
V
TT PU

BLICA
TIO

N
S 476

M
iddlew

are for V
irtual H

om
e Environm

ents. A
pproaching the A

rchitecture
M

arkus M
oilanen

Tätä julkaisua myy Denna publikation säljs av This publication is available from

VTT TIETOPALVELU VTT INFORMATIONSTJÄNST VTT INFORMATION SERVICE
PL 2000 PB 2000 P.O.Box 2000
02044 VTT 02044 VTT FIN�02044 VTT, Finland

Puh. (09) 456 4404 Tel. (09) 456 4404 Phone internat. +358 9 456 4404
Faksi (09) 456 4374 Fax (09) 456 4374 Fax +358 9 456 4374

ISBN 951–38–6003–5 (soft back ed.) ISBN 951–38–6004–3 (URL: http://www.inf.vtt.fi/pdf/)
ISSN 1235–0621 (soft back ed.) ISSN 1455–0849 (URL: http://www.inf.vtt.fi/pdf/)

ESPOO 2002ESPOO 2002ESPOO 2002ESPOO 2002ESPOO 2002 VTT PUBLICATIONS 476

Markus Moilanen

Middleware for Virtual Home Environments

Approaching the Architecture

Virtual Home Environments (VHE) is the concept that networks supporting
mobile users should provide them the same computing environment on the
road as they are used to having in their home or corporate computing
environment. The VHE Middleware project is one of the ITEA projects. The
goal of the project is to make European industry the leader in Middleware
software technology for end-user terminals, with wireless connections and
the corresponding infrastructure to enable VHE. This publication documents
the R&D on VHE Middleware carried out by VTT Electronics. A full case
study evaluating an advanced method of identifying the conceptual
architecture of a SW system from its functional requirements is presented.
The proposed method is based on the common knowledge of object-oriented
analysis (OOA) methodology, which claims that every software system
contains hierarchical structures that reflect its functional requirements. In
OOA methodology, these structures and their hierarchies can be found by
analysing and structuring the problem descriptions - the Use Case analysis.
The advanced method here is how to seamlessly move from a use case model
to a conceptual architecture model of the software system. User’s scenarios
and software prototypes of the VHE system are used as a case study. Using
the proposed method, the VHE system’s subsystems, layers and APIs have
been found and the conceptual architecture of VHE Middleware has been
drawn up. After this, the technical development of the case is extended
concretising the VHE Middleware architecture and its elements.

VTT PUBLICATIONS 476

Middleware for Virtual Home
Environments

Approaching the Architecture

Markus Moilanen
VTT Electronics

ISBN 951–38–6003-5 (soft back ed.)
ISSN 1235–0621 (soft back ed.)

ISBN 951–38–6004-3 (URL: http://www.inf.vtt.fi/pdf/)
ISSN 1455–0849 (URL: http://www.inf.vtt.fi/pdf/)

Copyright © VTT Technical Research Centre of Finland 2002

JULKAISIJA – UTGIVARE – PUBLISHER

VTT, Vuorimiehentie 5, PL 2000, 02044 VTT
puh. vaihde (09) 4561, faksi (09) 456 4374

VTT, Bergsmansvägen 5, PB 2000, 02044 VTT
tel. växel (09) 4561, fax (09) 456 4374

VTT Technical Research Centre of Finland, Vuorimiehentie 5, P.O.Box 2000, FIN–02044 VTT, Finland
phone internat. + 358 9 4561, fax + 358 9 456 4374

VTT Elektroniikka, Kaitoväylä 1, PL 1100, 90571 OULU
puh. vaihde (08) 551 2111, faksi (08) 551 2320
VTT Elektronik, Kaitoväylä 1, PB 1100, 90571 ULEÅBORG
tel. växel (08) 551 2111, fax (08) 551 2320

VTT Electronics, Kaitoväylä 1, P.O.Box 1100, FIN–90571 OULU, Finland
phone internat. + 358 8 551 2111, fax + 358 8 551 2320

Technical editing Maini Manninen

Otamedia Oy, Espoo 2002

3

Moilanen, Markus. Middleware for Virtual Home Environments. Approaching the Architecture.
Espoo 2002. VTT Publications 476. 115 p. + app. 46 p.

Keywords software systems, software layers and subsystems, conceptual architecture,
object-oriented analysis OOA, application programming interfaces, APIs,
unified modelling language UML, user interface mark-up language UIML,
generic user interface, remote service development, serverless service
provisioning

Abstract
Virtual Home Environments (VHE) is the concept that networks supporting
mobile users should provide them with the same computing environment on the
road as they are used to having in their home or corporate computing
environment. Middleware for Virtual Home Environment (the VHE Middleware
project) is one of the ITEA (Information Technology for European
Advancement) projects. The goal of the project is to make European industry the
leader in Middleware software technology for end-user terminals, with wireless
connections and the corresponding infrastructure to enable VHE. The project
partners are Nokia (FIN), Siemens (D), Fujitsu-Siemens (D), Orga
Kartensysteme (D), Paderborn University (D), Philips (NL, B, D), Robert Bosch
(D), and VTT Electronics (FIN). This publication documents the research and
development of VHE Middleware carried out by VTT Electronics. In a scientific
sense, a full case study evaluating an advanced method of identifying the
conceptual architecture of a software system from its functional requirements is
presented. The proposed method is based on the common knowledge of object-
oriented analysis (OOA) methodology, which claims that every software system
contains hierarchical structures that reflect its functional requirements. In OOA
methodology, these structures and their hierarchies can be found by analysing
and structuring the problem descriptions - the Use Case analysis. The advanced
method here is how to seamlessly move from a use case model to a conceptual
architecture model of the software system. User’s scenarios and software
prototypes of the VHE system are used as a case study. Using the proposed
method, the VHE system’s subsystems and layers, and their corresponding
application programming interfaces (APIs), are found and the conceptual
architecture of VHE Middleware drawn up. After this, the technical
development of the case is extended to fully concrete the VHE Middleware
architecture and its elements.

4

Preface
ITEA (Information Technology for European Advancement, http://www.itea-
office.org/) is a European-wide research and development (R&D) programme
seeking to stimulate and support the development of competencies in software
technology as a benefit to European industry. This is to be achieved by
improving the quality of embedded and distributed software, thereby enabling
greater innovation and richness of function in complex, software-intensive
systems. ITEA's work is organised in projects with a typical duration of two
years. The programme is managed at the European level within the EUREKA
framework for R&D (http://www.eureka.be/), and involves a great deal of co-
operation between nations, industrialists and public research centres. Being part
of EUREKA, ITEA interfaces with other EUREKA projects and with the
Framework Programmes of the European Commission's IST (Information
Society Technologies) programme (http://www.cordis.lu/ist/home.html).
Middleware for Virtual Home Environments (the VHE Middleware project,
http://www.vhe-middleware.org) is one of the ITEA projects (ITEA 99013).
This publication deals with the VHE Middleware project. The project’s work
packages (WPs) are “WP1: System Requirements & Design”, “WP2: VHE
Middleware for Multi-Standard Terminals”, “WP3: VHE Middleware for Smart
Card Platform“, “WP4: VHE Middleware for VHE User-interface”, “WP5:
Technology Integration, Validation, Tests, and Documentation“ and “WP6:
Dissemination and Standardisation”. VTT Electronics, being one of the project
members, participated in a set of the project’s WPs. This publication contributes
to the WPs as follows:

WP 1 - “System Requirements and Design”. The scope of this WP is
explained through its tasks, as follows:

• Task 1.1 - “Technology Tracking and Platform/Device Selection”. The
contribution dealing with the abstract requirements of VHE in general is
published in Appendix C.

• Task 1.2 - “Scenario and Prototype Definition”. This task is presented in
this publication by republishing the three user scenarios of possible VHE
services for end-users in Appendix A, and as the functional requirements of
VHE and the base for their further analysis.

5

• Task 1.3 - “System Modelling and Architectural Design”. The purpose of
this task was to initialise the development of the VHE Middleware software
architecture. The evaluations of the architectural modelling mechanism and
specification techniques were also to be included. The conceptual design of
the VHE Middleware architecture presented in this publication is intended to
fulfil both purposes.

• Task 1.4 - “Component Modelling and API-design”. The purpose of this
task was to achieve agreement on a common description format for the
interfaces and to assign responsibilities aspects of VHE. The development of
the VHE Middleware APIs presented in this publication is intended to fulfil
this purpose.

WP 4 - “VHE Middleware for VHE User Interface”. The development of a
generic, scalable, multi-modal user interface concept for making connections
that can be implemented with voice input/output in combination with the small
monochrome displays of telephones right up to the large colour displays on TV
sets and computer monitors. Because the VTT Electronics contribution to this
WP is used as a case study here, it is reproduced in Appendix B.

WP 6 - “Dissemination and Standardisation”. This WP deals with the
promotion and standardisation of VHE Middleware technology. This text will
contribute to this WP as a whole.

Personally:

Personally, I have been working as a participator in the VHE Middleware project
for over two years. My work was in the R&D of the VHE Middleware’s
architecture. Although the subject is amenable to academic dissemination in
many forms, this is not entered into in this publication.

Several people have contributed to both the publication and the project. All of
these people will be acknowledged later in this publication. For further
information, please see the Acknowledgements chapter. However, I would like
to emphasise the role of Mr. Hannu Rytilä, Mr. Johan Plomp, and Mr. Tapani
Rantakokko – many thanks to them for their support.

6

Furthermore, I would like to thank all European project partners.

Special thanks belongs to the reviewer Dr. Wolfgang Müller (e-mail:
Wolfgang.Mueller@c-lab.de) from Paderborn University for his suggestions and
comments which I have carefully taken into account.

Finally, I also wish to express my thanks to the personnel of VTT organisation
and Tekes (the National Technology Agency of Finland) for making the work
possible by the support and funding.

Oulu, Finland, 30 November, 2002

Markus Moilanen, M.Sc. Personal information and contacts at
http://www.iki.fi/markus.moilanen

7

Contents

Abstract... 3

Preface .. 4

List of Abbreviations .. 11

1. Introduction... 15
1.1 Existing VHE and Middleware Architectures 16

1.1.1 Object Management Architecture ... 16
1.1.2 Open Service Architecture .. 18
1.1.3 NSF Middleware Initiative.. 20
1.1.4 Open Services Gateway Initiative ... 22
1.1.5 Summary ... 25

1.2 VHE Use Cases ... 27
1.3 Approaches, Methods and Tools ... 29
1.4 Structure of the Document... 30

2. Evolving Information Systems ... 33
2.1 Manually-driven Information Systems.. 34
2.2 Automatic and Semi-automatic Information Systems......................... 37
2.3 Elaboration of the Producer/Consumer-paradigm for Semi-automatic

Information Systems.. 37
2.4 Chapter Summary.. 41

3. Architecture Concept of VHE Middleware .. 42
3.1 Functional Requirements... 42
3.2 Non-functional Requirements ... 42
3.3 Elaboration of the VHE Use Cases.. 43

3.3.1 Elaboration of the "Use Case - GenericUI"............................. 45
3.3.2 Elaboration of the "Use Case - Remote Development" 51
3.3.3 Elaboration of the "Use Case - Serverless Service

Provisioning"... 56
3.4 Summary of Conceptual Architecture Design..................................... 59

3.4.1 VHE Middleware for Core Services 60
3.4.2 VHE Middleware for GenericUI... 61

8

3.4.3 VHE Middleware for Remote Service Development.............. 61
3.4.4 VHE Middleware for Serverless Service Provisioning........... 62

3.5 Chapter Summary.. 63

4. APIs of VHE Middleware .. 65
4.1 "Supports Automatic Service" API ... 66

4.1.1 Interfaces of the "Supports Automatic Service" API 72
4.2 "Supports Service Usage" API .. 73

4.2.1 Interfaces of the "Supports Service Usage" API 75
4.3 "Supports GenericUI Service" API ... 75

4.3.1 Interfaces of the "Supports GenericUI Service" API 79
4.4 "Supports Home Service" API .. 79

4.4.1 Interfaces of the "Supports Home Service" API 85
4.5 Chapter Summary.. 86

5. Case Study .. 87
5.1 Decomposition Model of the UIML Service....................................... 87
5.2 APIs of the UIML Service... 88

5.2.1 "Supports UIML Service Usage" API..................................... 89
5.2.2 "Supports UIML Home Service" API..................................... 94
5.2.3 "Supports UIML Service" API.. 97

5.3 Chapter Summary.. 104

6. Conclusions and Further Research ... 105
6.1 Applicability of Proposed Method .. 105
6.2 Applicability of the Architecture... 107
6.3 Further Development... 109

Acknowledgements... 111

References... 113

Appendices

Appendix A: VHE Use Cases - Contribution of VTT Electronics A1
1. VHE Use Case - GenericUI.. A1
2. VHE Use Case - Remote Service Development............................... A10
3. VHE Use Case - Serverless Service Provisioning............................ A16

9

Appendix B: Technical Specification of UIML Service.................................... B1
1. Purpose ... B1
2. System Specification .. B2

2.1 Partitioning... B3
2.2 Message Sequences.. B6
2.3 Packaging ... B11
2.4 Interface specification .. B13
2.5 Requirements for services .. B14
2.6 Additional illustrations of UIML Service B15

3. References .. B17

Appendix C: Abstract Requirements Specification of VHE.............................. C1
1. Purpose ... C1
2. System Requirements ... C1

2.1 Challenges.. C2
2.2 Functional Requirements ... C3
2.3 Quality Requirements... C6
2.4 Mapping the Quality-attributes for the VHE.......................... C8
2.5 Constrains... C10

11

List of Abbreviations
3D Three Dimensional

3GPP The 3rd Generation Partnership Project

AM Architecture Model

API Application Programming Interface

B Belgium

CORBA Common Object Request Broker Architecture

D Federal Republic of Germany

DM Dynamic Model

EDIT Enterprise and Desktop Integration Technologies

ETSI European Telecommunications Standards Institute

FIN Finland

FTP File Transfer Protocol

GUID Globally Unique Identifier

GPRS General Packet Radio Service

GRIDS Grid Research Integration Deployment and Support

HLR Home Location Register

HTML Hyper-Text Mark-up Language

12

HTTP Hyper-Text Transfer Protocol

IDL Interface Definition Language, Interface Description Language

IETF Internet Engineering Task Force

IIOP Internet Inter-ORB Protocol

IP Internet Protocol

IR Infra-Red

ISO International Standardisation Organisation

ITEA Information Technology for European Advancement

ITU ISO Telecommunication Union

JMS Java Messaging Service

LON Local Operating Network

MExE Mobile Execution Environment

MVC Model-View-Controller

NA Not Available

NFR Non-Functional Requirements

NL Netherlands

NMI NSF Middleware Initiative

NSF National Science Foundation

OCL Object Constraint Language

13

OMA Object Management Architecture

OMG Object Management Group

OO Object-Oriented

OOA Object-Oriented Analysis

OS Operating System

OSGi Open Service Gateway initiative

PCC Project Co-ordination Committee

PDA Personal Digital Assistant

PLA Product Line Architecture

PSE Personal Service Environment

PKI Public-Key Infrastructure

QoS Quality of Service

RAD Rapid Application Development

RMI Remote Method Invocation

SCF Service Capability Features

SCS Service Capability Servers

SM Static Model

TCP Transfer Control Protocol

TS Technical Specification

14

UDP Unreliable Datagram Protocol

UI User Interface

UID Unique Identifier

UIML User Interface Mark-up Language

UMTS Universal Mobile Telecommunication System

UML Unified Modelling Language

URI Uniform Resource Identifier

VCR Video Cassette Recorder

VHE Virtual Home Environments

VR Virtual Reality

VXML Voice Extensible Mark-up Language

WAP Wireless Application Protocol

WLAN Wireless Local Area Network

WML Wireless Mark-up Language

WP Work Package

WWW World Wide Web

XML Extensible Mark-up Language

15

 1. Introduction
Mobile appliances and nomadic ubiquitous computing are beginning to play an
important role in current developments of information technology. Virtual Home
Environments (VHE) is the concept that networks supporting mobile users
should provide them with the same computing environment on the road as they
are used to having in their home or corporate computing environment. The home
services provided at a user’s home should still be usable outside the home - users
should be able to take advantage of their home environments when they are
away from their homes. The VHE Middleware project [1] aims to define the
middleware software technologies to be used in the different devices for
establishing VHE. VHE will allow users to retain and personalise the home
services under their authority wherever they are, and use them at any time, in
both wireless and wired environments. A core component of VHE will be a
generic connection service, which will enable residential or business users to
contact back-office or home services in an ad-hoc fashion, independent of the
environment (wired or wireless), and the access device – such as mobile phone,
PDA (Personal Digital Assistant), desktop computer, etc. Beyond the technical
level, it is within the scope of the project to identify those VHE services that
attract end users and potential providers of the services. In fact, the VHE
Middleware project was started by developing several descriptions of these
VHE-service candidates. After that phase, the project was continued by
developing several prototype systems reflecting users’ scenarios in the selected
VHE-service candidates.

The purpose of this text is twofold: to present the scientific results of the
software research accomplished in the VHE Middleware project, and to
document the contemporary technical developments of the VHE Middleware.

In the scientific sense of contributing to computational science, this publication
will evaluate an advanced method of identifying a conceptual architecture and
APIs of the software system from its functional requirements. Users’ scenarios
of the VHE-system, and their corresponding software prototypes, will be used as
a case study. Using the proposed method, the VHE-system’s subsystems, and
their software layers and corresponding APIs (Application User Interfaces), will
be found and, consequently, the conceptual architecture will be drawn up.

16

In the sense of technical development, this text will establish preliminary
requirements for VHE Middleware. The requirements will be expressed as a
middleware architecture concept and the preliminary API definitions of essential
middleware components concretising the architecture. Furthermore, the
documentation of the technical development will include the requirements and
technical specification of a prototype system of VHE developed by VTT
Electronics.

 1.1 Existing VHE and Middleware Architectures

There are several ongoing research projects established to develop VHE
technology. The VHE Middleware project is the first one that was intended to
cover the issue of VHE Middleware technology. Several projects developing
middleware technology for systems other than VHE certainly exist. As a short
introduction to the issues of VHE and Middleware, a few examples from these
categories will be presented in this section.

 1.1.1 Object Management Architecture

CORBA (Common Object Request Broker Architecture) is OMG's (Object
Management Group) open, vendor-independent architecture and infrastructure
that computer applications use to work together over networks commonly
identified as middleware architecture. Using the standard protocol of IIOP
(Internet Inter-ORB Protocol), a CORBA-based program from any vendor, on
almost any computer, operating system, programming language
and network, can inter-operate with another CORBA-based program from the
same or another vendor.

According to OMG, middleware architecture is the glue that holds enterprise
applications together. The OMG’s OMA (Object Management Architecture) [2]
middleware architecture categorises objects into four categories: CORBA
services, CORBA facilities, CORBA domain objects, and Application objects.
Figure 1 presents the classic OMA architecture diagram. Applications, even if
they perform totally different business tasks, share a lot of common
functionality. For example, objects notify other objects when something

17

happens, object instances are created and destroyed, new objects' references are
passed around, and the operation must be made secure and transactional. Beyond
this, applications within a business domain - for example, the transportation
business, banking business, etc. - share even more functionality. The OMA
architecture abstracts out this common functionality from the CORBA
applications into a set of standard objects that perform clearly defined functions
accessed through standardised OMG IDL interfaces (Interface Definition
Language). OMG standardises the IDL interfaces and specifies what the objects
should do. Software vendors should then implement and sell implementations of
these objects that perform the specified services.

ORB

Application
Objects

Domain
CORBA
Facilities

Horizontal
CORBA
Facilities

CORBA
Services

Figure 1. The classic OMA middleware architecture diagram.

Here is a view of each of the four parts of the OMA architecture (see Figure 1
above):

• The CORBA Services include the Naming service, Object Trader service,
and the new Persistent State service.

• The Application Objects are at the topmost part of the OMA hierarchy.
Since they are typically customised for an individual application and do not
need standardisation, this category identifies objects that are not affected by
the OMG standardisation efforts.

18

• The Domain CORBA Facilities are where the most work happens in OMG.
IDL is a way of defining standard interfaces for standard objects that every
company in an industry can share.

• The Horizontal CORBA Facilities sit between the CORBA Services and
the Application Objects. Unlike the Domain CORBA Facilities, these
facilities are potentially useful across business domains. There are only four
horizontal CORBA facilities: the Printing facility, the Secure Time facility,
the Internationalisation facility, and the Mobile Agent facility.

• The role of the ORB (Object Request Broker) is to enable a request to be
carried out in a heterogeneous distributed environment. Clients can issue a
request for objects, send the request to the appropriate objects, and prepare
the objects to receive and process the request and return the results back to
the clients. The ORB, therefore, implements a level of distribution
transparency. The distribution transparency is defined in the ISO/ITU-T
(International Standardisation Organisation / ISO Telecommunication Unit)
standard 10746 [3] as a system’s ability to mask out the heterogeneity and
networked nature of distributed computing - the programming of distributed
applications will become as easy as the programming of local applications.

 1.1.2 Open Service Architecture

The 3GPP (The 3rd Generation Partnership Project) has standardisation
activities to support the VHE concept as a part of their UMTS standardisation
(Universal Mobile Telecommunications System). This standard is documented
in the ETSI TS (European Telecommunications Standards Institute Technical
Specification) 123 127 V3.0.0 (2000-3) [4], where VHE is defined as a concept
for personal service environment (PSE) portability across network boundaries
and between terminals. The concept of VHE is such that users are consistently
presented with the same personalised features, user interface (UI) customisation
and services in whichever network and whichever terminal, wherever the user
may be located.

Open Service Architecture (OSA) defines an architecture that enables operator
and third-party applications to make use of network functionality through an

19

open standardised interface (OSA Interface). OSA provides the glue between the
applications and service capabilities provided by the network. By this,
applications become independent of the underlying network technology - a
typical feature of the existing middleware architectures. The applications
constitute the top level of OSA. This level is connected to the Service Capability
Servers (SCSs) via an OSA Interface. The SCSs map the OSA Interface Classes
onto the underlying protocols and hide the network complexity from the
applications. PSE describes how the user wishes to manage and interact with the
communication services, which is a combination of a list of subscribed services,
service preferences and terminal interface preferences. PSE also encompasses
the user management of multiple subscriptions, e.g. business and private,
multiple terminal types and location preferences. PSE is defined in terms of two
kinds of user profiles: 1) the user interface profile and 2) the user services
profile. The network functionality offered to applications is defined as a set of
Service Capability Features (SCFs) in the OSA Interface. The SCFs are
supported by different SCSs. The aim of OSA is to provide an extendible and
scalable architecture that allows the inclusion of new SCFs and the SCSs in
future releases of UMTS with a minimum impact on the applications using the
OSA Interface. The SCSs serve as gateways between the network entities and
the applications. The OSA API is based on the lower layers using mainstream
information technologies and protocols. The middleware (e.g. CORBA) and
lower layer protocols should provide security mechanisms to encrypt data.

The OSA-architecture is illustrated in Figure 2. The architecture consists of three
parts:

• Applications implemented in one or more Application Servers.

• Framework, providing applications with basic mechanisms that enable
them to make use of the service capabilities in the network. Examples of
framework SCFs are Authentication and Discovery.

• SCSs, providing the applications with SCFs. SCFs are abstractions from the
underlying network functionality. Examples of SCFs offered by SCSs are
Call Control and User Location. The SCFs are specified in terms of a
number of interface classes and their methods. The interface classes are
divided into two groups: 1) the framework interface classes, describing the

20

methods on the framework, and 2) the network interface classes, describing
the methods on SCSs.

SCSs

Network

Application ServerApplication Server

Application Application Application

OSA Interface

Home Location
Register (HLR) MExE server etc.

Framework

e.g. discovery

Interface
Class

Interface
Class

User Location

Interface
Class

Interface
Class

Call Control

Interface
Class

Interface
Class

Interface
Class

Interface
Class

Application Server

Application

Figure 2. The OSA-architecture.

 1.1.3 NSF Middleware Initiative

In late September 2001, the National Science Foundation (NSF) funded the
creation of an NSF Middleware Initiative (NMI), (NSF02028) [5], to help
scientists and researchers use the Internet to effectively share instruments,
laboratories and data, and to collaborate with their colleagues. According to
NMI, Middleware is software that connects two or more otherwise separate
applications across the Internet. NMI will create and deploy advanced network
services for simplifying access to diverse Internet resources. The initiative
consists of two teams: the GRIDS (Grid Research Integration Deployment and
Support) centre and the Enterprise and Desktop Integration Technologies (EDIT)
consortium. The activities will facilitate the sharing of unique scientific
resources such as telescopes, supercomputing systems or linear accelerators, as
well as common resources such as databases, directories or calendars. The NMI
technologies for user authentication and resource discovery could let students
access national resources, including up-to-the-minute data and real-time

21

instrumentation. One important emphasis is to explore ways in which the Grid
computing can be integrated with enterprise computing on university campuses.

“Internet2” is a project under the EDIT team of NMI and lists the next five
services as being central of the Middleware as a whole, calling them the “Core
Middleware”:

• Identifiers - A set of computer-readable codes that uniquely specify a
subject.

• Authentication - The process of a subject electronically, establishing that it
is, in fact, the subject associated with a particular identity.

• Authorisation - Those permissions and workflow engines that drive
transaction handling, administrative applications and automation of business
processes.

• Directories - Central repositories that hold information and data associated
with identities. These repositories are accessed by people and by
applications - for example, to get information, customise generic
environments to individual preferences, and route mail and documents.

• Security - Certificates and public-key infrastructures (PKI) are related to the
previous four core middleware services in several important ways.

Furthermore, according to Internet2, in addition to the Core Middleware there
are numerous services that applications would like to have provided for them,
rather than having to perform these functions themselves. These are called the
”Upper Middleware” and they can be grouped into three categories, as described
below:

• Business Application Middleware – Typically, businesses are seeking
extended tool sets with which to construct modular accounting or
transactional applications. Four services are frequently mentioned in this
category: object resource brokering, to find business data in distributed
environments; message handling, both asynchronous and synchronously

22

between processes; transaction monitoring, to perform audit functions; and
application gateways like electronic mail service (e-mail).

• Research Application Middleware - Complex networked computing
environments are being developed to support the acquisition, processing and
management of scientific data in unique situations where high-end resources
are required. Network storage systems and specialised scientific instruments
are being connected together into fabrics to address particular research
agendas. Managing this environment requires a number of advanced
services, such as co-scheduling of networked resources, bandwidth brokers,
library synchronisation, and database discovery.

• Ubiquitous Computing Tools - To achieve "anywhere, anytime, anyhow"
computing, users will need to be presented with a consistent, customised
interface while employing a variety of devices from a variety of locations.
While such mobility, portability and ubiquity will depend heavily on
authentication and directory services, additional protocols and APIs need to
be established. For example, standard sets of data will need to be moved
frequently and securely between devices and centralised directories.
Mechanisms are also needed to change attribute preferences, depending on
the characteristics of the device being used.

 1.1.4 Open Services Gateway Initiative

The Open Services Gateway Initiative (OSGi) [6] was founded in March 1999.
Its mission is to create open specifications for the network delivery of managed
services to local networks and devices. With over 80 member companies today,
OSGi has a good chance to become the leading standard for the next-generation
Internet services to homes, cars, small offices and other environments. The
OSGi service platform specification delivers an open, common architecture for
service providers, developers, software vendors, gateway operators and
equipment vendors to develop, deploy and manage services in a co-ordinated
fashion. It enables a new category of smart devices due to its flexible and
managed deployment of services. The primary targets for the OSGi
specifications are set top boxes, service gateways, consumer electronics, PC's,
industrial computers, cars and more. These OSGi enabled devices will enable

23

service providers to deliver differentiated and value added services over their
networks. Release 1.0 of the OSGi specification contained a specification for a
service framework. This framework provides an execution environment for
electronically downloadable services, called bundles. Deployed bundles are
executed inside that framework and find a well-defined and protected
environment. This environment includes a Java runtime and adds life cycle
management, persistent data storage, version management and a service
registry. Services are Java objects implementing a concisely defined interface.
The OSGi framework registry is used to exchange services between bundles in a
secure and controlled manner. Through this registry, bundles may provide
services to other bundles as well as use services from other bundles. The registry
is fully security protected, allowing the operator full control over the platform.
Release 1.0 specification included the Framework and three basic service
specifications: logging, a web server and device access.

The OSGi Release 2 improves and extends the existing APIs. Security is
strengthened and it is now possible to let a special management bundle fully
define and control the security aspects of a bundle, in real time. This release also
includes a number of new service specifications.

OSGi Framework

The Framework forms the core of the OSGi Service Platform Specification. It
provides a general-purpose, secure, managed Java framework that supports the
deployment of extensible and downloadable service applications known as
bundles. OSGi-compliant devices can download and install OSGi bundles, and
remove them when they are no longer required. Installed bundles can register a
number of services that can be shared with other bundles under strict control of
the Framework. The Framework manages the installation and update of bundles
in an OSGi environment in a dynamic and scalable fashion, and manages the
dependencies between bundles and services. It provides the bundle developer
with the resources necessary to take advantage of Java’s platform independence
and dynamic code-loading capability in order to easily develop, and deploy on a
large scale, services for small-memory devices. Equally important, the
Framework provides a concise and consistent programming model for Java
bundle developers, simplifying the development and deployment of services by
decoupling the service’s specification (Java interface) from its implementations.

24

This model allows bundle developers to bind to services solely from their
interface specification. The selection of a specific implementation, optimised for
a specific need or from a specific vendor, can thus be deferred to runtime.

The Framework allows bundles to select an available implementation at runtime
through the Framework service registry. Bundles register new services, receive
notifications about the state of services, or look up existing services to adapt to
the current capabilities of the device. This aspect of the Framework makes an
installed bundle extensible after deployment: new bundles can be installed for
added features, or existing bundles can be modified and updated without
requiring the system to be restarted. The Framework provides mechanisms to
support this paradigm, which aid the bundle developer with the practical aspects
of writing extensible bundles. These mechanisms are designed to be simple so
that developers can quickly achieve fluency with the programming model.

Bundles

The OSGi [6] framework consists of installable core System Bundle, a selectable
set of optional Management Bundles, and the Service Bundles that the
application’s programmer can implement if necessary for a specific application
domain. The OSGi System Bundle must be installed to enable the other Service
Bundles to be installed. To be valid, a System Bundle, as every other service
bundle in the OSGi environment, must implement the interface “Bundle”.

The OSCI-architecture

The three key aspects of the OSGi mission are multiple services, wide area
networks, and local networks and devices. An abstract view of the wide area
network, local network, and services gateway is shown in Figure 3. OSGi
concentrates on the complete end-to-end solutions architecture from remote
service provider to local devices. Because the OSGi specification focuses on
providing an open application layer and gateway interface, it complements and
enhances virtually all current local networking standards and initiatives.

The central component of OSGi specification effort is the services gateway that
functions as the platform for many communications based services. The services
gateway can enable, consolidate, and manage voice, data, Internet, and

25

multimedia communications to and from the home, office and other locations.
The services gateway can also function as an application server for a range of
high value services such as energy management and control, safety and security
services, health care monitoring services, device control and maintenance,
electronic commerce services and more. The gateway provides a focal point for
service providers to deliver services to client devices on the local network(s). An
implementation of the OSGi gateway may link client devices on the local
network(s), such as energy meters, smart appliances or information appliances,
to external service providers.

Figure 3. The OSGi-architecture.

 1.1.5 Summary

As a summary of the previous section, it can be said that:

• Middleware is a layer (or layers) of software between the network and the
applications.

• Middleware provides compatibility between heterogeneous systems and a
set of services - such as location, profiling, identification, authentication,

26

authorisation, directories, security, etc. - to assist the interoperability of the
systems.

• Middleware is expressed as a collection of documents that describe how
the different systems can get along. In this case, the system itself must
implement the compatibility issues described in the documentation.

• The documentation can be assisted by a set of Middleware components.
Some components can provide environmental services - e.g. name service,
directory services, file service, profiling service, etc. - and some can be used
in constructing the services for the end users.

• Middleware insulates application developers from having to understand
the complexities of the computing environment, such as network
protocols. Application programmers can consider Middleware as a black
box, where understanding the details of what happens inside is not required.

It can also be said that:

• Middleware architecture describes how the services and their
interactions should be built. Respectively, the inner-service and inter-
service types of architectures will exist. The inner-service architectures can
be described by the hierarchies of subsystems and software layers. In the
case of inter-service architecture, the question is about the communication
and co-operation and their ways - the distribution transparency is an
essential concept of the inter-service architectures, and it must be provided
by the Middleware.

• Middleware architecture is qualified according to the specific criteria of
how the architecture fulfils its purpose - a set of quality attributes is
discussed as follows:

• Middleware architecture must support the different ways of realising the
necessary functioning for the different purposes and environments, and
in using the different approaches, methods and tools - the Middleware
architecture should be flexible.

27

• From the point of view of the VHE Middleware project, the idea of the
NSI Middleware initiative looks most promising - the idea of Core
Middleware which is extendable by the Upper Middleware. The
extensions may support the realisations of the different service types that
are the most common for the end users. At the same time, the
Middleware architecture must also leave space to develop the support
for future systems - the Middleware architecture should be extendible.

• It is not reasonable to assume that all the services associated with the
Core Middleware could be supported by every realisation of VHE - a
firm set of core services to be supported by VHE Middleware cannot be
listed. In the mobile world, the services should be capable of being fitted
to the system with the minimal processing power of cell-phones to full
mainframe computers - the VHE Middleware architecture should be
scalable.

 1.2 VHE Use Cases

According to the VHE Middleware Consortium [2], successful development of
software systems depends on the quality of the requirements engineering
process. Use cases and user scenarios were considered promising vehicles for
eliciting, specifying and validating requirements. Consequently, the use cases
have been chosen as a first-phase tool in the development process. One major
goal of the project is to elaborate VHE architecture. This section will contain a
preview of a collection of user scenarios to enable this. The project partners have
collected these scenarios as a first step to form a clearer common understanding
concerning the benefit and usage of VHE architecture. The use case modelling
technique was chosen for use in the VHE Middleware project to define the
fundamental structure of VHE applications and the necessary VHE architecture
to realise such applications. The VHE Middleware project has recommended a
special template for use in describing the use cases in a uniform way, namely
that developed by Cockburn et al. [7]. For examples using this template, see
Appendix A. Twelve scenarios of candidate VHE services considered attractive
to end users, called the “VHE Use Cases”, were finally accepted by the VHE
Middleware project after the evaluation. Table 1 gives an overview of all the
accepted VHE Use Cases:

28

Table 1. Overview of the accepted VHE Use Cases.

Scenario Short description Presented by
Use case -
Garage Door
Scenario

Describes how an end user approaching a
garage door, opens/closes the door with a
mobile device - e.g. a cell phone

Siemens

Use case - Movie
Scenario

Describes how a user can play a movie
from a VCR or DVD player on a TV set at
home. The movie, VCR or DVD player and
TV set is selected by a mobile device

Siemens

Use case -
Generic UI

Describes how a home service can support
the presentation of its User Interface (UI),
and how any access device can deploy the
same UI because of the UI's general format

VTT
Electronics

Use case -
Remote Service
Development

Describes how the services can be
developed and maintained remotely on
behalf of the user, and how they can be
used without the user’s intervention, with
the exception of "plug in the device and
then use its services" - i.e. “Plug & Play”

VTT
Electronics

Use case -
Serverless
Service
Provisioning

Describes how a set of home appliances,
brought together and switched on/off
occasionally, can build up their services in
an ad hoc way, and how these services can
be made selectable and usable for a user

VTT
Electronics

Use case - Move
Broadcast

Describes how the VHE system pauses a
running broadcast while a user is moving to
another room

Paderborn
University

Use case - Re-
targeting Display

Describes how the VHE system redirects
the display from one device to another
(generic use case)

Paderborn
University

Use case - VHE
Pre-sets

Describes how the VHE system ensures
that the pre-sets of the car radio store the
same radio stations as the corresponding
device at home (HiFi Tuner or PC with
DAB Module)

Bosch

The table will continue

29

Continuing Table 1
Scenario Short description Presented by
Use case - VHE
Play List

Describes how the VHE system ensures
that the categories and filenames
concerning the MPEG 3 content in the car
is presented to the user in the same
structure as on his PC at home/set-top
box.

Bosch

Use case - VHE
Home Theatre

Describes how the VHE system plays a
clip in the home theatre

Nokia

Use case – Generic
Security

Describes how the VHE system
authenticates a user of mobile device and
the remote server (client authentication /
server authentication)

ORGA

Use case – Tennis
Court Billing

Describes how the VHE system opens the
entrance to a tennis court that belongs to
the user’s block of flats and bills the
utilisation fee

ORGA

VTT Electronics is the author of three of the VHE Use Cases and their
corresponding prototypes. These three VHE Use Cases are reproduced in
Appendix A, and the corresponding prototype in Appendix B. The prototypes
have provided valuable information on what would be the actual requirements
for VHE Middleware. The prototypes have been demonstrated in public in the
International ITEA Workshop on Virtual Home Environments, which was
organised by the VHE Middleware project [8].

 1.3 Approaches, Methods and Tools

To approach a conceptual architecture of VHE Middleware, an advanced method
of identifying a conceptual architecture and APIs software system from its
functional requirements will be proposed here. The proposed method is based on
the common knowledge of the OOA methodology, which claims that every
software system contains hierarchical structures that reflect its functional

30

requirements. In the OOA methodology, these structures and their hierarchy can
be found by analysing and structuring the problem descriptions - the Use Case
analysis is discussed. The proposed method here is how to seamlessly move
from a use case model to a conceptual architecture model of the software
system. To evaluate the applicability of the proposed method, the Theory testing
and Case-research methodology [9, 10] will be deployed. In the first step, the
proposed method will be refined. In the next step, a model of a problem in
following the method will be developed, and, in the final step, the correctness of
the model will be tested with a single case. The steps will be refined as follows:

Step 1. Method introduction - Analysing today’s evolving information
systems; the proposed method will be shown and explained thoroughly.

Step 2. Creating a model of the problem - Using the proposed method in
structuring the problem, an analysis will be applied on a set of the VHE
Use Cases and the corresponding models will be created.

Step 3. Testing the correctness of proposed method with a single case - To
test the proposed method, the methodology of Reverse Engineering will
be used here. The Reverse engineering method in software technology is
to restructure and organise software code to reach its abstractions [11].
Consequently, the software code, which provides the middleware
functioning of the prototypes, will be extracted and the Middleware
components will be seen for first time.

In addition to these methods, the OOA methodology will be deployed. The
results will be illustrated in using tables, UML-graphics (Unified Modelling
Language) and the notation language of OCL (Object Constraint Language)
[12].

 1.4 Structure of the Document

The document is structured by chapters and appendices. The appendices present
the source material for the problem and the case on which the further analysis is
then applied in the main chapters as follows:

31

• Appendix A - This appendix introduces the three VHE Use Cases
developed by VTT Electronics introduced in Table 1.

• Appendix B - This appendix introduces the prototype software presented by
VTT Electronics. This prototype system is mainly built according to the
"Use Case - GenericUI" introduced in Appendix A. However, some parts of
the other two are also included. The prototype presents a UIML-based (User
Interface Mark-up Language) [13] implementation of the GenericUI service
concept - this is called the “UIML Service”.

• Appendix C - This appendix introduces the specification of the abstract
requirements pre-set for the VHE-system and its Middleware by experts.

• Evolving Information Systems - In this chapter, to enter Step 1 introduced
in Chapter 1.3, the proposed method is developed. For this purpose,
evolving information systems is analysed using the proposed method. The
development of the Producer-Consumer paradigm to present, first, the
decomposition model of the manually-driven information system and,
second, its extension of the automatic and semi-automatic information
system is presented. The approach to the use of the Producer-Consumer
paradigm as a base for the decomposition model is presented in [14] for the
first time.

• Architecture Concept of VHE Middleware and APIs of VHE
Middleware - In these chapters, to enter Step 2 introduced in Chapter 1.3,
the VHE Middleware architecture’s concept and APIs are developed. The
decomposition model of the semi-automatic information system, which was
established in the previous chapter, is deployed in the analysis. The inputs
are the VHE Use Cases in Appendix A - they are analysed thoroughly. The
model presents the subsystems, their APIs and layering. The APIs are
developed further in the second chapter. The output is a conceptual model of
the VHE Middleware architecture and its related preliminary APIs.

• Case Study - In the chapter, a test of whether or not the use of the proposed
method produces the correct architecture is conducted. By this, Step 3
introduced in Chapter 1.3 is entered. To that end, the methodology of
Reverse Engineering [11] is applied. The prototype software is analysed and

32

its software functions are fitted into the architecture model. The input is the
decomposition model that was developed in the previous chapters and a
prototype system reproduced in Appendix B. The output is the API
definitions of the UIML Service written in Java.

• Conclusions and Further Research - As the purpose of this text was
mentioned to be twofold, the conclusions is twofold as well; the conclusions
in the sense of scientific research, and the conclusions in the sense of
technical development of the VHE Middleware; where we have reached and
where we are going to from there. The question of the applicability of the
proposed method is evaluated, and the applicability and qualities of the
technical solution is discussed. Furthermore, the issue of further R&D of
VHE Middleware is looked into.

33

 2. Evolving Information Systems
It can be assumed that future information systems will be based on earlier
information systems that have been found the most successful in the sense of
their prevalence - the information systems are evolving. Indisputably, the
Internet and its service solutions, like WWW (World Wide Web) with HTTP
(Hyper-text Transfer Protocol), SMTP (Simple Mail Transfer Protocol) or FTP
(File Transfer Protocol), have been the most successful information system ever.
In this chapter, to enter Step 1 introduced in Chapter 1.3, an analysis of the
evolving information systems will be carried out and, consequently, a
decomposition model to provide a basis for further analysis of the VHE Use
Cases will be created.

Functional requirements capture the intended behaviour of the system. This
behaviour can be expressed as the services, tasks, or functions the system is
required to perform. In the OOA methodology, the Use Case analysis [12] is
used to decompose the problem and its functioning - a tool for functional
decomposition is provided. Use cases comprise the presentations of actors and a
set of functional descriptions, which interact. An actor is a user's role or anything
that is able to provide independent events in the system to achieve its goal. The
associated use case describes the functioning of the system by which the goal is
to be achieved. Use cases capture who (actor) does what (interaction) with the
system and for what purpose (goal), without dealing with the system internals.
When the OO analysis is deployed, the process starts with identifying the actors
and describing their corresponding system function. The essential system’s
objects will also be identified in the process. These identifications can be made
by examining the system and its functional descriptions. This process is
modelled by Use Case model graphics. Identifying the objects makes it possible
to further model the system’s behaviour with the services that the system should
provide for the actors. These services are usually modelled by message
sequences. In Section 1.3, we have proposed a new method for seamlessly
moving from a use case model to a conceptual architecture model of the
software system. In this chapter, the proposed method will be deployed in the
development of the Producer-Consumer paradigm to present, first, the
decomposition model of the manually-driven information system, and, second,
its extension of the automatic and semi-automatic information system. In this
way, the layers and APIs of the evolving information system will be exposed.

34

 2.1 Manually-driven Information Systems

In applying the approach, a decomposition of the Producer-Consumer paradigm
to express the manually-driven information systems will be presented.

The system that will be described here introduces a quite ordinary arrangement
of how to produce and consume an information service - of how to produce and
consume software in an Internet environment using, for example, an HTTP-
service. These scenarios, which are in everyday use, define the status quo of
where to start designing the new service concepts that the idea of VHE suggests.
To start to present the results of the analysis, the actors are listed in Table 2. In
the table, the first column of “Actor” presents the actors, the second column of
“Super class” presents the generic class of entities a particular actor represents,
and the third column of “Attributes” qualifies the actor’s role - is it primary or
secondary. The Primary actors are those the system is to be built for - usually the
end users. The Secondary actors are those who assist the system to deliver the
specific service for the primary actors. The “Note” column will clarify the issue.

Table 2. Actors of the manually-driven information system.

Actor Super class Attributes Note
Platform
Manufacturer

Industry Secondary A manufacturer of enabling
technology

Service User Human Primary A user of the system
Service
Subscriber

Human Primary A human role to pay the bills

Service
Provider

Human Secondary A human operator, happy with
charging the subscribers

Service
Developer

Human Secondary A developer of applications

Descriptions of the Use Cases will be presented in Table 3. The column “Use
Case” names the use cases in question and the column “Descriptions” explains
the activities between the actor and the use case.

35

Table 3. Use cases of the manually-driven information system.

Actor Use Case Description
Platform
Manufacturer

Enables
Service

Develops and manufactures techniques to enable
the information systems to be built, e.g. a
manufacturer of mobile phones, PDAs, etc.

Service
Developer

Develops
Service

Service Developer develops services by
developing applications.

Service
Provider

Provides
Service

1. Service Provider configures a service by
deciding upon the name and address
information of the service to be provided. The
provider's identity is known.

2. Service Provider initiates communication by
preparing the network connection of the
server. Communication is reserved according
to the provider's identity, by which the
accesses to the available communications
channels are allocated.

3. Service Provider initialises the service on the
server by installing the application.

4. Service Provider notifies the availability of the
service to the potential service subscribers by
registering the service.

Service User Uses
Service

1. Service User starts the client software. Access
rights and personal settings of the user in
using the service might be concerned. Identity
of the user is known and will be deployed at
the application level to guarantee personal
security.

2. Service User uses the service. Because of the
known identity, the user might be charged for
the use of the service.

3. Service User closes the client software.

The table will continue

36

Continuing Table 3
Actor Use Case Description
Service
Subscriber

Consumes
Service

1. Service Subscriber configures a service by
deciding upon the name of the service to be
subscribed. The subscriber's identity is known.

2. Service Subscriber initiates communication by
preparing the network connection.
Communication channels are reserved and
allocated according to the subscriber's identity.
The identity is a key to access available
communication channels.

3. Service Subscriber connects to the server and
retrieves the service by downloading the service’s
client side software. The client side software is
made available by the service provider. The
known identity of the subscriber makes it
possible for the Service Provider to charge for the
software.

4. Service Subscriber performs the service by
installing the client software for service users.

The analysis model is presented as UML graphics in Figure 4.

Uses Service

Consumes
Service

Provides
Service

Service User

Service Provider

Service Developer

Develops
Service

Enables Service

Platform Manufacturer

Service
Consumption

«include»

«include» «include»

Service
Production

«include»

«include»«include»
Service Subscriber

Figure 4. Actors and Use Cases of the manually-driven information system.

37

 2.2 Automatic and Semi-automatic Information Systems

In the automatic information systems, machine-origin actors drive the system
instead of individual users. The actors and use cases of manually-driven
information systems will be overridden by the extended systems in order to
provide and consume services automatically. However, given that the extended
systems will perform functions differently to the old ones, some of the actor's
roles in the overridden systems may remain. For example, billing functions may
still be working as they have been working in the manually-driven information
system - this makes the system “Semi-automatic”. Actually, being Semi-
automatic means that the machine-origin actors only assist the system to fulfil
the goals of the “Primary” ones, therefore this kind of assisting actor should be
called the “Secondary” one. When such a system evolves, there is no limit to
providing the billing functions automatically - for instance, in using the concept
of e-purse (electronic purse), etc. Nevertheless, the individual users will still
work manually in the future.

 2.3 Elaboration of the Producer/Consumer-paradigm for
Semi-automatic Information Systems

The Semi-automatic information system will extend the manually-driven one by
performing some functions differently or by providing new functions.
Commonly, the machine origin actors called the "Client" and "Server" will assist
the functioning to take place, overriding the human actors - the Client-Server-
architectural pattern will appear [15]. These kinds of machine-origin actors are
called the "Daemon". In UML, the extension of a system can be modelled by
presenting special extension points. In this case, the manually-driven information
system will be extended by an automatic system. This is illustrated in Figure 5,
where the extension point of "Supports Automatic Service" is presented. To
make it possible to track the extension points when the analysis progresses with
the other extensions in subsequent chapters, the extension points will be labelled
with numbers, and this one will be labelled with the number 1. For further
information on the concept of UML’s extension points, please consult the most
recent UML manual [12]. By introducing the extension points with the evolving
system, the vertical decomposition - i.e. layering of the system - will be
supported. Every new layer will introduce a new set of definitions by which the

38

layer can be deployed - a new API, which will match a particular extension
point, will be presented. Actually, this is the most essential point of the proposed
method. The proposed method can be exploited when a new system is built on
the previous one - only the extended functionality and its corresponding APIs
will be required to be presented by the system that extends the previous one.

The results of an OOA on the Semi-automatic information system will be
presented as follows: Table 4 introduces the actors and Table 5 presents the
analysis of the system. Figure 5 clarifies the results using UML graphics.

In Table 4, the columns’ titles will be explained as follows: the title “Description
of Actor” clarifies the actor’s role. The titles “Subclass” and “Super class” states
the support for the development of the class hierarchy of the system. The others
titles remain as explained earlier. The concept of Subclass and Super class is
clarified in Figure 6.

Table 4. Actors of the Semi-automatic information system.

Description of Actor Actor Subclass Super class Attributes
A user of an automatic
service

User NA Human Primary

A developer of an
automatic service

Service
Developer

NA Human Secondary

A consumer of an
automatic service

Client VHE_Client Daemon Secondary

A provider of an
automatic service

Server VHE_Server Daemon Secondary

In Table 5, the titles of the columns not previously introduced in this text are as
follows: the title “Description of Use Case” will explain the use case and the title
“Use Case” will name the explained use case. The title “Included Use Cases”
will give the names of the sub-use cases that are considered to be included in the
main use case named in the column “Use Case” - this is according to the UML’s
«include» stereotyped relationships between the use cases [12]. The last one,
“API”, will give the name for the APIs considered to be appearing in the
extended system.

39

Table 5. Functional decomposition and APIs of the Semi-automatic information
system.

Description of Use case Use Case Actor Included Use
Cases

API

An automatic server can be
switched On/Off

Supports
On/Off

Service Provider configures a
service

Configures
Service

Service Provider initiates
communication

Initiates/Un-
initiates
Communicati
on

Service Provider initialises the
service on the server

Initiates/Un-
initiates
Service

Service Provider notifies
availability of the service

Provides
Service

Server

Registers/Un
-registers
Service

Service Developer develops
services by developing
applications

Develops
Service

Service
Developer

Develops
Applications

An automatic client can be
switched On/Off

Supports
On/Off

Service Subscriber configures a
service

Configures
Service

Service Subscriber initiates
communication

Initiates/Un-
initiates
Communicati
on

Service Subscriber gets
connected to the server and
retrieves the service

Retrieves
Service

Service Subscriber performs the
service

Consumes
Service

Client

Presents
Service

“S
up

po
rts

 A
ut

om
at

ic
 S

er
vi

ce
”

The table will continue

40

Continuing Table 5
Description of the use case Use

Case
Actor Included

Use Cases
API

Service User starts the client software Starts
service

Service User uses the service Uses
service

Service User closes the client software

Uses
Service

User

Closes
service

“S
up

po
rts

 A
ut

om
at

ic
Se

rv
ic

e”
Provides Automatic

 Service

Server

Configures Service

«include»

Provides Service

Extension points:
1. Supports Automatic Service

Presents Service

Client

Consumes Automatic
 Service

«include»

Retrieves Service

«include»

«include»

Initiates/Uninitia-
tes Communication

«include» «extend»

Consumes Service

Extension points:
1. Supports Automatic Service

«extend»
«include»

Initiates/Unini-
tiates Service

«include»

Registers/Un-
registers Service

«include»

Develops Service

Service Developer

Uses Service

User

Develops Appli-
cations

«include»

Supports On/Off

Closes Service

Starts Service

«include» «include»

Figure 5. Functional decomposition and APIs of the Semi-automatic information
system.

Figure 6 refines the concept of “Subclass” and “Super class” in the OO
methodology used to express the hierarchy of the classes used throughout this
text and Tables. In the figure, the example illustrates how the class
“VHE_Class_2” inherits the “VHE_Class_1”. Furthermore, it illustrates how the

41

“VHE_Class_2” - in addition to being a super class for the “VHE_Class_3” - is
a subclass of the “VHE_Class_1”. In this way, large class hierarchies can be
supported. This is congruent with the UML specifications, except that the term
“super class” is written as “superclass” in UML (v.1.4).

«subclass» VHE_Class_2

«super class» VHE_Class_1

«subclass» VHE_Class_3

«super class» VHE_Class_2

Figure 6. Concept of “Subclass” and “Super class” of the OO methodology
used to express inheritance hierarchies of the classes in Tables and texts

through this book.

 2.4 Chapter Summary

In this chapter, the proposed method was introduced and the Producer/Consumer
paradigm was developed in using the method. Step 1 introduced in Chapter 1.3
was entered. The paradigm was developed according to the idea of the evolving
information system presented in the chapter, and the result was a functional
decomposition model of the Semi-automatic information system. In the analysis,
the UML’s concept of extension point (expressing how a system might be
extended) was deployed. Consequently, in the model, the layers and APIs of a
software system were seen exposed. We may conclude that the proposed method
is likely to work when we continue the analysis of the VHE system.

42

 3. Architecture Concept of VHE
Middleware

Software architecture is a high-level abstraction of a system, providing a forum
with which to reach a full understanding and consensus over the system and
amongst the stakeholders. It also makes it possible to apply early design
decisions to the system, and, for that purpose, can be discussed from the
viewpoint of the stakeholders. On the other hand, software architecture is a set of
modelling elements that define the software system. Modelling elements makes
it possible to employ the reusable assets of software architectures and provides
the blueprints for implementing the system in different environments.
Correspondingly, the requirements for software architecture should be
considered in the two following categories: 1) functional requirements and 2)
non-functional requirements.

In this chapter, to initialise the Step 2 introduced in Chapter 1.3, a conceptual
architecture of VHE Middleware will be developed. The requirements of the
VHE system will be considered. The method developed in the previous chapter
to decompose the problem descriptions to find a system’s APIs will be deployed.

 3.1 Functional Requirements

Appendix C introduces the abstract functional requirements pre-set by experts in
the VHE-system. These requirements were considered during the development
of the functional requirements for the applications domains of VHE. The
functional requirements are described by the VHE Use Cases. The VHE Use
Cases to be considered in this text are reproduced in Appendix A, and they will
now be analysed using the OOA methodology.

 3.2 Non-functional Requirements

The Non-functional requirements (NFR) originate in the taking care of those
system requirements that cannot be explicitly set just by considering the primary
needs of the end users. There are other stakeholders in the industrially produced

43

software systems - for example, the software industry, software developers and
hardware manufacturers. An exhaustive analysis over quality attributes is
presented in [16]. In addition, [17] illuminates the background to the architecture
analysis methodology in general. Appendix C will present the analysis of NFR
provided by experts in VHE architecture. According to the analysis, NFRs can
be categorised into two main groups: 1) Product Line Architecture (PLA)-related
quality attributes, and 2) Domain-related quality attributes. However, in addition
to these two groups, in Section 1.1 we have identified one more group of
qualities, namely a group, which concerns the Middleware architectures. The
three groups will be introduced next:

• PLA-related quality attributes. These attributes can be discerned when
software is under development and production, but they are not discernible
at runtime [18, 19]. The PLA-related quality attributes are a concern of the
software industry and they mainly support the reusability of parts of the
software production and system. Examples include reusability, modifiability,
portability, integrability, and testability.

• Domain-related related quality attributes. These attributes can only be
discernible at runtime, i.e. when the system is in use. These attributes are a
concern of the software developers and hardware manufacturers in providing
a well-working implementation of a system. Examples include performance,
security, availability, functionality, and usability.

• Middleware-related quality attributes. This group is not normally listed
with software systems; however, it is essential for a Middleware system.
According to the short analysis presented in Section 1.1.5, the quality of the
Middleware architecture concept is affected by three main attributes:
flexibility, extendibility and scalability.

 3.3 Elaboration of the VHE Use Cases

The VHE system will be derived from the Service Production - Service
Consumption information system, as the analysis of evolving information
systems in the previous chapter has shown. Consequently, the VHE Use Cases
will extend the functionality of the Semi-automatic system that was presented in

44

Table 5 and Figure 5. Figure 7 illustrates the Main Use Case diagram of the
VHE system, and the stakeholders and corresponding business cases.
Presentation of the Business Cases is the highest level view on the system. Who
needs the system and for what purpose will be expressed in this view. The figure
shows how the three VHE Use Cases developed by VTT Electronics extend the
Use Cases described with the Semi-automatic information system (see Figure 5).

Uses Service

Consumes
Service

Provides
Service

User

Service
Provider

Service
Developer«system»VHE

Develops
Service

Enables Service

Home Server
Manufacturer

Appliance
Manufacturer

Platform
Manufacturer

Service
Consumption

Remote Service
Development

Generic UI

«include»

«include»

«include»

«extend»

«extend»

«extend»

Serverless
Service

Provisioning

Service
Production

«include»
«extend»

«include»«include»
«extend»«extend»

Home Owner

«extend»

«extend»
«extend»

Appendix A: VHE Use Cases - Contribution of VTT Electronics

Use Case - Generic UI Use Case - Remote Service Development Use Case -
Serverless Service Provisioning

«this document»

«extend»

Appendix C: Abstract Requirements Specification of VHE

Figure 7. Service concepts of the VHE system.

45

To conclude the analysis here, the "GenericUI" service concept will extend the
way in which services are developed, provided, consumed and used. The
"Remote Service Development" service concept will only extend the way
services are developed, provided and consumed; it will not extend the way the
services are used - they will be used in exactly the same way as they were used
before the extension. Furthermore, the “Serverless Service Provisioning” service
concept will extend the way services are used, provided and consumed; it does
not extend the way services are developed.

 3.3.1 Elaboration of the "Use Case - GenericUI"

The concept of the GenericUI service covers the issue of how a home service
can support the presentation of its UI, and how any access device can deploy the
same UI because of the UI's general format. This scenario also supports the
automatic initiation/restoration of home appliances that are switched on/off or
plugged into a wall socket. In general, the Middleware architecture should
enable the deployment of, for example, HTML, Jini's Proxies, UIML, Model-
View-Controller (MVC) with Java Swings (the MVC concept is also deployed in
the Symbian OS), Wireless Modelling Language (WML) used with the Wireless
Application Protocol (WAP), Extensible Mark-up Language (XML), or even
VoiceXML-based approaches. More information on the mentioned UI
approaches concerning the intended system is presented in [20], [21], [22] and
[23]. The target environments may vary from an embedded mobile environment
to the legacy Internet. In addition, the implementation techniques may vary -
e.g., from assembly languages to the high-end RAD-tools (Rapid Application
Development). Furthermore, the VHE Middleware architecture must support the
different home appliances in presenting their services by, for example, enabling
the simplest possible device to present its services in the most minimalist way.
Moreover, UI techniques under VR environments (Virtual Reality) are
developing fast. VR gives enormous opportunities to provide even full-size
three-dimensional (3D) monitoring and controlling capabilities integrated with
clothes, shell-phones or even wristwatches. This support must be included in the
VHE Middleware.

The results of the OOA on the "VHE Use Case - GenericUI" (see Appendix A)
will be introduced in Table 6 and Table 7. Table 6 introduces the actors and

46

Table 7 summarises the analysis. The tables will also trace the original
requirements definitions set by the column “Tracing the VHE Use Cases” in the
VHE Use Cases. Please note that the abbreviation “NA” in the tables means
“Not Available”, indicating that the original VHE Use Cases do not specify the
particular issue or that the issue is not relevant at present. Figure 8 clarifies the
results using UML graphics. In Figure 8, the system, which already presents
"Supports Automatic Service" (see Figure 5), now has the three additional
extension points introducing new APIs as follows:

2. "Supports Service Usage" - a client is able to retrieve a list of available
services and to present it to a user. The system also supports user selection of
a service.

3. "Supports GenericUI Service" - a system is able to support client devices in
the device-specific way of presentation appliances' UIs, at least to present a
view of but also to control and monitor a specific service that the appliance
provides.

4. "Supports Home Services" - an appliance that already provides a specific
service is also able to provide a description of its public data, to handle
control events and to provide monitoring events to allow it to fulfil its
responsibilities.

Item number one (missing on the list) is “1. Supports Automatic Service”, which
was introduced in Section 2.3 and presented in Figure 5. Please also note that the
listed support of "Supports Service Usage" and "Supports Home Service" are not
bound to the concept of GenericUI - they will be deployed by other service
concepts, as will be shown later.

47

Table 6. Actors of the "Use Case - Generic UI".

Tracing the VHE Use
Cases

Actor Subclass Super
class

Attributes

“The user of the
system”

User NA Human Primary

NA Service
Developer

NA Human Primary

NA Home
Owner

NA Human Primary

“Home server (also
serving as gateway)”

UI Broker VHE_UI_ Broker Daemon Secondary

“Appliance (may be
more than one)”

Appliance VHE_ Appliance Daemon Secondary

“Handheld device
(client)”

Service
Browser

VHE_Service_
Browser

Daemon Secondary

48

Table 7. Functional decomposition and APIs of the "Use Case - Generic UI".

Tracing the VHE Use
Cases

Use Case Actor Included Use Cases API

“the home server will
maintain a set of
transcoding modules
able to transcode the
UI description format
to other standardised
formats”

Maintains
Transcodecs:
- Retrieves and
Updates
Transcodec
- Stores Transcodec
- Installs/Unins-
talls Transcodec

“maintaining the UI
descriptions of the
controllable devices is
the task of the home
server”

“the UI description
must be retrieved from
an external source”

“checking for new
versions”

“storing UI
description”

Maintains UI
Descriptions:
- Retrieves and
Updates UI
Descriptions
- Stores UI
Descriptions

NA Maintains Profiles

NA Generates Push
Events

NA Handles
Monitoring Events

“the events must be
passed to the device to
be controlled”

Provides
GenericUI
Service

UI Broker

Passes Events

"S
up

po
rts

 G
en

er
ic

U
I S

er
vi

ce
"

The table will continue

49

Continuing Table 7
Tracing the VHE Use
Cases

Use Case Actor Included Use Cases API

“a control device
retrieves controllable
devices' UI description
from home server”

“a control device
maintains a cache of
controllable devices'
UIs”

Fetches and
Updates UI

“Presenting the UI” Presents UI

“a control device
generates control
events”

Generates Control
Events

NA Handles Push
Events

"S
up

po
rts

 G
en

er
ic

U
I S

er
vi

ce
"

“its list of controllable
devices should be
adjusted”

Retrieves Service
Items

“control device
presents the updated
list to the user”

Consumes
GenericUI
Service

Service
Browser

Presents Service
Items

“when a controllable
device is selected
from the list”

Selects Service
Item

NA

Service
Usage

User

Uses Service

"S
up

po
rts

 S
er

vi
ce

 U
sa

ge
"

The table will continue

50

Continuing Table 7
Tracing the VHE Use
Cases

Use Case Actor Included Use Cases API

“the device receives the
control events”

Handles Control
Events

NA

Provides
Home
Service

Appliance

Generates
Monitoring Events

NA Consumes
Home
Service

Home
Owner

Manual operation:
a home owner
adds/removes a
device at home

NA Develops
Home
Service

Service
Developer

Manual operation:
a service developer
develops
applications being
informed about
"Supports Home
Service" API and
its operations to be
implemented

"S
up

po
rts

 H
om

e
Se

rv
ic

es
"

51

Use Case - GenericUI

GenericUI

Provides GenericUI
 Service

Appliance

«include»

«include»

Passes Events

«include»

Service Browser
Consumes GenericUI

 Service

Fetches and Up-
dates UI

«include»

User

Service Usage

Selects Service
Item

«include»

«this document»

«include»

Appendix A: VHE Use Cases - Contribution of VTT Electronics

Provides Home
Service

«include»

UI Broker

«table» Functional decomposition and APIs of the "Use Case - GenericUI"

Presents UI

«include»

Home Owner

Adds/Removes
Device

«include»

Maintains Trans-
codecs

«include»

Maintains UI
Descriptions

«include»

Provides Automatic
 Service

3. Supports GenericUI Service

4. Supports Home Services

«extend»

«extend»

Consumes Automatic
 Service

2. Supports Service Usage

3. Supports GenericUI Service

«extend»

Uses Service

2. Supports Service Usage

«extend»

Supports GeUI
Service

Retrieves Service
Items

«include»

Generates Moni-
toring Events

«include»

«include»

Presents Service
Items

«include»

Consumes Home
Service

«include»

Handles Control
Events

«include»

Supports Service
Usage

«include»

Handles Monitoring
 Events

«include»

«include»Generates Control
Events

«include»

Maintains Profiles

«include»

Service Developer

Develops Home
Service

Develops Service

4. Supports Home Services

«extend»

Handles Push
Events

Maintains Back-
ground Processes

«include»

Generates Push
Events

«include»

Figure 8. Functional decomposition and APIs of the "Use Case - GenericUI".

 3.3.2 Elaboration of the "Use Case - Remote Development"

The concept of Remote Service Development covers the issue of how home
services can be developed and maintained remotely on behalf of the user. It also
describes how the home services can be used without the user’s intervention,

52

with the exception of "plug in the device and then use its services" - i.e. “Plug &
Play”.

The result of OOA on the "VHE Use Case - Remote Service Development" will
be introduced in Table 8 and Table 9. The original requirements will also be
traced. Table 8 introduces the actors and Table 9 summarises the analysis.
Figure 9 will clarify the results using UML graphics.

In Figure 9, the system, which already presents "Supports Automatic Service"
(see Figure 5), now has the four separate extension points, which introduces new
APIs as follows:

4. "Supports Home Services" - this API has already been introduced with the
GenericUI service concept.

5. "Supports HA Devices", (HA = Home Automation) - an automatic system that
supports legacy devices used in home automation, to be added and removed as a
homeowner wishes. Appropriate information on the changes in the fittings at
home is provided for the contracted service provider.

6. "Supports HA Platforms" - an automatic system supporting a legacy
automation platform for home automation, to be added and removed as a
homeowner wishes. Appropriate information on the changes in the fittings is
provided to the contracted service provider.

7. "Supports Remote Development" - an automatic system that supports the
service developer and service provider in having the necessary information and
tools to remotely maintain home automation on behalf of a homeowner.

53

Table 8. Actors of the "Use Case - Remote Service Development".

Tracing the VHE Use
Cases

Actor Subclass Super
class

Attributes

NA Home
Owner

NA Human Primary

“the remote service
developer”

“a developer can
develop a suitable
service application in
off-line state”

Service
Developer

NA Human Primary

“The service provider
offering remote
service development”

Service
Provider

NA Human Primary

“Automation platform
with several
automation devices”

Automation
Platform

VHE_Persistent Daemon Secondary

“Home server (also
serving as gateway)”

Home
Server

VHE_Resident Daemon Secondary

54

Table 9. Functional decomposition and APIs of the "Use Case - Remote Service
Development".

Tracing the VHE Use Cases Use Case Actor Included
Use Cases

API

Retrieves
Information
Interpreters
Information
Edits
Information

“gets a connection to the home
server”

“receives an information
bundle”

“developing the application”

“the new application is
delivered to the home server”

Develops
Remotely

Service
Developer

Stores
Information

“collecting information about
current applications”

“gathering information from
devices in automation platform”

Collects
Information

“information can be completed
with an information from an
external source”

Completes
Information

“to a suitable format e.g.
utilising XML”

Interpreters
Information

“off-line development” Stores
Information

“a remote service developer is
informed that changes has
happened in automation
hardware”

Provides
Remote
Deve-
lopment
Service

Home
Server

Informs
Changes

“S
up

po
rts

 R
em

ot
e

D
ev

el
op

m
en

t”

The table will continue

55

Continuing Table 9
Tracing the VHE Use
Cases

Use Case Actor Included Use
Cases

API

“when a device is added
to the control area of a
specific home server”

Adds
/Removes HA
Devices

“S
up

po
rts

 H
A

D
ev

ic
es

”

NA

Consumes
Remote
Service
Development
Service

Home
Owner

Adds
/Removes HA
Platforms

NA Provides
Remote
Service
Development
Service

Home
Server

Supports
Adding
/Removing
HA Platforms

“S
up

po
rts

 H
A

 P
la

tfo
rm

s”

NA Supports
Adding
/Removing
HA Devices

“S
up

po
rts

 H
A

D
ev

ic
es

”
NA

Consumes
Home
Service

Auto-
mation
Platform

Supports
Adding
/Removing
Home Services

NA Provides
Home
Service

Service
Provider

Installs
/Uninstalls
Home Service “S

up
po

rts
 H

om
e

Se
rv

ic
es

”

56

Use Case - Remote Service Development

«this document»

Appendix A: VHE Use Cases - Contribution of VTT Electronics

Consumes Automatic
 Service

4. Supports Home Services

5. Supports HA Devices

«extend»

Provides Automatic
 Service

6. Supports HA Platforms

7. Supports Remote Development

«extend»

Develops Service

7. Supports Remote Development

«extend»

«table» Functional decomposition and APIs of the
"Use Case - Remote Service Development"

Remote Service
Development

Provides Remote
Service Development

Service

Home Server

«include»

«include»

Automation Platform

Consumes Home
Service

Service Developer

Develops Remotely

Informs Changes

«include»

Edits Information

«include»

Provides Home
Service

«include»

Adds/Removes
HA Platforms

Collects Infor-
mation

«include»

«include»

Stores Information

«include»

«include»

Retrieves Infor-
mation

«include»

Interpretes Infor-
mation

«include»

«include»

«include»

Completes Infor-
mation

Home Owner
Consumes Remote

Service Development
Services

Installs/Unin-
stalls Home

Service

Service Provider

«include»

«include»

Adds/Removes
HA Devices

«include»

Supports Adding/
 Removing HA

Devices

«include»

Supports Adding/
 Removing HA

Platforms

«include»

Consumes Service

5. Supports HA Devices
6. Supports HA Platforms

7. Supports Remote Development

«include»

Provides Service

4. Supports Home Services

«extend»

Supports Adding/
 Removing Home

Services

«include»

Figure 9. Functional decomposition and APIs of the "Use Case - Remote Service
Development".

 3.3.3 Elaboration of the "Use Case - Serverless Service
Provisioning"

The concept of Serverless Service Provisioning covers the issue of how a set of
home appliances, brought together and switched on/off occasionally, can build

57

up their services in an ad hoc way, and how these services can be made
selectable and usable for a user. Additional background to this scenario is
presented in [24].

The results of OOA on the "VHE Use Case - Serverless Service Provisioning"
will be introduced in Table 10, Table 11 and Figure 10. Table 10 introduces the
actors and Table 11 summarises the analysis. Figure 10 clarifies the results using
UML graphics.

In Figure 10, the system, which already presents "Supports Automatic Service"
(see Figure 5), now has the three extension points, which introduces the APIs:

2. "Supports Service Usage" - this API has already been introduced with the
GenericUI service concept.

4. "Supports Home Services" - this API has already been introduced with the
GenericUI and Remote Service Development service concept.

8. "Supports Service Discovery" - an appliance supports a directory service
system, which is automatically configured amongst the running appliances
under the same network domain.

Table 10. Actors of the "Use Case - Serverless Service Provisioning".

Tracing the VHE Use
Cases

Actor Subclass Super
class

Attributes

“The user of the
system”

User NA Human Primary

“Client (handheld
terminal which does not
provide services)”

Service
Browser

VHE_Service_
Browser

Daemon Secondary

“Appliance (may be
more than one)”

Appliance VHE_Appliance Daemon Secondary

58

Table 11. Functional decomposition and APIs of the "Use Case - Serverless
Service Provisioning".

Tracing the VHE
Use Cases

Use Case Actor Included Use Cases API

NA Initiates/Restores Home
Service

“S
up

po
rts

 H
om

e
Se

rv
ic

es
”

“Service
discovery”

Discovers Services

“Initiation of
service directory”

Provides
Serverless
Service
Pro-
visioning
Service

Appliance

Initiates/Restores
Directory Service

“Service
discovery of the
client”

Discovers Services

“S
up

po
rts

 S
er

vi
ce

 D
is

co
ve

ry
”

“request service
list”

“retrieval of the
service list”

Retrieves Service Items

“the client
displays the
service list”

Consumes
Serverless
Service
Pro-
visioning
Service

Service
Browser

Presents Service Items

“activates one of
the service”

Selects Service Item

NA

Service
Usage

User

Uses Service

“S
up

po
rts

 S
er

vi
ce

 U
sa

ge
”

59

Use Case - Serverless Service Provisioning.

Serverless Service
 Provisioning

Provides Serverless
Service Provisioning

Service

Appliance
«include»

«include»

Discovers Services

«include»

Provides Automatic
 Service

4. Supports Home Services

8. Supports Service Discovery
Presents Service

Items

Service Browser

Consumes Serverless
Service Provisioning

Service

«include»

Retrieves Service
Items

«include»

«include»

Initiates/Unini-
tiates Directory

Service

«include»

User

Service Usage
Selects Service

Item
«include»

«this document»

Uses Service

2. Supports Service Usage

«extend»
«include»

Appendix A: VHE Use Cases - Contribution of VTT Electronics

«extend»

Consumes Automatic
 Service

2. Supports Servige Usage

8. Supports Service Discovery

«extend»

«table» Functional decomposition and APIs of the
"Use Case - Serverless Service Provisioning"

Supports Service
Usage

«include»
Initiates/Uniniti-

ates Home Service

«include»

Figure 10. Functional decomposition and APIs of the "Use Case - Serverless
Service Provisioning".

 3.4 Summary of Conceptual Architecture Design

Conceptual architecture summarises the conceptual design and will advance the
deployment of the architecture, i.e. in concretising the architecture. Now, the
conceptual architecture of VHE Middleware will be drawn up. The result is
presented in Figure 11. In the figure, the subsystem named the "VHE
Middleware for Core Services" provides VHE Middleware compatibility with
the existing and legacy systems. This will support the idea of the “Core
Middleware” presented in Section 1.1.4 and, correspondingly, is stereotyped as
«core middleware». A realisation of the "VHE Middleware for Core Services" is
named the "VHE Core Service". The «core middleware» can be extended. The
extensions will inherit all the models presented with the «core middleware» and

60

will be stereotyped as «upper middleware», respectively. This supports the idea
of the “Upper Middleware” introduced in Section 1.1.4.

A set of non-functional requirements is also set for the VHE Middleware. These
requirements have been introduced in Section 3.2. These requirements, as well
as the functional requirements, will be derived by the extended subsystems - the
requirements are set for the whole VHE Middleware. However, both sets of
requirements may become overridden, nullified, modified or added to by the
extended system, as the principles of inheritance and polymorphism of the OO
methodology claims.

Following the UML’s subsystem specification [12], every modelling package of
the conceptual architecture contains modelling elements in the three
compartments (see Figure 11): “Specification Elements”, “Realisation
Elements”, and “Interface Elements”. In this case, the “Specification Elements”
compartment includes functional and non-functional requirements elements. The
“Realisation Elements” compartment includes “Architecture Model” (AM),
“Static Model” (SM), and “Dynamic Model” (DM), as the OO modelling
process instructs. Finally, the “Interface Elements” compartment (not explicitly
named in Figure 11) includes the interface definitions of the VHE system - the
VHE system’s APIs. A modelling element, inside a compartment or independent
subsystem, may include or directly refer to its corresponding design document or
realising system.

The subsystem packages of the conceptual architecture in Figure 11 will be
introduced next.

 3.4.1 VHE Middleware for Core Services

The existing or legacy system intended to be compatible with the VHE-system
must implement the next API:

1. "Supports Automatic Service" - underlying legacy or existing system is able
to provide a Client-Server system that can be extended by the different VHE
Middleware extensions.

61

 3.4.2 VHE Middleware for GenericUI

The subsystem "VHE Middleware for GenericUI" extends the "VHE
Middleware for Core Services" subsystem by supporting the functional
requirements set by the "GenericUI" service concept. The support will be
provided by the three APIs that were defined as follows:

2. "Supports Service Usage" - a client is able to retrieve a list of available
services and to present it to a user. The system also supports user selection of
a service.

3. "Supports GenericUI Service" - a system is able to support client devices in
the device-specific way of presentation of appliances' UIs, at least to present
a view of but also to control and monitor a specific service that the appliance
provides.

4. "Supports Home Services" - an appliance that already provides a specific
service is also able to provide a description of its public data, to handle
control events and to provide monitoring events to allow it to fulfil its
responsibilities.

 3.4.3 VHE Middleware for Remote Service Development

The subsystem "VHE Middleware for Remote Service Development" extends
the "VHE Middleware for Core Services" subsystem by supporting the
functioning and requirements set by the "Remote Service Development"-service
concept. The support is to be provided by the four APIs that were defined as
follows:

4. "Supports Home Services" - this API has already been introduced with the
GenericUI service concept.

5. "Supports HA Devices" - an automatic system that supports legacy devices
used in home automation, to be added and removed as a homeowner wishes.
Appropriate information on the changes in the fittings at home is provided for
the contracted service provider.

62

6. "Supports HA Platforms" - an automatic system supporting a legacy
automation platform for home automation, to be added and removed as a
homeowner wishes. Appropriate information on the changes in the fittings is
provided to the contracted service provider.

7. "Supports Remote Development" - an automatic system that supports the
service developer and service provider in having the necessary information
and tools to remotely maintain home automation on behalf of a homeowner.

 3.4.4 VHE Middleware for Serverless Service Provisioning

The subsystem "VHE Middleware for Serverless Service Provisioning" extends
the "VHE Middleware for Core Services" subsystem by supporting the
functioning and requirements set by the "Serverless Service Provisioning"
service concept. The support is to be provided by the four APIs that were
defined as follows:

2. "Supports Service Usage" - this API has already been introduced with the
GenericUI concept.

4. "Supports Home Services" - this API has already been introduced with the
GenericUI and Remote Service Development service concepts.

8. "Supports Service Discovery" - an appliance supports a directory service
system, which is automatically configured amongst the running appliances
under the same network domain.

63

Realisation Elements

Specification Elements

«core middleware» VHE Middleware for Core Services

«functional requirements»
Elaboration of the Producer/Consumer-paradigm
for the Semi-automatic information system

«non-functional requirements»
Product Line Architecture (PLA) related Quality Attributes:
reusability, modifiability, portability, integrability, and testability.
Domain-related Quality Attributes:
performance, security, availability, functionality, and usability.
Middleware-related Quality Attributes:
flexibility, extendability, and scalability.

Service Production -
Service

Consumption

Architecture
Model (AM)

Static Model
(SM)

Dynamic
Model (DM)

«API»

1. "Supports Automatic Service" API
VHE Core Service

«implementation»

«upper middleware» VHE Middleware for
GenericUI

Realisation
Elements

Specification Elements

GenericUI

AM

SM

DM

«functional requirements»
Elaboration of the "Use Case - GenericUI"

«this document»

3. "Supports GenericUI Service" API

«API»

VHE GenericUI
Service

«implementation»

«functional requirements»
Elaboration of the "Use Case -
Remote Service Development"

«functional requirements»
Elaboration of the "Use Case -
Serverless Service Provisioning"

«upper middleware» VHE Middleware
for Remote Service Development

Realisation
Elements

Specification Elements

Remote Service
Development

AM

SM

DM

7. "Supports Remote Development" API

VHE Remote Service
Development

«implementation»

«upper middleware» VHE Middleware
for Serverless Service Development

Realisation
Elements

Specification Elements

Serverless Service
Provisioning

AM

SM

DM

8. "Supports Service Discovery" API

VHE Serverless
Service Provisioning

«implementation»

«API»

«API»

2. "Supports Service Usage" API

4. "Supports Home Services" API

«API»

«API»

«API»

«API»

«API»

«API»

6. "Supports HA Platforms" API

5. "Supports HA Devices" API

«API»

Conceptual Architecture of VHE
Middleware

(C) Markus Moilanen, 2002

«functional requirements»
Abstract Functional Requirements of VHE

HA = Home Automation

Figure 11. Architecture concept of the VHE Middleware.

 3.5 Chapter Summary

This chapter has presented an OOA on a set of the user's scenarios called the
VHE Use Cases. These scenarios describe the functioning that is expected for

64

fulfilling the idea of the VHE presented by the VHE Middleware project. The
presented analysis only dealt with three VHE Use Cases from the total of twelve
authored by the VHE Middleware project. However, it can be assumed that a
great deal of common functionality was found, and that the findings will
probably cover most of the functionality of the other nine VHE Use Cases.

The proposed method developed in Chapter 2 was deployed in the analysis and
thus Step 2 introduced in Chapter 1.3 was initialised. The method helped in
layering and defining the APIs of the VHE system. The result was an
architecture concept of the VHE Middleware. The concept was expressed as a
UML subsystems diagram. The results included the definitions of the VHE
Middleware conceptual subsystems, their hierarchy, and the appropriate API
definitions for deploying the concept.

Further development of the VHE Middleware's architecture will comprise 1) the
further development of the presented APIs, and 2) the prototype implementation
to verify the APIs. The APIs’ development will consider the evaluation of the
elements for the design model, and the definitions of the functioning that the
elements should provide. These will be presented in the next chapters.

65

 4. APIs of VHE Middleware
In the previous chapter, the VHE Middleware APIs were defined for supporting
the compatibility of the different implementations of the VHE systems. Eight of
the VHE Middleware's APIs were defined. This chapter will finalise Step 2
initialised in the previous chapter. The development of the next four APIs will
be presented:

1. "Supports Automatic Service" - underlying legacy system is able to provide
the defined Client-Server system to be extended by the different VHE
Middleware's extensions.

2. "Supports Service Usage" - a client is able to retrieve a list of available
services and to present it to a user. The system also supports user selection of
a service.

3. "Supports GenericUI Service" - a system is able to support client devices in
the device-specific way of presentation of appliances' UIs, at least to present
a view of but also to control and monitor a specific service that the appliance
provides.

4. "Supports Home Services" - an appliance that already provides a specific
service is also able to provide a description of its public data, to handle
control events and to provide monitoring events to allow it to fulfil its
responsibilities.

The very powerful methodology of the OOA will be deployed again. During the
OOA, the systems objects will be found and the functioning reflecting the
functional requirement of the system will be illustrated. In this way, the system’s
APIs will be modelled. API definitions like component interfaces and sequence
diagrams will be expressed in using OCL. OCL has been part of UML since its
beginning. OCL lets express conditions on an invocation in a formally defined
way. Invariants, preconditions, postconditions, whether an object reference is
allowed to be null, and some other restrictions can be defined in using OCL.
OCL adds a necessary level of detail to models. OCL is not a programming
language, however, guards, conditions, loops and types can be expressed.

66

 4.1 "Supports Automatic Service" API

It was stated in Chapter 2 that the existing technology represents the status quo
when a new system is to be developed - the VHE systems will be built on the
existing communication and service distribution paradigms. Many different
distribution concepts and platforms exist today and a few promising mobile ones
are under development. Thus, it is not reasonable to bind the “Core Middleware”
to any existing distribution concept, or even build a new one, but rather to
support its compatibility with those that exist and those that will come. Most
likely, defining the semantics to be used when discussing those platforms and
their services is definitely the best way to provide the compatibility between the
underlying heterogeneous systems. Because the extended systems will override
most of the operations presented by this API, the operations should not be
explicitly specified. For instance, when an OSGi-based [6] solution is used to
provide the necessary core functioning, its definitions of the operations are
sufficient - even if some of the function groups presented in our model will not
be implemented by the OSGi. However, the missing function groups might be
defined in future versions of OSGi - e.g. the definition of standardised support
for smart card -based security. Some work concerning the smart card technique
and the security issue is already being carried out by the VHE Middleware
project [25, 26]. The communication can be built on any messaging system - e.g.
JMS (Java Messaging Service) - or on pure TCP or UDP of IP protocol stack.
Because the underlying Client/Server system will remain platform specific, the
Message Based architecture style [15] is selected at this phase of system
modelling. When a VHE service concept is actually implemented, the other style
- e.g. Call-Return architecture styles [15] - could be chosen to support RMI-
based realisations (Remote Methods Invocation).

In the solution suggested now, the heterogeneous distributed Middleware
systems that may be used to implement this API will be supported by presenting
the system's states. The state support makes it possible to extend the system to
control and monitor the underlying system. The extended systems may present

67

more states as necessary. A peek at Table 14 (on Page 70) and Figure 13 (on
Page 72) may help in understanding the concept of the states.

The results of the OOA will be presented as follows: Table 12 introduces the
actors, Table 13 introduces the collaborating objects, and Table 14 summarises
the suggested semantics API of "Supports Automatic Service", its operations and
corresponding interfaces.

Table 12. Actors of the Automatic Service.

Actor Subclass Super
class

Attributes Description

User NA Human Primary A user of the
system

Server VHE_ Server Daemon Secondary A system daemon
running on Server
Device, e.g. Set-
Top Box, PDA, PC,
etc.

Client VHE_ Client Daemon Secondary A system daemon
running on Client
Device, e.g. PDA,
PC, etc.

Service
Developer

NA Human Primary A human role to
develop services

One way of arranging the Client-Server-architecture-based solution is introduced
by the author [27]. The author has also suggested a set of management functions
to be supported with Client-Server architecture. The management functions can
be extended to cover the issues of resource management, security management,
distribution management (client software delivering service), advertising
management (registering/unregistering services), and profile management.
Moreover, according to the author, these management functions should all be
maintained according to the appropriate management policies. A demo program,
which introduces the approach, was provided. The solution also provides a
concept and realisation of the distribution transparency to be used to harmonise

68

the communication over a heterogeneous networked and mobile environment.
Unfortunately, the states modelled in this architecture do not exactly fit the sates
that will be introduced in the solution presented in this publication - correcting
the inconsistency should be taken care of during the further development of both
solutions.

In Table 13, a column named “Object” names the instance of class giving some
kind of friendly name for the discussion. Furthermore, the OO concept of
“Multiple Inheritance” will exist between the columns of “Subclass” and “Super
class”. This concept is illustrated in Figure 12. The class “VHE_Class_3”
inherits both the classes “VHE_Class_1” and “VHE_Class_2”. Realising the
concept of multiple inheritance is directly supported by C and C++-
programming languages and indirectly supported by the “interface
implementation” concept of Java. The latter is congruent with the concept of the
“Interface” modelling pattern defined by UML - implementation of the concept
of multiple inheritance is not a problem at all.

«subclass» VHE_Class_3

«super class» VHE_Class_1 «super class» VHE_Class_2

Figure 12. Concept of “Multiple Inheritance” of the OO methodology used to
express inheritance hierarchies of classes in Tables and texts through this book.

69

Table 13. Objects of the Automatic Service.

Description Object Subclass Super class
A device which is
VHE-compatible

Device VHE_Device Any device

A server device
offering a service

Server
device

VHE_Server VHE_Device

A client device
capable of retrieving
and presenting a
service

Client device VHE_Client VHE_Device

Connection over
network

Communi-
cation
channel

VHE_Channel Any connection

An object which can
be transferred through
a network (like a Java
“Serializable” object)

Streamable
object

VHE_ Streamable Any object

An item object Item VHE_Item VHE_String
An object which
contains information
on a service

Service item VHE_Sevice_
Item

VHE_Item

A string object which
is a streamable type

String object VHE_String Any string
VHE_Streamable

A plain event-type Event VHE_Event Any event
VHE_Streamable

Unique identifier.
May contain a name
part and GUID part.

uid VHE_UID VHE_String

Unique identifier of a
service subscriber

ss_uid NA VHE_UID

Unique identifier of a
service user

su_uid NA VHE_UID

Unique identifier of a
service provider

sp_uid NA VHE_UID

70

Table 14. Operations of the Automatic Service.

Actor Use Case Description of operations Inter-
face

Starts
Service
Uses
Service

Service
User

Closes
Service

Service User uses a VHE service that is
made available by the Service Provider.
The users are instructed on how to use the
system

In
st

ru
ct

io
ns

 fo
r V

H
E

Se
rv

ic
e

U
se

rs

Supports
On/ Off

Platform-specific operations concerning
the means of switching a device on/off in
a managed way. When a VHE device is
switched on, it must be initialised. When
the device is switched off, it must be
allowed to reach the safe state to be shut
down. The system’s states “ON” and
“OFF” should be maintained

Configures
Service

Platform-specific operations to configure
a device’s parameters - e.g. the identity of
the device and its installer. Smart card
functions might be supported. The
system’s states “UNCONFIGURED”,
“CONFIGURING”, “CONFIGURED”
and "UNCONFIGURING" should be
maintained by a VHE device

Will be
overridden
by the
imple-
mentator of
a VHE
device -
Client or
Server
typed actor

Initiates/
Uninitiates
Communi-
cation

Platform-specific operations to
initiate/uninitiates the communication
channels of the device. The system’s
states “DISCONNECTED”,
“CONNECTING”, “CONNECTED” and
"DISCONNECTING" should be
maintained by a VHE device

V
H

E_
D

ev
ic

e

The table will continue

71

Continuing Table 14
Actor Use Case Description of operations Interface
Service
Developer

Develops
Service

Service Developer develops services by
developing the corresponding
applications according the given
instructions and tools In

st
ru

ct
io

ns
fo

r S
er

vi
ce

D
ev

el
op

er
s

Initiates/
Uninitiates
Service

Platform-specific operations to
initiate/uninitiate a service. The system’s
states “STOPPED”, “STARTING”,
“STARTED” and "STOPPING" should
be maintained

Server

Registers/
Unregisters
Service

Platform specific operations to
register/unregister services. This means
a way of notifying the availability of a
new service to the associated
participants. When the service is
restored, it must be unregistered
correspondingly. The system’s states
“UNREGISTERED”,
“REGISTERING”, “REGISTERED”,
and "UNREGISTERING" should be
maintained correspondingly

V
H

E_
Se

rv
er

 e
xt

en
ds

 V
H

E_
D

ev
ic

e

Retrieves
Service

Platform-specific operations to retrieve
client software and enable the use of an
offered service. The subscriber's identity
is notified during the retrieving. The
system’s states “UNSERVED”,
”RETRIEVING”, and “SERVED” and
"REMOVING" should be maintained

Client

Presents
Service

Platform-specific operations to install
the client-side software. The system’s
states “UNINSTALLED”,
”INSTALLING”, “INSTALLED”, and
"UNINSTALLING" should be
maintained

V
H

E_
C

lie
nt

 e
xt

en
ds

 V
H

E_
D

ev
ic

e

72

 4.1.1 Interfaces of the "Supports Automatic Service" API

Interfaces of “Supports Automatic Service” and their hierarchy are illustrated in
Figure 13. The figure shows that supported system states are defined as public
constants (marked with +). All operations have been left platform specific - the
extended system may present them as the most appropriate for the extensions.

+ON
+OFF
+UNCONFIGURED
+CONFIGURING
+CONFIGURED
+UNCONFIGURING
+DISCONNECTED
+CONNECTING
+CONNECTED
+DISCONNECTING

«interface» VHE_Device

+UNSERVED
+RETRIEVING
+SERVED
+REMOVING
+UNINSTALLED
+INSTALLING
+INSTALLED
+UNINSTALLING

«interface» VHE_Client
+STOPPED
+STARTING
+STARTED
+STOPPING
+UNREGISTERED
+REGISTERING
+REGISTERED
+UNREGISTERED

«interface» VHE_Server

{operations are platform specific}

Figure 13. Interfaces and their inheritance hierarchy of the “Supports
Automatic Service” API. The public constants express the states of the VHE-

system.

73

 4.2 "Supports Service Usage" API

The "Supports Service Usage" API provides a client with the ability to retrieve a
list of available services and present it to a user. The system also supports the
user selection of a service.

The results of the OOA will be presented as follows: Table 15 introduces the
actors, Table 16 introduces new objects that are necessary in presenting the
services which this API offers, and Table 17 describes the operations.

Table 15. Actors of the Service Usage.

Tracing the VHE
Use Cases

Actor Subclass Super class Attributes

“User of the
system”

User Service User Human Primary

“Handheld device” Service
Browser

VHE_Service_
Browser

Daemon Secondary

Table 16. New objects for the Service Usage.

Description Object Subclass Super class
A client device is capable of
retrieving and presenting a
service list

Service
Browser

VHE_Service_
Browser

VHE_Client

An item on the service list.
Contains all the necessary
information for reaching and
deploying a particular service

service_item NA VHE_Service
_Item

Identity of a service provider broker_uid NA VHE_UID
Identity of a service consumer browser_uid NA VHE_UID
A list containing service items service_list NA VHE_Service

_List

74

Table 17. Responsibilities and interfaces of the Service Usage.

Actor Use Case Description of operations Inter-
face

Retrieves
Service
Items

When the state “CONNECTED” of the
underlying VHE_Client occurs, indicating the
system’s capability to communicate, Service
Browser will retrieve a service list:
service_list:=
retrieveServiceList(browser_uid:
VHE_UID, broker_uid: VHE_UID):
VHE_Service_List
The operation returns a service list object, or
null if the operation fails. If the operation was
successful, meaning that a service list object
was returned, the system moves on to the state
“LISTING”, otherwise the “null list object
returned exception” will appear

Service
Browser

Presents
Service
Items

If the browser's state “LISTING” is perceived,
Service Browser will start presenting the
service list to a user and will wait until the user
has made a selection on the presented list:
service_item:= presentServiceItems
(_service_list: VHE_Service_List):
VHE_Service_Item
When the user has selected a service item from
the service list, the browser moves on in its
state “RETRIEVING”, or, in case of failure,
the “service item cannot be selected exception”
will appear

V
H

E_
Se

rv
ic

e_
B

ro
w

se
r e

xt
en

ds
 V

H
E_

C
lie

nt

Service
User

Selects
Service
Item

When a user perceives a list of service items
appearing (during the browser's state
“LISTING”), selection of a service item will
be made by Service User

In
st

ru
ct

io
ns

 fo
r

V
H

E
Se

rv
ic

e
U

se
rs

75

 4.2.1 Interfaces of the "Supports Service Usage" API

The component that implements the interface VHE_Service_Browser is
responsible for providing the Service Usage operations on a client platform.
Figure 14 illustrates this interface. The figure shows how the
VHE_Service_Browser extends the VHE_Client interface. By this, it will
receive the support for the states of the underlying system.

+retrieveServiceList(in _broker_uid : VHE_UID, in _browser_uid : VHE_UID) : VHE_Service_List
+presentServiceItems(in _service_list : VHE_Service_List) : VHE_Service_Item

+LISTING
«interface» VHE_Service_Browser

«interface» VHE_Client

See Figure 13 on Page 72
for a completed presentation

of this interface

Figure 14. Interface VHE_Service_Browser extends the interface VHE_Client.

 4.3 "Supports GenericUI Service" API

"Supports GenericUI Service" - a system is able to support client devices in the
device-specific way of presentation of appliances’ UIs, at least to present a view
of but also to control and monitor a specific service that the appliance provides.

The results of the OOA will be presented as follows: Table 18 introduces the
actors, Table 19 introduces the objects and Table 20 summarises the suggested
APIs.

76

Table 18. Actors of the GenericUI Service.

Tracing the VHE Use
Cases

Actor Subclass Super
class

Attributes

“a home server also
serving as a gateway and
providing the GenericUI-
service”

UI Broker VHE_UI
_Broker

Daemon Secondary

“Handheld device” Service
Browser

VHE_Service_
Browser

Daemon Secondary

Table 19. New objects for the GenericUI Service.

Description Object Subclass Super class
A server device is
acting as the UI Broker
between appliances and
client devices

UI Broker VHE_UI_Broker VHE_Server

The event which is
received from the UI
Broker

push_event VHE_Push_Event VHE_Event

The event which tells
the service browsers to
update the presented UI

“UPDATE_UI” NA push_event

77

Table 20. Operations of the GenericUI Service.

Actor Use Case Description of operations
Maintains
Transcodecs

Will be defined in the future versions

Maintains
Profiles

Will be defined in the future versions

Maintains UI
Descriptions:
- Retrieves
and Updates
UI
Description
- Stores UI
Description

For retrieving a UI description for a specific
appliance, the UI Broker can use the next operation:
_UI_description:=
retrieveUIDescription(_app_uid: VHE_UID,
_description_id: XML_String):
VHE_UI_Description
The _app_uid is the identity of an appliance and the
_description_id is the identity of the specific UI
description presented by or suitable for the appliance.
If there is more than one option, the parameter
_description_id can be for selecting one. The null
value of the _description_id will retrieve the default
UI description. This operation doesn't define how
The UI Broker stores the UI description for later
retrieval:
_ui_stored:= storeUIDescription(_app_uid:
VHE_UID, _ui_description: VHE_UI_Description,
_description_id: VHE_String): Boolean

UI
Broker

Handles
Monitoring
Events

The underlying Server passes all events that are
identified as monitoring events to this operation. The
operation returns TRUE if the event was handled.
monitoring_event_handled:=
handleMonitoringEvent(_appl_uid: VHE_UID,
_description_id: XML_String, _data_description:
VHE_Data_Description, _monitoring_event:
VHE_Monitoring_Event): Boolean

The table will continue

78

Continuing Table 20
Actor Use Case Description of operations

Handles
Monitoring
Events

Only the monitoring event "DATA_CHANGED"
must be handled at the time. Because some data in
some appliance has been changed, the UI description
for the appliance in question must be updated. After
these operations, the UI Broker will inform its clients
by generating the push event of "UPDATE_UI"

UI
Broker

Passes
Events

All coming messages that can be interpreted by the
underlying Server to be legal in the system are
directed to this operation. If a message is interpreted
as containing events, the event type will be identified.
If the event is a monitoring event, the
handleMonitoringEvents() -operation will be called.
If the event is a control event, it will be directed to
the appliance whose uid was identified in the
message. The UI Broker can pass the events as:
passEvent(_from_uid: VHE_UID, to_uid:
VHE_UID, _event: VHE_Event): Boolean

Fetches and
Updates UI

The UI Broker can transcode an UI description to the
specific UI format by the next operation:
_ui:= transcodeUIDescription(_ui_description:
VHE_UI_Description, _data_description[]:
VHE_Data_Description, _format_id:
XML_String): VHE_UI
The parameter _ui_description is the UI Description
to be transcoded. The parameter _data_description[]
is the list of VHE_Data_Descriptions to be included
in the _ui_description

Presents UI Platform-specific operation
Handles
Push
Events

Will be defined in the future versions

Service
Browser

Generates
Control
Events

Platform-specific operation

79

 4.3.1 Interfaces of the "Supports GenericUI Service" API

The description of the operations of the GenericUI service is drawn as an
interface definition of “VHE_UI_Broker” in Figure 15. The parameters in the
operations handleMonitoringEvent(), storeUIDescription() and
transcodeUIDescription() are suppressed because of their required space.

+retrieveUIDescription(in _app_uid : VHE_UID, in _description_id : XML_String) : VHE_UI_Description
+handleMonitoringEvent() : Boolean
+passEvent(in _from_uid : VHE_UID, in _to_uid : VHE_UID, in _event : VHE_Event) : Boolean
+storeUiDescription() : Boolean
+transcodeUIDescription() : VHE_UI

«interface» VHE_UI_Broker

«interface» VHE_Server
See Figure 13 on Page 72

for a completed presentation
of this interface

See Table 20 on Page 77
for a completed presentation

of the parameters

Figure 15. Interface VHE_UI_Broker extends the interface VHE_Server.

 4.4 "Supports Home Service" API

The "Supports Home Services" API supports the appliance that provides a
service offering a description of its public data, to handle control events and to
provide monitoring events to allow it to fulfil its responsibilities. The results of
the OOA will be presented as follows: Table 21 introduces the actors, Table 22
introduces the objects, and Table 23 summarises the suggested API.

Table 21. Actors of the Home Service.

Tracing the VHE Use Cases Actor Subclass Super class Attributes
“Appliance more than one” App-

liance
VHE_
Appliance

Daemon Secondary

“VHE service subscriber” Home
Owner

NA Human Primary

80

Table 22. Objects of the Home Service.

Description Object Subclass Super class
A server device on which a
home service runs

Appliance VHE_Appliance VHE_Server

Identity of a broker broker_uid NA VHE_UID
Identity of an appliance appl_uid NA VHE_UID
An event which an object
sends to a collaborator for
informing changes to its
data

monitoring_
event

VHE_Monito-
ring_Event

VHE_Event

The event which is
received from a service
browser

control_ event VHE_Control
_Event

VHE_Event

A string in XML format,
and it is a streamable type

XML XML_String Org.W3C.co
m /document/
VHE_
Streamable

An XML string which
describes the identity of a
data item

description_id NA XML_String

An XML string which
describes the type of a data
item

data_type NA XML_String

An XML string which
describes the value of a
data item

data_value NA XML_String

An XML string which
describes the access type a
data item, e.g. read, write

data_access NA XML_String

The table will continue

81

Continuing Table 22
Description Object Interface Super Class
A string an appliance
maintains for presenting its
public data in XML format.
It contains four parts:
description_id, data_type,
data_value, and
data_access

data_description VHE_Data
_Description

Description_id,
data_type,
data_value,
data_access

A generic UI presented in
XML format. Ready to
transcode to UI

UI Description VHE_UI
_Description

XML_String

A description is presented
in XML 1.0 format

“XML_10” NA XML_String

A description is presented
in HTML 1.1 format

“HTML_11” NA XML_String

A description is presented
in WML 1.0 format

“WML_10” NA XML_String

A description is presented
in UIML 1.0 format

“UIML_10” NA XML_String

A description is presented
in Java2 byte code (a Jini
proxy)

“JAVA_2” NA XML_String

Instance of monitoring
event

"DATA_
CHANGED"

NA monitoring_
event

Instance of control event "UPDATE_
DATA"

NA control_event

82

Table 23. Operations of the Home Service.

Actor Use Case Description of operations Inter-
face

Appliance Generates
Monitoring
Events

A monitoring event is sent to the
appropriate UI Broker expressed by the
parameter _broker_uid. Only the
"DATA_CHANGED" event is defined by
now. The identity of the appliance itself is
expressed by _appl_uid. The
_description_id and the _data_description
express the event-related data. The
operation returns TRUE if the sending was
successful:
_event_sent_:= sendMonitoringEvent(
_monitoring_event:
VHE_Monitoring_Event, _appl_uid:
VHE_UID, _broker_uid: VHE_UID,
_description_id: XML_String,
_data_description:
VHE_Data_Description): Boolean
A private operation of _data_description:=
getDataDescription(_description_id:
VHE_String): VHE_Data_Description
can retrieve a data description object from
the appliance by a description id. The
parameter _description_id selects one of a
set of named descriptions. A value of “null”
will return the default (or start) description.
The operation can return a null value if the
operation cannot be served. The behaviour
is illustrated in Figure 16

V
H

E_
A

pp
lia

nc
e

ex
te

nd
s V

H
E_

Se
rv

er
 (s

ee
 F

ig
ur

e
18

)

The table will continue

83

Continuing Table 23
Actor Use Case Description of operations Inter-

face
Appliance Handles

Control
Events

All arrived messages which can be
interpreted by the Server to be legal in the
system are directed to the
handleControlEvent() operation. The
operation returns TRUE if the event was
handled.
_event_handled := handleControlEvent
(_broker_uid: VHE_UID,
_description_id: XML_String,
_data_description:
VHE_Data_Description, _control_event:
VHE_Control_Event) : Boolean
If the _control_event is
"UPDATE_DATA", the appliance must
update the appropriate data description
expressed by the _description_id. This is
how the appliance can be controlled. On the
real change in the appliance's data, the
DATA_CHANGED-event will be raised by
the Appliance.
If the _control_event is
"DELIVER_DATA", an appropriate
_description_id –related data description
must be sent. This is how the UI Broker can
retrieve the Appliance's data explicitly. The
behaviour is illustrated in Figure 17

V
H

E_
A

pp
lia

nc
e

ex
te

nd
s V

H
E_

Se
rv

er
 (s

ee
 F

ig
ur

e
18

)

The table will continue

84

Continuing Table 23
Actor Use Case Description of operations Inter-

face
Home
Owner

Adds/
Removes
Device

Home Owner adds/removes a device at home.
VHE_Server registers / unregisters the application
with the service provider, who must maintain the
lookup service for the appliances. If an
appropriate extension for the VHE_Server
capabilities is presented (e.g. a lease service
presented by Serverless Service Provisioning), the
registration will be guarded in case of an
unexpected removal of a network connection or a
device

In
st

ru
ct

io
ns

 fo
r t

he
 H

om
e

O
w

ne
r

:VHE_Appliance

Appliance

change in the data (_description_id)

[server_state == STARTED]
_data description := get Datadescription
(_description_id: XML_String): VHE_Data_Description

[server_state ==STARTED AND _data_description !=NULL]
monitoring_event handled := sendMonitoringEvent
(DATA_CHANGED, _appl_uid: VHE_UID,
 _broker_uid: VHE_UID, _description_id: XML_String,
 _data_description: VHE_Data_Description):Boolean

[monitoring_event_handled]
monitoring event handled successfully

[NOT monitoring_event_handled]
 monitoring event handled
unsuccessfully

Figure 16. Appliance generates a monitoring event.

85

:VHE_Appliance

Appliance

message arrived (_broker_uid, _description_id,
 _data_description, _control_event)

[server_state == STARTED AND
 _control_event == UPDATE_DATA]
control_event_handled := handleControlEvent
(_broker_uid: VHE_UID, _description_id: XML_String,
 _data_description: VHE_Data_Description,
 _control_event: VHE_Control_Event):Boolean

[control_event_handled]
 control event handled successfully

[NOT control_event_handled]
control event handled unsuccessfully

Figure 17. Appliance handles a control event.

 4.4.1 Interfaces of the "Supports Home Service" API

The component that implements the interface VHE_Appliance is responsible for
providing a home service. The interface is illustrated in Figure 18. The
VHE_Appliance interface extends the VHE_Server interface. In this way, the
underlying system's states can be notified. Suppressed parameters of
handleControlEvent() and sendMonitoringEvent() operations can be seen in
Table 23, Figure 16 and Figure 17.

86

+handleControlEvent() : Boolean
+sendMonitoringEvent() : Boolean
+getDataDescription(in _description_id : XML_String) : VHE_Data_Description

«interface» VHE_Appliance

«interface» VHE_ServerSee Table 23, Figure 16, and
Figure 17 on Page 82 - 85

for a completed presentation
of the parameters

See Figure 13 on Page 72
for a completed presentation

of this interface

Figure 18. Interface VHE_Appliance extends the interface VHE_Server.

 4.5 Chapter Summary

This chapter has presented the API development of the VHE Middleware's
architecture concept thus finalising Step 2 initialised in the previous chapter.
The concept was presented in the previous chapter. The result was a set of
interface definitions with a set of objects the VHE system needed to provide the
functions the conceptual APIs define. The APIs and interfaces developed here
are expressed in OCL and, consequently, are platform independent - they can be
deployed in any environment in which the VHE-compatible arrangement should
take place.

Further development should comprise the building of an implementation of the
suggested APIs. With this, the usefulness of the results will be verified, maybe
leading to further improvement of the APIs. This will be done by a case study,
which we will present next.

87

 5. Case Study
In this chapter, we will conduct a case study of a prototype system. By this, Step
3 introduced in Chapter 1.3 will be entered. The case is an implementation of the
GenericUI service concept and is called the “UIML Service”. The study will
show how the GenericUI-related APIs should be implemented in UIML-based
realisations of the GenericUI service concept. The method to be applied is
Reverse engineering. According to the Reverse Engineering methodology, by
analysing the code of software, its abstractions can be found and the software
can be restructured accordingly. Brown et al. [11] have identified several effects
of the programming - what they call the “Anti-Patterns”. The “Anti-Patterns” are
the opposite of “Patterns”, and the “Patterns”, on their behalf, are the commonly
accepted good ways of modelling and programming software. An Anti-pattern
called the “Functional Decomposition” can be identified in the prototype
software. Typically, this Anti-pattern is caused by the style of prototype
programming, where the object-oriented (OO) analysis of the problem and its
following OO-architecture design is omitted and replaced with great enthusiasm
and creativity for the subject. To resolve this Anti-pattern, the object-oriented
decomposition model must be provided; after that, the prototype software’s
functions can be restructured by the suggested decomposition model. The
proposed method will be tested as well as Step 3 suggests. A full example of
prototype software is presented in Appendix B. Unfortunately; the full source
code cannot be published here, but some of it can be perceived in the models.

 5.1 Decomposition Model of the UIML Service

To provide the object-oriented decomposition model for the UIML Service, the
decomposition model of the GenericUI service illustrated in Figure 8 should be
developed further. The UIML service concept should understood as an extension
of the GenericUI service concept - the UIML service concept will extend the
GenericUI service by deploying the UIML language in providing the UI service.
The model is illustrated in Figure 19. The figure presents the case-related
documentation and the suggested functional decomposition model for the UIML
service.

88

UIML Service

Provides UIML
Service

UIML Appliance

«include»
«include»

Passes Events
«include»

UIML Browser
Consumes UIML

Service

Fetches and Up-
dates UI

«include»

Elaboration of the "Use Case - GenericUI"

Provides UIML
Home Service

«include»

UIML Broker

Maintains Profiles

«include»

Provides GenericUI
 Service

Supports UIML Service

«extend»

«extend»

Consumes GenericUI
 Service

Supports UIML Service Usage

Supports UIML Service

«extend»

Supports UIML
Service

Retrieves Service
Items

«include»

Generates Moni-
toring Events

«include»

«include»

Handles Control
Events

«include»

Supports UIML
Service Usage

«include»

Handles Monitoring
 Events

«include»

Generates Control
Events

«include»

Provides Home
Service

Supports UIML Home Service

Presents Service
Items

«include»

Presents UI

«include»

Service Developer

Develops UIML
Home Service

Develops Home
Service

Supports UIML Home Service

«extend»

Maintains UI
Descriptions

«include»

Maintains Back-
ground Processes

Maintains Trans-
codecs

«include»

«include»

«include»

Handles Push
Events

Generates Push
Events

«include»

«this document»Appendix B: Technical Specification
of the UIML Service

Figure 19. Functional decomposition model of the UIML Service.

 5.2 APIs of the UIML Service

The VHE Middleware APIs in Chapter 4 were modelled in using OCL, but the
UIML service prototypes is written in Java - the restructured APIs will be Java-
specific too. This is not, however, a problem at all because these two
“languages” have many similarities, making the APIs easily to read and
compare.

89

 5.2.1 "Supports UIML Service Usage" API

In Figure 19, the "Supports UIML Service Usage" API extends the "Supports
Service Usage" API in the way that the first one overrides some function groups
of the latter, namely the "Retrieves Service Items" and "Presents Service Items".
Other function groups will remain platform specific. The results of the
restructuring process are as follows: Table 24 introduces the actors, Table 25
introduces the objects, and Table 26 summarises the suggested APIs.

Table 24. Actors of the UIML Service Usage.

Actor Subclass Super class Attributes Description
UIML
Browser

VHE_UIML
_Browser

VHE_Service_
Browser

Secondary A daemon running
on a client device

90

Table 25. Objects of the UIML Service Usage.

Description Object Subclass Super class
Main class of application
used for UI browsing

JavaUIMLBr
owser

java.awt.event.Win-
dowAdapter

The main frame of the
JavaUIMLBrowser

Browser-
Frame

java.awt.Frame

Guides the reading of UIML
document

UIMLReader

Reads peers section of
UIML document

UIMLPeer-Reader

Creates Java components
from UIML structures

UIMLJava-
Renderer

UIMLCallTarget

Any part of UIML structure UIMLPart UIMLElement
Base class (root) of complete
UIML structure

UIMLPart UIMLStructure

Adapts user's actions on UI
elements to UIMLCalls

UIMLAction
Adapter

ItemListener

Base class for all Java UI
components

JComponent java.awt.Container

Class for URL-address URL
Component that can contain
other JComponent-based
components

JContainer

91

Table 26. Operations of the UIML Service Usage.

Actor Use Case Description of operations Inter-
face

Retrieves
Service
Items

A list of available services will be shown in the
UIML Browser (as an UIML-format UI that is
dynamically created by the UIML Service)
when no service name is specified in the
retrieve request. The following interaction is
the same for retrieving a specific service,
except that in that case the name of the service
will be given in the request (a parameter in the
URL).
BrowserFrame::convertUIMLDescription is
called when the user starts the retrieval of a
service list or a specific service. Method
creates a connection to UIML Service's servlet
and, when connection has been established, it
reads data through the connection to an
InputStream variable. This variable is then
converted to objects of classes UIMLReader
and UIMLPeerReader for later use in
presenting of data.
This functioning is illustrated in Figure 20.

UIML
Browser

Presents
Service
Items

Presenting of a service list or service UI is
initialised when BrowserFrame creates a new
UIML JavaRenderer object, giving it
UIMLReader and UIML PeerReader as
parameters. After this, the method UIML
JavaRenderer::renderStructure is called to
actually start the presenting. This method calls
the renderPart method for each UIMLPart in
UIMLStructure received from UIMLReader.
renderPart identifies each part and calls
CreateXXX method for it (XXX can be, for
example, Trigger, TextEntry or List).

U
IM

L_
B

ro
w

se
r

The table will continue

92

Continuing Table 26
Actor Use Case Description of operations Inter-

face
UIML
Browser

Presents
Service
Items

In the CreateXXX method, a new JComponent
based Java component is created and a new
actionListener of type UIML ActionAdapter is
added to it with a call to method
addActionListener. At this point Java
components have been created for every part in
UIMLStructure and UI shows the items.
Components have actionListeners to be able to
receive user selections later.
This functioning is illustrated in Figure 21.

U
IM

L_
B

ro
w

se
r

93

BrowserFrame OpenDialog

Assumption : User selects
File -> Open to start the
browsing of the UI.new BrowserFrame ()

MenuFileOpen_actionPerformed
(e : ActionEvent)

new OpenDialog (this : Frame,
"Open location" : String, true :
boolean)

show ()

ConvertUIMLDescription
(textField1.getText() : String)

Assumption : User
selects the file (or URL)
and presses Ok in the
dialog.

ConvertUIMLDescription
(new URL(address) : URL)

button2_actionPerformed
(e : ActionEvent)

ConvertUIMLDescription
creates a connection (if
doesn't exist) and gets the
UIML description from
the given file (or URL).

UIML Browser

Figure 20. UIML Browser - Retrieves Service Items.

94

UIMLJavaRenderer JComponent

new UIMLJavaRenderer (reader :
UIMLReader, peerReader :
UIMLPeerReader, contentPane :
Container, this : BrowserFrame)

renderStructure ()

renderContainingStructure
(root : UIMLStructure, container : Container)

* [e.hasMoreElements()]
renderPart (e.nextElement() : UIMLPart,
container : Container)

Enumerates through the
UIMLParts in the UIMLStructure
with Enumeration e.

* [e.hasMoreElements()]
create Type(part : UIMLPart, container : Container)

Creates actual UI-components
after the type (the type of the
component) has been identified.

* [e.hasMoreElements()]
new Type()

For each component, a
JComponent based object is
created to handle the control
events. Both the type of the
component and parameters of
construction vary based on the
type.

* [e.hasMoreElements()]
addActionListener
(new UIMLActionAdapter() : ActionListener)Adds an ActionListener for each

component.

UIML Browser

Figure 21. UIML Browser - Presents Service Items.

 5.2.2 "Supports UIML Home Service" API

All function groups from the "Supports Home Service" API will be overridden.
This is because the UIML presentation of a home service needs the UIML-
specific events handling and generation, and, furthermore, a UIML appliance
must be able to present its data description in the UIML-supporting format. To

95

present the OOA, Table 27 introduces the actors, Table 28 introduces the
objects, and Table 29 summarises the suggested APIs.

Table 27. Actors of UIML Home Service.

Role Sub class Super class Attributes Description
UIML
Appliance

UIML_
Application

VHE_
Appliance

Secondary A system daemon
running on a server
device which provides
a home service, e.g.
TV set’s remote
control

Service
Developer

Human Primary A UIML-aware service
developer

Table 28. Objects of UIML Home Service.

Description Object Subclass Super class
Application's reply to a
method call

UIMLReply java.io.Seri-
alizable

UIML description of
application's UI

UIMLDescription java.io.Seri-
alizable

Class for transferring UIML
values from and to
application

UIMLValues java.io.Seri-
alizable

Interface for all applications
that work as a UIML
appliance (used in
communication with UIML
Service)

UIML
Appliance

UIML_Application VHE_App-
liance

96

Table 29. Operations of the UIML Home Service.

Actor Use Case Description of operations Inter-
face

Generates
Monitoring
Events

Service registration / unregistration, status
monitoring and updates of the UI.
Prototype only supports the registration /
unregisration events.

UIML
Appliance

Handles
Control
Events

The UIML_Application::invokeMethod is
called by the UIML broker and actually
starts the control events handling in the
application. After processing the event,
the application creates a UIMLReply
object, which includes application userid,
replyvalue and replytype, and returns this
object to the UIML broker, which then
decides what to do to the UI (for example,
to use a cache version, update only values
or retrieve a completely new UI from the
application).
This functioning is illustrated in Figure
22.

U
IM

L_
A

pp
lic

at
io

n
Service
Developer

Develops
Service

A service developer is aware of the UIML
service and has agreed to follow the
interface "UIML_Application" in
developing the software for devices

In
st

ru
ct

io
ns

 fo
r U

IM
L

Se
rv

ic
e

de
ve

lo
pe

rs

97

new StringBuffer()

*[e.hasMoveElements()]
enum = parameters.keys()

UIML Appliance
UIML_Application

[RMI-EVENT] invokeMethod() new UIMLReply()

Application`s replyReturn
application,
userid,
replyvalue and
replytype * [e.hasMoveElements()]

Enumeration enum =
 methodParametres.getValueNamed()

Initialize
character string

Set name pairs
for the
paramameters

* [e.hasMoveElements()]
 enum = methodParameters.getValueNames()

Set value pairs
for the
parameters

UIML Reply

Figure 22. UIML Appliance - Handles Control Events.

 5.2.3 "Supports UIML Service" API

The "Supports UIML Service" API relies on the "Supports GenericUI Service"
APIs in many operations because of their generality. However, some function
groups must work differently and thus will need to be overridden. To present the
results of the OOA, Table 30 introduces the actors, Table 31 introduces the
objects, and Table 32 summarises the suggested APIs.

98

Table 30. Actors of the UIML Service.

Actor Sub class Super class Attributes Description
UIML
Broker

VHE_UIML
_Broker

VHE_UI_Bro-
ker

Secondary A system daemon
running on a server
device, e.g. Set-Top
Box

UIML
Browser

VHE_UIML
_Browser

VHE_Service_
Browser

Secondary A system daemon
running on a client
device, e.g. PDA,
PC etc.

Table 31. Objects of the UIML Service.

Description Object Subclass Super class
Main class of component for
communication between Java
UIMLBrowser and UIMLService

NA UIMLServlet javax.servlet.
http.HttpServlet

Main class of component
UIMLService, implements UIML
Broker

NA UIMLService UIMLCallTarget

Request from UIMLservlet to
UIMLService

NA UIMLServlet-
Request

java.io.Seria-
lizable

Response from UIMLService to
UIMLServlet

NA UIMLServletR
esponse

java.io.Seria-
lizable

The class implements a call to a
method as described in the
structure section of the UIML
document

NA UIMLCall UIMLEvalu-
atable,
UIMLAction

99

Table 32. Operations of the UIML Service.

Actor Use Case Description of operations Inter-
face

Maintains
Transcodecs

Stores and retrieves transcodecs
(transcodecs are used for converting UIML
to other formats). The prototype only stores
transcodecs

Maintains UI
Descriptions

The UIML_Application typically reads the
data descriptions and parameters on start-up
by calling internal methods. These are then
saved, for example to member variable
String description and Hashtable
parameters. The description is returned
when the method getDescription is called
(by the UIML broker) and the requested
parameters when requestValues is called.
Both of these methods are part of the UIML
Application interface. The UIML broker
also stores these descriptions in its private
cache for later use.
This functioning is illustrated in Figure 23.

Maintains UI
Profiles

The prototype does not support this
function group.

Generates
Push Events

The prototype does not support this
function group.

UIML
Broker

Handles
Monitoring
Events

The prototype only recognises application
registrations and unregistration.

U
IM

L_
B

ro
ke

r

The table will continue

100

Continuing Table 32
Actor Use

Case
Description of operations Inter-

face
UIML
Broker

Passes
Events

UIML Browser calls UIMLServlet`s doGet -
method. After that, UIMLServlet determines the
preferred response format and checks the
availability of the UIML broker service. If these
items are ok, class UIML ServletRequest
constructs an object, demand by HTTP
ServletRequest, and sets the preferred response
format. After that, UIMLServlet calls the service
method from the class UIMLService. This
method invokes the service and the event will be
passed to the application. Finally, an updated
client format description is returned in the
response. This interaction is very similar to
fetching / updating UI.

U
IM

L
B

ro
ke

r

UIML
Browser

Fetches
and
Updates
UI

The fetching of a UI description is started when
the UIML Browser makes an HTTP request to
UIMLServlet (its method doGet is called).
UIMLServlet then calls the UIMLService's
method service (UIML ServletRequest, UIML
ServletResponse). If the request does not include
the name of the application or method, a list of
available applications is returned. However, if
these identifiers do exist, the method
invokeMethod is called. This method can result
in a need to update the UI description.
UIMLService first checks if it has the correct UI
description in its cache; if not, it requests it from
UIML Application with method UIML
Description getDescription(String). This
description is returned and stored to cache.
This functioning is illustrated in Figure 24.

U
IM

L_
B

ro
w

se
r

The table will continue

101

Continuing Table 32
Actor Use Case Description of operations Inter-

face
Generates
Control
Events

When a user presses any button on the
UIMLJavaBrowser UI, the method
actionPerformed of UIMLActionAdapter is
called (check UIML Service Usage - Presents
Service Items for details about how the UI and
UIMLActionAdapters are created). This
method creates a UIMLAction object (of type
UIMLCall) based on the UIMLRule object that
has been set to UIMLActionAdapter during the
creation of the adapter. These rules originate
from the UIML description of the appliance
and include the valid control events. The
control event is passed on by calling the
evaluate() method of UIMLCall.
This functioning is illustrated in Figure 25.

Presents
UI

The description of these operations can be
found from UIML Browser - Presents Service
Items, and Figure 21.

U
IM

L_
B

ro
w

se
r

Handles
Push
Events

The prototype does not support this function
group.

U
IM

L_
B

ro
w

se
r

102

UIML_Application

readDescription (getClass().getResourceAsStream
("/uiml/" + name + ".uiml"))

readParameters (getClass().getResourceAsStream
("/uiml/" + name + ".par"))

UIML Broker

getDescription (name : String) :
UIMLDescription

requestValues (requestObj : UIMLValues) :
UIMLValues

These methods return the UIML Description /
requested values whenever asked for. Part of
the UIML_Application interface.

UIMLDescription

UIMLValues

Figure 23. UIML Broker - Maintains UI Descriptions.

103

UIML Browser

[appname != null &&
funcName != null]
invokeMethod (
methodName : String,
parameters :
UIMLValues,
userId : String) :
UIMLReply

[appname == null ||
funcName == null]
getUIMLApplicationList
(client_IP : String) :
String

UIMLServlet UIML_Broker UIML_Application

doGet (request :
HttpServletRequest,
response :
HttpServletResponse)

Hashtable :
UIMLCache

service (request :
UIMLServletRequest) :
UIMLServletResponse

get (key : Object) :
Object

[Object == null]
getDescription (
name : String) :
UIMLDescription

[Object==null]
put (key : Object,
value : Object)

If application or
method is not
defined, list of
applications is
returned

Application's UI
descriptions are
stored to cache

Figure 24. UIML Browser - Fetches and Updates UI.

104

UIMLActionAdapter

UIML Browser

actionPerformed(ActionEvent e)

UIMLRule UIMLCall

getActions()

[action instanceof UIMLCall]evaluate()

Assumption: A
user has
pressed a
control button
for an
application

Figure 25. UIML Browser - Generates Control Events.

 5.3 Chapter Summary

In this chapter, as entering Step 3 introduced in Chapter 1.3, a case was analysed
and a study was carried out to test the proposed method. The result, in the sense
of system development, was a set of Java-specific interface definitions with a set
of VHE-system objects needed to provide the functions that realisations of the
UIML service will take.

This approach is prone to providing improvements for the architecture, API
models and their implementations. Also, the approach exposes the inconsistency
between the requirements and the implementation, and thus will show the parts
of the system requiring further development.

Further development should comprise building of the implementation of the
suggested APIs, bearing in mind the compatibility of the heterogeneous systems
- the APIs should be built on the VHE Middleware APIs presented earlier in this
text. This will verify the usefulness of the results, perhaps leading to further
improvements of the UIML service APIs and VHE Middleware, and will
eventually give a taste of real VHE.

105

 6. Conclusions and Further Research
As the purpose of the document was said to be twofold, the conclusions will be
twofold as well: 1) conclusions in the sense of scientific research and 2)
conclusions in the sense of technical development of the VHE Middleware.
Where we have reached and where we are going to will be covered. The
question of the applicability of the proposed method will be evaluated and the
qualities of the technical solution will be discussed. Furthermore, the issue of
further R&D of VHE Middleware will be looked into. With the twofold starting
point in mind, the results of the completed R&D will be analysed in this chapter.

 6.1 Applicability of Proposed Method

An advanced method of identifying a conceptual architecture and APIs as a
software system from its functional requirements was proposed. The proposed
method is based on the common knowledge of OOA methodology, which claims
that every software system contains hierarchical structures that reflect its
functional requirements. In the OOA methodology, these structures and their
hierarchy can be found by analysing and structuring the problem descriptions -
the Use Case analysis is discussed. The proposed method here is to seamlessly
move from a use case model to a conceptual architecture model of the software
system. In the analysis, the UML’s concept of extension point (expressing how a
system might be extended) was deployed. Consequently, in the model, the layers
and APIs of a software system were exposed. To evaluate the applicability of the
proposed method, the three steps were completed. The steps and their results are
as follows:

Step 1. Method introduction - This step is covered in Chapter 2. The proposed
method was introduced in developing the Producer/Consumer paradigm.
The hierarchy of evolving information systems, where a manually-
driven information system was seen to be extended by automatic
systems, was developed. The result was a functional decomposition
model of the semi-automatic information system. In the semi-automatic
information system the entities called the “Daemons” were helping the
system to provide and consume services automatically, thus extending
the manually-driven ones. In the analysis, the UML’s concept of

106

extension point (expressing how a system might be extended) was
deployed. Consequently, in the model, the layers and APIs of a software
system were exposed.

Step 2. Creation of a model of the problem - This step is covered in Chapter
3. Using the proposed method in structuring the problem, an OO
analysis was applied to a set of VHE Use Cases expressing the user's
scenarios of the VHE services considered to be attractive to end users.
These scenarios describe the functioning that is expected for fulfilling
the idea of VHE presented by the VHE Middleware project. The
analysis only dealt with three of the twelve VHE Use Cases authored by
the VHE Middleware project. However, it can be assumed that a great
deal of common functionality was found, and the findings will probably
cover most of the functionality of the other nine VHE Use Cases. The
result was expressed as an architecture concept of the VHE Middleware.
The concept was modelled as an UML subsystem diagram and is
illustrated in Figure 11. The results included the definitions of the VHE
Middleware conceptual subsystems, their hierarchy, and the appropriate
API definitions to deploy the concept.

Step 3. Testing the applicability of the proposed method with a single case -
This step is covered in Chapters 4 and 5. To test the applicability of the
proposed method, in Chapter 4 the defined APIs were modelled by
applying pure OOA methodology to the problem descriptions presented
by the VHE Use Cases. In Chapter 5 the methodology of Reverse
Engineering was deployed to analyse the prototype software introduced
in Appendix B. The functional decomposition model and API definitions
developed in Step 2 were applied in the analysis of the prototype.
Therefore, it was possible to compare the structures and APIs in the
conceptual model with the structures and APIs found in the prototype
software.

Conclusion 1: We have seen that the software functions and function groups
revealed in the prototype software matched well with the theoretical model
developed with the proposed method. For this reason, we can conclude that the
proposed method is evaluated to be applicable.

107

 6.2 Applicability of the Architecture

We have presented the design of the conceptual architecture with subsystems,
layers and API definitions, and their further development, finally presenting the
concrete interfaces of the VHE system components. By analysing the prototype
software, we have proved that the architecture and its APIs will be useful and
applicable when realisations of the VHE are to be implemented. Furthermore, in
Section 1.1.4 it was found that the next three main attributes qualify the
Middleware architecture, namely the flexibility, extendibility and scalability.
How these attributes are realised in the developed architecture will be shown
now.

The applicability of the developed VHE Middleware architecture can be
evaluated by comparing it to the existing ones. In Chapter 1 the reference
architecture models were introduced, namely the OMA, OSA, NMI, and OSGi.
OSGi, however, will be discussed later on this chapter. Let us compare our
architecture with these other three: The «core middleware» in Figure 26
corresponds to the “ORB” and “CORBA Services” presented with OMA in
Figure 1, and to the “framework interface classes” presented with OSA in Figure
2, and, of course, to the “Core Middleware” presented with NMI. Respectively,
the «upper middleware» in Figure 26 corresponds to the “Domain CORBA
Facilities” and the “Horizontal CORBA Facilities” in Figure 1, and to the
“network interface classes” of OSA in Figure 2, and to the “Upper Middleware”
presented with NMI. The meaning of “Application” is the same in all
architectures. In general, the purpose of software architecture is to illuminate the
way in which the software system should be built. So far, we have presented a
conceptual architecture; the conceptual architecture should be concretised to
present a real architecture of some specific software system. In this case, the real
one was the UIML Service, and we now have to illustrate it. This is done in
Figure 26. The figure shows how the VHE Middleware architecture concept can
be adapted to present the architecture of the UIML Service prototype system
presented in Appendix B. By this, we will prove that our architecture is flexible,
extensible and scalable.

To concretise the different possibilities for realising the architecture, we should
refer to the several design models illustrated with the UIML Service case in
Appendix B. The UIML Service is programmed on the OSGi framework. The

108

models can be easily mapped to the subsystem’s realisation elements modelled
as SM, DM, and AM of the architecture concept in Figure 11 and Figure 26.
This mapping will be expressed when proceeding with this chapter. As another
example of mapping the OSGi-based design model on the architecture
developed by Eikerling et al. [28] should be noted. These design models can also
be used to realise the architecture concept.

• Realisation of the “VHE Middleware for Core Services” - The OSGi
System Bundle must be installed to enable the other Service Bundles to be
installed. To be valid, a System Bundle, as every other service bundle in the
OSGi environment, must implement the interface “Bundle”. The interface
Bundle here fulfils the purpose of the “Supports Automatic Service” API in
Figure 26. In the OSGi runtime environment, the System Bundle is the
element that provides the services called the “Core Middleware”. To
compare the System Bundle to the «core middleware» module of the
architecture concept, we should look the six systems’ state constants listed
with the interface “Bundle” - namely “UNINSTALLED”, “INSTALLED”,
“RESOLVED”, “STARTING”, “STARTED”, “STOPPING”, “STOPPED”,
“UPDATED”, “MODIFIED”, “REGISTERED”, “UNREGISTERING” and
“ACTIVE”. These states fulfil the same purpose as that described in Figure
13. However, the collection of states in Figure 13 is much larger and slightly
different to those in the Bundle. This is because the states in Figure 13
should serve all possible implementations of the «upper middleware»
analysed in Chapter 2. Another difference is that the OSGi handles some of
the states as events, causing state transitions in the system. This might be a
better approach and should be considered in the future. However, the
difference is slight when compared to the automatic state transitions, in
which the system automatically enters from one state to the next without a
specific event, except for leaving the previous state.

• Realisation of the “VHE Middleware for GenericUI” - In Figure 26, the
UIML Service is drawn as a Bundle. It is application specific and is built to
fulfil the purposes of the “Supports GenericUI Service” API and the
“Supports Home Services” API. The OSGi offers the HTTP Service, which
is here considered to fulfil the idea of a “Supports Service Usage” API - by
using a standard HTTP browser a user can select a service on a list and start
using the selected service. Examples of the realisation elements that point to

109

concretising the architecture are presented with the UIML Service case in
Appendix B, in Figures 29 - 36.

• Realisation of the “VHE Middleware for Remote Development” - The
OSGi’s Device Access support is implemented at VTT Electronics so that
the idea of a “Supports HA Devices” API is fulfilled - legacy devices can be
deployed as home appliances. This is done by Aihkisalo et al. [29] in the
project. Furthermore, the OSGi framework includes an HTTP Service to
remotely administrate the OSGi environment installed on Home Server - the
“Configuration Admin Service”. This here fulfils the idea of a “Supports
Remote Development” API.

 6.3 Further Development

As with all software systems development, the development of architectures
should be iterative, as should the VHE Middleware architecture development
introduced in this publication. In addition to the OSGi-based UIML Service
system, several prototype systems for different environments should be built,
and, by this, the Middleware that is most flexible, extensible and scalable finally
reached. In particular, the first set of interfaces to be standardised will have to be
developed. These interfaces should be so general that they can be used far, far
into the future, thus guaranteeing the compatibility of the different VHE systems
to be realised in the future. Work will continue on this.

110

Realisation Elements

Specification Elements

«core middleware» VHE Middleware for Core Services

«functional requirements»
Elaboration of the Producer/Consumer-paradigm
for the Semi-automatic information system

«non-functional requirements»
Product Line Architecture (PLA) related Quality Attributes:
reusability, modifiability, portability, integrability, and testability.
Domain-related Quality Attributes:
performance, security, availability, functionality, and usability.
Middleware-related Quality Attributes:
flexibility, extendability, and scalability.

Service Production -
Service

Consumption

Architecture
Model (AM)

Static Model
(SM)

Dynamic
Model (DM)

«API»

1. "Supports Automatic Service" API
OSGi 2.0 System

Bundle

«implementation»

«upper middleware»
Realisation
Elements

Specification Elements

GenericUI

AM

SM

DM

«functional requirements»
Elaboration of the "Use Case - GenericUI"

«this document»

3. "Supports GenericUI Service" API

«API»

OSGi 2.0 Http
Service impl.

«implementation»

«functional requirements»
Elaboration of the "Use Case -
Remote Service Development"

«upper middleware»
Realisation
Elements

Specification Elements

Remote Service
Development

AM

SM

DM

7. "Supports Remote Development" API

OSGi 2.0 Device
Access impl.

«implementation»

«API»

«API»

2. "Supports Service Usage" API

4. "Supports Home Services" API

«API»

«API»

5. "Supports HA Devices" API
(HA = Home Automation)

Architecture of the VHE
Middleware Demonstrator of VTT

Electronics
(C) Markus Moilanen, 2002

«functional requirements»
Abstract Functional Requirements of VHE

OSGi 2.0
Configuration

Admin Service impl.

«implementation»

«technical specification» Appendix B:
Technical Specification of UIML Service

UIML Service

«implementation»

Figure 26. Architecture of the VHE Middleware Demonstrator of VTT
Electronics.

111

Acknowledgements
The VHE Middleware project lasted over two years and the people working on
the project at VTT Electronics have been involved as long. In addition to the
author of the publication, and the other persons introduced in the Preface, we
would like to acknowledge the following people for their contributions to the
R&D of the VHE Middleware at VTT Electronics. They will be introduced in
alphabetical order:

• Tommi Aihkisalo, Research Scientist at VTT Electronics. Participated in
the development of the “Remote Service Development” user scenarios in
Appendix A and the prototype development in Appendix B. E-mail:
Tommi.Aihkisalo@vtt.fi.

• Heikki Keränen, Research Scientist at VTT Electronics. Participated in the
R&D on the UIML Service in Appendix B. E-mail: Heikki.Keranen@vtt.fi.

• Eila Niemelä, Ph.D., Research Professor at VTT Electronics. Mrs. Niemelä
is the author of the Abstract Requirements Specification document
reproduced in Appendix C. E-mail: Eila.Niemela@vtt.fi.

• Johan Plomp, Licentiate of technology (electrical engineering) acts as
senior researcher and a vice group manager at VTT Electronics. His role in
the VHE Middleware project has been the co-ordination and initial
realisation of the work on the GenericUI service concept. The research on
adaptive and multi-modal interaction has benefited other simultaneous
projects and will be continued in the Advanced Interactive Systems research
field of VTT Electronics. His contribution to this publication has been
mainly as originator and initial implementer of the GenericUI service
concept, and the drafting of the scenarios in Appendix A. Contact via e-mail:
Johan.Plomp@vtt.fi.

• Tapani Rantakokko, a student in Information Technology at University of
Oulu and a trainee research scientist at VTT Electronics. Mr. Rantakokko
has been working on the R&D of the VHE Middleware User Interface
prototype system design and implementation. His contribution to this
publication is in the chapters on “Case Study” and “Appendix B”, both

112

handling the “UIML Service” prototype system implementation and
analysis. Personal contact by e-mail to tapani.rantakokko@ee.oulu.fi.

• Hannu Rytilä, previously a Group Manager of the Software Design and
Testing Research Group of Embedded Software Research Area at VTT
Electronics. As Project Manager of the VHE Middleware project of VTT
Electronics and a member of the VHE Middleware project Co-ordination
Committee (PCC), Mr. Rytilä indirectly contributed to almost every issue of
the VHE Middleware documentation. E-mail: hannu.rytila@nethawk.fi.

• A student group from the University of Oulu, Department of Information
Processing Science, consisting of Mika Hietala, Heidi Kallio, and Janne
Suni. These students carried out their Programming Project exercise by
contributing to the API modelling in Chapter 4 and to the prototype analysis
and modelling in Chapter 5.

113

References
1. VHE Middleware Consortium. VHE Middleware Project WWW. August 2002.
URL: http:// www.vhe-middleware.org

2. Object Management Group. Object Management Architecture. August 2002.
URL: http:// www.omg.org

3. International Standardisation Organisation. Open Distributed Processing -
Reference Model, X.901, ISO/IEC 10746. 1995.

4. The 3rd Generation Partnership Project. UMTS Technical Specification Group
Services and System Aspects: Virtual Home Environment - Open Service
Architecture 3G TS 123 127 V3.0.0. August 2002. URL: http:// www.etsi.org/

5. National Science Foundation. NSF Middleware Initiative. August 2002. URL:
http:// www.nsf.gov/pubs/2002/nsf02028/nsf02028.htm

6. OSGi Consortium. Open Service Gateway initiative. August 2002. URL:
http:// www.osgi.org

7. Cockburn, A. Writing Effective Use Cases. Addison-Wesley. 2000. 270 p.
ISBN 0201702258.

8. Büker, U., Eikerling, H-J. & Müller, W. Proceedings International ITEA
Workshop on Virtual Home Environments. Organised by the VHE Middleware
consortium, February 20–21, 2002, Paderborn, Germany. ISBN 3826598849.

9. Benbasat, I. & Goldstein, D.K. The Case Research Strategy in Studies of
Information Systems. In: MIS Quarterly 11. September 1987. Pp. 369–388.

10. Järvinen, P. & Järvinen, A. On Research Methods. Tampere, Finland:
Opinpaja Oy. 1999. 129 p. ISBN 951-97113-1-7.

11. Brown, W., Malveau, R., McCormick, H. & Mowbray, T. Anti Patterns - Re-
factoring Software, Architectures, and Projects in Crisis. Wiley Computer
Publishing. 2002. 309 p. ISBN 0-471-19713-0.

114

12. Object Management Group. UML V.1.4 Specifications. August 2002. URL:
http:// www.omg.org/ technology/documents/formal/uml.htm

13. UIML.org. UIML Specification. August 2002. URL: http://www.uiml.org/
index.php

14. Moilanen, M. Architecture of VHE Middleware - Elaboration of Functional
Requirements. In: Proceedings International ITEA Workshop on Virtual Home
Environment. Aachen: Shaker-Verlag. February 2002. Pp. 31–39.

15. Bass, L., Glements, P. & Kazman, R. Software Architecture in Practice.
Addison-Wesley Pub Company. 1998. 452 p. ISBN 0201199300.

16. Lundberg, L., Bosch, J., Häggander, D., & Bengtsson, P-O. Quality
Attributes in Software Architecture Design, In: Proceedings of the IASTED 3rd
International Conference on Software Engineering and Applications. October
1999. Pp. 353–362.

17. Dobrica, L. & Niemelä, E. A Survey on Software Architecture Analysis
Methods. In: IEEE Transactions on Software Engineering. Vol. 28, No. 7. July
2002. Pp. 638–653.

18. Dobrica, L. & Niemelä, E. A strategy for analysing product line software
architectures. Espoo: VTT Technical Research Centre of Finland. 2000. (VTT
Publications 427.) 124 p. ISBN 951-38-5598-8. URL: http:// www.inf.vtt.fi/pdf/

19. Weiss D., Lai, R. & Parnas. D. Software Product-Line Engineering: A
family-Based Software Development Process. Addison-Wesley. 1999. 426 p.
ISBN 0201694387.

20. Plomp, J., Mayora-Ibarra, O. & Yli-Nikkola, H. Graphical and Speech-
driven User Interface Generation from a single Source Format. In: Proceedings
of AVIOS 2001, San Jose, CA. 2–4 April 2000.

21. Plomp, J. UIML in Future Home Environments. In: Proceedings of the
Aristote European Conference: UIML, a User Interface Mark-up Language.
March 2001.

115

22. Burbeck, S. Applications Programming in Smalltalk-80: How to use Model-
View-Controller. August 2002. URL: http:// st-www.cs.uiuc.edu/users/smarch/
st-docs/mvc.html

23. Sundsted, T. MVC meets Swing. Explore the underpinnings of the JFC's
Swing components. August 2002. URL: http:// www.javaworld.com/ javaworld/
jw-04-1998/ jw-04-howto.html

24. Vaskivuo, T. The Infrastructure of Interactive Devices in a Future Home. In:
Proceedings of the Dreaming for The Future - Future Home Conference,
University of Art and Design. May 2001.

25. Büker, U. Using Java Cards for Virtual Home Environments. In:
Proceedings International ITEA Workshop on Virtual Home Environments.
Aachen: Shaker-Verlag. February 2002. Pp. 151–159.

26. Holappa, J. Security threats and requirements for Java-based applications in
the networked home environment. Espoo: VTT Technical Research Centre of
Finland. 2001. (VTT Publications 444.) 116 p. ISBN 951-38-5865-0. URL:
http:// www.inf.vtt.fi/pdf/

27. Moilanen, M. Management framework of distributed software objects and
components. Espoo: VTT Technical Research Centre of Finland. 2001. (VTT
Publications 442.) 153 p + app. 45 p. ISBN 951-38-5863-4. URL: http://
www.inf.vtt.fi/pdf/

28. Eikerling, H-J., Buhe, G., Berger, F. & Görlich, J. Architecting Middleware
Components for the Control of Networked In-Home Multimedia Applications. In:
Proceedings International ITEA Workshop on Virtual Home Environments.
Aachen: Shaker-Verlag, February 2002. Pp. 21–29.

29. Aihkisalo, T. Riihimäki, R. & Ranta, T. Integration of Heterogeneous Home
Automation Appliances: Generic Device Description Format. In: Proceedings
International ITEA Workshop on Virtual Home Environments. Aachen: Shaker-
Verlag. February 2002. Pp. 13–20.

A1

Appendix A: VHE Use Cases - Contribution
of VTT Electronics

1. VHE Use Case - GenericUI

Owner: VTT Electronics

Scope: VHE

Originator: Johan Plomp

Status: Accepted by the PCC (Project Co-ordination Committee)

Change History

Issue Date Handled by Comments

0.1 Draft 30 June

2000

Johan Plomp First version circulated between partners

0.2 Draft 3 May 2001 Johan Plomp Extended and changed format to Nokia

template

1.0 Final 4 Sept 2002 PCC The project is closed

A2

Use case name (goal)

Generic User Interface Scenario - Register an appliance and convey the

appliance UI description in a suitable format to a client used for controlling the

appliance. See Figure 1.

System under discussion

A home environment, including a home server, some controllable devices (e.g.

TV and VCR), a handheld control device and an internet connection.

Primary actor

The user of the system.

Level

System-level use case.

Supporting actors

• Handheld device (client)

• Appliance (may be more than one)

• Home server (also serving as a gateway)

Stakeholders

• Appliance manufacturers

• Home Server manufacturers

• Client device manufacturers

Pre-conditions

Home server up and running, with a possible connection to the internet

Availability of connections between home server and appliances, as well as

client devices

Minimal guarantee

If the client can connect to server, list of controllable appliances (if any) will be

passed to the client when the client UI format is supported. The appliance UI

description will be rendered to a minimal set of client formats.

A3

Success guarantee

Appliance-specific UI is rendered on the client device and can be used to control

the appliance.

Main success scenario

1. Adding a new controllable device

When a device is added to the control area of a specific home server, the home

server must be made aware of its existence and properties. This may be done

automatically if the device is "VHE-enabled" and equipped with communication

properties. Otherwise, the new device (e.g. a legacy device) must be added to the

home server by manually adding its ID to the home server. This may be done via

a control device or via the home server's user interface (if there is any).

2. Acquisition of the UI description

Upon addition of home equipment to the area controlled by the home server, the

home server will attempt to retrieve a UI description for the control of the new

device. If the device is a "VHE-enabled" device, it will be able to retrieve the UI

description from the device itself. However, if the device is a legacy device or

otherwise not able to provide its own description via a dedicated connection, the

UI description must be retrieved from an external source. This external source

may be located on the internet - e.g. a WWW or FTP service maintained by the

manufacturer - or it may be provided with the device on a floppy, CD, or similar

media.

3. Storage of the UI description

Maintaining the UI descriptions of the controllable devices is the task of the

home server. It should have a description available for all devices that it can

manage. If the description fails, there is no sense in displaying the device in the

control list as a controllable device. Some of the control devices will be able to

process the UI description as is, and may therefore want to maintain a copy of

the UI description in their memory. This memory should work like a cache and

A4

verify the version of the UI description regularly with the home server. The list

of available devices should be handled likewise, and deleted devices must be

removed from the local list as well. The home server may also take

responsibility for checking for newer versions of the UI description by a regular

check on the manufacturer's pages or by user-command.

4. Adding a control device

When a control device enters the control area of a home server, its list of

controllable devices should be adjusted. For that purpose, the home server will

send the list of controllable devices in a UI description-like form. The control

device will merge that list into its own list (which may contain, e.g., remotely

controllable devices at his home) and present the updated list to the user. The list

will contain references to the UI descriptions available for the controllable

devices.

5. Fetching a UI description

When a controllable device is selected from the list, the UI description for the

device must be fetched. In case the control device maintains a cache of UI

descriptions, this cache may first be checked for the availability of the

controllable device's UI description. If it cannot be found from there, it must be

retrieved from the home server. If it cannot be found there either, an error must

be issued and the device removed from the list.

6. Transcoding the UI description

If the control device is not able to present the UI description as such by means of

a dedicated browser, the UI description must be transcoded to a suitable format.

This transcoding task is performed by the home server. The home server is

aware of the client device's properties because of the handshake procedures it

went through when the control device entered its control area. The home server

will maintain a set of transcoding modules able to transcode the UI description

format to other standardised formats. If a new format is requested, the server

may download a transcoder from a given website. If necessary, the home server

A5

may also implement a server for that specific format (e.g. HTTP for HTML or

WAP for WML).

Note that if the transcoding is done in the device in order to show the UI by

means of another application, from the system's point of view that device has a

dedicated browser for the UI description.

7. Presenting the UI

The UI description in its original format will need a dedicated browser. It is very

likely that such a browser can be built to run on a great variety of platforms (e.g.

by implementing it in Java). However, some platforms will dictate other formats

to be used, like HTML, WML and voice-based control (e.g. VoiceXML).

Transcoding the UI description as described in the previous paragraph will

resolve this problem, since the device's preferred format will be delivered to the

device. Note that these formats may partly require that the home server

implements or interacts with a server dedicated to these formats. An issue to

address while choosing and utilising the UI description is the fact that the UI will

be displayed on a variety of control devices with different properties. Most

obvious are the difference in screen size (e.g. TV, Computer or PDA) and input

devices (full keyboard vs. touch screen, pointing device or speech).

8. Passing control events

Operating the user interface by means of the control device will generate control

events. These events must be passed to the device to be controlled. This can be

done in two ways: either the events are channelled through the home server to

the controlled device, or the device receives the control events directly from the

control device. The chosen solution depends on the communication channels

available and the capabilities of the devices. Channelling the events via the home

server requires a connection from the control device to the home server, and

from the home server to the controllable device. The control device and the

home server will usually have a connection of some kind, but the second is not

necessarily the case. For example, in the case of legacy devices like current TV

A6

sets and VCRs, there is no link available between the home server and the

device. However, both devices can properly be controlled via IR. A solution in

this case could be to use the IR port of the control device (if available) to control

these devices. This requires a conversion of the events to IR port signals, and

possibly a special driver for the device.

Unresolved issues

Still unresolved issues include security matters and authentication. It is expected

that solutions to these issues will partly come from the Middleware side.

Related to the issue of security is the conflict that may result from two users

trying the control the same device. Mechanisms to resolve this must be found.

A third problem related to this is the difference between local and remote

interfaces. It is not desirable or advisable to provide all the controls of a local

control - i.e. used in the same room - on a remote control - i.e. used while being

out of the house. One will only want to change the channels on a TV set when at

home and watching the television, not when not even being able to see the TV

set. On the other hand, programming a VCR to record a program should also be

possible remotely.

An important feature of the whole VHE concept is its ability to adapt to the user.

The user's preferences must be taken into account in, e.g., the look and feel of

the UI, the services provided or ranked highly, and the functionality of the

services.

Exceptions

List here the main exceptions to all steps. Write the exceptions to step 3 as 3a,

3b, 3c, etc. Write the repair steps to exception 3a as 3a1, 3a2, 3a3, etc. Indent as

explained below.

A7

Exceptions of step 1

1a Connection with new appliance cannot be established

1a1 Add appliance manually

Exceptions of step 2

2a UI Description cannot be fetched from device (not VHE enabled, or

connection down)

2a1 Ask for description location from user (first use)

2a2 Download from the internet or local media

2a3 Use description from cache (later uses)

Exceptions of step 3

3a No space for new description

3a1 Use description and throw away (needs to be fetched for each use)

3b Description in storage (cache) out of date

3b1 Fetch new description

3c Appliance removed from environment / connection cannot be established

3c1 Remove appliance from list

Exceptions of step 4

4a Client (control device) cannot connect to server

4a1 Signal error message to user (client's responsibility)

4b Server does not support client's format

4b1 Signal error message to user (how?)

Exceptions of step 5

5a UI description cannot be found in cache of client or home server, neither can

it be retrieved from the appliance

5a1 Issue error to user

Exceptions of step 6

6a Suitable converter for client's format is not available

6a1 Issue error message to user

A8

6b UI Description does not conform to the standard or conversion generates an

exception

6b1 Issue error message to user

Exceptions of step 7

7a Generated UI description cannot be rendered by the client

7a1 Client issues an error message to the user

Exceptions of step 1

8a Connection with appliance cannot be established (neither through home

server)

8a1 Issue an error message to the user

Sub use cases

Release: v.1.0

Status: Accepted

Author: Johan Plomp

A9

Home Server

IR

Irda
BlueTooth
HomeRF
WLAN
GSM
GPRS
UMTS

IR
BlueTooth
HomeRF
LAN

LON

Internet (WWW,
FTP)
Telephone Line

Figure 1. GeneriUI.

A10

2. VHE Use Case - Remote Service Development

Owner: VTT Electronics

Scope: VHE

Originator: Tommi Aihkisalo

Status: Accepted by the PCC

Change History

Issue Date Handled by Comments

0.1 Draft 18 May

2001

Tommi

Aihkisalo

First version

1.0 Final 4 Sept 2002 PCC The project is closed

A11

Use case name (goal)

Remote Service Development – Remote development and maintenance of home

automation services. See Figure 2.

System under discussion

A home environment, including a networked home server and some controllable

home automation devices.

Primary actor

The service provider offering remote service development.

Level

System-level use case. Connections are assumed to exist, not relevant to the use

case.

Supporting actors

• Automation platform with several automation devices.

• Home server (also serving as a gateway)

Stakeholders

• Appliance manufacturers

• Home Server manufacturers

Pre-conditions

Home server up and running, with a connection to the internet

• Availability of connections between home server and appliances. There is a

sufficient amount of description information available about the automation

platform in usable form

Minimal guarantee

The remote developer gets a connection to the home server and receives an

information bundle concerning the devices in the automation platform.

Success guarantee

A12

All the devices in the automation platform are described and it is delivered to the

remote developer to develop a service application to that specific platform.

Furthermore, the new application is delivered to the home server.

Main success scenario

1. Gathering information from the devices in automation platform

When a device is added to the control area of a specific home server, the home

server must be made aware of its existence and properties. The home server

collects all the information available from the new device. The information can

be partly collected from the device itself and be completed with information

from an external source, e.g. a suitable database or a resource collection. A

suitable API for the device is needed.

2. Collecting information about current applications

The applications currently running are described in a suitable format. The

information can be collected from independent devices and/or external sources

in the home server.

3. Preparing for a contact from remote service developer

The home server completes both the automation platform and application

description in a suitable format e.g. utilising XML. The availability of

information is announced to a registry mechanism, which updates versioning

information and the existence of such descriptions. The remote developer is also

informed that changes have occurred in the automation hardware.

4. Fetching a hardware platform and application information

The remote service developer contacts the home server over the Internet and

looks for the newest automation platform and application information from the

registry mechanism. if necessary, the information is transmitted over the network

to the developer.

5. Developing the application

The developer can develop a suitable service application in an off-line state in

A13

his office, away from the user’s home hardware in question. The development is

easy because the developer retrieves all the properties of that hardware platform

from the descriptions. At the same time, the UIs are updated or new ones

created.

Unresolved issues

• Still unresolved issues include security matters and authentication. It is

expected that solutions to these issues will partly come from the Middleware

side

• Not all the devices embed self-descriptive information, even for

identification

• The availability of suitable APIs for all devices

• The lack of a common interface for all home devices

• The lack of the service developer’s tools

Exceptions

List here the main exceptions to all steps. Write the exceptions to step 3 as 3a,

3b, 3c, etc. Write the repair steps to exception 3a as 3a1, 3a2, 3a3, etc. Indent as

explained below.

Exceptions of step 1

1a The device description cannot be fetched from the device

1a1 Ask for description location from user (first use)

1a2 Download from the internet or local media

1a3 Use description from cache (later uses)

Exceptions of step 4

4a The remote developer cannot connect to home server

4a1 Signal error message

Exceptions of step 5

5a In on-line development state, the connection to home server breaks

5a1 Issue error to user

5a2 Continue developing on the basis of local copy

A14

Exceptions of step 6

6a Connection to home server cannot be established

6a1 Start a network agent that transmits the new application when possible.

Exceptions of step 7

7a The new application cannot be started due to an error in the application

7a1 Inform the remote developer and describe the problem

Sub use cases

Release: v.1.0

Status: Accepted

Author: Tommi Aihkisalo

A15

Device,
application and

resource
DB

Internet

Residential Area Network
LON, EIB, CAN ...

Remote developer's terminal
Home Server

Description of :

Application 1
Application 2
Application 3

Device 1
Device 2
Device 3

Description of :

Application 1
Application 2
Application 3

Device 1
Device 2
Device 3

Device 1

Device 2 Device 3

Application 1, turn on lamp when
switch is on

Automation platform

Figure 2. Remote Service Development.

A16

3. VHE Use Case - Serverless Service Provisioning

Owner: VTT Electronics

Scope: VHE

Originator: Hannu Rytilä

Status: Accepted by the PCC

Change History

Issue Date Handled by Comments

0.1 Draft 4 May 2001 Hannu Rytilä First version circulated between partners

1.0 Final 4 Sept 2002 PCC The project is closed

Distribution
services

Discovery Announceme
nt Service

directory

Registration

Figure 3. Serverless Service Provisioning.

A17

Use case name (goal)

Serverless Service Provisioning – Interoperability of two VHE aware devices

when a special VHE server or service gateway is not reachable. See Figure 3.

System under discussion

At least two VHE aware devices, which have been taken out from the primary

home environment.

Primary actor

The user of the system

Level

System-level use case. Connections are assumed to exist, not relevant to the use

case.

Supporting actors

• Client (handheld terminal, which does not provide services)

• Appliance (may be more than one)

Stakeholders

• Appliance manufacturers

• Terminal manufacturers

Pre-conditions

All devices are switched off and there is no home server reachable by any

supported communication channel.

Minimal guarantee

The appliance is able to make its services available and the client (a terminal or

another appliance) is able to find the list and identify the services.

Success guarantee

The client is able to use services of the appliance.

Main success scenario

A18

1. The appliance is turned on

The appliance initiates all communication channels that are allowed and

supported in the current context.

2. Service discovery

The appliance goes through a hierarchical service discovery through all active

communication channels in order to find the VHE-compliant directory service.

The discovery fails because no directory services are available.

3. Initiation of service directory

The appliance initiates directory service, which at least has enough space for its

own services. The appliance starts announcing the existence of directory service

through all active communication channels.

4. Service registration

The appliance initiates its services one by one and registers them into its own

service directory.

5. Another appliance is turned on

The other appliance goes though steps 1 and 2, but finds the service directory of

appliance 1 and registers its services into it.

6.The client is tuned on

The client initiates all communication channels that are allowed and supported

in the current context.

7. Service discovery of the client

The client goes through a hierarchical service discovery through all active

communication channels and identifies the directory service initiated by the

appliance.

8. Retrieval of the service list

The client requests a service list from the directory service and retrieves the list

in an appropriate format. The terminal informs the user that there are services

A19

available.

9. Service usage

By request, the client displays the service list for the user, who activates one of

the services provided by the appliance.

Unresolved issues

Still unresolved issues include security matters and authentication. It is expected

that solutions to these issues will partly come from the Middleware side.

Exceptions

List here the main exceptions to all steps. Write the exceptions to step 3 as 3a,

3b, 3c, etc. Write the repair steps to exception 3a as 3a1, 3a2, 3a3, etc. Indent as

explained below.

Exceptions of step 3

3a the appliance is not capable of running directory service

3a1 The appliance remains listening to see if a service directory comes

available.

3a2 The terminal has to initiate a service directory where appliances can register

their services

Exceptions of step 5

5a the service directory of appliance 1 does not have space for the services of

appliance 2

5a1 Allow multiple service directories and supply mechanisms to join them in

client side.

5a2 Appliance 2 initiates its own service directory and registers it into the

service directory of appliance 1

Sub use cases

Release: v.1.0

Status: Accepted

Author: Hannu Rytilä

B1

Appendix B: Technical Specification of
UIML Service

Owner: VTT Electronics

Scope: VHE

Originator: Tapani Rantakokko

Status: Accepted by PCC

Change History

Issue Date Handled by Comments

0.1 Draft 30 June

2000

Tapani

Rantakokko

Document is created

1.0 Final 28 June

2002

Tapani

Rantakokko

First version circulated between the VHE

Middleware project’s partners

1. Purpose

The purpose of this document is to briefly describe the general architecture of
the Distributed Generic User Interface Platform implementation, which we will
call the “UIML Service”, and to present its internal and application side
interfaces in detail for the service and application developers.

The system implementation uses XML-based UIML as the language for
describing user interfaces [1], and, therefore, forms the basis of the UI
technology presented in this text. The current implementation of the UIML
Service is built according to the OSGi 2.0 service platform specification (Open
Services Gateway initiative) [2], which is a third-party implementation of a
system framework. Both are out of the scope of this text and will only be
referred to. No knowledge of these is required in order to understand this text,
but it is clearly helpful.

B2

2. System Specification

The number of devices that can be used to control home equipment is rapidly
increasing. Mobile phones, portable Internet terminals, handheld computers and
communicators are examples of devices that already hold the required
capabilities. A set of these control devices is presented in Figure 1. As these
control devices typically use different languages to describe user interfaces,
traditional programming forces us to completely re-code each application's UI
whenever a new type of controlling device is added to the system. Voice-based
interaction is another, natural way of controlling devices, but it also sets its own
requirements on UIs.

Figure 1. Different types of controlling devices and user interfaces.

UIML is currently under development and strives to solve this significant
problem of re-coding UIs by providing XML-based descriptive language which
can be automatically transcoded to other formats, like HTML, JAVA or even
languages not yet invented. VTT Electronics is participating in the development
of UIML, keeping one-file one-time generic user interface description
technology as its aim. To achieve this goal, we have developed extensions to the
UIML language, a generic vocabulary and a transcoding tool.

B3

In home environments, services are typically built on top of a specific home
server by way of networking. This server is also connected to a wide-area
network in order to provide remote control. OSGi 2.0 describes the delivery of
multiple services over wide-area networks to local networks and devices. To
provide a flexible control system for home environments, we have now
combined our user interface technology with the OSGi approach and, therefore,
gained a distributed generic UI platform.

2.1 Partitioning

The distributed generic UI platform includes three parties: the controllable
devices, control devices, and the enabling service between them, which is here
called the “UI Broker” (see Figure 2) The UI Broker concept is a generalisation
of the UIML Service system, including all the components needed to provide
communication between controllable and control devices.

In this UI platform, controllable devices do not have to support different types of
UI description languages but only one, the UIML language, which is based on
XML and is formally easy to learn. However, it should be noted that creating
generic user interfaces requires careful designing of the UI components and the
logic behind them.

When the developers build software supplied with UIML descriptions of the user
interfaces, these applications can be made available to a UI Broker, so they can
be later accessed through references it handles. In addition, an application list
can be shown. When the user chooses an application from the list, the UI Broker
then contacts it and transcodes its UIML-formatted UI description to a format
that a current control device can accept. User profiles can also be used, for
example to give applications user-specific outlook and/or behaviour.

After retrieving the requested application's UI, the user can interact with the
application through the UI in a traditional fashion. Behind the curtains, the user's
actions on the UI will be converted to the UIML format and passed to the
application backend through the UI Broker. After processing the action, a new,
possibly updated, UI description will be returned.

B4

XML
Service

s

Controllable
Devices

heating

Control
Devices

TV

PDA

A dokument
apicture Mobile

Phone

XML
UI

XML
UI

XML
UI

XML
UI

UI
Broker

XML
Service

s

XML
Service

s

TV
Video
Lights

Heating

Heating
down up

Set: 20
Measured: 19.8

timer

User
Profiles

Speech
control

Figure 2. Using a generic user interface description for controlling devices.
Illustration: Johan Plomp.

In our approach, the distributed generic UI system contains three main interfaces
and implementing classes: the UIMLService, UIMLTranscoders, and
UIMLApplications, illustrated in Figure 3.

The heart of the UI Broker is the UIMLService component, which is
implemented as a service that other programs running inside the system
framework can use. It communicates with applications and transcoders internally
through specified interfaces, and with client devices through an external HTTP
server. UIMLService co-ordinates the necessary transcoding process between
parties by exploiting the capabilities of UIMLTranscoders.

When running, the UIMLService component automatically searches UIML -
capable applications from the system framework. Found matches are provided as
a list of application names with short descriptions. When the user chooses an
application, the UIMLService contacts it and then handles the communication
between the UI running on the control device and the application backend,
which is possibly controlling an external device.

B5

System Framework, e.g. OSGi

UI Broker
HTTP Server

Application

UIML-format UI

Application

UIML-format UI

UIMLService

UIMLTranscoder Interface

Transcoder Transcoder

UIMLService
Interface

UIMLServlet

 UIMLApplication Interface

Controllable Device

Device Driver

Application

UIML-format UI

Control Device

UI Browser

Figure 3. UI Broker implementation.

In the current implementation of UI Broker, control devices use an HTTP server
in communication with UIMLService. A servlet, which is called the
“UIMLServlet”, is provided in order to make this kind of communication
possible. The UIMLServlet's main purpose is to pass an HTTP server's requests
to the UIMLService and receive responses back, but it also handles client format
recognition by utilising the information included in the HTTP’s requests'

B6

headers. Currently, the most typical HTML and VXML browsers are recognised,
and the output will be automatically transcoded to the right format. In other
cases, the output format can be set externally by using a specific format
parameter in the URI call (Universal Resource Identifier), e.g. format=HTML.
For further details of the functionality provided by UIMLService, see the
interface “UIMLService” in Section 2.4.

UIMLTranscoders are packages providing resources for UIMLService, each
including one or more transcoders from the UIML to the destination languages.
When the UIML language evolves, or new transcoders for new target formats
are developed, transcoders can be updated or added to the system separately. A
suitable transcoder will be automatically found and used by UIMLService
whenever required, if such a transcoder is properly installed in the system. This
means that a transcoder must register itself into the framework as a service that
implements the interface “UIMLTranscoder” and provide the identification
information (see Section 2.5). The required functionality of a transcoder for the
UI Broker system is described in detail in the documentation of the interface
“UIMLTranscoder” in Section 2.4.

The application side connections of UIMLService are created through the
system framework, in this case through the OSGi-service technology. In order to
communicate with the UI Broker, applications must register themselves as
services that implement the interface “UIMLApplication”, and provide the
identification information of each (see Section 2.5). The required functionality
of an application for a UI Broker system is described in detail in the
UIMLApplication interface (see Section 2.4).

2.2 Message Sequences

The UI Broker component’s interaction against time is illustrated in the
following figures using the UML notation.

When the system framework is first started (see Figure 4) the HTTPserver
registers itself into the framework. It also initialises UIMLService, the
transcoders and the applications. Next, the UIMLServlet and 1–2 of Push
Servers threads will be started. The servlet and the Push Client's applet will be

B7

registered into the HTTP server's namespace with other provided resources like
the UI images of UIMLService. Finally, the UI Broker is up and running.

HTTP
Client

Push
Client

HTTP
Server

UIML
Servlet

Push
Server

UIML
Service

UIML
Transcoder

UIML
Application

System
Framework

register

register

register

register

start

start

register resources

HTTP GET: UI homepage

requested objects

start

register

poll connection

ok

UI subsystem started

stop

poll connection

ok

poll connection

closing

ready to register

connect

start
another
thread

kill
current
thread

unregister

unregisterunregister resources

stop

stop

unregister

unregister

HTTP Client started
and connected

HTTP Client
disconnected
and closed

UI subsystem stopped

Figure 4. Message sequence of UI Broker start-up / shutdown.

After the UI Broker has started, HTTP clients may contact the URI the
UIMLServlet has registered to, and may request a list of applications. If a push
service is to be used with an HTML browser, a special URI specified in the
UIMLService settings should be used instead, and a frameset including the push
applet will be loaded to the browser.

B8

If the push service is used, the Push Client will now contact through TCP to a
Push Server thread running inside the UIMLService. A new server thread will be
started in the Push Server to ensure that the next client can also be served. When
the handshaking with the Push Client is finalised, the connection is ready for
transmitting push commands. Every now and then, each Push Server thread will
poll its connection to the client to see if it's still alive. If not, the connection will
be closed and the server thread will be killed. If the Push Service is not used,
none of this will happen. When the system is shutting down, all components will
be unregistered and stopped.

If an HTTP client device contacts the UI Broker's HTTP server and the
UIMLServlet attached to it, an application list should be created in the UIML
format and returned to the client, if no other application is specified in the
request (see Figure 5).

HTTP
Client

Push
Client

HTTP
Server

UIML
Servlet

Push
Server

UIML
Service

UIML
Transcoder

UIML
Application

System
Framework

HTTP GET: application list

requested objects

httpServletRequest
UIMLServletRequest

get UIMLApplication servicereferences

servicereference[]

construct
applist UI

get transcoder for client format

transcoder handle
convert
call

convert
using
peers

converted
documentUIMLServletResponse

httpServletResponse

Figure 5. Message sequence of acquiring the application list.

When a request arrives at the UIMLService component, it will first check the
parameters of the request and, if no valid application and method name is found,
will acquire a list of running UIMLApplications from the framework they have
been registered to and construct a list of applications in the UIML format. Based
on the client format detection, a decision will be made as to whether it is
necessary to transcode the application list to UI. If the answer is yes, the

B9

UIMLService will begin searching for a suitable transcoder from the framework.
If a transcoder that can handle the current client format is found, the UI will be
put through it before returning to the client.

After acquiring a list of applications, the user is now able to choose a service to
be used. When selected, a request should be sent to the UIMLService and a UI
of the selected service should be returned (see Figure 6). The user may then start
to interact with the application through the newly returned UI, and similar
requests will be sent to the UIMLService again.

In this procedure, the UIMLService will always first try to find the requested
application from the framework, and the search is based on the name of the
application. When found, the name of the method in the request will be checked.
If it is a direct request for a named UI, the UI description will be acquired
immediately using the getDescription() method specified in the interface
“UIMLApplication”. This is the case when, for example, the call originates from
the application list.

Otherwise, an invokeMethod() call is placed first and the reply from the
application is interpreted. Based on this reply, a decision is made as to whether it
is necessary to get a new UI description from the application or if the cache
version can be used. In the latter case, the UIMLService will try to find a
matching UIML-format description from the cache instead of requesting it from
the application. If not found, the UI has to be acquired from the application.

The transcoding process is somewhat similar to the one described in Figure 5,
but now caching of transcoded UIs is supported. In other words, the cache in
UIMLService handles both pure UIML-format descriptions and already
transcoded descriptions. In addition, acquiring values from the application
during the transcoding process is possible through the interface “UIMLService”.
Finally, the descriptions (pure UIML and transcoded version) are stored in the
cache and the client format description is returned to the client.

B10

HTTP
Client

Push
Client

HTTP
Server

UIML
Servlet

Push
Server

UIML
Service

UIML
Transcoder

UIML
Application

System
Framework

HTTP GET: UI action

requested objects

httpServletRequest
UIMLServletRequest

get requested UIMLApplication

application handle

get transcoder for client format

transcoder handleconvert
document

convert
using
peers

converted
document

httpServletResponse

invokeMethod call

process
and create
reply

UIMLReply

getDescription call

OR:
get from
cache

UIMLDescription

store to
cache

UIMLServletResponse

getValue call

UIMLValues

requestValues call

UIMLValues

Figure 6. Message sequence of communication with applications.

A newly added feature in UIMLService is the support for application-initiated
updates, called the “Push Service”. This means that applications that wish to
update their UIs seen on the client devices can now initiate the update process
whenever required, whereas earlier UIs were only updated when the user created
some action first. However, due to the limitations of the HTTP protocol and
target formats, this capability may not be available for all clients and UIs should
be designed to work properly without the Push Service.

The push process is illustrated in Figure 7. The interface “UIMLApplication”
includes methods for enabling and disabling the push service; these are to be
used to inform applications whether it is reasonable to send push messages or
not. When the push service is in use, the applications can push UI update

B11

messages to the UIMLService through the interface “UIMLService”, and the UI
Broker will handle the rest of the process.

HTTP
Client

Push
Client

HTTP
Server

UIML
Servlet

Push
Server

UIML
Service

UIML
Transcoder

UIML
Application

System
Framework

enablePushServices call

disablePushServices call

pushDescription call

check
target
clients

push
redirect

redirect

redirect okHTTP GET: UI action

Normal UI action operation

requested objects

Figure 7. Message sequence of push service usage.

In practice, UIMLService has a live connection to all push-enabled clients and
has a registry including information on which specific UI each client is currently
viewing. When an UIMLService receives a push message from an application, it
searches through this registry and sends an update message to all clients that are
currently viewing the pushed description. The application does not send the
description itself in the push method, but a command including the name of the
application and the id of the UI description. The update process will be handled
just like a normal UI action request.

2.3 Packaging

In Figure 8, the packaging of the UI-system is illustrated using the UML
notation.

B12

fi.vtt.ele.osgi

fi.vtt.ele.uiml

uimlservice

uimltranscoder

fi.vtt.ele.zoominguimlbrowser

org.osgi

position

uimodel

positionservice

Figure 8. The UI system package diagram with dependencies.

Common classes and interfaces for the UI components can be found from the
fi.vtt.ele.uiml package and the UIML service, with a reference implementation
of the UIMLTranscoder also located inside this package. The system framework,
in this case the OSGi 2.0 implementation, can be found in the org.osgi package.
A browser capable of transcoding pure UIML-format UIs to Java UIs at runtime
uses the UIMLTranscoder reference implementation for transcoding the UIML
and thus has a dependency on the UIML transcoder package. This browser is an
additional part of the UI Broker system implementing a multi-platform portable
UIML browser, and can be found in the fi.vtt.ele.uiml.zoom in UIML browser
package. Positioning packages found from the fi.vtt.ele.osgi are used by the
UIMLService to modify its behaviour based on the positions of other devices,
like the current control device. In the current implementation, the application list
varies according to the client devices' locations.

As the UIMLService is a part of VTT Electronic's ITEA-VHE demonstrator,
several components have been added to the whole demonstrator, including
TV/VCR (TV-set/Video Cassette Recorder) controlling through infrared,
WLAN positioning (Wireless Local Area Network), home automation through
X10 and LON (Local Area Network), Bluetooth, and the IPv6-solutions, just to
mention a few. The UIs for these components have been successfully
implemented using the UIMLService. See the additional illustration of the
UIML Service in Section 2.6:

B13

• Figure 9. VHE-demonstrator’s package diagram.

• Figure 10. VHE-demonstrator’s deployment diagram.

• Figure 11. VHE-demonstrator’s OSGi-server component diagram.

• Figure 12. Screen captures of the UIML UIs.

2.4 Interface Specification

Three interfaces are provided: the “UIMLService”, “UIMLTranscoder” and
“UIMLApplication”.

The services offered by the UIMLService component are described in the
interface “UIMLService”. This interface includes two methods: one for pushing
the UI descriptions (used by the UIMLApplications) and one for acquiring
values from the UIMLApplications (used by the UIMLTranscoders during the
transcoding phase).

The most important interface from an application developer's point of view is the
interface “UIMLApplication”. This describes the methods that should be
implemented by an UIML application; it contains methods for retrieving the
UIML-formatted UI descriptions, for requesting values, for invoking methods,
and for enabling or disabling a Push Service.

In addition, three helper classes are provided: the “UIMLDescription”,
“UIMLReply” and “UIMLValues”.

The UIMLDescription class represents the UIML-formatted UI description with
identification information. The UIMLReply class represents the
UIMLApplication's reply to the invokeMethod() call specified in the interface
“UIMLApplication”.

The UIMLValues class is used for passing values between the UIMLService and
the UIMLApplications.

B14

Compiled Java runtimes of these public interfaces and helper classes can be
found in the fi.vtt.ele.uiml package.

2.5 Requirements for Services

Applications - In order to be found by UIMLService, applications must fulfil
three requirements as follows:

1. The application must implement the interface “UIMLApplication” properly.

2. The application must be registered to the system framework as a service that
implements the interface “UIMLApplication”.

3. When registering to the framework, the application must provide 'name' and
'desc' values. These will be used as identification keys for different
applications, and in the process of creating the application list. The name of
the application must be unique, just to ensure that applications can be
distinguished. Because of this requirement, it is a good practice to add the
manufacturer's id to the beginning of the name. It is also recommend that the
description of the application is unique, though this is not required. The
description may be shown to the users, the name will only be used
internally.

Of course, the application must also be 100% UIML and OSGi 2.0 compliant. In
addition, the UIML descriptions have to follow the requirements set by the
extensions to the UIML language created by VTT Electronics.

In this text, neither the writing of UIML-format UIs nor building the OSGi
bundles is discussed further. An example of a UIMLApplication is included in
the UI Broker deployment package.

Transcoders - In order to be found by UIMLService, transcoders must fulfil
three requirements as follows:

1. The transcoder must implement the interface “UIMLTranscoder” properly.

B15

2. The transcoder must be registered to the system framework as a service that
implements the interface “UIMLTranscoder”.

3. When registering to the framework, the transcoder must provide 'name' and
'desc' values. These will be used as identification keys for different
transcoders, and in the process of acquiring a suitable transcoder. The name
of the transcoder must be unique, just to ensure that the transcoders can be
distinguished. Because of this requirement, it is a good practice to add the
manufacturer's id to the beginning of the name. It is also recommend that the
description of the transcoder is unique, though this is not required. The
description may be shown to the users, the name will be used only
internally. In addition, the transcoder must provide a list of target languages
that it can handle in a value named the “codecs”, e.g. HTML or VXML.
UIMLService will choose the transcoder to be used by comparing this value
with the available UIMLTranscoders.

2.6 Additional Illustrations of UIML Service

fi.vtt.ele.osgi

tvapplication

tv

tvdrv

vcr

vcrdrv

irdrv

irport

commport

commportdrv

fi.vtt.ele.uiml

uimlservice

uimltranscoder

fi.vtt.ele.zoominguimlbrowser

org.osgi

position

uimodel

positionservice

javax.comm

fi.vtt.vhe.x10

fi.vtt.vhe.eventmanager

X10DataService

x10documentcreator

x10control

x10device

x10interface

x10manager

Figure 9. VHE-demonstrator’s package diagram. Illustration: Heikki Keränen.

B16

Home server (PC)

OSGi server

PDA (iPAQ)

WWW
browser

HTTP Server

<<http>>

PC

Java UIML
browser

<<http>>

PC

VoiceXML
browser

<<http>>

Television
IR receiver

Infrared
transmitter

<<infrared>>

 RS232 Serial interface

<<serial communication>> Video Cassette
Recorder (VCR)

IR receiver

<<infrared>>

<<serial communication>>

X10 controller

X10 module
<<X10>>

Electric lamp

<< current on/off >>

RS232 Serial interface

WLAN Signal
level grabber

WLAN
Positon
server

<<tcp/ip>>

WLANSignalLevelReceiver

PositionDataReceiver

<<tcp/ip>>

Figure 10. VHE-demonstrator’s deployment diagram. Illustration: Heikki
Keränen.

org.osgi

OSGi server

TVApplication

HTTPService

UIMLService

UIML Transcoder

public abstract interface UIMLTranscoder {
 public abstract String convert(UIMLDescription

desc, String format, Dictionary params,
String peers)

}

UIMLService

public abstract interface UIMLService {
 public abstract String getValue(String appName, String valName);
 public abstract boolean pushDescription(String appName, String id);
}

UIMLApplication

public abstract interface UIMLApplication {
 UIMLDescription getDescription(String id);
 UIMLValues requestValues(UIMLValues request);
 UIMLReply invokeMethod(String methodName, UIMLValues methodParameters, String userId);
 boolean enablePushServices();
 void disablePushServices();
}

Bundle
Activator

Bundle
Activator

BundleActivator

ServiceListener

ServiceListener
ServiceListener

BundleContext

HttpService

Servlet

ManagedService

Position
Service

PositionService

public abstract interface PositionService {
 Positionable getPositionable(String name, Position position, String address);
 Enumeration getAllPositionables();
 Position getPosition(String name, Positionable positionable, String address);
 Enumeration getAllPositions();
}

Managed
Service

ManagedService

PositionDataReceiver

UIMLApplication

X10

UIMLApplication

ServiceListener ServiceListener

UIMLTranscoder

public abstract interface ServiceListener {
 void serviceChanged(ServiceEvent e)
}

Bundle
Activator

Bundle
Activator

Figure 11. VHE demonstrator’s OSGi-server component diagram. Illustration:
Heikki Keränen.

B17

Figure 12. Screen captures of the UIML UIs.

3. References

1. UIML.org. UIML Specification. August 2002. URL: http:// www.uiml.org/
index.php

2. OSGi Consortium. Open Service Gateway initiative. August 2002. URL:
http:// www.osgi.org

C1

Appendix C: Abstract Requirements
Specification of VHE

Owner: VTT Electronics

Scope: VHE

Originator: Eila Niemelä

Status: Accepted by PCC

Change History

Issue Date Handled by Comments

0.1 Draft 18 Sep 2000 Eila Niemelä Document is created.

0.2 Draft 26 June 2000 Hannu Rytilä Classification modified and

requirements added.

1.0 Final 12 Aug 2002 Markus

Moilanen

Classification and requirements

completed.

1. Purpose

The purpose of this specification is to describe the abstract requirements of the
VHE system. The specification describes how these requirements should be
mapped to the capabilities, qualities, and constraints of the Middleware used in
different kinds of VHEs.

2. System Requirements

Virtual Home Environment in the sense of the ITEA/VHE project is a networked
platform for home appliances allowing “Plug & Play” style communication and
shared control between the in-home appliances, external services and mobile and

C2

stationary terminals in order to support user-oriented services through a variety
of interfaces.

VHE-Middleware is a set of services that enables a consumer to reach the VHE
services across network and technology boundaries. The Middleware technology
used in the information systems and the ongoing Middleware work done in the
automation systems have encouraged researchers to develop analogous
technologies for cost-critical systems that are targeted to the segmented mass
markets.

2.1 Challenges

Here we will list some of the challenges seen in developing a VHE system.

2.1.1 Experience needed

• Knowledge of domain; reference software systems

• The incorporation of new technology/technologies

• The personnel on the architecture team

2.1.2 Legacy systems

• Why they are not valid any more?

• Is this a part of some larger development effort?

• Earlier patents?

2.1.3 Business context

• Market segments, critical functionality, critical quality attribute, technical
constraints, and business constraints.

• Stakeholders involved in the product line.

C3

2.2 Functional Requirements

Functional requirements or “Capabilities” of a system can be expressed in two
main groups: one group describes the functionality that a new system is expected
to provide for its users, and the other group describes the functionality that is
considered to be normal for that type of system. The former group is explicitly
expressed by end users. The latter group covers the functionality the end users
will not explicitly state - they are implicit requirements - because the end users
assume that the new system will be at least as good as the existing systems are
normally.

2.2.1 Use Cases

Successful development of the software systems depends on the quality of the
requirements engineering process. Use cases and scenarios are promising
vehicles for eliciting, specifying and validating requirements.

2.2.2 Abstract Functional Requirements

Abstract functional requirements will be presented in two categories: the
requirements which should be considered when designing the systems on the
VHE Middleware, and the requirements which should be considered when
designing the systems on the VHE Middleware itself. In this case, considering
the first category, the UI-related approach will be presented. See Table 1 and
Table 2.

C4

Table 1. Abstract functional requirements for the UI of the VHE.

Classification Descriptions
Remote and local access Support for local and remote access to home services.

Support for multiple access modes and devices such
as wireless access through PDA or mobile phones in
wireless or wired LAN.
Support for integration of multiple networks
"communities".

Smart integration VHE will support plug and play integration between
devices.

Manual integration VHE will support manual integration of with non-
VHE-compliant devices
VHE will support customisable smart integration
between any VHE devices without intervention of
specific server device.

Serverless
interoperability

VHE will support customisable smart integration
between any VHE devices without intervention of
specific server device.

Maintenance functions Add and remove legacy devices and device drivers.
Support an interface for customisation of smart
integration rules.
Configure the VHE for various feature sets.
Network configuration.

Home owner’s user
interface

Check configuration including the features supported,
devices attached, warranty dates for the VHE and
each device, etc.

Diagnosis Activate VHE diagnosis.
Activate diagnosis for selected devices.

Modes Night mode (not related to Middleware).
Security mode.
Diagnosis mode.
Activate modes manually or automatically.

Basic device support Turn on/off.
Receive status.
Reset.
Start self-testing.

C5

Table 2. Abstract functional requirements for the VHE Middleware.

Classification Descriptions
Configuration management Physical resources (devices, terminals, networks,

servers etc.)
Application services (directory service, naming
service).
Features/services of the middleware (properties
of communication, configuration and security
management)

Co-ordination management Data-based.
Control-based.
Rule-based.

Co-operation management Negotiation-based (agents).
Message-based (asynchronous).
Data-intensive (throughput).
Command/control-based (reactivity).
Mobility (mobile dynamic functionality)

Communication Secure access of the home environment from the
Internet.
Internet accesses from home.
Heterogeneity protocols (synchronisation, data
format, routing, etc.)
Local/distributed communication.

Security management Maintains the integrity of objects and integrity of
transactions between objects

Resource management Management and sharing of persistent hardware
resources.
Management of changing SW resources
Management of environmental and networked
resources

C6

2.3 Quality Requirements

The common classification of quality attributes will be introduced next.

2.3.1 PLA-related Quality Attributes

• Modifiability - the system’s ability to make changes quickly and cost
effectively (classes: extensibility, deleting unwanted capabilities, portability,
restructuring)

• Flexibility - the ease with which a system or component can be modified for
use in applications or environments other than those for which it was
specifically designed.

• Reusability - designing a system so that the system’s structure or its
components can be reused in future applications. (considered partly by
integrability and modifiability).

• Integrability – the ability to make separately developed components of the
system work together correctly.

• Interoperability - the ability of a group of parts (constituting a system) to
work with another system.

• Scalability - the ease with which a system or component can be modified to
fit the problem area.

• Portability – the ability of a system to run under different computing
systems.

• Maintainability - the ease with which a software system or component can
be modified to correct faults, improve performance or other attributes, or
adapt to a changed environment.

C7

2.3.2 Domain-related Quality Attributes

• Performance - the responsiveness of the system - the time required to
respond to stimuli or the number of events processed in some interval of
time.

• Availability - the proportion of time the system is up and running.

• Reliability - the ability of the system or component to keep operating
over time, or to perform its required functions under the stated
conditions for a specified period.

• Survivability - the ability to perform the designed set of functions,
given software infrastructure component failures resulting in a service
outage described by the number of services affected, the number of
clients affected, and the duration of the outage.

• Security - a measure of the system’s ability to resist unauthorised attempts
at usage and denial of service while still providing its service to legitimate
users.

• Safety - the needs of users to be protected against potential problems such as
hardware or software faults.

• Testability - the ease with which the software can be made to demonstrate
its faults testing.

• Usability - ease and comfort of using the system

• Learnability - How quick and easy is for a user to learn to use the
system's interface?

• Efficiency - Does the system respond with appropriate speed to a user's
requests?

• Memorability - Can the user remember how to do system operations
between uses of the system?

C8

• Error avoidance - Does the system anticipate and prevent common user
errors?

• Error handling - Does the system help the user recover from errors?

• Satisfaction - Does the system make the user's job easy?

2.4 Mapping the Quality-attributes for the VHE

Table 3 describes how a set of qualities should be mapped in the VHE system.
Possible architectural mechanisms that might be used to realise a set of these
qualities are presented in Table 4

C9

.

Table 3. Abstract quality requirements of VHE.

Quality Mapping
Modifiability Device-related modifications:

• add/remove known device types
• Home owner modifications vs. Installer modifications
• dynamic vs. static modifications
Portability-related modifications:
• move to new OS
• move to new central processing unit
Network-related modifications:
• change from a wire-based to a wireless network
• use of power lines for local area network
• customise the smart interactions

Integrability as described in Section 2.2.2
Performance as described in Section 2.2.2
Availability as described in Section 2.2.2
Reliability as described in Section 2.2.2
Security as described in Section 2.2.2
Testability as described in Section 2.2.2
Usability • For installer

• For home owner
• For children
• Acknowledgement for commands
• Independent verification
Various input/output modes (speech, text)

C10

Table 4. Options for architectural mechanisms.

Quality Mechanisms
Modifiability • Virtual interface for various device types

• Layering for portability
• Rule-based approach for customising smart interactions

Integrability • Device interface standards
• Message format standards
• System-wide quality attribute models

Performance Support for priority-based communications
Availablity
(Reliability)

Redundancy between the VHE and devices when reliability is
key

Security • Firewall – single point of entry to the VHE
• Encryption
• Authentication – digital signature

Usability • Support for undo, cancellation, etc.
• No side effects

2.5 Constrains

Used standards and conformance to legacy systems.

Published by

Vuorimiehentie 5, P.O.Box 2000, FIN–02044 VTT, Finland
Phone internat. +358 9 4561
Fax +358 9 456 4374

Series title, number and
report code of publication

VTT Publications 476
VTT–PUBS–476

Author
Moilanen, Markus

Title

Middleware for Virtual Home Environments
Approaching the Architecture

Abstract
Virtual Home Environments (VHE) is the concept that networks supporting mobile
users should provide them with the same computing environment on the road as they
are used to having in their home or corporate computing environment. The VHE
Middleware project is one of the ITEA projects. The goal of the project is to make
European industry the leader in Middleware software technology for end-user
terminals, with wireless connections and the corresponding infrastructure to enable
VHE. This publication documents the R&D of VHE Middleware carried out by VTT
Electronics. A full case study evaluating an advanced method of identifying the
conceptual architecture of a SW system from its functional requirements is presented.
The proposed method is based on the common knowledge of object-oriented analysis
(OOA) methodology, which claims that every software system contains hierarchical
structures that reflect its functional requirements. In OOA methodology, these
structures and their hierarchies can be found by analysing and structuring the problem
descriptions - the Use Case analysis. The advanced method here is how to seamlessly
move from a use case model to a conceptual architecture model of the software
system. User’s scenarios and software prototypes of the VHE system are used as a
case study. Using the proposed method, the VHE system’s subsystems, layers and
APIs have been found and the conceptual architecture of VHE Middleware has been
drawn up. After this, the technical development of the case is extended to fully
concrete the VHE Middleware architecture and its elements.

Keywords
software systems, software layers and subsystems, conceptual architecture, object-oriented analysis OOA,
application programming interfaces APIs, unified modelling language UML, user interface mark-up
language UIML, generic user interface, remote service development, serverless service provisioning

Activity unit
VTT Electronics, Kaitoväylä 1, P.O.Box 1100, FIN-90571 OULU, Finland

ISBN Project number
951–38– 6003-5 (soft back ed.)
951–38–6004-3 (URL:http://www.inf.vtt.fi/pdf/)

Date Language Pages Price
November 2002 English 115 p. + app. 46 p. D

Name of project Commissioned by

Series title and ISSN Sold by
VTT Publications
1235–0621 (soft back ed.)
1455–0849 (URL: http://www.inf.vtt.fi/pdf/)

VTT Information Service
P.O.Box 2000, FIN–02044 VTT, Finland
Phone internat. +358 9 456 4404
Fax +358 9 456 4374

VTT PUBLICATIONS

458 Karema, Hannu. Numerical treatment of inter-phase coupling and phasic pressures in multi-
fluid modelling. 2002. 62 p. + app. 51 p.

459 Hakkarainen, Tuula. Studies on fire safety assessment of construction products. 2002. 109
p. + app. 172 p.

460 Shamekh, Salem Sassi. Effects of lipids, heating and enzymatic treatment on starches. 2002.
44 p. + app. 33 p.

461 Pyykönen, Jouni. Computational simulation of aerosol behaviour. 2002. 68 p. + app. 154 p.
462 Suutarinen, Marjaana. Effects of prefreezing treatments on the structure of strawberries and

jams. 2002. 97 p. + app. 100 p.
463 Tanayama, Tanja. Empirical analysis of processes underlying various technological

innovations. 2002. 115 p. + app. 8 p.
464 Kolari, Juha, Laakko, Timo, Kaasinen, Eija, Aaltonen, Matti, Hiltunen, Tapio, Kasesniemi,

Eija-Liisa, & Kulju, Minna. Net in Pocket? Personal mobile access to web services. 2002.
135 p. + app. 6 p.

465 Kohti oppivaa ja kehittyvää toimittajaverkostoa. Tapio Koivisto & Markku Mikkola (toim.).
2002. 230 s.

466 Vasara, Tuija. Functional analysis of the RHOIII and 14-3-3 proteins of Trichoderma reesei.
93 p. + app. 54 p.

467 Tala, Tuomas. Transport Barrier and Current Profile Studies on the JET Tokamak. 2002. 71
p. + app. 95 p.

468 Sneck, Timo. Hypoteeseista ja skenaarioista kohti yhteiskäyttäjien ennakoivia
ohjantajärjestelmiä. Ennakointityön toiminnallinen hyödyntäminen. 2002. 259 s. + liitt. 28 s.

469 Sulankivi, Kristiina, Lakka, Antti & Luedke, Mary. Projektin hallinta sähköisen
tiedonsiirron ympäristössä. 2002. 162 s. + liiitt. 1 s.

471 Tuomaala, Pekka. Implementation and evaluation of air flow and heat transfer routines for
building simulation tools. 2002. 45 p. + app. 52 p.

472 Kinnunen, Petri. Electrochemical characterisation and modelling of passive films on Ni- and
Fe-based alloys. 2002. 71 p. + app. 122 p

473 Myllärinen, Päivi. Starches � from granules to novel applications. 2002. 63 p. + app. 60 p.
474 Taskinen, Tapani. Measuring change management in manufacturing process. A measure-

ment method for simulation-game-based process development. 254 p. + app. 29 p.
475 Koivu, Tapio. Toimintamalli rakennusprosessin parantamiseksi. 2002. 174 s. + liitt. 32 s.
476 Moilanen, Markus. Middleware for Virtual Home Environments. Approaching the

Architecture. 2002. 115 p. + app. 46 p.
477 Purhonen, Anu. Quality driven multimode DSP software architecture development. 2002.

150 p.
478 Abrahamsson, Pekka, Salo, Outi, Ronkainen, Jussi & Warsta, Juhani. Agile software

development methods. Review and analysis. 2002. 107 p.
479 Karhela, Tommi. A Software Architecture for Configuration and Usage of Process

Simulation Models. Software Component Technology and XML-based Approach. 2002.
129 p. + app. 19 p.

480 Laitehygienia elintarviketeollisuudessa. Hygieniaongelmien ja Listeria monocytogeneksen
hallintakeinot. Gun Wirtanen (toim.). 2002. 183 s.

481 Wirtanen, Gun, Langsrud, Solveig, Salo, Satu, Olofson, Ulla, Alnås, Harriet, Neuman, Monika,
Homleid, Jens Petter & Mattila-Sandholm, Tiina. Evaluation of sanitation procedures for use in
dairies. 2002. 96 p. + app. 43 p.

482 Wirtanen, Gun, Pahkala, Satu, Miettinen, Hanna, Enbom, Seppo & Vanne, Liisa. Clean air
solutions in food processing. 2002. 93 p.

483 Heikinheimo, Lea. Trichoderma reesei cellulases in processing of cotton. 2002. 77 p. + app.
37 p.

484 Taulavuori, Anne. Component documentation in the context of software product lines. 2002.
111 p. + app. 3 p.

V
TT PU

BLICA
TIO

N
S 476

M
iddlew

are for V
irtual H

om
e Environm

ents. A
pproaching the A

rchitecture
M

arkus M
oilanen

Tätä julkaisua myy Denna publikation säljs av This publication is available from

VTT TIETOPALVELU VTT INFORMATIONSTJÄNST VTT INFORMATION SERVICE
PL 2000 PB 2000 P.O.Box 2000
02044 VTT 02044 VTT FIN�02044 VTT, Finland

Puh. (09) 456 4404 Tel. (09) 456 4404 Phone internat. +358 9 456 4404
Faksi (09) 456 4374 Fax (09) 456 4374 Fax +358 9 456 4374

ISBN 951–38–6003–5 (soft back ed.) ISBN 951–38–6004–3 (URL: http://www.inf.vtt.fi/pdf/)
ISSN 1235–0621 (soft back ed.) ISSN 1455–0849 (URL: http://www.inf.vtt.fi/pdf/)

ESPOO 2002ESPOO 2002ESPOO 2002ESPOO 2002ESPOO 2002 VTT PUBLICATIONS 476

Markus Moilanen

Middleware for Virtual Home Environments

Approaching the Architecture

Virtual Home Environments (VHE) is the concept that networks supporting
mobile users should provide them the same computing environment on the
road as they are used to having in their home or corporate computing
environment. The VHE Middleware project is one of the ITEA projects. The
goal of the project is to make European industry the leader in Middleware
software technology for end-user terminals, with wireless connections and
the corresponding infrastructure to enable VHE. This publication documents
the R&D on VHE Middleware carried out by VTT Electronics. A full case
study evaluating an advanced method of identifying the conceptual
architecture of a SW system from its functional requirements is presented.
The proposed method is based on the common knowledge of object-oriented
analysis (OOA) methodology, which claims that every software system
contains hierarchical structures that reflect its functional requirements. In
OOA methodology, these structures and their hierarchies can be found by
analysing and structuring the problem descriptions - the Use Case analysis.
The advanced method here is how to seamlessly move from a use case model
to a conceptual architecture model of the software system. User’s scenarios
and software prototypes of the VHE system are used as a case study. Using
the proposed method, the VHE system’s subsystems, layers and APIs have
been found and the conceptual architecture of VHE Middleware has been
drawn up. After this, the technical development of the case is extended
concretising the VHE Middleware architecture and its elements.

	Abstract
	Preface
	Contents
	List of Abbreviations
	1. Introduction
	1.1 Existing VHE and Middleware Architectures
	1.1.1 Object Management Architecture
	1.1.2 Open Service Architecture
	1.1.3 NSF Middleware Initiative
	1.1.4 Open Services Gateway Initiative
	1.1.5 Summary

	1.2 VHE Use Cases
	1.3 Approaches, Methods and Tools
	1.4 Structure of the Document

	2. Evolving Information Systems
	2.1 Manually-driven Information Systems
	2.2 Automatic and Semi-automatic Information Systems
	2.3 Elaboration of the Producer/Consumer-paradigm for Semi-automatic Information Systems
	2.4 Chapter Summary

	3. Architecture Concept of VHE Middleware
	3.1 Functional Requirements
	3.2 Non-functional Requirements
	3.3 Elaboration of the VHE Use Cases
	3.3.1 Elaboration of the "Use Case - GenericUI"
	3.3.2 Elaboration of the "Use Case - Remote Development"
	3.3.3 Elaboration of the "Use Case - Serverless Service Provisioning"

	3.4 Summary of Conceptual Architecture Design
	3.4.1 VHE Middleware for Core Services
	3.4.2 VHE Middleware for GenericUI
	3.4.3 VHE Middleware for Remote Service Development
	3.4.4 VHE Middleware for Serverless Service Provisioning

	3.5 Chapter Summary

	4. APIs of VHE Middleware
	4.1 "Supports Automatic Service" API
	4.1.1 Interfaces of the "Supports Automatic Service" API

	4.2 "Supports Service Usage" API
	4.2.1 Interfaces of the "Supports Service Usage" API

	4.3 "Supports GenericUI Service" API
	4.3.1 Interfaces of the "Supports GenericUI Service" API

	4.4 "Supports Home Service" API
	4.4.1 Interfaces of the "Supports Home Service" API

	4.5 Chapter Summary

	5. Case Study
	5.1 Decomposition Model of the UIML Service
	5.2 APIs of the UIML Service
	5.2.1 "Supports UIML Service Usage" API
	5.2.2 "Supports UIML Home Service" API
	5.2.3 "Supports UIML Service" API

	5.3 Chapter Summary

	6. Conclusions and Further Research
	6.1 Applicability of Proposed Method
	6.2 Applicability of the Architecture
	6.3 Further Development

	Acknowledgements
	References
	Appendix A: VHE Use Cases - Contribution of VTT Electronics
	Appendix B: Technical Specification of UIML Service
	Appendix C: Abstract Requirements Specification of VHE

