ESPOO 2002 VTT PUBLICATIONS 484

Anne Taulavuori

Component documentation in the context
of software product lines

VTT PUBLICATIONS 484

Component documentation in the
context of software product lines

Anne Taulavuori
VTT Electronics

ISBN 951-38-6021-3 (soft back ed.)
ISSN 1235-0621 (soft back ed.)

ISBN 951-38-6022—1 (URL: http://www.inf.vtt.fi/pdf/)
ISSN 1455-0849 (URL: http://www.inf.vtt.fi/pdf/)

Copyright © VTT Technical Research Centre of Finland 2002

JULKAISIJA —UTGIVARE — PUBLISHER

VTT, Vuorimiehentie 5, PL 2000, 02044 VTT
puh. vaihde (09) 4561, faksi (09) 456 4374

VTT, Bergsmansvégen 5, PB 2000, 02044 VTT
tel. véxel (09) 4561, fax (09) 456 4374

VTT Technical Research Centre of Finland, \Vuorimiehentie 5, P.O.Box 2000, FIN-02044 VTT, Finland
phone internat. + 358 9 4561, fax + 358 9 456 4374

VTT Elektroniikka, Kaitovéyla 1, PL 1100, 90571 OULU
puh. vaihde (08) 551 2141, faksi (08) 551 2320

VTT Elektronik, Kaitovayla 1, PB 1100, 90571 ULEABORG
tel. véixel (08) 551 2141, fax (08) 551 2320

VTT Electronics, Kaitovayla 1, P.O.Box 1100, FIN-90571 OULU, Finland
phone internat. + 358 8 551 2141, fax + 358 8 551 2320

Technical editing Marja Kettunen

Otamedia Oy, Espoo 2002

Taulavuori, Anne. Component documentation in the context of software product lines. Espoo
2002. VTT Publications 484. 111 p. + app. 3 p.

Keywords component documentation, software product lines, software engineering,
component documentation pattern

Abstract

The use of third-party components in software system development is rapidly
increasing. The product lines have aso adopted this new tendency, as the COTS
and OCM components are increasingly being used in product-line-based
software engineering. Component documentation has become a key issue in
component trading because it often is the only way of ng the applicability,
credibility and quality of athird-party component, especially for product linesin
which the common architecture determines the decisive requirements and
restrictions for components. However, at the present time there is no standard
model for component documentation, and, therefore, the component documents
are often inconsistent, insufficient and of various quality. The lack of a standard
documentation model is thus one of the bottlenecks in component trading.

The purpose of this thesis is to define the documentation requirements of
software components and form a standard documentation pattern from these
requirements. The documentation requirements are examined from the viewpoint
of the software product lines, where the common product line architecture may
define several specific requirements for a component. The standard pattern is a
skeleton of documentation, defining the content and structure for component
documentation. The pattern ensures the documentation that assists the integrator
in successful component selection, validation, integration and use within product
lines. The development of the documentation is defined by identifying the roles
responsible for the documentation and associating them with the pattern.

Definition of the documentation pattern is not sufficient for the adoption of a
new documentation practice. An environment that supports the development of
documentation is aso required. This thesis aso introduces the developed
documentation system, which defines how the component documentation could
be implemented. The system provides guidelines concerning how to document a

software component. It also offers the tools and technology for the devel opment
and handling of documents, and ensures that the developed documentation is in
accordance with the pattern. In addition, the system is also applicable when the
development of the documentation is split between different organisations. An
evaluation of the documentation pattern is presented at the end of thisthesis.

Preface

Software components and documentation were examined in severa projects at
VTT Electronics. The development of the component documentation pattern was
started in the EMU project during the summer of 2000. The roles of the persons
responsible for the documentation were defined and directed to the pattern. The
possibilities and advantages of the use of the XML technology in component
documentation were also examined and preliminarily tested.

The development of the documentation tools was started in the Codo project
during the autumn of 2000. The Codo project was carried out at VTT Electronics
as a programming project of the Information Processing Science Department of
the university of Oulu. The result of the project was an extension to a
commercial CASE tool.

The implementation of the documentation system was studied and tested in the
PLA programme during in the first half of 2001. The component documentation
system was developed and implemented, and the documentation pattern refined,
as a result of the project. The documentation system was validated by
documenting an example component using the system.

The refinement of the documentation pattern was continued in the Minttu project
in spring of 2002. The component documentation pattern was refined to notice
the documentation requirements of product lines for components. The pattern
was also evaluated in a practice analysis.

The writing of this thesis took place during the Minttu project and was
completed in autumn of 2002. | would like to thank Research Professor Eila
Niemela from VTT Electronics and Professor Veikko Seppénen from the
University of Oulu for their guidance during this thesis. | would also like to
thank my fiancé Marko Immonen for his support during the writing of this
thesis.

Oulu 9.10.2002

Anne Taulavuori

Contents

ADSITBCE ... e 3
PrEFBCE ..ot 5
List Of @DreViations.........ooeeiieeee e e 8
R [oo 1 ToX i o] o TS 11
1.1 Purpose of thethesis........cccoeiiieeve e 12
1.2 Research problem and methods.............coeveieiiinniee, 14

1.3 Limitations of the Stycceeceveieericecec e 15

1.4 Structure of thetheSIS.......co i 17

2. Documenting software and COMPONENES...........eoerrerreierieresenesese e 19
2.1 Introduction to software documentation princCiples...........ccocvevvreennnns 19
211 Product documentation...........ccccueeerereerereeiene e 19

2.1.2 Document QUAlIYcceeverieeierie e 22

2.1.3 Handling Of dOCUMENES.........ciiimeieieeeeeerese e 23

2.2 Components and doCUMENLaLiONccceeeeveevieeeesieeeese e seeseeeee e 24
221 ReUSEMANUEcooiiiieeerie et 28

2.2.2 Genre system of component documentation.............cccceeeuee... 29

2.2.3 Component REGISIIY.......couriririreriereeeeeeesese e 31

224 COTSIBAENeiviriirieieieieeeesie et 32

3. Software ProduCt lINES..........ccvieriieeeer e 34
3.1 Product development with COMPONENES.........ccccevvveeererieeneseeie e 35
3.2 Product line requirements for COMPONENES..........ccevrerereerereeneeiennenne 37
3.2.1 Thecrucia properties of acomponent for product lines......... 38

3.2.2 Architectural mismatCh..........ccooovreeiiiiieeeeeeee e 43

3.3 Component development and selection for product lines.................... 44
3.4 Component documentation requiremMeNts.cooeeererererrenreseeneeenns 49

4. A component documentation PELtENN...........everrerrereeierierese s 53
4.1 Content of component documMENtation..........ccccveveereeiereseeseseeiennns 53
411 BasiCinformation.........ccooeieeiiieeeese e 55

4.1.2 Detailed informationcoevereininienenenese s 63

4.1.3 Acceptance iNfOormationccccceeeeerienenesene e 67

4.1.4 Support infOrmationccceeceeveieece e 69

4.2 Development and use of component information............c.cceecvveeeceennens 71

5. Component documentation SYSEEM..........oeeerrreereneeee e 74
5.1 Structured documentation |angUAJEceeeevverieerieseeieeseeieesee e 75

5.2 Textual dOCUMENLS........coiiieeirieeieseeee e et neeas 77

5.3 Graphical dOCUMENES........cceiiiieieiice e 79
5.4 Integrated dOCUMENTS........coeoireriririeste e 82

5.5 Viewing of dOCUMENLS.........ccceiieiieiiiieie e 84

6. Applying the component documentation pattern..........cccoovevrererereseennennns 86
6.1 Pattern analysisfrom the viewpoint of acomponent provider 86
6.1.1 Development of the documentation pattern and system......... 86

6.1.2 Testing of the documentation system............ccccceveeveeiveeennene. 88

6.1.3 Experiencesand further Workccooeieieinininnencnen, 90

6.2 Pattern analysis from the viewpoint of a component integrator 91
6.2.1 Requirementsfor the documentationc.ccocevereieieriennns 92

6.2.2 MOSt iMPOrtant iSSUESccceevierreeieesiesie e seesie e 93

6.2.3 IMPrOVEMENLS......ceeiriieeeierieeee e e 95

6.3 Pattern comparison with documentation practiCes..........c.ccevcvveevennens 96
6.4 SUMMEIYeiiririieieiireeiee st sr e s sn e sne e e sr e e enne s 99

AR 0 o 11 o] 101
= £ 07T 104

Appendix A: Questions for the interviews about the component documentation

API

CASE

COM

CORBA

COTS

DCOM

DDS

DOM

DTD

ESA

FAQ

FOS|

HTML

HTTP

List of abbreviations
Application Programming Interface
Computer-Aided Software Engineering
Component Object Model
Common Object Request Broker Architecture
Commercial Off-The-Shelf
Distributed Component Object Model
Data Distribution Service
Document Object Model
Document Type Description
European Space Agency
Frequently Asked Questions
Formatting Output Specification Instance
HyperText Markup Language
HyperText Transfer Protocol
Identification
Internet Explorer

Institute of Electrical and Electronics Engineers

IPv6

ISO/IEC

JDK

JDOM

LOC

MOTS

MSR

MSXML

N/A

NPLACE

OCM

OS

OTSO

PL

PLA

PORE

RMI

Internet Protocol version 6

International Standard Organization / International Electrotechnical
Commission

Java Development Kit

Java Document Object Model

Lines Of Code

Modified Off-The-Shelf

MicroSoft Research

MicroSoft XML

Not Applicable

National Product Line Asset CEnter

Original software Component Manufacturing
Open Source

Off-The-Shelf Option

Product Line

Product Line Architecture
Procurement-Oriented Requirements Engineering
Remote Method Invocation

Service Access Protocol

SEI

SGML

SMTP

UML

W3C

WWWwW

XMI

XML

XSL

XSLT

Simple API for XML

Software Engineering Institute

Standard Generalized Markup Language
Simple Mail Transfer Protocol

Unified Modelling Language

World Wide Web Consortium

World Wide Web

XML Metadata Interchange

eXtensible Markup Language
eXtensible Style Language

XSL Transformation

10

1. Introduction

Third-party software components, generic or partialy tailored, are increasingly
used in software product lines. Modern software systems are thus based on
integrated components (Niemela et a. 2002). A software product line is a
collection or family of software systems with similar or overlapping
functionality and a common architecture that satisfies the mission requirements
for that set of systems (NPLACE 2002). The product line architecture is
explicitly designed and assessed, offering a common core for each product of the
product family (Bosch 2000). Components are used as building blocks in
product devel opment.

Third-party components are expected to provide a product integrator with a lot
of benefits, such as costs savings, improved productivity and faster time-to-
market (Meyers & Oberndorf 2001). The third-party components are here
defined to include Commercial Off-The-Shelf (COTS) components, Original
software Component Manufacturing (OCM) components, Modified Off-The-
Shelf (MOTS) components and Open Source (OS) components. COTS
components have been sold on the market for several years, whereas the use of
OCM, MOTS and OS components is increasing in today's and the future's
software systems. COTS components are ready-made components and are
bought "as such" (Brownsword et al. 2000). OCM components are developed in
collaboration with the component integrator and the provider (Seppéanen et al.
2001). MOTS components are tailored to buyer-specific purposes from COTS
components (IEEE 1993). OS components are offered as free source components
(Open Source Initiative 2002).

In product-line-based software engineering the integration of components is
controlled by the product line architecture. The architecture is the main asset in
product lines, and, therefore, it affects decisively on component-related
decisions by determining the main capabilities for the required components.
Traditionally, reguirements for components are classified to functional and
quality requirements (ESA 1991). However, particular requirement specification
standards cannot easily be used here for defining components because in product
lines the components are intended to be used on awider scd e than with software
developed for a specific purpose.

11

In product lines the purpose of each component is defined in the context of the
product line architecture. The selected third-party components not only have to
satisfy the functional and quality requirements but also have to be applicable to
the product line architecture itself. The architectura rules of the product line
define several architecture-specific requirements for components, such as quality
and communication (Bosch 2000). Quality is particularly important in product
lines because an unwanted property or a side effect can cause higher additional
expenses than the use of the component in asingle system (Niemeld et al. 2002).

When using the third-party components, the product line integrator has to be
able to assess the applicability of the components to the requirements and to the
product line architecture. Component documentation is the key issue in
component trading because proper documentation is often the only way for
integrators to assess the applicability of a component, as well as its credibility
and maturity. Documentation ensures the successful component selection,
validation and integration for product lines and assists the integrator in using the
component as intended.

At the present time there is no standard model for software component
documentation. Components have been traditionally documented as a part of
software systems, which is not appropriate for third-party components that are
intended for use in severa contexts. A self-contained documentation model is
thus required. None of the recent component documentation models are
appropriate for third-party components because they mainly concentrate on
component reuse inside an organisation. Furthermore, they do not consider the
possible division of component development between the component integrator
and the component provider. The lack of a standard documentation model has
meant that every component provider has documented his components according
to his own practices. The consequences are that the documents are inconsistent,
insufficient and of various quality, and the required component information may
be missing or is difficult to find.

1.1 Purpose of the thesis

The importance of software component documentation was noted in spring of
2000 in a project, which examined the development needs of component

12

software. The component documentation was seen as a bottleneck in the
component development, acquirement and utilisation processes (Niemeld et al.
2000). The specified form in describing component capabilities was defined to
be a prerequisite for component trading. The component integrator has to be able
to validate the component properties before making the buying decision.

This thesis focuses on examining the documentation requirements of software
components from the viewpoint of the product line integrator. The integrator is a
component buyer who builds products using components. The components are
considered to be third-party components, but the same requirements can be
applied to in-house components as well. The am is to find out what the
component integrator needs to know about the component to be able to search
for the component, select it from among the candidates, validate it, integrate it
with his product line, and use and maintain it within the product line. The
defined information requirements are transformed into component documen-
tation requirements. The product line architecture's impact on documentation
requirements is examined closely. This thesis aso examines responsibilities in
documentation, and how the documentation of components could be
implemented so that the documentation work can be predetermined and not
require much extrawork by the provider.

Theresult of thisthesisis a standard documentation pattern for components. The
pattern defines al the required information about a component that the
documentation must include, and aso the structure of the documentation. The
roles responsible for each set of information are identified and associated with
the pattern. In addition, this thesis introduces a developed component
documentation system that enables the development of documentation side by
side with the component development, and ensures that the documentation
follows the defined pattern. The system thus ensures the consistency and quality
of the component documentation. One of the aims in the development of the
documentation system was to evaluate the maturity of the selected technology
and tools.

Thisthesis also provides an analysis of the documentation pattern. The pattern is

analysed in three different ways. developing documentation for a component
using the documentation system, interviewing the industrial software engineers,

13

and comparing the pattern with the documentation of four commercial
components.

1.2 Research problem and methods
The research problem addressed in this thesis can be stated as follows:

What are the documentation requirements of a software component and how
should component documentation be implemented?

This research involves both theoretical and empirical aspects. Figure 1 describes
the flow of the research.

Theoretical part Empirical part

Literature _ Documentation system
~Documentation »| Documentation pattern |¢—p{ *Technology survey
*Third-party components oTria
Product lines -

E v

Pattern analysis

i *Testing of the system

i eInterviews

i *Pattern comparison

Figure 1. The research path foll owed.

The theoretical part of the research denotes analytica study of the literature that
concentrates on documentation, third-party components and product lines. The
component's concepts are examined and some previous component
documentation models are studied. The purpose is to determine which properties
of a component the previous documentation models emphasise. The use of
components in the context of product lines is defined in order to achieve the
product line integrator's viewpoint on components. The aim is to define the

14

critical properties of the component that must be identifiable in order to be able
to assess the applicability of component for product lines.

The defined critical properties of the component are trandated into component
documentation requirements. The requirements are then organised in a logical
sequence, and the component documentation pattern devel oped.

The empirical part of this thesis concentrates on pattern verification and
analysis. The development of components and some documentation tools and
technologies are examined in order to determine the implementation alternatives
for the environment that supports the development of the documentation. Tools
and technologies are selected to implement a documentation system. An
example component is documented with the documentation system to evaluate
the pattern from the component provider's viewpoint. Software engineers that are
experienced in the use of components are interviewed to achieve a component
integrator's view of the pattern. The pattern is aso compared to the
documentation of selected COTS and OS components to ascertain how it differs
from recent documentation practices. The developed pattern is further refined in
consequence of the analysis.

1.3 Limitations of the study

The limit between a component and an application is sometimes ambiguous. An
application is independent software that can be used as such. According to the
IEEE (1990) definition, a component is one of the parts that make up a system.
Therefore, components are not independent applications but they are used to
build applications. Generdly, software components can be defined as including
anything between a simple agorithm and a subsystem (McClure 1994). In this
thesis components are seen as nearly independent pieces of software that fulfil a
clear function, are used to build larger applications and can be reused in different
contexts.

In component trading the documentation of software components has been seen
as a key issue (Niemela et a. 2000). This thesis concentrates on the
documentation requirements of third-party software components — i.e. what the
component integrator needs to know about the component in order to be able to

15

select it from several candidates, integrate it into his own system and use it as
intended. The component management issues, acquisition processes and
business contracts that are involved in component trading are not discussed here.
Instead, the component selection is examined, because documentation has a
great impact on this activity.

The devel oped documentation pattern that the thesis introduces is best applied to
medium-size components. The size of a component or a piece of software has
been traditionally defined by the number of physical lines of code, such as LOC
(Lines Of Code) (Park 1992; Pressman 1997). In this thesis medium-size
components are seen as average components that are not the most smple, like
specific agorithms or libraries, but have some complexity. Niemel&a (1999)
classifies components into primary components for applications, building-blocks
for applications and logical subsystems for system-integration. According to
this, medium-sized components can be defined as building blocks for larger
subsystems or applications that use primary components to achieve their actions.
The sale of the smaller components may not always be economically profitable.
Furthermore, there may not be enough markets for the larger components as the
cost of reusing a component may exceed the cost of developing the component
from scratch (Bosch 2000).

16

1.4 Structure of the thesis

The structure of thisthesisis shown in Figure 2.

Problem definition
(Chapter 1)

v

Component documentation
(Chapter 2)

v

PL and component
documentation requirements
(Chapter 3)

v

Component documentation
pattern
(Chapter 4)

v

Component documentation
implementation
(Chapter 5)

v

Analysis of the
documentation pattern
(Chapter 6)

v

Conclusions
(Chapter 7)

Figure 2. The structure of the thesis.

17

Chapter 1 provides an introduction to the subject of this thesis. In Chapter 2 the
software documentation issues are discussed generaly. In addition, components
are discussed more precisdy and some previous component documentation
models are introduced.

Chapter 3 describes the use of components in the context of product lines and
identifies the essential properties of components from the viewpoint of product
lines. Some characteristics of a software system that integrates third-party
components are also discussed. At the end of the chapter, the defined properties
of components are gathered together and defined as component documentation
requirements.

The developed documentation pattern for components is introduced in Chapter
4. The chapter describes all the information fields of the documentation and the
document structure. The pattern is illustrated with the help of an example
component, as the example component is documented following the developed
pattern.

Chapter 5 introduces the implementation of a component documentation system.
The use of the tools and technologiesincluded in the system is described.

Chapter 6 describes how the documentation pattern was applied. The viewpoints
of the component provider and component integrator on pattern are presented,
and the comparison with selected documentation examples is performed.
Chapter 7 summarisesthe thesis.

18

2. Documenting software and components

Nowadays, software components are not documented in any standard way. A
common custom has been to document components as a part of the software
systems in which they are used (IEE 1986; Ogush et al. 2000; Sommerville
1992). However, some attempts have recently been made to create a genera
component documentation model. At next, traditional software documentation is
discussed first, after which the study concentrates on components, including the
concept of component and some recent documentation models proposed for
components.

2.1 Introduction to software documentation principles

Documentation has several purposes in software development. It provides users
and developers a way for communicating and increases understanding by
making the process and results of the software development visible. The most
common meaning of documentation is to gather the requirements, designs and
other deliverables of software development for use, follow-up and repository.

Traditionally, software documentation has been classified under two categories:
process documentation and product documentation (Sommerville 1992). Process
documentation concentrates on describing the software development process,
including plans, reports, organizational standards and project standards. The
main purpose of these documents is to make the software development process
visible. The purpose of product documentation is to describe the delivered
software product.

Product documentation is introduced here in more details. The quality and
handling of documentsis also discussed.

2.1.1 Product documentation
Product documentation can be divided into system documentation and user

documentation (Sommerville 1992). System documentation follows the software
design model, such as the waterfall, spiral or incremental model. All the design

19

models include some common design phases, such as analysis, design,
implementation and testing. The order and repetition of the phases vary in
different design models, but the purpose of phases is the same: to produce
documents that are used as an input for the ensuing design phase.

The common system documents developed for software can be defined as
including a system specification, a software requirements specification, a design
specification, a source code and a test specification (Pressman 1997). Figure 3
describes the phases in which the documents are developed in the waterfall
model of software development.

ﬂsystem Specification
Analysis) L
|@Software Requirements Specification

Design ﬂDeﬁgn Specification
Implementation
Iﬂ Source Code
Testing
I@ Test Specification

Figure 3. Common software design phases and documents.

System specification is the foundation for hardware, software, database and
human engineering. It defines the requirements for all the system elements that
the software is part of and then allocates some subset of the requirements to the
software (Pressman 1997). Thus the system specification describes the functions,
quality requirements and constraints for the software.

The software requirements specification refines the functions and quality

alocated to the software and constructs a detailed functional and behavioural
description, an indication of the quality requirements and design constraints, and

20

other data pertinent to the requirements (IEEE 1990; Wallace et a. 1992). The
purpose of the software requirements specification is to describe the software
itself and the relationship between the software component and the rest of the
system. The specification should also provide the validation criteria that help to
recognise the successful implementation of the software, providing performance
bounds, classes of test and expected software response (Pressman 1997).

The design specification documents the data design, architectural design,
interface representation and procedural details (Pressman 1997; Wallace et 4.
1992). Data design defines the data objects and resultant data, file and database
structures. Architecture design presents the structure charts that indicate the
program architecture. The static structure of the architecture should be described
in terms of itslogica components and their interconnections. Ogush et a. (2000)
suggest a template that can be used to document each component of the
architecture (Table 1).

Table 1. Component specification template (Ogush et al. 2000).

Component A unique identifier for the component.

Responsibilities Responsibilities, provided interfaces, and rationale.

Collaborators Other components that the component interacts with.

Notes Information about multiplicity, concurrency,
persistency, parameterisation, etc.

| ssues List of issues that remain to be resolved.

The interfaces description describes the detailed externa and internal program
interfaces and human-machine interfaces. Procedural details define the
procedural function for each software module.

The source code is a listing of the program code. To be more readable for
humans, the code should be documented, or the supporting documentation for
the source code that describes the problems and solutions that the code presents
should be provided (Wallace et al. 1992).

The test specification documents an overall plan for the integration of the
software. The test plan describes the strategy for integration, which includes a

21

description of the test phases, builds, schedule, environment and resources
(Pressman 1997). The test procedures are documented so that the order of
integration, unit tests for modules, test environment and test data are defined for
each build of software. The actua test results and possible problems during the
testing must be recorded at the end of the test specification. This datais vital for
the software maintenance.

The purpose of the user documentation is, according to IEEE (1990), to describe
to users the way in which the software system or component is to be used in
order to obtain the desired results. Users can be defined as including both end
users and system administrators. The user documentation usualy includes a
functional description, an installation document, an introductory manual, a
reference manual and a system administrator's guide (Sommerville 1992). The
functional description provides an overview of the system, helping the user
decide whether or not the system fits his needs. The instalation manual
describes how to install the system in a particular environment. The introductory
manual is an informal introduction to the system, advising the users to use the
common system facilities. The reference manual describes the details of all the
system facilities and their usage, and gives instructions on how to handle error
situations. Finally, the system administrator's guide advises the system
administrator on how to operate and maintain the system.

2.1.2 Document quality

The importance of software documentation has often been ignored and the
documents may be badly written, difficult to understand, out-of-date and
incomplete. Still, without proper documentation, the utility of the software
system is degraded. The means of achieving good document quality are, for
example, document design, standards and quality assurance processes
(Sommerville 1992).

Document structures should be designed in advance. The document content
often determines the structure. General structuring principles include the project,
document and author identification, type of document, configuration
management, quality assurance information and intended recipients of the
document. The contents of the documents should be organised in chapters,

22

sections and subsections, which should be numbered. A technica document
should also include an index and glossary to increase the intelligibility of the
document.

Document standards can be divided into process, product and interchange
(Sommerville 1992). Process standards define the process that produces
documents of high quality. Product standards apply to documents produced in
the software development process. These can be defined as including document
identification standards, document structure standards, document presentation
standards and document update standards. Interchange standards define the
conventions for using standard documentation tools and thus allow documentsto
be transferred electronically.

Review is a quality assurance mechanism that signifies examining the
documentation associated with the software system to find problems and
inconsistencies. All software documents should be reviewed before approval.
Design or program inspections detect detailed errors and ensure that the
standards have been followed. Management reviews are intended to provide
information for management about the overal progress of the software project
and ensure that the plan has been followed. A technical analysis of the product
documentation to find mismatches between specification, design, code or
documentation is carried out in the quality review.

2.1.3 Handling of documents

For every document developed during a software development project, the
document version and status must be identifiable. Version control helps to
manage different versions of documents. The version number of a document
consists of two parts: Version.Revision. The first part is always zero until the
document has been approved for the first time. After approval the document
attains the version number 1.0. After that the version number increases every
time the document is edited. The first part of the version number is only raised
when making a remarkable change in the document. The document has to
include the change history, which includes all the drafts and approvals.

23

The status of the document reflects the quality of the document. The following
statuses are often used: draft, proposal or approved. Only the approved
documents are usualy saved as official documents of a project or software. The
document is rel eased after approval.

Documents can also have variants, which are produced when small differences
between software products are created. Document status, versions and variants
are described in Figure 4. Variants can be, for example, the product with colour
display and the product with monochrome display (Pressman 1997).

Document management may aso include practices for the approval and
distribution of administrative project documents and instructions for post-project

filing. A document becomes a baseline after approval. A basdine is a
configuration management concept that serves as basis for further development.

Inspection

Variant i Inspection
created

Approved

112

Figure 4. Versions and variants of a document.

2.2 Components and documentation

When comparing software systems, it can be seen that there are usually very
high commonalities from one software application to another. This commonality
includes code, design, and functional and architectural similarities (McClure
1994). Some of these similarities provide for reusable components.

24

A software component has several definitions in the literature. Generdly, a
component has been understood to be a self-contained, replaceable part of a
software system that can be used independently or assembled with other
components (Sametinger 1997). The component fulfils a clear function or a
group of related functions through a well-defined and stable interface in the
context of a well-defined software architecture. Thereby, components are units
of composition with explicitly specified interfaces and quality attributes (Bosch
2000). A reusable component is developed (or acquired) for the solution of
multiple problems (Karlsson 1996). A component model defines rules on how to
construct an individual component and how the component interacts and
communicates with other components (Heineman & Councill 2001). These
design rules reduce interface mismatch and ensure that system-wide quality
attributes are achieved. Thus, component models express the global
(architectural) design constraints of components (Bachman et al. 2000).

SEl's (Software Engineering Institute) definition of a component is consistent
with the overall thrust of these definitions, but however, it incorporates the
perspectives of a component (Bachman et al. 2000): "A software component
merges two distinct perspectives. component as an implementation and
component as an architectural abstraction; components are therefore
architectural implementations. Viewed as implementations, components can be
deployed, and assembled into larger (sub)systems. Viewed as architectural
abstractions, components express design rules that impose a standard
coordination model on all components. These design rules take the form of a
component model, or a set of standards and conventions to which components
must conform.”

Over the years, software systems have become more open. An open system is a
collection of interacting components, whose interface specifications are fully
defined and available to the public (Meyers & Oberndorf 2001). The openness
allows the system be extended and integrated (Vigder 1998). In the last decade,
the use of third-party components as parts of larger systems has grown
considerably. Third-party components, such as COTS, MOTS, OCM and OS
components, are developed by independent component providers.

Commercial Off-The-Shelf components (COTS) are bought from third-party
vendors and then integrated into a system (Vidger & Dean 1997). They are

25

ready-made components with a certain functionality, and used without any
internal modification by the customer. A COTS product is a product that is:
"sold, leased, or licensed to the genera public; offered by a vendor trying to
profit from it; supported and evolved by the vendor, who retains the intellectual
property rights; available in multiple, identical copies, and used without
modification of the internals’ (Brownsword et al. 2000).

The use of COTS products and open systems promises a lot of benefits.
According to Meyers and Oberndorf (2001), these include: "lower costs, less
reliance on proprietary solutions, shorter development schedule, better-tested
products, increased portability, increased interoperability and more stable
technology insertion”. In addition, the maintenance is carried out by the
component vendor (Morisio & Sunderhaft 2000). However, COTS products also
have some pitfals: higher risk, inability to meet specia requirements,
conformance problems, support problems, increased amount of continual
investment and requirement for a new management style (Meyers & Oberndorf
2001). In most cases, the main pitfall isthe fact that the component buyer has no
access to the source code (Vidger & Dean 1997).

A MOTS (Modified Off-The-Shelf) component is like a COTS but is tailored to
buyer-specific requirements by the component provider. According to IEEE
(1993), a MOTS product is "a product that is already developed and available,
usable either asis or with modification, and provided by the supplier, acquirer,
or athird party". A MOTS vendor needs to do careful coordination to determine
how the modified versions will be maintained in the system and who will do that
maintenance (Clapp & Taub 1998).

OCM (Original software Component Manufacturing) components locate
between COTS components and components that are tailor-made. The term
OCM describes the development of a tailored software component to be
acquired by using intermediate component brokering services (Seppéanen et al.
2001). OCM components are commercial components whose functional and
quality requirements are defined by the integrator of the component, and the
component is developed by a selected third-party component provider. Unlike
COTS components, OCM components are supplied as a "white-box", which
means that the components can be modified by the provider or the integrator
before their actual reuse. The intellectual property rights become a serious

26

concern in the OCM business. The seller may have trouble supervising the
component because the buyer is able to modify the source code of the
component at any time (Seppanen et al. 2001).

Special attention has to be paid to OS components as well. Open Source (0S)
components are different from proprietary components in several ways:
programmers have unlimited access to the source code and components can be
modified and redistributed without restrictions. The basic idea is that when al
programmers can see the source code and explait it, the software evolves, and
the rapid evolutionary process produces better software than the traditional
closed model. The OS license will automatically be applied to anyone using the
component. Some considerations have to be taken into account when using OS
components. Some license conditions may imply that the whole product in
which OS components are integrated becomes software under the same license
conditions as the integrated OS components. In addition, the organization has to
plan the maintenance of the OS components. If a large organization modifies the
OS components, it has to deliver the modified components back to the OS
community; otherwise, the organization has to maintain the modified OS
componentsitself. (Open Source Initiative 2002.)

Components, both commercial and in-house, do not have a standard
documentation pattern and thus every component provider has documented
components according to his own documentation practices. This means that
documents can be inconsistent and of low quality. Some attempts have been
made to develop a general component documentation model. However, these
models are often appropriate only within a component reuse process inside an
organisation, and these models do not consider the possible division of
component development between different organisations. Further, some
component documentation models for components offered in the electronic
marketplace or repositories have been developed. These models do not usually
require much information, and thus information that is crucial for component
selection and integration may be missing or the information may not be specific
enough.

Next, Reuse Manual (Sametinger 1997), the genre system of component
documentation (Forsell & Péaivarinta 2002), Component Registry (Component

27

Registry Homepage 2002) and COTStrader (Iribarne et a. 2002) documentation
models are introduced.

2.2.1 Reuse manual

Sametinger (1997) classifies software documentation into parts according to a
purpose: user documentation, system documentation, process documentation and
reuse manual. User documentation provides all the information necessary for
users to use the software system. Such information is, for example, a functional
description of the system and an instalation manual. System documentation
provides the development information of a software system or component, such
as requirements and implementation details. Process documentation describes
the dynamic process of the creation of the component, such as the project plan
and working papers. The last part, reuse manual, includes al the information
concerning component selection, reuse and modification. The purpose of the
reuse manual is to assure the software engineers that the component fits their
needs and is therefore suitable for reuse in a certain scenario, and give
information about the component's interfaces.

Figure 5 describes the structure of the reuse manual. The reuse manual consists
of genera information, reuse information, administrative information, evaluation
information and other information (Sametinger 1997). The general information
part provides the information needed when deciding if a component can be
reused in a certain reuse scenario. This includes a short introduction to the
component, the component classification, a description of its generd
functionality and platforms, and the status of the quality of the component. The
reuse information part contains the information needed to install, reuse and adapt
the component. This includes the installation instructions, a description of the
interfaces and detailed information on how the component can be reused and
adapted. The administrative information part includes the legal constraints,
available support and history information. The evaluation information provides
the more detailed information for the evaluation of the component. Thisincludes
the component's detailed functionality, information about the component's
quality, limitations, interdependencies and test support. The other information
part covers all the additional information that can be associated with the
component, like system documentation and references.

28

—] Introduction |
I Classification |
[Functionality |
|
|

. . 1
*‘ General information F I Platforms
L
L Status
— Installation

[Integration, usage
L A daptations

l
—{ Reuseinformation |———1 Interface description |
l
l

— [Procurement, support |

%Administrativeinformation%% Any restrictions |
L[History, versions]

Reuse manual % — Specification
I Quality
| [Performance, resources

l

l

l

S : [Alternative components |

J Evaluation information I Bugs/problems l
l

l

l

l

1

| [Limitations, restrictions
| [Possible enhancements

— Test support
L[Interdependencies

[System documentation |
% Other information F I References l
1

L Reading aids |

Figure 5. The structure of the reuse manual (Sametinger 1997).

2.2.2 Genre system of component documentation

Forsell and Péivarinta (2002) suggest an abstract-level genre system of
component documentation that supports the reuse process. They define "genre"
as an established way of communicating within a community that comprises a
group of stakeholders involved in a component-based development process.
They argue that the earlier models of component documentation are based only
on the "pure expertise” of the writers. A documentation model that builds on a
theoretical base is needed in the field of modern software societies. This kind of
model takes notice of several dimensions of component documentation in
practice:

29

» Component documentation is a continuously evolving communicative
process of several stakeholders.

» Stakeholders have certain roles related to documentation, with their rights
and responsihilities.

» With detailed structuring and standardisation of information content, the
component offers a documentation framework and solid conceptual basis at
the corporate level, and also at the industry level.

* Processing, sharing and storing structured documents denotes high
technological challenges.

The communication actions related to the production and use of a component
document are defined with four stakeholder roles: component provider,
maintainer, software developer and reuse manager. The idea is to map the roles
to al pieces of information produced during the for-reuse and with-reuse
processes.

In genre systems, the documentation is divided into two parts. the reusable part
and the part that supports reuse (Forsell & Paivarinta 2002). Figure 6 describes
the structure of the information. The reusable part defines the objectives and
design rationale for the component, results of the production work and the test
procedures used to certify that the component works correctly. The part that
supports reuse includes information for component brokering, consuming and
management. The information content of the documentation is not defined
precisely. The model does not bring any new information in comparison with
previoudy devel oped documentation models.

30

Reusable Software Component

Reusable Part
« Objectives for the component
e Design rationale for the component
* Result of the work
* Test procedures

Part Supporting Reuse

Brokering Consuming M anagement
information information information
Information about: Information to: Information about:
* assessing * find e creator
* procuring * select « support
« certifying * adapt e pricing
* adding * integrate * security
« del eting * USers
a component. a component. . etc.

Figure 6. A model for documenting components (Forsell and Paivarinta 2002).

2.2.3 Component Registry

Component Registry is a fully searchable XML database of component
documentation that covers a large collection of reusable JavaBean, Enterprise
JavaBean and COM (Component Object Model) components (Component
Registry Homepage 2002). XML (eXtensble Modelling Language) is a
structured text standard that can be used to identify the parts of the document.
Component Registry provides a universal organizational format for component
documentation using XML formatting. The use of XML alows developers to
repurpose the component data into any format and it also makes the component
information portable and fully searchable.

Component Registry provides the Component Documentation DTD (Document
Type Description) for documenting a component. DTD is a definition of the
elements, attributes and entities of the document. The following information is
required for each component in order to register the component into Component
Registry's database (Component Registry Homepage 2002):

31

+ component name,

e component version number,

» framework (Java or COM),
 category (and subcategory),

» abrief description of the functionality,

» technical documentation that may help a developer (code samples, FAQ,
installation instructions, etc.),

* linksto reviews about the component,
 technical support contact information, and

» alist of each class for Java components and a list of type library files for
COM components.

Component Documentation DTD was placed in the Public Domain by Flashline
Inc. in 1999. Fashline is one of the biggest electronic Java component
marketplaces on the Internet. Components documented according to Component
Documentation DTD can be searched from the database by browsing the list of
components or by using the search option. The search retrieves the components
from the database according to product name, vendor name, framework,
technology, category or subcategory (Flashline Inc. 2002).

2.2.4 COTStrader

Most of the existing proposals for component documentation are based on the
functional description and notion of component interfaces. The non-functional
descriptions have usually been ignored. An effort has been made to include the
non-functional information into COTS documents (Iribarne et a. 2001b). A
COTSXML Schema is a specification template for a COTS component that
tends to cover all the documentation requirements. The template is based on the
W3C's XML-Schema language (World Wide Web Consortium 2001b) and
emphasises the importance of non-functional properties. Schema language
describes the document content like a DTD, but Schema is more expressive,
defining mechanisms for constraining document structure and content.

32

COTStrader is an Internet-based trader for COTS components. COT Strader
provides XML schema templates for exporting COTS components into the
COTStrader repository and importing COTS components from the repository
(Iribarne et a. 2002). The current implementation of COTStrader is only a
prototype but it is going to be extended in the near future.

The exporting template provides instructions on how to document a component.
The template is divided into functional description, non-functional description,
packaging or architectural description, and marketing description (Iribarne et al.
2002). The functional section defines the provided and required interfaces and
service access protocols of the component. The non-functional section is used to
describe the non-functional properties of the component, such as security and
performance. Each non-functional property is described with a "property"
element, with a type and value associated. The packaging section defines the
packaging/architectural constraints of the component. Finaly, the marketing
section defines licences, certificates and other vendor information.

The importing template provides instructions on how to retrieve a component
from the repository. Importing requires that the exact selection criteria of the
component has to be known. For example, the property name and value must be
declared before retrieving a component.

33

3. Software product lines

A software product line is a group of products that are developed from a
common set of core assets but which differ among features that affect the buying
behaviour of different customer groups (Clements & Northrop 2001). Core
assets form the basis for the software product line. Core assets can be anything
that can be reused in a domain, such as architecture, software components,
domain models, requirements statements, specifications, performance models,
test plans and process descriptions (Northrop 2002). A product-line approach is
the development and application of reusable assets (technology base), the
development of systems from a common architecture, and large-scale reuse of
high-quality assets (NPLACE 2002).

The use of third-party components is increasing in product lines. Building
systems as component-based product lines promises a lot of benefits to product
development. The product developer is able to take advantage of new products
and new technology, and the products’ time-to-market is significantly reduced
because Off-The-Shelf components are ready to use. The employees
productivity increases because the emphasisis not on coding but on reusing and
integrating. The ready-made components allow developers to specialise in the
application area of the organisation. The components are more reliable because
the components used in a system were developed for a whole class of systems,
and other users will probably have found more of the problems than if the
component was built specifically for one system. The developed systems
become more changeable because replacement components can be inserted in
place of older, less satisfactory ones. The developed systems are also more
extensible because new kinds of components can be inserted, alowing the
system to perform some function it was not able to do before. (Bass et al. 1998.)

The product line architecture is a member of the collection of core assets. The
architecture is expected to persist over the life of the product line and change
relatively little, and relatively slowly, over time. Every product of the product
line shares the common architecture. The architecture defines the set of software
components and their supporting assets, such as documentation and test
artefacts, that populate the core asset base. The architecture is used to create
instance architectures for each new product according to its "attached" process
(Northrop 2002).

In the following, the use of components in the product line context is examined.
The essentia characteristics of a component are defined from the perspective of
the product line. These characteristics are then defined as component
documentation reguirements. Component development and selection for product
lines are examined by defining the key rolesin component development. Finally,
the documentation requirements and their purpose on product line integrators are
gathered.

3.1 Product development with components

In product lines, a new product is formed by taking applicable components from
the base of common assets, tailoring them if needed and adding any new
components that may be necessary. The components are assembled using a
disciplined process under the umbrella of a common, product-line-wide
architecture.

Figure 7 describes the product development process with attached elements.
Several elements affect the process, such as requirements, product line scope,
core assets and production plan (Northrop 2002).

Product development
process

Requirements

Product line scope
p —

/V

> broducss

Core assets

Production plan

JC

M anagement

Figure 7. Product development in product line concept (Northrop 2002).

35

The product development process is guided by the requirements for a new
product. In addition, the new product must obey the product line scope, which
defines the commonality that all products share and the ways in which they vary
from each other. The new product is built using core assets that are the building
blocks of the products. Every core asset is not necessarily used in every product
in the product line. Assets are chosen to achieve specific product features or
attributes. The production plan defines how the core assets are to be used to
build the products. Each of the core assets should have an "attached" process that
prescribes its tailorability and use in the product development. Management
gives resources, coordinates and supervises the product development activity
(Clements & Northrop 2001).

The first step in the product development process is the requirements
specification of a new product. This activity focuses on the functionality of the
product that is not supported by the reusable assets of the product line.
Typically, the reguirements specification includes functional, performance,
interface and design requirements, and devel opment standards (IEEE 1990).

After the requirements specification, the architecture for the new product is
derived from the product line architecture. Architecture pruning is an activity
that removes the parts of the product line architecture that are unnecessary for
the new product. Architecture extension activity extends the product architecture
to cover the product-specific requirements that are not covered by the product
line architecture. The extension can be implemented by extending the product
line component or adding a product-specific component. Conflict resolution
activity resolves conflicts, both functionality and quality attributes related, that
may occur when deriving the product architecture from the product line
architecture. In the end, the architecture assessment activity ensures that the
architecture fulfils the product's requirements.

When the product architecture has been finalised, the next activity is to select a
component implementation for each architectural component. Product line assets
include component implementations that contain the functionality of the
architectural components in the product line architecture. If no implementation
for a certain architectural component is available, the component has to be
developed or bought. Component implementation must often be instantiated to
fit the product requirements. Component behaviour can be changed or adapted to

36

the product-specific context — for example, through the component’s
configuration interfaces.

Finally, the components are integrated as a product. The product is then
validated through testing, packaged and rel eased.

3.2 Product line requirements for components

The development or purchase of a new component is necessary in product
development when a thorough search has been made of the existing product line
assets and no applicable component is found. The choice of whether to purchase
the component or to develop it is usualy affected by the synergy of many
different issues, such as the project's schedule, costs, resources, available
components and reliable component suppliers (Meyers & Oberndorf 2001).

The product line places severa restrictions and requirements on the new
components. These are caused by the importance of the architecture for product
lines and because the components possibly need to fit a potentialy large family
of systems. The resultant components can be product-specific components only
used in a single product. New components can also be included in the core asset
base of the product line when they can be used in multiple products.

The component requirements specification is the key to the component
development or search. The requirements specification must include al the
requirements and restrictions of the component that are prescribed by the
product line architecture in which the component is intended to be used. The
software architecture assumes that every component implements a certain
required behaviour. Thus, a component requirements specification must define

several aspects.

Bosch (2000) states that the interfaces, variability, functionality and quality
attributes of the component must be carefully defined for every component of a
product line. Thus, these properties should be included in the component
requirements specification. To be able to assess the applicability of components
for a product line, the same properties must also be defined for each candidate

37

component, so that the component's capabilities can be compared with the
requirements specification.

The Software Engineering Institute (SEI) also identifies some characteristics for
components that are peculiar to product lines. In addition to the Bosch (2000)
definitions, these include such critical infrastructure elements as structuring
architecture, architectural rules and implementation technique (Northrop 2002).
In addition, SEI states that the resources that the component may require must be
defined, as well as the protocols that the component has to adhere to and the
component model that the component must support.

As stated above, several of the component’s properties have to be taken into
account when developing or selecting a component for a product line. The
defined, crucia properties of a component from the viewpoint of product lines
are described in detail in the following section. Because the product line
architecture has an essential impact on the component development or selection,
some of the architectural issues of the software systems that integrate
components are discussed in section 3.2.2.

3.2.1 The crucial properties of a component for product lines

When building systems by integrating components, the architectural issues
become crucial. Every component is designed in a particular architecture and
this architecture determines the assumptions concerning the interactions of the
component with its environment. The importance of architecture is emphasised
within product lines when the same product line architecture is expected to
persist and be reused several times. The product line architecture effects on
several component-related decisions. The architecture exposes the critical
infrastructure elements that are common to all components of the architecture
(Northrop 2002). Architectural rules and patterns also impose certain roles on
the components.

When integrating a new component into a system, it must be verified that the
component supports the style of the interactions of the system's architecture.
This implies that the component interactions must be identifiable. Integration
problems arise when the component depends on certain interaction assumptions

38

(Yakimovich et a. 1999). Figure 8 presents component interactions with its
environment.

Platform Hardware

Component

Software User

Figure 8. Interactions of a software component.

Component-platform interaction refers to the component’'s execution
environment. If the platform does not match with the platform the component
was designed for, it will need an emulator or a code converter to run the
component. Component-user interaction dictates that component's user interface
requirements may change and thus differ from the system user interface
requirements. Component-hardware interactions indicates the direct interaction
between the component and hardware. If a component's assumptions about the
hardware are wrong, the component must undergo some modifications.
Component-software interactions refers to other software components the
system is composed of. (Y akimovich et al. 1999.)

* Furthermore, problems in component-software interactions include the
following (Morisio & Sunderhaft 2000):

* functional —an internal problem of a component that is caused by a wrong or
missing functionality,

* non-functional — an internal problem of a component; the component does
not match with non-functional requirements,

» architectural — a class of problems that are caused by the architectura
assumptions of a software component,

 conflicts— conflicts between the components in the system, and

 interface — incompatible interfaces between the components.

39

The functionality of the component specifies what the component actually does,
i.e. what functionality it provides through its provided interfaces. The
component obtains part of its functionality through its required interfaces but the
greater part isimplemented inside the component. Functional requirements for a
COTS component need to be specified at a level that helps to evaluate the
available components on the market.

Quality isthe ability of the software or component to meet its requirements. The
quality characteristics of the component are behavioural properties that the
component must have and that should match the non-functiona requirements
(Kunda & Brooks 1999). The non-functional properties of the component must
be defined so precisely that they can be measured. The common features of the
non-functional requirements are that they are difficult to elicit, express, quantify
and test (Beus-Dukic 2000).

Non-functiona requirements can be specified with quality attributes. Bass et al.
(1998) divide quality attributesinto two categories: observable via execution and
not observable via execution. Attributes observable via execution are defined as
including performance, security, availability, rdiability, functionality and
usability; attributes not observable via execution are modifiability, maintain-
ability, portability, reusability, integrability and testability (Bass et al. 1998).
Sommerville (1992) groups the non-functional requirements into product
requirements, process requirements and externa requirements. Product
requirements, such as portability, usability and reliability, are placed on a system
under devel opment. Process requirements are placed on the devel opment process
used for system or component development. These can include process
standards, implementation requirements or design methods. Externa require-
ments are other requirements placed on a component, e.g. interoperability of the
component and legidation requirements.

Bertoa and Vallecillo (2002) have made a proposal of the quality attributes that
measures the characteristics of COTS components. It uses the 1SO 9126 quality
model of a software (ISO/IEC-9126 1991) as a basis, but modifies it, claiming
that not all the characteristics of a software product defined by it are applicable
to COTS components. They divide quality attributes into two main categories:
attributes measurable at run-time and attributes observable during the product’s
life cycle. The first category includes accuracy, security, recoverability, time

40

behaviour and resource behaviour. The second category includes suitability,
interoperability, compliance, maturity, learnability, understandability, oper-
ability, changeability, testability and replaceability (Bertoa & Vallecillo 2002).

Functional and non-functional problems cannot be solved without reworking or
modifying the component itself. The rest of the interaction problems can be
solved within the limits of the software architecture by adapting components. As
stated above, the software architecture defines the relationship that the
component has with other components. Each relationship defines an interface
that is, according to Bosch (2000), "A contract between a component requiring a
certain functionality and a component proving that functionality. The interface
represents a first-class specification of the functionality that should be accessible
through it. The interface specification is, ideally, independent of the component
or components implementing that interface.”

Component interfaces can be divided into required, provided and configuration
interfaces. A component interacts with other components through provided and
required interfaces. Interfaces are usually represented in the form of application
programming interfaces (API) — that is, a specification of those properties of a
component that component integrators can depend upon (Bachman et al. 2000).
API specification contains a list of operations, generally including argument
types and the type of entity returned (Clements & Northrop 2001). Some
particular aspect should be taken into account when specifying interfaces. The
state of the component affects the interface and, therefore, all interface
operations are not accessible at al times. In addition, multi-component
interaction assumes some kind of protocol to dictate the communication between
the components (Yakimovich et a. 1999). In specia cases, a set of abstract
classes that are visible to users of the component can be part of the interface, and
should be defined in association with the interfaces (Clements & Northrop
2001). The third interface, the configuration interface, provides a point of access
for the component user to configure the component instance according to the
requirements. This interface allows the user to set parameters that select
particular variants at the variation points (Bosch 2000).

An interface specification describes how individual services respond when

invoked. As components are integrated, additional information about component
communication is needed. A protocol groups together a set of messages from

41

both communicating components and specifies the order in which they are to
occur (Northrop 2002). The resource that the component needs should be
documented, so that the possible conflicts between the resources of the
application and the needed resources of the component can be detected
(Clements & Northrop 2001).

To be applicable in more than one context, the behaviour of the component must
be variable. Variability occurs at different levels in the design: product line
level, product level, component level, sub-component level and code level
(Svahnberg & Bosch 2000). Component variability refers to the points where the
behaviour of the component can be changed (Bosch 2000; Northrop 2002).
These points for component users are provided by configuration interfaces.
Thus, a the component level, the variability consists of how to add new
implementations of the component interface (Svahnberg & Bosch 2000).
Components that are included in the core asset base must support the flexibility
needed to satisfy the variation points specified in the product line architecture,
and/or the product line requirements. The architecture also defines those places
at which variation is alowed.

Svahnberg and Bosch (2000) describe five variability mechanisms: inheritance,
extensions, configuration, template instantiation, and generation. These
mechanisms provide the appropriate functionality or setting at a variation point
of a component. Configuration through parameter settings or templates is the
most typical usage (Bosch 2000). The configuration variability mechanism
handles variability by including al variants at al variation points in the
component and providing an interface to the component user, whereas the
template ingtantiation variability mechanism alows components to be
configured with application-specific types.

Component implementation technol ogies determine component-related features,
such as the binding times that are available and the architecture of the run-time
environment. The product line architecture will include a basic component
model as the foundation for the implementation. The component model sets the
requirements and restrictions for the component implementation and
communication.

42

3.2.2 Architectural mismatch

Components developed by third-party organisations may not meet al the
requirements of the component integrator, or they may not even work with other
product line components. Special attention has to be paid to the system
architecture when integrating COTS components. The system architecture must
alow the substitution of components, so that a component can be replaced
without any influence on the system. The architecture must also allow the
isolation of components, so that there can be only minimal coupling between
components. COTS components are often overloaded with functionality, and the
architecture must provide a mechanism for hiding the unwanted functionality of
a component. The architecture must also adapt to the connectors and
functionality available in the components and possible different data models and
data formats used by the components. (Vidger & Dean 1997.)

An architectural mismatch occurs when the integrated component has defective
assumptions about the system. Four main categories of architectural mismatch in
component integration have been identified. These categories are based on
assumptions the components make about the structure of the system and its
environment (Garlan et a. 1995):

1. The nature of the components

» Infrastructure. Assumptions about the substrate on which the component is
built.

e Control model. Assumptions about which components (if any) control the
sequencing of computations overall.

» Data model. Assumptions about the way in which the environment will
mani pul ate data managed by a component.

2. The nature of the connectors

» Protocols. Assumptions about the pattern of interaction characterised by a
connector.

» Datamodel. Assumptions about the kind of datathat is communicated.

43

3. Theglobal architectural structure
* Assumptions about the typology of the system communications.

» Assumptions about the presence or absence of particular components and
connectors.

4. The construction process

» Assumptions about the order in which pieces are instantiated and combined
in an overall system.

In order to minimize the architectural mismatch, the COTS components have to
be adapted to the system architecture. This adaptation can be realized by using
integration techniques. The main technique is the use of integration components
that are black-box techniques applied without access to the COTS component
source code. The integration components can be defined to include wrappers,
glue and tailoring (Vidger & Dean 1997). A wrapper is a piece of code that is
built to isolate the COTS component from other system components. Glue is a
code that provides the functionality to combine the different components. The
glue code's functionality should not depend on a specific component but it
should alow the substitution of components. Tailoring means adding some
element to the component to provide it with additional functionality. COTS
components should always have glue or wrappers between them, because
integration code is the only source code to which the developer has access and
by which the developer can control the interactions of the components (Vidger
& Dean 1997).

3.3 Component development and selection for product
lines

The common design phases of software, such as analysis, design,
implementation and testing, include certain tasks that are fulfilled by
stakeholders —i.e. persons involved in software development. Each stakeholder
plays certain roles in the software development. Every role is responsible for a
set of activities, such as delimiting the system, designing the use cases, coding,
planning or doing the testing. The roles in the software development can be
defined to include, for example, a system anayst, a use-case specifier, an

44

architect, a component engineer, a system integrator and testers (Jacobson et a.
1998).

In the same way, the essential roles can aso be defined in component
development. The idea of defining the roles in component devel opment has been
in the separation of the for-reuse process and the with-reuse process. For-reuse
signifies the systematic development of reusable components. Devel opment for-
reuse requires that the variability in requirements between different reusers has
to be analysed and the component has to be designed with the appropriate level
of generality for all reusers (Karlsson 1996). With-reuse can be defined as the
systematic reuse of components as building blocks in creating new systems.
Development with reuse includes activities of searching for a set of candidate
components, evaluating them to find the most suitable and, if necessary,
adapting the selected component to fit the specific requirements (SER
Consortium 1996).

COTS and OS components are developed in the for-reuse process on the
component provider's side. Due to simplicity, the stakeholders involved in the
COTS and OS component development can be defined to include a component
architect, a component designer and a component developer (Niemela et al.
2002). The component architect defines the functional and quality properties that
the component has to satisfy and validates the developed component. The
component designer is responsible for designing the details of the component
according to these reguirements. Component developers are those who
implement and test the component.

The with-reuse process on the component integrator's side denotes that the
integrator builds products by integrating components. The integrator acquires
COTS or OS components with a specia acquisition process or orders OCM
components. The integrator specifies the requirements for the required
component and then searches or orders the applicable component. The
component integrator's roles include a product line architect, a reuse manager, a
product architect and a product developer (Niemela et al. 2002). The reuse
manager is a person or persons responsible for the repository of reusable assets,
i.e. the selection, validation and maintenance of components. The product line
architect ensures that the selected components fulfil the requirements of the
product line, such as quality requirements and component communication

45

standards. The product architect designs the new product, which includes this
new component. The product devel oper assembles and tests the new product.

In the case of an OCM component, the for-reuse process is split between two
organisations. the component integrator and the component provider (Kallio &
Niemel& 2001). Requirements are defined on the integrator's side by the product
line architect and the reuse manager, and the rest of the component is
complemented on the provider's side. The two organisations communicate
directly with each other.

Figure 9 describes how the for-reuse and with-reuse processes are related in
component development and acquisition.

Integrator organisation Provider organisation

Component reuser Component developer

[For_REUSE Process J
C For_REUSE Process]

Functional and Delivered
Quality Component
Requirements of with Documentation

a Component

omp
A cquisiti

Pro

[W ith-REUSE Process]

Figure 9. Component development and acquisition (derived from Kallio &
Niemela 2001).

46

The component integrator orders OCM components directly from a selected
component manufacturer. COTS components are also acquired through a well-
defined acquisition process. The acquisition process usualy includes severa
activities, such as COTS cost estimation, vendor qualification, risk management,
market research, candidate COTS evaluation, and suitable COTS selection and
procurement (Meyers & Oberndorf 2001).

According to Meyers & Oberndorf (2001), the selection of the component is
based on vendor qualification and the COTS evaluation results. Component
evaluation is done by acquiring information about the component and assessing
how well the component meets the evaluation criteria. Therefore, in component
acquisition, the component documentation has a great emphasis in the
component evaluation and thus on component selection.

The selection of a suitable COTS component requires a well-defined selection
process. A repeatable process makes the planning easier, increases the efficiency
and enables learning from previous cases (Kontio 1996). The selection process
has three phases: criteria definition, identification of candidate components and
evaluation (Kunda & Brooks 1999). The criteria definition phase defines the
requirements for the component and converts them into evaluation criteria sets.
These criteria sets are mainly component functionality, required quality
characteristics, business concerns such as vendor guarantees and legal issues,
and software architecture constraints. The identification of candidate
components includes searching the aternative components that can be assessed
in the evaluation phase. In the evaluation phase the properties of the components
are identified and assessed according to the evaluation criteria, and the most
suitable component is selected.

The selection of a COTS component is often a problematic task and sometimes it
is impossible to find a component that satisfies all the requirements. Kunda &
Brooks (1999) state that the black-box nature of COTS components is one of the
major problems in COTS evaluation and selection. The lack of access to the
component’ s internal parts and insufficient supporting information makes COTS
understanding and evaluation hard.

In many cases, the selection of a component is a compromise among user
requirements, system architecture and a COTS product (Iribarne et a. 20014).

47

Once two or more candidate COTS components that meet the core functiona
requirements have been identified, the non-functiona requirements are used in
the selection process between the candidates. Thus, if two components have the
same functionality, a careful anaysis of the quality attributes can be used as
decisive criteria.

Severa attempts have been made at making the selection of a component easier.
PORE (Procurement-Oriented Requirements Engineering) is a COTS selection
method that guides the acquisition of customer regquirements and the selection of
a COTS software or component that satisfies these requirements (Ncube &
Maiden 2000). The information used in the selection is based mainly on simple
software component and supplier information, supplier demonstrations, hands-
on COTS component use and emergent system properties from user trials.
OTSO (Off-The-Shelf Option) is a COTS selection method that is systematic,
repeatable and requirement-driven (Kontio 1996). The criteria set is specific to
each COTS selection case, but, in the main, the criteria can be categorised into
four groups: functional requirements for the COTS, required quality
characteristics, business concerns, and relevant software architecture.

The National Product Line Asset CEnter tends to produce decision-making
information for selecting software products, especialy for product lines
(NPLACE 2002). NPLACE is an independent software testing facility sponsored
by the Air Force Electronic Systems Center. NPLACE has developed a set of
criteria that are COT S-product specific. These criteria help to select a COTS
component for any product line. A hierarchical model for certifying COTS
components for product lines has been developed from these criteria (Y acoub et
al. 2000).

A hierarchical reference model for COTS certification criteria has four levels:
COTS-Worthiness, Domain Pervasiveness, Architecture Conformance and
Application Adequacy (Yacoub et a. 2000). Each of these levels considers
different aspects of the component when trying to define if the component is
suitable for a product line. The criteria are defined in Figure 10. At the COTS
worthiness certification level the goal of the certification is to ensure that the
component is technically and commercialy sound. The component has to meet
criteria that deal exclusively with its content. At the domain pervasiveness level
the goa of the certification is the usefulness of the component in the domain.

48

Architecture conformance criteria assess the usability of the COTS component
in agiven product line context. Application-specific criteria assess the adequacy
of the component for one particular product of the product line.

Application Adequacy

A pplication-specific testing and certification

Architecture Conformance
Genericity

Interoperability
Portability

Compliance with standards

Domain pervasiveness
Generality
Retrievability

U sefulness

COTS Worthiness
Functional attributes
Structural attributes
Operational attributes

V endor and market
attributes

Figure 10. COTS Certification Hierarchy (Yacoub et al. 2000).
To be able to assess components on the basis of these criteria, the information
for each criterion should be defined by a component provider. Thus these criteria
can a so be thought of as extensive requirements for component documentation.
3.4 Component documentation requirements
The essentia characteristics of components from the viewpoint of the product

line were discussed in section 3.2.1. The component documentation should
provide information that assists the component integrator to assess whether the

49

component fulfils his product line architecture's requirements and restrictions for
a component or not. The component integrator must be able compare his
requirements for a component with the documentation of a candidate
component, and then assess if the component is applicable for his purposes.

The component documentation should thus include information that the product
line defined as essentid. Furthermore, some component documentation
reguirements can be derived from the previous documentation models discussed in
section 2.2 and from the evaluation criteria specified in the hierarchicd reference
model for COTS certification (Y acoub et a. 2000) presented in Figure 10.

Component documentation has several purposes for the component integrator
(the buyer). It assigtsin:

 searching for components,

» selection of components,

» validation of interoperability of components,
» anaysis of combined quality attributes,

* integration of components,

* use of components, and

* maintenance of components.

The component search can be helped by the document structure, keywords and
implementation technique. The required information is easy to find from the
document when structuring documents so that the information follows the
defined hierarchy. In addition, structured document implementation techniques
enable the retrieval of possible candidate components based on, for example,
document elements or attributes. Keywords added to documents enable the
retrieval of components using search words.

The sdlection of components can be assisted by providing the information
needed when assessing the applicability of a component to the requirements.
This can include, for example, the description of the basic functionality of the
component, interfaces, execution environment and constraints. Also, the

50

information about the quality of the component, the component implementation
technique, the architectural rules and the variability of the component should be
available because this kind of information is critical, especially when choosing a
component for the product line. Other component-related information, such as
the price of the component, the reputation of the component supplier and supply
contracts, affect the component buying decision but these should not be included
in the component documentation because they are not product-specific
properties and change over time.

By providing information about the protocols, component model and use of the
interfaces, the documentation can help the integrator to verify the
interoperability of the component with other components, both commercial and
in-house components. In the case of product lines, the interoperability rules are
defined by the product line architecture, and, therefore, it is extremely important
to describe how the component communi cates with other components.

The documented quality attributes often provide information about the
adaptability, portability and performance of the component. The quality should
be defined in a measurable way and the validation of the quality attributes must
come out in a document, e.g. in association with acceptance testing. Both the
quality and functionality of a component can be validated for integrators by
providing information about component acceptance.

The documentation should provide information for the integration of the
component with other components of the system. Detailed interface descriptions
and possible examples of the use of the interfaces enable the integration of the
component. Also, the interdependencies, both to other components and physical
resources, must be known.

To be able to use the component, the documentation must provide information
about the installation, configuration and tailoring of the component. Installation
information guides the user in getting started with the component. Tailoring
information helps the user to fit the component to his own needs. Configuration
information specifies the component variation points and how to use them.

The maintenance information helps the user to maintain the component. The
design models of a component, such as class diagrams or context diagrams, help

51

the user to modify or extend the component. The history and delivery
information is needed for component updates and storing. The document should
also contain a point of contact for a user to get help with the use and
maintenance of the component.

Table 2 summarises the documentation requirements defined above. The
requirements are discussed more details in the next chapter, in association with

the developed documentation pattern.

Table 2. The derived component documentation requirements.

The use of documentation Documentation requirement
Component search Keywords
Component selection Functiondity

Quality attributes

Interfaces

Constraints (inc. standards and protocols)
Architectura rules

Technical details (i.e. execution
environment)

Component validation Test criteria
Acceptance testing

Analysis of the component quality | Quality attributes
Acceptance testing

Integration of a component Interfaces (detailed)

Component use Installation guide
Configuration
Implementation
Resource needs
Interdependencies

Component maintenance Component identification
History

Composition
Implementation

Delivery

Tailoring support
Customer support

52

4. A component documentation pattern

The lack of standard, self-contained documentation of software components is
the main reason for component selection and integration being hard, especialy
in product lines where the functional and technical requirements, quality,
constraints and design rules for a component are specified within product line
architecture. This chapter provides a general pattern for documenting software
components in a standard way whereby the component integrator's and
provider's views are taken into account. COTS components are documented by
the component provider only, but in the case of OCM components the
component integrator and the provider have to co-operate and follow standard
documentation procedures to guarantee that the delivered component meets the
requirements.

The developed documentation pattern emphasises the documentation
requirements derived from the literature, including the product line requirements
for the components. The pattern defines the required information and structure
for the component documentation. The pattern follows the general design phases
of component development and thus enables rational creation of documentation
for components.

4.1 Content of component documentation

The information on the component documentation is derived from the literature
(Sametinger 1997; Wallace et a. 1992; Heineman & Council 2001) and,
furthermore, refined by the documentation requirements of the software
components for product lines (Bosch 2000; Northrop 2002). Figure 11 describes
the simplified structure of the documentation pattern. The information is divided
asfollows (Niemeld et a. 2002):

* Basic information defines the identification and properties of a component.
It describes the component's general information, and responsibilities of the
component from the architectural point of view. These descriptions are
described before developing or purchasing a component and thus respond to
the component requirements specification.

53

Detailed information provides more detailed information about the
functional and quality properties, as well as the technica detals. The
description of the component's design and implementation is given. For a
COTS component this implementation description is usually restricted
because of the COTS component's black-box nature.

Acceptance information guides component selection and validation, and
proofs the quality of the component. The information corresponds to the
component acceptance test.

Support information helps component users to maintain a software
component. It provides a point of contact for finding help in problem
situations and in the adaptation of a component.

Component Document

Basic Information

General information
Interfaces

Configuration and composition
Constraints

Functionality

Quality attributes

L] L[] L] L] L] L[]

Detailed Information
. Technical details
. Restrictions

. Implementation
. Delivery

Acceptance information
Test criteria

Test methods

Test cases

Test environment
Testsummary

Test support

L[] L] L] L] L[] L]

Supportinformation
. Installation guide
. Customer support
. Tailoring support

Figure 11. The main structure of the component documentation pattern.

In the following, the pattern is described more precisely. The information is
explicated with the documentation of an example component. The example
component is an architectural-level OCM component that is developed solely as
an example. Thus the documentation of the example component is not compl ete.

All the required information introduced in the next sections may not be available
for every component. For large and complicated components, most of the
information of the documentation pattern can be identified, unlike small and
simple components. In addition, some of the information, such as modifiability
and some sections of the implementation, may only be adequate for OCM
components.

4.1.1 Basic information

The main structure of the basic information is presented in Figure 12. The basic
information has six parts. genera information, interfaces, configuration and
composition, constraints, functionality, and quality attributes. The generd
information of a component gives an overview of a component with the
following pieces of information: component identification, type, overview,
history, and specia terms and rules. The interface information defines both the
required and provided interfaces of the component. Configuration and
composition concentrates on the form of atering the component. Constraints
defines the protocols and standards the component has to apply. Functionality
provides a detailed functional specification. Because the quality has a great
emphasis in the software architecture, the quality of the component must also be
identifiable.

55

1 BASIC INFORMATION
1.1 General information
1.1.1 Identification
112 Type
1.1.3 Overview
1.1.4 Higtory
1.1.5 Specia termsand rules
1.2 Interfaces
1.2.1Version usage
1.2.2 Required interfaces
1.2.3 Provided interfaces
1.3 Configuration and composition
1.4 Congtraints
1.4.1 Protocols
1.4.2 Standards
1.5 Functionality
1.6 Quality
1.6.1 Modifiability
1.6.2 Expandability
1.6.3 Performance
1.6.4 Security
1.6.5 Reliability

Figure 12. The structure of the basic information.

General information

Component identification separates the component from other components. The
identification includes the component number and name. At least the
identification number must be unique. The component name should be well
defined and describe the component. Component type expresses the way the
component is intended to be used. The component type can be, for example, a
subsystem, an actor component, a function block or a procedure. Because the
documentation may be long, it is useful to provide a short comprehensive
description of a component that can be browsed quickly to obtain a genera
picture of a component. The overview section provides this brief description —
i.e. what the component does. It describes the design rationale, applicability and
objectives of the component. The history describes the life cycle of the
component. This includes the component version and revision date, the persons
who have made the work, and the initial version and modifications that have
been made to the component. The component's specia terms and design

56

rationale must also be defined. The design rationale may define the architectural
choices — for example, the architectural styles and patterns the component has to
follow, and the reasons behind the design decisions (Matinlassi et a. 2002).
OCM components should follow the same terms and design rationale as the
product line architecture in which it is intended to be used. The genera
information of an example component is described in Table 3.

Table 3. An example application of a component's basic information.

1.1 General infor mation
1.1.1 Identification

e Id 7986764sd

« Name L ocationServiceM anager

1.1.2 Type Service component

1.1.3 Overview This component provides alocation service. It

receives, delivers and maintains dynamic location
information of different services and data objectsin
the distributed system. It acts as a central location
information server. It enables various services and
software components to register and unregister their
location information.

1.1.4 History

* Version 1.0

 Date June 2001

» Developer Mauri Matinlass, VTT

e Improvements This component does not have previous versions.

1.1.5 Special terms and rules

e Term Location origin

o Description Contains the location information of a service (e.q.
in which device the service locates, how to contact
the service)

* Rule Communication rules

e Description Client-Server architecture style, asynchronic
communication

Interfaces

The interface information is derived from the structural view of the product line
architecture (Matinlass et al. 2002). Interfaces determine how a component can
be used and interconnected with other components (Sametinger 1997). Table 4
shows how the pattern is applied to the required and provided interfaces of the
case example.

57

Table 4. The interface descriptions of the example component.

1.2 Interfaces
1.2.1 Version usage

1.2.2 Required interfaces
Interface

* Name

e Type

» Description

* Behaviour

Interface functions
Function
¢ Name
e Description
Function
¢ Name
e Description

1.2.3 Provided interfaces
Interface

¢ Name

« Type

» Description

» Behaviour

Interface functions
Function
¢ Name
e Description

Function
¢ Name
e Description

N/A

DataStorage interface

Basic messaging interface between two services.

This interface provides communication with Distributed Data
Storage (DDS). Location information is saved into and
updated in the DDS component data structures through this
interface.

Static interface

savel ocationOrigin
Stores alocation origin to Distributed Data Storage.

updatelocationOrigin
Updates the data of Location Origin according to changes.

Serving interface

Basic communicating interface between middleware services.
Mobile services, e.g. Lease Service and Directory Service,
register, unregister and update their location information to
L ocationServiceManager through thisinterface. Directory
service provides a directory service for user applications.
Lease Service provides lease services for user applications
and the directory service. These mobile services communicate
with Location-ServiceManager in order to give their location
to other membersin the network.

Static interface

addObserver

Thissignal refers to a method addObserver (Observer 0) in
public class java.util.Observable. Adds an observer to the set
of observersfor this object. Here it adds a service as an
observer of LocationServiceManager in order to get update
notifications when business card information has changed.

getBusinessCard
Creates a new business card and sendsiit to the service who
sent the request.

58

Both the required interfaces and the provided interfaces of a component have to
be defined. The required interfaces are those which the component needs to
operate, and the provided interfaces are those which the component offers to
other components. The interface information is here defined as including the
interface name, type, description, behaviour and interface functions. The main
interface definition is given in the description part. The behaviour part describes
the behaviour of the interface. Interface functions describes the activities of the
interface. Version usage tells what version of the defined interface is in use and
what the practice in the version management.

Configuration and composition

Configuration and composition describes how the behaviour of the component
can be changed and how the component is included in a software system.
Configuration describes away of initiating the component in different contexts —
i.e. to vary the component. Table 5 describes the configuration and composition
of the component.

In internal composition, the component is included in a software system — for
example, by linking binary code while assembling or including source code in a
system. In external composition, the component runs as an independent program.
Functional and object-oriented compositions are based on the activation of the
components by function calls (Sametinger 1997). However, in object-oriented
composition different components are combined through polymorphism and
dynamic binding. Textual composition is used for macros and parameterisable
components. Macros can represent reusable components that are modified
according to parameters and inserted at the location of their reuse. Configuration
and composition is especially important in software product lines because it
defines the variation points and variants provided at the component level.

Table 5. An example of description of configuration and composition.

1.3 Configuration and composition Internal composition, included in a software
system as a source code.

59

Constraints

Constraints of components are usualy common constraint for al the
components in a software system, both made in-house and third-party
components. In the case of an OCM component, the constraints are defined at
the product line architecture level. Constraints are here defined as including both
protocols and standards.

Service Access Protocols (SAP) define the global behaviour of a component.
Table 6 specifies the protocols of the example component. A protocol describes
the interaction between two components needed to achieve a specific objective.
It specifiesin which order the methods of the two interacting components has to
occur. Protocol information can be expressed in many notations, such as Petri
Nets, Message Sequence Charts, etc. (Iribarne et a. 2001b). Here,
ServiceA ccessProtocol s information includes the protocol name and description.

Standards can restrict the compatibility, structure and functionaity of
components. The standards of the example component are described in Table 6.
The component model defines the architecture of the component. It aso
determines the global behaviour, how the component interacts with other
components in a system (Heineman & Council 2001). Three basic models are
currently the most popular: Common Object Request Broker Architecture
(CORBA), Distributed Component Object Model (DCOM) and Java/Remote
Method Invocation (Java/RMI) (Morisio & Sunderhaft 2000). In addition, both
required and used standards should be specified.

60

Table 6. The constraints of the example component.

1.4 Constraints

1.4.1 ServiceAccesProtocols

Protocol

* Name Protocol for location information registering

e Description Service sends arequest for a LocationOrigin.
LocationOrigin is created and stored, ID sent asa
response. LocationServiceM anager adds itself as an
observer of a service that requested LocationOrigin.
LocationServiceManager is notified if the service
has changed its location or passed away.

Protocol

« Name Protocol for location information requesting

» Description Service sends a request to contact a service.
Something is known (e.g. name) but not the location
information of that service.
L ocationServiceManager creates and sends a
Business Card. Service and addsitself as an
observer of LocationServiceManager in order to get
update notification of business card changes.

1.4.2 Standards

Used standards

e Component model N/A

* Other standards HTTP, SMTP

Required standards IPv6

Functiondity

Functional specification is derived from the behaviour view and the deployment
view of the product line architecture (Matinlassi et al. 2002). Functionality
describes the supported functions of the component. For every function the
function name, description, inputs and outputs are specified. Function
description declares what the component does - i.e. the description of all
operations, equations, mathematical algorithms, logical operations, etc (Wallace
et a. 1992). The required data is also described, together with functional
exceptions if the architecture requires their being handled in a specific way.
Table 7 specifies the functional description of the case example.

61

Table 7. The functional description of the example component.

1.5 Functionality

Function

* Name Create Location Origin

» Description Location origins for mobile services are created on
request.

e Inputs createl ocationOrigin request

e Outputs Location Origin capsule is plugged in addObserver
message sent to the owner of the new origin

Exceptionsin functionality N/A

Quality

Quality in this context means the quality attributes that the component embodies.
In the case of an OCM component, the quality of the component is defined by
the product line architecture. The most important quality attributes for
components are here defined as including modifiability, expandability,
performance, security and reliability. Table 8 provides a description of the
quality of the example component.

Modifiability defines how the component can be modified to a new environment
and how it can be adapted to new changes quickly and cost effectively (Bass et
al. 1998). COTS components are often black-box components, and this attribute
is often qualified only for OCM components. Expandability describes how new
features can be added to the component and thus expand the functionality of the
component. Performance is a quality attribute that measures the component. The
measurements are the size of the component, prioritisation of events, capacity,
throughput, error detection and alocation time of resources (Wallace et al.
1992). The size of the component can be expressed, for example, by the lines of
code (Park 1992). Prioritisation of events defines any events with a higher
priority that must be handle first. Capacity measures the amount of work a
component can perform. Throughput measures how many events or how much
data the component can handle in a given time unit. Error detection describes
how the component copes with error situations. Allocation time of resources
defines the time unit the component allocates to a certain physical resource.
Metrics that measure performance can be collected during the development of
the component (priori metrics) and when a component is used (posteriori

62

metrics) (Karlsson 1996). Security isaquality attribute that defines the strategies
against viruses and hackers. It also describes recovery methods in attack
situations and methods for protecting the data. Reliability defines the time that
the component operates or its ability to perform its required functions under
stated conditions (ISO/IEC-9126 1991).

Table 8. The description of quality of the example component.

1.6 Quality
1.6.1 Modifiability

1.6.2 Expandability
1.6.3 Performance

Size

Prioritization of events
Capacity

Throughput

Error detection

Allocation time of
resources

1.6.4 Security
1.6.5 Reliability

Loosely coupled with other components because of
the publish-subscribe architectural style. The
number of mobile servicesin a system can be
extended without modifications to

L ocationServiceManager. The number of
components requesting services from Location-
ServiceManager can be extended without
modificationsto LocationServiceManager. Internal
functionality is encapsulated and can be updated or
modified without any change to other components.
N/A

200 lines of code.

All the service requests have equal prioritization.

L ocationServiceManager responds to service
requestsin order of arrival.

L ocationServiceManager can handle the location
information of up to 500 service components.

L ocationServiceManager is capable of handling at
least 48 requests every second it is up and running.
When sending messages to a dead service, an
exception is caught.

0.03 ms processor execution time per every service
request.

N/A

Location origin datais saved in several replicasin
order to guarantee the safety of information.

4.1.2 Detailed information

Figure 13 presents the structure of the detailed information. The detailed
information includes details of the component design and implementation. The
detailed information has four parts: technical details, restrictions, implemen-

63

tation and delivery. Technical details includes the application area, development
environment, platforms, interdependencies, prerequisites and special physica
resource needs. Restrictions concentrate on design and implementation
restrictions. The implementation part describes the implementation models of
the component. The delivery part provides information about component's
delivery.

2 DETAILED INFORMATION
2.1 Technical details
2.1.1 Application area
2.1.2 Development environment
2.1.3 Platforms
2.1.4 Interdependencies
2.1.5 Prerequisites
2.1.6 Special physical resource needs
2.2 Restrictions
2.3 Implementation
2.3.1 Composition
2.3.2 Context
2.3.3 Configuration
2.3.4 Interface implementation
2.4 Delivery

Figure 13. The structure of the detailed information.

Technica details

The application area defines the areas the component is developed to or can be
used in. Development environment defines the environment in which the
component has been developed. Typical examples of such environments are Java
Virtual Machine, Jini and MicroSoft Foundation Classes. Platform describes any
hardware and software the component is built on. Platform also indicates the
reusability of the component. The component is more reusable the fewer
platforms it depends on. The platform can be an operating system, a set of
libraries, a compiler, etc. (Sametinger 1997). For every platform, both software
and hardware, the platform name and description must be specified.

Interdependencies describes component's dependency on other components. The
required components have to be named and the reason for the dependency has to
be specified. Prerequisites defines al the other requirements that component
may have to operate. These can include, for example, Java classes or type
libraries associated with the component. Special physical resource needs declare
the physical resources that the component requires to operate. Table 9 presents
an example description of the technical details.

Table 9. Technical details of the example component.

2.1 Technical details

2.1.1 Application area Virtual home environment, home networks
2.1.2 Development environment Rational Rose-RT, JBuilder 4
2.1.3 Platforms
e Hardware
« Name Home device
e Description Any home device in home environment (containing
Java Virtual Machine).
+ Software
* Name Java Virtual Machine
» Description The Java Virtual Machine is an abstract computer
that runs compiled Java programs.
2.1.4 Interdependencies Needs Communication Service and Data
Distribution Service to form a distribution platform
to serve additional upper lever services, e.g.
directory and lease services with interfaces to user
application.
2.1.5 Prerequisites
Class
+ Name public interface Observer
» Description A class can implement the Observer interface when
it wants to be informed of changes in observable
objects.
TypelLibrary
* Name java.util
* Version since JDK1.0
2.1.6 Specia physical resource N/A
needs

65

Restrictions

Restrictions should describe all the items that will limit the provider's options for
designing or implementing the components. Restriction information is needed
when selecting the component for a specia purpose. Table 10 defines the
restrictions of the example component.

Table 10. The description of the restrictions of the example component.

2.2 Redtrictions Components communicating with LocationService-Manager
must extend the class java.util.Observable.

Implementation

Implementation includes composition, context, configuration and interface
implementation. Table 11 describes an example of the description of the
implementation. Composition information describes the internal structure of the
component, which can be derived from the component's class diagram. The
component's class diagram must be included, if possible, as well as the classes,
operations and attributes. This information is usudly available for OCM
components only. Context describes the environment of the component, i.e.
things that exist or events that may transpire in the environment. Therefore, the
context diagram should be included. Configuration defines the variation points
where the component behaviour can be changed and the guidelines on how to do
it. Interface implementation gives the details of the interfaces. This can be done
by including the interface code or referencing the implementation document. In
addition, some examples of the use of the interfaces should be included.

66

Table 11. The implementation information of the example component.

2.3 Implementation

2.3.1 Composition L ocationServiceManager component consists of six
classes: LocationServiceManager, Creator,
Observable, LocationOrigin, Observer and

BusinessCard.
See appendix A: class diagram
2.3.2 Context See appendix B
2.3.3 Configuration L ocationServiceManager is a core component.
2.3.4 Interface implementation
* Interface name N/A
* Implementation (code)
e Samplesof the use N/A
Delivery

The delivery information provides information about the format of the
component when delivering it to a customer. The format can be, e.g., binary
format, library format or source code. Delivery time tells the integrator when the
component is delivered. The delivery time of the component may be useful to
the owner of the product line for tracking versions when adaptation of the
component is made by the provider, i.e. in the case of MOTS. Table 12 provides
the delivery information of the example component.

Table 12. The delivery information of the example component.

2.4 Delivery
e Format of delivery source code
e Délivery time N/A

4.1.3 Acceptance information

The testing is usually a part of the software verification and validation process
(Walace et a. 1992). Within components, the purpose of the testing information

67

is to proof the quality of the component. The structure of the acceptance
information is presented in Figure 14.

3 ACCEPTANCE INFORMATION
3.1 Test criteria
3.2 Test overview
3.3 Test environment
3.4 Test cases
3.5 Test summary
3.6 Test support

Figure 14. The structure of the acceptance information.

The component must meet the test criteria in order to pass a given test (IEEE
1990). Therefore, the test criteria must be defined beforehand. The test overview
gives a short description of the whole testing of the component. The test
environment describes the environment in which the component has been tested.
Thetest cases used in testing must be described in order to show how exhaustive
the tests have been. For every test case, a short description is given, inputs and
outputs of the test are defined and the actual results are compared with the
expected results. Anomalies found in the test and the detailed procedure steps
are aso defined. For follow-up, the testing information should aso provide test
date and time, the name of the testers and the number of attempts to repeat the
test. At the end, ashort summary of the test is given. If there are any test support
available, they should be defined here for easy evaluation of the component.
Table 13 summarises the acceptance information of the example component.

68

Table 13. The example component's acceptance information.

3.1 Test criteria

3.2 Test overview

3.3 Test environment
3.4 Test cases
Test case 001

Description

Inputs
Expected outputs

Actual results
Anomalies
Date and time
Procedure step

Attempts to repeat
Testers

3.5 Test summary

3.6 Test support

For acceptance, the test cases 001, 002, 003 have to be
carried out.

L ocationServiceManager was tested in the design phase with
an executable model. The test cases covered all the situations
where a service request could arrive.

Windows NT4.0, Rose Real Time simulation environment

L ocation service component is asked to generate a location
origin object.

void

Location origin object containing universal location identifier
and physical connections available to contact the location
service.

As expected

None

7.7.2001

Send signal createl ocationQrigin through component
interface Creator, no parameters. Receive output as an object.
One hundred

Martti Matinlassi

L ocationServiceManager component is able to respond to
basic service requests received from alocal or a distributed
device. This observation bases on the test results of these
basic test cases that were carried out.

N/A

4.1.4 Support information

The user of the component also needs information on how to install the
component and what to do if it doesn't work as expected. Figure 15 provides a
structure of the support information. The support information consists of three
parts: installation guide, tailoring support and customer support. The necessity of
these support services and guides depends on the size and complexity of the
component, as well as the form in which it has been delivered. While ddlivering
the component as binary, instalation and configuration information are
necessary. In the case of source code, tailoring support is needed if the
component requires adaptation to the product line.

69

4 SUPPORT INFORMATION
4.1 Installation guide
4.2 Tailoring support
4.3 Customer support

Figure 15. The structure of the support information.

Installation quide

Installation guide defines the operations that must be performed before the
component can be used. Table 14 presents a short example of an installation
guide. When delivering the component as binary, installation information is
extremely important.

Table 14. Installation information of the example component.

4.1 Installation guide Java classes (source code) of the LocationService-
Manager component are inserted into new software
system. Generate and compile the whole system.

Tailoring support

Tailoring support defines the persons to contact when help with tailoring the
component is needed. Component's tailorability is a property of being adaptable
and changeable (Vigder 1998). Especially in the case of source code, tailoring
support is needed if the component requires adaptation to the product line.

Customer support

Other support information on the use of the component and possible problems
may also be required. Customer support includes the name of the contact person,
and an address or a phone number where the customer can get help.

70

4.2 Development and use of component information

The component documentation model consists of several parts of information.
To rationalise the documentation work, the roles responsible for each part of the
documentation must be defined. The roles related to component devel opment
were described in section 3.3. Each role involved in the component devel opment
isresponsible for producing a certain set of information pieces for the document.
Thisis how every person involved in the component development documents his
own work, and the documents become more reliable and complete.

Figure 16 describes how the roles are related to the component documentation in
the case of an OCM component (Niemeld et al. 2002). The component integrator
and the component provider co-operate in the documentation procedure. The
development and documentation of an OCM component begins on the
integrator's side, where the product line architect defines part of the basic and
detailed information of the component — the component's requirements
specification. A separate requirements specification document is not required as
the information can be added directly to the documentation of the component to
be developed. The reuse manager validates that the information is in accordance
with the product line context. This includes information about the component's
purpose in the context of the product line, functional specification, quality
requirements and constraints — such as protocols and standards. This information
is used by the component architect on the component provider's side, who
describes the architecture of the component and complements the basic
information.

The component designer provides the detailed information, such as the technical
details and technical restrictions of the component, and the design models of the
component composition and configuration. The component designer also
provides the acceptance test information for the component, such as test criteria,
data, methods and cases. The component developer provides the implementation
information for the component and complements the acceptance test information
by providing the test results and a description of the testing. He also provides the
support information for the component. Detailed and acceptance test information
is used by the component architect, who validates the component after
development and accepts the "component product”.

71

Component integrator Component provider
Software product line Software component
development development

Component Document

Basic Information
¢ General information
Interfaces

Configuration and composition
Constraints Component Architect

PL architect

X

Reuse manager

Functionality
Quality attributes

Detailed Information
Technical details
Restrictions
Implementation
Delivery Component designer

Acceptance information
Test criteria
Test methods
Test cases
Test environment
Test summary
Test support

Product architect

Component developer

Support information
-« = |* Installation guide
Customer support

Product developer P
P Tailoring support

Figure 16. The stakeholders in OCM component development and
documentation (Niemela et al. 2002).

After acceptance, the OCM component is supplied to the component integrator.
The reuse manager uses the basic, detailed and acceptance information in the
component validation and maintenance. The product architect uses the basic and
detailed information when integrating the new component into a new product's
architecture. The product developer needs the detailed and acceptance test
information when developing a new product.

When developing a COTS component, the component provider is responsible for
the whole development and documentation process, as well as in the case of OS
components. The component integrator will have prepared a component
requirements specification document that he/she now compares with the
documentation of candidate COTS components. Figure 17 describes the creation
and use of the documentation. The main difference between developing and
documenting the OCM component and the COTS component is that the
regquirements of the COTS component are defined by the markets and the basic
and detailed information of the component are provided by a component

72

architect on the component provider's side. When buying the COTS component,
the reuse manager on the integrator's side uses the basic, detailed and acceptance
information for the component selection, validation and maintenance. In
addition, it is the product line architect's responsibility to perform the anaysis of
the combined qudity attributes of the components and ensure that the
component also fits al the other requirements of the product line.

Component integrator Component provider
Software product line Software component
development development

Component Document

Basic Information

¢ General information

¢ Interfaces

PL architect * Configuration and composition
Constraints Component Architect
Functionality

¢ Quality attributes

\

Detailed Information
¢ Technical details
¢ Restrictions
Reuse manager . Implementation
Delivery Component designer

Acceptance information
Test criteria
Test methods
* Testcases
e Test environment
¢ Testsummary
Test support

Product architect

Support information Component developer

Installation guide
Customer support
Product developer ¢ Tailoring support

N\
:

Figure 17. The stakeholdersin the COTSOS devel opment and documentation.

73

5. Component documentation system

Chapter 4 introduced a component documentation pattern that identifies the
information content and structure for component documentation. However, the
definition of the pattern is not sufficient for the adoption of a new documentation
practice. A new environment that enables the development of the documentation
is aso required. The environment should provide guidelines concerning what
and how to document a software component, and it should also be applicable
when, in the case of OCM components, the development of the component is
split between two organisations.

This chapter introduces a component documentation system that was built to
support the development of component documentation. One of the requirements
for the system was that the component documentation does not require much
extra work from the component provider but the documentation is easy to
develop. In addition, the developed documentation must be consistent with the
standard documentation pattern.

The developed documentation system enables the development of component
documentation side by side with the component development. The
documentation is developed in separate documents following the design phases
of the component. Eventualy, the separate documents are combined into one
document that follows the documentation pattern. The system includes all the
necessary tools and technologies for the creation and handling of the documents.

Figure 18 presents the selected tools and developed extensions of the
documentation system. Two tools were selected for developing the component
documents: Epic Editor for developing textual documents and Rhapsody for
developing graphical design models. The component information that the
documentation pattern defines is developed in different phases of the component
development, and so, for simplicity, the information of the pattern was divided
into four separate documents: the basic information is defined in the Genera
Specification document, the detailed and support information is defined in the
Detailed Specification and Composition documents, and the acceptance
information is defined in the Test Document. The component documentation
system provides ready-made document templates, document type descriptions
(DTDs) and style sheets for documenting components. It also enables the

74

incluson of the design models. In addition, the system provides a tool that
combines the four documents into one final component document. The system
also enables the viewing of the documents for component buyers, before
purchasing (a shorter version) and after purchasing (alarger version).

FOSI Document
(Epic) Type

Style Description
Sheet /__ (DTD

Component XML XSL
Documents Component Style Sheet
XML Document
. Basic Information

General
Specification

Component
HTML
Documenta
tion
for Portal

Detailed Information XML-HTML
Template Acceptance Converter
M Information (Saxon)

Support Information

Detailed
Specification

A

Test document .
A Web viewer

) J

EPIC40 a—»
Internet
| LAY Explorer 5.x
o MSXML Component
L. JDOM
Composition Parser & XML
oDz > Validator Documenta
tion
Rhapsody ! for Delivery
CASE tool XSL (IE)

Style
Sheet

Figure 18. Component documentation system (Taulavuori et al. 2002).

The following sections present the selected technologies, the selected and
created tools, and their use in the documentation system in more detail.

5.1 Structured documentation language

Component documents are implemented in the XML format. XML (eXtensible
Markup Language) is the World Wide Web Consortium's (W3C) recommen-
dation for a meta-markup language (World Wide Web Consortium 2001a). It
was specified as a subset of SGML (Standard Generalized Markup Language)
standard, that is an international standard to define the device-independent and
system-independent markup notation used in structured documentation. Due to
SGML's complex technical documentation, it has been found to be too difficult
for serving documents over the web. XML was created to combine the flexibility
and power of SGML with the widespread acceptance of HTML (HyperText
Markup Language), having good features of both of them (Walsh 1998). HTML
isan application of SGML used in creating and displaying web pages.

75

The main difference between HTML and XML isthat HTML does not provide a
mechanism for describing the content of the document. HTML is said to be
human readable because it only offers information on how the document is
displayed with the fixed markup tags. XML is computer readable because it
provides information on how to describe the document content, structure and
meaning. Therefore, it enables platform-independent data exchange between
applications (Wash 1998; World Wide Web Consortium 2001a). The
extensibility and self-describing nature of XML means that users can define their
own set of markup tags. These tags must be organised according to certain
general principles of a Document Type Description (DTD), which specifies the
rules for the structure of a document. Unlike HTML, XML does not include any
formatting instructions. Formatting can be added into XML documents with a
style sheet (Harold 1999).

XML was chosen as the format of component documentation because of its
advantageous qualities. XML alows easy definition of the document content and
rules for the structure of documents. An XML document consists of semantic
tags (elements) that break a document into parts and identify the different parts
of the document. Because of XML's self-describing nature, it is easy to define
the document elements so that the element names reflect the meaning of the
elements. For component documentation, the elements can be defined to
describe the characteristics of the software components. For example, the
element "Interface” can be created and used to describe the interface of a
component. The order and appearance of the elements can be defined by the
rules declared in the DTD. It can be specified, for example, that every
"Interface” element has a name-attribute and a child element called
"Description". The rules ensure that the documents are consistent.

XML was chosen in component documentation because it also enables
document interchange between different applications over the web. In addition,
XML is a non-proprietary format and is not encumbered by any sort of
intellectual property restriction. Any tool that understands XML format can be
used to handle XML documents. The most common tools in an XML document
life cycle are XML editors, parsers and browsers (Harold 1999). The XML
document is usualy written with XML editor. The XML parser is a tool that
reads the document and converts it into a tree of elements. The parser also
checks that the document is valid and well-formed. Validity means that the

76

document matches the constraints listed in the DTD. Well-formed document
denotes that the document adheres to the rules set for the XML language (Walsh
1998). The parser passes the document tree to the browser that displays the
document to the user. To be able to display the document, the browser needs the
style sheet which tells the browser how to format individua elements.

5.2 Textual documents

Epic Editor 4.0 is an XML editor that enables easy creating and processing of
XML and SGML documents. Epic Editor can be executed with severd versions
of Windows NT and Sun Solaris (Arbortext 2002).

Epic Editor is used here to develop General Specification, Detailed Specification
and Test Documents. The content and structure of component documents are
defined beforehand, so that the devel oped documents are consistent and contain
the required information. The definition of the content determines what
information must be included in the documents. The definition of the structure
determines the rules that the documents must adhere to, i.e. how the information
in the documents is structured and how the pieces of information relate to each
other. To enable consistency of the component documents, and to ease the
document writer's work, the DTDs, document templates and style sheets have
been devel oped for each of the component documents.

DTD (Document Type Description) specifies the elements, attributes and entities
contained in the XML document and their relationships (Harold 1999). The
document rules of the DTD specify, for example, which elements and attributes
are compulsory in adocument and which are optional, how many times a certain
element can appear in a document, and the order of the elements. The following
shows a simplified example of the definition of component identification
elementsinthe DTD:

<! ELEMENT Conponent _id - - (ldentification, Nane)>
<! ELEMENT ldentification - - (Text)>

<! ELEMENT Nanme - - (Text)>

<! ELEMENT Text - - (#PCDATA) >

77

DTDs for component documents are defined especially for Epic Editor. Epic
Editor's DTDs have small differences in comparison with the DTDs developed
for Internet Explorer, for example.

Document template is a base form for the document to be written. The template
contains elements from the DTD that are normally required in any instance using
that DTD. It shows the writer al the needed elements and their place in the
document. The documentation system's templates also include writing
instructions. These instructions tell the writer the meaning of the element, i.e.
what information should be provided for each element. The template ensures
that all the elements are in their own places in the document and no obligatory
elements or attributes are missing. The following shows a piece of document
template in the XML format:

<conponent _i d>

<identification>

<text>[A uni que identification nunber of the conmponent]
</text>

</identification>

<nane>

<text >[A uni que nane of the conponent]</text>

</ name>

</ conponent _i d>

The writing instructions for the user are defined between square brackets. Epic
Editor enables the development of documentsin a graphical editing view, so the
user does not see the documents in tag format.

Epic Editor supports the FOSI (Formatting Output Specification Instance) style
sheets that specify the outlook of the documents (Arbortext 2000). A style sheet
contains the modification instructions for al the elements and attributes defined
in the DTD. Because the users cannot affect the modification instructions of the
style sheets, the outlook of the documents is aways consistent. Furthermore, the
headlines for the document paragraphs are defined in the style sheet so that the
user will not be able to change the structure of the document.

Figure 19 presents the document editing view of General Specification in Epic

Editor. When creating a new XML document with Epic Editor, the user receives
a template document based on a certain DTD. As the user has the attributes and

78

elements defined by the DTD, he can write the document following the
guidelines. He can aso add elements into a document according to the DTD.
Epic Editor's completeness check ensures that the rules for the document
structure defined in the DTD are being adhered to (Arbortext 2000). For
example, the user cannot remove elements that are being defined as compulsory
inthe DTD. Any completeness error is declared to the user.

[L8 P ywe jusi [riim (s ool Qpeos Pass iywoes jep

Dl SHT

LBB o sk DARTDOD
Lt SN Rewe om0

N

=i rY LR OERE EIII]E[I] B OAk-

= (@] Chnme o = i T P
] Grcmrmey ninemsdios =] =
(L1 Tl oof fws o
gL g [Title «c:fm.fs document] =]
-lnl‘lln . |'l —.': s sl (W ld-'ln' ey bl]
i) Laraaid’ (1 pac
| S e EFivis L VPO ATO0M OF ks 0 AT .""'\;I |
7 it h". b] Twden FTbwhag oof (i powrLomes et cineiacrrums s rrmslecl W I
=F] 1 By - pih
5 1y R Tasy
d :-:':H‘J' |.:|I_'o? [Wit of he alocurmes’ (T v in | = ;[T of i oy o ni=s
jn_u':u I-u.cl-:f_ "«_|_.r""“ of A COCSINET vorsaia) (v mino | |comreets o fEOmvmenis of i oo
& commen fonm e a_:'l:‘- I""\—ﬁ '\—I
Chiing_IEiey o it ek
ErEmrserE ainresion -
Bl Sema—_ o e i 1 ment identirication
LY :_: v b Lk
ﬂ F '___.M wniguwe idectificetico fsumber of the .'.n|:-:r.:||'.|-,;-
AT e ==
< L] Pl Hans: \"'_II
wr Hemwri
mewl & iy [
L S W I.!ﬁ milfes gt of the componsnt] (s =]
coaTEmaaE _il o i |
l.u m - " I
& ol [Type of e myd. TYpe
hw i |Type of ths comporsnt 1w & propecty of the irbandsd uss pfe
= L
it !

Figure 19. The document editing view of Epic Editor.

5.3 Graphical documents

The CoDo tool is a documentation tool that was developed to convert data from
a component's class diagram into the XML format. The CoDo tool is an

79

extension software component to Rhapsody 2.2 or greater. Rhapsody is a
Unified Modelling Language (UML)-compliant visual design tool for developers
of real-time embedded software (iLogix 2002). UML is a widely applied
description language in architecture and component design. Rhapsody API
allows users to programmatically interact with Rhapsody projects for useful
applications, such as the preparation of custom reports.

The Rhapsody API functions through a set of methods and attributes that act as a
set of Microsoft COM (Component Object Model) interfaces. COM is
MicroSoft's software architecture that allows the components developed by
different software vendors to be combined into a variety of applications
(Microsoft 2002a). COM defines a MicroSoft standard for component
interoperability and it is not dependent on any particular programming language.
It is available on multiple platforms and it is extensible.

The CoDo tool is implemented by the Visua Basic programming language and
is attached to Rhapsody with help of the COM interface. Figure 20 shows how
the XML file is developed from the Rhapsody class diagram. The CoDo tool
reads data from a Rhapsody file with the help of the Rhapsody API and inserts
information into a DOM (Document Object Model) tree. DOM s a specification
for platform- and language-neutral application program interfaces for accessing
the content of HTML and XML documents (World Wide Web Consortium

Rhapsody
API
CoDo COM Rhapsody
tool UML
model

CoDo user interface

SAX/DOM

A 4

XML
file

Figure 20. CoDo tool'slogic.

80

20024). The DOM tree is saved into the output XML file using the MSXML
parser. MSXML is Microsoft's XML parser that is accessible from many
programming and scripting languages, and can be used in any application to
access XML files (Microsoft 2002b).

The CoDo tool develops an XML document about the component's composition.
Figure 21 shows CoDo tool's user interface. The user can include document
information (title, author, version and status), component identification number
and component name into the document with the user interface. The name of the
Rhapsody project fileis required in order to obtain the class diagram information
from Rhapsody, e.g. classes, attributes and operations, and their descriptions.

= CompEmnenl doezumenlaton

D CLIMAE T IRFCIR AT IO

COMFORERT IHFOFMATION

issafioadion
|.'1=,-1-J 4

H e

|..q.-ﬂr.ﬂl':r--\.lr

A hagriely -

|l' "Rhaprody\E whuFgec e B |
Op=n Seve wilie | Est I

Figure 21. CoDo tool's user interface.

81

5.4 Integrated documents

The XML merger is a tool that was developed to combine the separately
developed component documents into one document (Taulavuori et a. 2002).
The XML merger isimplemented by the Java programming language and it uses
Java Document Object Moddl (JDOM) for handling XML data. JDOM is an
open source Application Programming Interface for accessing the content of
HTML and XML documents (JDOM Homepage 2002). It is a Java
representation of an XML document and provides a way of representing a
document for easy and efficient reading, manipulation and writing (Harold
2001). It is an dternative to such existing standards as Simple APl for XML
(SAX) and the Document Object Model (DOM), athough it integrates well with
both of them.

JDOM models an XML document into a series of Java objects (Biggs & Evans
2001). These objects are then used like any other Java object to manipulate and
modify an XML document. All XML building blocks — such as elements,
attributes and processing instructions — have a corresponding class in JDOM
(Harold 2001). Using an underlying SAX or DOM parser, an XML document is
parsed and represented as a Document object (Biggs & Evans 2001). JDOM
presents an XML document in a tree form, where the root element is the key to
accessing the rest of the document. Since Java naturaly supports object
inheritance, it is possible to navigate the object hierarchy representing an XML
document and extract the wanted information.

The XML merger combines the four component documents (Generd
Specification, Detailed Specification, Composition and Test document) into one
XML document and thus builds up the fina documentation of the software
component. The XML merger gets the file hames of the four documents as
inputs, combines the documents and modifies them, and creates one output file.

The XML merger creates a new root element, Master_document, for the
combined document, and adds the four documents with their child eements.
Child elements are elements that are included in another element (i.e. parent
element). Figure 22 describes the main structure of the combined document.

82

Master_document |

— Basic_information

Detailed_information

—JAcceptance_information

L Support_information

Figure 22. The combined component document.

XML merger modifies the document so that the final documentation follows the
document pattern defined in chapter 4. Some modifications have to be made
because of the incompatibility of different tools. In addition, some processing
ingtructions have to be added in order to enable the user-friendly viewing of the
XML document.

The XML merger executes the following steps while merging documents:
 Eliminate Epic Editor specific processing instructions.

e Create the structure of the document that is consistent with the standard
documentation pattern.

» Remove the duplicate information.

» Attach headlines.

* Insert new processing instructions in the merged document.

When all the modifications are finished, the XML file is created and the JDOM
tree is saved using JDOM's XML Outputter. XML Outputter takes a JDOM tree
and formatsit to a stream as XML (JDOM Homepage 2002).

The JDOM beta 6 sourceis free and the licence enables devel opers to use JDOM
in creating new products without requiring them to release their own products as

83

open source (JDOM Homepage 2002). The XML merger was developed using
JBuilder 4.0.

5.5 Viewing of documents

The documentation system takes into account the possible trading of the
component, and that is why the system has two different versions of the final
component document: a component document for portal and a component
document for delivery. The document for delivery is the find component
document that is sent to the customer when buying the component. The XML
document can be viewed with a web browser using the XSL style sheet. XSL
(Extensible Style Language) is a style language for presenting structured content —
i.e. styling, laying out and paginating the source content onto some presentation
medium, such as aweb browser (Harold 1999). XSL isdivided into three sections:
transformations, formetting and expression (World Wide Web Consortium
2002b). The transformations section enables replacing tags, adding additional
content into XML documents and reordering the elements of the XML
document. The formatting section enables specifying the appearance and layout
of documents as pages for web browsers. The expression section, XML Path
Language (XPath), is an expression language whose primary purpose is to
address parts of an XML document.

To be able to view an XML document with a web browser, the XML document
has to have a reference to an existing XSL style sheet. An XSL style sheet
contains templates into which data from the XML document is poured. The web
browser tries to match parts of the XML document with each template element
of the style sheet, and when the match is found the XML document part is
processed by the rules of the style sheet (Harold 1999).

The document for the portal isacut version of the final document. It is placed on
the portal's www page and is converted to the HTML format. The XML
document is transformed into HTML using XSL Transformation (XSLT). XSLT
isapart of XSL and is used for transforming XML documents into other formats
or XML documents (World Wide Web Consortium 2002b). The XSLT
processor is the main component of the SAXON package, which is a collection
of tools for processing XML documents (Kay 2001). The XSLT processor

84

implements the Verson 1.0 XSLT Recommendations of W3C. The porta
document only shows customers the component's basic information and
technical details for browsing the components. The rest of the document —
mainly the information concerning the design and implementation details — is
hidden from the customer with the help of the XSL style sheet.

85

6. Applying the component documentation
pattern

The developed component documentation pattern was applied in practice in
three ways. First, the documentation pattern was validated by an experiment that
simulated a situation where the component provider devel ops documentation for
a software component following the defined documentation pattern. This enables
the viewing of the documentation pattern from the perspective of the component
provider while developing a component for-reuse. Next, the pattern was
validated by industrial software engineers. The engineers viewed the pattern
from the viewpoint of the component integrator in a with-reuse process. After
that, the developed component documentation pattern was compared with the
documentation of selected COTS and OS components.

6.1 Pattern analysis from the viewpoint of a component
provider

The documentation pattern was applied by devel oping the documentation system
and documenting an example component. The required documentation tools
were implemented and the whole documentation process of an example
component was simul ated.

6.1.1 Development of the documentation pattern and system

Overall, the development of the pattern —i.e. the content of the documentation —
turned out to be the most difficult phase. The literature about the components
and the product lines was carefully examined to discover the important concepts
of components from the viewpoint of product lines. The discovered
documentation requirements were classified and arranged in alogica structure.
Still, the content and the structure were modified many times afterwards and
several new documentation requirements arose during the system devel opment.
Thus the pattern evolved right up to the last moment.

86

XML was chosen for the document implementation technology because it
provided severa possibilities. The development of the CoDo tool was seen as
necessary because the graphica documents were to be included in the
component documentation.

The Rhapsody CASE tool was chosen as the tool for the graphical documents
because it was already familiar. There were two different ways of expanding
Rhapsody. These alternatives were the use of Rhapsody's COM interface or the
use of Rhapsody's save file. In the latter adternative, the UML models would
have been read from the Rhapsody's save file, which is a text file, and then
converted to an XML document. However, Rhapsody's own save format was not
publicly specified, so the additional software component could not be directly
integrated with it. The use of the COM interface was chosen because it was the
more effective and smpler dternative. The COM interface at Rhapsody is
designed especially for building these kinds of additional software components
and it includes methods for support reading information about UML models.

When choosing the tool for creating textual documents, two XML editors were
compared: XML Spy 3.5 and Epic Editor 4.0. Because the technical comparison
between these tools did not indicate the superiority of XML Spy, Epic Editor was
selected as it was already available. The requirements for the documentation
were that the development of the component documentation should be as easy
and straightforward as possible for the users, and that the users could develop
the documentation fluently together with the component. In the end, it was
decided to create four different document templates that would follow the design
phases of the component development. This kind of document definition is also
practical when documenting OCM components between the integrator and the
provider.

The development of the tool that combines the documents was necessary
because, for the sake of simplicity, the component documentation was defined to
be one concrete document that would cover al the information about the
component. The different ways of combining the four XML documents of the
component were considered. First, the combination was tried using XML
technology and the entity references of the DTDs. It came out that XML and
web browsers were not mature enough for this kind of use. JDOM was chosen as
the integration technique due to its advantageous qualities. Using JDOM, the

87

combination could be done by using Java code, and JDOM daso has clear
instructions on how to modify and remove elements and attributes of XML
documents. The XML merger was built with the help of JDOM, which offered
easy access to the content of the XML document.

When the structure of the combined XML document was specified, the XSL
style sheet for the viewing the document with web browsers could be devel oped.
The style sheet was combined with the XML document with the help of the
XML merger, which adds the style sheet reference to the XML document. After
that, the documentation is ready and can be uploaded to the portal with the
component.

6.1.2 Testing of the documentation system

The development of the component documentation begins at the same time as
the software architecture design. The component provider has to have the
following tools. Epic Editor for developing the textual documents, Rhapsody
with the CoDo tool for developing the graphical documents and transforming
them into textua format, the XML merger for combining the documents, and the
XSL style sheet for viewing the final documentation.

The documentation system was tested by developing a document for an example
component using the developed documentation system. Figure 23 illustrates the
use of the documentation system. The development of a component was started
by defining the requirements for the component. The document template of the
Genera Specification was fulfilled with Epic Editor by the component architect.
The architect aso fulfilled the technica details in the Detailed Specification
document. When defining the requirements, the architect started the planning of
the component test by defining the component test criteria for the Acceptance
Information document.

In the design phase, the UML diagrams of the component were drawn with the
Rhapsody CASE tool by the component designer. When the design diagrams
were ready and approved, the designer developed the Composition document
with the CoDo tool. The other detailed information about the component design
and implementation was complemented by fulfilling the Detailed Specification

88

document with Epic Editor by the component designer and component
devel oper.

When the component was implemented, it was tested normally. The component
designer and the component developer fulfilled the Acceptance Information
document when creating the test cases and when doing the testing. When the
implementation was being approved, the Support Information was
complemented by the component devel oper.

When al four component documents were ready and approved, the component
architect approved the component product. The architect combined the
documents into one document with the XML merger. The file names of the four
documents were given to the XML merger as inputs. After executing the XML
merger, the documentation of the component was ready and could be viewed
with the browser, asthe XSL style sheet was being attached.

XSL
Style Sheet

Component Document

Basic Information
e General information
Interfaces

¢ Configuration and [
composition ~ XML-Merger =" / !

. Constraints — /. Component Architect

¢ Functionality JDOM General EDITOR 4.0 K

e Quality attributes Specification NG

Detailed Information ARG

e Technical details : \ P
Restrictions Detailed \ e
Implementation Specification ,J\")
Delivery Conoran N Component designer

oDo-tool 3
Acceptance information Test ah § ., \
e Test criteria d apsody NN
ocument N

Test methods CASE tool \ L

Test cases

Test environment
Test summary
Test support

Support information Component developer
Installation guide
Customer support
Tailoring support

Figure 23. The use of the documentation system.
In summary, the documentation of an example component went fluently. The

document templates and the CoDo tool guided what information was to be
provided for the component. The user only had to follow the instructions. Epic

89

Editor's document editing view was clear and the completeness check function
ensured that the user could not make any completeness errors in the document.
The XML merger ensured that the structure of the combined document was the
same as the structure of the documentation pattern. The user did not have to
know what the fina structure would be. The user only fulfilled the template
documents and the system did the rest.

6.1.3 Experiences and further work

At the time the documentation system was developed, all web browsers did not
support the XML technology. These XML documents were implemented for use
with Internet Explorer 5.5. The IE browser must include at least release 3.0 of
the Microsoft® XML Parser (MSXML). Nowadays, Netscape 6.x aso supports
XML.

The developed documentation system provides some magjor benefits. The
documentation environment provides a systematic method and guidelines for
documenting the properties of software components. Component documentation
will be consistent when following the guidelines. The anaysis showed that it is
possible to produce data for documentation easily while designing the details of
component. Documentation is easy to prepare with Epic Editor and the ready-
made DTDs, templates and style sheets. The tool also provides the user with a
clear view of the document and checks the completeness of the XML
documents. The Rhapsody API enables the inclusion of UML diagrams into
XML documents. In addition, the documents can be manipulated with ease with
the help of JDOM, which is efficient in handling XML documents. JDOM is
designed especidly for Java programmers and it is easy to learn and use.
However, in order to improve the documentation system, the document
management system is required for the variants and versions of component
documents in the maintenance of a product line.

There were also shortcomings that came up during the development of the
component documentation system. These shortcomings were mostly caused by
the immaturity and incompatibility of the tools. The XML technology turned out
to be still immature, as the system required several modifications. The DTD and
style sheet definitions of the IE and Epic Editor were not compatible. This

90

implies that documents developed with Epic Editor cannot be viewed directly
with IE. Three style sheets of different types were needed, one for the Epic
Editor (FOSI), the other for viewing documents with Internet Explorer and the
third for converting the XML documents into HTML format for the web site.
The diversity of the tools required alot of work and tailoring that should not be
necessary when using an efficient integration language. However, as the XML
technology is maturing rapidly, these technical problems may soon be resolved.

The use of heterogeneous CASE tools brought about severa difficulties and
additional work due to a lack of ability to interchange design information
between the CASE tools. In the autumn of 2000, when the development of the
documentation system was started, there was no support for XMI (XML
Metadata Interchange) in any CASE tool, which created the need to develop the
CoDo tool. The XMI standard allows data exchange between tools, applications,
and repositories over the web (Object Management Group 2002). The XMI
standard combines the benefits of the web-based XML standard for defining,
validating and sharing document formats devel oped with object-oriented Unified
Modelling Language (UML). The newer version of Rhapsody, Rhapsody 3.0,
includes an XMI interface as a standard component, alowing developers to
exchange designs from other UML tools (iLogix 2002). The XMI interface
enables developers using Rhapsody to both export UML meta model
information from Rhapsody and import UML information from other products
which support the standard. Used in the documentation system, the XMI
standard enables the transfer of al component design data from providers to
integrators. But, as more design data is available, this can mean refining the
documentation pattern.

6.2 Pattern analysis from the viewpoint of a component
integrator

The interviews regarding component documentation were conducted in two
software companies during May 2002. The main purposes of the interviews were
to ascertain the most important information to be documented for a component,
and obtain an expert assessment of the developed documentation pattern. The
most important requirement when selecting the interviewees was that they must

91

work with software components, either developing components or building
products by using components.

The questions asked in the interviews concentrated on the requirements of
component documentation: What information should the component
documentation include and why is this information important. Appendix A
details the questions.

One of the aims of the interviews was discover the problems that the software
engineers had found when dealing with the components, especially when
selecting the appropriate components and when integrating the components into
their systems. The engineers were also asked how these problems could be
solved with the help of documentation, and what the state of component
documentation is today. The answers were based mostly on the engineers
experience; when they could not directly answer the question, they were asked to
give estimations.

6.2.1 Requirements for the documentation

All the engineers interviewed agreed that one of the magor problems when
dealing with components is insufficient documentation. This makes the
validation of the component’s quality particularly difficult. The proper
documentation was seen as the key to successful component selection and
integration. The component documentation was required to be clear, extensive
and up-to-date. In addition, al documents should be consistent —i.e. "universal”
— which would make information retrieval easier. The quaity of the
documentation is directly related to the quality of the component itself. There
should not be any features of the component that are not documented and dl the
features should be documented with the same accuracy. The documentation
should be specific enough, so that the execution environment of the component
could be implemented beforehand. One of the most important requirements for
the documentation was that it must be completely consistent with the component
itsalf.

Theinterviews revealed that the component documentation issues are not mature
enough in many software companies today. Documentation is often product-

92

specific, not yet component-specific. In addition, there is no universa
documentation practice in use, but the documentation is guided by the
organisation's own quality manual. The problems with components can be
solved inside the organisation informally, simply by asking. When using
commercia components, the problem solving is not so easy. The documentation
of components is now one of the key issues in many software companies,
especially when acquiring components from outside the organisation.

6.2.2 Most important issues

According to the interviews, one cannot ever be sure if the component is
applicable to a certain product architecture, even if the interface descriptions are
available. The applicability of the component can only be verified with the help
of component prototype or testing. Therefore, it is extremely important that the
execution environment of the component is documented. The execution
environment covers al the critica conditions of the component, such as
platforms, interdependencies, physical resource needs and other possible
prerequisites.

All the engineers stated that the most important information regarding a
component is the definition of the component interfaces. The interface
information is critical, both in sdecting and integrating components. For
selection, the interface definition may be adequate for the user to determine
whether or not the component is applicable to his purpose and environment. For
integration, however, the interface implementation is fundamental for a user to
be able to connect the component with other components of the system. The
interface implementation must be provided at the code level, and the examples
of the use of the interfaces are necessary in order to use them correctly. The
configuration issues and variation points should aso be defined in connection
with the interfaces.

Functionality also seemed to have a great emphasis among the interviewees,
because it describes exactly what the component does. UML, especialy use-case
and sequence diagrams, were seen to be the best possible way of describing the
functionality of the component. In addition, it became clear that it is sometimes

93

necessary to provide a short, verba overview of the functionality to give a brief
view of the component.

The quality of the components had an essentia position in the interviewees
organisations. In most cases, the quality is defined with the help of common
quality attributes. The most important quality attributes include modifiability,
including maintainability, and performance. Expandability and reliability also
had great status according to some of the engineers. Quality requirements often
have their own part in the requirements specification.

In order to be able to validate the quality of a component, the interviews showed
that the component documentation should include the component’s test report.
The test report is often the only way of knowing how the quality of the
component is verified. The test report should include the test cases for all the
quality and functional requirements of the component, and also cross-references
between the requirements and the test cases. In addition, all the critical
exceptions of the component should be naticed in the test cases. The test report
should be so specific that it is possible to repeat the test according to it. As
noted, it is often impossible to build al the test cases for COTS components
because their black-box nature.

The interviews revealed some differences between COTS and OCM component
documentation. The best documentation for an OCM component is the source
code. In addition, there should be more specification and design documents for
an OCM component so that the users are able to modify the component and
exploit it in the future. According to the engineers, modification of the OCM
component can be implemented with the help of the information on interfaces or
architectura design. OCM documentation includes information about the
integrator's own cases and environments, because the OCM integrator affects the
component when defining the requirements for the component. Thus the
architectural requirements of the integrator, such as protocols and restrictions,
are critic for OCM components, as some of the engineers stated. The
documentation of a COTS component must be extremely specific, because the
component is used without access to the source code and, therefore, any problem
solving is more difficult.

94

In summary, it can be stated that the devel oped documentation model responds
pretty well the software engineers insights about the documentation
requirements of the component. The most important information about
components that al the engineers were agreed on was interfaces, functionality,
modifiability, performance, testing and execution environment. Also,
expandability, reliability, restrictions, protocols and configuration were seen as
quite important. In addition, the architectural design was seen as fundamentd for
OCM components.

6.2.3 Improvements

For component selection, the user needs al the possible information available.
The engineers agreed that the user should be able to view the whole
documentation of a COTS component before purchasing it. There were also
some new, suggested documentation requirements that came out in the
interviews. If the component already has some integration components, they
should be mentioned in the component documentation. The life cycle of the
component can give useful information in helping to estimate the component
quality. It may define, for example, the maturity of the component and any
possible variants. Some kind of estimation about the degree of the reusability of
the component would a so be useful when searching components.

At the end of the interviews the software engineers were shown the devel oped
component documentation pattern described in chapter 4. The engineers were
asked to assess the pattern and give improvement suggestions. Some of the
suggestions concentrated on the documentation of the example component, not
on the documentation pattern. The following summarises the most significant
replies and suggestions:

» Examples of the use of the interfaces could be added.
» Thedescription of the functionality could be provided with use cases.

» The component execution environment could be mentioned earlier in a
document, because it is essentiad when considering the selection of the
component.

95

» The documentation should have the information fields for the possible
integration components and the life cycle of the component.

» Thecritical exceptions and the quality requirements of the component should
be noticed in the test cases.

» Theinformation in the class diagram is very useful. The arguments about the
functions should be described more specifically and their meaning should be
made clearer.

» The structure of the document is clear.
» The document is comprehensive.

» If a component is documented following this pattern, the documentation is
adequate for component sel ection and integration.

6.3 Pattern comparison with documentation practices

The developed documentation pattern was also compared to the documentation
of example components picked at random from the Internet. The purpose was to
find out how current component providers have actually documented their
components and how these documents relate to the documentation pattern.

Four example components were searched and their documentation was eva uated on
the basis of the documentation pattern. The first component, MySQL, is a database
that represents OS components and is fredy downloadable from the address
"http://www.mysgl.com/*. The second component, MicroSoft Research IPV6, is a
specid case of OS components with a specific, restricting licence. The MSR IPV6 is
downloadable from the address "http://research.microsoft.com/msripv6”. The third
component, QuickXML, is an example of a COTS component and can be bought
from the component marketplace "http://www.componentsource.com”. The
fourth component, Java Image Converters, is dso a COTS component and can
be bought at "http://www.flashline.com”. The results of the documentation
evaluation can be found in Table 15.

96

Table 15. Evaluation of the documentation of the example components.

Required infor mation

MySQL

M SR
|Pv6

Quick
XML

Java Image
Converters

1 Basic infor mation
1.1 General information:

Component id number

Name of the component

Type of the component

Overview

X | X | X

X | X | X

History

- Version

- Developer

- Time of the actions

- Improvements

Special terms and rules

1.2 Interfaces:

Version usage

Provided interfaces

Required interfaces

1.3 Configuration and composition

1.4 Constraints:

Protocols

Standards

1.5 Functional specification:
- Name

Description

Inputs

Outputs of the component

X | X[X[X

Functional exceptions

1.6 Quahty attributes:

Modifiability

Expandability

Performance

Security

Reliability

X[X | X|X

97

Continues

Table 15 continued. Evaluation of the documentation of the example components.

2 Detailed information
2.1 Technical details:
Application area - - - -
Development X X X X
environment
Platforms X X
Interdependencies - X X -
Prerequisites X X
Specia physical resource - - X X
needs
2.2 Restrictions X X - X
2.3 Implementation:
Composition - - - -
Context - - - -
Configuration X X - -
I nterface implementation - - - -
2.4 Delivery X X X X
3 Acceptance infor mation
3.1 Test criteria - - - -
3.2 Test overview - - -
3.3 Test environment - - - X
3.4 Test cases - - -
3.5 Test summary - - - -
3.6 Test support X X - -
4 Support information
4.1 Installation guide X X X X
4.2 Tailoring support
4.3 Customer support X - - X

x
1

As it can be seen from Table 15, of al the four examples, the first open source
component is the best documented. Generally, the documentation for open
source components is more widdy available. The technica details and
restrictions are the best documented of the four components. The description of
functionality is provided in the form of function overviews, the specific
descriptions are missing in three cases. Also, the general information is quite
freely available, although the design rationale and design rules are missing. The
quality and testing were the weakest documented. The quality of the component
was dealt with only in two cases; both were OS components. To be able to make
a buying decison, the user needs all the possible information about the

98

component. The documentation of the sample components, especidly the COTS
components, was inadequate for this purpose. The integrator can compare the
technical details but he cannot be sure if the component is applicable to his
product line.

When examining the documentation of components generally, two observations
could be made. Firstly, components, especidly COTS components, are
insufficiently documented and the quality of the documentation varies
considerably. Secondly, even if the required information is provided in
component documentation, this information is difficult to find. The structure of
much of the documentation was confused and it took too long to find the
required information. Another observation was that there was too much
documentation for some components, and in those cases locating the most
essential information was difficult. Thus, a consistent sructure for the
documentation can be seen as fundamental when comparing components and
searching information from the documents.

6.4 Summary

The analysis of the documentation pattern and system from the viewpoint of the
component provider showed that the pattern and system has some major
benefits. The provider is able to create documentation while developing the
component and, with the ready-made tools and document templates, he has clear
guidelines on how to document components. However, the used technology and
tools were not yet mature enough. The new standard, XMI, enables severa
improvements to the documentation system, and thus it has influences that may
require refinement of the pattern as well.

In order to use the documentation system, the provider has to acquire the
required tools. In the same way, the component integrator has to have the
required tools for documentation when ordering OCM components. At thistime,
the documentation system includes several tools that the document provider
needs.

Analysis of the pattern on the basis of the interviews showed that the pattern is
comprehensive and clear for component documentation. Still, the interviewed

99

software engineers suggested some improvements on the basis of their
experience of using components. The suggestions did not, however, change the
basics of the pattern but concentrated mainly on information presentation and the
adding and specifying of some information fields.

Both the interviews and the analysis of the sample documentation revealed that
the current documentation of components is still inadequate. The component
integrator cannot get specific information about the internals and quality of a
component. When examining the sample documents for COTS and OS
components, it is instantly noticeable that the documentation quality varies
considerably from one component provider to another. A standard
documentation pattern is necessary to enable the consistency and sufficiency of
the component documentation.

100

7. Conclusions

The lack of a standard component documentation model has been seen as a
bottleneck in both today's and the future's component trading. Proper
documentation is the only way to verify the capabilities of a third-party
component, and assess its applicability to an architecture. The difficulties in
assessing components is emphasi sed within software product lines, in which the
common architecture affects on severa component-related decisions. The
product line architecture exposes the critical infrastructure elements of the
component and imposes the role of the component.

The purpose of this study was to define the documentation requirements of
software components from the viewpoint of product lines and create a
documentation model for components from these requirements. Therefore, all
the capabilities of a component that are required to be known when assessing the
applicability of a component for a product line had to be identified. When
examining the use of components in product lines, several documentation
requirements for components could be identified. These included, for instance,
information about the component's quality and constraints — such as protocols
and standards, communication, functionality, variability, and other architecture-
specific rules. The defined documentation requirements of a software component
are presented in this study in the form of a standard documentation pattern — that
is, askeleton for component documentation.

The developed documentation pattern defines the information content and the
structure of the documentation. The pattern is divided into basic, detailed,
acceptance and support information. The basic information describes the
component's general properties and responsibilities from the architectura point
of view, and thus relates to the component requirement specification. The
detailed information provides a detailed description of the component's design
and implementation. The acceptance information corresponds to the component
acceptance test, proofing the quality of the component. The support information
part provides information on the use and maintenance of the component.

The documentation pattern has advantages for both component providers and

integrators. The pattern provides clear guidelines on how to document the
properties of a component, and thus guarantees the consistency and quality of

101

component documents. By identifying the roles in the component devel opment,
it can be defined who is responsible for each piece of information in the
documentation. When defining the roles, both on the component provider's and
the integrator's side, and associating them to the pattern, the development of an
OCM component documentation can be described.

Documentation that follows the pattern assists component integrators in
searching, selecting, validating, integrating, using and maintaining the
component. The documentation structure and implementati on technique supports
information retrieval, thus assisting the component search. For the selection of
the component, the integrator needs al the possible information available.
Following the pattern, the documentation provides information on the
component’s functionality, interfaces, quality, environments, architectura rules
and constraints, which assist integrators to decide if the component is applicable
to their purposes. The documentation aso helps integrators to validate the
component, providing information about how the component fulfils its
requirements and how the quality of the component has been verified. Detailed
information about the component’s interfaces helps integrators integrate the
component into their systems. The user's guide and information on the
component's restrictions, required resources and configuration enable the use of
the component. In addition, design models and the information about the
component's implementation assist integrators in component modification and
extension. Customer and tailoring support are required in component
mai ntenance.

The definition of the pattern is not merely sufficient for the adoption of a new
documentation practice, which is why the system to support the development of
the documentation was developed. The system provides the technology and tools
that enable the development, handling and viewing of the component
documents. It aso ensures that the documentation is in accordance with the
defined documentation pattern.

In the documentation system, the documents are implemented with XML
technology, which provides the platform-independent data exchange between
applications and the easy definition of the document content and the structure.
The developed document templates, DTDs and style sheets enable the easy
creation of component documents with an XML editor. A developed extension

102

tool integrated with a commercial CASE tool enables the transformation of
UML diagrams to the XML format. The developed merger tool combines the
separately created component documents, modifies them and thus creates the
document structure that corresponds to the structure of the developed pattern.
The style sheets enable the modified viewing of the XML documents with the
web browsers.

The documentation pattern was applied in an experiment using the developed
documentation system that produces the intended documentation. Experiences
showed that it is possible to produce documentation data easily while developing
the component. The system’s document templates follow the design phases of
the component, when the development of the documentation is easy and does not
require extra work. The development of the documentation system also declared
that today's technology is mature enough for building such a system, athough
some incompatibilities were found between the tools. The interviews with the
software engineers revealed that a standard documentation pattern is required.
The interviews summarised that the developed pattern is comprehensive, clear
and adequate, athough some minor modifications could still be made.
Comparing the pattern with the sample components documentation revea ed that
the pattern provides more information on severa aspects of the components than
recent component documentation models.

The documentation pattern provides a standard form for describing components,
which was seen as a prerequisite in component trading. When using the pattern,
a bottleneck in the component development, acquirement and utilization is
removed. The developed documentation system enables the use of the pattern.
To achieve total benefit from the pattern, the commitment of the various
component providers and component integratorsis still required.

103

References

Arbortext. 2000. Epic Editor 4.0 and Epic Editor 4.0 LE Online help. Internal
tutorial, available with Epic Editor 4.0.

Arbortext. 2002. Epic Editor Overview [Web document]. Available: http://www.
arbortext.com/html/epic_editor_overview.html. [Referenced 25.6.2002].

Bachman, F., Bass, L., Buhman, C., Comella-Dorda, S., Long, F., Robert, J.,
Seacord, R. & Wallnau, K. 2000. Volume II: Technical Concepts of Component-
Based Software Engineering. Software Engineering Institute, report CMU/SEI-
2000-TR-008.

Bass, L., Clements, P. & Kazman, R. 1998. Software architecture in practice.
Reading, Massachusetts: Addison-Wesley. 452 p. ISBN 0-201-19930-0.

Bertoa, M. F. & Vallecillo, A. 2002. Quality Attributes for COTS Components.
6th ECOOP Workshop on Quantitative Approaches in Object-Oriented Software
Engineering, Malaga, Spain, June 2002. To be published by Springer-Verlag asa
LNCSvolume. 11 p.

Beus-Dukic, L. 2000. Non-Functional Requirements for COTS Software
Components. ICSE 2000 Workshop on Continuing Collaborations for successful
COTS Development, Limerick, Ireland, June 2000. Available:
http://wwwsel.iit.nrc. ca/projects/cots/icse2000wkshp/positions.html.
[Referenced 12.3.2002]. 5 p.

Biggs, W. & Evans, H. 2001. Simplify XML programming with JDOM [Web
document]. Available: http://www-106.ibm.com/devel operworks/library/j-jdomy/.
[Referenced 12.3.2002].

Bosch, J. 2000. Design and use of software architectures. Adopting and evolving a
product-line approach. Harlow: Addison-Wedey. 354 p. ISBN: 0-201-67494-7.

Brownsword, L., Oberndorf, P. & Sledge, C. 2000. An Activity Framework for

COTSBased Systems. Software Engineering Institute, Technica Report
CMU/SEI-2000-TR-010.

104

Clapp, J. A. & Taub, A. E. 1998. A Management Guide to Software
Maintenance in COT S-Based Systems. Bedford, Massachusetts: MITRE, Center
for Air Force C2 Systems. 32 p.

Clements, P. & Northrop, L. 2001. Software product lines. Practices and
Patterns. New Y ork: Addison-Wesley. 608 p. ISBN: 0201703327.

Component Registry Homepage 2002. Available:
http://www.componentregistry.conV. [Referenced 26.3.2002].

ESA 1991. Guide to the user requirements definition phase. ESA Board for
Software Standardisation and Control. ESA PSS-05-02 Issue 1. 34 p.

Hashline Inc. 2002. Available: http://mww.flashline.conV. [Referenced 26.3.2002).

Forsdl, M. & Péivérinta, T. 2002. A modd for documenting reusable software
components. In: Forsdl, M. 2002. Improving Component Reuse in Software
Devel opment. Jyvaskyla Jyvaskyla University Printing House. Pp. 117-150.

Garlan, D., Allen, R. & Ockerbloom, J. 1995. Architectural Mismatch or why it's
hard to build systems out of existing parts. Proceedings of the 17th International
Conference on Software Engineering, Seattle, Washington, April 1995. ACM
Press, New York, USA. Pp. 179-185.

Harold, E. 1999. XML Bible. Foster City, USA: IDG Books WorldWide, Inc.
1015 p. ISBN: 0-7645-3236-7.

Harold, E. 2001. Processing XML with Java [Web document]. To be published
by Addison-Wedey in November 2002. Available: http://www.ibiblio.org/xml/
books/xmljaval. [Referenced 25.4.2002].

Heineman, G.T. & Councill, W.T. 2001. Component-Based Software
Engineering. Putting the Pieces Together. New York: Addison-Wesley. 817 p.
ISBN: 0-201-70485-4.

105

IEE. 1986. Guidelines for the documentation of software in industrial computer
systems. London: The Institution of Electrical Engineers. ISBN: 086341 046 4.

IEEE Std 1062-1993. 1993. |IEEE Recommended Practice for Software
Acquisition. The IEEE Computer Society, Brussels, Belgium.

IEEE Std 610.12-1990. 1990. IEEE Standard Glossary of Software Engineering
Terminology. The Institute of Electrical and Electronics Engineers, Inc., New
York, USA.

iLogix. 2002. Rhapsody in C++ [Web document]. Available:
http://www.ilogix.com/. [Referenced 18.2.2002].

Iribarne, L., Vdlecillo, A., Alves, C. & Castro, C. 2001la. A Non-functional
Approach for COTS Components Trading. Proceedings of the 4th Workshop on
Requirements Engineering, Buenos Aires, Argentina, November 2001. Tercer
Milenio, Buenos Aires, 2001. Pp. 124-138.

Iribarne, L., Troya, J. M. & Vallecillo, A. 2001b. Trading for COTS components
in Open Environments. Proceedings of the 27th Euromicro Conference on
Component-Based Software Engineering, Warsaw, Poland, September 2001.
|EEE Computer Society Press. Pp. 22—29.

Iribarne, L., Valecillo, A. & Troya, J. M. 2002. COT Strader. The trading process
of COTS components [Web document]. Available: http://www.cotstrader.conv.
[Referenced 25.3.2002].

ISO/IEC-9126. 1991. Information technology — Software product evaluation —
Quality characteristics and guidelines for their use. International Standard
ISO/IEC 9126, International Standard Organization, Geneve.

Jacobson, 1., Booch, G. & Rumbaugh, J. 1998. The Unified Software
Deveopment Process. New York: Addison-Wedley. 463 p. ISBN: 0-201-57169-2.

JDOM Homepage. 2002. Available: http://www.jdom.org/. [Referenced
27.3.2002].

106

Kalio, P. & Niemed, E. 2001. Documented Quality of COTS and OCM
Components. Proceedings of the 4th ICSE Workshop on Component-Based
Software Engineering: Component Certification and System Prediction, Toronto,
Canada, May 2001. IEEE Computer Society, USA. Pp. 111-114.

Karlsson, E.-A. 1996. Software reuse — a holistic approach. Chichester: John
Wiley & Sons. 510 p.

Kay, M. 2001. Anatomy of XSLT processor [Web document]. Available:
http://www-106.ibm.com/devel operworks/library/x-xdt2/. [Referenced 3.9.2001].

Kontio, J. 1996. A Case Study in Applying a Systematic Method for COTS
Sdlection. Proceedings of the 18th International Conference on Software
Engineering, Berlin, Germany, March 1996. IEEE Computer Society Press, Los
Alamitos, CA, USA. Pp. 201-209.

Kunda, D. & Brooks, L. 1999. Applying socia-technical approach for COTS
selection. Proceedings of 4th UKAIS Conference, University of York, April
1999. In: Brooks L., Kimble, C. 1999. Information Systems — The Next
Generation. McGraw Hill. Pp. 552-565. ISBN 0 07 709558 8.

Matinlassi, M., Niemelg, E. & Dobrica, L. 2002. Quality-Driven Architecture
Design and Quality Analysis Method. A revolutionary initiation approach to a
product line architecture. Espoo: Technical Research Centre of Finland. VTT
Publications 456. 128 p. + app. 10 p.

McClure, C. 1994. Reuse Engineering: Extending Information Engineering to
Enable Software Reuse [Web document]. Extended Intelligence, Inc. Available:
http://www.reusability.com/papers4.html. [Referenced 12.8.2002].

Meyers, B. C. & Oberndorf, P. 2001. Managing Software Acquisition: Open
Systems and COTS Products. New York: Addison-Wesley. 360 p. ISBN:
0-201-70454-4.

107

Microsoft. 2002a. COM Interfaces [Web document]. Available:
http://www.mi crosoft comvtechnet/treeview/default.aspurl=/TechNet/prodtechnol
/host/proddocs/hisdoc/appint/ comti_com_interfaces.asp. [Referenced 15.4.2002].

Microsoft. 2002b. MSXML parser 3.0 [Web document]. Available: http://msdn.
microsoft.com/downloads . [Referenced 13.8.2001].

Moriso, M. & Sunderhaft, N. 2000. Commercid-Off-The-Shelf (COTS): A
Survey. A DACS State-of-the-Art Report Contract Number SP0700-98-D-4000,
Data Analysis Center for Software, Rome, NY. 95 p.

Ncube, C. & Maiden, N. 2000. COTS Software Selection: The Need to make
Tradeoffs between System Requirements, Architectures and COTS/Components.
ICSE 2000 Workshop on Continuing Collaborations for successful COTS
Development, Limerick, Ireland, June 2000. Available:

http://wwwsel .iit.nrc.cal/proj ects/cots/ icse2000wkshp/positions.html.
[Referenced 15.4.2002]. 9 p.

Niemeld E. 1999. A component framework of a distributed control systems
family. Espoo: Technica Research Centre of Finland. VTT Publications 402.
188 p. + app. 68 p.

Niemed, E., Kuikka, S., Vilkuna, K., Lampola, M., Ahonen, J., Forssd, M.,
Korhonen, R., Seppanen, V. & Ventd, O. 2000. Tekes-raportti: Teolliset kompo-
nentti-ohjelmistot. Kehittémistarpeet ja toimenpide-ehdotukset. Teknologia
katsaus 89/2000.

Niemeld, E., Taulavuori, A. & Kallio, P. 2002. Component Documentation — a
Key Issue in Software Product Lines. Submitted to Journal of Systems and
Software. 24 p.

Northrop, L. 2002. A Framework for Software Product Line Practice. Version
3.0. [Web-document]. Software Engineering Institute, Carnegie Mellon
University, Pittsburgh. Available: http://www.sei.cmu.edu/plp/framework.html.
[Referenced 22.1.2002].

108

NPLACE. 2002. The National Product Line Asset Center, NPLACE. Available:
http://www.nplace.wvhtf.org/. [Referenced 22.5.2002].

Object Management Group. 2002. XML Metadata Interchange (XMI) [Web
document]. Available: http://xml.coverpages.org/xmi.html. [Referenced 13.3.2002].

Ogush, M., Coleman, D. & Beringer, D. 2000. A template for documenting
software and firmware architectures [Web-document]. Hewlett-Packard.
Available: http://www.architecture.externa.hp.com/index.ntm. [Referenced
26.9.2002].

Open Source Initiative. 2002. The Open Source Definition, version 1.9 [Web
document]. Available at: http://www.opensource.org/docs/definition.html.
[Referenced 22.5.2002].

Park, R. 1992. Software Size Measurement: A Framework for Counting Source
Statements, CMU/SEI-92-TR-20, Software Engineering Institute, Pittsburgh,
PA.

Pressman, R. 1997. Software engineering. A practitioner's approach, 4th edition.
New York: McGraw-Hill. 885 p. ISBN: 0 07 709 411 5.

Sametinger, J. 1997. Software engineering with reusable components. New
York: Springer Verlag. 272 p. ISBN: 3-540-62695-6.

Seppéanen, V., Helander, N., Niemelg, E. & Komi-Sirvio, S. 2001. Towards
original software component manufacturing. Espoo: VTT. VTT Research Notes
2095. 105 p.

SER Consortium. 1996. Solutions for Software Evolution and Reuse |11 [Web
document]. SER Esprit Project 9809. Available: http://dis.sema.es/projects/
SER/solutions/solutions3.html. [Referenced 4.4.2002).

Sommerville, 1. 1992. Software engineering, 4th edition. Workingham: Addison-
Wedley. 649 p. ISBN: 0-201-56529-3.

109

Svahnberg, M. & Bosch, J. 2000. Issues Concerning Variability in Software
Product Lines. Proceedings of the Third International Workshop on Software
Architectures for Product Families, Gran Canaria, Spain, March 2000.
Heidelberg, Germany: Springer LNCS. Pp. 146-157.

Taulavuori, A., Kadlio, P. & Niemelg, E. 2002. Documentation system of
commercial components. Accepted to the 15th International Conference on
Software & Systems Engineering, ICSSEA 2002, Paris, December 2002. 9 p.

Vidger, M. & Dean, J. 1997. An Architectural Approach to Building Systems
from COTS Software Components. Proceedings of the 22nd Annual Software
Engineering Workshop, Greenbelt, Maryland, December 1997. Technical Report
40221, National Research Council.

Vigder, M. 1998. An Architecture for COTS Based Software Systems. NRC
Report No. 41603. Canada: National Research Council of Canada. 22 p.

Wallace, D.R., Peng, W.W. & Ippolito, L. M. 1992. Software Quality
Assurance: Documentation and Reviews [Web document]. NIST IR 49009.
Avalable: http://hissancd.nist.gov/publications/nistir4909/. [Referenced 17.6.2002).

Walsh, N. 1998. A Technica Introduction to XML. InterCHANGE, Vol. 4,
Issue 2. Pp. 17-26.

World Wide Web Consortium. 2001a. Extensible Markup Language (XML)
[Web document]. Available: http://www.w3.org/XML. [Referenced 28.8.2001].

World Wide Web Consortium. 2001b. XML Schema [Web document].
Available: http://www.w3.org/XML/Schema. [Referenced 28.8.2001].

World Wide Web Consortium. 2002a. Document Object Model (DOM) [Web
document]. Available: http://www.w3c.org/DOM. [Referenced 15.2.2002].

World Wide Web Consortium. 2002b. The Extensible Stylesheet Language
[Web document]. Available: http://imww.w3c.org/Style/X L. [Referenced 28.8.2001].

110

Yacoub, S, Mili, A., Kaveri, C. & Dehlin, M. 2000. A Hierarchy of COTS
Certification Criteria. Proceedings of the First Software Product Line
Conference, SPLC1, Denver, Colorado, August 2000. Kluwer Academic
Publishers, Boston. Pp. 397-412.

Yakimovich, D., Bieman, J. M. & Basili, V. R. 1999. Software architecture
classification for estimating the cost of COTS integration. Proceedings of the
21st International Conference on Software Engineering, Los Angeles, USA,
May 1999. IEEE Computer Society Press, Los Alamitos, CA, USA. Pp. 296—
302.

111

Appendix A: Questions for the interviews
about the component documentation

General questions:

What information should the (third party) component documentation include?
How specific should the documentation be?

Does the product line define special requirements for documentation?

How should the quality of the component be documented?

What are the requirements for component documentation?

What should the structure of the documentation be?

What is the maximum length of the documentation?

In which phases of the component development should the information for the
documentation be devel oped?

Who should develop each part of the documentation?
Who uses the documentation information and for what purposes?

What information should the component buyer receive before purchasing the
component?

Questions about OCM components:

Does the documentation of OCM components differ from the documentation of
COTS components? How?

How should the buyer prepare the requirements specification of an OCM
component?

Is the documentation of the architecture of an OCM component necessary in
component documentation?

Al

Component documentation in the inter viewee's own company:

Does your company have regulations for component documentation?
How are the components documented in your company today?

What is the purpose of the documentation in your company?

Who is responsible for documentation in your company?

Component sear ch and selection:

How does your company make the decision whether to search for a COTS
component, reuse an internal component, develop a new component or order an
OCM component for a special purpose? Who does this decision in your
company?

What does the component requirements specification include?

Is the requirements specification the same for a new component and an existing
component?

Is the functionality of the component defined specifically enough in your
company for the search? How is the functionality defined?

How are the quality requirements defined in your company?
What are the common problems in component search and selection?
How could documentation ease the selection of components?

Can one ever be sure that the third-party component is applicable to the
architecturein which it isintended to be used?

How could the applicability of a component to the product line architecture be
assured?

Does the deivery time of the component have an impact on component
selection?

A2

| ntegration of the component:

With what information can the success of the integration be guaranteed?
What are the problems in component integration?
How could documentation solve these problems?

How can one be sure that the component can be integrated using the integration
components? How should the integration components be documented?

Should the interface code of the component be included in the component
documentation?

What information enables the modification of a component (OCM component)?

Testing of the component:

Is the testing information required in component documentation?
How extensively should the component testing be documented?

How could the testing information of the component be associated with the
integration testing of the product?

Questions about the developed documentation pattern:

Thoughts about the pattern?
Improvement suggestions?

Is the pattern adequate for component selection, integration and use?

A3

Published by Series title, number and
report code of publication

m- VTT Publications 484

VTT-PUBS484
Author(s)
Taulavuori, Anne
Title
Component documentation in the context of software
product lines
Abstract

The use of third-party components in software system development is rapidly increasing. The product lines
have also adopted this new tendency, as the COTS and OCM components are increasingly being used in
product-line-based software engineering. Component documentation has become a key issue in component
trading because it often is the only way of assessing the applicability, credibility and quality of a third-party
component, especially for product lines in which the common architecture determines the decisive
requirements and restrictions for components. However, at the present time there is no standard model for
component documentation, and, therefore, the component documents are often inconsistent, insufficient and
of various quality. The lack of a standard documentation model is thus one of the bottlenecks in component
trading.

The purpose of this thesis is to define the documentation requirements of software components and form a
standard documentation pattern from these requirements. The documentation regquirements are examined from
the viewpoint of the software product lines, where the common product line architecture may define several
specific requirements for a component. The standard pattern is a skeleton of documentation, defining the
content and structure for component documentation. The pattern ensures the documentation that assists the
integrator in successful component selection, validation, integration and use within product lines. The
development of the documentation is defined by identifying the roles responsible for the documentation and
associating them with the pattern.

Definition of the documentation pattern is not sufficient for the adoption of a new documentation practice. An
environment that supports the development of documentation is also required. This thesis also introduces the
developed documentation system, which defines how the component documentation could be implemented.
The system provides guidelines concerning how to document a software component. It also offers the tools
and technology for the development and handling of documents, and ensures that the developed
documentation is in accordance with the pattern. In addition, the system is also applicable when the
development of the documentation is split between different organisations. An evauation of the
documentation pattern is presented at the end of thisthesis.

Keywords
component documentation, software product lines, software engineering, component documentation pattern
Activity unit
VTT Electronics, Kaitovdyla 1, P.O.Box 1100, FIN-90571 OULU, Finland
ISBN Project number
951-38-6021-3 (soft back ed.) E1SU00321
951-38-6022-1 (URL:http://www.inf.vtt.fi/pdf/)
Date Language Pages Price
December 2002 English 111 p. + app. 3 p. C
Name of project Commissioned by
Minttu
Series title and ISSN Sold by
VTT Publications VTT Information Service
1235-0621 (soft back ed.) P.O.Box 2000, FIN-02044 VTT, Finland
1455-0849 (URL: http:/www.inf vtt.fi/pdf/) Phone internat. +358 9 456 4404

Fax +358 9 456 4374

VTT PUBLICATIONS

466 Vasara, Tuija. Functional analysis of the RHOIII and 14-3-3 proteins of Trichoderma reesei.
93 p. + app. 54 p.

467 Tala, Tuomas. Transport Barrier and Current Profile Studies on the JET Tokamak. 2002. 71
p. + app. 95 p.

468 Sneck, Timo. Hypoteeseista ja skenaarioista kohti yhteiskiiyttdjien ennakoivia ohjanta-
jirjestelmid. Ennakointitytn toiminnallinen hyddyntiminen. 2002. 259 s. + liitt. 28 s.

469 Sulankivi, Kristiina, Lakka, Antti & Luedke, Mary. Projektin hallinta sihkdisen tiedonsiir-
ron ympdristossd. 2002, 162 s. + liiitt. 1 s.

471 Tuomaala, Pekka. Implementation and evaluation of air flow and heat transfer routines for
building simulation tools. 2002. 45 p. + app. 52 p.

472 Kinnunen, Petri. Electrochemical characterisation and modelling of passive films on Ni- and
Fe-based alloys. 2002. 71 p. + app. 122 p

473 Mylldrinen, Piivi. Starches — from granules to novel applications. 2002. 63 p. + app. 60 p.

474 Taskinen, Tapani. Measuring change management in manufacturing process. A measure-
ment method for simulation-game-based process development. 254 p. + app. 29 p.

475 Koivu, Tapio. Toimintamalli rakennusprosessin parantamiseksi. 2002. 174 s. + liitt. 32 s.

477 Purhonen, Anu. Quality driven multimode DSP software architecture development. 2002.
150 p.

478 Abrahamsson, Pekka, Salo, Outi, Ronkainen, Jussi & Warsta, Juhani. Agile software devel-
opment methods. Review and analysis. 2002. 107 p.

479 Karhela, Tommi. A Software Architecture for Configuration and Usage of Process Simu-
lation Models. Software Component Technology and XML-based Approach. 2002. 129 p.
+ app. 19 p.

480 Laitehygienia elintarviketeollisuudessa. Hygieniaongelmien ja Listeria monocytogeneksen
hallintakeinot. Gun Wirtanen (toim.). 2002. 183 s.

481 Wirtanen, Gun, Langsrud, Solveig, Salo, Satu, Olofson, Ulla, Alnéds, Harriet. Neuman, Monika.
Homleid, Jens Petter & Mattila-Sandholm, Tiina. Evaluation of sanitation procedures for use in
dairies. 2002. 96 p. + app. 43 p.

482 Wirtanen, Gun, Pahkala, Satu, Miettinen, Hanna, Enbom, Seppo & Vanne, Liisa. Clean air
solutions in food processing. 2002. 93 p.

483 Heikinheimo, Lea. Trichoderma reesei cellulases in processing of cotton. 2002. 77 p. + app.
37 p.

484 Taulavuori, Anne. Component documentation in the context of software product lines. 2002.
111 p. + app. 3 p.

Téata julkaisua myy Denna publikation séljs av This publication is available from
VTT TIETOPALVELU VTT INFORMATIONSTJANST VTT INFORMATION SERVICE
PL 2000 PB 2000 P.0.Box 2000
02044 VTT 02044 VTT FIN-02044 VTT, Finland
Puh. (09) 456 4404 Tel. (08) 456 4404 Phone internat. +358 @ 456 4404
Faksi (09) 456 4374 Fax (09) 456 4374 Fax +358 9 456 4374
ISBN 951-38-6021-3 (soft back ed.) ISBN 951-38-6022-1 (URL: http://www.inf.vtt.fi/pdf/)

ISSN 1235-0621 (soft back ed.) ISSN 1455-0849 (URL: http://www.inf.vte. fi/pdff)

	Abstract
	Preface
	Contents
	List of abbreviations
	1. Introduction
	1.1 Purpose of the thesis
	1.2 Research problem and methods
	1.3 Limitations of the study
	1.4 Structure of the thesis

	2. Documenting software and components
	2.1 Introduction to software documentation principles
	2.1.1 Product documentation
	2.1.2 Document quality
	2.1.3 Handling of documents

	2.2 Components and documentation
	2.2.1 Reuse manual
	2.2.2 Genre system of component documentation
	2.2.3 Component Registry
	2.2.4 COTStrader

	3. Software product lines
	3.1 Product development with components
	3.2 Product line requirements for components
	3.2.1 The crucial properties of a component for product lines
	3.2.2 Architectural mismatch

	3.3 Component development and selection for product lines
	3.4 Component documentation requirements

	4. A component documentation pattern
	4.1 Content of component documentation
	4.1.1 Basic information
	4.1.2 Detailed information
	4.1.3 Acceptance information
	4.1.4 Support information

	4.2 Development and use of component information

	5. Component documentation system
	5.1 Structured documentation language
	5.2 Textual documents
	5.3 Graphical documents
	5.4 Integrated documents
	5.5 Viewing of documents

	6. Applying the component documentation pattern
	6.1 Pattern analysis from the viewpoint of a component provider
	6.1.1 Development of the documentation pattern and system
	6.1.2 Testing of the documentation system
	6.1.3 Experiences and further work

	6.2 Pattern analysis from the viewpoint of a component integrator
	6.2.1 Requirements for the documentation
	6.2.2 Most important issues
	6.2.3 Improvements

	6.3 Pattern comparison with documentation practices
	6.4 Summary

	7. Conclusions
	References
	Appendix A: Questions for the interviews about the component documentation

