it is realised that the term

(23)

represents the forces created by the difference of the mean interfacial stress 
mean fluid stress on those parts of the control surface intersecting the disp
phase. Accordingly, with the same limitations as when considering  ab
the term (23) can be neglected. The same is true also for the approximation 

Under these limitations the only difference between the IMP and DIF mode
found in the viscous stress terms. On the other hand, in turbulent particulate
the contribution from the turbulent momentum transfer is often much larger 
from the viscous stresses  and thus the difference between the m
becomes immaterial.

2.3  GENERALIZED FORMS

For numerical treatment, the balance equations (4), (19)–(22) are represen
a generalized form in which all problem specific models are adapted. In this g

t∂
∂ εdρdŨd( ) ∇ εdρdŨd Ũd⊗( )•+ εd Pd∇– ∇ εdτd

p( )•+=

∇ εd Td
k
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c

+( )( )• Pd
I

Pd–( ) εd∇ Md
I Ud

I Fd
D Fd

S εdρdg+ ,+ + + + +

t∂
∂ εfρf Ũf( ) ∇ εfρf Ũf Ũf⊗( )•+ εf∇ Tf

v• ∇ εfTf
t( )•+=

Mf
IUf

I FT
I Fβ

D ∇ εβ Tβ
p

Tf
v

–( )( )•–( )
β 1=

Nd

∑ Ff
S εfρf g+ and+–+ +

t∂
∂ εdρdŨd( ) ∇ εdρdŨd Ũd⊗( )•+ εd∇ Tf

v• ∇ εd Td
k

Td
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+( )( )•+=
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I
Ud

I
Fd

D
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S εdρdg+ .+ + +
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∇ εβ Tβ
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and (24)

, where (25)

. (26)

In equation (26)  is used to denote the constant term of the linearized in
cial force density and  stands for the total number of phases. Consequent
multi-fluid balance equations of mass and momentum for a turbulent partic
flow are often expressed as a straightforward extension of their single phase
terparts as

 and (27)

(28)

where the source term  is used to collect different terms of that character

. (29)

Here, the treatment of viscous stresses in the momentum equation (28) follow
IMP-model as usual.

The generalized momentum balance has been written on the basis of a g
linear viscous fluid model, which is expressed as

. (30)

In single phase flows, the constitutive model (30) is easily adapted to the ge
ized form of the momentum balance by defining the modified pressure
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NP 
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β 1=

NP 

∑ Fα
D

+=

Fα
D
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which is used in place of . This is in contrast with multi-phase flows, where
appearance of the hydrodynamic pressure terms and other stress contributio
fer from each other. In this case, the definition (31) provides no valid simplifica
of the balance equations with either of the approaches, the IMP or the DIF. Th
more suitable template for the momentum balance (28) is provided by

(32)

where the phasic pressure  in the definition of the modified pressure (3
associated with the other pressure like contributions than the mean fluid pre

. For the fluid phase, this modified pressure arises from the last term of the 
tion (31) and from the eddy viscosity hypothesis

(33)

where  represents the deviations from the mass-weighted phase averag
denotes the eddy viscosity and  stands for the kinetic energy of the turb
fluctuations, respectively. The ‘turbulent pressure’ is identified as the second
on the right side.

In the same way, additional ‘pressure’ contributions arise from the constit
equations for the kinetic and collisional momentum transfer of the dispe
phases [27, 32, 39]. Since these contributions become considerable in some
cations, e.g., in fluidized beds [13], they can not generally be neglected.

In numerical solution the momentum balance (32) is treated like three s
variables, each representing one Cartesian component of momentum, by ad
it to the corresponding balance equation of a generic dependent scalar variab

(34)
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2.4  DISCRETIZED EQUATIONS

In order to facilitate the numerical solution of the macroscopic balance e
tions (27), (32) and (34) in a general 3D geometry using Body-Fitted Coordin
(BFC) combined with the multi-block method, these equations are expressed 
covariant tensor form [14, 36]. The coordinate system used in this context 
local non-orthogonal coordinate system , referred to as the computat
space, obtained from the Cartesian coordinate system , i.e., the ph
space, by the numerical curvilinear coordinate transformation . Detai
the derivation are given in Appendix B.

Because there is no danger of confusion, the phase and mass-weighted
average notations above the dependent variables, e.g.,  and , have
omitted in the subsequent treatment in order to enhance the readability of the
tions. Thus, the transformed balance equations in the computational space a

, (35)

(36)

(37)

where  is the Jacobian determinant (B3),  (Figure 1(a)) repres
the adjugate Jacobian matrix (B4),  stands for the normal flux velocity com
nent (B21), and the total normal phasic fluxes ,  and  are define
specified in Appendix B.

In the process of the coordinate transformation, all the derivatives of the m
scopic balance equations (27), (32) and (34) in the physical space have
expressed with the corresponding terms in the computational space, whe
transformed macroscopic balance equations (35), (36) and (37) are discre
This is done following the conservative finite-volume approach with colloca
dependent variables.
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Integrating the generic balance equation (37) over a single finite-volume
(Figure 1(b)) in the computational space with the help of the Gauss law result

(38)

where  is the volume of the finite-volume cell in the computational space
 is the surface of this cell. Up to the second-order accuracy, the edges of 

tangular volume  in the computational space are transformed into the phy
space as

, (39)

where  are the covariant basis vectors (Appendix B). Accordingly, the com
tational space volumes and cell face areas are related to the physical space v

 and areas as

, (40)

, and . (41)

ξ
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ζ

UuD d
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n
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e

W
w

P

ξi(xj)

1

1

1

Figure 1. (a) Area vectors on the faces of the finite-volume cell in the phy
space. (b) The notion of the neighbouring cell centres and cell faces in the co
tational space.
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Setting the lengths of the finite-volume cell edges in the computational space
unity , all the cells in the physical space are transformed 
cubes of unit volume and unit face areas in the computational space.

Based on the same type of integral balances as equation (38) and on re
(40) and (41), the discretization of the macroscopic balance equations (35)
and (37) can be formally represented as

(42)

(43)

(44)

In equations (42), (43) and (44), the notation  indicates that the opera
integrated over the volume of the finite-volume cell in question. Because the 
putational space cells are all of unit volume, the resulting mean value is dir
expressed on the unit-volume basis. Further, the notation  expresses
ference between the values of the operand at specified locations (Figure 1(b)

. (45)

The right-hand side notation implies that the operand is integrated over the re
tive face of the finite-volume cell. The result of this integration is directly on 

ξδ ςδ ζδ 1= = =

J εα ρα{ }
t∆

--------------------------
t

t ∆∆t+
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unit-area basis. For the time derivative term, the corresponding notation 
expresses the difference of cell-based volume averages at respective times

. (46)

Thus, the total normal phasic fluxes ,  and  are represented as

, (47)

, (48)

, (49)

where

indicates the pair of faces in question. Comparison between equations (B19
(47), (48) and (49) reveals that the phasic convection and diffusion coeffic

,  and  are specified by the relations

, (50)

, (51)

, (52)

where .

2.4.1  Profile assumptions

Because the discretization is done in the computational space, integrati
operand over the finite-volume cell with a constant value results in
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where  is the value of the operand at the centre of the cell.
Since the rest of the terms in equations (42), (43) and (44) express the f

the operand through the faces of the finite-volume cell, they are calculated a
difference of the average value of the operand at the opposite faces of the 
indicated by equation (45). For the averaging, the real profile of the operand
the face is approximated with a constant value located at the centre of the
This approximation is already reflected in the chosen form of the notation. Acc
ingly, integration over the face leads to

, (54)

where  is the value of the operand at the centre of the cell face.

2.4.2  Values on cell faces

To calculate the flux terms , the material properties and the values o
dependent variables at the centres of the cell faces are needed. These val
found by a weighted linear interpolation scheme from the cell centre values
weight factors used in this context are based on the distances between cell c
and the corresponding cell faces in the physical space (Figure 2). The value 
cell face is then given by
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Figure 2. Notations used in the context of discretization approximations. The t
of the physical space reveals the weight factors.
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where and .

This scheme is second-order accurate in rectangular non-uniform meshes.

2.4.3  Gradients at cell centres

The source terms include the pressure gradients calculated at cell centre
general case, other source terms involving gradients of dependent variables
the model used in the test case of this article, may also exist. These gradie
approximated by the same type of weighted interpolation scheme as the o
values on cell faces, but to enhance accuracy, the weight factors in this ca
based on arc lengths between the cell centres (Figure 2). Although calculatin
arc lengths is computationally expensive, the Rhie-Chow interpolation me
[49], used to provide the normal flux velocity components  on the cell fa
necessitates the second-order accuracy also on the non-uniform curvi
meshes. Thus, by defining two weight factors, one on the positive side an
other on the negative side of the cell centre in consideration, the gradient at th
centre is calculated as

, (56)

in which the weight factors are defined to be

,

.

Accordingly, the pressure gradient source term in the discretized mome
equation (43) is not calculated on the computational space but directly from
physical space gradient, as specified by equation (56). The relation between
two forms of the pressure gradient source term is given in Appendix B by equ
(B25).

2.4.4  Gradients on cell faces

The total normal phasic fluxes (48) and (49) include gradients of the depen
variable on the cell faces in their terms involved with diffusion fluxes. Furth
more, in the discretized momentum balance (43) those terms of the deform
rate tensor not analogous with the viscous diffusion are classified as source
and also involve gradients of this type. These gradients are all discretized 
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central differences in the computational space. For the gradients normal to th
faces, the central difference method is applied as

with . (57)

In the case of cross-derivatives, i.e., derivatives on the plane of the cell fac
gradients are approximated as the mean of the two central differences calcula
the cell centres on both sides of the face in question. As an example, the 
derivatives on the cell face u are (Figure 2)

, (58)

. (59)

The other ten cross-derivatives on the remaining five faces are defined in an 
gous way.

The approximation of the cross-derivatives as in equations (58) and (59)
nects 18 neighbouring cells to the treatment of every finite-volume cell. To a
the use of the standard linear equation system solvers, the treatment is re
back to the usual one involving only the eight neighbouring cells sharing a cel
with the cell under consideration by the deferred correction approach, i.e., tre
the cross-derivatives as source terms by using values from the previous iterat
the dependent variables in question. Thus, in addition to the terms related 
gradients normal to the cell faces (the diagonal terms of the diffusion tensor
deferred correction approach results in the following additional source te
expressing the effect of non-orthogonality

(60)

where  denotes the value of the dependent variable from the previous iter

Following the details given above, the formally discretized macroscopic bal
equations (42), (43) and (44) can now be written in their final form. To enhanc
readability and to keep more physical nature in the discretized equations, th
next given in a partly discretized form retaining most of the terms in their prev
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form. This practice should also aid in transferring the presented method
approaches using different discretization schemes. Thus the macroscopic b
equations of the phasic mass, momentum and generic dependent scalar va
are

(61)

(62)

(63)

In equations (62) and (63), ,  are the coefficient part and , 
constant part of the linearized total source term (29). Furthermore, the adve
terms have been treated using the hybrid differencing scheme, in which the c
differencing is utilized when the cell Peclet number ( ) is bel
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two and the upwind differencing, ignoring diffusion, is performed when the 
greater than two. This scheme together with the deferred correction approach
ciated with the gradients on the cell faces (60) guarantees the diagonal dom
of the resulting coefficient matrix. For that reason hybrid differencing sch
serves as the base method for which other more accurate schemes can be bu
by the deferred correction approach [14, 36]. With hybrid differencing the ma
coefficients can be written as

, and (64)

, . (65)

To save some space, the summations over the cells and the neighbourin
are simplified as

and (66)

(67)

in the following treatment. The latter notation should be understood as a su
tion of a product term with two simultaneously changing indices.
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3  INTER-PHASE COUPLING ALGORITHMS

The characteristic feature of multi-fluid model equations is that the phasic
ance equations (4) and (5) are coupled to the phasic balance equations o
phases through the interfacial source terms of mass  and momentum 
numerical treatment, these terms are customarily linearized as given by equ
(24)–(26) and, correspondingly, appear in the discretized balance equations
(62) and (63) in that form. As the coupling of phases becomes tighter, the im
tance of these interfacial sources grows and, accordingly, the time scale asso
with the interfacial transport decreases. Then, in sequential iterative solution 
ods, the treatment of the inter-phase coupling terms in the solution algo
becomes critical for both the efficiency and stability of the solver.

Four different possibilities exist to handle the linearized inter-phase coup
terms, namely,

the explicit treatment

, (68)

the partially implicit treatment

, (69)

the semi-implicit treatment

and (70)

the fully implicit treatment

. (71)

In equations (68)–(71) the notations ,  and  denote the current 
mate, an intermediate estimate during an inner iteration and the new estima
dependent variable of the phase . However, it should be remembered th
fully implicit treatment can never be fully attained in sequential solvers, but
term is understood as meaning a treatment where all information of a phasi
ance equation, except source terms, is taken at the level of a new estimate.
fully implicit treatment would be approached by calculating new source term
every inner iteration cycle. Inter-phase coupling algorithms intended to mimic
classification (68)–(71) have been studied by Karema & Lo [34], presented i
Appendix E of this publication.

Customarily, the sequential iterative control volume solvers are based o
SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) type [44] solut
algorithm utilizing a pressure correction step to conserve mass on cell ba
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every outer iteration. An extension of the SIMPLE method to multi-phase flo
called the IPSA (InterPhase Slip Algorithm) algorithm [51, 52, 53], was use
Karema & Lo [34] in their study of inter-phase coupling algorithms. As the IP
algorithm neglects inter-phase coupling terms in its formulation, in orde
achieve a more accurate pressure correction step, an improved IPSA based s
method, called the IPSA–C (InterPhase Slip Algorithm – Coupled) algorithm [
was also studied. With this solution algorithm, a semi-implicit treatment of in
phase coupling terms can be included into the solver.

The test cases, the gas-particle bed (A) and the liquid-particle bed (B), 
selected to represent typical but simplified problems in the area of fluidized
hydrodynamics and the constitutive models for inter-phase momentum transfe
dispersed phase stresses were set as given by Bouillard et al. [9]. There, to prevent
the dispersed phase from compacting to unreasonably high volume fraction
normal component of the dispersed phase stress is retained and modelled 
simple Coulombic approach (see Eq. 69 in Appendix E). When the porosity o
bed decreases below the state of minimum fluidization  this model produ
strong repulsive force to prevent bed compaction. In hydrodynamic terms
reflects a condition in which the collision time scale reduces below the aer
namic time scale related to momentum transfer by phase interaction. Natural
repulsive force  is a strong function of fluid volume fraction . All tests do
mented in Appendix E were based on the customary representation of multi
equations (27) and (28) and they were solved by IPSA or IPSA–C solution m
ods. Accordingly, the dispersed phase normal stress was implemented as a 
term with a zero first order term.

In both flow configurations A and B the semi-implicit SINCE method resul
in about 5% and the fully implicit PEA method about 35% higher convergence
of phasic momentum equations, respectively. The most important reason fo
improvement can be found in the correctness of the few first approximates w
new time step is entered. The effect of including interphase coupling terms in
pressure correction scheme, the essence of the IPSA–C, is limited to the fir
time steps, and there is practically no improvement of the overall convergence

When the time step of simulation is kept below the characteristic time sca
interfacial transfer processes, the partially implicit treatment of coupling term
combination with the IPSA solution algorithm provides the most effici
approach. This result is totally based on the smaller number of computational
ations required by these simpler schemes. When a longer time step is requ
there is a spot in the solution domain involved with very small characteristic 
scales of interfacial coupling, the semi-implicit or fully implicit treatment of co
pling terms becomes necessary. Then the PEA method provides the best effi
for two-phase flows, providing a considerably better convergence with mome
equations but being only slightly more laborious computationally than the par
implicit treatment. In multi-phase flows the SINCE method provides the o
option for the partially implicit treatment. Its convergence rate with momen
equations is only slightly better than with the partially implicit method though 
computationally more involved. The IPSA–C is arguably the preferred solu
method for conditions where the interfacial coupling is tighter than in the flow c
figurations studied, e.g., in bubbly air-water flows.

Studying mass residuals reveals that in practice the improvement in com
tional speed attained with implicit-like algorithms in solving momentum equat

εmf
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is almost completely lost in the pressure correction step of the solution. This w
have been acceptable for the IPSA solution method as it neglects inter-phas
pling terms in correcting the pressures but the existence of this problem also
the IPSA–C method indicate that the convergence rate of solution is limite
other factors. In addition, this problem is much more pronounced in gas-pa
bed than in liquid-particle bed and in both test cases it becames worse after
initial period of integration time starting from the initial field. All these aspe
point towards a poorly performing pressure correction algorithm. After analys
was realized that the limiting factor in predicting the total mass balance and 
cially the mass balance of the dispersed phase was threefold. First, in cells 
the bed compaction was high, i.e., the porosity of the bed below the minimum
idisation porosity , the shared pressure, for which the mass balancing pre
correction step is based on, is not adequate to prevent the bed compacting
unreasonably low porosity. Second, the characteristic feature of the IPSA so
method to keep the volume fractions constant during pressure correction ste
ders the too high compaction to be realized and prevented. Third, as in the
the volume fractions are solved after momentum equations and pressure corr
equation, the large value of static pressure compared to dynamic pressure in
ized beds is not effectively countered, i.e., as long as cell-based imbalanc
governed by the velocity field, the enhanced convergence rate of momentum 
tions enters the mass balances. Apparently, the pressure correction step 
multi-fluid solution method should be further improved by incorporating also
pressure-like contributions of the dispersed phases, in addition to the shared
sure, and by including a mechanism to take into account the strong depende
the solid pressure on volume fractions. Further, in the momentum equation
pressure-like contributions should be treated equivalently with the shared pre
gradient. These topics are covered in detail in chapter 4. In Figure 3 the pro
atic areas of the gas-particle bed are seen to be located beneath and ab
obstacle at the centre line and below the bubble. Evidently, the flow field in
vicinity of the obstacle has a dramatic effect on the development of the bubbl
its accurate prediction is necessary. In liquid-particle bed the problem of unp
cally high compaction does not exist (Figure 4) and the main problem is in the
item, namely considering volume fractions as constant during the pressure c
tion step.

Another type of difficulty present in the gas-particle bed but non-existent in
liquid-particle bed, still related to mass balancing, is originating from the large
crepancy of the source terms across sharp interfaces between the fluid and p
in circumstances when the particle density is several orders of magnitude h
than the fluid density. Then, the weighted linear interpolation applied to so
terms while carrying out the Rhie-Chow momentum interpolation is not accu
enough resulting in mass imbalance in adjacent cells of the interface. This is
ised as the small wrinkles around the interface with finer mesh in Figure 3
sharper interface, and will ultimately lead to divergence of a control volume b
solver. For the liquid-particle bed the customary Rhie-Chow interpolation is 
adequate. A geometric interpolation procedure [43] for source terms in
instance could have been used but as it does not necessarily conserve mass
uniform curvilinear meshes a so-called improved Rhie-Chow momentum interpo-
lation [14] was utilized. This method is briefly described in Appendix D. If the c
tomary representation of multi-fluid equations (27) and (28), where the app

εmf
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Figure 3. Volume fraction field of particles  in test case A with different rep
sentations of geometry: (a) multi-block rectangular  mesh, (b) multi-blk

 BFC-mesh, (c) multi-block  rectangular mesh and (d) multi-blok
 BFC-mesh.
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Figure 4. Volume fraction field of particles  in test case B with different rep
sentations of geometry: (a) multi-block rectangular  mesh, (b) multi-blk

 BFC-mesh, (c) multi-block  rectangular mesh and (d) multi-blok
 BFC-mesh.
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 terms
pressure term of the dispersed phase is modelled as a source term, is appli
method should also enhance stability of the solver in areas of high bed compa
In order to reach an equal order of approximation for the apparent pressure
as for the shared pressure, the extended Rhie-Chow momentum interpolation
derived in section 5 can be used instead of or in combination with the improved
Rhie-Chow interpolation.
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4  MULTI-PRESSURE ALGORITHMS

In section 2.2 it was shown that the momentum balances of both the IMP
DIF approaches simplify to the same form under certain restrictions. These re
tions necessitate that the dispersed phase entities are small compared to the
scales of the mean fluid flow field, that the interfacial mean pressure ca
approximated with the phasic mean pressure  and that the fluid phas
bulent stresses exceed considerably the viscous stresses. The resulting appr
momentum balance was shown to be conveniently represented for numerical
ment as the generalized form (32). The associated formally discretized mome
balance was then given by equation (62), as discussed in sections 2.3 an
respectively. Since in the equation (62), there are two pressure terms, one r
with the mean fluid pressure  and the other with the pressure like contribu

 originating from the other constitutive equations, in the frame of seque
control volume methods (CVM) some extended pressure correction schem
required in order to solve this kind of equation set. These extended schem
next studied in the context of two different sequential solution strategies, calle
phase-sequential and the equation-sequential solution methods, respectively.

The main features of the treatment in this chapter follow closely the IP
method [51, 52, 53] and its implementation to the collocated multi-block con
volume solver, described by Karema & Lo [34]. The two distinctive features of
method are related to the pressure correction step. The first neglects the co
tion of the volumetric changes to the pressure, i.e., the phasic volume fractio
held constant during this step. The second feature relates to the use of the 
pressure concept in performing the pressure correction. While only one press
defined, it is adjusted in a way which fulfils the total mass balance on element
at every outer iteration. Though allowing simple pressure correction algorithm
control over the fulfilment of global mass conservation, the IPSA type algorit
become inefficient when the pressure like contributions  grow in importanc
when they become strongly dependent on the phasic volume fractions.

In the subsequent treatment, these two distinctive features are partly aband
For the fluid phase and for the incompressible treatment of the dispersed p
the first feature is still retained, but in the compressible treatment of the disp
phases, the contributions of the volume fractions on the pressure are not neg
Because the balance equations (62) involve multiple pressures, the second 
can not be applied, and the pressure corrections are then based on the phas
balances. In this context, it is important to notice that the naming conventio
the treatments of the dispersed phases originates from the analogous treatm
single phase flows. Thus, the compressible treatment here implies that the m
densities are independent of pressure but the volume fractions are not.

There are two solution methods referred in this chapter, i.e., the phase-sequen-
tial and the equation-sequential solution methods, which represent two alternat
approaches to construct a sequential CVM solver. Two versions of the exte
pressure correction scheme are explained, Fluid Pressure in Source term (FP
Equivalent Approximation of Pressures (EAP). Both of these pressure corre
schemes can be applied in either of the solution methods. However, as the 
naturally suited to the phase-sequential solution method and the EAP to the
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4.1  PHASE-SEQUENTIAL SOLUTION METHOD AND FPS

The key feature of the phase-sequential solution method is found from the 
of balance equations solved. As seen from Figure 5, the solution proceeds 
nantly from phase to phase. This approach represents a natural extension of g
solvers originally designed for single phase flows. The major disadvantage o
simple structure lies in the difficulty to implement efficient inter-phase coup
algorithms, e.g., such as the PEA, the SINCE and the IPSA–C [34].

4.1.1  Treatment of fluid phase

The treatment starts from the discretized phasic momentum balance (62) w
for the fluid phase

, where (72)

(73)

. (74)

In the spirit of the pressure correction algorithm, the term associated with the 
ified pressure of fluid  has been classified as part of the source term . T
justified by considering the importance of this term to be small compared to
actual pressure gradient term in normal conditions. With this assumption, the 
ment resembles the customary IPSA method.

As shown in Appendix C, the connection between the fluid pressure correc
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which obey the mass balance of fluid (61), and the phasic Cartesian velocity
ponents can be obtained on the basis of equation (72). The result can be wri
a compact form as

Solve momentum equations of fluid f by using values 
for dependent variables obtained from initial guess or 

from previous iteration cycle

Solve pressure correction 
equation for fluid f

Update fluid pressure

Correct Cartesian velocity 
components of fluid

Solve pressure correction 
equation for dispersed phase

Update dispersed phase pres-
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Correct Cartesian velocity 
components of dispersed 

phase

Correct normal flux velocities 
of dispersed phase at cell cen-
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Solve dispersed phase momentum equation with 
updated fluid pressure

Calculate normal flux velocity components of all 
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tions for phasic volume frac-
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Figure 5. Computational flow chart of phase-sequential solution method.
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. (77)

The corresponding corrections to the phasic normal flux velocity compon
are then found directly from equation (75) by utilizing the associated definition

. (78)

This results in the following relation between the fluid pressure corrections an
phasic normal flux velocity components of fluid

, where (79)

. (80)

The corrections to the phasic normal flux velocity components produce 
new estimates for the phasic convection coefficients of the fluid (50). These c
expressed as

. (81)

By inserting equation (81) to the mass balance of the fluid (61) the following
ance equation for the corrections is obtained

, where (82)

. (83)
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i
εf ρf Ûf
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The substitution of the relation (81) to the mass balance (82) results in the ba
equation for the corrections of the phasic normal flux velocity components of 

(84)

In the equation (84) the corrections of the phasic normal flux velocity com
nents are introduced on the cell faces necessitating the interpolation of these 
from the cell centres where they are originally determined, as seen from equ
(79). The adjugate Jacobian matrix  is naturally defined on the cell face bu
coefficient  must be interpolated. If the pressure correction gradients on th
faces are approximated with central differences on the computational space,
tion (79) can be substituted to the fluid mass balance (84) to give corrections 
fluid pressure fulfilling continuity

, where (85)

and . (86)

The term  in equation (85) denotes the cross-derivatives of the fluid pre
corrections treated according to the deferred correction approach. With the f
discretization notion it can be written as

(87)

. (88)

In equation (88)  denotes the value of pressure correction from the pre
iteration.

4.1.2  Treatment of dispersed phases in FPS

In the phase-sequential solution scheme, the pressure correction of the
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tions of the dispersed phases are entered. By following the FPS treatment, th
pressure gradient term in the momentum equations of the dispersed phases 
sidered as a known source term. Thus, the momentum equations can be exp
as

, where (89)

(90)

(91)

In equation (91) the fluid pressure gradient term locater bar has been denote
an asterisk superscript in order to emphasize that the fluid pressure is an u
value fulfilling the mass balance of the fluid phase (61). In addition, the mod
pressure of the dispersed phase, defined in the equation (31), has been re
with an apparent pressure

. (92)

By proceeding as with the fluid phase in section 4.1.1, the details of which
given in Appendix C, the corrections to the phasic Cartesian velocity compon
of the dispersed phase can be expressed in the form

, where (93)

and (94)
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Again, by utilizing the associated definition (78), the corresponding correct
to the phasic normal flux velocity components can be written as

, where (96)

. (97)

4.1.2.1  Incompressible model for dispersed phases

As the correction equations of the phasic Cartesian and normal flux veloc
(93) and (96), closely resemble to the corresponding equations of the fluid p
(75) and (79), a fully analogous treatment for the dispersed phases apply. Wi
help of the dispersed phase mass balance and the correction equations (9
(96), the pressure correction equation for the dispersed phases can be writte

, where (98)

and . (99)

In equation (98)  denotes the mass residual of the phase 

(100)

and the term  is used to denote the cross-derivatives of the phasic apparen
sure corrections, treated as for the fluid phase, with the deferred corre
approach
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Ĥ α
ij

P
Ak

i

P
Hαk

j

P

Ak
i

P
Ak

j

P

VP
--------------------- hα

k

P
k 1=

3

∑= =

aPα P
Pα

aδ
P

aPα c
Pα

aδ
C

c C,
∑ SPα

D Rmα
–+=

aPα P
aPα c

c C,
∑= aPα c

εα c
ρα c
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4.1.2.2  Compressible model for dispersed phases

As stated at the beginning of chapter 4, the naming convention for the 
ments of the dispersed phases originates from the analogous treatment fo
single phase flows. Thus, the compressible treatment here implies that the m
densities are independent on pressure but the volume fractions are not
approach is desirable in conditions where the modified pressure depends st
on the phasic volume fractions, in which case the IPSA-like treatment, called a
incompressible model here, would lead to poor performance of the solution 
rithm.

Consequently, by treating the dispersed phase as a pseudo-compressible f
which the  dependency is handled like the  dependency in comp
ible single phase flows, the corrections to the phasic normal flux velocity com
nents (96), satisfying the phasic continuity equation, produce the follow
changes to the phasic convection coefficients (50)

(103)

In equation (103), the second order term including changes to both variable
been neglected.

Substitution of equation (103) to the mass balance of the dispersed phas
results in the following balance equation
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i εαρα Ûα
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(104)

where  is the phasic mass residual defined in equation (100). When w
equation (104), the time dependent term has been divided into two parts con
of the time dependent pseudo-compressible term and the conventional
dependent term as

(105)

By denoting the  dependency as , the correction of the phasic vo
fraction  can be expressed as

. (106)

Substitution of the definition (106) and the corrections of the phasic normal
velocity components (96) to the phasic mass balance (104) changes it into the

(107)
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1

Pα
aδ εαραĤα
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respectively, the apparent pressure correction equation (107) resembles clos
form of the momentum equation (36) or, more accurately, the form of a genera
balance equation (B12) for single phase flow [14, 34]. Thus, with the definit
(108), the apparent pressure correction equation (107) can be written as

(109)

In addition, the resulting phasic apparent pressure correction equation (10
fully analogous with the pressure correction scheme used for high-speed com
ible gas flows [14].

4.2  EQUATION-SEQUENTIAL SOLUTION METHOD AND EAP

A natural base for a solver originally designed for multi-phase problems i
by the equation-sequential method. As shown on Figure 6, the main loop o
solution proceeds in this case from one balance equation type to an other. Fo
of these balance equations there is an inner loop consisting of sequential tre
of the phases. This structure allows easy implementation of many inter-phase
pling algorithms [34].

With the assumptions mentioned in section 4.1.1, the treatment of the fluid 
sure correction equation for the equation-sequential solution method is equiv
with the treatment of the phase-sequential solution method derived there. C
quently, only the treatment of dispersed phases is shown in this section.

4.2.1  Treatment of dispersed phases in EAP

By comparing Figures 5 and 6 it is clear that in both of the solution meth
because of the sequential structure, the fluid pressure correction equation is 
before the pressure corrections of the dispersed phases. Despite of being a
term in the momentum balances of the dispersed phases, the fluid pressure g
term in the EAP approach is treated equivalently with the apparent pressure 
ent term. Thus, the dispersed phase momentum equation in the EAP appro
written as

, (110)
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The treatment proceeds now in a fully analogous manner with the treatme
the fluid phase given in section 4.1.1 and in Appendix C, including the definit
of the new estimates (C2) and the approximation of values at the neighbo
cells (C3). As a result of this treatment, the corrections of the phasic Cart
velocity components of the dispersed phase are related to the corrections 
fluid pressure and apparent pressure of the dispersed phase as

, (113)

where  and  are coefficients defined by equations (94) and (95), res

tively. As previously, the corrections of the phasic normal flux velocity com
nents of the dispersed phase are obtained by utilizing the associated definition
This results in

, (114)

where the coefficient  is defined by equation (97), in line with  a
.

4.2.1.1  Incompressible model for dispersed phases

As for the incompressible treatment of the dispersed phases with the FP
derivation of the apparent pressure correction equations with the EAP rese
closely to the derivation of the fluid pressure correction equations. By substit
the new estimates of the phasic convection coefficients (81) of the dispersed 
to the corresponding mass balance (61), and by utilizing equation (114), the a
ent pressure correction equation of the EAP approach can be written as

(115)

where the coefficients  and  are given by equations (99).  stand

the dispersed phase mass residual (100), as before. Similar to the treatmen
fluid phase, the central difference approximation on the computational spac
been assumed for the pressure correction gradients of both phases while d
the apparent pressure correction equation (115). This equation can be rear
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where the source term , related to the cross-derivatives of the apparent pr
correction, is given by equation (101).

The apparent pressure correction equation (116) reverts to the correspo

equation of the FPS approach with two additional source terms,  and 

originating from the fluid pressure gradient. These source terms are specified

 and (117)

(118)

The origin of the source term  is again in the cross-derivatives of the fluid p

sure corrections. There the coefficient  is the same that is found from the

nition of  in the FPS approach (101), and which is defined by equation (10

If the grid in the physical space is nearly orthogonal, in the computati

space, the cross-derivatives included in the source terms  and  are 

compared to the components normal of the cell faces. Adaptation of this sim
cation, originally suggested by Rhie & Chow [49], the only difference between
FPS and the EAP approaches is in the source term .

4.2.1.2  Compressible model for dispersed phases

By following the same naming convention as with the FPS, the term compr

bility here means that the  dependency of the dispersed phases is ha

similar to the  dependency in compressible single phase flows. Accordi

the derivation of the apparent pressure correction equation is fully analogous
the treatment given for the compressible model with FPS. The only excepti
that with the EAP model the corrections to the phasic normal flux velocity com
nents are given by equation (114) instead of equation (96).

On these basis, the following apparent pressure correction equation, c
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sponding to equation (107), is obtained

(119)

In equation (119),  and  are defined by equations (106) and (100), re
tively. By utilizing the definitions of the phasic pseudo convection and diffus
coefficients (108), equation (119) can be expanded to the form

(120)

Again, by applying the central difference approximation on the computati
space to the gradients of the fluid pressure, the apparent pressure correction
tion (120) can be transformed into the form

(121)

where  and  are the source terms related to the gradients of the fluid
sure corrections, given by equations (117) and (118), respectively.
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The same remarks about the differences between the FPS and the
approaches as with the incompressible model are also valid for the compre
model. Clearly, under the approximation of Rhie & Chow [49] for the nea
orthogonal grid, the only difference is found to be the source term .SδPα f
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5  MOMENTUM INTERPOLATION

The principal difficulty, related to the otherwise beneficial collocated arran
ment of computational elements, is the need to interpolate the phasic Car
velocity components from cell centres to cell faces, in order to calculate the p
convection coefficients (50). A simple weighted linear interpolation scheme 
would lead to the chequer-board oscillations in the phasic pressure field, a c
quence of the discretization approximation used for the pressure gradien
avoid this decoupling of adjacent cells, the Rhie-Chow momentum interpola
scheme [49] imitating the staggered grid solution (Figure 7) is used.

5.1  EXTENDED MOMENTUM INTERPOLATION SCHEME

The Rhie-Chow momentum interpolation scheme has originally been in
duced for single phase flow, but a straightforward application to the multi-f
model equations can be achieved based on the shared pressure concept, d
in section 2.2. To achieve the same level of accuracy for both pressure gr
terms in the momentum equations of the dispersed phases, the Rhie-Chow in
lation scheme has to be extended by applying an analogous fourth order smo
scheme for the apparent pressure as for the hydrodynamic pressure. Thu
momentum balance of the dispersed phase is written in the form

, where (122)

 and (123)

. (124)

The phasic Cartesian velocity components at the cell faces, i.e., the pseudo
gered grid velocities, are found by interpolation of equation (122) from the a
cent cell centres to the staggered grid location as illustrated in Figure 7.

In the Rhie-Chow interpolation scheme, weighted linear interpolation is app
to the source-like term . This allows the left side of equation (122) to
approximated with the same scheme. Accordingly, the momentum balance f
imaginary staggered cell can be expressed as
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where the notation  stands for the weighted linear interpolation betw
the cell centres . If it is assumed that

, (126)

, (127)

and , (128)

equation (125) can be simplified to the form

PD U
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d u
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s

0.5 0.5

Figure 7. Staggered cell locations for x-component (DU) velocity for a regur
non-uniform mesh. Grey circles denote staggered cell centres.
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(129)

As the pressure gradients in the pressure correction equation are calculated b
tral differences, it is essential for the conservation of mass that the interpolatio
cell centre pressure gradients to the cell faces in equation (129) are calculate
the weight factor equal to one half. In contrast, the pressure gradients at th
faces are approximated, as in the staggered solution method, with the diffe
between the pressures on cell centres of adjacent control volumes.

The required phasic normal flux velocity components of the dispersed ph
are found with the help of the associated definition. This results in the follow
expression

(130)

where the coefficients  are defined as

. (131)

As seen from the interpolation equation (130), only the diagonal components 
pressure gradient terms are retained. This simplification is valid because the 
derivative terms cancel out when all the pressure gradients are calculated w
central difference approximation.

In case of rapidly changing source terms, e.g., the buoyancy force on diff
sides of a sharp interface, the weighted linear interpolation applied to source 
while carrying out the Rhie-Chow momentum interpolation may not be accu
enough resulting in mass imbalance in cells adjacent to the interface. This
culty can be relieved with a so-called improved Rhie-Chow momentum interpola
tion method described in Appendix D. The extended Rhie-Chow momentum
interpolation derived above can be used instead of or in combination with
improved Rhie-Chow interpolation.
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6  CONCLUSIONS

This thesis work concentrated on the problems encountered while solving
persed multi-phase problems numerically with a collocated Control Volu
Method (CVM). The essential aspects were considered to be the treatment an
ciency of inter-phase coupling terms in sequential solution, exceeding the bo
of validity of the shared pressure concept in cases of high dispersed phase p
and the conservation of mass in momentum interpolation for rapidly chan
source terms. These aspects were studied only a special application in mind
fluidized gas-particle bed or a liquid-particle bed.

It would be intuitively expected that to have a sequential iterative solver 
verge, the inter-phase coupling terms have to be treated fully implicitly when
interfacial transfer coefficient becomes large. This has also been confirme
Oliveira and Issa [42]. The requirement of implicit treatment is connected to
very short characteristic times of the interfacial transfer in these conditions a
the nature of the iterative solution method itself. In typical fluidized bed co
tions, represented here by air-glass particle and water-glass particle flows, the
acteristic times of interfacial momentum transport by hydrodynamic phenome
most of the bed sections are not as small. However, there always exist cond
e.g., start-up of the bed, and locations in the bed, e.g., heat transfer surface
bundles and corners, where the inter-phase coupling between dispersed ph
tight and the dispersed phase pressure is significant. Thus, the benefits of tr
inter-phase coupling terms in a partially implicit, semi-implicit or fully implic
way and of including inter-phase coupling terms into the pressure corre
scheme were studied in these conditions.

In both flow configurations A and B the semi-implicit SINCE method resul
in about 5% and the fully implicit PEA method about 35% higher convergence
of phasic momentum equations, respectively. The most important reason fo
improvement can be found in the correctness of the few first approximates w
new time step is entered. The effect of including inter-phase coupling terms
the pressure correction scheme, the essence of the IPSA–C, is limited to th
few time steps, and there is practically no improvement of the overall converg
rate. This can be attributed to the generally poor performance of the pressur
rection step.

When the time step of simulation is kept well below the characteristic time s
of interfacial transfer processes, the partially implicit treatment of coupling te
in combination with the IPSA solution algorithm provides the most effici
approach. This result is totally based on the smaller number of computational
ations required by these simpler schemes. When a longer time step is requ
there is a region in the solution domain involved with very small characteristic 
scales of interfacial coupling, the semi-implicit or fully implicit treatment of co
pling terms becomes necessary. Then the PEA method provides the best effi
for two-phase flows, providing a considerably better convergence with mome
equations but being only slightly more laborious computationally than the par
implicit treatment. In multi-phase flows the SINCE method provides the o
option for the partially implicit treatment. Its convergence rate with momen
equations is only slightly better than with the partially implicit method though 
computationally more involved. However, a slight improvement of efficiency 
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be obtained by calculating new source terms at every inner iteration. The IPS
method is arguably the preferred solution method for conditions where the in
cial coupling is tighter than in the flow configurations studied, e.g., in bubbly
water flows, or if the pressure correction algorithm can be enhanced to give 
approximations in general.

To overcome the poor performance of the pressure correction step, the co
of multi-pressure algorithms was introduced in chapter 4. Their usefulness s
be obvious but no test of their real functionality has been included. Espec
tempting are the compressible versions of the FPS and the EAP, as despite 
sidering the volume fraction also as a variable during the pressure correction
they still reduce to the same treatment as in compressible single-phase flows

A very crucial operation for the success of a collocated CVM utilizing itera
solution is the conservation of mass in momentum interpolation, a part of the 
sure-correction step. The improved Rhie-Chow interpolation scheme presen
Appendix D is known to be efficient in reducing the error in interpolation (CFD
FLOW3D). If the shared pressure concept is abandoned and a proper treatm
given for the dispersed phase pressure both the customary and the improved
Chow interpolation method must be expanded. Thus an approach, referred to
extended Rhie-Chow interpolation, applicable to both momentum interpola
schemes is presented.

Thus far the majority of the studies concerning numerical solution of multi-f
equations have concentrated on the special difficulties of these flows, i.e., the
phase couplings, moving interfaces, strong non-linearity and the large numb
dependent variables. However, the development of constitutive models for
persed multi-phase flows has revealed that in contrary to single phase flows th
mary transfer mechanism of information does not operate only from large to s
flow scales but also in opposite direction. This is especially true in the case o
idized beds. The consequence of the opposite transfer of information is th
small scale phenomena are important in creation of the macro-scale structure
accordingly, they should be modelled and solved to adequate accuracy. The
reasonably accurate and predictive simulations will be computationally very in
sive and all progress in solution efficiency will be highly useful. Approaches s
as special multi-grid solution cycles, being efficient to transport information o
the spectrum of flow scales, should be utilized.

Another way to improve the transfer of information between different scale
flow can be achieved by solving separate conservation equations for a se
ranges of scales. In this approach, an additional difficulty in constituting the 
servation equations as well as describing there mutual interactions will be fac
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APPENDIX A

Interfacial Mean Pressure model, IMP

Equation (5) together with the definitions (14) and (15) produce the following
balance equation of momentum

(A1)

By extracting the pressure contribution from the first term on the right side of equa-
tion (A1), on the basis of the definition (11), and combining it with the fourth term
results in

. (A2)

For problems involved with the surface tension the relation between the interfacial
mean pressures can be written as

, (A3)

where  is the surface tension coefficient and  is the average mean curvature.
Further discussion on pressure approximations can be found, e.g., in [1]. Thus, by
taking into account the definitions of stresses (12) and (13), for particulate flows,
the momentum equations of fluid and dispersed phases can be written as given in
(19) and (20).

Direct Interfacial Force model, DIF

By combining equations (14) and (18) with equation (5) results in the momen-
tum equations for the fluid and dispersed phases of the form

(A4)

(A5)
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∂ εdρdŨd( ) ∇ εdρdŨd Ũd⊗( )•+ ∇ εdTd( )• εdρdg+=

Md
I Ud

I εd∇ Tf
v

• Fd
D ∇ εdTd

p( )•– Fd
S

.+ + + +



right
d and

nces
By utilizing the definition (12) the viscous stress parts of the first term on the 
side and of the interfacial momentum source in equation (A4) can be expande
then subsequently simplified as

(A6)

With the result (A6) and with the definitions (12) and (13) the momentum bala
(A4) and (A5) can be written into the form of (21) and (22).

1. Drew, D. A. Mathematical modeling of two-phase flow. Ann. Rev. Fluid
Mech., 1983. Vol. 15, pp. 261–291.
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APPENDIX B

The non-singular coordinate transformation mapping from a right-handed 
tesian frame in the physical space  to a right-handed curvilin
frame in the computational space  is determined by specifying
Jacobian matrix of this transformation

. (B1)

Additional useful mathematical concepts in this context are the inverse Jac
matrix , the Jacobian determinant  and the adjugate Jacobian matrix 

, (B2)

and (B3)

. (B4)

Every curvilinear frame  can be associated with two distinct frames of b
vectors of which the first one is tangential to the coordinate curves  an
other one is normal to the coordinate surfaces . Their Cartesian componen
given by

and . (B5)

The area vectors of the surfaces of an elementary grid cell (Figure 1(a)) 
i.e., the vectors pointing to the outward normal direction of a cell face with ma
tude equal to the area of the face, are obtained as

, and . (B6)

With the help of these area vectors the volume of an elementary grid cell 
then related to the Jacobian determinant as

. (B7)

Because the two frames of basis vectors defined by (B5) are dual to each
, equation (B7) can be written in the form

. (B8)
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In this way the contravariant frame of basis vectors  is related to the area
tors , which in turn are dependent on the covariant frame of basis vectors

. (B9)

Thus the Cartesian components of area vectors  are determined by the ad
Jacobian matrix  as

. (B10)

As evident in the subsequent treatment, the necessary information to pe
the coordinate transformation includes only volumes and Cartesian compone
the area vectors of grid cells in the physical space. This information is comp
by calculating the Jacobian determinant  and the adjugate Jacobian matr
of the transformation.

Since separate balance equations for velocity components in the physical
are used, these components are treated in essence like any other scalar de
variable . Thus it is only necessary to transform the prototype equation (3
order to describe the method. Using tensorial notation, equation (34) in the p
cal space coordinates can be written as

(B11)

Equation (B11) can be simply rewritten as

(B12)

by defining the total phasic flux  and the total phasic source  to be

and (B13)

. (B14)
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B3

On the basis of the Gauss law, equation (B12) is equivalent to the conservation law

, (B15)

where  is the volume of any physical space domain and  its surface.
According to tensor calculus, the covariant divergence of a vector is defined as

, (B16)

in which  is a generic vector and  its contravariant component. Instead of
using the contravariant component of a vector, it is more beneficial to utilize the
normal flux component  defined as

. (B17)

With definitions (B16) and (B17), and on the basis of the information in equa-
tion (B15), the balance equation (B12) can be transformed to the computational
space coordinates

, (B18)

in which  is the total normal phasic flux

(B19)

For mass balances and fluxes the dependent variable  should be set equal to
one.

In equation (B19)  is the inverse metric tensor

, (B20)

which is used to raise the index of the covariant vector  and  is the
normal flux velocity component

. (B21)
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ÎΦα

i J I 'Φα

i J εα ραU'α
i Φα Γα g

ij Φα∂

ξ j∂
-----------–

 
 
 

= =

εα ραÛα
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The prototype conservation equation in the computational space (B18) h
effect the same structure as the one in the physical space, equation (B12), w
exception that the diffusivity  has been replaced by the diffusivity tensor

. (B22)

The multiplier  in equation (B22) containing only geometric information
referred to as the geometric diffusion coefficient.

Following the structure of the prototype equation (B11), the macrosc
momentum balance (32) is expressed in a tensorial form as

(B23)

Accordingly, the first three terms on the right-hand side of equation (B23) are
treated as source terms. Utilizing the Gauss law on a volume of the physical 

, the pressure gradient term can be put into the following form

. (B24)

Associating the volume  with a differential control volume, the coordin
transformation of the pressure gradient term can be given as

. (B25)

The chain rule can be used to relate the derivatives in the physical space 
derivatives in the computational space

. (B26)

This relation can be utilized to transform the second term on the right-hand s
equation (B23) as follows
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APPENDIX C

In order to obtain the pressure correction equation for the fluid phase in
frame of the phase-sequential solution method, the momentum equation o
fluid is written in the form

. (C1)

Such corrections to the fluid pressure  are then introduced which produce
estimates of the phasic velocities  obeying the fluid mass balance. Thes
estimates are defined as a sum of the current value and the correction as

and . (C2)

In order to limit the interdependency of the cells in equation (C1), the velo
corrections to the neighbours of the cell under consideration are disca
Accordingly, the velocities in the neighbouring cells are approximated as

, (C3)

where the weight factor  for the SIMPLE algorithm and  for t
SIMPLEC algorithm [1]. Substitution of equations (C2) and (C3) to equation (
results in

(C4)

By expanding the terms on the right side, equation (C4) can be arranged in
form

(C5)

The first three terms on the right side equal to the corresponding side of equ
(C1) calculated with the current values of the fluid mean velocity. Substitutio
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C2

that equation into equation (C5) gives

(C6)

With the help of the definition (C2) equation (C6) can be solved for the unknown
corrections to the phasic Cartesian velocity components of the fluid phase

, where (C7)

and (C8)

. (C9)

Equation (C7) provides now the desired relation between the fluid pressure correc-
tions and the phasic Cartesian velocity components of the fluid.

1. Van Doormal, J. P. and Raithby, G. D. Enhancements of the SIMPLE method
for predicting incompressible fluid flows. Numerical Heat Transfer, 1984.
Vol. 7, pp. 147–163.
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APPENDIX D
The essential idea in the improved Rhie-Chow momentum interpolation sch

is that after proper treatment the source term is immersed in the pressure gr
term, partly or completely. The advantage of this treatment is the smoother b
iour of this combined term as the source term alone. Although both the pre
gradient term and the source term are multiplied by the volume fraction, the
kept in this form as the volume fraction diminishes the strong variations of so
term.

At first, the part of the source term having rapid changes in it’s value is s
rated from the rest

, (D1)

where  and  are the part for improved treatment and the rema

part of a customary source term. As in the discretized balance equation the s
term is in a linearized form, these terms include only the zero order terms wh
the first order terms are combined to the current point coefficient . Nex

the extracted source terms, defined at cell centres, are interpolated to cell fac
weighted linear interpolation with a weight factor of one half. The covariant c
ponents of these interpolated source terms are then calculated

. (D2)

In equation (D2) the notation  stands for the weighted linear interpola
between the cell centres  and  is a unit area vector of the
face between the current and neighbour cells. To obey the conservation laws
cell face covariant components are used to define new cell centre source term
the help of the generalized Gauss law

, (D3)

in which  is the weight factor from cells face c to current cell centre P. In the
improved procedure the cell face source terms (D2) are combined to shared
sure gradients at cell faces and the cell centre source terms (D3) are imme
cell centre pressure gradients. The momentum balance is now written in the f

, where (D4)
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By following the treatment in section 5.1 the momentum balance (D4) is inte
lated for the imaginary staggered cell resulting to

(D6)

By defining the coefficient of pressure gradient term as for the extended R
Chow method, i.e.,  by the equation (124), and with assumptions (127)
(128) the improved Rhie-Chow momentum interpolation scheme can be state

(D7)

. (D8)

As before, the interpolation scheme for phasic normal flux velocity componen
obtained by applying the definition (B21)

(D9)

. (D10)
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