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Abstract

In this thesis, we consider two classes of stochastic models which both capture
some of the essential properties of teletraffic. Teletraffic has two time regimes
where profoundly different behavior and characteristics are seen. When traffic
traces are observed at coarse resolutions, properties like self-similarity and long-
range dependence are visible. In small time-scales, traffic exhibits complex
scaling laws with much more spiky bursts than in coarser resolutions. The main
part of the thesis is devoted to a large time-scale analysis by considering
Gaussian processes and queueing systems with Gaussian input. In order to
understand the small time-scale dynamics, first steps are taken towards general
multifractal models offering a suitable basis for short time-scale teletraffic
modeling.

The family of Gaussian processes with stationary increments serves as the traffic
model for large time-scales. First, we introduce a fast and accurate simulation
algorithm, which can be used to generate long approximate Gaussian traces.
Moreover, the algorithm is also modified to run on-the-fly. Then approximate
queue length distributions for ordinary, priority and generalized processor
sharing queues are derived using a most probable path approach. Simulation
studies show that the performance formulae appear to be quite accurate over the
full range of buffer levels. Finally, we construct a semi-stationary predictor,
which uses a constant variance function and mean rate estimation based on a
moving average method. Moreover, we show that measuring the past of a
process by geometrically increasing intervals is a good engineering solution and
a much better way than equally spaced measurements.

We introduce a family of multifractal processes which belongs to the framework
of T-martingales and multiplicative chaos introduced by Kahane. The family has
many desirable properties like stationarity of increments, concave multifractal
spectra and simple construction. We derive, for example, conditions for non-
degeneracy, establish a power law for the moments and obtain a formula for the
multifractal spectrum.
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1. Introduction

1.1 Teletraffic theory

Teletraffic theory, in its widest definition, is a term linking together mathematics
applicable to performance analysis, design, control and management of telecom-
munication systems. This includes topics like mathematical modeling, queueing
theory and optimization. Since almost all the problems in this area have some
random components, stochastic analysis and modeling play a major role.

The history of teletraffic theory is a successful combination of mathematics
and engineering profiting both disciplines. It all began 100 years ago when the
mathematical analysis of telephone networks was started by Erlang [Erl09]. Er-
lang’s studies are often considered to be the birth of queueing theory. On the other
hand, by using Erlang’s formula and related mathematics, engineers have been
able to design and operate traditional telephone networks for over fifty years so
that the utilization rate is very high without impairing the quality of service seen
by customers.

The next big step was moving from circuit switching (telephone networks)
to packet switching (data networks). In early 1960s, there were three indepen-
dent teams working with the packet network concept: RAND Corporation, British
National Physical Laboratory and ARPAThere is some disagreement about who
originally invented the notion of packet switching (see e.g. [Dav01, Kle02, Bar02]).
However, Baran, Davies and Kleinrock are the recognized pioneers who all worked
on this idea. The mathematical analysis of data networks progressed jointly with
technological advances. The principles of packet switching and queueing theory
were part of the innovations leading to ARPANET and, later on, to the Internet.

Though the early data networks had a strong basis in analytical studies, the
driving force of the Internet has been experimental engineering curiosity, the role
of teletraffic theory being very small. Only recently have the Internet operators
started to show interest in the performance analysis of their networks. Best effort
service is not always enough since there are applications requiring a guaranteed
quality of service (QoS). This has forced the Internet operators to change their
view. Unfortunately, the current Internet protocols have very limited traffic engi-
neering capabilities.

The ATM technology was proposed as an intelligent compromise between tele-
phone and data networks. It was designed from the start to carry both voice and
data traffic over the same transmission channel. The traffic theory community par-
ticipated very actively in the design process (see e.g. [RMV97]) and the definition
of ATM includes, for example, differentiation of traffic (five traffic classes), QoS
features and congestion algorithms. Although, ATM was originally proposed to
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replace IP entirely, its present role is quite small. ATM is usually met in back-
bone networks and as a part of access networks (e.g. ADSL home connections);
end-to-end ATM connections are almost completely nonexistent.

1.2 Traffic modeling

One of the principal questions in teletraffic theory is the traffic-performance rela-
tion linking network capacity, offered traffic and realized performance. The proper
characterization of traffic is an essential requirement. Only after this does the per-
formance analysis of a system make any sense. The traffic characterization should
not only include the (statistical) properties seen in measurements, but also an un-
derstanding of their origin.

In traditional telephone networks, the standard approach was to model call ar-
rivals by a Poisson process and call durations by an exponentially distributed ran-
dom variable — these assumptions were validated by several measurements and
they remained unchanged for decades. In the early days of data-networks, simi-
lar types of models were also used in data network analysis. There were virtually
no attempts to validate modeling assumption against the actual data traffic mea-
surements in the 1970s and 1980s. It took almost 20 years before the qualitative
difference between voice and data traffic was fully recognized.

The first evidences of the new era were noticed in the local area network (LAN)
measurements reported by Wilson and Leland [LW91]. A careful statistical anal-
ysis of these measurement [LTWW93, LTWW94] showed that the Ethernet LAN
traffic exhibits properties which are inconsistent with the old assumptions of inde-
pendence, Poisson arrivals and exponentially distributed job sizes. Instead, LAN
traffic appeared to be statistically self-similar and have long-range correlations.
ProcessA is called self-similar with self-similarity parameter if the processes
aH A and the time-scaled version ofA, have the same finite-dimensional dis-
tributions for all@ > 0. If the autocorrelation function decays slowly, usually
according to a power-law, then the process is long-range dependent. In practice,
these findings mean that there is no characteristic time-scale, and bursts appear
in all time resolutions. This, the so-called Bellcore study, triggered a series of
follow-ups which all confirmed that the traditional Poissonian models were inad-
equate for data networks (video streams [BSTW95], Wide Area Network traffic
[PF95], World Wide Web downloads [CB97]).

After measurement equipment improved and accurate packet level measure-
ments became possible (the original Bellcore data was accurate to within 20-
100us) even stranger behavior has been observed: traffic exhibits complex scaling
laws with much spikier bursts in small time-scales than in the coarser resolutions.
Riedi and Lévy Véhel were the first to describe this phenomena using the language
of multifractals [RLV97, LVR97]. Subsequently, several papers have reported sim-
ilar observations (see e.g. [MN97, FGW98, RCRB99)).
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Figure 1. Traffic in an international link of the Finnish University and Research
Network (FUNET), measured in Feb, 2001.

The difference between large and short time-scale behavior is clearly seen in
Figure 1, where an IP traffic trace measured in an international link of the Finnish
University and Research Network (FUNET) is shown in two resolutions. The
time series have distinctly different characteristics: the larger time-scale plot has
a Gaussian character whereas the high resolution one has more and bigger bursts.
(Note that the terms “small” and “large” time-scale depend strongly on the network
studied.) Moreover, the latter trace seems to have some preferable deterministic
values, which are probably due to the maximum transfer rates of the individual in-
put ports or links. Broadly speaking, aggregation both in time and space, thatis, us-
ing coarser measurements and more contributing sources, results in self-similarity
and long-range dependency. In contrast, multifractality is best observed in a single
TCP flow and at small time-scales. This suggests that these phenomena probably
do not have the same physical origin.

The observations indicate that new models and explanations are needed. How-
ever, there is still a relative large group of teletraffic engineers who are reluctant
to accept the change. They often reason that the family of Markov processes is
enough for their purposes. Although it is true that the Markovian models are very
flexible and, in principle, any process can be approximated by a Markovian one,
the number of model parameters easily becomes very large. An even more crucial
shortcoming is that these models often fail to provide an insight into the underlying
system.

The large-time-scale dynamics of teletraffic is understood reasonable well. A
common explanation for the long-range dependence and self-similarity is heavy-
tailed transmission times originating mainly from the heavy-tailed file sizes (files
in Unix systems [BHK 91], FTP bursts [PF95], WWW-files [CB97]). There are
several simple and parsimonious traffic models which capture this phenomenon,
like superposition of on-off sources with heavy-tailed sojourn times, or the infinite
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source Poisson model, also known as the My@put model (see e.g. [WTSW97,
MRRSO02]). When considering the cumulative traffic at large time-scales, these
models have the same properties as the observed data traffic: self-similarity and
long-range dependence [TWS97, MRRSO02].

Understanding the short time-scale dynamics is a more difficult task. Cur-
rently, no mathematically rigorous and intuitively appealing construction exists
which could fully explain the observations. The networking mechanisms, like pro-
tocols and queues, determine how the flows of packets are actually moving in a
network. Thus, it is likely that they are responsible for the local irregularities and
high variations seen in real traffic (see e.g. [FGHW99, RWO00]). Unfortunately,
we lack (close-loop) models able to describe the joint dynamics of heterogeneous
sources, protocols and queues in the right way.

1.3 Stochastic-process limits

A stochastic-process limit is usually constructed from initial processes by prop-
erly scaling time and space. Analyzing the limiting system gives us relevant infor-
mation about the original system, since the continuous-mapping theorem [Bil68,
Bil99] guarantees that most of the performance functionals also converge (see
e.g. [Add99, Whi02]).“Stochastic-process limits often give a macroscopic view

of the system and they strip away unessential details and reveal key features deter-
mining performance[Whi02].

The main reasons to consider Gaussian traffic are the Central Limit Theorem
(CLT) and the Functional Central Limit Theorem (FCLT). Intuitively, they express
the fact that a sum of many small independent or weakly dependent random vari-
ables is approximately normally distributed, given that the variances are finite. For
cases with infinite variances, there are results of the same type with a stable ran-
dom variable or a stable random process as the limit (see e.g. [ST94, Whi02]). For
example, in [MRRSO02], Mikosch et al. study whether the network traffic can be ap-
proximated by fractional Brownian motion or stable Lévy process by determining
the limit process for a rescaled infinite Poisson model.

While Gaussian processes are due to addition/aggregation, multifractal pro-
cesses are usually limits of multiplicative constructions. Unfortunately, such uni-
versal limit processes as Gaussian processes, or more generally stable processes,
are not yet available in the toolbox of multifractal modeling.

The stochastic limit processes are often pure mathematical objects that may
have conflicting or undefined properties compared to the real system studied. For
example, Gaussian traffic has positive probability for negative increments and the
scaling laws of a multifractal are defined on infinitely small time-intervals. This is
not necessarily a problem since one can still determine the functionals of the traffic
process, like queue length, even though the physical meaning may be questionable.
However, this means that performance results derived from the limit models cannot

12



be more than approximations for the real system.

Itis clear that only continuous time processes are feasible models for the small
time-scale behavior. Otherwise, the notion of the local scaling laws would be
meaningless. Both discrete and continuous time approaches can be used for pro-
cesses describing the large time-scale properties. However, a time discretization
brings an extra artificial parameter, the sampling interval. In order to keep models
as simple as possible, we prefer continuous time models.

1.4 Contents of the thesis

The motivation of this thesis comes from traffic modeling and performance analy-
sis of telecommunication systems. However, it does not consider structural mod-
eling, but its emphasis is on analysis of the related stochastic limit processes. The
main part of thesis is devoted to large time-scale analysis by considering Gaus-
sian processes and queueing systems with Gaussian input. The family of Gaussian
processes with stationary increments serves as our traffic model. We develop a
toolbox that makes Gaussian models applicable for real teletraffic applications.
This includes a simulation method, a prediction algorithm and performance for-
mulae for Gaussian queueing systems. In order to understand the small time-scale
dynamics, the first steps are taken towards general multifractal models offering a
suitable basis for teletraffic modeling. We introduce and analyze a novel family of
multifractal processes with stationary increments.

In Chapter 2, generation (i.e. simulation) methods for Gaussian processes are
studied. We introduce a fast and accurate simulation algorithm that can be used
to generate long approximate Gaussian traces. Moreover, the algorithm is also
modified to run on-the-fly. We consider only the simulation of fractional Brow-
nian motion, but the same approach can be used for arbitrary Gaussian processes
with stationary increments (which is done in the queueing studies summarized in
Chapter 3). Comparison with other simulation methods shows that our approach
is performing well and has many advantages, such as simplicity and only linearly
increasing computational complexity.

Chapter 3 considers queueing systems with Gaussian input traffic. Approxi-
mate queue length distributions for ordinary, priority and Generalized Processor
Sharing (GPS) queues are derived using a most probable path approach. In multi-
class cases, our approach leads either to the empty buffer approximation (a no-
tion first introduced by Berger and Whitt [BW98a, BW98b]) or to new heuristics
called Rough Full Link Approximation. Moreover, some results concerning the
buffer emptiness probabilities and lower bounds of the queue length distribution
are given. Simulation studies show that the performance formulae appear to be
guite accurate over the full range of buffer levels. Although most of the perfor-
mance formulae are just heuristic approximations, they are accurate enough, for
example, for network dimensioning purposes. One of the advantages is that the

13



approach is easily implemented as a tool that can be used without a profound
knowledge of Gaussian processes.

Linear minimum-least-square-error predictors are studied in Chapter 4. First,
the optimal way to measure the past of a fractional Brownian motion (FBM) is
determined. We find that conditioning with respect to geometrically increasing in-
tervals is a good engineering solution and a much better way than equally spaced
measurements. This result holds for any process having an FBM-type variance
function. Then we introduce a semi-stationary predictor, which uses a constant
variance function and a moving average based mean rate estimation. The per-
formance of the predictor is tested with real traffic traces. The algorithm works
according to the analytical expectation even in a non-stationary case. However, a
combination of a resource reservation algorithms and the predictor may result in
unexpected behavior.

In Chapter 5, we introduce a family of multifractal processes which belongs
to the framework off -martingales and multiplicative chaos introduced by Kahane
[Kah85, Kah87, Kah89]. The family has many desired properties like stationarity
of increments, concave multifractal spectra, and simple construction. In its sim-
plest form, our model is based on the multiplication of independent rescaled pro-
cessed D) (-) L A(b'.). We study properties of the limit process fims, An, where
An(t) = [5 TN (s)ds. For example, we derive conditions for non-degeneracy,
establish a power law for the moments and obtain a formula for the multifractal
spectrum.

14



2. Generating Gaussian traces

2.1 Introduction

Recent measurement studies have shown that burstiness of packet traffic is associ-
ated with long-range correlations that can be efficiently modeled in terms of fractal
or self-similar processes, like fractional Brownian motion (FBM). To gain a better
understanding of queueing and network-related performance issues based on sim-
ulations, as well as to determine network element performance and capacity char-
acteristics based on load testing, it is essential to be able to accurately and quickly
generate long traces from FBM processes. In addition to that, almost all perfor-
mance formulae for a queueing system with Gaussian traffic are either asymptotic
or heuristic results. For that reason, these simulation traces also have an important
role in accuracy checking purposes.

FBM has a special role in telecommunications and numerous approximate al-
gorithms for simulating FBM have been proposed: a short memory approximation
by Mandelbrot [Man71], a queueing based method using the #MfBikue length
with Poisson arrivals and heavy-tailed service times by Cox [Cox84], a fast Fourier
transform based method by Paxson [Pax97], a wavelet transform based method by
Flandrin, Abry and Sellan [Fla92, AS96], aggregation of a large number ON-OFF
sources with infinite-variance sojourn times by Willinger et al. [WTSW97], to
mention just some of the known approaches.

The simulation algorithm of Publication [1] belongs to the bisection methods
which are based on generating points of the process path “top-down” by prop-
erly interpolating from the existing points. The simplest version of the bisection
methods is the random midpoint displacement (RMD) whose performance was
analyzed by Lau et al. [LEWW095].

In a recent thesis by Dieker [Die02], different simulation methods, including
the method of Publication [1], are studied. His findings are in accordance with
those presented in [1].

2.2 Basics of Gaussian processes

In this thesis, we consider only Gaussian processes with stationary increments. A
process is called Gaussian if all its finite-dimensional distributions are multivariate
Gaussian. LeA = (A),.r be a Gaussian process andAgt= 0. The stationarity
of the increments means that for agyc R the processes and (A — Ay )icr
have the same finite-dimensional distributions.

We can represent proceasn the form

A = mt+Z,

15



wherem= EA; andZ is a centered Gaussian process, i.&, £ 0, with Varz, =
v(t). A Gaussian process with stationary increments is uniquely defined by its
mean and variance function. For example, the covarianée®fiven simply by

Cov(A, As) = Cov(4, Zs) = %(v(t) +Vv(s) —v(t—9)).
Itis clear that it is enough to simulate the centered proZess

An interesting special case is the fractional Brownian motion. The normalized
FBM has variance(t) = t?, where the self-similarity parameter € (0,1). Its
single most important property is self-similarity: the procesggsanda™ z, have
the same path space distributions for any> 0. If H > % then FBM is long
range-dependent.

Since all the finite dimensional distributions Bfare Gaussian (by the defi-
nition), one could generate theoretically exact traces at any finite resolution just
by using the conditional multinormal distributions or a direct Cholesky decom-
position of the correlation matrix. Unfortunately, the computational complexities
of the direct algorithms aré’(N?), whereN denotes the number of steps. Using
the discrete Fourier transformation, the number of operations can be reduced to
O (NlogN) (see e.g. [DH87]). However, the exact generation of very long traces
is infeasible in practice due to the amount of storage and CPU time required.

| |
I
9 5 10 3 11 6 12 2 13 7 14 4 15 8 16 1

Figure 2. Bisection algorithm: the numbers denote the order of the point genera-
tion.

The bisection approach works by progressively subdividing the interval over
which the sample path is to be generated. Let us consider a Gaussian process on
the unit interval[0,1]. The trace is generated in the following ordet;, Z, .,

Zy o5 Zo 75 Zy 105 @nd so on (see Figure 2). In the basic RMD algorithm, we only
condition with respect to the values of the endpoints of the subdivided interval and

16



the value of the midpoint is drawn from the corresponding conditional Gaussian
distribution. For exampleZ, .5 is drawn conditioning with respect to the earlier
generated valueg, ; andZ,. The generator proposed in Publication [1] is a natural
generalization of RMD; conditioning is taken with respecthimearest points to

the left andn nearest points to the right. Although [1] considers only FBM, the
conditionalized RMD can be used to generate arbitrary Gaussian processes with
stationary increments.

A common problem with the approximate methods is that it is very difficult or
even impossible to state any analytical results on the accuracy of a specific method.
Usually, only empirical accuracy tests can be used in order to show that a method
is functioning properly. This also holds true for our Rijfalgorithm. The recent
paper by Dzhaparidze and van Zanten [DZ02] introduces a new series presentation

for FBM

2 sinxpt = 1-—cosypt

Z=73% Xty

=1 Xn =1 Yn

Ym

where theX,, and theY, are independent Gaussian random variables with mean
zero and variances decreasing as a functiam ahd thex, and they, are zeros of
certain Bessel functions. This result might offer a novel basis for FBM generation
with a proper control over the accuracy of the traces.

2.3 Summary of [1]

This paper proposes a new method for generating approximate fractional Brownian
motion traffic: a generalization of random midpoint displacement called RMD

The algorithm is a bisection method where the process path is generated “top-
down” by properly interpolating (i.e. conditioning) the existing points. Moreover,

it is shown that the basic algorithm can be modified to produce long accurate
FBM traces on-the-fly with memory requirements increasing only at the logarith-
mic speed. The role of parametensandn (numbers of interpolated points from

the left and from the right) is studied in several ways: calculating the reléfive
error, estimating how close the Hurst parameter is to the desired one and studying
the computational complexity. The analysis suggests that quality of the gener-
ated traces is reasonable good even with as small values-a2,n = 1. Finally,
RMDyy, is compared with two popular generation methods: a fast Fourier trans-
formation (FFT) method and an aggregation method. We find that the FFT method
is comparable to the RMR), algorithm in terms of quality and time complexity,
however, the FFT method is strictly a top-down algorithm, that is, the whole trace
has to be generated before it can be used in any application. The aggregation
method requires a couple of orders of magnitude of time periods to converge to the
asymptotic results, and is therefore much slower.
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2.4 Author’s contribution to [1]

The present author is responsible for the implementation of the RMIorithms

(both the pure top-down and on-the-fly), design and complexity analysis of the on-
the-fly algorithm, and the pathwise accuracy analysis of the traces. The idea of the
RMD generalization and the on-the-fly algorithm is by Norros, comparison with
other algorithms is done by Wang. The paper is jointly written, Norros being the
corresponding author.
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3. Queueing systems with Gaussian
iInput

3.1 Introduction

Gaussian processes play a special role in performance analysis since their use can
be motivated by the central limit theorem type of arguments. For example, Addie
[Add99] argues that as networks grow and the number of traffic streams multi-
plexed on a single link increases, the shape of traffic must become closer and
closer to Gaussian. In order to apply Gaussian models in performance analysis of
a real-life network, one must first validate the model assumptions: adequate ag-
gregation, and (approximate) stationarity, independence and homogeneity of the
sources. After that, parameters can be estimated and the goodness of the Gaus-
sian approximation can be checked. How to perform all that properly is not yet
fully clear. In the case of 1-dimensional marginal distributions, Kilpi and Norros
[KNO2] have determined the minimal source and time aggregation levels needed
to make a Gaussian approximation at least theoretically reasonable. Moreover,
they also consider tests which can be used to measure the goodness of a Gaussian
fit. Kilpi [KilO3] is currently trying to extend methods to multivariate Gaussian
distributions.

Gaussian processes are not the only feasible models for traffic aggregates.
There are cases where the limit process should have jumps and much heavier
marginal distributions than Gaussian. Then the proper limit process could be a sta-
ble Lévy process (see e.g. [KSJ98, MRRS02]) or something in between Gaussian
and Lévy processes [GKO02]. If we relax the independence and/or homogeneity
assumptions, the possibilities become virtually endless.

From the point of view of queueing theory, the assumption of Gaussian input
is never fully acceptable, because there is always a positive probability of negative
input, which is nonsense from practical point of view and destroys many classical
arguments on the theoretical side. In a Gaussian framework, the rigorous construc-
tions of queueing theory must be replaced by analogously defined functionals of
a Gaussian process. Moreover, it seems that general results on the distributions
of these functionals cannot be better than inequalities and limit theorems. In this
thesis, we must often be satisfied with heuristic approximations only.

In early 1990s, Norros introduced his famous FBM storage model [Nor93,
Nor94]. Following this, the FBM queue, and especially its tail behavior, have been
extensively studied by several authors (see e.g. [Nar98, Nor99, MS99, Pit01]).
Currently, the behavior of the ordinary, that is, single class, queue with FBM input
is known reasonably well.

In this thesis, the analysis is extended to general Gaussian input processes and
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multi-class queues. In addition to ordinary queues, we study priority and gener-
alized processor sharing (GPS) systems. Berger and Whitt [BW98a, BW98b] are
probably the first who studied Gaussian priority systems. In the discrete case, the
large deviations of Gaussian priority queues are considered by Wischick [Wis01].
Recently, Mandjes and Uitert [MUO2] have proved some exact large deviation re-
sults for the tandem and priority queues with continuous Gaussian processes. The
results of Mandjes and Uitert are in accordance with our heuristics.

3.2 Queueing systems

The basic traffic modeling idea is to approximate the cumulative traffic process in
a telecommunication system by a continuous Gaussian préces@ ), . with
stationary increments anll) = 0 (see Section 2.2). Far<t, A(sit) = A —As
presents the amount of traffic in time interyalt]. We denote

A =mt+Zz,

whereZ is a centered Gaussian process with variarite= Var(Z;) and covari-
ancer (s,t) = EZsZ, = 3(v(t) +V(s) — v(t —s)). The ordinary queue with a con-
stant rate server and an infinite buffer is defined by

Q= SUF(A(St) - C(t - S))>
s<t
wherec is the server rate.
The extension to the multiclass system is simple. Let the input traffic consist
of k classes, and denote the cumulative arrival process of ¢lasgl, ..., k} by
(At{j})teR. For the superposition of a set of traffic clasdes {1,...,k} we write

J - {i}
A %Atj

and use the similar superscript notation also for other quantities defined later.
Moreover, the processes !} are assumed to be independent, continuous Gaus-
sian processes with stationary increments. As above, déjbte- m;t +z3,

Al (st) = AT — ALY v (t) = Varz{J} andT (s ,t) = EZ{I Z{1),

Assume that the classes are numbered with descending priority, with class 1
having the highest priority. Since our model is continuous, there is no distinc-
tion between preemptive and non-preemptive priority. Lower class traffic does not
disturb upper class trafficand a simple approach is the following: Defi@él},

1This is not necessarily true in Gaussian queues; depending on how the negative traffic is inter-
preted there may be interaction also from lower class traffic to an upper class queueing process, see

(6].
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Q{+2t, @123} etc. as ordinary queues served at @aed with inputsAllt, AlL2}H
AlL23} etc., respectively. Then the class-wise queues are given by

Q{Z} — Q{l’z}—Q{l},
(3.2)

In a GPS system, all classes are given a guaranteed servqmjratwith
5;1; = 1. In the case of unlimited buffers, the queue of clasg{'’, and the
total queued; = 3, Q! satisfy [Mas99]

t{i} = SUKA{i}(Sat)_“iCT(SJ))a (32)

s<t

Q = squmi}(s,g_c(t_s)),

s<t

whereT(s,t) = T, — Ts andT; is a non-decreasing stochastic process Wjtk=
0. Thus,y;cT(s,t) presents in a sense the amount of potential service for each
classi in time interval(s,t]. If all the classes are queueing on interjgt], then
T(st) =t—s, i.e., everyone gets exactly its guaranteed service. Otherwise, the
role of T (s,t) is to redistribute the excess capacity.

Note that since the input processes have stationary increments, the queue pro-
cesses are stationary in all three cases: in ordinary, priority and GPS systems.

3.3 Most probable paths and queue length distributions

The main goal of this part of the thesis is to find approximations for the queue
length distributions

P(Q{i} >x), i=1....k

Moreover, the approximations should be valid over the full range of buffer lev-
els. In the case of one class, it is often possible to derive exact asymptotics or
asymptotical bounds for the equivalent distribution

P(sup(A —ct) > x>
t>0

(see e.g. [Nar98, DMR98, CS99, HP99, Pit01, DQ2]). Unfortunately, methods like
the Fourier expansion and the double sum method (see [Pit96]) are quite compli-
cated and their applicability to the multi-class case is questionable. In contrast,
large deviation based analysis is less accurate, but usually the outcome is also
much simpler.
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The reproducing kernel Hilbert space (RKHS) of a Gaussian process (see
e.g. [AdI90]) plays an important role in the path space large deviations. Basi-
cally, the RKHS is defined by the covariance functiofy,-). Let us consider a
centered Gaussian procesen T. Start with the set

S= { ZiaJ ), €R, 5€T, n>1}

and define an inner product &by

-3, 50t

wheref(-) =S, al(t,-) andg(-) = ", b (s,). It easy to see that the inner
product has the “reproducing property”: for &lin S,

f(t) = (£, (t,)). (3.3)

The closure oSunder the norm|f || = (f, f) is called the RKHS o. In this
thesis, we denote this space Ry

A large deviation principle for Gaussian measures in Banach space is given by
the generalized Schilder’'s theorem (Bahadur and Zabell [BZ79], see also [Aze80,
DS89)). It gives us the following logarithmic asymptoticsZlfs a centered Gaus-
sian process, then

. . 1 Z .
; - — < —
for F closed inQ “T_itjp - log P<\/ﬁ € F) < clog: (o),
for G open inQ: liminf }Io P ieG > —inf I(w),
P ' et p'od Vvn 0eG

where the function : Q — RU {},

(o) B0k focr
00, otherwise

In the general case, it is almost impossible to decide whether an arbitrary func-
tion belongs to the RKHS. Only some special cases have been studied. Let us
consider centered Gaussian distributiong®h i.e., multivariate Gaussian distri-
butions, in details. Denote= (f,,..., fy) andg= (g,,...,0y). Assuming a non-
singular covariance matrix, arbitraryf andg can be represented fs- zi’\'zlail'i
andg = yN, b, wherel; denotes théh column ofl". Thus,

pd

WMZ

a1r b.=a'Tb=fT"1g

(f.0)= (W

22



and the spacRis RN itself, but equipped with an inner produ@tg) = T —1g.
Since the density function of a multivariate Gaussian ve£tisr given by
conste 22T % — conste 2%,
minimizing theR-norm means maximizing the density.
The other simple case is Brownian motion[0nl] (see e.g. [AdI90]); then the

RKHS consists of functions which are absolutely continuous, vanishing at 0, and
whose derivative belongs to,. The inner product is given by

(19 = [ V9g(9ds

The RKHSs of fractional Brownian motion have been determined by Decreusefond
[Dec00]. The RKHS of a FBM with self-similarity parameter is a space of
functions which aréH + %) differentiable, vanishing at 0 and who#é + %)-th
derivative belongs tb,.

Although the full characterization of a RKHS is usually difficult, finding the
minimizing element in a given subset — the most probable path of that set — is
simple if the set can represented in the fornfof {f ¢ R : f(t) =y}. By the
reproducing property (3.3)

F={fcR: flt)=y}={feR: (f,[(t,")) =y}

On the other hand,
argminf [P+ {f.0) =} = [0
holds in an arbitrary Hilbert space. Thus the most probable pdthisn

_ Y y= ..
In a single class queueing system, the most probable path leading to buffer occu-
pancyx or more can be determined using (3.4). Since

{Q=2x = {fg(f(A(t,O)—C(O—U)ZX}:{tsgg—ZtJrct)EX}
= Ult-zzdtl+x=J U {Z=-y}

t<0 t<Oy>x+clt|

the minimization can be done in three steps. First determine the most probable path

for Z, = —y which is by (3.4)f;, = %r(t,-). Then minimize the corresponding

Rnorm||f; y[|Z = % with respect toy > x+c|t| andt < 0. The solution is shown
in Section 3.4.
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Motivated by the sample path large deviations, we seek the most probable paths
for the class buffer exceedance events, that is, we try to find path

f{) = arginf(HfH% feR QU(f) > x) :
But instead of taking limits, we approximate
P(Q{i} > x) — P(Qg} > x) ~e (), (3.5)

In certain multi-class cases, we are unable to determine the most probable paths.
Then the exact buffer exceedance sets are replaced by approximate sets in which
we can solve the minimization problem.

Identifying most probable paths is also interesting with its own rights — it
is like “seeing what really happens” when the rare event occurs. For ordinary
gueues, this has mainly heuristic value, but we show that identifying these paths
has an essential role in choosing a good approximation in the case of priority and
GPS queues.

For reasons of clarity, a consistent notation is used in the following summariz-
ing sections differing from the notations used in the publications.

3.4 Summary of [2]

Publication [2] considers ordinary single class queues with general Gaussian input.
First the mathematical setup, i.e., the path space of the Gaussian processes, the
reproducing kernel Hilbert space and generalized Schilder’s theory are reviewed.
Then the basic approximation (3.5) is introduced. We show that the most probable
paths ofZ in {Q, > x} have the form

X+ (c—m)(—t)
V(tx)

wherety < 0 is the value of which minimizes the expression

fX,tx(') ==

r(txf)a

(x+(c—m)[t])?
v(t) '
The corresponding basic approximation is given by

(x+(c— m)tx)2>
2v(ty) ’

P(Q>x) ~ exp(—
A differentiable Gaussian process (with stationary increments) can be pre-

sented in the fornz; = fé Xsds whereXs is a continuous stationary zero-mean
Gaussian process with standard deviagorfor these cases, we derive upper and
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lower bounds for the probability of buffer emptiness. It appears that those bounds
are close to 2P >c—m), i.e.,

P(Q > 0) ~ 2®((c—m) /o),

where® denotes the complementary standard normal distribution function.
The basic approximation, its rescaled version (based on the estimate of the
buffer emptiness probability), and an exact lower bound

x—(c—m)tx>

P(Q>x) > ® ( o)

are compared with simulations. Both short-range and long-range dependent Gaus-
sian processes are considered. The accuracy of the approximations is quite good
over the full range of buffer lengths. Moreover, the buffer emptiness probabilities
behave according to our formulae.

3.5 Summary of [3]

Publication [3] also considers the ordinary single class queue with Gaussian input.

It is an extended version of [2]. In addition to rigorous proofs of the statements of

[2] and repeated simulation studies, there are several new mathematical results.
We show that the condition

im@:O

I
t—oo t&
for somea < 2 guarantees that the input process satisfies

lim Z4
t—+4oo 1—|— ‘t’

= 0 almost surely

This means that the queueing process is finite almost sunglyitc.

The general properties of the most probable paths are studied carefully. The
following properties are proved: antisymmetry of the input process around the
time pointty/2, emptiness of the queuetatnon-emptiness of the queue (i 0]
and draining of the queue just after 0.

Using a counter-example, it is shown that the most probable paths are not nec-
essarily unique. Moreover, there are several illustrating examples. Those include
periodic Gaussian processes and multiplexing heterogeneous Gaussian sources.
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3.6  Summary of [4]

Publication [4] considers priority queues with Gaussian input. The basic approxi-
mation is extended to the multiclass case by introducing the corresponding repro-
ducing kernel Hilbert space fédrindependent Gaussian processes. Assuming that
a higher class queue does not see lower class traffic, it is enough to consider only
2-class priority systems. Moreover, the highest class queue behaves as an ordinary
gueue served at rate

The simplest problem is to find the most probable paths of both classes such
that the combined (i.e. total) queue reaches a veliighe most probable paths in
{Q? > x} have the form

Lo X (e=m —my) () ‘ '
Ox(1) = Vl(tx)l+V2(tx) (My(tx ), Mot o),

wherety < 0 is the value of which minimizes the expression

(X+(c—my —my)[t])?
vy (t) +V,(t)

and the basic approximation is given by

, N (x4 (c—my — my)[tx])?
P(Q > ) exp - G0 ). &0

The analysis of the lower class queue must be done in two steps. First, we
determine the most probable paths for the total queue problem as above. If the
paths are such thatit 0 only class 2 traffic is queueing, then it follows that these
paths are also the most probable ones to achievexendahe class 2 queue alone
and RQ? > x) can be approximated by (3.6). This happens in most priority
systems. However, if this is not the case, the situation is more difficult and the
most probable paths remain generally unknown (Mandjes and Uitert [MU02] have
some new results on this topic). As a heuristic solution, we suggest the Rough Full
Link Approximation (RFLA). Duringt,0],t < O, class 1 offers in total the amount
—ct of traffic, class 2 offers in total the amouxbf traffic, and[ty, 0] is the most
probable interval under the above conditions. The most probable paths satisfying
the RFLA are given by

RFLA/ | _ (c—m)k_ - _ XMyl o .
(Ptx,x () ( V]_(fx> r]_(tX7 )v Vz(fx) rz(tXa ))7

wheret, < 0 is the value of which minimizes the norm

(c—m)%?  (x+myt)?
vy (1) Vo(t)

o5 & =
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and the basic estimate is given BYQ'?) > x) ~ exp( — 3/ 9fF4|3). For the
events satisfying the RFLA conditions we have an exact lower bound

—( (c=m)k = [ x+myi
P(RFLAY) > @ | — = P — .
| )z < vy (t) ) (v Vz(tX)>

In the simulation studies we find the following: If the most probable paths are
such that the total queue consists only of the lower class queue, then class 2 and
total queue (empirical) distributions are indistinguishable and the basic approxima-
tions work as well as in the single class case. If RFLA is needed then the accuracy
of the approximations decreases being, however, still qualitatively rather good.

3.7 Summary of [5]

In publication [5], the most probable path approach is extended to GPS queues
with Gaussian input. In addition to demonstrating the applicability of the perfor-
mance formulae, we show that a GPS system with Gaussian input is very sensitive;
in some regions small changes of parameters may change the performance a lot.
Moreover, mean rate based weight assignments do not usually give desired results.
It is important to take into account the variance structure carefully, since one can-
not assume similar queueing behavior — not even qualitatively — for processes
which have different types of variance functions.

The basic setup is as in [4]. The combined queue and the corresponding input
processes are the same as in the priority systems, only the class-wise queueing
paths differ (due to the service guarantees). Also similarly, when considering a
specific class, say class 1, there are two possibilities: either the most probable total
gueue of siz&x consists only of class 1 traffic, or other classes are also contributing.

In the previous case, the distributions of the combined queue and the class 1 queue
will be almost indistinguishable. The former case is dealt with the Rough Full
Link Approximation.

We define RFLA for a GPS queue with two input classes as follows. During
[t,0], t <O, class 1 offers in total the amouxw- i, clt| of traffic, class 2 offers in
total the amounfu,clt| of traffic, and]ty, 0] is the most probable interval under the
above conditions. The most probable paths satisfying the RFLA conditions are of

the form ( .
—X+(u,c—my )i ~
ORFLA() = (_'—Vll(tx) 1)~ Myt )
Xy u cfmz tx ~
i Fabo)

wherefy < 0 is the value of which minimizes the expression

Hq)tRXFLAH% — (X_ ([.L]_C— ml)t)z + (ILLZC_ rnZ)ztz?
’ Vo(t) Vo (t)
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and the basic approximation is given BYQY > x) ~ exp( — 3/|¢fF4(|Z). For
the events satisfying the RFLA conditions, denoted by RElwe have an exact
lower bound

P(RFLA,) > ® <_ M) 5 (_w) |
N vy (t) ' v, (t)

The rescaling of the basic formulae can be done so that the buffer emptiness is
approximated by a worst case scenario. The dlgsgue cannot be larger than the
total queue. On the other hand, clasgieue is always smaller than the queue of a
single class system with inpat'} and server ratg;c. Applying the non-emptiness
approximation to these two non-priority queues gives

P(Q{i}>0)§2min P (Czmj)m),cp((uicmj)At :

5 Vv;(At) vi(4t)

whereAt denotes the smallest relevant time resolution of a Gaussian model.

In addition to testing the accuracy of the approximate formulae (which is again
rather good), the simulation studies are used to study how the GPS parameters
affect the queueing performance.

3.8 Summary of [6]

Publication [6] is a unified presentation of the most probable path approach for
priority and GPS queues. In addition to the main results of [4] and [5], there is
also some new material.

The problem of negative traffic is discussed. In Equations (3.2) the negative
traffic is considered as an extra service capacity to be shared among other classes.
Instead of Equations (3.1), one could define also a priority system where negative
traffic plays a role.

The lower bound for the events satisfying the RFLA condition is improved
using a half-space approximation: our second RFLA approximation, which the
simulations indeed indicate to be a lower bound, is

= [ x= (me—m)E)® | (ue—my)*E
P(RFLAy) > & \/ \:/Ll(fx) 1 + 2v2(fx)

New examples and simulations are added, including a case of two FBM input
classes, where everything can be calculated analytically.
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3.9 Author’s contribution to [2]-[6]

In [2], the present author modified the conditionalized RMD algorithm for general
Gaussian processes, performed all the simulations and calculated the correspond-
ing performance estimates for the examples. The paper is jointly written. In [3],
most of the new material (compared to [2]) is by the present author. This includes
especially the rigorous mathematical analysis of the most probable paths and sev-
eral illustrating examples. The paper is jointly written.

In [4]-[6], the basic ideas of how to apply the most probable path approach
to priority and GPS queues, as well as the heuristic rough full link approximation,
are by Norros. The actual analysis and accuracy testing are mainly by the present
author. [4] and [5] are written by the present author under the guidance of Norros.
In [6], Norros was the corresponding author, the present author also contributing
to the content; especially the examples and simulations are mostly by the present
author.
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4. Prediction of teletraffic

4.1 Introduction

Although the capacities of networks are increasing continuously, there are always
some applications and sub-networks where resources are scarce. In these situa-
tions, even a slight improvement by predicting the future traffic load can make a
difference.

After the discovery of long-range dependence of data traffic in various net-
work environments there have been great — even unrealistic — expectations con-
cerning how one could utilize this property. The theoretical basis for predictors
of long-range dependent traffic can be found in the paper on prediction of frac-
tional Brownian motion by Gripenberg and Norros [GN96] (see also [Nor95]).
Their study shows that the past of a process is relevant only as far as we are
going to predict the future, for example, the next second is mainly predicted by
the previous one. Lately, there have been several studies which, using time se-
ries approaches, have considered traffic prediction and related problems (see e.g.
[0S01, OSHO01, PTO1, SLO2)).

4.2 Basics of the linear predictions

The basic setup for a prediction problem is the following: we have observed ran-
dom variableX = (X,,...,X,)T € R" and using this knowledge we would like to
predict another random variabfec R. The natural predictor would be(E|X).
Unfortunately, this is impractical in many cases due to the need for exact knowl-
edge of the (joint) distributions.

If we assume tha¥, X, € .2, i = 1,...,n, we can consider the classical re-
gression problem: given any closed subkkbf .Z,, find the element of this
subset which minimizes the mean-square distance ¥onin time series anal-
ysis, this element is often called the best predictoMir(see e.g. [BD91]). In
this thesis, we consider only linear predictions:Mfis the closed linear space
spanned byX,...,X,), then the best prediction &fin M is found by determin-
inga=(a,,...,an)" andu such that

E(Y—(@X+u)
is minimized. The well known solution (see e.g. [BD91]) is
a=T(X,X)"Ir(x,y), u=EY-a EX,

where(I" (X, X)); ; = Cov(Xi,Xj> and(l(X,Y)); = Cov(X.,Y).
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If (X,Y) is a multivariate Gaussian random variable, then the minimum-least-
square-error predictor of is also the conditional expectationfwith respect to
X. Thus, the linearZ, predictors suit especially well for Gaussian processes.

Let us consider the cumulative traffic model

A =mt+6Z, (4.1)

wheremis the mean ratey? is the variance in a unit time arf is a centered (i.e.
EZ = 0) stochastic process with stationary increments andVar1. Moreover,

it is assumed thaZ € .Z,. The prediction problem of can be represented as
follows: the past ofA is given by a finite number of measurements

)(i:At—ﬁ_A{—§717 i:17"'7n7

wheres, = 0, and the task is to predict future trafiic= A _,, —A_,, based on
this knowledge (see Figure 3). By the stationarity of the mcrements the covariance

is given by
2

Cov(A,As) — % (V(t) +V(S) — V(t —9)),

wherev(t) = Var(Z). Thus, the prediction formula depends onlymrandv(t),
not ono.

Input rate

t

2
measurements delay prediction

Figure 3. Prediction at time £ 0 and conditioning with respect to three intervals
in past.

4.3 Summary of [7]

In the case of fractional Brownian motion, we answer the questions: how should
one optimally choose the measurement resolution and how long time should each
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measurement data be stored. We first determine the reference value, predictions
based on the full history. The predictor for the incoming traffic on inteltvah,],

~

Z(h;,h,) =E (th - Zhl | Zs,s< O), has a relative error
5 2

E (Z(hy,hy) —Z(hy,hy)) _

EZ(hy, hy)?

~sin(z(H - §)) / (R -+ 1) (1+1) — (hy +ht) 2 — (h, + hyt) ™
21t(hy —hy)?" A (1+t)tH+z

dt.

Comparing the above integral with the (numerically) optimized discrete condi-
tions, we find that conditioning with respect to two or three optimally chosen
measurement intervals gives almost as accurate prediction as it is theoretically
possible. We are especially interested in predictions in which the tiglsgtisfies

h, = h, —h,;. In this case, an engineering solution is to condition on the geomet-
rically increasing intervals with the smallest resolution being half of the delay. It
has a satisfactory accuracy if five or more intervals are used.

Using real traces from a modem pool measurement, we study the accuracy of
the predictions when a “semi-stationary” traffic model is applied. We adapt the
traffic model (4.1), but every time a prediction is made, we use mean rate which is
estimated by a moving average method. Since the magnitude of the variance func-
tion, that isc?, plays no role, we can use the same variance function throughout
each trace. Here a FBM type variance functigt) = t*' is chosen. Moreover,
instead of equally spaced measurements of the past, we condition with respect to
geometrically increasing intervals.

When the goodness of a prediction is considered indhesense, our predic-
tion algorithm is performing well, also even if the number of traffic sources is very
small. In addition, the algorithm is robust in the sense that one need not care too
much about how accurately the parameters are estimated.

On other hand, a straightforward application of a traffic predictor in resource
reservation may lead to problems. As a simple example we consideerallo-
cation algorithm: leg, denote the predicted amount of traffic on interlyaand
reserve for this interval the bandwidth

Ck = (1+8)gk7

wheree > 0. We show that the parameter values for a good predictor with respect
to ane-overallocator are often different to those chosen with respect tazthe
criteria.

4.4 Author’s contribution to [7]

The present author is the sole author of Publication [7].
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5. Multifractal modeling

5.1 Introduction

Multifractals by themselves are a relatively old topic first introduced by Mandel-
brot in the context of turbulence [Man72, Man74] in the early 1970s. In telecom-
munications, multifractals have only recently appeared: Appleby combined multi-
fractal analysis of population distributions with network planning [App94, App95],
Riedi and Lévy-Véhel applied multifractal analysis to data traces [RLV97], Tagqu,
Teverovsky and Willinger considered whether network traffic is self-similar or
multifractal [TTW97], Feldmann, Gilbert and Willinger modeled the multifrac-

tal nature of data traffic using a cascade based construction [FGW98], and Riedi et
al. developed a multiscale modeling framework suitable for network traffic char-
acterization [RCRB99].

There are many ways to construct random multifractal measures varying from
the simple binomial measures to measures generated by branching processes (see
e.g. [Man72, Man74, Fal94, AP96, Pat97, RCRB99]). In teletraffic modeling, we
would also like to have, in addition to a simple and causal construction, the station-
arity of the increments. Unfortunately, most of the ‘classical’ multifractal models,
in particular tree-based cascades, lack these properties.

There have been some thoughts concerning how to use multifractal processes
in teletraffic modeling. Unfortunately, neither our constructions and reasonings,
nor the ones that have been suggested in different publications (e.g. random cas-
cade measures), are fully satisfactory. Currently, the connection between multi-
fractal processes and the reality of telecommunication systems is not completely
clear. However, the family introduced in [8] is quite general and has many desired
properties, thus, being a promising basis for the modeling purposes. For example,
Kulkarni et al. [KMS01] have suggested a closely related approach of cascaded
on-off models for TCP connection traces.

5.2 Multifractal processes

Mathematically, the local scaling behavior is measured by some singularity expo-
nent, for example, the local Holder exponent or the pointwise dimensions. We
consider here only non-decreasing processes; a comprehensive presentation of the
general case is found in [Rie02]. LAtbe a (stochastic) process 1]. The
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lower and upper pointwise dimensiong atre defined by

ht) = timinf 29 es Ay

- 510 logd ’

= . log(A s —A_s)
h(t) = limsu +0 o
® 510 P logé

correspondingly. When a singularity exponent is itself a highly irregular (random)
function oft, i.e., sets likeE, = {t : h(t) = h(t) = a} andK, = {t : h(t) < a}
have fractal dimensions, the process is said to be multifractal. The irregularity
of the paths can be described via the Hausdorff dimension of the sets. Function
f(o) = dimE, is often called the multifractal spectrum Af

In applications, the fractal dimensions of the scaling sets are unattainable and
one must consider global scaling properties. The so-called partition function pres-
ents a global summary of the scaling behavior. The (pathwise) partition function

. logS;(q)
7(q) = |If?ilglf Togs
and the corresponding deterministic partition function
. 10g ES;(9)
T(g) = “ryllc?f 7log5

are defined through the partition sum
Ss(a) = Z(Aks _A(kfl)é)q’
s > 0. The Legendre transforma-

where the sum is ovek for which Ak8 —A(

. . k-1)
tions of r andT, i.e.,

™(a) = igf(aq—r(q)),
T(a) = igf(aQ—T(QD,

give approximations for the fractal dimensions, since(@g) < 7*(a) < T*(«a)
with probability one. Similar type of results also hold for other singularity expo-
nents and more general processes (see [Rie02]).

The binomial measure is the standard example of multifractal processes. The
simplest construction is the deterministic one: Start from the uniform measure on
unit interval, split it into two parts and weight the intervalstmandp =1 —m,
respectively. Continue analogously by splitting intervals and redistributing the
mass (see Figure 4). There are several ways to generalize and randomize this
construction, for example, Mandelbrot’s martingale [Man72] has i.i.d. mean one
random weights and splitting intointervals in each step. This family of measures
was first analyzed by Kahane and Peyriére almost 30 years ago [KP76].
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Figure 4. Construction of a binomial measure.

5.3 Summary of [8]

The construction of a binomial measure can be represented by a product of piece-
wise constant processes. A natural extension is to consider random measures
where the redistribution is determined by a product of arbitrary stationary pro-
cesses. Publication [8] studies when such constructions result in non-trivial limit
measures and what kind of properties these limits have.

In a very general setting df-martingales, this question was originally studied
by Kahane [Kah87, Kah89]. Here we restrict us to a more specific family. Let us
consider independent positive stationary proce@ﬂé’é(t)}t clo.1] with
EAD({t)=1, Wte[0,1,i=0,1,2....

Define the finite product processes

n
An(t) = [TAD (1)
O
and the corresponding cumulative processes
t t n .
Ana)i/ /\n(s)ds:/ |‘L/\<'> (9ds, n=01,....
0 0=
DenoteA(t) = limp_e An(t).

The main result for processes i, is a condition for convergence to a non-
trivial limit process. Assume that VA' (t) = 62 < « for all i and denote

Cov(A(t). AV(ty)) = o%p; (t; —ty).
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wherep;(0) = 1. ThenA,(t) — A(t) in %, forall t € [0,1] if
ianu) <, (5.1)

whereay(t) = [3(t —9)pn(s) [ (1+ 6%p;(9))ds:

Most of the results in [8] are for self-similar products. We assume that the
processed\() are independent rescaled copies of a stationary mother pracess
i.e.,

AU EA B,

whereb > 1 and E\ = 1. For a large set of covariance functions ti#%-con-
vergence condition (5.1) simplifies a Idi:> EA? is enough. After showing that
EA(t)d ~ t919%EA" e calculate the deterministic partition function which hap-
pens to be very similar to the binomial ca3gq) = q— 1—log, EAY. Moreover,

it is shown that the long-range dependence is preserved in the construction.

Finally, we introduce an application-friendly family which is constructed from
piece-wise constant Markov jump processes.

The model has natural generalization®tband they could be used, for exam-
ple, as a model for fractal population distributions. Moreover, analysis of processes
which are built from products of piecewise constant stationary processes has in-
spired to a modification of the standard multifractal spectra: the scaling properties
are easiest observed through the natural random partitionings defined by the con-
stant periods ofj_o A1 (t),n=0,1,..., (see [MRNO3]).

5.4 Author’s contribution to [8]

Riedi instructed the other two authors how this kind of problems should be handled
and gave them several valuable references and hints. However, most of the new
mathematical results in [8] are by the present author and Norros; the contributions
being about half and half. The paper is mainly written by the present author.
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Errata

Publication [4]

Figure 5. Class 1 and Class 2 traffic were not independent; the seeds of the random
number generator were not changed.

Publication [6]

Page 408, Figure 4n should readu.

Appendices of this publication are not included in the PDF version.
Please order the printed version to get the complete publication
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