
V
TT PU

BLICA
TIO

N
S 490

Softw
are architecture for decentralised distribution services in spontaneous netw

orks
Teem

u V
askivuo

Tätä julkaisua myy Denna publikation säljs av This publication is available from

VTT TIETOPALVELU VTT INFORMATIONSTJÄNST VTT INFORMATION SERVICE
PL 2000 PB 2000 P.O.Box 2000
02044 VTT 02044 VTT FIN�02044 VTT, Finland

Puh. (09) 456 4404 Tel. (09) 456 4404 Phone internat. +358 9 456 4404
Faksi (09) 456 4374 Fax (09) 456 4374 Fax +358 9 456 4374

ISBN 951–38–6034–5 (nid.) ISBN 951–38–6035–3 (URL: http://www.inf.vtt.fi/pdf/)
ISSN 1235–0621 (nid.) ISSN 1455–0849 (URL: http://www.inf.vtt.fi/pdf/)

ESPOO 2003ESPOO 2003ESPOO 2003ESPOO 2003ESPOO 2003 VTT PUBLICATIONS 490

Teemu Vaskivuo

Software architecture for decentralised
distribution services in spontaneous
networks

VTT PUBLICATIONS

476 Moilanen, Markus. Middleware for Virtual Home Environments. Approaching the
Architecture. 2002. 115 p. + app. 46 p.

477 Purhonen, Anu. Quality driven multimode DSP software architecture development. 2002.
150 p.

478 Abrahamsson, Pekka, Salo, Outi, Ronkainen, Jussi & Warsta, Juhani. Agile software devel-
opment methods. Review and analysis. 2002. 107 p.

479 Karhela, Tommi. A Software Architecture for Configuration and Usage of Process
Simulation Models. Software Component Technology and XML-based Approach. 2002.
129 p. + app. 19 p.

480 Laitehygienia elintarviketeollisuudessa. Hygieniaongelmien ja Listeria monocytogeneksen
hallintakeinot. Gun Wirtanen (toim.). 2002. 183 s.

481 Wirtanen, Gun, Langsrud, Solveig, Salo, Satu, Olofson, Ulla, Alnås, Harriet, Neuman, Monika,
Homleid, Jens Petter & Mattila-Sandholm, Tiina. Evaluation of sanitation procedures for use in
dairies. 2002. 96 p. + app. 43 p.

482 Wirtanen, Gun, Pahkala, Satu, Miettinen, Hanna, Enbom, Seppo & Vanne, Liisa. Clean air
solutions in food processing. 2002. 93 p.

483 Heikinheimo, Lea. Trichoderma reesei cellulases in processing of cotton. 2002. 77 p. +
app. 37 p.

484 Taulavuori, Anne. Component documentation in the context of software product lines. 2002.
111 p. + app. 3 p.

485 Kärnä, Tuomo, Hakola, Ilkka, Juntunen, Juha & Järvinen, Erkki. Savupiipun impaktivaimen-
nin. 2003. 61 s. + liitt. 20 s.

486 Palmberg, Christopher. Successful innovation. The determinants of commercialisation and
break-even times of innovations. 2002. 74 p. + app. 8 p.

487 Pekkarinen, Anja. The serine proteinases of Fusarium grown on cereal proteins and in barley
grain and their inhibition by barley proteins. 2003. 90 p. + app. 75 p.

488 Aro, Nina. Characterization of novel transcription factors ACEI and ACEII involved in
regulation of cellulase and xylanase genes in Trichoderma reesei. 2003. 83 p. + app. 25 p.

489 Arhippainen, Leena. Use and integration of third-party components in software
development. 2003. 68 p. + app. 16 p.

490 Vaskivuo, Teemu. Software architecture for decentralised distribution services in
spontaneous networks. 2003. 99 p.

VTT PUBLICATIONS 490

Software architecture for
decentralised distribution services in

spontaneous networks

Teemu Vaskivuo
VTT Elektroniikka

ISBN 951–38–6034–5 (soft back ed.)
ISSN 1235–0621 (soft back ed.)

ISBN 951–38–6035–3 (URL: http://www.inf.vtt.fi/pdf/)
ISSN 1455–0849 (URL: http://www.inf.vtt.fi/pdf/)

Copyright © VTT Technical Research Centre of Finland 2002

JULKAISIJA – UTGIVARE – PUBLISHER

VTT, Vuorimiehentie 5, PL 2000, 02044 VTT
puh. vaihde (09) 4561, faksi (09) 456 4374

VTT, Bergsmansvägen 5, PB 2000, 02044 VTT
tel. växel (09) 4561, fax (09) 456 4374

VTT Technical Research Centre of Finland, Vuorimiehentie 5, P.O.Box 2000, FIN–02044 VTT, Finland
phone internat. + 358 9 4561, fax + 358 9 456 4374

VTT Elektroniikka, Kaitoväylä 1, PL 1100, 90571 OULU
puh. vaihde (08) 551 2111, faksi (08) 551 2320

VTT Elektronik, Kaitoväylä 1, PB 1100, 90571 ULEÅBORG
tel. växel (08) 551 2111, fax (08) 551 2320

VTT Electronics, Kaitoväylä 1, P.O.Box 1100, FIN–90571 OULU, Finland
phone internat. + 358 8 551 2111, fax + 358 8 551 2320

Technical editing Marja Kettunen

Otamedia Oy, Espoo 2003

3

Vaskivuo, Teemu. Software architecture for decentralised distribution services in spontaneous
networks [Ohjelmistoarkkitehtuuri keskittämättömien hajautuspalveluiden ohjelmakehykselle
spontaanisti muodostuvissa verkoissa]. Espoo 2003. VTT Publications 490. 99 p.

Keywords distributed systems, ad-hoc networking, decentralised systems, framework, middleware

Abstract
Factors that drive the design of distributed systems are experiencing a phase of
rapid changes. Mobility and the new methods of interconnectivity brought along
with it have to be faced by the fundamentals of distributed systems.
Simultaneously, hardware tasks are being adopted by software, making it
possible to make those system elements configurable that have traditionally been
considered static. Spontaneous changes in configurations, connections, and
physical environment are common factors that are increasingly brought along
with the distributed systems design. This thesis considers an architecture for a
software framework that faces those challenges by providing interconnectivity
for distributed pieces of software in a new way.

The original idea presented here is to create middleware services that arise in a
distributed and spontaneous manner from the interconnections of the
interconnected, distributed pieces of software themselves. The complete
independence of any centralised middleware service producer is the key issue in
the proposed solution. Other issues are the means of communication over
different media and the ability to assure the robustness of the provided services
despite changes in the configuration or the presence of different software
elements. The solution has been presented in the form of the software
architecture of a proposed design. A major part of the introduced solutions has
been validated by distinct cases related to both industry and research.

4

Vaskivuo, Teemu. Software architecture for decentralised distribution services in spontaneous
networks [Ohjelmistoarkkitehtuuri keskittämättömien hajautuspalveluiden ohjelmakehykselle
spontaanisti muodostuvissa verkoissa]. Espoo 2003. VTT Publications 490. 99 s.

Avaisanat distributed systems, ad-hoc networking, decentralised systems, framework, middleware

Tiivistelmä
Hajautettujen järjestelmien suunnitteluun vaikuttavat tekijät kokevat tällä
hetkellä nopeita muutoksia. Järjestelmien perustoimintojen täytyy ottaa
huomioon laitteiden liikkuvuus sekä sen mukanaan tuomat uudenlaiset
yhteysmuodot. Aiemmin laitteistolähtöisesti ratkaistuja tehtäviä toteutetaan yhä
enenevissä määrin ohjelmistolla, minkä ansiosta useita kiinteiksi käsitettyjä
tekijöitä voidaan nykyisin pitää muunneltavina. Hajautettujen järjestelmien
suunnittelussa täytyy uudenlaisten vaatimusten mukaisesti ottaa yhä useammin
huomioon spontaanit muutokset ohjelmiston kokoonpanossa, kytkennöissä, sekä
ohjelmistoa suorittavan laitteen fyysisessä ympäristössä. Tässä diplomityössä
käsitellään uutta hajautettujen järjestelmien ohjelmistokehyksen
ohjelmistoarkkitehtuuria, joka kohtaa spontaanin ympäristön asettamia haasteita
tarjoten uudenlaista ratkaisua hajautettujen ohjelmiston osien yhteistoiminnalle.

Tässä työssä esitettävä alkuperäinen ajatus on luoda yhteen liitettyjen,
hajautettujen ohjelmiston osien pelkästä yhteen liittämisestä syntyvä välitason
ohjelmistokerros. Avainasia ratkaisussa on sen tarjoama riippumattomuus
yhdestäkään keskistetystä välitason palveluiden tuottajasta. Muita työhön
liittyviä aiheita ovat ratkaisut ohjelmien osien väliselle yhteydenpidolle eri
tiedonsiirron välittäjien kautta, sekä kyky taata tarjottujen palveluiden saatavuus
hajautetun järjestelmän ohjelmistojen osien sekä asetuksiltaan että läsnäololtaan
vaihtelevasta toiminnasta huolimatta. Ratkaisu on esitetty ehdotetun kaltaista
toimintaa toteuttavan ohjelmistoarkkitehtuurin muodossa. Pääosa esitetyistä
ratkaisuista on vahvistettu osin tutkimuksessa, osin teollisessa ympäristössä
sovellettujen esimerkkitapauksen avulla.

5

Preface
The basis for the research presented in this thesis emerges from the work done at
the VTT Technical Research Centre of Finland by the Software Architectures
Group in the research field of Embedded Software and operating unit of VTT
Electronics during the years 1999-2002. Contribution to the work has been
provided by several research topics in several different projects. The most
important of those have been VERSO in 1999, EMU in 2000-2001, ITEA/VHE
in 2001-2002, CORAL in 2001-2002 and SAMI within the PLA programme in
2001-2002. Although being disperse in an organisational sense, the conceptual
approach has only developed during the process; many valuable viewpoints from
several cases of research have been gained along the way.

Several people have made it possible for me to get to this point, looking back to
the work that is now done. Of them, I would especially like to mention Research
Professor Eila Niemelä for providing me with support and valuable reviews
during the process of writing. I would also like to thank Mr. Aki Tikkala, not
only for work done together concerning the issues related to this thesis, but also
for questioning my approaches in a positive sense, giving me a particular need to
use my imagination. Mr. Juhani Latvakoski is acknowledged for reviewing my
manuscripts and also for the constructive discussions we have had about many
related topics. My supervisor, Professor Juha Röning, deserves my appreciation
for his comments and guidance.

 During my studies, the growth that has taken place in me has not only been
professional or educational. For that, I would like to express my deepest
gratitude to my family and to my closest friends. Similarly, I thank all the people
involved in my life during these times. You have all been irreplaceable, thank
you for making it possible for me to keep the balance between work and joy!

Last but not least, I thank you Saija, for providing me with a chance to think
about something other than this thesis or work.

Oulu, November 18, 2002

Teemu Vaskivuo

6

Contents

Abstract... 3

Tiivistelmä .. 4

Preface .. 5

Abbreviations.. 8

1. Introduction... 11
1.1 Contribution of this thesis ... 12

2. Distributed systems for spontaneous environments...................................... 13
2.1 Fundamental definitions .. 13
2.2 Heterogeneity .. 15
2.3 Middleware.. 16
2.4 Spontaneous networking ... 17

2.4.1 Connectivity .. 19
2.4.2 Discovery .. 21
2.4.3 Directory services.. 23
2.4.4 Roles of entities in spontaneous systems 24

3. Enabling technologies and building blocks .. 26
3.1 Broker-pattern and distributed objects .. 26

3.1.1 CORBA - Common Object Request Broker Architecture 26
3.1.2 DCOM - Distributed Component Object Model..................... 28
3.1.3 Enterprise JavaBeans Component Model 31

3.2 Virtual machines and mobile code .. 33
3.2.1 Java RMI ... 33
3.2.2 Jini ... 34
3.2.3 OSGi - Open Services Gateway Initiative............................... 38

3.3 Peer-to-Peer connectivity .. 41
3.3.1 UPnP - Universal Plug and Play ... 41
3.3.2 Gnutella... 43

3.4 Software architecture... 44
3.4.1 What is software architecture? .. 45
3.4.2 Quality attributes... 47

7

3.4.3 Frameworks and patterns .. 49
3.4.4 Role of software architecture in this thesis 51

4. Decentralised, distributed middleware ... 53
4.1 Overview of the concepts .. 53
4.2 Decentralised, distributed middleware services 56
4.3 Key drivers for the architectural decisions .. 60
4.4 Conceptual architecture of the design ... 62

4.4.1 Subsystem structure .. 64
4.4.2 Component structure ... 70

4.5 Comparison of DisMis architecture with the technologies presented . 76
4.6 Validation of the architecture .. 80

4.6.1 Dynamic Distribution Platform... 81
4.7 Summary of the validation .. 87

5. Conclusion .. 91

References... 94

8

Abbreviations
API Application Programming Interface

ATM Automatic Teller Machine

COM Component Object Model

CORBA Common Object Request Broker

DCOM Distributed Component Object Model (Distributed
COM)

DDP Dynamic Distribution Platform

DHCP Dynamic Host Configuration Protocol

DisMis Distributed Middleware Services

DSL Digital Subscriber Line

EJB Enterprise Java Beans

GSM Global System for Mobile Communications

HTTP Hypertext Transfer Protocol

IDL Interface Definition Language

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IP Internet Protocol

9

IrDA Infrared Data Association

ISO International Organization for Standardization

IT Information Technology

ITEA International Technology Education Association

JAR Java Archive

JDK Java Development Kit

JPG/JPEG Joint Photographic Experts Group

JVM Java Virtual Machine

LAN Local Area Network

MIDL Microsoft Interface Definition Language

ODP Open Distributed Processing

ODP-RM Open Distributed Processing Reference Model

OMA Object Management Architecture

OMG Object Management Group

ORB Object Request Broker

OSG Open Services Gateway

OSGi Open Services Gateway Initiative

PC Personal Computer

10

QADA Quality-driven Architecture Design and quality
Analysis

RMI Remote Method Invocation

RPC Remote Procedure Call

SOAP Simple Object Access Protocol

TCP Transmission Control Protocol

UDP User Datagram Protocol

UPnP Universal Plug and Play

URL Uniform Resource Locator

VHE Virtual Home Environment

WLAN Wireless Local Area Network

XHTML eXtensible HyperText Markup Language

XML eXtensible Markup Language

11

1. Introduction
A spontaneous environment is reality for each computerised system. In such
systems, every event that is not endogenous may be considered spontaneous in a
sense. User interactions with computers, sudden incoming data from the network
or connection to a new device, are occurrences that cannot be anticipated by the
computer, or if they can, usually with poor predictability. Systems that operate
within a spontaneous environment have to be built so that adaptation to
spontaneous actions is possible. This thesis considers the spontaneous actions
that take place amongst service elements of distributed peer-to-peer systems.
Under consideration is the adaptability required for enabling the necessary
operation of a system regardless of the spontaneous characteristics the operating
environment might address.

Currently, there are no commonly known solutions for a computing
infrastructure of distributed systems that operate in a completely spontaneous
environment. In such an environment, there are no reliable sources of services.
The main challenge of this thesis is to provide a view to a solution that provides
an infrastructure for distributed systems that operate in completely spontaneous
environments.

The purpose of this thesis is to present a view on an architectural framework
developed for distributed components of distributed applications. Along with the
required adaptability, an important issue is the spontaneous environment itself
and the requirements and difficulties that come along with it. The practical aim
in this thesis is to take a look at the developed DisMis software architecture
proposed as a solution to overcome the challenges introduced by those issues.

At least as important as the proposed solution itself, is the survey in which the
identified challenges are discussed together with the existing, related solutions
and products that are already in common use. The most important features of
those existing solutions will be compared to the features of the presented
approach. Yet another topic that has been given attention in this thesis is the
questions that may arise when representing or planning the architecture of a
software system. Accordingly, the definition of software architecture has been
given its respective attention.

12

1.1 Contribution of this thesis

Based on existing and studied architectures and styles of distribution
technologies, a new way of building independent and adaptive software
components for spontaneous environments is proposed in this thesis. The
approach is concretised as the software architecture of a Distributed Middleware
Service Framework, abbreviated as DisMis framework hereafter. The
architectural structures of the DisMis framework are the main contribution of the
work presented in this thesis. The proposed approach is discussed and validated
by comparing it with a preceding, implemented Dynamic Distribution Platform
and its software architecture.

The fundamental idea in the presented DisMis framework is to embed all the
necessary middleware services and communication protocols in the distinct
fragments or components of a distributed application itself. Therefore, the
distributed applications or parts of those applications, built by utilising the
DisMis framework, will interact and inter-operate by requiring only a known
and supported interconnection method enabled between them.

The solution encourages development of peer-to-peer and service-oriented
applications that operate by adapting to the concurrent resources and other
attributes of the environment that they have available, instead of placing strict
requirements for the existence of such attributes.

13

2. Distributed systems for spontaneous
environments

This chapter provides the necessary information that plays a fundamental role in
understanding the technical viewpoints and the terminology presented in the
later chapters. The discussion has been divided into the conceptual areas of
terminology, heterogeneity, middleware, spontaneous issues, and different entity
roles in spontaneous systems.

2.1 Fundamental definitions

Most computerised, modern information processing systems exhibit various
characteristics of a distributed system in a different way and quantity. The term
“distributed system” may have a different meaning depending on the
background of the person giving the definition. The definition has also varied
during the evolution of computer technology. Previously, the definition of a
distributed system has often been understood as a multiprocessor arrangement
for parallel processing of large, information-intensive tasks. The software related
to such systems has been more application specific, hardware related, and
protocol oriented than what it is nowadays. At times when computing
performance has been a rarer utility, distributed systems have also been
considered to be networks that perform collective operations in order to share
processing capabilities or peripherals amongst different users, usually by having
a central computer that is connected with several client terminals. Nowadays,
distributed systems are increasingly understood as peer-to-peer systems where
more or less equivalent peer devices share different kinds of services with each
other, simultaneously exhibiting less centralised control.

One definition that suits modern distributed systems is given in [1, p. 1].
According to that definition, a distributed system is a system “in which
components located at networked computers communicate and coordinate their
actions only by passing messages”. In this thesis, the definition given in [1, p. 1]
is adequate up to some point. Three direct consequences of the presented
definition that characterise distributed systems are:

14

Concurrency: the networked computers may operate concurrently but still
access the same resources with certain limitations.

No global synchronisation: the messages are the only way to synchronise
operations between different components – there is no global clock implicitly
available.

Independent failures: the other components of a distributed system keep on
running even if one of the components ceases to operate.

The given definition does not state whether the distributed components of a
distributed system are related to hardware or software. Nowadays, it is very
common that simple electronic devices also incorporate and execute software.
Pure hardware solutions are usually more inflexible and more expensive than
embedded systems that conservatively embed a dedicated piece of software to
execute in a dedicated hardware environment. According to the current trends,
increasingly efficient multipurpose hardware processing units offer better
changes to move more and more functionality to software that has previously
been taken care of by dedicated hardware. That evolution has also led to
ambiguity in the definition of the concept of an embedded system.

Pure software-related execution components are possible in virtual execution
environments or virtual machines like Java [2]. There, software is executed in a
software-generated execution environment. Although being conceptually ideal in
a sense, the software-generated execution environment is fully dependent on the
hardware that it is being executed in. Therefore pure-software components exist
only in an abstract sense – they do not have to be aware of the hardware
environment underneath. Such independence over hardware platforms is a
valuable property for software components in distributed systems. It increases
consistency and enables patterns for functions and design that would be difficult
to implement otherwise. Transportation of executable programs from one
execution environment to another at runtime is one such pattern [3].

The following terms have been used in this thesis in the discussion related to
distributed systems:

15

1) Execution environments are logical entities that execute programs. An
execution environment may, for example, be a physical processor or a
virtual machine.

2) Devices are physical constructions that carry the required instrumentation
and embody a logical structure required to perform the tasks of at least one
execution environment. Additionally, devices have the ability to
communicate with other devices through different media – thus connecting
different execution environments. A device may also control equipment that
has been attached to it.

3) Programs are instruction sequences that express a certain task for processing
information. Programs are executed in an execution environment.

4) Components are entities that are built of certain programming structures and
programs. Components have public and private parts – the public parts are
visible to other components through an interface. Components are usually
for the composition of larger entities like subsystems or systems.

5) Applications (or application programs or just systems) are entities dedicated
for producing one or several services for a certain user: a person device,
program, component, or another application. Applications consist of both
static and dynamic behaviour of one or more different components that have
been bound together.

6) Nodes are conceptual units of deployment in a networked environment. The
practical presence of a node may vary. It is usually a networking-capable
device executing a certain application that enables the networking.

2.2 Heterogeneity

Distributed computing systems may be heterogeneous in several ways. In
general, a heterogeneous system has been composed of separable entities or
components that differ from each other in some of their functional properties. In
a homogeneous environment, the whole system would therefore be composed of
similar elements or components. Both homogeneous and heterogeneous systems
exist and are possible in distributed systems. Due to the increasing heterogeneity
of devices that have the capabilities to operate as a part of a distributed system,
as well as the developing infrastructure of software support for distributed

16

systems and communication means required by them, the evolution is moving
increasingly towards heterogeneous distributed systems. It is a fact that cannot
be omitted in the design – heterogeneous systems cause many constraints and
propose many challenges for the design. Heterogeneity may appear in various
levels of functionality, for example as differences in

• networks between execution environments,
• connections between software components,
• operating systems,
• hardware components, operation, and capabilities,
• programming languages,
• data representation, and
• communication protocols.

The differences have to be handled by some means. A common approach is to
create abstract representations of the software or hardware mechanisms related
to distribution and to make them available for application components.
According to that approach, each component may have a uniform view on its
environment, independent of the differences that originate from those hardware
or software elements that are beyond the direct influence of the component in
question. Such abstract representations are created with software. The approach
that uses software in abstracting the elements that are related to distributing data
and functionality yields the term middleware, a producer of such abstractions,
also called transparencies in several contexts [4, 5, 1, p. 23].

2.3 Middleware

Middleware is a generic keyword when solving the challenges caused by
heterogeneous systems. Heterogeneous systems are not, however, the only
reason for the presence of middleware. Middleware can also be seen as
machinery for performing the abstraction that is often helpful for the
understanding of the complex issues related to distributed computing in general.
A common conceptual definition for the word sounds somewhat like the
following, presented in [6, p. 209]: “it (middleware) is the glue that holds
together disparate systems in a distributed computing environment.”

17

Middleware means a software layer that hides the complexity of the distributed
environment, thus making many features of the list presented under the headline
of heterogeneity in this chapter invisible.

Therefore, middleware is software. In particular, it is software that resides
between the operating system and the applications. In case there is no operating
system in a system that utilises a middleware solution, middleware operates
between the networking hardware and the application. Middleware may be
controlled and utilised in many separate ways, depending on its particular
implementation. Middleware may appear as a set of software interfaces, a
programming model, a software framework or some other means of bringing the
services of the middleware within the reach of the application. The way
middleware is then utilised is also completely dependent on the particular
implementation of the middleware and the application. In some cases, the level
of abstraction may be low, while in others it may be high. Other
implementations may offer or require a solution or a service that does not exist
in others. Examples of such services could be co-ordinated transactions,
directory services, discovery services and many others. The definition of the
term middleware is not unambiguous. However, the concept is explanatory
enough for being as widely used as it is. The term pops up quite often in recent
publications that are related to distributed systems.

2.4 Spontaneous networking

Some distributed systems operate in static conditions. Static means here that there
are no fundamental changes in the connections, requirements or deployment of the
devices that the distributed system is built of. A network of ATMs (Automatic Teller
Machine) may be considered an example of a mostly static environment. Adding a
new ATM to the network is not a frequent occurrence and in many systems manual
configuration is most presumably required.

However, in case of a failure in one of the ATMs in the network, the distributed
system should be able to continue its operation. Most distributed systems exhibit
at least some dynamic features. For example, in the presented case of a partial
failure where only one ATM of the whole network is not functioning, the rest of

18

the system should be able to keep on going. If a system is engineered to operate
in increasingly changing conditions, it is considered to be more dynamic.

Some distributed systems are designed to operate under constantly dynamic
conditions. In such dynamic distributed systems the configuration of the
elements that form the system is not fixed. There are several dimensions in
which the configuration may vary:

• interconnections between the execution environments may change,
• new resources may become available,
• existing resources may become unavailable,
• applications that exist in execution environments may change,
• models for information processing may change, and
• models and protocols of information transfer may change.

Small portable devices that have the capabilities to operate as peer members in
distributed systems introduce new challenges for the ability to accept and also utilise
the dynamics involved in the nature of the use of such devices. Bluetooth [7, 8],
WLAN [9, 10] and IrDA [11] are current examples of enabling technologies for
close-range spontaneous connections for those kinds of devices. The limited
physical range of the mentioned connectivity methods may cause constant
connections and disconnections to take place between the devices whenever they are
in motion with respect to each other. It is evident that the infrastructure of the
distributed information processing of such systems has to be based on completely
different principles than that of the ATM example provided.

Connectivity between different applications and devices over more conservative
wired networking methods may also require spontaneous operation. In this
thesis, any environment with such an unpredictable nature is called a
spontaneous environment. The following subchapters present concepts that are
related to distributed systems that operate in spontaneous environments. Those
systems are referred to here as spontaneous systems. The formalisation of logical
and functional connections between software entities that takes place in
spontaneous systems is referred to respectively as spontaneous networking.

19

Spontaneous networking takes place when two or more software entities those
have not been previously introduced to each other start communicating. The
communication may lead to a long session of interaction, or it may just be an act
of introduction. Software entities in this case often reside at distinct devices, but
spontaneous networking may also take place inside a device, between different
execution environments or just between different software components. The
fundamental concept is not and should not be limited to the device boundaries.
However, when considering spontaneous networking in distributed systems as
presented in this thesis, there are connections between the physical processing
units often involved.

In spontaneous systems, an element of unpredictability is always present. Faced
with this unpredictability, a system architect has to develop a systematic means
of overcoming it when, for example, connecting devices that have no knowledge
of each other. Connectivity between different software entities in a spontaneous
environment is an important topic in this thesis. There are certain fundamental
issues that are often present in systems that exhibit such spontaneous
interconnectivity. This subchapter provides a view and analysis of some of those
that are considered to be important in the light of this thesis.

2.4.1 Connectivity

A device that is about to participate in spontaneous interactions with other
devices has to have the ability to transfer information over a medium that is also
understood by other devices. A device is considered here as defined in 2.1. The
basic ability that is required is an implemented protocol combined with the
required hardware such as a radio transmitter or a connector plug with
appropriate wiring. However, the ability to transfer information is not always
enough to actually enable the operation of networked software in practice. As an
example, a conservative connection to a fixed IP network requires knowledge
about a local IP address, default gateway, and a subnet mask. Such configuration
is currently very common to every advanced computer user (even though the use
of DHCP [12] is nowadays beginning to ease the configuration burden).

When considering spontaneous networking, the connection to the medium
should not be complicated. Moreover, there should not be manual intervention or

20

configuration involved at the time the connection takes place. The
interconnecting medium should, in practice, be such that the information transfer
might take place without any configuration or external information required.
This kind of connectivity is considered here as implicit. It means that a device or
an entity that has the ability for such implicit connectivity, includes all the
functionality and information required to transfer information over certain media
to other devices or entities. Additionally, the information and functionality
should not have to be supplemented by any means at the time the connectivity
takes place. There are two ways to achieve such implicit connectivity.

1) The nature of the medium is such that the connectivity within the range
is a direct consequence of it. This is true in many cases, such as close-
range radio transmitters, broadcasts in IP networks as well as, for
example, simple connections with serial or parallel cables.

2) The nature of the medium is such that the connectivity within the range
requires additional information, related for example to the address, port,
access code, modulation, or frequency, just to mention a few. A TCP
connection works as an example. If the connectivity is implicit, the
required additional information also has to be provided implicitly.

If comparing the presented concept of implicit connectivity with interactions that
take place between people, the case in which a device has the ability to
communicate but does not have the required configuration information, is
comparable to having a telephone but no phonebook or phone numbers. On the
other hand, the implicit connectivity could be compared to the ability to speak –
no addressing or phone numbers are required to reach the people within the
range. The case where the address or other required information is also provided
implicitly is thus comparable to a situation in which the required phone numbers
would be available. The phone numbers in that case could, of course, be
available in a phone book, or by making a directory inquiry. In that case, the
number to the directory inquiry also has to be implicitly available. Figure 1
visualises implicit connectivity with the given real-world examples. The example
with the directory inquiry approaches the subject discussed under the next
subchapters, namely the steps that may be required to take place in spontaneous
networking in order to achieve a spontaneous connection between two separate
software entities.

21

 Figure 1. Examples of implicit connectivity.

2.4.2 Discovery

If previously non-introduced devices are about to start communicating, the
destination for the first message of the communication cannot be known
beforehand. Therefore it is presumed that the devices may send messages in a
way that all potential participants can receive them. Here, the process that takes
place when such previously non-introduced devices establish a connection and
achieve a mutual understanding in one way or another is called discovery. The

Near range Implicit
Connectivity

Cool!
I can't

hear you

Implicit
connectivity

Cool!

Cool!

P
er

so
n

A
55

5-
12

34
5

Person A

Range of speech Range of telephone

Range of speech

22

definition of the concept of discovery is consistent with the one presented in [13,
p. 65] and with slight modifications it suits the one given in [1, p. 43], where an
explicit discovery service is considered to comprise both the process of
discovery and a directory service. In this thesis, directory services are considered
in the next subchapter 2.4.3.

The primary purpose of the discovery process is to make the spontaneously
networking devices aware of each other’s capabilities, resources and services.
The discovery itself may take place in several ways, depending on the chosen
protocol and needs. In practice, according to the technologies that have been
considered in this thesis, two common ways of implementing the discovery
would seem to be:

1) A beacon signal that is broadcast frequently to a suitable medium. The
responsibility to send the beacon signal may vary. It may be random or
reasoned by a certain algorithm. New devices wait for that beacon signal
when entering a network. If a newcomer does not receive any signals
over several periods of a constant frequency at which the message
should be transmitted, the new device may start sending the beacon
signals by itself.

2) A new device entering the network sends a query or an advertisement to
the suitable medium and waits for responses from other devices. There
are no frequent messages. In case of no responses, the device just waits
for someone to enter the network by listening for the queries or
advertisements.

Examples of different discovery procedures will be given in several points later
in this thesis:

• Discovery in Jini technology (3.2.2),
• Discovery in UPnP technology (3.3.1),
• Discovery in the presented DDP (Dynamic Distribution Platform)

architecture and implementation (4.6.1), and
• Discovery in the DisMis (Distributed Middleware Services) framework

architecture (4.4.2).

23

2.4.3 Directory services

As a result of the discovery process, networked devices, or network nodes, and
the software entities within them, may sense other nodes and entities in their
vicinity (i.e. accessible through a network that provides the required means for
information transfer). After a node has gained knowledge about the presence of
other nodes, a logical step is the interest towards more specific information
about the services and resources that the discovered nodes are able to provide.
One solution for a node to gain that information is to transfer the knowledge
about a service or a resource within the discovery messages. In large systems,
however, that method is not appropriate. Service information may comprise
large amounts of data and all the participants in the system should not be forced
to store or process that data. In particular, some of the devices in a
heterogeneous environment may have very restricted capabilities for doing so.
Another approach is to query each particular service or resource only when they
are required. That solution has the same fundamental problem. If each service
usage in each of the service users would cause a broadcast query for the service,
the amount of broadcast messages would explode in large systems, thus making
it difficult for the nodes with restricted capabilities to keep up with the pace.

To reduce the global load in a distributed system with spontaneous nature, the
information about the service capabilities of the nodes in a network may be
gathered to a certain place that may distribute that information further when
requested. Such an entity is called a directory service. Directory services in
general are simply catalogues for more complex data structures than just strings
or numbers. They may be used also for other purposes than spontaneous
networking. Two generic responsibilities of a directory service may be stated as
follows [1, p. 371]:

1) Store collections of bindings between names and attributes.

2) Look up entries that match attribute-based specifications.

In the case of spontaneous networking, directory services store the attributes and
values that identify the services, capabilities and resources that exist in the nodes
that are connected to a particular network of them. Users of the services and
resources may then look up those attributes from a directory service in order to

24

know whether the requested capabilities are available in any of the nodes
currently connected to the network.

The following examples of directory services and entities with similar
responsibilities are given at a later point in this thesis:

• Look up service in Jini technology (3.2.2),
• Service Registry in the OSGi (3.2.3),
• RMI registry in RMI (3.2.1),
• Dynamic directory service in the DDP platform presented in this thesis

(4.6.1), and
• Dynamic directory service in the DisMis platform (4.4.2).

The role of a directory service in a distributed system is fundamental in several
applications. There may be also other such important roles: managers for
transactions, sources of data, etc. In general, the fundamental organisation of a
distributed system can be seen to comprise entities with service provider roles
and service user roles, just as for example the roles of a directory service
provider and a directory service user. The following subchapter considers them
in more detail.

2.4.4 Roles of entities in spontaneous systems

In the discussion of this thesis, spontaneous systems are considered to have two
fundamental roles that the entities in the network may express. Those roles are:

• the role of a service provider and
• the role of a service user.

One entity in a network may perform both roles as well as just one of them. One
node may also provide many services and accordingly have many distinct
service roles, just as it may have many distinct service user roles.

There may be certain fundamental service provider roles in a spontaneous
system that some or all of the entities have to fulfil. Consequently, there has to
be certain service user roles that have to be fulfilled as well. Those fundamental

25

roles may vary from system to system, but a common feature of those
fundamental service user/provider roles is that they participate in the practical
operation of the infrastructure of the spontaneous system.

A good example of a fundamental service role from the viewpoint of this thesis
is the directory service provider role. If the operation of a spontaneous system
relies on a directory service as explained, there has to be a directory service
provider-role that is implemented by an entity that hosts the directory service.
Additionally, there has to be a directory service user role that has to be
implemented by all of the entities in the spontaneous system, thus making them
able to use the services of the directory service. If the use of a directory service
is the only means for different entities to come to know about each other’s
capabilities, it has to be:

• implemented by at least one entity,
• used by all the entities that have service – roles (e.g. service registration) and

• used by all the entities that have service user – roles (e.g. service lookup).

Considering the capabilities used or offered by different entities as roles usually
helps in conceptualising the involved complexity. The roles are a tool to see the
system as a set of services and their users. The roles may more easily be
encapsulated within certain distinct components in the system, as will be shown
in practical examples presented in this thesis.

26

3. Enabling technologies and building
blocks

This chapter presents some of currently most popular methods and technologies
that are related to building spontaneous distributed systems, even though many
of them have been developed to suit more conservative methods of distributed
computing or software development in general. The solutions presented in this
chapter have been categorised to represent some of the following conceptual
classes:

• broker pattern and distributed objects,
• virtual machines and mobile code,
• peer-to-peer connectivity, and
• software architecture.

Independent of the particular technologies, the above categories represent the
most important state-of-the-art fields that are related to this thesis. One or
several examples or explanations of each of the categorised groups has been
provided in the following subchapters.

3.1 Broker-pattern and distributed objects

3.1.1 CORBA - Common Object Request Broker Architecture

Common Object Request Broker Architecture, CORBA, is a part of the OMA,
the Object Management Architecture, which is a multi-vendor standard for
object-oriented, distributed computing. OMA is consequently produced by
OMG, the Object Management Group. Currently OMG is a consortium of 800
companies, making a large contribution to creating standardised technological
solutions for the field of distributed software, middleware and component
software. OMG also influences several other fields of information technology
and standardising committees [14, 15, pp. 1–13].

CORBA is based on the idea of object interoperability. According to it, all the
services an object provides are expressed in a specific contract. That contract is

27

the interface between the object and the rest of the system. The contract may be
seen to have two distinct purposes [15, p. 7]:

1) It tells the users or clients of a service how to construct a message to
invoke the service

2) It tells the communication infrastructure the format of all the messages
an object will send and receive

Additionally, according to CORBA, each object also needs a unique handle that
is used by the communications infrastructure in routing the messages. That
handle identifies the object and it is not changed even if the object changes
place. Figure 2 visualises the object interaction. The components presented in it
are the client, the object and the object request broker. According to the
architecture, requests always proceed through an Object Request Broker (ORB).
In addition, both interacting components are isolated from it by an Interface
Definition Language (IDL) interface.

 Figure 2. Request passing through IDL interfaces and ORB in CORBA.

CORBA requires that the interfaces have to be especially defined in OMG IDL.
The use of IDL clarifies much of the actual operation of CORBA; details of each
object’s implementation are hidden behind the interface definition. That assures
the substitutability of the objects. If only the interfaces and overall functional

CLIENT

IDL STUB

OBJECT REQUEST BROKER

OBJECT

IDL
SKELETON

REQUEST

28

patterns remain unchanged, the object implementations themselves may change.
It is an essential feature for a distributed environment with a spontaneous –
nature.

ORBs handle details of the distribution – therefore there has to be a functional
ORB in a network of distributed CORBA objects. ORBs are usually
manufactured by third parties, separate from the software developers that use
them. Different ORBs operate in different environments. Due to that, different
ORBs also have different characteristics. The ORB-skeleton-interface is
proprietary and therefore ORBs and their IDL compilers appear in pairs; if the
ORB is changed, the IDL compiler may have to be changed to mate the new
ORB – thus being able to generate compatible stubs and skeletons.

CORBA is commonly used in a variety of systems worldwide and it is available
for several platforms. Software that utilises CORBA may be built by using the
most popular programming languages such as C++ and Java.

3.1.2 DCOM - Distributed Component Object Model

The Distributed Component Object Model, DCOM, is an extension for
distributed components to the preceding Component Object Model, COM.
Microsoft has created both COM and DCOM and they play a fundamental role
in Microsoft’s Windows operating systems. To start with COM, which as the
name quite explicitly implies, is a framework for component programming:

“The Component Object Model is an object-based programming model designed
to promote software interoperability; that is, to allow two or more applications
or ‘components’ to easily cooperate with one another, even if they were written
by different vendors at different times, in different programming languages, or if
they are running on different machines running different operating systems.”
[16, p. 6]

29

COM specifies a certain way of building components that conform to the
Component Object Model. COM is an object-based programming model. It
defines a COM object as an instance of its representative COM class. According
to object-oriented paradigms, a COM class defines the prototype of the object
instances derived from it. A COM component is an entity that may comprise
several objects and relations to other components. COM is based on definitions
of COM interfaces, which are a way of accessing the operations of the
components. One COM class may comprise several COM interfaces. A COM
class instance may be queried for the interfaces it fulfils by calling a certain
method in its standard interface. All the interfaces of the components that are in
public use have to be standardised, and they may not be altered after their
publication, versioning of the interfaces is strongly supported in COM.

 Figure 3. Component Object Model.

COM components may interact within the same computer. In addition to the
specification part that defines the requirements for a COM component, COM
also has an implementation part that enables the component interactions in
practice. The COM functions as a practical runtime entity that provides the
COM services, such as for creating and locating COM components. In Figure 3

Server Application

IUnknown
ObjectClient

Application

COM

IOwnInterfaceOne

IOwnInterfaceTwo

Client talks
directly to
the object

COM only connects
the client with the

object

30

the COM model has been visualised with an example in which a client
application utilises a server COM component. The COM component has been
exposed to the client by the COM runtime entity that is located at the bottom of
the Figure 3. After the client gets to know the COM component’s interface, it
may call it directly.

Each COM object has to implement the IUnknown – interface. It comprises
three simple methods:

• QueryInterface,
• AddRef, and
• Release.

IUnknown is the most fundamental interface in a COM component. The
common availability of the IUnknown – interface also makes it possible to reach
other interfaces of the component in question. The IUnknown interface enables
access to the component’s functions without knowing about them beforehand.
Interfaces to COM components have to be especially defined by MIDL by
Microsoft [17, pp. 19, 29].

COM supports different ways for the COM components to operate. Those ways
are:

1) In-Process, in which the COM component is loaded into the client’s
address space and executed within the same process with the client.

2) Local, in which the COM component is executed as an independent
executable and the calls are mediated between the client process and the
server component by the COM.

3) Remote, in which the server component runs on a separate machine that
is connected to the machine that hosts the client by a network
connection. The remote type may be implemented by utilising the
Distributed COM, DCOM.

Thus the distributed version of the COM is DCOM. The most essential point in
the use of DCOM with COM components is that the client makes the call
exactly the same way as it would if the server component were of the In-Process

31

type, independent of the overhead and complexity involved in establishing
communication through a network connection to another machine. In [18,
p. 439], the essence of DCOM is clearly expressed in the following phrase:
“Whereas COM is a specification for building interoperable components,
Distributed COM is simply a high-level network protocol designed to enable
COM-based components to interoperate across a network”

DCOM is considered as a high-level protocol as it may utilise many protocols
that are available in the system when it is in operation. DCOM chooses the best
underlying protocol by basing on the information about the available protocols
on the client application that uses the component and the server that hosts the
component. [18, p. 439].

3.1.3 Enterprise JavaBeans Component Model

Enterprise JavaBeans emerge from a preceding technology of JavaBeans. Here,
JavaBeans are discussed first and then complemented with the features
introduced by the enterprise edition.

In common, beans are Java classes or sets of Java classes that are designed to
work as a reusable component. The definition of JavaBeans is given in [19] and
[20, p. 11]:

“A JavaBean is a reusable software component that can be manipulated visually
in a builder tool”

Multiple beans can be assembled together with minimal programming to create
larger systems. There are many development tools for graphically manipulating
and connecting beans. One of the main goals of the JavaBeans component
architecture is to provide a platform-neutral component architecture [19, p. 7].
The component nature of JavaBeans may be considered to approach the
component nature of integrated circuits [21, pp. 455–456]. It is a widely adopted
paradigm in describing component software, introduced, but also criticised, for
example in [22, pp. 3–13] by C. Szyperski. Just as integrated circuits, beans have
a self-contained, well-defined behaviour and they adhere to some design

32

framework. Families of components or beans share the same communication
protocols, thus being able to communicate directly with each other.

Beans follow a slightly different composition than the typical object-oriented
nature in Java would propose. There is no specific interface for beans, nor there
is any extendable base class. Instead, beans are defined by a set of design
patterns [23, pp. 60–65] that dictate how certain operability is to be developed
and what kinds of design rules are to be followed in order to fit in to the design
framework of beans [19, pp. 9–15, 21, pp. 456–510]. Documentation,
localisation and packaging are also parts of the bean design and the required
component way of thinking.

Enterprise JavaBeans is a technology that combines the multi-tier applications
architecture with the component model introduced by the JavaBeans component
architecture. EJB logically extends the JavaBeans component model to support
server components. According to [20, pp. 1–2]:

“The Enterprise JavaBeans architecture is a component architecture for the
development and deployment of object-oriented distributed enterprise-level
applications. Applications written using the Enterprise JavaBeans architecture
are scalable, transactional and multi-user secure. These applications may be
written once, and then deployed on any server platform that supports the
Enterprise JavaBeans specification”.

Operation of Enterprise JavaBeans is concentrated on the EJB container, which
is a manager of the enterprise beans within it. The container is responsible for
performing multiple tasks for the enterprise bean objects. The most important of
those tasks have been listed in the following:

• provide a remote interface for the objects,
• create and destroy object instances,
• check security for the objects,
• manage the active state for the objects,
• coordinate distributed transactions, and
• manage persistent data within the objects (optional).

33

Containers provide an application context for the components to run in. In
practice it means providing an operating system process or a thread in which the
component can be executed. EJB containers reside at the EJB server, which
provides an environment that supports the execution of applications developed
using Enterprise JavaBeans technology. The EJB server manages and
coordinates the allocation of resources of the platform on which it is running.
The EJB server must, for example, provide an access to a distributed transaction
management service.

Portability of EJB components relies on the strength of Enterprise Java API,
whose subset EJB technology is. Enterprise Java API provides access to multiple
kinds of existing infrastructure services like, naming and directory services,
messaging services, transaction services and database access, thus making it
possible for the beans to select suitable services that exist in the platform in
which they are being executed.

In a typical Client/Server model, enhanced by EJB, there are components on the
server and on the client. Server components are typically non-visual and execute
within a container that is provided by an application server. Client components,
on the other hand, execute within a graphical container like a document or a
window. Components willing to qualify in an EJB environment have to fulfil
certain requirements described by design patterns of the EJB component
framework.

3.2 Virtual machines and mobile code

3.2.1 Java RMI

Remote Method Invocation is a feature built in the Java Virtual Machine (JVM)
since its version 1.1. The fundamental purpose of RMI is to make it possible to
invoke a method in an object that resides in a remote location. Accordingly, RMI
comprises the means to pass the required parameters to the remote object as well
as to receive a response from it. This all takes place in a synchronised and
elegant way. The difference between RMI and pure RPC is that RMI operates on
Java objects rather than bare procedure or function calls. In comparison, RMI
offers more sophisticated methods of building complex but controllable

34

solutions. RMI develops with Java language as a product and therefore the latest
versions are not necessarily fully compatible with the older ones. The features
under consideration here are from the version shipped with the Java
Development Kit (JDK) 1.2.2.

Use of RMI is simple. Interfaces of remotely available objects have to be
defined and derived from the java.rmi.Remote interface, which is barely a
marker for the system to know that the interface in question is a remote one. A
ready-made implementation for performing the actual RMI function is the
java.rmi.server.UnicastRemoteObject class. Extending the UnicastRemoteObject
is a straightforward way to build remote objects and to distribute references to
them. In the most common case, a UnicastRemoteObject - extending class is
made to implement the remote interface class with all the required functionality.
Then when instantiated, the UnicastRemoteObject class performs the
functionality required in exporting the object when necessary. The reference of a
remote object may be connected to a simple directory facility called the RMI
registry. By binding the object reference with a certain identifier and registering
them with the RMI registry, other systems may look up the identifier in order to
obtain the reference and to establish contact with the remote object.

A powerful tool that has been integrated with Java RMI is the dynamic code
downloading. In practice, dynamic code downloading means that the parameters
of remote method invocations may be instances of classes that are not known at
the destination or the return value may be an instance of a class that is not
known by the caller. In such cases, the class file of the parameter class or the
return value class is transferred to the JVM that requires it, at runtime.
Mechanisms involved with the dynamic code downloading in Java have been
discussed in further detail in the end of the next subchapter 3.2.2 that considers
Jini.

3.2.2 Jini

Jini, introduced by Sun Microsystems in 1999, is an advanced technology that
offers distributed and spontaneous solutions for many types of services. It is
based on different concepts than most of the technologies seen today. First of all,
all functions of Jini are completely based on Java, thus making it independent of

35

any specific processing environment. Secondly, the operation of Jini is based on
mobile code, which is still quite a unique feature.

Jini itself is a set of concepts and interfaces that define the requirements for the
actual implementation. Currently the only existing implementation is the one by
Sun Microsystems. In its fundamental idea Jini is not an implementation, but
rather an idea defined by those concepts and interfaces.

Jini provides a networking infrastructure that allows services to find each other,
and thus enable a flexible way of distributing services and parts of services
across the network. Additionally, Jini provides functions that help distributed
applications operate efficiently together in a consistent manner. Architecture and
operation of Sun’s implementation of Jini is described in the Jini Architecture
Specification [24]. Five key concepts of Jini are defined in [13, pp. 64–102] as
follows:

• The Lookup concept of Jini refers to finding, placing and removing
objects within a lookup service, which is a versatile storage and name
service. Join protocol is used when inserting objects into the lookup
service. The objects are received through RMI remote invocations
through a specific registrar object received from the lookup service [25,
pp. 117–126, 26, pp. 113–126].

• Discovery is the process of finding the available lookup services from
the network through protocols specified in the Jini Technology Core
Specification [26, pp. 1–34].

• Leasing: A lease is a contract between two members of a Jini
community. It represents a period of time granted for the use of a
resource. If a lease expires and is not renewed, the resource allocated by
the owner of the lease is released [26, pp. 35–53].

• Remote Events are supported by Jini. The concept of an event is the
ability of one object to notify another object when something has
happened [27, pp. 102-116]. Remote events extend the basic Java event
paradigm first defined in the JavaBeans specification [19, pp. 24–39] to
operate in a distributed environment.

• Transaction is a sequence of operations performed by transaction
participants in order to reach a logically atomic operation. A system-level

36

support for transactions helps distributed systems to control the
consistency of the shared data [26, pp. 83–112].

Jini defines a concept of a community, which is a set of services in a particular
network. The services of a community make themselves available by registering
their representative object(s) to a lookup service as shown in Figure 4 and Figure
5. In registration, a special kind of object (proxy object) is transferred to the
lookup service (1 in Figure 4). The proxy object represents the interface to the
service when transferred to and activated by a service user. The lookup service
will receive the proxy object in order to host it and accordingly to grant the
service a lease for using its resources. The registered service will have to renew
the lease periodically in order to stay registered.

 Figure 4. Service registration and lookup in Jini.

A service user may utilise a registered service by contacting a lookup service
and by introducing to it a template of requirements that describes the service that
would serve its purpose (2 in Figure 4). The lookup service will return a list of
matching services and their proxy objects. Finally the proxy object is moved to
the service user, (3 in Figure 5).

When using a service, the service user has access to the proxy object that
provides an interface to the service. The proxy object performs the service

Service

Lookup Service

Service User
Interface

1.Registration2.Lookup

Proxy

37

function at the service user end. It will contact the service when necessary by
using the service-specific method (4 in Figure 5) that is not by any means
restricted by Jini. The services may of course freely utilise the fundamental
services provided by Jini such as leases, transactions or remote events, in their
operation.

The heart of the abstract structure of Jini is the concept of lookup service. The
lookup services act as connecting points in the communities. The technology
below the abstract level in Jini is based on Java RMI and especially on its
dynamic code downloading paradigm [3, 28]. Dynamic code downloading is one
of the most essential building blocks in Jini. The implementation of the proxy-
pattern in Jini is dependent on mobile code, and the most essential in the service
distribution as well as in the service distribution in Jini is based on the proxy-
pattern. The combination however works well.

Indeed, according to [28], Java is the only known system incorporating such a
powerful combination of features essential for mobile code mechanisms. In Java
the appropriate way of implementing mobile code is dynamic class loading. Jini
does not offer any magical tricks in order to perform the mechanisms of dynamic
code downloading, all the required functionality is included in Java and RMI.

 Figure 5. Lookup response and service usage.

In Java, serialised [29] objects may be moved around without the definition of
the actual class that they represent, i.e. the data may move without the code. A

Service User Service

Lookup Service

Interface

Proxy

3. Lookup Response

4. Service Usage

Proxy

38

serialised object contains only the data contents of an object without its
functionality. When an object is then de-serialised for use, the class definition is
again required. The use of marshalled objects solves some of the problems
related to acquiring the class file. Marshalled objects are used for example by
RMI. A marshalled object is able to store a serialised object with additional
information about the location of the class file of the class that the object
represents. If the class definition is not found locally, dynamic code
downloading is performed in order to acquire it. A specific class loader takes
care of transporting the class file from an HTTP server that is there to deliver the
class files. The address of that HTTP server moves around with the additional
information that is stored in marshalled objects.

3.2.3 OSGi - Open Services Gateway Initiative

The Open Services Gateway Initiative is an effort to create a specification for
distribution of services in networks. The purposes of the OSGi consortium, formed
by more than 75 member organisations, concentrate in the following phrase:

“The OSGi Framework and Specifications facilitate the installation and
operation of multiple services on a single Open Services Gateway (set-top box,
cable or DSL modem, PC, Web phone, automotive, multimedia gateway or
dedicated residential gateway).”[30]

OSGi concentrates on building the required technology for an Open Services
Gateway, which is an embedded server with a capability to enable, consolidate
and to manage a wide range of connections. OSG acts as a gateway between the
large public network and the smaller local networks. Another purpose of the
OSG is to provide interconnecting infrastructure for different kinds of devices
and networks.

OSG is also able to operate as an application service provider. Services may be
executed directly in the gateway. A context for developers is provided along
with the service framework. The context is intended for developing services that
are to be run in the gateway. The OSGi specification includes APIs for utilising
the gateway services. Services are uploaded to the gateway as JAR-bundles. The

39

encapsulated nature of the bundles increases the overall simplicity and
consistency.

The general architecture of OSGi is more implementation-oriented if compared to
the other solutions presented in this thesis, as it proposes a straightforward solution
to a certain application area of networking. OSGi has not been made too complex
and it does not try to solve all problems at once, which is a strong benefit.

 Figure 6. Overview of OSGi general architecture and deployment.

The architecture of OSGi as presented in [31], is visualised in Figure 6. The
service gateway is in connection with:

• the Internet,
• public service providers,
• a OSG operator, and
• local networks.

Local
Network

Local
Network

Open
Services
Gateway

Device

Service

Device

Service
ISP

INTERNET

OSG
Operator

Service
Provider

#2

Service
Provider

#1

GSM
Client

Client

40

An OSG is a secure, zero local administration device with connectivity to local
devices and the Internet Service Provider. All the services in the gateway are
managed and maintained by the gateway operator. Another management role in
OSGi is as a Service Aggregator. A Service Aggregator offers a set of
interoperable services and/or equipment for certain purposes, for controlling
electricity, alarms, etc.

The first version of OSGi gateway has been implemented as a Java API. It
comprises:

• Java Environment – required packages and classes,
• Service Framework – API for creating and running services,
• Device Access Manager – API for accessing devices,
• Log Service – required service for logging information, and
• HTTP Service (not a requirement for all OSGi compliant gateways).

 Figure 7. Bundles provide services inside a Services Framework.

OSGi offers a solution to the real-world problem of connecting devices, users,
services, networks and service providers together. The main element of the

OSGi Services Framework

Java VM

OS & Hardware

Bundle 2

Serv
ice

Bundle 3

Service

Bundle 1

Serv
ice

Service

41

OSGi specification is the OSG framework. The framework accordingly relies on
three key elements:

• Services – made to perform certain functionality,
• Bundles – in which the services are shipped, and
• Bundle Contexts – in which the bundles are activated.

The specification defines the programming guidelines for bundles. The bundle
model of OSGi resembles JavaBeans, as the bundles are components packed in
to JAR packages and executed in a certain predefined context with their
definitions carried inside a manifest file. There are also differences. JavaBeans
are primarily visual components, which is not the case with OSGi bundles.
JavaBeans also rely more on pre-defined programming patterns, while OSGi
provides a ready-made API. Figure 7 visualises the bundle-structure inside an
OSG framework.

3.3 Peer-to-Peer connectivity

3.3.1 UPnP - Universal Plug and Play

Universal Plug and Play is an architecture for peer-to-peer network connectivity
from Microsoft. The fundamentals for it have been created in 1999 by a group of
companies and individuals. Currently, UPnP is represented by the Universal
Plug and Play Forum [32]. In 2002, the number of members in it was already
over 500 [32]. The purpose of UPnP is to establish seamless interconnectivity
between PCs, intelligent appliances, and wireless devices in a form of peer-to-
peer networking. For that purpose, UPnP describes the use of certain common
protocols to enable connection from one device to another via any known media
for information transfer. UPnP also utilises several commonly known protocols
in its operation. The practical domain of UPnP is mainly an enclosed network
with a reasonable amount of participants.

There are six major issues in UPnP that also give an overview on its operation.
Those issues are addressing, discovery, description, control, events, and
presentation [33, 34]. The issues are presented briefly in the following:

42

• Addressing: Each UPnP device has its own IP address. The address may
be achieved either by DHCP[12] or Auto-IP[35].

• Discovery: Each UPnP device has to advertise itself. Advertising takes
place by so-called control points. Control points are entities that advertise
services and provide responses for search requests by issuing device
searches in the network.

• Description: Each UPnP device may be described with a description that
is separated into two logical parts, a device description and a service
description. Information about the devices and the use of their services is
carried within those descriptions.

• Control: A control point is able to use the functionality of a device or a
service, after it has received enough descriptions about it. Controlling
takes place according to a convention that utilises HTTP, XML and
SOAP.

• Events: There is an event subscription/notification convention in the
UPnP. Services may contain variables that publish events when stated
changes in them occur. Control points may subscribe to those
notifications.

• Presentation: A service may provide a URL that presents its device
description and a control point may fetch the document from the specified
location accordingly.

According to one of the principles in UPnP, no executable code is transferred in
the service activities. Thus, only data is transmitted in a platform-independent
manner. Often some generally accepted data formats such as JPG or XHTML,
are used. Communication between non-IP networks takes place through specific
UPnP protocol bridges. In general, the use of Internet protocols, such as IP,
TCP, UDP, and HTTP, makes the use of UPnP suitable for the development of
spontaneous services for the already existing environments and networks, which
is a strong benefit. UPnP version 1.0 standards have quite recently (2002) started
to appear as approved.

43

3.3.2 Gnutella

Gnutella is an Internet peer-to-peer file system protocol. Due to its nature in
advancing the dissemination of illegal copies of digital media, such as music and
films, there is no official product called “Gnutella”. The first program carrying
that name popped up in March 2000, written by Justin Frankel and Tom Pepper
of Nullsoft (owned by AOL/Time Warner). The parent corporation declared the
accidentally released beta version of the software as an “unauthorised freelance
project”. The original version 0.56 spread out, however. Currently there are
several clones available for major operating systems such as Windows, Linux
and Macintosh, which have been implemented through a reverse-engineering
effort on the original software [36].

The primary purpose of Gnutella is to share files in the Internet between equal
peers that may provide their own files for uploading, and simultaneously seek
files they desire or download them. The most interesting feature in Gnutella is
the decentralised structure of the peers involved in the file sharing process. It
implements a simple protocol that enables a pattern in which each node of the
network may operate as a server and as a client at the same time. These nodes
are popularly called servents. Each servent in a Gnutella network implements the
Gnutella protocol [36].

 Figure 8. A simple example of message interchange in a Gnutella network.

A B C

"ping"

"pong"

"ping"

"pong"

"ping"

"ping"

"ping"

"pong"

Z

Y

X

44

In order to join a Gnutella network, a servent has to know the address and port of
one existing Gnutella servent that is already connected to the network. Such
starting points are being generally delivered through dedicated web sites. A
simplified example of the Gnutella protocol has been explained as follows:

In an imaginary situation, three Gnutella servents A, B and C exist in the
network. The example follows the process of servent A in both delivering files
and searching for files from the Gnutella network. The example has been
visualised in Figure 8. Initially, the servent A has to know the IP address and the
port number of some other Gnutella servent, which is a prerequisite for joining
the community. Assuming that servent A knows those parameters of servent B,
it is able to connect with it by sending an initialisation “ping” packet. When B
receives the “ping” packet, it will respond to it by sending a “pong” packet to A.
The “pong” packet contains information about the number and the sizes of the
files it has to share with the community. Simultaneously, B forwards the initial
“ping” packet on to the other servents it knows. In the case explained, B
forwards the “ping” packet to servent C. Servent C will then respond by a
similar “pong” message containing the number and the sizes of the files it has to
share. The “pong” message sent by C is sent to B, whom will forward it to A.
Forwarding of the messages assures the anonymity of the servents. C does not
know about the existence of the servent A. Thus the servents know only other
servents that are one node away from them. Searches for files in the Gnutella
network work similarly to the “ping” and “pong” messages. In transporting files,
Gnutella peers communicate directly through a TCP connection.

3.4 Software architecture

Software architecture is a tool to reach design goals, the step between the
intention and implementation. Although being a solution to a problem in a
fundamental sense just as any other or the solutions presented previously in this
chapter is, software architecture addresses issues that give it a special status
amongst them. Most importantly, software architecture is not an implementation.
Instead it is a way of thinking in terms of software, through different kinds of
abstractions.

45

This subchapter provides basic information about the concept of software
architecture. The overview given here is more intense if compared with the
previous subchapters 3.1-3.3 that provided only a brief overview of the
presented technologies and solutions. A software architecture of a distributed
middleware service framework has been created in the work this thesis intends
to introduce. Moreover, software architecture is an often misunderstood
discipline and it has several definitions. In that light, it is essential to have a look
on the concept of software architecture in order to clarify its use here.

3.4.1 What is software architecture?

Each software has an architecture. With refererence to [37, p. 23], the concept of
the software architecture of a program or computing system is explained in the
following way:

"The software architecture of a program or computing system is the
structure or structures of the system, which comprise software components,
the externally visible properties of those components, and the relationships
among them."

When looking at the complete architecture of a system, the information about it
has to be brought to some level of abstraction in order to make it understandable.
If this were not the case, instead of the architecture, the whole system would be
under consideration. This makes the architecture an abstract representation of the
system. Everything about a system cannot be explained in any sense by any
architectural description. Hence, it is not even the purpose.

Instead, the purpose of the architectural description of a system is to provide the
necessary information about the system for analysis in several dimensions.
Throughout the analysis, the architecture may be developed towards meeting the
given requirements without building the entire system. According to the
definition given in [38, pp. 3-7] the software architecture will provide a design
plan and a way to manage the complexity of the system through the introduced
abstraction.

46

There is a structure or there are structures in a software system. Structures
describe the different relationships between the abstract parts of the system. The
IEEE Recommended Practice for Architectural Description of Software
Intensive Systems [39] defines software architecture with the following powerful
phrase as:

“the fundamental organization of a system, embodied in its components,
their relationships to each other and the environment, and the priciples
governing its design and evolution”[39, p. 3]

The mentioned fundamental organization is the primary structure that comprises
all the structures that can be drawn out of a system. In practice, that amount is
nearly infinite. That is the reason why abstraction is so important when
considering software architectures. Structures can be found from the temporal
behaviour of a system, the connections between the parts of the system, the
functional sequences in it and the relations of the synchronisation in it.
Structures exist in models that relate to the design, planning, scheduling,
implementation, and an excessive set of other similar kinds of elements and
concepts. Many of those structures are dependent only on how or by whom the
system is looked at in each particular case. Almost as important as the definition
of the architecture as the fundamental organisation of the structures is to
understand that none of the single structures of the system is able to describe the
architecture of it. This, however, makes the structures no less important. It is
essential to count in the structures when describing the system through
architecture, because even without being the architecture, most of the structures
and descriptions about them comprise important information about the
architecture – without them the system would not be the same.

As an implication of the statement borrowed from [37, p. 23] at the beginning of
this subchapter, architectures define components. Components are parts of
systems that enclose certain functionality whose internal technique of operation
is hidden from external observers. Components are abstraction tools that help us
achieve those structures that our mind is able to produce. Human thinking and
development process favours object-orientation and component-oriented
thinking. In general, our brains naturally favour such models that imitate the real
world. Just as real-world objects have surfaces used in interactions with other
objects, components also have such surfaces, called interfaces. One of the most

47

important characteristics of a component is the interface it has with the outside
world. This is, of course, a simple implication of the presented fact that the
internals of the components are hidden.

An important link between components and the architecture comes from the
visibility of the component’s internals. The behaviour of the components in a
system is said to be architecturally relevant only if it can somehow be observed
by another component. Each component, of course, has an internal operation of
some sort. The difference between architectural and non-architectural
information in a component may be explained with the citation “externally
visible properties of those components…” given at the beginning of this
subchapter. Thus, if the implementation technique of a certain operation in a
component may be changed without altering the way other components see the
changed component through the interface it exposes to them, the information
about the operation may be abstracted away at from the architectural
descriptions of certain abstraction level.

Every system can be shown to be composed of components and relations among
them [37, p. 24]. According to the definition used here, all systems also have an
architecture. However, the fact that the architecture exists, does not
straightforwardly imply that it would be visible in any sense. The architecture
does exist in each implementation of any system, but in order for it also to be
visible, it has to be specifically described in a suitable form.

There are many different ways for expressing architectural information. In
practice many of the system architects have created their own methods of using
the popular conventions for doing so. Fundamentally there is no difference
whether it is a circle or a rectangle that represents a component, both of them
will do just fine. Similarly, the understanding of any other structure or structures
of a system may be expressed with varying conventions without affecting the
effectiveness of the expression a great deal.

3.4.2 Quality attributes

Software is most often developed to accommodate needs. The needs of the domain
as well as the needs of the stakeholders set the overall requirements for software.

48

Depending on the case, such requirements may vary on a wide scale and new ones
may come out during the evaluation of the issues that are related to the architecture
and its domain. Requirements are semantically connected to attributes called
qualities. Requirements need certain qualities to be fulfilled. Some requirements
appear in almost every piece of software developed for a certain domain, just as the
qualities do. Some of them are rarer just as some are application specific. The more
common the domain of the architecture under consideration happens to be, the more
common is the induced set of requirements for the qualities. Sometimes a ready-
made piece of software architecture or implemented software may be evaluated in
order to reveal how well it fulfils certain qualities.

According to quality-driven architectural design, those and other such
requirements are referred to as quality attributes [37, pp. 75–90] – they define
attributes, whose quality should be evaluated. One could ask, “how well does the
software complete reusability?” or more generally, “how reusable is the
software?” The answer is of course not obvious since a quality attribute like
reusability may be defined in very many dimensions. It is, however, a starting
point. Different dimensions of software may be described by expressing
abstracted structures of it. The overall reusability of the software may be
expressed if required, without going into details, by presenting the relevant
structures that comprise the details of those decisions and artefacts in the design
that have the most impact on reusability. If the attribute cannot be expressed
unambiguously with such presentation, there is also something wrong with the
attribute’s implementation in the overall architecture of the software.

ISO/IEC has developed the standard 9126:1991 in order to maintain the
persistence of the definitions of the quality-attributes related to software [40].
The explanations given there are not the only possible ones indeed. Another
related standard is the IEEE 1061[41] standard for software quality metrics
methodology. This thesis does not make an attempt to define quality attributes as
such. Independent of the involved diversity, quality attributes are an excellent
way to approach the fundamental issues that question the relevance of a certain
software architecture in fulfilling the task it has been initially proposed for.

Without trying to make a defective list of all possible quality attributes, those
that have importance in the work presented in this thesis have been introduced in
the following Table 1.

49

Table 1. Quality attributes briefly explained.
Quality attribute Brief explanation Means of achievement

Adaptability Attributes of software that bear
on the opportunity for its
adaptation to different specified
environments without applying
other actions or means than
those provided for this purpose
for the software considered
[40].

Case-driven architectural
solutions. No restrictions to
granularity. Generality in
abstraction, interfaces, and
responsibilities. Asynchronous
communication, architectural
definitions of behavioural
dependencies.

Integrability The ability to make the separately
developed components of the
system work correctly together
[37, p. 84].

Simplicity of the components,
their interaction mechanisms and
protocols. Clean partitioning of
responsibilities. Clear and
complete specifications of the
components’ interfaces. [37,
p. 85].

Functionality The ability of the system to do
the work for which it was
intended [37, p. 81].

Correct and careful design of the
responsibilities. Orthogonal to
structure, thus non-architectural in
nature. Often bound by other
quality attributes.[37, p. 81].

Availability The proportion of time the
system is up and running,
measured by the length of
time between failures. Ability
of the system to resume
operation in the event of
failure [37, p. 80].

Redundant components, attention
to error reporting and failure
handling, specific monitor
components. [37 p. 80].

Usability Breaks down into learnability,
efficiency, memorability, error
avoidance, error handling and
satisfaction, which are measured
from the user’s point of view [37,
p. 81].

Matching the user interface to the
product to respond to the use.
Familiar metaphors, standards,
interface conventions. [37, p. 81]
Applies both to user interfaces
and software interfaces.

Extensibility The ability to make changes
quickly and cost effectively,
the ability to acquire new
features. [37, p. 83]. Often
considered to be a subcategory
of maintainability, in a similar
way as adaptability is [40].

In general, the same rules
apply as to adaptability.

3.4.3 Frameworks and patterns

Here, the terms framework and pattern are briefly defined so that their use in the
context of this thesis would be unambiguous. A framework or a pattern, are both

50

generic expressions that carry much of their content already in their semantic
meaning.

A framework may be thought of as a piece of unfinished software architecture
that defines the skeleton of a system but requires complementation.
Complementation to an architecture cannot be made without also altering the
architecture, thus defining such architectures that require modification as
unfinished is justified in that sense. An architectural construction that is a
framework may be implemented by several different methods, for example,
through the use of abstract classes, as suggested in [23, p. 54]. Another method
to formalise an approach for creating architecture for a framework is to consider
an integrated set of components that can be reused and customised according to
the needs of the framework user. Such a viewpoint has been taken, for example,
in the work explained in [42, p. 20] and it addresses greater flexibility than the
use of abstract classes would. The approach in the framework for distribution
services presented in this thesis has been influenced by both approaches. A
generic view of the approach considering the use of frameworks in this thesis
has been given as an example in [43].

Patterns are related to frameworks and to software architecture as well. A pattern
is a common practice for doing a thing. “Doing a thing” is a very generic
expression. Similarly, the concept of patterns is enormously flexible. Patterns
may be found from software architecture design, software development and
software implementation techniques. When different software architectures are
repeatedly designed by using a certain, similar way of solving a certain, similar
problem, the way of solving the problem by those architectural means may be
considered a design pattern. The size of the problem is not restricted by any
means thus, the size of the patterns is not restricted either. Large patterns that
govern the construction of a complete software architecture may be called
architectural patterns. In software implementation, certain commonly used
conventions may be considered patterns, even though they would not encompass
any architectural relevance. In some certain software architecture, a certain way
of doing things may repeatedly emerge in large amounts of elements. That kinds
of patterns are just as valid as the other kinds of patterns, even though they
would not have been introduced anywhere else outside that particular
architecture. The work described in this thesis comprises some such patterns.

51

3.4.4 Role of software architecture in this thesis

The DisMis framework (chapter 4), as well as also other work presented in this
thesis (chapter 4.6), has been affected by the definition of software architecture
as a fundamental organisation that is present in any software system, as
explained in 3.4.1. The design work of the DisMis architecture has been
supported by the fact that the author has had previous experience in creating
architectures of similar kinds of solutions. In terms of software architecture
design, previous design experience in certain domains is one of the most
important factors that facilitate top-down system design on those domains.

Less effort has been given to any individual architectural method or style. Also,
the research nature of the work has given freedom to leave some qualities left
with less effort without causing any permanent damage to anything or anyone,
thus making it possible to neglect certain issues in the architecture that would be
impossible to be neglected in an industrial environment. On the other hand, it
has provided the opportunity to keep the development on a conceptually high
level, making it possible to keep the solutions generic. As the second phase that
has not yet taken place, the applicability of the DisMis architecture should be
proven in real implementations, fitted to operate on different application
domains. Such a process would provide valuable information that is not possible
to acquired otherwise.

In documenting the process of creation, software architecture has provided a
fundamental tool that has been required in completing that process, at least as
much as in recording the process. The origins of that process have leveraged the
related technologies as well as the actual implementations of distinct cases that
have been used, not only in validating the concepts, but also in giving
inspiration, for the presented DisMis architecture. One of those cases is
presented in this thesis as validation for the conceptual architecture given in
chapter 4.

The model used in designing and presenting the architecture of the framework in
this thesis has been adopted from the basic principles of the QADA method,
developed at VTT [44]. According to the approach in QADA, the architectural
design has been divided into a system requirement specification, conceptual
architecture design and concrete architectural design, which all have a

52

concurrent analysis task that processes the results and feeds them back to the
architecture or requirement specification, depending on the phase. As the
development of the work presented in this thesis has lasted over a period that
extends to time preceding the development of the QADA method, all the
principles could not have been followed as suggested in [44]. However, some of
those principles adopted from the method have been listed in the following:

• System requirements engineering has been completed as a continuous
task that has lasted for several architectures and implementations that are
based on the same requirements.

• Requirement analysis has been experienced, although it has been done
the “hard way” – by implementing the software architectures of actual
systems.

• Conceptual architectural design has followed the QADA, at least in
principle, by defining the functional responsibilities of the system (4.3).
However, the methods used have been more consensual. One version of
an earlier design of the same family of software architectures has been
presented in [44, pp. 84–115].

• The conceptual system has been divided into subsystems, as suggested.
• Conceptual deployment has been considered (Chapter 4), deployment

nodes have been identified, and the deployment units have been allocated
to nodes, as suggested.

• A hierarchical structure was created when designing the concrete
architecture. The structure has been presented in diagrams to a certain
extent.

Additional information about the QADA method may be found from [44]. With
a limited set of the given analysis methods concerning the architectural design of
a software system, the following chapter 4 introduces the architecture of the
DisMis framework.

53

4. Decentralised, distributed middleware
The main contribution of this thesis is a solution for decentralised, distributed
middleware. The conceptual approach and the terminology used will be provided
here first within the first two subchapters. Then, the details of the distributed
middleware solution will be presented by considering the software architecture
of a system that would be able to accomplish the required tasks. The explanation
related to the architecture has been divided into several subchapters. In order to
limit the length of the presentation in the context of this thesis, the level of
details in the architectural descriptions has been limited to a certain abstraction.
However, the most important purpose has been to provide a balanced look at
each part of the mechanisms and structures that belong to the presented
architecture. The selected technologies have been provided for comparison
between characteristics that have been suggested in existing solutions (3.1–3.3)
that belong to the domain. The comparison has been presented at the end of this
chapter, in subchapter 4.5.

4.1 Overview of the concepts

The purpose of this subchapter is to introduce the ideology behind the DisMis
architecture. All of the features in the different technologies, solutions, and
theories presented in the previous parts of this thesis have played their respective
role in the process of creating the idea of a platform for decentralised, distributed
middleware services. In addition, understanding the requirements of applications
that operate in spontaneous environments has been another strong motivator for
the solutions and decisions. Much of the most important experience related to
the practical operation of the technologies as well as to understanding the
requirements has been gathered in practice through real implementations.

54

 Figure 9. Layered view of Distributed Middleware Services.

The presented solution is called here Distributed Middleware Services. To be
specific, the solution involves decentralised middleware that is distributed. A
layered model presented in Figure 9 clarifies the location of Distributed
Middleware. As shown in Figure 9, middleware services used by distributed
applications, are produced by Distributed Middleware Service Producers. The
work presented in this thesis is a solution for Distributed Middleware Service
Producers.

Distributed middleware services are middleware (2.3) services that have their
internal functionality distributed somehow. A shorthand term “DisMis” has been
used throughout this thesis when referring to “Distributed Middleware
Services”. The term decentralised has also been used, although it has been
derived from the name DisMis for the sake of simplicity (considering the
abbreviation). Decentralised refers to the nature of the solution as an
infrastructure for spontaneous systems. It is based on a principle that provides
each distributed middleware user a chance to participate in producing the
middleware services that they utilise. Accordingly, there cannot be any specific
middleware service producer, whose tasks would be irreplaceable. This
generates the fundamental idea of a decentralised service platform – there is no
irreplaceable centralised element that produces the services.

Distributed applications

Middleware Services

Distributed Middleware Service Producers

Networking and Operating Systems
Infrastructure

55

Table 2. Use of terms related to the DisMis framework.

Term Brief explanation

Framework A framework may be thought of as a piece of unfinished
software architecture that defines the skeleton of a system but
requires complementation. It may be represented through an
implementation of a component or a set of components that
encloses functionality but requires complementation with an
external implementation in order to operate as purposed and
designed.

DisMis Distributed middleware services in general.
DisMis Architecture Software architectures related to a system that is able to create

distributed middleware services. Use of this term refers often
to certain design decisions in the architecture of the DisMis
framework.

User Application A distributed application that has to operate in a spontaneous
distributed environment. In the case presented, user
applications are the users of the distributed middleware
services. A user application may comprise several distributed
components. Each of those components has been built atop the
DisMis framework.

DisMis Framework The work done in this thesis. A complete implementation of
the DisMis architecture that appears as a framework. It is
presented as a solution for establishing an infrastructure for
distributed middleware services. The framework consists of a
component structure that has to be complemented with a user
application.

DisMis Framework
instance

A run-time instance of an implemented DisMis framework. A
user application may comprise several DisMis framework
instances, depending on the deployment.

DisMis Platform A common distributed middleware services platform that has
been produced by the interaction of separate DisMis
framework instances.

The practical solution presented in this chapter is an architecture of a software
framework for producing distributed middleware services. That architecture is
referred to as DisMis architecture. An implementation of that framework
architecture is called here accordingly as DisMis framework. The term
framework refers to the nature of the solution as unfinished software
architecture. Actual distributed applications that are to utilise the distributed
middleware services, have to be built atop the architectural framework. The set
of middleware services produced by the DisMis framework has been considered
as DisMis platform. Table 2 summarises the use of the terms that are related to
the solutions that are to be discussed in the following chapters.

56

4.2 Decentralised, distributed middleware services

Decentralised, distributed middleware services are middleware services that are
not executed or generated by a certain centralised component or system, which is
the case in many of the existing and legacy middleware solutions. On the
contrary, the approach proposed in this thesis suggests a solution in which the
middleware services required by the applications are produced by the
applications themselves.

It would be impossible to demand that each distributed application developer
would have to implement large software entities in order to make his/her
application participate in producing the middleware services as proposed.
Instead of such demands, this thesis proposes a DisMis framework that provides
an infrastructure for the distributed entities of a distributed user application. Just
as any other middleware solution, the purpose of the DisMis framework is to
hide most of the complexity involved in building the middleware services. The
strength of the DisMis framework is that its use should also be easy for the
application developer in practice. The model comprises only one structural
element, the DisMis framework. If considering its use in system composition, it
should be possible to think of the DisMis framework as a single component of
the system, thus making its use practical and visibility unambiguous. The
DisMis framework may, under certain circumstances, have a varying
configuration, but normally it is always the same. Therefore, knowledge over
only one component and its interface is required. Additionally, the interface
should comprise only a few operations. The only fundamental and structural
requirement of the proposed DisMis concept is that each part of a user
application that is about to operate as a separate entity within a distributed
system has to be built by using the DisMis framework as its basis.

In practice, the DisMis framework may be, for example, an abstract class, of
which all of the component’s main classes in a distributed system have to be
derived. Such an approach has been taken in the concrete architecture created
according to the conceptual structures presented in this thesis. The concrete
architecture has, however, been excluded from the issues presented in this thesis.

Distinct DisMis framework instances that operate in a networked environment
are able to discover each other as well as the services and capabilities offered by

57

each other. All the operation may take place over several interconnecting media.
DisMis framework is able to internally decide the responsibility for producing
certain middleware services as well as the responsibility for securing those
services. This takes place invisibly from the user applications that are built on
the DisMis framework. The benefit for the applications is that even in an
unstable and spontaneous environment, they may utilise more stable and reliable
(guaranteed to a certain distinct) services of the DisMis platform. An
explanatory view of the use of the DisMis framework in building a spontaneous
distributed application has been given in Figure 10, Figure 11 and Figure 12.

Figure 10 represents a fictitious configuration of four devices that form a
spontaneous network. As shown in the figure, the devices have been connected
with each other via different communication media such as Bluetooth, Ethernet
and IrDA.

 Figure 10. Interconnected devices in a fictitious configuration.

The imaginary software components in the devices of Figure 10 have been built
on the DisMis framework. The interconnected software constructs a layered
composition that has been visualised in Figure 11.

Physical Device #4

Physical Device #2

Ethernet

Physical Device #1

Physical Device #3

IrDA
Bluetooth

58

 Figure 11. A layered composition of software in the interconnected devices.

As shown in Figure 11, the DisMis platform, produced by the DisMis
framework instances, connects all of the software components within the
different devices present in Figure 10. From the viewpoint of the software
components themselves, the composition may be considered as simple as shown
in Figure 11.

A spontaneous distributed application may comprise software components that
reside in different devices and that are reachable over different media. This does
not of course mean that any software component could be connected with any
other software component in a spontaneous sense. On the contrary, the forms
and patterns of interaction have to be planned carefully. One of the most useful
approaches for such spontaneous interaction is that software components
consider each other as services that facilitate them to perform certain tasks such
as displaying image data, outputting sound, sending e-mail, etc. Applications
that are based on spontaneous awareness of such facilities may be functional
without any external services, but may be enhanced with additional features if
they become available. This, of course, depends completely on the particular
application. Some other application may merely wait until a necessary set of
external services is available before being able to start its own operation.

Physical Device #4

Software
Component D

DisMis-Framework
Component

Physical Device #1

Software
Component A

DisMis-Framework
Component

Physical Device #2

Software
Component B

DisMis-Framework
Component

Physical Device #3

Software
Component C

DisMis-Framework
Component

Network Infrastructure (Ethernet, WLAN, Bluetooth, IrDA, Serial)

Distributed Middleware Services

59

 Figure 12. An abstracted view of a spontaneous distributed application.

The software components presented in Figure 11 have to take the influence of
middleware into account in some of their operations. That would make the
presentation given in Figure 12 slightly too abstract in that sense, as the
middleware has been completely hidden in it. It is difficult, if not impossible, to
create pervasive transparencies that suit every purpose and every environment.
For example, the capabilities of different distribution media may sometimes set
severe limitations on the operation of a distributed application. This should be
taken into account in the development of possible interaction patterns of the
components in a distributed spontaneous application. Therefore the connectivity
between the user application components in Figure 12 should represent only one
of the possible configurations of the components, which accordingly constructs
only the concurrent system.

The flexibility in both the components and the connectors should be a built-in
feature for pieces of applications that are about to operate in a completely
spontaneous environment. That built-in flexibility is not visible in Figure 12.
The purpose of this thesis is to concentrate on the infrastructure that enables the
construction of such flexibility. The characteristics of the distributed and
spontaneous applications are left outside the discussion, even though they would
provide an interesting topic.

Software
Component D

Software
Component C

Software
Component B

Software
Component A

60

4.3 Key drivers for the architectural decisions

There were several factors that had to be considered in the architectural
decisions related to the design of the DisMis framework. These key factors have
been approached here through the most desired quality attributes as suggested in
3.4.2, and their impact on the design is presented.

Adaptability – attributes of software that bear on the opportunity for its
adaptation to different specified environments without applying other actions or
means than those provided for this purpose for the software considered [40].
Adaptability is the key motivator for the concept of distributed distribution
services, in which the middleware services are produced by a certain pattern of
interaction between all the interconnected application components that have
been built by utilising the DisMis framework.

Integrability – the ability to make the separately developed components of the
system to work correctly together [37, p. 84]. The reasons identified as
integrability were the key factors when deciding that the system should act as a
framework for all the components of distributed applications in a certain
distributed system. This means that the distributed applications are built on the
DisMis framework so that it becomes an integral and indistinguishable part of
the design.

Functionality – the ability of the system to do the work for which it was intended
[37, p. 81]. Functionality as a quality attribute is essential to the operation of the
DisMis framework; other designs in the distributed system could rely on it
during the complete time of their operation. Therefore, neglecting the
importance of functionality here could lead to serious decrease of functionality
in a system built on the DisMis framework. Functionality as a quality attribute is
non-architectural in its nature (3.4.2) [37, p. 81], thus it is mainly restricted by
the other quality attributes.

Availability – measures the proportion of time the system is up and running [37,
p. 80]. This quality attribute is related to two slightly different things in the
DisMis framework:

61

1) availability of the DisMis framework to the distributed application that is
running on it – this availability is related to the reliability of the DisMis
framework, and

2) availability of the DisMis platform, produced by the interacting DisMis
framework instances – this availability is related to the functionality of a
distributed system in which several user application components interact.

Usability – breaks down into learnability, efficiency, memorability, error
avoidance, error handling and satisfaction [37, p. 81]. The usability in this case
is not completely considered as a run-time attribute. There are two cases in
which the usability may be considered here:

1) the usability of the architecture to a developer who creates the software that
uses the DisMis framework, and

2) the usability of the platform services at run-time to the software that has
been built on the DisMis framework.

Extensibility – the ability to make changes quickly and cost effectively, the
ability to acquire new features [37, p. 83]. The requirement for extensibility was
already identified at the beginning of the design – the DisMis framework was to
act as a limited demonstrative system that could be extended at a future time to
better suit the purposes of certain application area. In order to support
extensibility, the system structure was planned to be composed of fairly
independent components that are loosely coupled with each other. The system
was planned to be composed of:

1) a communication service component that has protocol subcomponents in it,
2) system service components that utilise each other and the communication

service component,
3) platform service components that utilise system services, and
4) application service components that utilise system service components and

platform service components.

Additionally the communication between the distributed components was
chosen to follow a simple XML – based schema so that extending it in the future
would be straightforward.

62

4.4 Conceptual architecture of the design

According to the quality requirements presented in 4.3, the conceptual
architecture of the DisMis framework was drawn together. The primary function
of the DisMis framework is to produce middleware services for the use of
distributed applications. The secondary but no less important function is to
enable the distributed user applications to provide different services for each
other so that a community of interacting distributed application components
would be possible. In order to achieve those objectives, the responsibilities of
the system were divided between the components presented in Figure 13.

 Figure 13. High-level conceptual view on the DisMis framework.

The general responsibilities of the main components of the system are briefly
given in the following:

• Adaptation layer – an interface component for connecting the DisMis
framework with the application. The application services component is
visible to user applications through the adaptation layer.

DisMis framework component

Communication service

System services

Application services

Distributed application

Platform
services

Adaptation layer

63

• Communication service – asynchronous data between the separated
distributed components flows in and out through the Communication
service. Several services use the communication services.

• System services – services that are essential for the internal operation of
the DisMis framework.

• Platform services – services that are offered also to other DisMis
framework instances present in the network. A combination of these
services forms the DisMis platform.

• Application services – a combination of services that is applicable by the
user application components and accessible through an API. Application
service components are partly abstractions of the underlying platform
services and system services, but they may also comprise active
operation.

Distributed applications are built on the DisMis framework. The applications
utilise the services of the DisMis framework through certain relations that have
been implemented to the Adaptation layer. The adaptation layer is visible in
Figure 13. It is the layer just below the application. The internal operation of the
adaptation layer has been more precisely described in the concrete architecture,
excluded from this thesis.

The simple deployment in Figure 14 presents three components of a certain
distributed system that has been labelled as System X. The components have
been connected together with a distribution media. All components of the
System X have been built by utilising the DisMis framework. In practical
operation, the DisMis framework instances are constructed along with the
components of System X. Due to the operation of the DisMis framework
instances, all of the distributed components of the System X will be
spontaneously aware of each other. Each of the DisMis framework instances will
have a unique identifier that makes it possible to distinguish them from each
other.

64

 Figure 14. A simple example of deployment.

The conceptual deployment of a distributed application or a system that uses the
DisMis framework does not have to consider the physical deployment
practically by any means. The only thing that has to be taken into account is that
the devices running the software (i.e. the DisMis framework and the user
application component built atop it) have to be able to communicate over a
distribution media that is supported by the communication service of the DisMis
framework. In accordance with that requirement, the restrictions of the
distribution media have to be understood and conformed to by the user
application.

4.4.1 Subsystem structure

The conceptual parts present in Figure 13 were further divided according to their
responsibilities into the following conceptual subsystems that may be expressed
as components.

Adaptation layer

• No subsystems

Application services

• Directory service user

• System services user

Platform services

• Directory service

Distribution media

DisMis framework component

System X
Component 3

DisMis framework component

System X
Component 2

DisMis framework component

System X
Component 1

65

System services

• Lease service

• Discovery service

Communication service

• XML – parser

• Protocol adapter

• Protocol components

Generic features that cross the subsystem borders have been discussed in this
subchapter. Each of the subsystems will be discussed in the next subchapter that
considers each conceptual component separately.

Fundamentals of the Platform Services

 Figure 15. Application services comprise abstractions of underlying services.

One of the fundamental ideas in the distributed and decentralised middleware
services is that the platform services do not necessarily have active operation in
each of the DisMis framework instances that operate together within the
connectivity of each other. It may be enough that only one DisMis framework
instance in the network is providing a certain platform service, for example, the
Directory service. To serve that purpose, each of the platform service
components has a user role component that makes it possible to use the

System services

Application services

Platform services

system services
user component

represents
represents

platform servce
A user

component

platform
servce A

platform
servce B

platform servce
B user

component

represents

.....

.....

66

corresponding platform service, independent of its location. The operation of
user roles is presented in Figure 16. There are also user roles for system services,
which are always provided by the local DisMis framework instance.

Figure 15 presents the structure of the application services. The purpose of the
application services is to provide a common point of attachment to the
adaptation layer that has the task of finally presenting all the services of the
DisMis framework to the user application in a suitable form. System services are
present in the application services through a System services user component.
The System services user component always uses the local system services.
Platform services are present in the application services through a Platform
service user role component. A Platform services user role component may refer
to either a local or a remote service.

 Figure 16. User roles hide the locations of the platform services.

Distribution media

DisMis instance A

Platform service X

ACTIVE role

Platform
service X user

Requests
Responses

Distributed component A

DisMis instance B

Platform service X

PASSIVE role

Platform
service X user

Requests

Requests

Distributed component B

Responses

Responses

67

 Figure 17. Passive and active service roles.

User role components of the platform services provide all the functionality that
is required to use the platform service they represent. All the requests to use the
service are first given to the local platform service component, which is then
responsible for redirecting them if the corresponding platform service is not
locally available. In that case, the task will be assigned to an active platform
service component in another DisMis framework instance, as presented in Figure
16. Thus, the platform components introduce location transparency [4, 5]. The
different forms of availability of the platform services can be represented by
three possible cases:

1) The platform service may be locally present and active: thus locally available.
2) The platform service may be locally present but passive: not locally available.
3) The platform service may also be not locally present: not locally available.

DisMis instance 1

ACTIVE
platform
service A

ACTIVE
platform
service B

DisMis instance 2

PASSIVE
platform
service A

"user"

DisMis instance 3

PASSIVE
platform
service B

"user"

ACTIVE
platform
service C

uses uses

Distributed
application 2 Distributed application 1 Distributed

application 3

68

 Figure 18. Relationships between the components in the system.

Active and passive roles of platform services make it possible to create DisMis-
framework components that do not implement an active platform service, but
only the passive role and the corresponding user component. Therefore, small
devices that have more limited resources may execute applications that use
lighter versions of the DisMis framework, but still have the same services
available. This will, however, require a network of interconnected DisMis
framework instances in which the required active platform services are always
provided by some of those instances. Figure 17 illustrates a case in which the

DisMis framework component

Communication service

System services

Application services

Distributed application

Lease
service

Discovery
service

Command parser

Protocol adapter

Protocol component Protocol component

System
services
interface

Framework user roles interface

Service User Service Provider Directory Service

Platform services
Directory service

Search
service

Fetch
service

Registration
service

Service
storage

Network
manager

Directory
service user

69

active platform services of a large unit are exploited by smaller devices that have
more limited resources. Some platform services may also distribute the
responsibility of producing the services to several DisMis framework instances
at a time.

Figure 18 presents the relationships between all the components in the DisMis
architecture. Arrows in Figure 18 represent the generic command relationships
between the components. A component at the end of the arrow may be
commanded, and accordingly utilised, by the component from which the arrow
originates. Most of the relations are bi-directional.

The interface to the distributed user application itself takes place through an
adaptation layer. It represents all that is necessary for the distributed application
to know about the DisMis framework, in a suitable form. In the presented
DisMis architecture, the adaptation layer is a class hierarchy. According to it, the
distributed application is extended from one of the abstract base classes that
implement the DisMis framework in practice. The adaptation layer is
implemented as the Framework user roles interface, which is visible on top of
the DisMis framework component in Figure 18.

In the DisMis architecture presented, the amount of application services was
restricted only to the directory service user and to the system services interface.
Many other possible and planned services, such as transaction service and
synchronous messaging service were left for further development. An increase in
the possible set of platform services would, in turn, increase the amount of
choices in the adaptation layer. At present, three is adequate to represent the
repertoire offered on a necessary scale. The consequent framework user roles
have been labelled as follows:

Service user is the most limited of the DisMis framework user roles. A
service user does not provide any platform services, and the directory
service user role is limited to search and fetch operations. Thus, a service
user may only use the application services provided by other distributed
applications, but it may not issue such services by itself. Additionally, a set
of basic system services provided by the DisMis framework includes
operations for sending and receiving messages between different DisMis
framework instances in the network that is connected by the available,

70

suitable and supported communication media. Use of leased resources is
also possible by utilising the services provided by the service user role.

Service provider has additional functionality in comparison with the service
user. A service provider may use application services just as the service
user, but it may also register its own services to the directory service and
request leases to be applied by remote users utilising those services.

Directory service provider has additional functionality in comparison with
the service provider. In addition to registering, looking for, and using
application services, it may also host a directory service that provides
services to other DisMis framework-based applications. Thus, in the
presented DisMis architecture, directory service provider is the only role
that may host an active platform service.

4.4.2 Component structure

After the overview given on the generic issues that cross the subsystem borders,
this subchapter concentrates on the conceptual issues related to each of the
subsystems in turn. Those conceptual issues comprise the responsibilities, the
functional goal and the tasks that may be assigned to each of the subsystems
present in the DisMis architecture. An overview of the conceptual architecture is
also visible in Figure 18.

Application services subsystem

The application services subsystem consists of components with functionality
that is visible to the distributed user application. The number of application
service components may be increased at a later time. Currently there are two
distinct components in it: the System services interface and the Directory service
user.

The System services interface – component is responsible for converting the
available system services so that they are applicable to the use of the distributed

71

user application and possibly other components present in the application
services subsystem. This is not merely a question of converting the required data
structures or calling conventions, but the System services interface may also
include active operation related to monitoring the use of the services combined
with storing and caching of information when necessary.

The main functional goal of the System services interface component is to make
the internal system services applicable to the distributed application in the most
suitable way. Separate system services are applicable to each other most
probably in some other way – in that sense, the question also concerns
performing an interface conversion so that the system services do not have to
expose those interfaces that have relevance only in the internal operation of the
framework component. System services include the following operations:

• use of leases (see 3.2.2),
• provision of leases, and
• use of communication services to send and to receive information.

Directory service user – component comprises all the functionality that is
required to use a Directory service (see 2.4.3), including:

• registering a service to the Directory service,
• unregistering a registered service from the Directory service,
• searching for a service from the Directory service with a certain search

pattern, and
• fetching the service proxy data from the Directory service.

The Directory service user does not have to consider whether there is an active
directory service instance in the local DisMis framework instance or not, that
task is left to the Directory Service component itself. This has been presented in
the fundamental idea of the platform services in 4.4.1. In that sense, the
operation of the Directory service user component is very straightforward. Its
main responsibility is to pass the requests and responses back and forth between
the actual platform service component and the adaptation layer.

72

System services subsystem

System services are the fundamental services on which the core operation of the
DisMis framework relies on. The most important difference between the system
services and the application services is that the System services subsystem does
not use any services from the Application services subsystem. Instead, system
services only offer services to the application services. System services are also
allowed to use the other system service components in their operation. In
addition, the system services rely on the Communication service. There are
currently two distinct components in the System services subsystem. Those
components are the Discovery service and the Lease service.

The Discovery service – component (see 2.4.2) has the responsibility of
discovering the nearby components (that are built by using the DisMis
framework) when necessary, by utilising the multicast or broadcast capable
media provided by the communication service. Additionally, the discovery
component has the responsibility of announcing its presence to other
components if required. This also takes place by utilising the broadcast or
multicast capable media through the communication service. Discovery follows
a certain functional pattern in exchanging information with another Discovery
service components that reside in other DisMis framework instances. As a result
of the operation of the Discovery service, it issues a list locally that comprises
the applicable discovered components. The applicable components are, for
example, active Directory service components, Lease service components, or
other Discovery service components. In accordance with that, the Discovery
service also advertises those local components that are present in the local
DisMis framework instance to other, remote instances of the DisMis framework.
Operation of the Discovery service is rather autonomous, and after its
initialisation, other components may concentrate on utilising the list of available
components, provided by the Discovery service.

The Lease service – component introduces the concept of leasing to the DisMis
architecture. A lease is a contract between a resource and its user, as presented in
3.2.2. According to a lease, a certain resource is leased for use for a certain
period of time. The Lease service has two primary purposes that introduce two
distinct roles present in the concept of leasing:

73

1) Lease provider: The Lease service may be asked to provide a certain amount
of leases to a certain resource. The leases may have various lengths.

2) Lease user: A lease user may ask for a lease from a lease provider (the Lease
service). If the lease expires and it is not renewed, the lease user is no longer
allowed to use the leased resource.

The Lease service has the responsibility of keeping count of leases that have
been assigned to its responsibility. Typically the Lease service provides leases
for the platform services that are available in the DisMis framework. If a lease to
a service expires, the Lease service provides an announcement about it to the
corresponding platform service, which may then discard the user of the service
accordingly. Distributed applications built by using the DisMis framework may
also provide or use their own leased resources.

Platform services subsystem

The platform services subsystem comprises services that may be utilised by the
user application of the local DisMis framework instance, as well as by the user
applications of remote DisMis framework instances. Platform services of
multiple DisMis framework instances together form a single Distributed
Middleware Service (DisMis) platform that is applicable for all the involved
DisMis framework instances as well as for the user applications that are running
on them. Platform services use the Communication service and the System
services subsystems in order to fulfil their task.

Platform services have two modes of operation. Those modes are simply either
active or passive. A platform service that has an active role in some of the
DisMis framework instance may be considered an instance of that service,
residing at the same location as the DisMis framework instance. The active
platform service instance then serves other framework components that have the
user role for that platform service.

In its passive mode of operation, the platform service has the task of locating an
active platform service of similar kind from its neighbourhood. This takes place
by utilising the Discovery service. When a suitable service has been located, the
passive platform service will assign the tasks given to it to the active component

74

that has been found. Currently, the only platform service available is the
Directory service.

The Directory service – component is responsible for gathering information
from the surrounding network of interconnected DisMis framework instances by
utilising the Discovery service. According to that information, it will either
enable or disable its active mode of operation. (See 2.4.3 for more information
on directory services).

Active Directory service operation is started if there is not enough Directory
services in the network discovered. On the other hand, if there are too many
Directory services in the network, some of them will implicitly be shut down.

A Directory service has the following responsibilities during its active operation:

1) It has to accept registrations and store the accompanying proxy objects from
the surrounding application components.

2) It has to keep count whether the registered application components are still
available and remove registrations if necessary.

3) It has to react to search requests by browsing through the services registered
within it that match requested attributes and then by responding with a list
that comprises the matching services.

4) It has to respond to fetch requests by sending the requested proxy objects as
a response.

In the passive mode of operation, the Directory service component is responsible
for locating an active Directory service from the network of framework
components and then for passing the commands to it, as described earlier in this
chapter.

The Directory service component comprises the following subcomponents:
Network Monitor, Fetch Service, Search Service, Registration Service, and
Service Storage. The operation of the Directory service component is in practice
provided by them. Tasks of those subcomponents have been presented in only in
the concrete architecture, excluded from this thesis.

75

Communication service subsystem

The Communication service subsystem provides the DisMis framework with a
uniform way of transporting data and command from one DisMis framework
instance to another. Its fundamental purpose is to provide implicit connectivity,
as described in 2.4.1, between different DisMis framework nodes and the
software elements within them. The Communication service is used internally by
the subcomponents of the DisMis framework as can be seen from Figure 18.
User applications may also transfer information by using the Communication
service through the system services abstraction in the Application services
subsystem.

Before any data can be transported, it is has to be converted into a uniform type
that may be produced, sent, received, and understood easily. Internal
representation of a programming language, the use of serialised objects for
example, is not usually such an easily understandable form of representation. A
tagged XML-style data format, on the other hand, is more suitable for that
purpose. The use of XML-style tagged language has been encouraged in order to
make the transformed information more understandable, even though the
practical choice of ending up with any other form of encoding the information
would not have had any significant architectural relevance to the level of
conceptualisation presented.

Thus, when data is received, it is first transported to the internal representation,
described by the DisMis architecture, and then passed on to the corresponding
receiver component, depending on the message content. Each component that
belongs to system services or to platform services has the right to sign itself up
as a message receiver in the Communication service. When a message to a
registered message receiver arrives at the Communication service, it is then
passed on to the corresponding receiver component.

The Communication service may implement several methods of transporting
information through different media and with different protocols. This takes
place through an abstraction provided by the Protocol adapter component. The
Protocol adapter component provides two tasks:

76

1) It abstracts the sending of data through multiple media to a simple and
conceptual level, in which only the relevant subjects have significance,
namely the identifier of the destination and the message content.

2) It combines all the data received from the protocol components and passes
them on to the XML parser to be transformed into the local representation.

Protocol components are connected to the Protocol adapter, all with a similar
interface that provides the necessary functionality but hides the involved
complexity.

4.5 Comparison of DisMis architecture with the
technologies presented

As stated in chapter 3, there are similarities between the technologies presented
(3.1-3.3) and the solutions provided by the DisMis architecture. In order to bring
out the influence of the existing solutions, this subchapter lists the most
important of the existing relations and links them with the features that have
been chosen for the DisMis architecture. The most important dissimilarities have
also been identified. The similarities and dissimilarities have been presented
respectively in Table 3 and Table 4.

77

Table 3. Similar features of the DisMis architecture and the existing solutions.

Technology Similarities
CORBA 1. Both solutions enable component interaction in a distributed

environment.
2. Both solutions offer a certain core set of middleware services

that act as fundamental building blocks when constructing
distributed applications [15, pp. 151–242].

3. A unique handle given for the elements of distribution is the only
information required to reach that element in a distributed
environment [15, pp. 15, 24–25].

4. Both solutions introduce a single protocol for the information
interchange between distribution nodes (ORBs in CORBA). In
CORBA, that standard is the General Inter-Orb Protocol, GIOP
[45, 15, pp. 102–104]. In DisMis architecture, the name of the
protocol has not been specified.

COM/
DCOM

1. Both solutions enable component interaction in a distributed
environment.

2. Both solutions have the ability to choose a suitable medium for
communication between separate devices in a distributed
environment [18, p. 439].

3. Both solutions comprise a runtime entity that is responsible for
locating the functional elements of distributed applications. That
entity is called the Service Control Manager (SCM) in COM [18,
pp. 62, 334]. The DisMis framework component performs the
same action through the Directory Service.

EJB 1. Both solutions enable component interaction in a distributed
environment.

2. Both solutions enable a plug-and play assembly of software
components [20, p. 6].

3. Both solutions have functionality for locating other functionality
from the present service environment [20, pp. 36–39].

4. Both solutions provide a framework for building software
components that are used in constructing a certain system [20
pp. 21–31].

RMI 1. Both solutions enable component interaction in a distributed
environment

2. Both solutions have a certain registry that stores bindings
between implementations and a certain set of parameters that
describes them. In RMI that registry is called the RMI registry
[27, p. 42]. The DisMis framework uses the Directory Service
for the same purpose.

3. Both solutions, when used with Java, encourage the use of
mobile code in distributing functionality between elements of
distributed applications.

78

Jini 1. Both solutions enable component interaction in a distributed
environment.

2. Both solutions enable spontaneous networking.
3. Both solutions provide a versatile Directory Service that can

store different kinds of information entities and look them up
when given certain attributes.

4. Both solutions use leasing in keeping count of registrations and
service usage.

5. Both solutions provide the means to perform a discovery
operation in a broadcast-capable medium.

OSGi 1. Both solutions enable component interaction in a distributed
environment.

2. Both solutions connect several means for exchanging
information.

3. Both solutions are able to operate with devices that use point-to-
point connectivity methods.

4. Both solutions comprise a service account that may be searched
for a suitable service. In OSGi that service account is called the
service registry [31, pp. 31–37].

UPnP 1. Both solutions enable software interaction in a distributed
environment.

2. Both solutions provide the means for spontaneous, peer-to-peer
connectivity of devices.

3. Both solutions provide a way of advertising services and
resources in a spontaneous environment.

4. Both solutions provide a way of delegating the task of
advertising services and resources to a certain entity that may be
accessed by most of the network nodes.

5. Operation of UPnP is dependent on certain control points that
have to reside in one of the devices in the network of systems
that form a UPnP network. DisMis architecture is not dependent
on any centralised service elements, but a directory service is a
similar element to the UPnP control point.

Gnutella 1. Both solutions enable spontaneous peer-to-peer connectivity that
is based on the assumption that the knowledge about the
presence and location of the peers is received during the
operation of the system.

2. Both solutions enable information transfer in peer-to-peer
communities.

3. Both solutions distribute information about the information that
one or several nodes in the network is delivering (DisMis
directory service vs. Gnutella protocol).

4. Both solutions provide the means for searching for information
from a distributed community.

79

Table 4. Dissimilar features between existing solutions and the DisMis architecture.

Technology Similarities
CORBA 1. CORBA uses objects as elements of distributed composition of

applications. The DisMis framework connects complete components.
2. CORBA provides interconnectivity for distributed objects by

using RPC [15, pp. 14–16, 28–29]. The DisMis framework does
not support the means for RPC or connectivity on object-level.

3. CORBA uses static elements called Object Request Brokers
(ORBs) in connecting the elements of distributed applications.
The DisMis framework component creates a dynamic service
infrastructure that is completely included in the components that
utilise the framework.

4. CORBA relies on TCP/IP in its operation [15, pp. 103–104].
DisMis architecture supports the use of various media.

COM/
DCOM

1. COM uses instances of COM classes, called COM objects, as
elements of distributed composition of applications [18, pp. 39,
10–26]. DisMis architecture connects complete components.

2. COM programming model requires a certain set of base services
from the platform to support its operation [18, pp. 26–27].
DisMis architecture requires only access to a distribution
medium through protocol components.

3. DCOM provides interconnectivity for distributed objects by
using RPC [18, pp. 439–478]. The DisMis framework does not
support RPC or connectivity on the object-level.

4. DCOM utilises a static infrastructure that has to be supported by
the infrastructure in which the COM applications are executed.
DisMis framework component creates a dynamic infrastructure
that is completely included in the components that utilise the
framework.

5. Interfaces to distributed entities have to be defined by using the
MIDL. DisMis architecture does not provide the means for interface
definitions. A common understanding has to be reached on the
application level by utilising the related programming model.

EJB 1. EJB relies on TCP/IP in its communication. DisMis architecture
does not constrain the distribution medium [20, pp. 51–59].

2. EJB provides a container for the operation of software
encapsulated within beans. DisMis architecture does not provide
a container for software to execute in.

3. EJB defines a multi-tiered client-server model that is based on
either a Session Beans model or an Entity Beans model [20
pp.21-31]. The DisMis architecture does not provide a model for
software component interaction. Instead it provides the means
for peer-to-peer kinds of solutions to access each other’s
resources.

RMI 1. RMI provides the means for connectivity on the object-level.
DisMis architecture supports connectivity only on the
component level through message passing.

2. RMI relies on TCP/IP in its operation. DisMis architecture is not
bound to any specific distribution medium.

80

Jini 1. Jini does not support a means for building a dynamic service
infrastructure. Instead, static services are used. DisMis
architecture always relies on a dynamic service infrastructure
that may be established by any component in the network. It is
seen as a more suitable solution for a truly spontaneous
environment.

2. Jini relies on Java RMI in most of its internal operation [24, 26],
thus binding the solution to TCP/IP. DisMis architecture
encapsulates its commands into simple messages that are
transferred by using the internal Communication Service, thus
enabling the use of any medium in its internal operation.

OSGi 1. OSG is a static element in the network of distributed appliances
[31, pp. 11–12] Thus, the infrastructure related to it cannot be
established in a dynamic manner.

2. OSGi provides a context for the services to operate in a single
entity called the Service Management Framework. DisMis
architecture connects several equal distributed components that
are connected by a suitable medium.

UPnP 1. UPnP is not a framework for applications, it is a protocol and a
reference for applications that are willing to implement that
model.

2. UPnP is based on common conventions about the used protocols
between devices. DisMis framework tries to reach a level that is
independent of the protocols.

3. UPnP control points do not have the capability of replacing each
other’s operation in case of a failure or shutdown. In the DisMis
framework, robustness has been achieved through the replication
of data and services.

Gnutella 1. Gnutella is not a framework for applications, it is a protocol.
2. Implementations of the Gnutella protocol do not provide any

means for building applications or functionality that are based on
them.

3. Gnutella does not offer any other modes of communication than
searching and distributing the files that are stored within the
community.

4. Gnutella does not provide any services that would be established
as functional entities or instances. DisMis architecture creates an
adaptive distribution service for at least one node of the network.

4.6 Validation of the architecture

No implementation of the DisMis architecture has been built as such. The
architecture has been validated with separate implementations, each of which
covers one or several parts or design decisions present in the architecture of the
DisMis framework. There are also components whose operations have not been

81

validated through implementations, but through analysis of design decisions and
patterns present in existing commercial or freely available solutions. This
subchapter presents an implementation of the Dynamic Distribution Platform
(DDP), which is the most important single source of practically implemented
validation for the DisMis framework.

4.6.1 Dynamic Distribution Platform

The Dynamic Distribution Platform (DDP) was an implementation of a
framework with many similar features to the DisMis framework presented in this
thesis. The author’s contribution to the ideas, design, and implementation of the
DDP was 50% of the total work. Thus, the DDP may be considered as the first
pilot implementation of the concept of distributed distribution services
presented. That also makes it the most important source of validation and
inspiration for the work done in this thesis. The DDP framework is presented as
validation that considers all of the subsystem components (presented in 4.4.1 and
4.4.2) within the DisMis framework.

Description of the implementation

The original motivation for the DDP was an idea to build a framework for
distributed applications which would comprise all the functionality that is
required for the task of distribution. Therefore, an application that has been built
by utilising the framework would not require any other external components in
performing the act of distribution. The independence over any external service
provider has been reached by distributing the services that are required for the
distribution.

In the DDP, the actual distribution services are the discovery service and the
directory service. Distribution of the distribution services has been implemented
so that each of the participating nodes in a network of distributed applications
should be able to host any of the distribution services. Thus, if a service is not
available for a node that hosts an application or a piece of an application, the
required service may always be created by the DDP framework instance on
which the software in the node has been built upon. Activation of the services
takes place automatically without any user intervention and it is therefore fully

82

transparent to the application or its user. Transparent in this context means that
the application or the user does not have to know whether the utilised
distribution service, for example the directory service, is located in and hosted
by the local node, or any other node, as long as there is a node that hosts the
service.

Another important goal of the DDP was to demonstrate an approach that makes
it possible to connect the pieces of distributed applications that may reach each
other over various means of communication. That goal was not fully satisfied in
the final design in which the nodes may reach each other only through IP-based
network connections. In the DisMis architecture, however, the idea of the ability
to communicate over different media has been preserved and concretised.

Several issues that were in the original plan for design and implementation of the
DDP were left unanswered. Many of those questions have been answered in the
DisMis architecture presented in this thesis. The most important of those issues
were:

1) The implementation supported only IP-based means of communication.
2) There was no intelligent control or means of transferring the responsibility

of a distribution service from a node to another.
3) There was no means of securing the information located by a node that hosts

a service.
4) There was no means of securing a quick recovery of a distribution service in

a situation of sudden failure.

83

 Figure 19. A diagram representing the core classes and their relations in the DDP.

The class diagram of the core classes of the DDP is presented in Figure 19. In
the class diagram of Figure 19, the structure that corresponds to the user roles-
hierarchy also present in the DisMis architecture may be seen on the right hand
side. The user-role classes e.g. ServiceUser, Service, and DirectoryService
utilise some or all of the core classes e.g. XMLResolver,
MulticastBeaconListener, HttpRequester, LeaseManager and
DSNetworkMonitor, seen on the left side of the user role classes. Those core
classes utilise further the DSHttpServer, DSActor, DSRequestServer,
DSXMLParser and DSMulticastBeacon. As a result, the framework performs the

XMLResolver

<<HashTable>> resolveXMLDocument()

DirectoryService
DSNetworkMonitor

DSNetworkMonitor

<<void>> startNetworkMonitor()
<<void>> stopNetworkMonitor()
<<boolean>> DSIsActive()
<<void>> setMaxServiceCount()
<<int>> getMaxServiceCount()
<<int>> getServiceCount()
<<void>> setShutDownTime()
<<int>> getShutDownTime()

DSXMLParser

<<byte[]>> parse()

MulticastBeaconListener

<<DSSignal>> getLastSignal()
<<DSSignal[]>> getSignalList()
<<void>> setListSize()
<<DSSignal>> getSignal()

DSMulticastBeacon
multicastAddress
multicastPort

<<void>> setSignal()
<<void>> setSignalInterval()

ServiceUser
MulticastBeaconListener
HttpRequester

<<URL>> locateDirectoryService()
<<ServiceInfo[]>> searchService()
<<Object>> fetchService()
<<byte[]>> fetchServiceBytes()

Service

<<DSRegisterResponse>> registerService()
<<DSUnregisterResponse>> unregisterService()

DSActor
serviceInfoList
serviceList

<<void>> setMaxServiceCount()
<<int>> getMaxServiceCount()
<<int>> getServiceCount()
<<void>> setShutDownTime()
<<int>> getShutDownTime()
<<DSSearchResponse>> search()
<<DSFetchResponse>> fetch()
<<DSRegisterResponse>> register()
<<DSUnregisterResponse>> unregister()
<<DSUpdateResponse>> updateRemoteServiceList()
<<void>> setState()
<<int>> getState()

DSRequestServer

<<void>> start()

HttpRequester

<<CommandResponse>> submitCommand()
<<byte[]>> httpGet()
<<byte[]>> httpPost()

DSHttpServer

<<int>> getPort()

LeaseManager

<<void>> start()
<<void>> stop()
<<void>> setInterval()
<<int>> getInterval()

84

actions of discovery, leasing, directory service, message parsing, and HTTP
client and server operation.

 Figure 20. The message classes used in the DDP.

The message classes used in the parsing and processing of the requests as well as
in responding to them, have been shown in Figure 20. The message classes have
been divided into two taxonomic groups: requests and command responses.
There is also a special message class, called ServiceProxy. An instance of a
ServiceProxy may contain a serialised instance of a Java class whose class file
has been located in another node within the range of TCP. A functional instance
of the enclosed class may be extracted from the ServiceProxy instance. During

DSSignal

directoryServiceAddress
directoryServicePort
directoryServiceState

<<byte[]>> getXMLDocument()
<<DSSignal>> parse()

Command

COMMAND

<<byte[]>> getXMLDocument()
<<Command>> parse()

SearchCommand

implementationType
serviceType

<<SearchCommand>> parse()

UnregisterCommand

serviceID

<<UnregisterCommand>> parse()

LeaseCommand

serviceID
leaseTime

<<LeaseCommand>> parse()

FetchCommand

serviceID

<<FetchCommand>> parse()

DSUpdateRemoteServiceListCommand

items
action

<<DSUpdateRemoteServiceListCommand>> parse()

DSCommandResponse

serviceID
shutDownTime
currentLeaseTime
directoryServiceState
responseValue

<<byte[]>> getXMLDocument()
<<DSCommandResponse>> parse()

DSLeaseResponse

<<DSLeaseResponse>> parse()

DSUnregisterResponse

<<DSUnregisterResponse>> parse()

DSRegisterResponse

<<DSRegisterResponse>> parse()

DSUpdateResponse

<<DSUpdateResponse>> parse()

RegisterCommand

serviceProxy

<<RegisterCommand>> parse()

DSFetchResponse

serviceProxy

<<DSFetchResponse>> parse()

ServiceProxy

implementationType
serviceType
serviceAddress
servicePort
serviceURL
serviceData
shortServiceDescription
serviceDescription

<<void>> insertDataObject()
<<Object>> getDataObject()

DSSearchResponse

serviceInfoArray

<<DSSearchResponse>> parse()

ServiceInfo

serviceID
name
directoryServiceURL
leaseTime
serviceDescription
shortServiceDescription

85

the activation of any method in the imported proxy, JVM is guided to download
the class file that contains the actual code from a remote location by using a
separate class loader. The use of the ServiceProxy class is the main issue in
transferring functionality in a distributed system when utilising the DDP.
However, because the architecture and functionality of the DDP framework is
not the main focus of this thesis, those topics beyond this brief introduction will
be left without further consideration.

Validation by implementation

The conceptual architecture of the DDP has many similarities to the DisMis
architecture presented in this thesis. The most important of them have been
identified and listed in Table 5. Design of the DDP was, however, deficient in
the sense that no high-level conceptual architecture was drawn. The design was
implementation-centric and started from concrete architectural things like class
diagrams and interface definitions. Accordingly, responsibilities between
different concepts were left undefined right from the beginning. Difficulties in
understanding all the design rationale in the later phases of the implementation
made it impossible to introduce large modifications.

For the author the DDP was, however, essential practice towards understanding
the meaning and importance of appropriate architectural design in software
systems. The approach presented in the design concerning the DDP is a practical
example of a bottom-up style of building software architectures and systems.
When many issues that are related to the design are unknown at the time of the
design, some of those decisions may have to be made without precise knowledge
about their effect on the later phases of the design. In the case of DDP, the
bottom-up style was the only appropriate method since no previous knowledge
of building such systems was available at that time.

Despite the defects, there were also good practical design decisions in the DDP
that have been imported from it to the design of the DisMis framework as such,
or with slight modifications. Most of the similarities can be spotted from the
following Table 5.

86

Table 5. Comparison of features between the DDP and the DisMis framework.

Service DDP DisMis framework
Three user roles implemented as a
class hierarchy.

Three user roles implemented as a
class hierarchy.

User roles interface

No adaptation layer between the
user roles and the framework
implementation.

An adaptation layer between the
user roles and the framework
component makes it possible to
create different kinds of interfaces
to the framework.

Directory Service is the only
platform service.

Directory service is the only
platform service.

No container component for the
platform services. Each user role
uses the components directly.

A container component for the
platform services. Each user role
gets to access the platform
services through the Application
Services component.

Distributed Platform

Services

Passive and active directory
service roles, active directory
service serves the passive ones.

Passive and Active platform
service roles, active platform
services serve the passive ones.

Lease Service and Discovery
Service are the only System
Services.

Lease Service and Discovery
Service are the only System
Services.

System Services are not
subcomponents of a System
Services component.

System Services component has
separate system services as
subcomponents that act
independently.

System Services

System Services partly integrated
to the framework main
component.

System Services is a distinct
component that is utilised by the
platform services and the
Application Services.

Lease Service Lease Service is only used by the
Directory Service in maintaining
the leases of the owners of
registered information.

Lease Service is used by the
Directory Service and the
Application Services component.
Application Services component
provides the Lease Service to the
user applications.

Lease Service is partly integrated
with the Directory Service. A
separate Lease Manager
component takes care of the lease
updates of a lease user.

Lease service is a subcomponent
of System Services. It provides
leasing services in a universal
way so that any identifiable
resource may be considered a
leased resource.

87

Discovery Service is a separate
component that acts independently
and provides discovery information
for other components.

Discovery Service is a subcomponent
of System Services. It provides
discovery information for other
components.

Discovery Service

Discovery Service is integrated with
the UDP communication protocol
and utilises Multicast in discovering
framework instances.

Discovery Service is not bound to
any specific communication protocol,
instead, it utilises all the broadcast
capable Protocol Components of the
Communication Service.

Communication Service in practice
bound to the HTTP and TCP
protocols.

Communication Service may have
several Protocol Components
attached to it. New means of
communication may be introduced
by creating new Protocol
Components.

It is assumed that the communication
between framework instances is
synchronous.

It is assumed that the communication
between framework instances is
asynchronous.

Some responsibilities of the
Communication Service are also
implemented by other components.

Communication Service is
responsible for all communication.

Communication Service is bound to
the components that receive data, the
message types are hardcoded to the
software.

Components register within the
Communication Service in order to
receive messages. Within the
registration, the components provide
a way of performing the
transformation between the internal
Object representation and the XML
form, used in transferring the
messages.

Communication

Service

Messages are represented internally
by objects that may be transformed to
XML form and back at any time.
Messages are transferred in XML
form.

Messages are represented internally
by objects that may be transformed to
XML form and back at any time.
Messages are transferred in XML
form.

4.7 Summary of the validation

The example presented in this chapter was chosen especially according to its
relevance in providing the initial motivation for the DisMis architecture.
Although there were also other sources of inspiration and validation for the work
presented in this thesis, the DDP may be considered as the most important
example of them because it actually trials a concept that is very similar to the
DisMis architecture. The most important contributions of the DDP for
supporting the task of validation were:

88

• the overall concept of distributing middleware services,
• the operation of the discovery service,
• the operation of leasing and
• the operation of an XML-based message representation and serialisation.

There were also other related trial approaches and cases that have had an
important task in validation. Those considered are such that have been
implemented and primarily contributed by the author, but excluded from the
discussion of this thesis. The main topics of those cases or trials have been listed
below:

• A trial with a distribution framework for spontaneous networking with Jini.

• A trial with a distributed and spontaneous video camera application that
utilises a distribution framework [46].

• An industrial case with a spontaneous UDP communication protocol and
middleware.

• A trial with a Bluetooth connectivity component for Java.
• A trial with small devices with a mobile code interface [47].
• A trial approach with semantic middleware in spontaneous networking of

software [48].

Validating an architectural concept through ready-made implementations that
are more or less dissimilar with the one being validated, is not straightforward.
Even though most of the implementations that were brought out have originally
provided the necessary knowledge, innovations and inspiration for the DisMis
architecture, a complete validation is not possible in the context of this thesis.

Additionally, the success of validation by such a method is not axiomatic.
Especially if considering the act of validation as a step-by-step description of the
system’s operation, proceeding mechanism by mechanism until all the technical
details could be considered as trivially solved. Such an approach for validation is
not suitable for the case with the DisMis architecture with the current sources of
validation, most importantly because of the lack of a trial implementation or
simulation of the DisMis platform itself.

89

Instead of such a complete description, the separate implementations used for
validation have provided valuable information about the state of the research
work brought into practice. Bringing them out here is an indication that many of
the technical details considered in the DisMis architecture have been
implemented in practice, one way or another, thus providing knowledge and
necessary background to support the issues presented in this thesis.

There are issues in the DisMis architecture that have not been validated by any
examples. Those topics can be divided into two categories. Either they are trivial
for a person skilled in the art and therefore do not require further explanation, or
they are such that the author has not implemented any experiments that could be
related to them. The most important factors of those issues that lack
experimental validation have been given in the following:

1) Use of data or service replication in securing service availability. The issue
has been studied, for example, in [49, 50]. Further work would be required
to suit the service and data replication scheme as presented in this thesis.

2) Performing ad-hoc routing between nodes (DisMis framework instances)
that have a distance of more than one hop, each of which occurs through a
different medium. The issue has been excessively studied, as illustrated by
the examples and studies in [51, 52, pp. 53–295, 53, 54]. The presented
DisMis architecture does not propose a solution for the question.

3) Mechanisms for an error model. The architecture developed so far gives less
contribution to the development of an error model that would operate in a
distributed and spontaneous environment. In practice, development of such a
model, practices and related patterns would be crucial.

4) The practical mechanism for decision making that considers the activation,
shutdown and replication of platform services. The required mechanisms are
application specific and therefore no direct example may be drawn from the
related research. However, appropriate methods might comprise, for
example, the use of fuzzy logic [55], neural networks [56] or case-based
reasoning [57]. Their applicability to the problems should be tested with
simulations. Thus, further research is required.

5) The best way of accepting the limitations caused by differences in the
connection speeds of different media and protocols. Here, the issue is strictly
related to the particular operation of the DisMis framework. Therefore,

90

a straightforward and precise answer cannot be found from the related
research. The problem is apparent, for example, when faced with a task of
replicating a large directory service through a thin connection. In a case
where the connection speed is not enough to keep up with the replication due
to the amount of transactions that take place on the service, the service is in
danger of being vulnerable to errors all the time. An excessive overload on a
connection may also cause data transfer buffers to overflow, creating a
requirement for a replication data filter of some sort.

6) How to build software that utilises the DisMis framework in the most
sophisticated way. The topic has intentionally been left outside the
discussion presented in this thesis, but it should be extensively studied in
further research.

All the presented issues that lack experimental validation can generally be
considered to be topics for further work. Further effort would also be required in
order to actually implement and test a DisMis framework in practice. Some
practical results, like processor load compared with the node amount in a
network, or practical performance and robustness of a DisMis system, could not
otherwise be achieved without a complete simulation. Accordingly, practical
work and implementations are most evidently required.

The validation of the DisMis architecture is not completed within this chapter.
Similarly, the architecture of the DisMis framework is not completed within this
thesis. Further development of the concept that would also comprise
implementations is an interesting and challenging task to accomplish. To answer
the questions of a complete solution, a complete architecture, or a complete
implementation can be considered the goal that the task of the related further
research is set out for from this day forward.

91

5. Conclusion
An imaginable, perfect instance of distributed, decentralised middleware would
always be available to its user despite the spontaneous nature of its environment
and without any compromises whatsoever. When building the DisMis
framework architecture, it was soon found out that it is quite impossible to
produce a system that would create such a perfect instance of distributed
middleware. Adaptability in a spontaneous environment is a trade-off with the
simplicity of the system structure that produces it. Similarly, it is a trade-off
between the ease of use of the middleware that maintains it. Extreme
adaptability is likely to lead to the development of complicated mechanisms and
administration. The trade-off shows explicitly in the level of abstraction that the
DisMis framework offers to a software developer who is utilising the
framework. As a consequence of the trade-off, the application developer has to
face the spontaneous environment, thus it cannot be completely hidden or made
transparent.

When the environment or domain of software development changes radically
e.g. from static to spontaneous, the correct way to build software architecture for
that environment is likely to change as well. All the features present in the model
of building software for static environments cannot be used in their existing
form when building software for spontaneous and dynamic environments.
Similarly it is impossible to use the concept of transparency as an adapter that
would convert between the requirements issued by either static or spontaneous
domains. The task of the DisMis framework can be considered an attempt to
provide the functionality of such an adapter. As an implication, it is impossible
to completely solve the task. However, it would be an important benefit if a
distributed middleware could provide the developer of spontaneous systems with
even a bit more static, and therefore a more familiar environment to work in.

Current requirements demand that software has to be produced to operate in ever
more demanding environments. The increasing complexity and dynamics of the
operating environment of a software unit should not make its development
proportionally more difficult. In that sense, a more static environment is
precisely what the DisMis framework attempts to provide, static elements to an
environment that might otherwise be completely dynamic.

92

One of the overall goals of the work presented here has been an attempt to
provide simplicity for a software developer. If a solution fails to appear simple
to the end user, its applicability will suffer severely despite its technical content.
On the contrary, some solutions and tools have succeeded in reaching a symbolic
value that may be understood just by giving an abstract explanation that
comprises only a few phrases. Similarly, the DisMis framework should appear to
the user as an abstract and simple tool. The goal of simplicity has mainly been
provided within the DisMis architecture by restricting the amount of operations
that a user might have to face when using the DisMis framework. Another point
that considers simplicity is a logical point of attachment for the user
applications. Those issues of simplicity have been considered within the
complete architectural development of the DisMis framework.

Another goal of the work was that it should provide practically relevant
solutions and content to the field of distributed computing. Currently (2002),
there are no middleware solutions that would produce distributed middleware
services in a completely decentralised manner. At least such solutions do not
exist to the knowledge of this author. This thesis provides insight into the design
challenges faced when producing such services. The solutions, models and ideas
that have been provided here should also be applicable in the use of industry.
The amount of distributed software in the use of industrial applications is vast
and increasing. Inflexibility faced in rearranging and reconfiguring the software
components or products may lead to financial losses. Approaches adopted from
the DisMis architecture might provide new insight into the development of
industrial products that carry a long legacy of doing things in the one and only
“right” way. There may be also other “right” ways.

When evaluating the approach presented here, it should be considered that the
particular purpose of the work has been to find new ways of doing things, and
the applications have been mainly research related. Accordingly, some
requirements such as real-time characteristics have not been considered. It is
evident that some of those characteristics that have not been considered in the
DisMis architecture might appear crucial in an industrial environment. However,
it should not be seen as a restriction to the applicability of the ideas proposed
here. A software architecture is a trade-off between the required quality
attributes. In industrial use, the same original ideas might have led to a partly

93

different architecture, fulfilling some requirements better and probably
neglecting some of the existing ones.

The use of certain patterns, such as embedding middleware services within a
framework that is a fundamental building block of all the distributed elements in
a network of software, has been shown to be useful and possible in the work that
has been presented in this thesis. The purpose of the complete process that has
led to the architecture and evaluation presented, has been to further develop the
concept of distributed middleware services. In that sense, the architecture
proposed in the presented work has served as an excellent sandbox for
developing ideas. Additionally, it has provided an excellent toolkit for new ideas
that have proven useful in implementing software architectures for more
practical purposes in cases related to both industry and research.

The pervasive and ubiquitous distributed systems of the future will be based on
fundamental concepts that are so far mostly concealed. As an example, a way of
seeing the composition of a future middleware solution has been provided in
[48] in the form of a proposal for future research. Even though the future
concepts and solutions would provide any sophisticated, conceptually high-level
applications, the requirement for basic middleware services will still remain.
Many of the present middleware solutions fail to address such dynamism that
may be imagined to exist as a basic requirement of such future applications. As
the basis for such systems, an approach adopted from the concept of distributed
middleware such as presented in this thesis, might provide a valuable and
flexible tool.

This thesis has presented a conceptual look on the results of work in which an
architectural documentation for a distributed middleware service platform has
been produced. The proposed model is one step towards the middleware of the
future, characterised by the requirements set by ever-increasing dynamism.
Related long-term work is likely continue in one form or another. More detailed
views and aspects on presented kinds of distributed middleware architectures
will be published accordingly in due course.

94

References
[1] Coulouris, G., Dollimore, J. & Kindberg, T. (2001). Distributed Systems

Concepts and Design. 3rd ed. Addison-Wesley, Harlow, Essex. 772 p.
ISBN 0-201-619-180

[2] Sun Microsystems, Inc. (17.11.2002). Java Homepage. URL:
http://www.java.sun.com

[3] Fuggetta, A., Picco, G.P. & Vigna, G. (1998). Understanding Code
Mobility. IEEE Transactions on Software Engineering 24(5), pp. 342–
361. ISSN 0098-5589

[4] International Organization for Standardization, International
Electrotechnical Commission (1998). Open Distributed Processing -
Reference Model: Overview 1746-1:1998(E).

[5] Anthony, R.J. (2001). A Taxonomy of Transparency and a Dependency
Graph. In: Proceedings on IASTED International Conference on Applied
Informatics, Symposium 3. Software, February 19-22, Innsbruck, Austria,
pp. 692-699. ISBN 0-88986-320-2

[6] Berson, A. (1996). Client/Server Architecture. 2nd ed. McGraw-Hill, New
York, 569 p. ISBN 0-07-005664-1

[7] Bluetooth SIG, Inc. (17.11.2002). The Official Bluetooth Website. URL:
http://www.bluetooth.com/

[8] Chatschik, B. (2001). An overview of the Bluetooth wireless technology.
IEEE Communications Magazine 39(12), pp. 86-94. ISSN 0163-6804

[9] Institute of Electrical and Electronics Engineers, Inc. (17.11.2002). IEEE 802.11
Wireless Local Area Networks. URL: http://grouper.ieee.org/groups/802/11/

[10] Stallings, W. (2001). IEEE 802.11: Moving Closer to Practical Wireless
LANs. IT Professional 3(3), pp. 17–23. ISSN 1520-9202

[11] Infrared Data Association (17.11.2002). Infrared Data Association Homepage /
Standards. URL: http://www.irda.org/standards/specifications.asp

95

[12] Droms, R. University of Southern California, Information Sciences
Institute (17.11.2002). Dynamic Host Configuration Protocol, RFC 2131,
Draft Standard. URL: ftp://ftp.isi.edu/in-notes/rfc2131.txt

[13] Edwards, W.K. (1999). Core Jini. Prentice Hall, Inc., Upper Saddle River,
New Jersey. 772 p. ISBN 0-13-0114469

[14] Object Management Group (OMG) (17.11.2002). Object Management
Group Homepage. URL: http://www.omg.org

[15] Siegel, J. (1996). CORBA fundamentals and programming. John Wiley &
Sons Inc., New York, 693 p. ISBN 0-471-12148-7

[16] Microsoft Corporation (17.11.2002). The COM Specification version 0.9.
URL: http://www.microsoft.com/com/resources/comdocs.asp

[17] Pyhäluoto, T. (1997). Ohjelmistokomponenttien rajapintojen kuvaaminen.
VTT Research Notes 1816. VTT Technical Research Centre of Finland,
Espoo. 55 p. + app. 22 p. ISBN 951-38-5091-9

[18] Eddon, G. & Eddon, H. (1998). Inside Distributed COM. Microsoft Press,
Redmond, Washington. 582 p. ISBN 1-57231-849-X

[19] Sun Microsystems, Inc. (17.11.2002). Java Beans API Specification version
1.01. 114 p. URL: http://java.sun.com/products/javabeans/docs/spec.html

[20] Jubin, H. & Friedrichs, J. (1999). Enterprise JavaBeans by example.
International Business Machines Corporation (IBM), Upper Saddle River,
New Jersey. 223 p. ISBN 0-13-022475-8

[21] Berg, C.J. (1998). Advanced Java Development for Enterprise
Applications. Prentice-Hall Inc., Upper Saddle River, New Jersey. 584 p.
ISBN 0-13-080461

[22] Szyperski, C. (1998). Component Software - Beyond Object-Oriented
Programming. ACM Press, Addison-Wesley, New York. 411 p. ISBN 0-
201-17888-5

96

[23] Pree, W. (1994). Design Patterns for Object-Oriented Software
Development. ACM Press, Addison-Wesley, Reading, Massachusetts. 268
p. ISBN 0-201-42294-8

[24] Sun Microsystems, Inc (17.11.2002). Jini Architecture Specification
Revision 1.2. 26 p. URL: http://wwws.sun.com/software/jini/specs/

[25] Sun Microsystems, Inc. (17.11.2002). Java Remote Method Invocation
Specification Revision 1.8. 112 p. URL: ftp://ftp.java.sun.com/docs/j2se1.4/rmi-
spec-1.4.pdf

[26] Sun Microsystems, Inc. (17.11.2002). Jini Technology Core Platform
Specification Revision 1.2. 126 p. URL: http://wwws.sun.com/software/jini/
specs/

[27] Oaks, S. & Wong, H. (2000). Jini in a Nutshell. O'Reilly & Associates,
Inc., Sebastopol, California, 400 p. ISBN 1-56592-759-1

[28] Liang, S. & Bracha, G. (1998). Dynamic Class Loading in the Java
Virtual Machine. In: Proceedings on Object-Oriented Programming
Systems Languages and Applications (OOPSLA'98), 18-22 October,
Vancouver, Canada. Addison-Wesley. Pp. 36–44. ISBN 0-201-30989-0

[29] Sun Microsystems, Inc. (17.11.2002). Java Object Serialization
Specification for Java2 SDK Standard Edition v1.4. Beta 2. 74 p. URL:
ftp://ftp.java.sun.com/docs/j2se1.4/serial-spec.pdf

[30] Open Service Gateway Initiative (OSGi) (17.11.2002). OSGi
homepage/Overview. URL: http://www.osgi.org/resources/spec_overview.asp

[31] Open Services Gateway Initiative (17.11.2002). OSGi Service Platform Release
2 Specification. URL: http://www.osgi.org/resources/spec_download2.asp

[32] Universal Plug and Play Forum (17.11.2002). Universal Plug and Play
(UPnP) Homepage. URL: http://www.upnp.org

[33] Kastner, W. & Leupold, M. (2001). How Dynamic Networks Work: A
Short Tutorial on Spontaneous Networks. In: Proceedings on 8th IEEE
International Conference on Emerging Technologies and Factory

97

Automation, 15-18 October, Antibes-Juan les Pins, France, Vol. 1, pp.
295–303. ISBN 0-7803-7241-7

[34] Miller, B.A., Nixon, T., Tai, C. & Wood, M.D. (2001). Home Networking
with Universal Plug and Play. IEEE Communications Magazine 39(12),
pp. 104–109. ISSN 0163-6804

[35] Cheshire, S. Universal Plug and Play Forum (17.11.2002). Dynamic
Configuration of IPv4 link-local addresses, IETF Internet Draft (Expired
March 2000). URL: http://www.upnp.org/download/draft-ietf-zeroconf-
ipv4-linklocal-01-Apr.txt

[36] Tilley, S. & DeSouza, M. (2001). Spreading knowledge about Gnutella: a
case study in understanding net-centric applications. In: Proceedings on
IWPC 2001, 9th International Workshop on Program Comprehension, 12-
13 May, Toronto, Canada, pp. 189-198. ISBN 0-7695-1131-7

[37] Bass, L., Clements, P. & Kazman, R. (1998). Software Architecture in
Practice. Addison-Wesley Longman Inc., Reading, Massachusetts, 452 p.
ISBN 0-201-19930-0

[38] Hofmeister, C., Nord, R. & Soni, D. (2000). Applied Software
Architecture. Addison-Wesley Longman Inc., Reading, Massachusetts,
397 p. ISBN 0-201-32571-3

[39] Software Engineering Standards Committee of the IEEE Computer
Society, Institute of Electrical and Electronics Engineers (IEEE), Inc.
(21.9.2000). IEEE Std 1471-2000: IEEE Recommended Practice for
Architectural Description of Software Intensive Systems. 23 p.

[40] International Organization for Standardization, International
Electrotechnical Commission (1991). Information technology - Software
Product Evaluation - Quality characteristics and guidelines for their use.
ISO/IEC 9126:1991 A 2.6.1.

[41] Software Engineering Standards Committee of the IEEE Computer
Society, USA (31.12.1998). IEEE Std 1061-1998: IEEE standard for a
software quality metrics methodology.

98

[42] Niemelä, E. (1999). A Component Framework of a Distributed Control
Systems Family. VTT Publications 402. VTT Technical Research Centre
of Finland, Espoo, 188 p. + app. 68 p. ISBN 951-38-5549-X

[43] Vaskivuo, T. (2001). The Infrastructure of Interactive Devices in a Future
Home. In: Proceedings on Dreaming for Future, Future Home Conference,
17–19 May, Helsinki, Finland. Yliopistopaino, Helsinki. 10 p.

[44] Matinlassi, M., Niemelä, E. & Dobrica, L. (2002). Quality-driven
architecture design and quality analysis method. A revolutionary initiation
approach to a product line architecture. VTT Publications 456. VTT
Technical Research Centre of Finland, Espoo, 128 p. + app. 10 p. ISBN
951-38-5967-3

[45] Chung, E., Huang, Y., Yajnik, S., Liang, D., Shih, C., Wang, C.-Y. &
Wang, Y.-M. (1998). DCOM and CORBA Side by Side, Step by Step,
and Layer by Layer. C++ Report 10(1), pp. 18–30. ISSN 1040-6042

[46] Vaskivuo, T. (2001). A Framework for an Easy Jini Extension
Demonstrated with a Video Camera Example. In: Proceedings on
Java/Jini Technologies, 19-24 August, Denver, Colorado, Vol. 4521.
SPIE, Washington. Pp. 134-145. ISBN 0-8194-4245-3

[47] Vaskivuo, T., Tikkala, A. & Latvakoski, J. (1999). Ohjain ja sen
ohjausmenetelmä. Finnish Patent No. 109951. 31.10.2002, PRH, Helsinki.

[48] Vaskivuo, T. & Latvakoski, J. (2002). Semantic Middleware for
Spontaneous, Context-Aware and Adaptable Systems. In: Proceedings on
WWRF#6 meeting, 25–26 June, London, 8 p.

[49] Hongisto, M. (2002). Mobile data sharing and high availability. Diploma
Thesis. Department of Electrical Engineering, University of Oulu, Oulu,
84 p.

[50] Sun, G. & Mori, K. (1999). Flexible and autonomous service replication
technique. In: Proceedings on IEEE International Conference on Systems,
Man, and Cybernetics, 1999. IEEE SMC '99, 12–15 October, Tokyo,
Japan, Vol. 3, pp. 113-118. ISBN 0-7803-5731-0

99

[51] Park, V. & Corson, M. (1997). A Highly Adaptive Distributed Routing
Algorithm for Mobile Wireless Networks. In: Proceedings on INFOCOM
'97. Sixteenth Annual Joint Conference of the IEEE Computer and
Communications Societies. Driving the Information Revolution., 7–11
April, Kobe, Japan. Vol. 3, pp. 1405–1413. ISBN 0-8186-7780-5

[52] Perkins, C.E., ed. (2001). Ad Hoc Networking. Addison-Wesley, Upper
Saddle River, New Jersey. 370 p. ISBN 0-201-30976-9

[53] Perkins, C.E. & Royer, E.M. (1999). Ad-hoc On-Demand Distance Vector
Routing. In: Proceedings on 2nd IEEE Workshop on Mobile Computing
Systems and Applications, 25–26 February, New Orleans, Louisiana. Pp.
90–100. ISBN 0-7695-0025-0

[54] Perkins, C.E. & Royer, E.M. (1999). Multicast Operation of the Ad-Hoc
On-Demand Distance Vector Routing Protocol. In: Proceedings on 5th
annual ACM/IEEE International Conference on Mobile Computing and
Networking. Pp. 207–218. ISBN 1-581-13142-9

[55] Driankov, D., Hellendoorn, H. & Reinfrank, M. (1993). An Introduction
to Fuzzy Control. Springer-Verlag, Berlin. 316 p. ISBN 3-540-56362-8

[56] Haykin, S. (1994). Neural Networks: a Comprehensive Foundation.
Macmillan, New York. 696 p. ISBN 0-02-352761-7

[57] Aha, D.W. (1998). The omnipresence of case-based reasoning in science
and application. Knowledge-Based Systems 11(5–6), pp. 261–273. ISSN
0950-7051

Published by Series title, number and
report code of publication

VTT Publications 490
VTT–PUBS–490

Author(s)
Vaskivuo, Teemu
Title

Software architecture for decentralised distribution
services in spontaneous networks
Abstract
Factors that drive the design of distributed systems are experiencing a phase of rapid changes.
Mobility and the new methods of interconnectivity brought along with it have to be faced by the
fundamentals of distributed systems. Simultaneously, hardware tasks are being adopted by software,
making it possible to make those system elements configurable that have traditionally been
considered static. Spontaneous changes in configurations, connections, and physical environment are
common factors that are increasingly brought along with the distributed systems design. This thesis
considers an architecture for a software framework that faces those challenges by providing
interconnectivity for distributed pieces of software in a new way.

The original idea presented here is to create middleware services that arise in a distributed and
spontaneous manner from the interconnections of the interconnected, distributed pieces of software
themselves. The complete independence of any centralised middleware service producer is the key
issue in the proposed solution. Other issues are the means of communication over different media
and the ability to assure the robustness of the provided services despite changes in the configuration
or the presence of different software elements. The solution has been presented in the form of the
software architecture of a proposed design. A major part of the introduced solutions has been
validated by distinct cases related to both industry and research.

Keywords
distributed systems, ad-hoc networking, decentralised systems, framework, middleware

Activity unit
VTT Technical Research Centre of Finland, Vuorimiehentie 5, P.O.Box 2000, FIN–02044 VTT, Finland

ISBN Project number
951–38–6034–5 (soft back ed.)
951–38–6035–3 (URL:http://www.inf.vtt.fi/pdf/)

E2SU00082

Date Language Pages Price
February 2003 English, Finnish abstr. 99 p. B

Name of project Commissioned by

Series title and ISSN Sold by
VTT Publications
1235–0621 (soft back ed.)
1455–0849 (URL: http://www.inf.vtt.fi/pdf/)

VTT Information Service
P.O.Box 2000, FIN–02044 VTT, Finland
Phone internat. +358 9 456 4404,fax +358 9 456 4374

Julkaisija Julkaisun sarja, numero ja
raporttikoodi

VTT Publications 490
VTT–PUB–490

Tekijä(t)
Vaskivuo, Teemu
Nimeke

Ohjelmistoarkkitehtuuri keskittämättömien
hajautuspalveluiden ohjelmakehykselle spontaanisti
muodostuvissa verkoissa
Tiivistelmä
Hajautettujen järjestelmien suunnittelun vaikuttavat tekijät kokevat tällä hetkellä nopeita muutoksia.
Järjestelmien perustoimintojen täytyy ottaa huomioon laitteiden liikkuvuus sekä sen mukanaan tuomat
uudenlaiset yhteysmuodot. Aiemmin laitteistolähtöisesti ratkaistuja tehtäviä toteutetaan yhä enenevissä
määrin ohjelmistolla, minkä ansiosta useita kiinteiksi käsitettyjä tekijöitä voidaan nykyisin pitää
muunneltavina. Hajautettujen järjestelmien suunnittelussa täytyy uudenlaisten vaatimusten mukaisesti
ottaa yhä useammin huomioon spontaanit muutokset ohjelmiston kokoonpanossa, kytkennöissä, sekä
ohjelmis-toa suorittavan laitteen fyysisessä ympäristössä. Tässä diplomityössä käsitellään uutta
hajautettujen järjestelmien ohjelmistokehyksen ohjelmistoarkkitehtuuria, joka kohtaa spontaanin
ympäristön asettamia haasteita tarjoten uudenlaista ratkaisua hajautettujen ohjelmiston osien
yhteistoiminnalle.

Tässä työssä esitettävä alkuperäinen ajatus on luoda yhteen liitettyjen, hajautettujen ohjelmiston osien
pelkästä yhteen liittämisestä syntyvä välitason ohjelmistokerros. Avainasia ratkaisussa on sen tarjoama
riippumattomuus yhdestäkään keskistetystä välitason palveluiden tuottajasta. Muita työhön liittyviä
aiheita ovat ratkaisut ohjelmien osien väliselle yhteydenpidolle eri tiedonsiirron välittäjien kautta, sekä
kyky taata tarjottujen palveluiden saatavuus hajautetun järjestelmän ohjelmistojen osien sekä
asetuksiltaan että läsnäololtaan vaihtelevasta toiminnasta huolimatta. Ratkaisu on esitetty ehdotetun
kaltaista toimintaa toteuttavan ohjelmistoarkkitehtuurin muodossa. Pääosa esitetyistä ratkaisuista on
vahvistettu osin tutkimuksessa, osin teollisessa ympäristössä sovellettujen esimerkkitapauksen avulla.

Avainsanat
distributed systems, ad-hoc networking, decentralised systems, framework, middleware
Toimintayksikkö
VTT Elektroniikka, Kaitoväylä 1, PL 1100, 90571 OULU
ISBN Projektinumero
951–38–6034–5(nid.)
951–38–6035–3(URL: http://www.inf.vtt.fi/pdf/)

E2SU00082

Julkaisuaika Kieli Sivuja Hinta
Helmikuu 2003 Englanti, suom. tiiv. 99 s. B
Projektin nimi Toimeksiantaja(t)

Avainnimeke ja ISSN Myynti:
VTT Publications
1235–0621 (nid.)
1455–0849 (URL: http://www.inf.vtt.fi/pdf/)

VTT Tietopalvelu, PL 2000, 02044 VTT,
puh. (09) 456 4404, faksi (09) 456 4374

V
TT PU

BLICA
TIO

N
S 490

Softw
are architecture for decentralised distribution services in spontaneous netw

orks
Teem

u V
askivuo

Tätä julkaisua myy Denna publikation säljs av This publication is available from

VTT TIETOPALVELU VTT INFORMATIONSTJÄNST VTT INFORMATION SERVICE
PL 2000 PB 2000 P.O.Box 2000
02044 VTT 02044 VTT FIN�02044 VTT, Finland

Puh. (09) 456 4404 Tel. (09) 456 4404 Phone internat. +358 9 456 4404
Faksi (09) 456 4374 Fax (09) 456 4374 Fax +358 9 456 4374

ISBN 951–38–6034–5 (nid.) ISBN 951–38–6035–3 (URL: http://www.inf.vtt.fi/pdf/)
ISSN 1235–0621 (nid.) ISSN 1455–0849 (URL: http://www.inf.vtt.fi/pdf/)

ESPOO 2003ESPOO 2003ESPOO 2003ESPOO 2003ESPOO 2003 VTT PUBLICATIONS 490

Teemu Vaskivuo

Software architecture for decentralised
distribution services in spontaneous
networks

VTT PUBLICATIONS

476 Moilanen, Markus. Middleware for Virtual Home Environments. Approaching the
Architecture. 2002. 115 p. + app. 46 p.

477 Purhonen, Anu. Quality driven multimode DSP software architecture development. 2002.
150 p.

478 Abrahamsson, Pekka, Salo, Outi, Ronkainen, Jussi & Warsta, Juhani. Agile software devel-
opment methods. Review and analysis. 2002. 107 p.

479 Karhela, Tommi. A Software Architecture for Configuration and Usage of Process
Simulation Models. Software Component Technology and XML-based Approach. 2002.
129 p. + app. 19 p.

480 Laitehygienia elintarviketeollisuudessa. Hygieniaongelmien ja Listeria monocytogeneksen
hallintakeinot. Gun Wirtanen (toim.). 2002. 183 s.

481 Wirtanen, Gun, Langsrud, Solveig, Salo, Satu, Olofson, Ulla, Alnås, Harriet, Neuman, Monika,
Homleid, Jens Petter & Mattila-Sandholm, Tiina. Evaluation of sanitation procedures for use in
dairies. 2002. 96 p. + app. 43 p.

482 Wirtanen, Gun, Pahkala, Satu, Miettinen, Hanna, Enbom, Seppo & Vanne, Liisa. Clean air
solutions in food processing. 2002. 93 p.

483 Heikinheimo, Lea. Trichoderma reesei cellulases in processing of cotton. 2002. 77 p. +
app. 37 p.

484 Taulavuori, Anne. Component documentation in the context of software product lines. 2002.
111 p. + app. 3 p.

485 Kärnä, Tuomo, Hakola, Ilkka, Juntunen, Juha & Järvinen, Erkki. Savupiipun impaktivaimen-
nin. 2003. 61 s. + liitt. 20 s.

486 Palmberg, Christopher. Successful innovation. The determinants of commercialisation and
break-even times of innovations. 2002. 74 p. + app. 8 p.

487 Pekkarinen, Anja. The serine proteinases of Fusarium grown on cereal proteins and in barley
grain and their inhibition by barley proteins. 2003. 90 p. + app. 75 p.

488 Aro, Nina. Characterization of novel transcription factors ACEI and ACEII involved in
regulation of cellulase and xylanase genes in Trichoderma reesei. 2003. 83 p. + app. 25 p.

489 Arhippainen, Leena. Use and integration of third-party components in software
development. 2003. 68 p. + app. 16 p.

490 Vaskivuo, Teemu. Software architecture for decentralised distribution services in
spontaneous networks. 2003. 99 p.

	Abstract
	Tiivistelmä
	Preface
	Contents
	Abbreviations
	1. Introduction
	1.1 Contribution of this thesis

	2. Distributed systems for spontaneous environments
	2.1 Fundamental definitions
	2.2 Heterogeneity
	2.3 Middleware
	2.4 Spontaneous networking
	2.4.1 Connectivity
	2.4.2 Discovery
	2.4.3 Directory services
	2.4.4 Roles of entities in spontaneous systems

	3. Enabling technologies and building blocks
	3.1 Broker-pattern and distributed objects
	3.1.1 CORBA - Common Object Request Broker Architecture
	3.1.2 DCOM - Distributed Component Object Model
	3.1.3 Enterprise JavaBeans Component Model

	3.2 Virtual machines and mobile code
	3.2.1 Java RMI
	3.2.2 Jini
	3.2.3 OSGi - Open Services Gateway Initiative

	3.3 Peer-to-Peer connectivity
	3.3.1 UPnP - Universal Plug and Play
	3.3.2 Gnutella

	3.4 Software architecture
	3.4.1 What is software architecture?
	3.4.2 Quality attributes
	3.4.3 Frameworks and patterns
	3.4.4 Role of software architecture in this thesis

	4. Decentralised, distributed middleware
	4.1 Overview of the concepts
	4.2 Decentralised, distributed middleware services
	4.3 Key drivers for the architectural decisions
	4.4 Conceptual architecture of the design
	4.4.1 Subsystem structure
	4.4.2 Component structure

	4.5 Comparison of DisMis architecture with the technologies presented
	4.6 Validation of the architecture
	4.6.1 Dynamic Distribution Platform

	4.7 Summary of the validation

	5. Conclusion
	References

